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1.  Introduction 

 

1.1 Traumatic Brain Injury 

 

Traumatic Brain Injury (TBI) is an alteration of brain pathology following damage of the 

central nervous system (CNS) by an external force [1]. In the United States, approximately 2.8 

million Americans sustain a TBI annually with numbers increasing over the last several years. 

Elderly (≥75 years), children (0-4 years) and young adults (15-24 years) account for the majority 

of TBI Emergency department visits, hospitalizations, and deaths in the U.S. [2]. Particularly 

concerning, TBI remains the leading cause of death among infants and children [3-4]. With the 

prevalence of TBI increasing, research into the mechanics of tissue degeneration and 

preservation following TBI is warranted. Through increased understanding of cellular response 

to TBI, targeted therapies and treatment strategies to promote neural function regeneration can 

be explored.  

 

1.2 The Roles of Astrocytes 

 

In the central nervous system (CNS), glial scar formation often occurs following TBI, and 

astrocytes are widely believed to contribute to this scar formation.  The role of glial scar 

formation in TBI is not completely understood. However, it is widely believed it performs both 

positive and negative functions. The barrier created by the glial scar walls off damaged tissue to 

limit cellular inflammation and degeneration. A secondary effect of this barrier formation is 
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blocking of axonal regeneration of the area preventing functional regeneration [5-6]. Following 

TBI and other CNS insults, astrocytes are known to react in a process known as reactive gliosis. 

Astrocytes are a specialized structure and support cells found in both injured and uninjured CNS 

responsible for many essential, non-neurotransmission functions [7-8]. Of particular interest to 

this research is the role astrocytes play in extracellular matrix (ECM) production. While the exact 

composition of ECM varies among tissue types and hosts, it is generally composed of protein 

fibers including collagen, glycoproteins, and proteoglycans in a hydrated gel (8). During reactive 

gliosis, astrocytes congregate around the damaged area and ECM composition is altered (Figure 

1) [6]. While the role of astrocytes in ECM production is known, the exact mechanism(s) for this 

event remain unclear. 
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1.3 Transient Receptor Potential Vanilloid 4 

  

 One possible component to this mechanism is the activation of transient receptor 

potential vanilloid 4 (TRPV4). TRPV4 is a non-specific ion channel permeable to calcium ions, 

and is found in a diverse array of tissues throughout the body. TRPV4 activation is achieved 

through a variety of stimuli including osmolality and mechanotransduction among others [9-

12]. O’Conor et al has shown activation of TRPV4 to increase collagen content in chondrocytes 

following mechanical loading [10]. Similar mechanical stimuli in TBI may result in similar TRPV4 

activation in astrocytes and subsequent increase in collagen levels in glial scar formation. 

GSK1016790A, a known TRPV4 agonist, and GSK 205, a known TRPV4 antagonist offer one 

method for TRPV4 activation/inactivation research [10-13]. As a potential activator of astrocyte 

ECM production, TRPV4 represents a possible link between TBI and glial scar formation. The 

goal of this study was to compare mouse astrocyte matrix composition and mechanical 

properties following TRPV4 biochemical activation/inactivation through rheological analysis 

techniques.  

 

2. Materials and Methods 

 

2.1 Cell Culture 

 

 Frozen vials of C8-D1A mouse astrocyte clones were thawed in a 37˚C water bath and 

added to 7 mL of warmed DMEM supplemented media in a T75 flask. DMEM media was 
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supplemented with 10% FBS, 1% L-Glutamine, and 1% Penicillin/Streptomycin throughout 

experiment. Media was replaced every 48 hours with fresh media until 80-90 percent confluency 

was reached. Cells were then split into two T175 flasks. Media was aspirated, 7 mL trypsin EDTA 

was added, and flask was incubated until cell detachment was observed. Media (7 mL) was added 

to neutralized trypsin, and the resulting 14 mL cell solution was collected and centrifuged at 300 

G for 10 minutes. Supernatant was aspirated and cell pellet was resuspended in 4 mL media 

before being evenly distributed between two T175 flasks containing 12 mL warmed media. This 

process was continued until confluence was reached.  

 

2.2 Gel Mold and Well Preparation 

  

 Gel molds were fabricated from 1/8” thick high temperature super-soft silicone rubber 

sheet (McMaster-Carr) and 22 mm diameter glass coverslips (VWR). Silicone sheeting was cut 

into circular mold rings with 3/4” outer diameter and 3/8” inner diameter. Silicone rings and 

coverslips were washed and sonicated in 70% ethanol for 20 minutes. Following sonication, 

coverslips were gently pressed onto silicone rings forming the molds (Figure 2). Completed molds 

were then sterilized in an autoclave. All molds were placed coverslip side down into sterile 

transwell, 6 well plates prior to cell seeding.  
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Figure 2: Transwell plates (A) containing silicone molds (B) used to house, grow, and 
transfer mouse astrocyte gels over the course of experiment. Gels were submerged in 

supplemented media (C) throughout experiment. Following experiment, gels were 
removed from molds (D). Gels present only in first three wells. 

 

 Confluent cells were removed from T175 flasks as previously described in 2.1 and counted 

using a hemocytometer. Following counting, desired cell volume was centrifuged at 300 G for 10 

minutes, media was aspirated, and cells were resuspended in cold Matrigel (Corning). 

Cell/Matrigel suspension was seeded into molds at a concentration of 500,000 cells per mold 

(300 μL Matrigel). Plates were incubated at 37˚C for 30 minutes until gelation occurred. 5 mL 

media was then added to each well ensuring molds were completely submerged. Gels were 

incubated for 48 hours prior to first treatment. Media was replaced every 48 hours until 

experiment completion.  

 

 

 

 



6 
 

2.3 Astrocyte Sample Treatment 

 

 Astrocyte seeded gels were exposed of to one of three treatments – no treatment control, 

TRPV4 agonist, or TRPV4 antagonist – over the course of three weeks with six gels per treatment 

group. Control treatment media contained normal supplements with added trace amounts of 

DMSO consistent with DMSO concentrations in alternate treatments. TRPV4 agonist media 

contained 1μM GSK1016790A (Sigma-Aldrich). TRPV4 antagonist media contained 100μM 

GSK205 (EMD Millipore). Treatments were diluted to desired concentration through a series of 

dilution steps. Treatment media was added to six well plates and transwells containing astrocyte 

seeded gels were transferred to wells containing respective treatment media. Gels were 

submerged and incubated for 30 minutes at which time transwells and gels were returned to 

original plate containing fresh, non-treated media. This process was repeated every 48 hours 

over the course of three weeks.  

 

2.4 Astrocyte Viability Testing 

 

 Cell viability was testing using Molecular Probes™ Invitrogen detection technologies 

Live/Dead® Viability/Cytotoxicity Kit for mammalian cells.  Reagent stock solutions were warmed 

to room temperature. 20 μL EthD-1 stock solution was added to 10 μL sterile PBS and vortexed 

to ensure proper mixing. 5 μL calcien-AM stock solution was added to the 10 µL EthD-1 solution 

and vortexed to ensure proper mixing. Astrocyte seeded gels in molds were prepared prior to the 

assay with two rinses of sterile PBS. 150 µL prepared reagent solution was added to prepared 
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cells and incubated, while covered, at room temperature for 45 minutes. One gel per treatment 

group was tested. Following incubation, cover slips were placed over top of molds, and cells were 

visualized and imaged under fluorescence microscope at 4X magnification.  

 

2.5 Gel Rheological Testing 

 

 Following treatments, gel mechanical properties were tested using a Discovery HR-2 

rheometer with 10 mm parallel plate attachments (Figure 3A). Gels were removed from molds 

just prior to treatment by first removing the coverslip then excising gels from silicone molds using 

a 15-mm biopsy punch. The rheometer inertia, friction, and rotational mapping were calibrated.  

Gels were then positioned on the bottom rheometer plate warmed to 37˚C, and the plate gap 

was set to 1500 μm. This gap and temperature were used for all samples. Drops of 1X PBS solution 

were placed around sample to prevent dehydration during testing (Figure 3B). A frequency sweep 

from 0.1 - 100 hertz was performed on a log scale with five points per decade and at a strain of 

10%. Frequency, storage modulus, and loss modulus data was collected for each sample. 

Rheometer plates were cleaned with 70% ethanol and allowed to dry between tests. After test 

completion, each sample was stored in a 1.5 mL microcentrifuge tube at -80˚C for additional 

testing out of the scope of this project.  
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Figure 3: Discovery HR-2 rheometer with 10 mm parallel plate attachments and heated 
base (A), and gel sample between 1500 μm plate gap surrounded by 1X PBS (B).  

 
 
 

2.6 Statistical Analysis 

 

 Treatment groups were compared using a oneway ANOVA and Tukey-Kramer HSD. 

Acceptance criteria for statistical significance required p values less than 0.05. Storage modulus 

(G’) and loss modulus (G’’) data at 1 hertz were used for comparison as this frequency most 

closely resembles physiological frequencies. All graphs represent mean values with standard 

error bars. 
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3. Results 

 

 Cell viability testing was performed prior to rheological testing to ensure cells had 

survived during three-week treatment period. Each treatment group sample showed similar 

levels of viable cell density (qualitative) with no staining of dead cells visible (Figure 4). Cells 

appeared to be dispersed across all planes within the gel.  

 

 

Figure 4: EthD-1 staining of astrocyte seeded gel post treatments at 4X magnification. 
Dark region (lower left) corresponds to inner edge of silicone mold. Calcien-AM staining 

(not imaged) was negligible. 
 
 

 Rheological testing data showed exponential increased in storage modulus with increased 

frequency with similar trends across all treatment groups. Loss modulus showed no discernable 

trend across frequency sweep (Figure 5). 
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Figure 5: Sample representation of storage modulus and loss modulus frequency 
sweeps from 0.1-100 hertz for control, agonist, and antagonist treatments 

 

At one hertz, storage modulus mean values of control, agonist, and antagonist treatment 

groups were 147.503 Pa, 184.468 Pa, and 176.845 Pa respectively. Agonist storage modulus was 

significantly higher as compared to control (p=0.0422). While not statistically significant 

(p=0.1139), antagonist treatment showed an increase in storage modulus as compared to 

control, as well (Figure 6A). Loss modulus mean values of control, agonist, and antagonist 

treatment groups at one hertz were 17.686 Pa, 22.685 Pa, and 19.108 Pa respectively. Loss 

modulus data was found to not be statistically different across all groups (Figure 6B) 
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Figure 6: Mean storage modulus (A) and loss modulus values for control, agonist, and 
antagonist samples at 1 Hz in parallel plate rheometer frequency sweep.  Storage 
modulus was found to have increase significantly (*) in agonist treated samples as 

compared to control. 

 

4. Discussion and Conclusion 

 

 Matrigel in silicone and glass molds provided a suitable growth environment for mouse 

astrocytes throughout treatments as demonstrated by negligible cell death after three weeks. 

Further cell quantification methods are required to determine magnitude of cell growth during 

this period. Previous research has confirmed TRPV4 gene expression in these cells.  

 Storage modulus data corresponds to elastic properties of the samples while loss modulus 

data corresponds to viscous properties of the samples. Storage modulus data was significantly 

higher than loss modulus data showing the astrocyte seeded gels possessed mostly elastic 

properties. When the agonist protein, 10 μM GSK 101, was introduced, treated samples displayed 
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a higher mean storage modulus value as compared to control samples. There are many possible 

sources for this change, however one explanation would be an increase in collagen deposition as 

collagen displays primarily elastic properties [11]. This would suggest that activation of TRPV4 

plays a role in astrocyte ECM production, specifically collagen production. The increase in 

collagen levels will be confirmed in subsequent research including hydroxyproline assay studies 

of samples. As the mean value storage modulus data also increased for the antagonist treatment 

group, although not significantly, there likely exists a more complex relationship between TRPV4 

activation and astrocyte ECM production that warrants further studies and analysis. 
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