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4.) Abstract 

 This report analyzes the profitability of building a grass roots Nylon 6,6 plant in Calvert 

City, Kentucky. A rigorous process simulation was produced, equipment prices were estimated, 

utility usage was assessed, and a plan for the plant organization was developed. The calculations 

yielded values for fixed capital investment ($10.5 million), working capital ($101 million) and 

revenue ($114 million). The discounted cash flow rate of return was calculated to be 8.94%.  

 The conclusion drawn from these calculated values is that the current plan for the plant 

would not be profitable on a 10 year project life basis. However, recommendations are presented 

that suggest the plant’s profitability could increase after a more thorough analysis and changes in 

market conditions.   
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5.) Introduction 

 This project was conducted for the American Institute for Chemical Engineers Design 

Competition. The goal was to prepare a complete economic analysis for building a grass roots 

plant to produce 85 million pounds of Nylon 6,6 per year. This analysis required a full simulation 

of the plant, along with organizational tasks that come with designing a plant. These tasks 

include plans for safety, health and environmental concerns, process control schemes, startup 

procedures, and reduced rate procedures.  

 The timeline for this project was exactly one month from the assignment date. There was 

to be no communication with other students, faculty, or business professionals for help on this 

project. Only sources that were open for public access were to be used.  

 Aside from the numerical values that were produced from the economic analysis, great 

skills in chemical engineering were developed during the course of this project. It presented 

opportunities to pool all knowledge gained through university and industrial education and find a 

solution to a difficult problem.  

  



3 
 

6.) Process Flow Diagram and Material Balances 

It is important when designing a plant to begin with an organized naming system. Below 

in Figure 6.1 is the nomenclature used for types of equipment and streams. This allows for easy 

identification of equipment type and location in the process.  

The Material Balance Block can be seen below in Table 6.2, and the Process Flow 

Diagram (PFD) can be found on the following page in Figure 6.1.  

Table 6.1: Plant Naming System 

 

 In addition to this table, it should be noted that higher equipment numbers denote that the 

equipment is further down the process.  

Table 6.2: Material Balance Block 

 

 

Equipment Prefix Stream Prefix

Cooler C Bottoms B

Extruder E Condensate C

Heater H Feed F

Pump P Product P

Reactor R Vent V

Tower T

Vessel V

Stream B-T-101 C-H-101A C-H-102A C-H-102B C-T-101 F-H-101A F-H-101C F-H-102A F-H-102B

Temperature (F)             357.024 147.7862 214.3513 281.205 356.989 77 135.0083 77 158.9839

Pressure    (psia)          146.9595 146.1575 146.4671 146.7071 146.9595 14.69595 14.22438 14.69595 14.45109

Vapor Fraction        0 0 0 0 0 0 0 0 0

Mass Flow  (lb/hr)         2374.296 3482.475 3482.475 3482.475 3482.475 6904.854 6904.854 6214.014 6214.014

Component mass Flow   (lb/hr)                  

    ADA                     0.1475691 6.44E-38 6.44E-38 6.44E-38 6.44E-38 0 0 6214.014 6214.014

    HMDA                    6.854129 2.20E-09 2.20E-09 2.20E-09 2.20E-09 4937.024 4937.024 0 0

    H2O                     2367.294 3482.475 3482.475 3482.475 3482.475 1967.83 1967.83 0 0

    NYLON                   0 0 0 0 0 0 0 0 0

Enthalpy Flow (Btu/hr) -1.54E+07 -2.35E+07 -2.33E+07 -2.30E+07 -2.27E+07 -1.62E+07 -1.59E+07 -1.77E+07 -1.75E+07

Stream F-H-102C F-R-1011 F-R-1012 F-V-1011 P-R-101 P-R-102 V-R-101 V-R-102

Temperature (F)             251.4771 350.33 350.33 77 431.33 539.33 431.33 539.33

Pressure    (psia)          14.24067 146.9595 146.9595 14.69595 146.9595 14.69595 146.9595 14.69595

Vapor Fraction        0 0 0 0 0 0 1 1

Mass Flow  (lb/hr)         6214.014 6904.854 6214.014 4937.024 10050.77 9636.274 5856.771 414.4943

Component mass Flow   (lb/hr)                 

    ADA                     6214.014 0 6214.014 0 6.983917 0.133263 0.147569 0.0229786

    HMDA                    0 4937.024 0 4937.024 5.288901 0.0704341 6.854129 0.2723931

    H2O                     0 1967.83 0 0 395.5388 10.75828 5849.769 414.1989

    NYLON                   0 0 0 0 9642.956 9625.312 1.67E-79 1.27E-76

Enthalpy Flow (BTU/hr) -1.49E+07 -1.68E+07 -2.74E+06 -1.34E+07 -7.89E+06 -4.54E+06 -3.29E+07 -2.30E+06
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Figure 6.1: Plant Process Flow Diagram 
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7.) Process Description 

a.) Overall Description 

The process begins with the introduction of the three reactants: adipic acid (ADA), 

hexamethylenediamine (HMDA), and water (H2O). The preheated reactants are directed to a 

reactor at a temperature of 431.33oF and a pressure of 10 atm for initial step-growth 

polymerization. This initial reactor aids in the conversion of HMDA and ADA into low-

molecular-weight oligomers. The high pressure is to mitigate the issue of the relatively low 

volatility of ADA (Seavey & Liu, 2008).  

The combined oligomer stream from the first reactor is routed to a second reactor with a 

temperature of 539.33oF and atmospheric pressure. The second reactor under said conditions 

helps devolatilize the polymer and increase the molecular weight (Seavey & Liu, 2008). H2O is 

the by-product of the reaction between ADA and HMDA, and is created in excess.  

A vent stream from the second reactor is recycled to the first reactor in order to keep 

H2O out of the product stream and recycle excess reactants. The first reactor also has a vent 

stream, which is connected to an enriching column. A nearly pure (>99.9% H2O) stream exits 

the top of the column, while more than 99.9% of the ADA and HMDA from the reactor vent exit 

the bottom of the column and reenter the reactor. 

The nylon product from the second reactor is extruded and sold.  

b.) Process Flow Diagram  

 The process begins with the introduction of the three reactants: adipic acid (ADA), 

hexamethylenediamine (HMDA), and water (H2O). The reactants are preheated before entering 

the reactors. To avoid premature reactions, ADA and HMDA are preheated separately.  

 V-101, a process vessel, is fed with stream F-V-1014. Due to the nature of HMDA being 

solid at ambient temperature, it is added to H2O in V-101 before being preheated. The exiting 

stream is F-H-101A. Refer to subsection 9v for more information about V-101. 

 H-101A, a floating head shell and tube heat exchanger, is fed with stream F-H-101A 

which contains HMDA and H2O. This is cross-exchanged with condensate stream C-H-102A in 

order to save costs on heating with a fired heater. This is the third exchanger that the condensate 

from T-101 enters. The stream temperature increases from 77oF to 135oF. The floating head 

design was chosen for its availability to remove the tubes for cleaning. Refer to subsection 9c for 

more information for more information about H-101A. 

 H-101C, a nonreactive-fired heater, is fed with stream F-H-101C which is the stream 

exiting H-101A. A fired heater is used rather than a heat exchanger due to lack of additional 

streams from the process to perform heat integration. This heater is powered by electricity and 

has a required duty of 1019320 Btu/hr. The stream temperature increases from 135oF to 350oF. 

Refer to subsection 9d for more information about H-101C. 
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 H-102A, a floating head shell and tube heat exchanger, is fed with stream F-H-102A 

which contains pure ADA. This is cross-exchanged with condensate stream C-H-102B in order 

to save costs on heating with a fired heater. This is the second exchanger that the condensate 

from T-101 enters. The stream temperature increases from 77oF to 159oF. The floating head 

design was chosen for its availability to remove the tubes for cleaning. Refer to subsection 9e for 

more information about H-102A. 

 H-102B, a floating head shell and tube heat exchanger, is fed with stream F-H-102B 

which is the stream exiting H-102A. This stream is cross-exchanged with condensate stream C-

H-102A in order to save costs on heating with a fired heater. This is the first exchanger that the 

condensate from T-101 enters. The stream temperature increases from 158oF to 251oF. The 

floating head design was chosen for its availability to remove the tubes for cleaning.  Refer to 

subsection 9f for more information about H-102B. 

 H-102C, a nonreactive-fired heater, is fed with stream F-H-102C which is the stream 

exiting H-102B. A fired heater is used rather than a heat exchanger due to lack of additional 

streams from the process to perform heat integration. This heater is powered by electricity and 

has a required duty of 347271 Btu/hr. The stream temperature increases from 251oF to 350oF. 

Refer to subsection 9g for more information about H-102C. 

R-101, a continuously stirred tank reactor (CSTR), is fed by streams F-R-1011 and F-R-

1012 which are the streams exiting H-101C and H-102C, respectively. This reactor is operated at 

a temperature of 431.33oF and a pressure of 10 atm for initial step-growth polymerization. R-101 

aids in the conversion of HMDA and ADA into low-molecular-weight oligomers. The high 

pressure is to mitigate the issue of the relatively low volatility of ADA (Seavey & Liu, 2008). A 

CSTR was chosen as opposed to a batch reactor due to a drastically higher conversion rate, as 

well as a better functionality for continuous polymer processing. This reactor is powered by 

electricity and has a required duty of 8726270 Btu/hr. Due to the production of water as a 

byproduct in the polymerization reaction, a vent is included above the reactor. This vent stream 

feeds T-101 on the bottom stage. The vent stream from R-102 (V-R-102) is fed to R-101 to 

recycle excess ADA, and HMDA. R-101 is set on a skid above R-102, and the product stream P-

R-101 is gravity-fed to R-102 as the feed for the second reactor. This skid set-up is chosen rather 

than a ground-level scheme in order to avoid any reactions within any pumps. Refer to 

subsection 9s for more information about R-101. 

R-102, a CSTR, is gravity-fed by stream P-R-101, which is the stream exiting R-101. 

This reactor is operated at a temperature of 539.33oF and a pressure of 1 atm for initial step-

growth polymerization. R-102 helps to devolatilize the polymer and increase the molecular 

weight (Seavey & Liu, 2008). A CSTR was chosen as opposed to a batch reactor due to a 

drastically higher conversion rate, as well as a better functionality for continuous polymer 

processing. This reactor is powered by electricity and has a required duty of 1046950 Btu/hr. 

Due to the production of water as a byproduct in the polymerization reaction, a vent is included 

above the reactor. This vent stream feeds T-101 on the bottom stage. Refer to subsection 9t for 

more information about R-102. 
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T-101, an enriching column, is fed by stream V-R-101 on the bottom stage of the column. 

The column has 13 sieve trays and 1 total condenser at the top. The purpose of this column is to 

create an enriched H2O by-product stream and rid it of corrosive HMDA. The column is set at a 

pressure of 10 atm, the same pressure as R-101. The reflux ratio is set to 0.75, which optimizes 

both H2O purity and flowrate. The number of stages was the minimum amount of stages at these 

conditions, which allowed only “trace” amounts of both ADA and HMDA to exit the top of the 

column. The bottoms of the column recycle to R-101 in stream B-T-101, and the distillate is heat 

integrated into the preheat network in stream C-T-101. Refer to subsection 9u for more 

information about T-101. 

E-101, an extruder, is fed by stream P-R-102, which is the stream exiting R-102. This 

facilitates the product finishing of the molten Nylon 6,6. Due to lack of proper solids processing 

software, an extruder was chosen for simplicity reasons. Refer to subsection 9b for more 

information about E-101.  
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8.) Energy Balance and Utility Requirements 

From energy balance for the plant in Figure 8.1 below, it can be shown that the 

simulation has been run correctly and follows the First Law of Thermodynamics:  

Energy in = Energy out 

      ∑Qin + F-H-102A + F-V-1011 + F-V-1014 = P-R-102 + C-H-101A + ∑Qout  

                      -5.27 - 17.75 - 2.74 - 13.42 = -4.54 -23.51 – (1.02 + 0.35 + 8.73 + 1.05) 

     -39.18 = -39.20 

 The enthalpy flow values on the following figure are all in units of Btu/hr X 106. Full 

information for enthalpy flow values is located in Table 6.2.  

 

Figure 8.1: Energy Balance  

As seen in Figure 8.1, the condensate from T-101 is used for in a preheat network which 

consists of exchangers H-102B, H-102A, and H-101A in that order. This optimally integrates the 

heat of the condensate stream by introducing it at its hottest point in the hottest of the three 

exchangers (H-102B). As the condensate stream loses heat, it is passed through the other 

exchangers in the preheat network. H-102A and H-101A have colder process feed streams that 

require less heat, so the condensate stream can efficiently preheat these feed streams. This 

preheat network is used as opposed to one large heat exchanger for multiple reasons. It is 

cheaper to have smaller exchangers than one large exchanger. Additionally, using multiple 

exchangers gives a bypass option if one exchanger needs to be repaired or cleaned.   

 Additional energy is supplied by electricity to multiple places in the plant, as illustrated 

in Figure 8.1. To complete the preheating of the R-101 feed streams, Q terms are shown with 

values of 1.02 for H-101C and 0.35 for H-102C. To heat the CSTRs, Q terms are shown with 

values of 8.73 for R-101 and 1.05 for R-102.  

Energy must be removed from the system at the condenser for reflux to the column. In 

Figure 8.1, a Q term with a value of -5.27 is shown for C-101.  
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9.) Equipment List and Unit Descriptions 

 Below, every process unit included in the PFD is described. For price estimates for the 

equipment, refer to section 11.  

a) C-101 
This is an air-cooled condenser. The condenser requires a duty of -5269160 Btu/hr, and 

2.4E6 lb/hr of air. The condenser will have several fins connected to the side with the 

overhead water stream in order to maximize surface area of the heat exchange and optimize 

the use of airflow. The duty calculation was performed in Aspen Plus V8.8 using the 

RadFrac column model, and no further calculations were performed to size the condenser. 

Due to the approximate duty-to-surface area ratio of 10 observed in H-102A and H-102B, a 

required surface area for C-101 is estimated to be 1615 ft2 for bare module costing purposes. 

The material carbon steel is used because of the lack of necessity for stronger chemical 

resistance. Refer to Figure A2-1 for the specification sheet for this process unit.   

b) E-101 

This is an extruder that will process the product in stream P-R-102. The material of 

construction is carbon steel due to the lack of necessity for stronger chemical resistance. No 

calculations for this equipment item were performed because resources were not available. It 

is assumed that molten Nylon 6,6 is extruded to solid at a 1:1 mass ratio and that it can be 

sold in this extruded condition. Refer to Figure A2-2 for the specification sheet for this 

process unit.   

c) H-101A 

This is a floating head shell-and-tube heat exchanger. The hot condensate in stream C-H-

102A is on the shell side and the cold HMDA-H2O solution in stream F-H-101A is on the 

tube side. The material 25Cr, 12 Ni steel is used because of its excellent chemical resistance 

at high temperatures (Turton, Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012). The 

rigorous sizing calculations were performed in Aspen Plus V8.8 using the POLYNRTL 

property method. The full design specifications can be seen in Appendix 1 Figures A1-1 and 

A1-2. Refer to Figure A2-3 for the specification sheet for this process unit.   

d) H-101C 

This is a nonreactive-fired heater powered by electricity. The material 25Cr, 12 Ni steel is 

used because of its excellent chemical resistance at high temperatures (Turton, Bailie, 

Whiting, Shaeiwitz, & Bhattacharyya, 2012). The energy calculations were performed in 

Aspen Plus V8.8 using the POLYNRTL property method. For simplicity purposes, H-101C 

was simulated using electricity for power. Refer to Figure A2-1 for the specification sheet for 

this process unit.   

e) H-102A 

This is a floating head shell-and-tube heat exchanger. The hot condensate in stream C-H-

102B is on the shell side and the cold ADA in stream F-H-102A is on the tube side. The 

material carbon steel is used because of the lack of necessity for stronger chemical resistance. 

The rigorous sizing calculations were performed in Aspen Plus V8.8 using the POLYNRTL 
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property method. The full design specifications can be seen in Appendix 1 Figures A1-3 and 

A1-4. Refer to Figure A2-5 for the specification sheet for this process unit.   

f) H-102B 

This is a floating head shell-and-tube heat exchanger. The hot condensate in stream C-T-101 

is on the shell side and the cold ADA in stream F-H-102B is on the tube side. The material 

carbon steel is used because of the lack of necessity for stronger chemical resistance. The 

rigorous sizing calculations were performed in Aspen Plus V8.8 using the POLYNRTL 

property method. The full design specifications can be seen in Appendix 1 Figures A1-5 and 

A1-6. Refer to Figure A2-6 for the specification sheet for this process unit.   

g) H-102C 

This is a nonreactive-fired heater. The material carbon steel is used because of the lack of 

necessity for stronger chemical resistance. The energy calculations were performed in Aspen 

Plus V8.8 using the POLYNRTL property method. For simplicity purposes, H-102C was 

simulated using electricity for power. Refer to Figure A2-7 for the specification sheet for this 

process unit.   

h) P-CH-101A 
This is a positive-displacement pump with a required shaft work of 224 Btu/hr. The material 

chosen is carbon steel due to the lack of necessity for stronger chemical resistance. It is 

estimated that the pump will have a head differential of 40 feet due to pumping from the 

bottom outlet of H-101A to the top of S-104. Refer to Figure A2-8 for the specification sheet 

for this process unit.   

i) P-CH-102A 
This is a positive-displacement pump with a required shaft work of 56 Btu/hr. The material 

chosen is carbon steel due to the lack of necessity for stronger chemical resistance. It is 

estimated that the pump will have a head differential of 10 feet due to pumping from the 

bottom outlet of H-102A to the top inlet of H-101A. Refer to Figure A2-9 for the 

specification sheet for this process unit.   

j) P-CH-102B 

This is a positive-displacement pump with a required shaft work of 56 Btu/hr. The material 

chosen is carbon steel due to the lack of necessity for stronger chemical resistance. It is 

estimated that the pump will have a head differential of 10 feet due to pumping from the 

bottom outlet of H-102B to the top inlet of H-102A. Refer to Figure A2-10 for the 

specification sheet for this process unit.   

k) P-FH-101A 

This is a positive-displacement pump with a required shaft work of 55 Btu/hr. The material 

chosen is Ni alloy because of its excellent chemical resistance at high temperatures (Turton, 

Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012). It is estimated that the pump will have a 

head differential of 5 feet due to pumping from the bottom of V-101 to the cold inlet of H-

101A. Refer to Figure A2-11 for the specification sheet for this process unit.   

 

 



11 
 

l) P-FH-101C 

This is a positive-displacement pump with a required shaft work of 55 Btu/hr. The material 

chosen is Ni alloy because of its excellent chemical resistance at high temperatures (Turton, 

Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012). It is estimated that the pump will have a 

head differential of 5 feet due to pumping from the cold outlet of H-101A to the cold inlet of 

H-101C. Refer to Figure A2-12 for the specification sheet for this process unit.   

m) P-FH-102A 

This is a positive-displacement pump with a required shaft work of 50 Btu/hr. The material 

chosen is carbon steel due to the lack of necessity for stronger chemical resistance. It is 

estimated that the pump will have a head differential of 5 feet due to pumping from ground-

level to the cold inlet of H-102A. Refer to Figure A2-13 for the specification sheet for this 

process unit.   

 

n) P-FH-102B 
This is a positive-displacement pump with a required shaft work of 50 Btu/hr. The material 

chosen is carbon steel due to the lack of necessity for stronger chemical resistance. It is 

estimated that the pump will have a head differential of 5 feet due to pumping from the cold 

outlet of H-102A to the cold inlet of H-102B. Refer to Figure A2-14 for the specification 

sheet for this process unit.   

 

o) P-FH-102C 

This is a positive-displacement pump with a required shaft work of 50 Btu/hr. The material 

chosen is carbon steel due to the lack of necessity for stronger chemical resistance. It is 

estimated that the pump will have a head differential of 5 feet due to pumping from the cold 

outlet of H-102B to the cold inlet of H-102C. Refer to Figure A2-15 for the specification 

sheet for this process unit.   

p) P-FR-1011 
This is a positive-displacement pump with a required shaft work of 333 Btu/hr. The material 

chosen is Ni alloy because of its excellent chemical resistance at high temperatures (Turton, 

Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012). It is estimated that the pump will have a 

head differential of 30 feet due to pumping from the cold outlet of H-101C to the top of R-

101, which is located on a skid. Refer to Figure A2-16 for the specification sheet for this 

process unit.   

q) P-FR-1012 
This is a positive-displacement pump with a required shaft work of 300 Btu/hr. The material 

chosen is carbon steel due to the lack of necessity for stronger chemical resistance. It is 

estimated that the pump will have a head differential of 30 feet due to pumping from the cold 

outlet of H-102C to the top of R-101, which is located on a skid. Refer to Figure A2-17 for 

the specification sheet for this process unit.   

r) P-FV-1012 
This is a positive-displacement pump with a required shaft work of 16 Btu/hr. The material 

chosen is Ni alloy because of its excellent chemical resistance at high temperatures (Turton, 
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Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012). It is estimated that the pump will have a 

head differential of 5 feet due to pumping from ground-level to the top of V-101. Refer to 

Figure A2-18 for the specification sheet for this process unit.   

s) R-101 

This is a 64 ft3 CSTR. The material Nickel alloy is used because of its excellent chemical 

resistance at high temperatures (Turton, Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012). 

The reaction of ADA and HMDA to form Nylon 6,6 was modeled using a step-growth 

polymerization reaction model in Aspen Plus V8.8. The reaction kinetics used to characterize 

the step-growth polymerization can be found in Appendix 1 Figures A1-7 and A1-8 (Chaves, 

López, Zapata, Robayo, & Niño, 2016). The energy calculations were performed in Aspen 

Plus V8.8 using the POLYNRTL property method. Refer to Figure A2-19 for the 

specification sheet for this process unit.   

t) R-102 
This is a 64 ft3 CSTR. The material Nickel alloy is used because of its excellent chemical 

resistance at high temperatures (Turton, Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012). 

The reaction kinetics used to characterize the step-growth polymerization can be found in 

Appendix 1 Figures A1-6 and A1-7 (Chaves, López, Zapata, Robayo, & Niño, 2016). The 

energy calculations were performed in Aspen Plus V8.8 using the POLYNRTL property 

method. Refer to Figure A2-20 for the specification sheet for this process unit.   

u) T-101 
This is a 13-stage enriching column. The material Nickel alloy is used because of its 

excellent chemical resistance at high temperatures (Turton, Bailie, Whiting, Shaeiwitz, & 

Bhattacharyya, 2012). The rigorous tower design was performed in Aspen Plus V8.8 using 

the POLYNRTL property method and the RadFrac column model. The column profile for 

composition, temperature, and pressure can be seen in Appendix 1 Figure A1-8. Refer to 

Figure A2-21 for the specification sheet for this process unit.   

v) V-101 

This is a 64 ft3 open-top vertical vessel. The material Nickel alloy is used because of its 

excellent chemical resistance at high temperatures (Turton, Bailie, Whiting, Shaeiwitz, & 

Bhattacharyya, 2012). This was modeled as a mixer in Aspen Plus V8.8 under the 

assumption of perfect mixing within the vessel. Refer to Figure A2-22 for the specification 

sheet for this process unit.   
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10.) Equipment Specification Sheets 

 Specification sheets for the equipment listed in Section 9 can be found in Appendix 2.  
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11.) Equipment Cost Summary 

The summary for the cost of the equipment is shown below in Table 11.1. This 

calculation is based on a bare module costing model from the textbook Analysis, Synthesis and 

Design of Chemical Processes (Turton, Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012). 

This book is based on a 2001 Chemical Engineering Plant Cost Index (CEPCI) value of 397. To 

account for inflation, a 2016 CEPCI value of 536.5 was used in a conversion (Economic 

Indicators, 2016). As shown in Table 11.1, the bare module cost for all of the equipment sums to 

be $7,192,129,446. 

Table 11.1: Equipment Cost Summary 

 

 Storage vessels S-101, S-102, S-103, and S-104 are included in this equipment costing. 

These vessels hold HMDA, ADA, H2O, and Nylon 6,6, respectively.  

  Table 11.1 only shows a summary of the equipment costs. For a more detailed table of the 

bare module costs, see Appendix 3.  

 Analysis, Synthesis and Design of Chemical Processes does not include information for 

extruders, and alternative bare module cost data is difficult to obtain. Preliminary Chemical 

Engineering Plant Design (Baasel) gives a 1964 bare module cost for an extruder of $90,000. 

Although this value may not be the same capacity as which is required, the value was used 

nonetheless as an order-of-magnitude value, and the CEPCI was converted accordingly.  

 All equipment which deals with HMDA at high temperatures was modeled using a nickel 

alloy material of construction. Carbon steel is assumed to be sufficient for equipment which deals 

with HMDA at ambient temperature or for storage (Ascend Performance Materials, 2013).  

  

Equipment Modeled as: Bare Module Cost Equipment Modeled as: Bare Module Cost

C-101 air cooler cs 176,163.85$               PFH102C positive displacement pump cs 20,681.27$                 

E-101 extruder (value from other book) 467,424.98$               PFR1011 positive displacement pump ni 34,565.53$                 

H-101a floating head cs shell/ni tube 172,608.40$               PFR1012 positive displacement pump cs 15,995.57$                 

H-101c nonreactive fired heater ni alloy 1,912,162.06$           PFV1012 positive displacement pump cs 35,389.42$                 

H-102a floating head cs shell/ss tube 102,345.25$               R-101 mixer/settler ni alloy 362,077.74$               

H-102b floating head cs shell/ss tube 93,343.02$                 R-102 mixer/settler ni alloy 362,077.74$               

H-102c nonreactive fired heater ni alloy 1,892,614.33$           S-101 storage tank (api, ss, horizontal) 262,683.77$               

PCH101A positive displacement pump cs 16,881.53$                 S-102 storage tank (api, cs, horizontal) 262,683.77$               

PCH102A positive displacement pump cs 25,310.27$                 S-103 storage tank (api, cs, horizontal) 262,683.77$               

PCH102B positive displacement pump cs 25,315.08$                 S-104 storage tank (api, cs, horizontal) 367,806.37$               

PFH101A positive displacement pump ni 37,221.57$                 T-101 Ni tower 63,454.00$                 

PFH101C positive displacement pump ni 37,015.11$                        trays Ni sieve 106,403.16$               

PFH102A positive displacement pump cs 20,742.47$                 V-101 vertical ss 35,769.75$                 

PFH102B positive displacement pump cs 20,709.70$                 

Total 7,192,129.46$           
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12.) Fixed Capital Investment Summary 

 The fixed capital investment (FCI) is based on a grassroots costing module defined in 

Analysis, Synthesis and Design of Chemical Processes. Contingency and fee costs are accounted 

for as the total module cost, CTM.  Auxiliary facilities costs are accounted for within the grass 

roots costs, CGR. The equations used in this analysis are:  

CTM = 1.18*∑CBm,i                         (12.1)                                                            

CGR = CTM + 0.5*∑Co
BM,i           (12.2) 

Where CBM is the bare module cost defined in section 11, and Co
BM is the bare module cost at 

base case. Base case conditions replace some constants within the bare module cost equation 

with values of 1. However, some of the equipment within this plant are not affected by this base 

condition. For a quicker estimate, the following equation will be used instead of 12.2: 

CGR = CTM + 0.4*∑CBM,i           (12.3) 

 The sum of grass root costs for all equipment will be modeled as the FCI. The grass root 

costs, total module costs, and the FCI are illustrated in Table 12.1.  

Table 12.1: FCI Summary 

 

 

  

Equipment Cgr Ctm Equipment Cgr Ctm

C-101 260,016.52$        207,873.34$        PFH102C 30,525.40$    24,403.90$    

E-101 587,561.47$        551,561.47$        PFR1011 51,018.47$    40,787.33$    

H-101a 254,768.72$        203,677.92$        PFR1012 23,609.34$    18,874.77$    

H-101c 2,822,336.94$    2,256,351.23$    PFV1012 52,234.52$    41,759.52$    

H-102a 151,060.82$        120,767.39$        R-101 534,424.05$ 427,251.74$ 

H-102b 137,773.60$        110,144.76$        R-102 534,424.05$ 427,251.74$ 

H-102c 2,793,484.64$    2,233,284.91$    S-101 387,719.28$ 309,966.85$ 

PCH101A 24,917.02$          19,920.21$          S-102 387,719.28$ 309,966.85$ 

PCH102A 37,357.77$          29,866.12$          S-103 387,719.28$ 309,966.85$ 

PCH102B 37,364.86$          29,871.79$          S-104 542,879.45$ 434,011.51$ 

PFH101A 54,938.75$          43,921.45$          T-101 93,657.62$    74,875.71$    

PFH101C 54,634.03$          43,677.83$                 trays 157,050.27$ 125,555.73$ 

PFH102A 30,615.73$          24,476.11$          V-101 52,795.88$    42,208.31$    

PFH102B 30,567.37$          24,437.45$          

Total 10,513,175.15$  
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13.) Safety, Health, and Environmental Considerations 

a.) Safety Considerations 
This system uses raw materials and generates products that are hazardous and flammable, 

and several aspects of safety should be taken into consideration for the operation of this plant. 

i.) Personnel Protective Equipment 

Due to the hazards listed in the following subsections, all persons within boundary of unit shall 

wear the following personnel protective equipment (PPE): 

 Flame-retardant long-sleeve shirt and long pants on the outer layer of all clothing 

 Hard hat 

 Safety glasses 

 Steel-toe boots 

 Hearing protection 

 

In addition, all persons within boundary of unit shall have the following PPE on their person and 

be prepared to use in designated sections: 

 Cut-resistant gloves for operation on machinery or climbing ladders 

 Chemical splash-resistant safety goggles for “Chemical Hazard Zones” 

 Extra hearing protection for “Double Hearing Zones” 

 The following PPE shall be available within the plant to all persons entering the unit: 

 Self-contained breathing apparatus for “Chemical Hazard Zones” 

 If anything is worn on the face for cold weather, it must be flame-retardant.  

ii.) Safety Zones 

The following safety zones will be marked in the plant with lines painted on the ground in the 

indicated color: 

 Process unit: white lines 

 Chemical Hazard Zone: yellow lines 

 Double Hearing Zone: 2 parallel green lines 

 Path to Eyewash and Shower Stations: blue lines 

These zones may have associated PPE requirements listed in subsection 13ai.  

iii.) Intrinsically Safe Devices 

All electronic equipment used within the unit must be certified as “intrinsically safe devices.” 

This is defined by OSHA as:  

“Equipment and associated wiring in which any spark or thermal effect, produced 

either normally or in specified fault conditions, is incapable, under certain 
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prescribed test conditions, of causing ignition of a mixture of flammable or 

combustible material in air in its most easily ignitable concentration.” (United 

Sates Department of Labor, n.d.) 

As a standard, no cell phones, pagers, beepers, or tablets, which have not been approved 

by the plant, shall be brought into the unit.  

iv.) Eyewash and Shower Stations 

Emergency eyewash and shower stations are to be placed throughout the unit. There shall 

be one eyewash and one shower station for each piece of equipment within a “Chemical 

Hazard Zone.” There will be blue lines painted on the ground to quickly and safely direct 

anyone within the unit to either station. 

v.) Hazards of ADA with HMDA 

A report generated by Cameo Chemicals can be found in the Appendix 5. According to this 

report, the hazards associated with mixing ADA and HMDA solution are: 

 Corrosive: Reaction products may be corrosive 

 Generates gas: Reaction liberates gaseous products and may cause pressurization 

 Generates heat: Exothermic reaction at ambient temperatures (releases heat) 

 Toxic: Reaction products may be toxic 

 May produce the following gases: 

o Acid Fumes 

o Base Fumes 

vi.)    Hazards of ADA 

The Cameo Chemical report in Appendix 5 does not list any hazards worse than those of 

HMDA. Refer to the following subsection for hazard mitigation.  

vii.) Hazards of HMDA 

The Cameo Chemical report in Appendix 5 states that there is a fire hazard associated with 

HMDA: 

“Combustible material: may burn but does not ignite readily. When heated, vapors 

may form explosive mixtures with air: indoors, outdoors and sewers explosion 

hazards. Those substances designated with a (P) may polymerize explosively when 

heated or involved in a fire. Contact with metals may evolve flammable hydrogen 

gas. Containers may explode when heated. Runoff may pollute waterways. 

Substance may be transported in a molten form.” 

To mitigate hazards associated with HMDA, all equipment which operates with HMDA will be 

deemed a “Chemical Hazard Zone,” where lines shall be painted according to the spill isolation 

guidelines given in the Cameo Chemical report: 
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“As an immediate precautionary measure, isolate spill or leak area in all directions 

for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for 

solids.” 

Within the “Chemical Hazard Zones,” fire hoses shall be available for the risk of a fire. The fire 

hose stations shall have red indicator signs above each station that is easily visible in the event of 

a fire. This is based on the Firefighting section of the Cameo Chemical report.  

Any railcar on which HMDA is brought to the plant, as well as any HMDA storage tanks, shall 

be spaced from the regular process unit and the general public according to the fire isolation 

guidelines given in the Cameo Chemical report: 

“If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 

mile) in all directions. Also, consider initial evacuation for 800 meters (1/2 mile) 

in all directions.” 

For first aid considerations, consult the Cameo Chemical report: 

“Ensure that medical personnel are aware of the material(s) involved and take 

precautions to protect themselves. Move victim to fresh air. Call 911 or emergency 

medical service. Give artificial respiration if victim is not breathing. Do not use 

mouth-to-mouth method if victim ingested or inhaled the substance;. Give artificial 

respiration with the aid of a pocket mask equipped with a one-way valve or other 

proper respiratory medical device. Administer oxygen if breathing is difficult. 

Remove and isolate contaminated clothing and shoes. In case of contact with 

substance, immediately flush skin or eyes with running water for at least 20 

minutes. For minor skin contact, avoid spreading material on unaffected skin. Keep 

victim calm and warm. Effects of exposure (inhalation, ingestion or skin contact) 

to substance may be delayed.” 

viii.) Relief Devices 

Relief devices shall be installed in the plant according to the following guidelines from 

Table 9-1 Chemical Process Safety (Crowl & Louvar, 2011). 

 All vessels need reliefs, including reactors, storage tanks, towers, and drums. 

 Blocked-in sections of cool liquid-filled lines that are exposed to heat (such as the 

sun) or refrigeration need reliefs. 

 Positive displacement pumps, compressors, and turbines need reliefs on the 

discharge side. 

 Storage vessels need pressure and vacuum reliefs to protect against pumping in or 

out of a blocked-in vessel or against the generation of a vacuum by condensation. 

 Vessel steam jackets are often rated for low-pressure steam. Reliefs are installed in 

jackets to prevent excessive steam pressures due to operator error or regulator 

failure.  
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See Appendix 4 for information for every relieve device which is to be installed in the 

plant, along with the relief destination for each device.  

The relief destination for some relief valves involve vessels that have not yet been 

mentioned in this report. These include V-101A, V-201, and V-202. These are small 

knockout vessels that will be put in place for reactant or product recovery. Operators will 

have the capability of pumping the contents back into the original process vessels. The 

flare and waste water treatment plant (WWTP) also have not yet been mentioned in this 

report. They will be installed for relief purposes. A later, more in-depth economic 

analysis will include these five relief locations. 

ix.) Inherently Safer Design Technique Considerations 

The principles of inherently safe process design will be used to reduce risks in the plant. 

The following is a list from Chapter 13 of Chemical Process Safety (Crowl & Louvar, 

2011), with ways in which the principles are implemented in the sub-bullets.  

 Moderate: Use milder conditions. 

o The temperature and pressure subjected to HMDA and ADA are as low as 

possible for the best reaction conversion.  

 Substitute: Replace hazardous with nonhazardous chemicals. 

o An opportunity for this is not available due to the necessity of HMDA for 

the production of Nylon 6,6.  

 Minimize: Use smaller vessels (reactors or storage) and quantities. 

o HMDA solution is sent through less preheaters than ADA 

o Exact stoichiometric proportions of ADA and HMDA are introduced to 

the system so that no excess HMDA is present.  

o T-101, R-101, and R-102 will be stacked on a 41 ft skid. This minimizes 

the amount of ground space exposed to a spill of HMDA.  

 Simplify: Design systems to be easy to understand, including the mechanical 

designs and computer screens. 

o The DCS system will be carefully set up so that it is easy to understand.  

b.) Health Considerations 

i.) Hazards of ADA 

The report generated by Cameo Chemicals mentions the health hazards of ADA: 

“Inhalation of vapor irritates mucous membranes of the nose and lungs, causing 

coughing and sneezing. Contact with liquid irritates eyes and has a pronounced 

drying effect on the skin; may produce dermatitis.” 

 

ii.) Hazards of HMDA 

The report generated by Cameo Chemicals mentions the health hazards due to the toxic nature 

of HMDA: 
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“TOXIC. Inhalation, ingestion or skin contact with material may cause severe 

injury or death. Contact with molten substance may cause severe burns to skin and 

eyes. Avoid any skin contact. Effects of contact or inhalation may be delayed. Fire 

may produce irritating, corrosive and/or toxic gases. Runoff from fire control or 

dilution water may be corrosive and/or toxic and cause pollution.” 

iii.) Mitigation 

The hazards stated in subsections i and ii are to be taken seriously and the culture of the 

plant will be to report any minor contact with either of the chemicals.  

c.) Environmental Considerations 

An environmental engineer will be employed at the plant to carefully monitor the following 

considerations.  

**Subsections i – iv are originated from a 2015 report by Westlake Chemical, which has a PVC 

plant in Calvert City, KY (Westlake Chemical, n.d.). 

i.) The Federal Clean Air Act 

Monitoring of emissions will be necessary if coal burning or another CO2 producing system is 

implemented for power production. The electricity usage currently will be through the city. 

ii.) Release Reporting 

The release of HMDA or ADA will be subject to federal and state environmental reporting 

regulations. Any spills will be monitored and recorded as necessary. 

iii.) Clean Water Act 

This act will be followed accordingly. This plant should not result in any discharges to water 

outside the plant, but if any accidental spills of water occur, they will be recorded.  

iv.) The Resource Conservation and Recovery Act 

If hazardous wastes are spilled, released, or disposed, this act may require expensive 

investigations, studies, and response actions. This will be followed accordingly.  

v.) Kentucky Wetland Reserve Program 

Calvert City, Kentucky is in Marshall County, which has areas included in Kentucky’s Wetlands 

Reserve Program (Natural Resources Conservation Service, n.d.). This means that the plant will 

have to be sure not to contaminate the water in the area. The water stream produced during the 

reaction is integrated in the feed preheat network, and then recycled to the water reserve. 

Therefore, contaminating a Kentucky reserved wetland should not be an issue.  

vi.) CO2 Emissions 

Currently, it is planned for the plant to use electricity for H-101C, H-102C, R-101, and R-102. 

This is estimated in the Aspen simulation to emit 2496.8628 lb/hr of CO2.   
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14.) Other Important Considerations 

a.) Process Control 

Multiple variables throughout the plant will be controlled. These variables are explained 

below. The control scheme can be seen in Appendix 4 Figure A4-2.  

i.) Condensate recycle to H2O feed 

The condensate in stream C-H-101A that is used in the feed preheat network will be added to the 

H2O feed in stream F-V-1012 upstream of to P-FV1014. This addition will occur through a “T” 

connection. A flow transmitter will be located on C-H-101A downstream of P-CH101A which 

will transmit the flow value to a control valve. This control valve will be located on F-V-1012 

upstream of P-FV1014.  

The amount of H2O in C-H-101A is greater than in F-V-1012 in normal operating conditions. 

Therefore, the control valve will be programmed to fail close in the case of lost power to the 

plant as to not dilute the system. 

A second control valve will be placed on line F-S-101. This is to allow part of the flow of water 

in line C-H-101A to be fed to S-104 and to not dilute the system. The flow transmitter on C-H-

101A will signal this second control valve in addition to the first one on line F-V-1012. These 

two control valves will work within the same system to control the flow of H2O and keep the 

total flow of H2O to V-101 constant at 1967 lb/hr.  

This second control valve will be programmed to fail open in the case of lost power to the plant 

so as to not dilute the system.  

ii.)  Level control of V-101 

The level of V-101 must be kept under control in order to ensure the vessel does not overflow. A 

level transmitter will be placed on V-101, and a control valve will be installed on line F-H-101A 

upstream of P–FH101A. The transmitter will signal to the control valve in order to keep V-101 at 

a maximum of 80% full. The control valve will remain at 70% open in normal conditions, and 

will open more if V-101 becomes more than 80% full. The control valve will be programmed to 

fail close in the case of lost power to the plant for the same reason mentioned in subsection 14ai.   

The control valve will also be connected to the control room. This will give control through the 

DCS for startup/shutdown purposes.  

iii.) Temperature control of H-101C 

The temperature of H2O in C-T-101 will fluctuate, causing the effectiveness of the preheat 

network to also fluctuate. This will change the required duty of H-101C. A temperature 

transmitter will be placed on line F-H-101C. This transmitter will signal a temperature controller 

on H-101C in order to adjust for this change in required duty.   

iv.) Temperature control of H-102C 
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The temperature of H2O in C-T-101 will fluctuate, causing the effectiveness of the preheat 

network to also fluctuate. This will change the required duty of H-102C. A temperature 

transmitter will be placed on line F-H-102C. This transmitter will signal a temperature controller 

on H-102C in order to adjust for this change in required duty.   

b.) Reduced Rates 

 Several conditions within the plant will need to be adjusted in the case of reducing rates 

due to market demands or plant maintenance. The following points are the most important 

conditions and are based on running the plant at 67% capacity: 

i.) Feed flow 

The plant is normally run to produce 85 MM pounds per year (ppy) of Nylon 6,6. At reduced 

rates, only 56.95 MM pounds ppy will need to be made. The feed flow will need to be adjusted 

by the control room operators accordingly.  

Decreasing feed flow will create a ripple effect throughout the plant. In the preheat network, 

there will initially be less feed than condensate flowing through the exchangers. This will heat 

the feed more than normal. H-101C and H-102C will adjust accordingly with the temperature 

control discussed in subsections 14aiii and 14aiv, respectively. However, careful attention will 

have to be paid to the temperature of R-101, and the set temperature may need to be decreased so 

as to not overheat the reaction.  

ii.) R-101 pressure 

The pressure of R-101 is set to 10 atm at normal operating conditions. This should be decreased 

at reduced rates so as to not overpressure the reactants and prematurely create more excess 

polymer before the stream enters R-102. 

iii.) Flow control valve on stream F-H-101A 

This control valve will need to be set to full open by the control room operator when the rates are 

initially being reduced. This will help compensate for the ripple effect mentioned in subsection 

14bi. As the process unit adjusts to lower rates, the operator can bring the control valve back to 

normal percent open.  

c.) Startup 

 Starting the plant will cause procedures to be followed that are in addition or exception to 

normal procedures. Below are some of the most important: 

i.) Flow control valve on stream F-H-101A 

This is the same issue listed in subsection 14aiii. The operator will need to run the control valve 

at full open so as to not constrict feed flow while the plant is starting operation.  

ii.) Reflux to T-101 
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T-101 will need to be started before it is fed with flow from V-R-101. Water should be fed into 

the tower to begin reflux for optimal tower operation. This water will come from the water 

storage tank S-103 and will need to be pretreated to tower conditions shown in Figure A1-8.  

iii.) Blind on H2O recycle tee  

The tee connection located upstream of P-FV1014 is in place to help facilitate recycle of 

condensate from T-101 (see subsection 14ai). If there is little to no flow of condensate during 

startup, the H2O feed stream F-V-1012 will enter stream F-V-1013. This justifies installing a 

blind flange at this tee connection to avoid misdirection of the H2O feed stream.  
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15.) Manufacturing Costs 

 Calculation of manufacturing costs for this plant is based on the model set up in Analysis, 

Synthesis and Design of Chemical Processes. The literature defines manufacturing costs as the 

sum of direct, fixed, and general manufacturing costs. These are summarized in Table 15.1.  

Table 15.1: Manufacturing Cost Summary 

 

As illustrated in the table, the largest expense among these costs is the raw materials. 

This price was quoted by Investa, and is assumed to be a very reliable source. The price of Nylon 

6,6 was taken from a 2015 average (Smock, 2015), but should still be reliable.  

The Calvert City, KY price of electricity (Calvert City, KY Electricity Statistics, n.d.) 

was used to estimate the price of both electricity and air in the plant. Since the cost of cooling air 

originates from the cost of electricity to run the fan, this should be a safe assumption.  

The book also takes into account patents and royalties, distribution and selling costs, and 

research and development. In sufficient data is available for this analysis, however they are 

neglected because the total cost is not sensitive to this data.  

As shown in the bottom right hand corner of Table 15.1, there is a net profit of $0.15/lb 

for the production of Nylon 6,6 in this plant.  

  

Direct Manufacturing Costs

Raw materials 86,138,722.32$    Nnp P

Waste treatment -$                         21 3

Utilities 2,297,501.58$      pumps 11 extruders 1

Operating labor 4,607,616.00$      heat xrs 3 transport 1

Direct supervisory and clerical labor 829,370.88$          heaters 2 quality control 1

Maintenance and repairs 630,790.51$          tower 1 N_ol 17.21685221

Operating supplies 94,618.58$            condensers 1 Actual Nol 77.476

Lab charges 691,142.40$          reactors 2 Mean hr wage 28.40$                     

Total Direct Manufacturing Costs 95,289,762.26$    vessels 1 Salary 59,072.00$            

Fixed Manufacturing Costs

Depreciation 1,051,317.52$      $/lb lb/year $/year

Local taxes and insurance 336,421.60$          ADA 0.68$      54472100 37,062,237.48$    

Plant overhead costs 3,640,666.43$      HMDA 1.13$      43278000 49,076,484.84$    

Total Fixed Manufacturing Costs 5,028,405.55$      

General Manufacturing Expenses $/lb lb/year $/year

Administration costs 910,166.61$          Nylon66 1.20$      84471500 101,228,334.42$  

Total General Manufacturing Costs 910,166.61$          

$/lb lb/year $/year

Total Costs 101,228,334.42$  Nylon66 1.35$      84471500 114,036,525.00$  

Operating Labor

Nylon66 Manufacture Price

Material Pricing

Nylon66 Selling Price
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16.) Economic Analysis 

This plant has been economically analyzed by calculating and evaluating the discounted cash 

flow rate of return (DCFRR). This is defined to be the interest rate at which all the cash flows 

must be discounted in order for the net present value of the project to be equal to zero (Turton, 

Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012). The calculations can be seen in Table A3-3, 

and a cumulative cash flow diagram is given in Figure A3-1. 

The taxation rate is calculated by incorporating the six most common tax rates within the 

United States: income, sales, property, franchise, severance, and vehicle (Baasel): 

 The federal tax rate schedule for corporations is shown to be close to 35% (Turton, 

Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012).  

 The Kentucky state income tax for 2017 is listed as 6% (Scarboro, 2017).  

 The Kentucky state sales tax rate is currently listed as 6% (Kentucky Sales Tax, n.d.). 

 The Marshall County average effective property tax is 0.79% (Kentucky Property Tax 

Calculator, n.d.). 

 The Kentucky bank franchise tax is assessed at the rate of 1.1% (Bank Franchise Tax, 

n.d.). 

 Severance tax is neglected because no material is being extracted from its natural state for 

this plant.  

 Vehicle fuel tax is neglected under the assumption that all transportation will occur on 

railcar and not highways.  

Thus, the final sum for the tax rate is 48.89%  

 The fixed capital investment value is used from section 12. It is assumed that two-thirds 

of this FCI will be paid in the first year.  

The area of land to be purchased for this chemical plant consists of 139.6 acres and costs 4.2 

million dollars.  This property is an industrial site with 2846 foot frontage on the Tennessee 

River, 929 foot railroad frontage, and approximately 6 miles downstream from Calvert City 

Industrial Complex toward Paducah  (LandWatch, 2017). This site perfectly fits the safety 

recommendations made in subsection 13avii.  

The working capital value is used as the total manufacturing costs value from section 15. The 

value for revenue is also given in Table 15.1 in the bottom right hand corner cell.  

The cost of manufacturing without depreciation, COMD, is defined in Analysis, Synthesis and 

Design of Chemical Processes as another important factor in calculating the DCFRR. This value 

is calculated by subtracting the amount of depreciation from the working capital, both of which 

are found in Table 15.1. 

The analysis is based on a 10 year project life, where the life is began after 2 years of plant 

startup and construction.  
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As seen in Table A3-3, the final DCFRR calculated value is 8.94%. This is the highest after-

tax interest rate at which this plant can break even. This is a rather low rate, and it is likely that 

DCFRR<IRR (internal rate of return). Therefore, this is not a profitable investment.  
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17.) Conclusions and Recommendations 

To paraphrase the conclusion made in section 16, the current plan for this plant is not likely 

to be greater than a chosen IRR by the plant, and therefore will not be profitable. However, there 

are some opportunities for improvement in profitability for this project, and these opportunities 

can be explored given more time for a deeper analysis: 

a.) Utility improvements 

Much of the plant’s utility needs are currently planned to be run with electricity. 

This is a much more expensive option than using steam for heating the necessary 

equipment. A steam production system should be implemented for the plant in order 

to save cost and also for environmental purposes.  

A more in-depth analysis of the power used by C-101 with air cooling could 

improve costs on utilities as well. This analysis could also include evaluating 

whether cooling water is more profitable than air.  

b.) Product finishing equipment 

It is difficult to evaluate how to finish the Nylon 6,6 product. A new analysis can 

be performed on the best option for finishing the product and selling it. The 

monetary value for different Nylon 6,6 grades should also be assessed in order to 

evaluate which finishing technique should be pursued in the plant.  

 

Although Nylon 6,6 prices have decreased recently due to decreases in oil prices, worldwide 

demand and production is expected to increase  (Smock, 2015). It is recommended to wait a few 

years before building this plant. This will allow Nylon 6,6 prices to increase and will allow the 

company to assess the value of the feedstock prices, as the feed is the highest cost of the plant. 

During that time, the analyses mentioned above in subsections 17a and 17b can be performed for 

optimal plant conditions.  
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Appendix 1: Aspen Data 

 

Figure A1-1: Aspen Sizing H-101A 

 

Figure A1-2: Aspen EDR Results H-101A 
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Figure A1-3: Aspen Sizing H-102A 

 

Figure A1-4: Aspen EDR Results H-102A 
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Figure A1-5: Aspen Sizing H-102B 

 

Figure A1-6: Aspen EDR Results H-102B 
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Figure A1-7: Aspen Rate Constants Window 

 (Chaves, López, Zapata, Robayo, & Niño, 2016) 

 

 

Figure A1-7: Aspen Assign Rate Constants Window 

(Chaves, López, Zapata, Robayo, & Niño, 2016) 
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Figure A1-8:  
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Appendix 2: Equipment Specification Sheets 

 

 

Figure A2-1: C-101 Specification Sheet 

Identification: Item

Item No C-101 Date:

1

By:

Function: 

Operation:

Materials Handled: Hot In: Cold In: Hot Out: Cold Out:

Quantity (lb/hr): 6094.33 2.40E+06 6094.33 2.40E+06

Composition:

  Adipic Acid trace 0 trace 0

  Hexamethylenediamine trace 0 trace 0

  Water 1 0 1 0

  Nylon 6,6 0 0 0 0

  Air 0 1 0 1

Temperature (F)

Design Data:

Material of construction: carbon steel

Utilities: Air at specifications in cold stream information

Controls:

Tolerances:

Comments and drawings: see PFD in Figure 6.1

Air Cooler

Air Cooler

2-Mar-17

Caleb Woodall

Condense water at overhead of enriching column for reflux to column.

Continuous

No. Required

Duty: -5269160 Btu/hr

Heat exchange area: 1615 ft^2

Heat transfer coefficient: 
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Figure A2-2: E-101 Specification Sheet 

 

Identification: Item

Item No E-101 Date:

1

By:

Function: 

Operation:

Materials Handled: Feed: Product:

Quantity (lb/hr): 9636.27 9636.27

Composition:

  Adipic Acid 1.4E-05 1.4E-05

  Hexamethylenediamine 7.4E-06 7.4E-06

  Water 0.00112 0.00112

  Nylon 6,6 0.99886 0.99886

  Air 0 0

Temperature (F) 539.33 539.33

Design Data: Temperature: <515.9 F (melting point Nylon66)

Utilities: electricity

Controls: 

Tolerances:

Comments and drawings: see PFD in Figure 6.1

**More data unknown, this is only small 

approximation

Continuous

Pressure: 14.6959 psia

Material of construction: Carbon steel

Extruder

Extruder

2-Mar-17

No. Required

Caleb Woodall

Extrude Nylon 6,6 product
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Figure A2-3: H-101A Specification Sheet 

 

Identification: Item

Item No H-101A Date:

1

By:

Function: 

Operation:

Materials Handled: Hot In: Cold In: Hot Out: Cold Out:

Quantity (lb/hr): 3482.48 6904.85 3482.48 6904.85

Composition:

  Adipic Acid trace 0 trace 0

  Hexamethylenediamine trace 0.715008 trace 0.71501

  Water 1 0.284992 1 0.28499

  Nylon 6,6 0 0 0 0

  Air 0 0 0 0

Temperature (F) 214.351 77 147.786 135.008

Design Data:

Controls:

Tolerances:

Comments and drawings: see PFD in Figure 6.1 and Aspen data in Appenix 1

Material of construction: 25Cr, 12Ni steel

Tube Length: 10.8268 ft

Shell ID/OD: 0.5339/0.5521 ftNumber of tube/passes: 26/2

Location of hot fluid: shell side

Utilities: 

Continuous

Duty: 241289 Btu/hr

Heat exchange area: 54.1822 sqft

Heat transfer coefficient: 69.942 Btu/hr-sqft-R

Type: Shell and tube, floating head

Preheat water and hexamethylenediamine solution before reaction

Heat Exchanger

Heat Exchanger

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-4: H-101C Specification Sheet 

 

 

 

Identification: Item

Item No H-101C Date:

1

By:

Function: 

Operation:

Materials Handled: In: Out:

Quantity (lb/hr): 6904.85 6904.85

Composition:

  Adipic Acid 0 0

  Hexamethylenediamine 0.71501 0.71501

  Water 0.28499 0.28499

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 135.008 350.33

Design Data:

Utilities: electricity 

Controls:

Tolerances:

Comments and drawings: see PFD in  Figure 6.1

Continuous

Duty: 1019320 Btu/hr

Material of construction: 25Cr, 12Ni steel

Preheat water and hexamethylenediamine solution before reaction

Nonreactive Fired Heater

Heater

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-5: H-102A Specification Sheet 

 

Identification: Item

Item No H-102A Date:

1

By:

Function: 

Operation:

Materials Handled: Hot In: Cold In: Hot Out: Cold Out:

Quantity (lb/hr): 3482.48 6214.01 3482.48 6214.01

Composition:

  Adipic Acid trace 0 trace 0

  Hexamethylenediamine trace 1 trace 1

  Water 1 0 1 0

  Nylon 6,6 0 0 0 0

  Air 0 0 0 0

Temperature (F) 214.351 77 214.351 158.984

Design Data:

Utilities: 

Controls:

Tolerances:

Comments and drawings: see PFD in  Figure 6.1 and Aspen data in Appendix 1

Tube Length: 8.3661 ft

Number of tube/passes: 51/1 Shell ID/OD: 0.6726/0.7188 ft

Location of hot fluid: shell side Type: Shell and tube, floating head

Continuous

Duty: 253997 Btu/hr

Heat exchange area: 81.2452 sqft

Heat transfer coefficient: 24.1389 Btu/hr-sqft-R

Material of construction: carbon steel

Preheat adipic acid before reaction

Heat Exchanger

Heat Exchanger

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-6: H-102B Specification Sheet 

 

Identification: Item

Item No H-102B Date:

1

By:

Function: 

Operation:

Materials Handled: Hot In: Cold In: Hot Out: Cold Out:

Quantity (lb/hr): 3482.48 6214.01 3482.48 6214.01

Composition:

  Adipic Acid trace 0 trace 0

  Hexamethylenediamine trace 1 trace 1

  Water 1 0 1 0

  Nylon 6,6 0 0 0 0

  Air 0 0 0 0

Temperature (F) 356.989 158.984 281.205 251.477

Design Data:

Utilities: 

Controls:

Tolerances:

Comments and drawings: see PFD in  Figure 6.1 and Aspen data in Appendix 1

Location of hot fluid: shell side Type: Shell and tube, floating head

Continuous

Duty: 305130 Btu/hr

Heat exchange area: 96.0296 sqft

Heat transfer coefficient: 27.9862 Btu/hr-sqft-R

Material of construction: carbon steel

Tube Length: 8.3661 ft

Number of tube/passes: 51/1 Shell ID/OD: 0.6726/0.7188 ft

Preheat adipic acid before reaction

Heat Exchanger

Heat Exchanger

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-7: H-102C Specification Sheet 

 

Identification: Item

Item No H-102C Date:

1

By:

Function: 

Operation:

Materials Handled: In: Out:

Quantity (lb/hr): 6214.01 6214.01

Composition:

  Adipic Acid 1 1

  Hexamethylenediamine 0 0

  Water 0 0

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 251.477 350.33

Design Data:

Utilities: electricity 

Controls:

Tolerances:

Comments and drawings: see PFD in  Figure 6.1

Continuous

Duty: 347271 Btu/hr

Material of construction: carbon steel

Preheat adipic acid before reaction

Nonreactive Fired Heater

Heater

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-8: P-CH101A Specification Sheet 

 

Identification: Item

Item No P-CH101A Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 3482.48 3482.48

Composition:

  Adipic Acid trace trace

  Hexamethylenediamine trace trace

  Water 1 1

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 147.786 147.786

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.065533 kW

Material of construction: carbon steel

Pump type: positivie-displacement

Head differential: 40 ft

Utilities: electricity

Controls:

Tolerances:

Pump condensate to water reserve

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-9: P-CH102A Specification Sheet 

 

Identification: Item

Item No P-CH102A Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 3482.48 3482.48

Composition:

  Adipic Acid trace trace

  Hexamethylenediamine trace trace

  Water 1 1

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 214.351 214.351

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.016383 kW

Material of construction: carbon steel

Pump type: positivie-displacement

Head differential: 10 ft

Utilities: electricity

Controls:

Tolerances:

Pump condensate to H-101A

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-10: P-CH102B Specification Sheet 

 

Identification: Item

Item No P-CH102B Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 3482.48 3482.48

Composition:

  Adipic Acid trace trace

  Hexamethylenediamine trace trace

  Water 1 1

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 281.205 281.205

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.013107 kW

Material of construction: carbon steel

Pump type: positivie-displacement

Head differential: 10 ft

Utilities: electricity

Controls:

Tolerances:

Pump condensate to H-102B

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall



A16 

 

 

Figure A2-11: P-FH101A Specification Sheet 

 

Identification: Item

Item No P-FH101A Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 6904.85 6904.85

Composition:

  Adipic Acid 0 0

  Hexamethylenediamine 0.71501 0.71501

  Water 0.28499 0.28499

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 77 77

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.016242 kW

Material of construction: Ni-Cr alloy

Pump type: positivie-displacement

Head differential: 5 ft

Utilities: electricity

Controls:

Tolerances:

Pump HMDA solution to H-101A

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-12: P-FH101C Specification Sheet 

 

Identification: Item

Item No P-FH101C Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 6904.85 6904.85

Composition:

  Adipic Acid 0 0

  Hexamethylenediamine 0.71501 0.71501

  Water 0.28499 0.28499

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 135.008 135.008

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.016242 kW

Material of construction: Ni-Cr alloy

Pump type: positivie-displacement

Head differential: 5 ft

Utilities: electricity

Controls:

Tolerances:

Pump HMDA solution to H-101C

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-13: P-FH102A Specification Sheet 

 

Identification: Item

Item No P-FH102A Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 6214.01 6214.01

Composition:

  Adipic Acid 0 0

  Hexamethylenediamine 1 1

  Water 0 0

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 77 77

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.014617 kW

Material of construction: carbon steel

Pump type: positivie-displacement

Head differential: 5 ft

Utilities: electricity

Controls:

Tolerances:

Pump adipic acid to H-102A

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-14: P-FH102B Specification Sheet 

 

Identification: Item

Item No P-FH102B Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 6214.01 6214.01

Composition:

  Adipic Acid 0 0

  Hexamethylenediamine 1 1

  Water 0 0

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 158.984 158.984

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.014617 kW

Material of construction: carbon steel

Pump type: positivie-displacement

Head differential: 5 ft

Utilities: electricity

Controls:

Tolerances:

Pump adipic acid to H-102B

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-15: P-FH102C Specification Sheet 

 

Identification: Item

Item No P-FH102C Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 6214.01 6214.01

Composition:

  Adipic Acid 1 1

  Hexamethylenediamine 0 0

  Water 0 0

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 251.477 251.477

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.014617 kW

Material of construction: carbon steel

Pump type: positivie-displacement

Head differential: 5 ft

Utilities: electricity

Controls:

Tolerances:

Pump adipic acid to H-102C

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-16: P-FR1011 Specification Sheet 

Identification: Item

Item No P-FR1011 Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 6904.85 6904.85

Composition:

  Adipic Acid 0 0

  Hexamethylenediamine 0.71501 0.71501

  Water 0.28499 0.28499

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 350.33 350.33

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.097452 kW

Material of construction: Ni-Cr alloy

Pump type: positivie-displacement

Head differential: 30 ft

Utilities: electricity

Controls:

Tolerances:

Pump HMDA solution to R-101

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-17: P-FR1012 Specification Sheet 

 

Identification: Item

Item No P-FR1012 Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 6214.01 6214.01

Composition:

  Adipic Acid 1 1

  Hexamethylenediamine 0 0

  Water 0 0

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 350.33 350.33

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.087702 kW

Material of construction: carbon steel

Pump type: positivie-displacement

Head differential: 30 ft

Utilities: electricity

Controls:

Tolerances:

Pump adipic acid to R-101

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-18: P-FV1012 Specification Sheet 

 

Identification: Item

Item No P-FV1012 Date:

1

By:

Function: 

Operation:

Materials Handled: Inlet: Outlet:

Quantity (lb/hr): 1967.83 1967.83

Composition:

  Adipic Acid 0 0

  Hexamethylenediamine 0 0

  Water 1 1

  Nylon 6,6 0 0

  Air 0 0

Temperature (F) 77 77

Design Data:

Comments and drawings: See PFD in Figure 6.1

continuous

Shaft power: 0.004629 kW

Material of construction: carbon steel

Pump type: positivie-displacement

Head differential: 5 ft

Utilities: electricity

Controls:

Tolerances:

Pump water to V-101

Pump

Pump

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-19: R-101 Specification Sheet 

 

Identification: Item

Item No R-101 Date:

1

By:

Function: 

Operation:

Materials Handled: Feed 1: Feed 2: Feed 3: Feed 4: Product: Vent:

Quantity (lb/hr): 6904.85 6214.01 2374.3 414.49 10050.8 5856.77

Composition:

  Adipic Acid 0 1 6.22E-05 trace 0.00069 2.5E-05

  Hexamethylenediamine 0.71502 0 0.002887 trace 0.00053 0.00117

  Water 0.28499 0 0.997048 1 0.03935 0.9988

  Nylon 6,6 0 0 0 trace 0.95942 trace

  Air 0 0 0 0 0 0

Temperature (F) 350.33 350.33 357.024 539.33 431.33 431.33

Design Data:

Utilities: electricity

Controls: Target specified temperature within 20F and specified pressure within 20 psia

Tolerances:

Comments and drawings: see PFD in Figure 6.1 and Aspen data in Appendix 1

Continuous

Duty: 8726270 Btu/hr

Volume: 63.5664 cuft

Temperature: 431.33 F

Pressure: 146.959 psia

Reactor Type: CSTR

Material of construction: Ni-Cr alloy

React ADA with HMDA to yield Nylon 6,6 oligomers

Reactor

Reactor

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-20: R-102 Specification Sheet 

 

Identification: Item

Item No R-102 Date:

1

By:

Function: 

Operation:

Materials Handled: Feed 1: Product: Vent:

Quantity (lb/hr): 10050.8 9636.27 414.494

Composition:

  Adipic Acid 0.00069 1.38E-05 trace

  Hexamethylenediamine 0.00053 7.41E-06 trace

  Water 0.03935 0.001116 1

  Nylon 6,6 0.95942 0.998863 trace

  Air 0 0 0

Temperature (F) 431.33 539.33 539.33

Design Data:

Utilities: electricity

Controls: Target specified temperature within 20F and specified pressure within 20 psia

Tolerances:

Comments and drawings: see PFD in Figure 6.1 and Aspen data in Appendix 1

Continuous

Duty: 1046950 Btu/hr

Volume: 63.5664 cuft

Temperature: 539.33 F

Pressure: 14.6959 psia

Reactor Type: CSTR

Material of construction: Ni-Cr alloy

React ADA with HMDA to yield high MW Nylon 6,6 polymer product

Reactor

Reactor

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-21: T-101 Specification Sheet 

 

Identification: Item

Item No T-101 Date:

1

By:

Function: 

Operation:

Materials Handled: Feed: Distillate: Bottoms Reflux:

Quantity (lb/hr): 5856.77 6094.33 2374.3 2611.85

Composition:

  Adipic Acid 2.5E-05 trace 6.2E-05 trace

  Hexamethylenediamine 0.00117 trace 0.00289 trace

  Water 0.9988 1 0.99705 1

  Nylon 6,6 trace 0 0 trace

  Air 0 0 0 0

Temperature (F) 431.33 356.989 357.024 356.989

Design Data:

Utilities: 

Controls: 

Tolerances:

Comments and drawings: see PFD in Figure 6.1 and column profiles in Appendix 1

Feed Stage: 13

Continuous

Number of trays: 13

Functional height: 26 ft

Pressure: 146.959 psia

Diameter: 1.3722 ft

Material of construction: Ni-Cr alloy

Reflux ratio: 0.75 Tray spacing: 2 ft

Separate excess reactants from water byproduct stream

Enriching Column

Enriching Column

2-Mar-17

No. Required

Caleb Woodall
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Figure A2-22: V-101 Specification Sheet 

  

Identification: Item

Item No V-101 Date:

1

By:

Function: 

Operation:

Materials Handled: Feed 1: Feed 2: Outlet:

Quantity (lb/hr): 4937.02 1967.83 6904.85

Composition:

  Adipic Acid 0 0 0

  Hexamethylenediamine 1 0 0.71501

  Water 0 1 0.28499

  Nylon 6,6 0 0 0

  Air 0 0 0

Temperature (F) 77 77 77

Design Data:

continuous

Utilities:

Controls:

Tolerances:

Comments and drawings: See PFD in Appendix Fig 6.1

Volume: 0.0635664 cuft

Material of construction: Ni-Cr alloy

Height: 5 ft

Diameter: 4 ft

Mix solid HMDA with liquid H2O to create HMDA solution

Process Vessel

Vessel

2-Mar-17

No. Required

Caleb Woodall
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Appendix 3: Economic Spreadsheets 

Table A3-1: Bare Module Cost Spreadsheet (1/2) 
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Table A3-2: Bare Module Cost Spreadsheet (2/2) 
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Table A3-3 Discounted Cash Flow Rate of Return Calculation 
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Figure A3-1: Cumulative Cash Flow Diagram  
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Appendix 4: Modified PFDs 

 

 

 

Figure A4-1: Relief Device Locations 
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Figure A4-2: Process Control Scheme 



1/31/2017 Report | CAMEO Chemicals | NOAA

https://cameochemicals.noaa.gov/report 1/13

 Print

Substances In This Report

1. HEXAMETHYLENEDIAMINE, SOLUTION
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Chemical Reactivity

Substances In The Mix

1. HEXAMETHYLENEDIAMINE, SOLUTION
2. ADIPIC ACID
3. WATER

 Summary of Hazard Predictions (for all pairs of sunstances)

Corrosive: Reaction products may be corrosive
Generates gas: Reaction liberates gaseous products and may cause pressurization
Generates heat: Exothermic reaction at ambient temperatures (releases heat)
Toxic: Reaction products may be toxic

 Summary of Gas Predictions (for all pairs of sunstances)

May produce the following gases:

Acid Fumes
Base Fumes

Hazard Predictions (for each pair of substances)

ADIPIC ACID mixed with
HEXAMETHYLENEDIAMINE, SOLUTION

Corrosive: Reaction products may be corrosive
Generates gas: Reaction liberates gaseous products and may cause pressurization
Generates heat: Exothermic reaction at ambient temperatures (releases heat)
Toxic: Reaction products may be toxic
May produce the following gases:

Acid Fumes
Base Fumes

WATER mixed with 
HEXAMETHYLENEDIAMINE, SOLUTION

Corrosive: Reaction products may be corrosive

WATER mixed with 
ADIPIC ACID

No known hazardous reaction
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Chemical Datasheet

HEXAMETHYLENEDIAMINE, SOLUTION

Chemical Identifiers

CAS Number UN/NA Number DOT Hazard Label USCG CHRIS Code
124­09­4 1783 Corrosive none

NFPA 704
data unavailable

NIOSH Pocket Guide International Chem Safety Card
none HEXAMETHYLENEDIAMINE

General Description
A clear colorless liquid. Burns although some effort is required to ignite. Soluble in water. Corrosive to metals and
tissue. Produces toxic oxides of nitrogen during combustion. Used to make nylon.

Hazards

Reactivity Alerts

none

Air & Water Reactions
Water soluble.

Fire Hazard
Excerpt from ERG Guide 153 [Substances ­ Toxic and/or Corrosive (Combustible)]: 

Combustible material: may burn but does not ignite readily. When heated, vapors may form explosive mixtures with air:
indoors, outdoors and sewers explosion hazards. Those substances designated with a (P) may polymerize explosively
when heated or involved in a fire. Contact with metals may evolve flammable hydrogen gas. Containers may explode
when heated. Runoff may pollute waterways. Substance may be transported in a molten form. (ERG, 2016)

Health Hazard

Excerpt from ERG Guide 153 [Substances ­ Toxic and/or Corrosive (Combustible)]: 

TOXIC; inhalation, ingestion or skin contact with material may cause severe injury or death. Contact with molten
substance may cause severe burns to skin and eyes. Avoid any skin contact. Effects of contact or inhalation may be
delayed. Fire may produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be
corrosive and/or toxic and cause pollution. (ERG, 2016)

Reactivity Profile
HEXAMETHYLENEDIAMINE is hygroscopic. Can react with strong oxidizing materials. Incompatible with acids,
acid chlorides and acid anhydrides. Also incompatible with ketones, aldehydes, nitrates, phenols, isocyanates, monomers
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and chlorinated compounds (NTP, 1992).

Belongs to the Following Reactive Group(s)

Amines, Phosphines, and Pyridines
Water and Aqueous Solutions

Potentially Incompatible Absorbents
Use caution: Liquids with this reactive group classification have been known to react with the absorbent listed below.

Mineral­Based & Clay­Based Absorbents

Response Recommendations

Isolation and Evacuation
Excerpt from ERG Guide 153 [Substances ­ Toxic and/or Corrosive (Combustible)]: 

As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for
liquids and at least 25 meters (75 feet) for solids.

SPILL: Increase, in the downwind direction, as necessary, the isolation distance shown above. 

FIRE: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also,
consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2016)

Firefighting

Excerpt from ERG Guide 153 [Substances ­ Toxic and/or Corrosive (Combustible)]: 

SMALL FIRE: Dry chemical, CO2 or water spray. 

LARGE FIRE: Dry chemical, CO2, alcohol­resistant foam or water spray. Move containers from fire area if you can do
it without risk. Dike fire­control water for later disposal; do not scatter the material.

FIRE INVOLVING TANKS OR CAR/TRAILER LOADS: Fight fire from maximum distance or use unmanned hose
holders or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until
well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
ALWAYS stay away from tanks engulfed in fire. (ERG, 2016)

Non­Fire Response
Excerpt from ERG Guide 153 [Substances ­ Toxic and/or Corrosive (Combustible)]: 

ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). Do not touch damaged
containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk.
Prevent entry into waterways, sewers, basements or confined areas. Absorb or cover with dry earth, sand or other non­
combustible material and transfer to containers. DO NOT GET WATER INSIDE CONTAINERS. (ERG, 2016)

Protective Clothing
Excerpt from GUIDE 153 [Substances ­ Toxic and/or Corrosive (Combustible)]: 

Wear positive pressure self­contained breathing apparatus (SCBA). Wear chemical protective clothing that is
specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters'
protective clothing provides limited protection in fire situations ONLY; it is not effective in spill situations where direct
contact with the substance is possible. (ERG, 2016)
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DuPont Tychem® Suit Fabrics
Normalized Breakthrough Times (in Minutes)

Chemical CAS Number State QC SL TF TP C3 BR RC TK RF

Hexamethylenediamine, 1,6­ (45° C) 124­09­4 Liquid >480 >480 >480 >480 >480 >480

Hexamethylenediamine, 1,6­ (50° C) 124­09­4 Liquid 80 45 80

> indicates greater than.
A blank cell indicates the fabric has not been tested. The fabric may or may not offer barrier.
Special Warnings from DuPont

1. Serged and bound seams are degraded by some hazardous liquid chemicals, such as strong acids, and should not
be worn when these chemicals are present.

2. CAUTION: This information is based upon technical data that DuPont believes to be reliable. It is subject to
revision as additional knowledge and experience are gained. DuPont makes no guarantee of results and assumes
no obligation or liability...

(DuPont, 2016)

First Aid
Excerpt from ERG Guide 153 [Substances ­ Toxic and/or Corrosive (Combustible)]: 

Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves. Move
victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Do not
use mouth­to­mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket
mask equipped with a one­way valve or other proper respiratory medical device. Administer oxygen if breathing is
difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin
or eyes with running water for at least 20 minutes. For minor skin contact, avoid spreading material on unaffected skin.
Keep victim calm and warm. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.
(ERG, 2016)

Physical Properties

Chemical Formula: C6H16N2 (aqueous)

Flash Point: data unavailable

Lower Explosive Limit (LEL): data unavailable

Upper Explosive Limit (UEL): data unavailable

Autoignition Temperature: data unavailable

Melting Point: data unavailable

Vapor Pressure: data unavailable

Vapor Density (Relative to Air): data unavailable

Specific Gravity: data unavailable

Boiling Point: data unavailable

Molecular Weight: data unavailable

Water Solubility: data unavailable

Ionization Potential: data unavailable

IDLH: data unavailable

AEGLs (Acute Exposure Guideline Levels)
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No AEGL information available.

ERPGs (Emergency Response Planning Guidelines)

No ERPG information available.

PACs (Protective Action Criteria)
No PAC information available.

Regulatory Information

EPA Consolidated List of Lists

No regulatory information available.
DHS Chemical Facility Anti­Terrorism Standards (CFATS)

No regulatory information available.
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Chemical Datasheet

ADIPIC ACID

Chemical Identifiers

CAS Number UN/NA Number DOT Hazard Label USCG CHRIS Code
124­04­9 3077 Class 9 ADA

NFPA 704

Diamond Hazard Value Description

1
1 0

 Health 1 Can cause significant irritation.

 Flammability 1 Must be preheated before ignition can occur.

 Instability 0 Normally stable, even under fire conditions.

 Special

(NFPA, 2010)

NIOSH Pocket Guide International Chem Safety Card
none ADIPIC ACID

General Description
Adipic acid is a white crystalline solid. It is insoluble in water. The primary hazard is the threat to the environment.
Immediate steps should be taken to limit its spread to the environment. It is used to make plastics and foams and for
other uses.

Hazards

Reactivity Alerts
none

Air & Water Reactions
Dust may form explosive mixture with air (USCG, 1999). Insoluble in water.

Fire Hazard

Behavior in Fire: Melts and may decompose to give volatile acidic vapors of valeric acid and other substances. Dust
may form explosive mixture with air. (USCG, 1999)

Health Hazard
Inhalation of vapor irritates mucous membranes of the nose and lungs, causing coughing and sneezing. Contact with
liquid irritates eyes and has a pronounced drying effect on the skin; may produce dermatitis. (USCG, 1999)
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Reactivity Profile
ADIPIC ACID is a carboxylic acid. Carboxylic acids donate hydrogen ions if a base is present to accept them. They
react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called
"neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a
base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in
water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to an extent in
water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble
carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization
generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active
metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well,
but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and
dissolve sufficiently in it to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like
other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid
carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen
cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds,
dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also
react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic
gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat.
Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong
reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic
acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical
reactions. Behavior in Fire: Melts and may decompose to give volatile acidic vapors of valeric acid and other
substances.

Belongs to the Following Reactive Group(s)

Acids, Carboxylic

Potentially Incompatible Absorbents
No information available.

Response Recommendations

Isolation and Evacuation
Excerpt from ERG Guide 171 [Substances (Low to Moderate Hazard)]:

As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for
liquids and at least 25 meters (75 feet) for solids.

SPILL: Increase, in the downwind direction, as necessary, the isolation distance shown above. 

FIRE: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also,
consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2016)

Firefighting
Excerpt from ERG Guide 171 [Substances (Low to Moderate Hazard)]:

SMALL FIRE: Dry chemical, CO2, water spray or regular foam.

LARGE FIRE: Water spray, fog or regular foam. Do not scatter spilled material with high­pressure water streams.
Move containers from fire area if you can do it without risk. Dike fire­control water for later disposal.

FIRE INVOLVING TANKS: Cool containers with flooding quantities of water until well after fire is out. Withdraw
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immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks
engulfed in fire. (ERG, 2016)

Non­Fire Response
Excerpt from ERG Guide 171 [Substances (Low to Moderate Hazard)]:

Do not touch or walk through spilled material. Stop leak if you can do it without risk. Prevent dust cloud. Avoid
inhalation of asbestos dust.

SMALL DRY SPILL: With clean shovel, place material into clean, dry container and cover loosely; move containers
from spill area.

SMALL SPILL: Pick up with sand or other non­combustible absorbent material and place into containers for later
disposal.

LARGE SPILL: Dike far ahead of liquid spill for later disposal. Cover powder spill with plastic sheet or tarp to
minimize spreading. Prevent entry into waterways, sewers, basements or confined areas. (ERG, 2016)

Protective Clothing

Normal protection against exposure to finely divided organic solids (rubber gloves, plastic goggles) (USCG, 1999)

DuPont Tychem® Suit Fabrics
No information available.

First Aid
INHALATION: remove victim to fresh air; get medical attention if irritation persists. 

EYES: flush with water for at least 15 min. 

SKIN: flush with water. (USCG, 1999)

Physical Properties

Chemical Formula: C6H10O4

Flash Point: 376 ° F Combustible solid (USCG, 1999)
Lower Explosive Limit (LEL): 15 mg/l (dust) (USCG, 1999)

Upper Explosive Limit (UEL): 10 to 15 mg/l (dust) (USCG, 1999)
Autoignition Temperature: 788° F; 450° F (USCG, 1999)
Melting Point: 304 ° F (USCG, 1999)

Vapor Pressure: data unavailable

Vapor Density (Relative to Air): data unavailable

Specific Gravity: 1.36 at 68 ° F (USCG, 1999)

Boiling Point: data unavailable

Molecular Weight: 146.1 (USCG, 1999)
Water Solubility: data unavailable

Ionization Potential: data unavailable

IDLH: data unavailable
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AEGLs (Acute Exposure Guideline Levels)
No AEGL information available.

ERPGs (Emergency Response Planning Guidelines)
No ERPG information available.

PACs (Protective Action Criteria)

No PAC information available.

Regulatory Information

EPA Consolidated List of Lists

Regulatory
Name

CAS Number/
313 Category
Code

EPCRA
302
EHS TPQ

EPCRA
304
EHS RQ

CERCLA
RQ

EPCRA
313
TRI

RCRA
Code

CAA
112(r) 
RMP TQ

Adipic acid 124­04­9 5000 pounds

(EPA List of Lists, 2015)

DHS Chemical Facility Anti­Terrorism Standards (CFATS)
No regulatory information available.
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Chemical Datasheet

WATER

Chemical Identifiers

CAS Number UN/NA Number DOT Hazard Label USCG CHRIS Code
7732­18­5 none data unavailable none

NFPA 704
data unavailable

NIOSH Pocket Guide International Chem Safety Card
none none

General Description
A clear, nontoxic liquid composed of hydrogen and oxygen, essential for life and the most widely used solvent. Include
water in a mixture to learn how it could react with other chemicals in the mixture.

Hazards

Reactivity Alerts

none

Air & Water Reactions
No rapid reaction with air. No rapid reaction with water.

Fire Hazard
No information available.

Health Hazard

Water itself is nontoxic and is in fact essential for life. Solutes dissolved in water may be toxic, but those interactions
are covered by the reactive groups that the solute belongs to.

Reactivity Profile
Water reacts with many substances, including but not limited to alkali metals, hydrides, strong halogenating agents, and
chlorosilanes. These reactions can be hazardous and may result in flammable or toxic gas production, or generation of
excessive heat that may cause pressurization to occur. Another reactive hazard is heat of mixing. Mixing substances
such as sulfuric acid or sodium hydroxide with water may generate significant heat. Additionally, water is a good solvent
for polar molecules, so it can form aqueous solutions if it comes into contact with such molecules.

Belongs to the Following Reactive Group(s)

Water and Aqueous Solutions

Potentially Incompatible Absorbents
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No information available.

Response Recommendations

Isolation and Evacuation

No information available.

Firefighting
No information available.

Non­Fire Response
No information available.

Protective Clothing

No information available.

DuPont Tychem® Suit Fabrics
No information available.

First Aid
No information available.

Physical Properties

Chemical Formula: H2O

Flash Point: data unavailable

Lower Explosive Limit (LEL): data unavailable

Upper Explosive Limit (UEL): data unavailable

Autoignition Temperature: data unavailable

Melting Point: 32 ° F

Vapor Pressure: data unavailable

Vapor Density (Relative to Air): data unavailable

Specific Gravity: 1

Boiling Point: 212 ° F at 760 mm Hg
Molecular Weight: data unavailable

Water Solubility: data unavailable

Ionization Potential: data unavailable

IDLH: data unavailable

AEGLs (Acute Exposure Guideline Levels)

No AEGL information available.

ERPGs (Emergency Response Planning Guidelines)
No ERPG information available.

PACs (Protective Action Criteria)
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No PAC information available.

Regulatory Information

EPA Consolidated List of Lists
No regulatory information available.
DHS Chemical Facility Anti­Terrorism Standards (CFATS)
No regulatory information available.
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