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Abstract 

In 2013, only 37% of the 32 million Mg of flue gas desulfurization (FGD) by-products 

generated in the United States were reused beneficially. If FGD by-products could be used as a 

beneficial soil amendment, millions of megagrams may be diverted away from surface 

impoundments and landfills. The purpose of this research was to identify the liming 

characteristics of a high-Ca dry FGD (DFGD) by-product in comparison to a Class-C fly ash 

(FA) and reagent-grade CaCO3, and to evaluate the effects of land application to a managed 

grassland on runoff, plant, and soil quality. Liming characteristics were determined by measuring 

the calcium carbonate equivalence (CCE), degree of fineness (DOF) and calculating the effective 

neutralizing value (ENV). The DFGD by-product was land-applied to a managed grassland in 

May 2015 and runoff, plant, and soil samples were collected over a 12-mo period. The ENV of 

79.4% for the DFGD by-product was lower (P < 0.05) than that of reagent-grade CaCO3, but 

similar to the ENV of commercially available liming materials. The DFGD by-product was as 

effective as reagent-grade CaCO3 at raising soil pH when incubated at a rate equivalent to the 

soil’s lime requirement and more effective than reagent-grade CaCO3 when incubated at 2x the 

soil’s lime requirement. Seasonal flow-weighted mean Ni concentrations and seasonal V loads 

were 44.5 and 86.9%, respectively, greater (P < 0.05) when amended compared to the 

unamended control during at least one season. One month after application, aboveground dry 

matter and tissue As, Se, Cr, Co, Hg, V, and U concentrations were between 53 and 471% 

greater in the amended treatment than in the unamended control. Trace element concentrations 

decreased to pre-application levels within six months. Results demonstrated that the high-Ca 

DFGD by-product used in this study is a viable liming material and has minimal effects on 

runoff and plant quality when applied at a rate of 9 Mg ha-1. Consequently, land application of 

high-Ca DFGD by-products may be a viable alternative to current disposal methods. 
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Introduction 

Over 3,936 billion kilowatt-hours of electricity were produced in the United States in 

2014, with approximately 3,724 billion kilowatt-hours being consumed by residential, 

commercial, industrial, and transportation industries (USEIA, 2015a). As a result of population 

growth, electricity generation is estimated to increase at a rate 0.8% year -1 from 3,936 billion 

kilowatt-hours in 2014 to 4,797 billion kilowatt-hours in 2040 (USEIA, 2015b). Of the 3,936 

billion kilowatt-hours of electricity generated by the United States in 2014, 39% were generated 

by coal-fired power plants. Although natural gas is expected to eventually surpass coal as the 

primary fossil fuel source of electrical power generation in the United States, the broad 

availability and low material cost of coal will cause coal to continue to be a major source of 

energy for the next 35 years.  

In 2008, it was estimated that more than 123 million Mg of coal combustion by-products 

(CCBs) were produced, which made coal combustion the second largest producer of waste 

behind municipal solid waste (Luther, 2010). In 2007, only 40% of the CCBs generated in the 

United States were used beneficially, which left 68 million Mg to be disposed of in landfills or 

settling ponds (ACAA, 2008). The need for alternative storage and disposal of CCBs came to the 

public’s attention in 2007 when approximately 0.9 billion Mg of coal-ash slurry were released 

from the Kingston Fossil Plant in Roane County, Tennessee after a surface impoundment pond 

was breached. The large quantity of ash released resulted in fish kills and soil and water 

contamination that will take decades and millions of dollars to remediate. However, the chemical 

and physical properties of some CCBs provide potential for use in agronomic applications. 
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 The primary beneficial use of CCBs in agriculture is utilization as a liming material to 

mitigate soil acidity. Acidic soils can increase solubility of Al and Mn, which can severely 

impair root function and growth, decrease solubility of essential plant nutrients, and increase 

solubility of potentially phytotoxic trace elements. Fly ashes originating from lignite and 

subbituminous coal are rich in calcium oxide (CaO) and may also contain other alkalizing agents 

capable of raising soil pH. Flue-gas-desulfurization (FGD) by-products are enriched with 

calcium sorbents like calcium hydroxide [Ca(OH)2] that are used in the desulfurization process 

as well as the other alkalizing agents originally present in fly ash. Coal combustion by-products 

have been extensively reviewed for their use as an agricultural liming agent, and CCBs behave 

similarly to calcium carbonate (CaCO3) as a liming agent depending on their CaCO3 equivalence 

(CCE) (Phung et al., 1978; Page et al., 1979; Korcak, 1985; McCarty et al., 1994). The large 

concentrations of CaSO4 present in FGD by-products are also considerably more soluble 

compared to CaCO3 and can provide essential nutrients to help mitigate subsoil acidity 

symptoms (Sumner et al., 1986). 

 Coal combustion by-products are also rich in nutrients vital to plant and animal growth. 

Fly ashes have large concentrations of essential nutrients such as P, Ca, S, B, Cu, Fe, Na Mg, K, 

and Zn, which may limit plant growth and agricultural yields when present in suboptimal 

amounts. The desulfurization process also enriches the coal by-products with Ca and S, which 

may be limited in certain geographic regions and can increase crop yields. Coal combustion by-

products have been used as a soil amendment and successfully increased yields of several crops 

including alfalfa (Medicago sativa), soybean (Glycine max), corn (Zea mays), barley (Hordeum 

vulgare), rice (Oryza sativa), wheat (Triticum aestivum) and white clover (Trifolium repens) 

(Chen et al., 2005; Adriano et al., 1978; Sale et al., 1996; Sikka and Kansal, 1995; Hill and 
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Lamp, 1980). Although the agronomic benefits of land applying CCBs are well-documented, 

environmental concerns regarding bioaccumulation, runoff, plant uptake, and leaching of 

potentially toxic trace elements have prevented large-scale use of CCBs in agriculture. This is 

further complicated by the fact that actual CCBs characteristics vary greatly depending on coal 

type and origin as well as the power plant operating conditions and technology. Leaching 

characteristics and plant uptake of trace elements in soils amended with CCBs have been 

documented (Crews and Dick, 1998; Izquierdo and Querol, 2012; Grisafe et al., 1988; Stehouwer 

et al., 1996), but field experiments monitoring runoff quality under natural precipitation are 

nonexistent. 

 If large volumes of CCBs were to be land applied as a soil amendment on agricultural 

land, runoff water could contribute to degradation of nearby terrestrial, aquatic, and agricultural 

ecosystems. More information is needed on the effects of land application of CCBs on runoff 

water from agricultural land. Land application onto managed grasslands with dense vegetative 

cover provides the potential for increased rainfall interception, which can decrease the volume of 

runoff water leaving the grassland, but long-term analysis is needed. 
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Coal Combustion By-product Generation and Characteristics  

Electrical Generation and Consumption 

Over 3,936 billion kilowatt-hours of electricity were produced in the United States in 

2014, with approximately 3,724 billion kilowatt-hours being consumed by residential, 

commercial, industrial and transportation industries (USEIA, 2015a). As a result of population 

growth, electricity generation is estimated to increase at a rate 0.8% year -1 from 3,936 billion 

kilowatt-hours in 2014 to 4,797 billion kilowatt-hours in 2040 (USEIA, 2015b). Globally, it is 

predicted that energy consumption will grow 56%, from 524 quadrillion British thermal units 

(BTU) in 2010 to 820 quadrillion BTU in 2040 (USEIA, 2013). 

In the United States, electricity is primarily generated by the combustion of fossil fuels. 

In 2014, fossil fuels were responsible for 67% of electricity generation (USEIA, 2015a). Of the 

3,936 billion kilowatt-hours of electricity generated, 39% were generated by coal-fired power 

plants. The remaining major energy sources were natural gas (27%), nuclear (19%), hydropower 

(6%) and other renewable resources (7%). Use of coal for electrical generation peaked in 2007 at 

2,016 billion kilowatt-hours, but has been decreasing steadily as consumption of natural gas 

increases. The switch away from coal-fired power plants may be attributed to several factors 

including an increase in government regulations, fuel prices and a lower overall efficiency 

compared to alternative fuel sources (USEIA, 2013). Coal-fired power plants operate with an 

efficiency of 25-45%, while natural gas power plants operate with an efficiency of 30-50% (IEA, 

2008). At the current growth rate, it is estimated that natural gas will produce more than 60% of 

electricity between 2025 and 2040 (USEIA, 2015b). Although natural gas consumption is 

expected to surpass coal, due to the broad availability and low material cost, coal is expected to 

be a major source of energy for the next 35 years. 
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Origin and Classification of Coal Products 

In 2008, it was estimated that more than 122 million Mg of coal combustion by-products 

(CCBs) were produced, which made coal combustion the second largest producer of waste 

behind municipal solid waste (Luther, 2010). The physical and chemical properties of CCBs are 

directly related to the properties of the coal being used in the production of energy. Currently, 

coal is being mined from the surface and subsurface of coal reserves in the Colorado Plateau, 

Western Interior Illinois Basin, Gulf Coast, Northern Rocky Mountains and Great Plains, and 

Appalachian basin areas of the United States (USGS, 2013a).  

There are four categories of coal that are based on the geologic age and degree of 

metamorphism. The four ranks of coal are lignite, subbituminous, bituminous, and anthracite 

(USGS, 2009). America Society for Testing and Materials standard D388 is the most common 

system for ranking coal and is based on the fixed-carbon content (%), volatile matter limits (%), 

and the caloric value (BTU/lb). Coals that contain 69% or greater fixed C are classified solely by 

their fixed carbon content (ASTM, 2015a). Coals that contain below 69% fixed carbon are 

classified solely by their caloric value. Subbituminous and bituminous coal are the primary 

sources of coal-fired energy in the United States, accounting for 92% of coal production by 

weight and 95% by total energy production (USEIA, 2010). Lignite, which has the lowest energy 

content, comprises 7% of U.S coal production by weight and 5% by energy production. 

Although anthracitic coal has the largest carbon content (86 to 97%), it is extremely rare in the 

United States and only comprises 0.2% of total coal production. This thesis focuses primarily on 

subbituminous coal mined from the Gillette coal field of the Powder River Basin in Wyoming 

and Montana. 
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The Powder River Basin (PRB) is a coal basin that covers approximately 50,500 km2 in 

northeastern Wyoming and southeastern Montana (USGS, 2013a). The PRB contains the largest 

reservoir of low-sulfur subbituminous coal in the world. In 2011, 42% of total coal production in 

the United States originated from the PRB, of which 92% of coal produced came from the 

Gillette coal field. Coal mined from the Gillette coal field in the PRB is described as “clean coal” 

due to its low S content and low concentration of contaminants and trace elements (USGS, 

1999). Total S content of coal mined from the Gillette coal field ranges from 0.2 to 1.2% (Table 

1). Potentially environmentally damaging elements such as As, Co, Cr, Pb, Se and U all have 

mean concentrations less than 10 mg kg-1. 

 

Coal-combustion By-products 

 Use of coal in coal-fired power plants results in the generation of large volumes of coal-

combustion by-products (CCBs). Coal combustion by-products are solid phase particles 

originating from chemical compounds in coal that are not combusted during electric generation. 

These by-products are then collected through emissions control processes. Coal combustion by-

products which include fly ash, bottom ash, boiler slag, and flue gas desulfurization by-products 

(FGD) (Luther, 2010). This thesis will focus primarily on fly ash and FGD, although bottom ash 

and boiler slag will be briefly discussed. 

 Bottom ash is formed when ash particles that are too large to be carried in flue gases 

soften and adhere to boiler tubes or furnace walls (WE, 2013). Bottom ash particles are coarse 

and range in size from fine sand (0.125 to 0.250mm) to gravel (2 to 10mm). Due to the large 

particle size, bottom ash particles are typically inert and less pozzolanic than other ashes. Boiler 

slag is formed when a wet-bottom furnace is used during the coal combustion process. Molten 
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non-combustible minerals in the furnace are combined with quenching water causing the 

minerals to crystallize and subsequently fracture into coarse, black, angular, and glassy particles. 

As of 2007, the largest use for boiler slag was as blasting grit and roofing granules (ACAA, 

2008). 

Fly ash is responsible for 57% of CCBs generated in the United States and is captured in 

the chimney or stack of a power plant by electrostatic precipitators, fabric filters, or baghouses 

(Luther, 2010). Fly ash consists of particles that have been fused into spherical, glassy, 

amorphous aluminosilicates that typically range in size from 2 to 10 µm (Ismail et al., 2007). Fly 

ash is further classified into two categories dependent on the coal being burned. Class C fly ash 

(high calcium) is derived from the burning of lignite and subbituminous coal, whereas Class F 

(low calcium) fly ash originates from anthracitic and bituminous coal (WE, 2013). The primary 

difference between Class C and Class F fly ash is the greater silicon dioxide (SiO2) content in the 

Class F fly ash (50-65% vs 20-40% in Class C fly ash) and the greater calcium oxide (CaO) 

content of Class C fly ash (25-35% vs 0-10% in Class F fly ash) (Table 2). Aluminum oxides and 

ferrous oxides are the other main constituents of both Class C and Class F fly ashes.  

Due to the pozzolanic nature of CaO, fly ash particles in Class C become cementitious 

when exposed to water (Sajwan et al, 2006). Class C fly ash is often used in conjunction with 

portland cement or as a replacement due to large CaO content (i.e., portlandite). Class C fly ash 

is also used as a soil stabilizer for reducing subgrade support capacity for pavements, acting as a 

drying agent in moist soils and reducing the shrink-swell potential of soils with vertic properties 

(WE, 2013). In 2007, 71.7 million tons of fly ash were produced with approximately 44% being 

used beneficially, which was as a component in concrete and/or blended cement (ACAA, 2008). 
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There are 76 potential elements present in coal which are subsequently potentially present 

in the ash of CCBs (USGS, 2013b). Major elements present in coal ash include Al, Ca, Fe, K, 

Mg, S, and Si, which range in concentration from 1.9 to 34 g kg-1 for S to 160 to 270 g kg-1 for Si 

(Table 3). Trace elements present in fly ash have been an environmental concern for decades and 

are the primary factor hindering the beneficial use of fly ash. Potentially toxic trace elements, 

such as As, Cd, Cr, Pb, Hg, Se, Sr, and U, may be present in large concentrations. Boron is also 

present in large concentrations, ranging from 120 to 1000 mg kg-1, and can cause environmental 

degradation when present in large quantities. Although some trace elements may be toxic to 

plants and animals in large quantities, elements such as copper, vanadium, selenium, strontium, 

molybdenum, and zinc may be beneficial in small amounts (Banfalvi, 2011). 

Flue gas desulfurization by-products result from chemical processes used at coal-fired 

power plants to remove sulfur dioxide (SO2) from flue gasses in order to comply with the 1990 

Clean Air Act Amendment (CAAA) (U.S. Congress, 1990). Sulfur dioxide is removed from flue 

gasses by combining the flue gasses with a calcium sorbent, such as limestone (CaCO3), burnt 

lime (CaO), or hydrated lime [Ca(OH)2] (Luther, 2010). The use of a calcium sorbent yields a 

by-product with a large calcium content when compared to other CCBs. Depending on the 

technology being used at the coal-fired power plant, FGD may be a dry powder (DFGD) or a wet 

sludge (WFGD). Due to the reaction of lime or limestone with the SO2 in flue gasses, FGD 

contains large levels of calcium sulfite hemihydrate (CaSO3∙ ½H2O) and calcium sulfate 

dihydrate (CaSO4∙2H2O; gypsum). Dry FGD by-products containing high levels of CaSO4∙2H2O 

may be identified as FGD gypsum. In 2010, FGD comprised 24% of total CCB generation in the 

United States, although the percentage tends to increase every year (Luther, 2010). According to 

ACAA (2008), 67% of FGD gypsum was used in the production of gypsum panel products such 
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as panels and drywalls. The primary beneficial use for WFGD and DFGD is in mining 

applications as a mine spoil amendment (ACAA, 2008). 

Flue gas desulfurization by-products from coal-fired power plants typically contain 

spherical or irregularly shaped fly ash particles that range in size from 5 to 50 µm (WE, 2013). 

Chemically, FGD contains the same 76 potential elements as fly ash, although the concentrations 

differ. The largest difference in the major elemental composition is with Al (70-140 compared to 

13-74 g kg-1 for fly ash and FGD, respectively), Ca (7.4-150 compared to 122-312 g kg-1 for fly 

ash and FGD, respectively), S (1.9-34 compared to 41-126 g kg-1 for fly ash and FGD, 

respectively), and Si (160-270 compared to 25-139 g kg-1 for fly ash and FGD, respectively) 

(Table 3). The large Ca and S contents present in FGD originated from the calcium sorbents and 

SO2 removed from the flue gasses. Trace element concentrations of B, Cr, Mn, Ni, Pb, and Sr in 

FGD are generally lower than those present in fly ash (Table 3). 

 

Storage and Disposal of CCBs and Associated Issues  

 When not being used beneficially, CCBs are disposed of in two ways, in landfills or in 

settling ponds (Carlson and Adriano, 1993). In settling ponds, CCBs are mixed with water to 

form a slurry, which is then transported to surface impoundments for storage. As ash settles in 

the settling ponds, effluent water may be pumped back to the power plant or pumped to nearby 

streams. Landfills are areas that receive CCBs directly from the coal-fired power plant, which are 

then disposed of into an excavated area and buried. As of 2012, 310 active on-site landfills and 

735 on-site settling ponds were being used to handle CCBs not being used beneficially (USEPA, 

2015). Storage of CCBs in landfills and surface impoundments has raised concerns regarding 

potential environmental damage to terrestrial and aquatic ecosystems.  
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The potential for groundwater contamination from CCB leachate is a concern regarding 

long-term disposal and storage (EPA, 1998). The elevated levels of potentially toxic trace 

elements, such as As, B, Cd, Cr, Hg, Mo, Pb, and Se, as well as soluble salts present in CCBs, 

increase the chance of groundwater contamination over time as landfills and storage lagoons 

degrade (Carlson and Adriano, 1993). The fine particle size of CCBs makes them particularly 

susceptible to wind erosion. Unmanaged and abandoned landfills and storage lagoons are a 

noteworthy source of ash resuspension into the atmosphere (Dellantonio et al., 2010). Suspended 

ash particles in the air can cause health problems, including irritation to the eyes, throat, and 

respiratory tracks of animals and humans near ash disposal sites. Respiration of air-borne ash 

particles can also lead to the ingestion of potentially toxic trace elements, such as As, Pb, Hg, Cr, 

Cd, and Se (Smith et al., 2006). The most environmentally conscious method of alleviating 

environmental contamination from ash disposal is the use of a vegetative cover. Although 

vegetative covers can minimize erosion of ash, as well as leaching of toxic metals and soluble 

salts, bioaccumulation of toxic elements in the food chain has been an observed problem in 

ecosystems adjacent to ash disposal sites (Dellantonio et al., 2010). Plants growing in ash-

incorporated soils frequently accumulate substantial levels of Se, which may be toxic for 

animals. In China, approximately 500 cases of selenosis in humans resulted from consumption of 

water originating from Se-rich soils being amended with Se-rich CCBs (Finkelman et al., 2002). 

Plant uptake of Mo from CCB-amended soil and subsequent consumption by ruminants has been 

reported to lead to a Cu:Mo ratio imbalance, increasing the risk for hypocuprosis in ruminants 

(Dellantonio et al., 2010). 

The potential for toxic elements and pH-altering cations to enter aquatic ecosystems is 

also a major concern for long-term storage of CCBs. Elements such as B, Mo, Se, Cr, and V 
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have been reported to be the most soluble and water-extractable elements present in CCBs and 

can enter aquatic ecosystems as effluent discharge from ash disposal sites (Dellantonio et al., 

2010; Moreno et al., 2005). Effluent discharge from ash disposal sites to aquatic ecosystems can 

affect water quality by increasing turbidity, alkalinity, electrical conductivity, and siltation and 

may lead to a decrease in photosynthetic activity, animal metabolism, and animal reproduction 

leading to an increase in mortality rates and a decrease in species diversity (Carlson and Adriano, 

1993). Accidental releases from ash disposal sites have occurred in the past and have caused 

significant environmental damage, property damage, and health issues. 

On October 11, 2000, an ash storage lagoon located in Martin County, Kentucky released 

an estimated 946.4 million liters of ash sludge into the Coldwater Fork and Wolf Creek (Counter 

Spill, 2011). Ash sludge from the coal-fired power plant affected areas over 160 kilometers 

downstream from the location of the spill contaminating surface and groundwater and affecting 

aquatic and terrestrial ecosystems. Sludge from the spill eventually reached the Ohio River, 

which may have caused substantial damage to aquatic and riparian ecosystems along the Ohio 

River. Shortly after the spill, a state of emergency was declared due to unsafe drinking water as a 

result of the sludge spill.  

In 2006, the Anne Arundel County Department of Health received notification from the 

Maryland Department of the Environment that a well within 305 meters of an ash disposal site 

was shown to have an elevated level of metals in the water (AA Health, 2013). Well water for 83 

homes and in the surrounding area was tested over a 6-month period by the Department of 

Health for compliance with EPA’s maximum contaminant levels (MCLs). Samples collected 

from well water in the sampling area showed levels of Al, As, Be, Cd, Mg, Ti, and sulfates that 

exceeded EPA’s MCLs. 
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The largest incident regarding CCB disposal and storage occurred on December 22, 2008 

at the Tennessee Valley Authority’s (TVA) Kingston Tennessee coal-fired plant. An estimated 

4.16 billion liters of ash sludge were released as a result of a breach of an impoundment pond 

located at the coal-fired plant (Luther, 2010). The sludge released from the impoundment pond 

covered over 121.4 hectares resulting in large-spread environmental contamination, property 

damage, and eventual contamination of the Emory and Clinch Rivers. Ruhl et al. (2010) 

examined the environmental impact of the TVA ash spill and reported that ash buried from the 

spill was highly reactive and will continue to release large levels of As, B, Sr, and Ba into pore 

waters. Large fish kills were reported at both Emory and Clinch Rivers as a result of the 

contamination. Dredging efforts undertaken by TVA have also resulted in a minimal impact of 

contamination remediation due to the low ash/water ratios and large amounts of dilution. The 

scale of the TVA spill resulted in national attention being drawn to the issue of CCB 

management and disposal. As a result of the TVA spill, EPA began proceedings to address 

regulatory issues associated with CCB management and storage (Luther, 2010). 

 

CCB Regulations 

 Regulations for the combustion of coal products in power plants originated from the 

Clean Air Act (CAA) passed by the United States Congress in 1970. The CAA delegated 

authority to EPA to develop regulations for mitigating air pollution (U.S. Congress, 1970). The 

1970 CAA established National Ambient Air Quality Standards (NAAQS) for states to regulate 

six widespread pollutants: ozone, particulate matter, carbon monoxide (CO), nitrogen oxides 

(NOx), SO2, and Pb. States were also to develop and force State Implementation Plans (SIPs) to 
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maintain air quality. The CAA required stationary sources of air pollution, such as coal-fired 

power plants, to adopt best-available technologies available for mitigating air pollution.  

The 1977 Clean Air Act Amendment (CAAA) was passed by Congress to address 

concern with the preventing significant deterioration of air quality attained by NAAQS (U.S. 

Congress, 1977). The 1977 CAAA outlined requirements for non-attainment areas of NAAQS. 

Non-attainment areas are geographic regions whose air quality falls below NAAQS established 

by the EPA, or below SIPs passed by the state.  

The 1990 CAAA introduced new regulations aimed at further reducing air pollution from 

point and non-point sources (CAAA, 1990). A primary focus of the 1990 CAAA was to address 

acid rain problems resulting from NOx and SO2 emissions. The 1990 CAAA mandated SO2 

emission of coal-fired power plants be reduced below 0.91 kg of SO2/mBTU by 1995 and below 

0.54 kg of SO2/mBTU by 2000. The 1990 CAAA SO2 regulations resulted in a dramatic increase 

in FGD technologies, and a subsequent increase in FGD by-products. In addition to reduction of 

acid rain, the 1990 CAAA put forth regulations to control 189 toxic pollutants, phase out ozone-

depleting chemicals such as chlorofluorocarbons (CFCs), and provided a framework for 

alternative clean fuels to be used in business or government owned vehicles. 

The Resource Conservation and Recovery Act (RCRA) of 1976 is the primary regulation 

governing the disposal of solid waste such as CCBs (USEPA, 2014). Section C of RCRA 

established regulations for handling hazardous waste with the intent of managing hazardous 

wastes from creation to disposal, or “cradle to grave”. Hazardous wastes under RCRA were 

defined as being toxic, reactive, ignitable, or corrosive, and are determined by using the toxicity 

characteristic leaching procedure (TCLP) established by the EPA. Section C also established a 

permitting process for facilities handling, storing, or disposing hazardous wastes. 
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The Solid Waste Disposal Act (SWDA) of 1980, otherwise known as the Bevill 

Amendment, was an amendment to RCRA that exempted CCBs from regulation under Subtitle C 

until further assessment of risk was conducted (Luther, 2013). The CCBs exempted under the 

Bevill Amendment were fly ash waste, bottom ash waste, slag waste, and wastes produced by 

flue gas emission controls produced from the combustion of coals or other fossil fuels. The 1988 

Report to Congress (RTC) reported the four CCBs studied were not a major concern and did not 

exhibit hazardous waste characteristics in the TCLP and therefore should not be classified and 

regulated as a hazardous waste. In response to the 1988 RTC, EPA made a regulatory 

determination that CCBs did not warrant regulation as a hazardous waste under Subtitle C (58 

FR 42466, 1993). In 2000, a second RTC was issued that reaffirmed that hazardous waste 

regulations under Subtitle C were not necessary for CCBs when disposed of in landfills or 

surface impoundments. The EPA also stated that no further regulations were necessary, and that 

further regulations may inhibit beneficial use of CCBs. In 2014, in response the TVA disaster, 

EPA issued a final rule to regulate the disposal of CCBs under Subtitle D of RCRA (U.S. 

Congress, 1976; USEPA, 2015). The final rule created minimum criteria for existing and future 

CCB disposal sites and required any existing unlined CCB surface impoundment that was 

contributing to groundwater contamination to immediately stop receiving CCBs and retrofit or 

close the surface impoundment. Landfills or surface impoundments that cannot meet 

performance criteria must be closed. 
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Agricultural Benefits 

Effects of Acid Soils on Plant Growth 

 Soil acidity is a major factor limiting the growth of plants and is a major agricultural and 

environmental concern worldwide. Soil acidy is due to acidic parent materials low in basic 

cations, application of ammonium-based fertilizers, or because basic cations have been removed 

by plant uptake or leaching (Foy et al., 1978; DeSutter and Cihacek, 2009). Soils with pH below 

7.0 are considered acidic, but soil acidity can be further classified as extremely acidic (< 4.5), 

very strongly acidic (4.5 to 5.0), strongly acidic (5.1 to 5.5) or moderately acidic (5.6 to 6.0) 

(DeSutter and Cihacek, 2009). Acid soil toxicity is a series of complex factors that may affect 

plant growth and is dependent on several factors including plant genotype, clay mineralogy, 

organic matter types and concentrations, and soil salinity (Foy, 1992). The three primary ways 

that soil acidity can disrupt plant growth are through H, Mn and Al toxicity. 

 Hydrogen ion toxicity is a direct result of the increase in the H ion concentration as the 

soil pH decreases. Symptoms associated with H ion toxicities are often hard to diagnose due to 

the prevalence of Al and Mn toxicities at soil pH above 4.0 (Kamprath and Foy, 1985). Excess H 

ions can cause leaky root membranes and interfere with ion transport by competing with other 

cations for root absorption sites (Foy, 1992). Leaky root membranes can cause a loss in root 

cations and important organic substrates. Hydrogen ion toxicity has been shown to reduce 

growth of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) roots in acidic soils 

(Howard and Adams, 1965). Hydrogen ion toxicity has also been reported to restrict survival and 

inhibit reproduction of rhizobia and other soil microorganisms (Moore, 1974; Kamprath and Foy, 

1985). Excess H+ ions can also cause root infection, nodule initiation, and nodulation of the host 

plant, which will limit legume growth (Andrew, 1978). 
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 Manganese toxicity has a larger effect on plant shoots than Mn toxicity does on plant 

roots, although root damage may occur when toxicity is severe (Foy, 1974). Manganese 

availability and potential toxicity depends on soil characteristics, such as Mn content of the 

parent material, soil pH, microbial activity, soil Eh, soil aeration and porosity, and organic matter 

type and concentration. Certain soils, such as those of the Atlantic coastal plain, do not have 

sufficient Mn to produce toxicity (Adams and Pearson, 1967). Manganese toxicity typically 

occurs below pH 5.5, but Mn toxicity has been reported in poorly drained or aerated soils where 

reducing conditions cause microbial respiration of MnO2 and the subsequent production of 

soluble divalent Mn. Manganese toxicity can occur in calcareous soils where plants, such as flax 

(Linum usitatissimum L.), can create reducing or low pH conditions in their root zones 

(Moraghan and Ralowicz, 1979). Excess manganese can cause leaf puckering, chlorosis (i.e., 

pale or yellowing of leaves), and necrotic spots to appear on older leaves. Severe Mn toxicity 

may cause impaired root function and stunting and may be associated with Fe deficiencies. 

 Aluminum toxicity is one of the largest inhibitors of plant growth in acidic soils and is 

most prevalent at pH < 5.0. The pH that Al becomes available in toxic concentrations is 

dependent on several soil factors, including clay mineralogy, organic matter concentrations, 

salts, plant species, cation and anion concentrations (Foy, 1974; Kamprath and Foy, 1972). 

Symptoms such as drought stress or poor root development in acidic soils are most likely the 

result of Al toxicity. Aluminum toxicity cause symptoms similar to plants deficient in P (e.g., 

stunted growth, late maturity, and purpling of stems), Ca (e.g., curling of young leaves and 

collapse of plant growing points), Fe (e.g., interveinal chlorosis and yellow or white leaves), and 

Mg (e.g., interveinal chlorosis and reduction in photosynthetic and enzymatic activities) (Foy, 

1992). Reduced root growth from Al toxicity in acidic soils results from Al interference with root 
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tip cell division, decrease in root respiration, reduction of water uptake and the fixation of P in 

less-available forms in the soil and on the surface of plant roots. Aluminum toxicity in plants can 

increase the rigidity of the deoxyribonucleic acid (DNA) double helix causing a reduction in 

DNA replication, interfere with enzymes responsible for sugar phosphorylation, decrease 

production of cytokins, and hinder uptake, transport, and metabolism of essential nutrients 

(Ulmer, 1979). 

 

CCBs as a Soil Ameliorant of Soil Acidity and Soil Acidity Symptoms 

Historically, liming agents, such as limestone (CaCO3), burnt lime (CaO), hydrated lime 

[Ca(OH)2], and dolomitic limestone [CaMg(CO3)2], have been used to alleviate soil acidity and 

subsequently improve plant growth and crop production. Soil acidity is neutralized by the oxide 

anions produced from dissolution of the liming materials, which then react with H+ ions to form 

water or carbonic acid. However, the relative insolubility of limestone and dolomitic limestone 

(0.013 g L-1 at 25°C) means that limestone is only effective at the site of application or 

incorporation and will be unable to leach and neutralize subsoil acidity (Aylward, 2008; Oates, 

1998). In order to make limestone available to the subsoil, the soil must be cultivated or 

disturbed to incorporate the liming material deeper into the soil profile. Liming materials such as 

burnt lime and hydrated lime are significantly more soluble in water (~1.2 and 1.9 g L-1 at 25°C 

for burnt lime and hydrated lime, respectively) and are much more effect at neutralizing soil 

surface and subsoil acidity (Aylward, 2008; Oates, 1998). Although gypsum (CaSO4∙2H2O) does 

not act as a liming material, gypsum is able to mitigate subsoil acidity by decreasing the 

exchangeable Al3+ concentration (Sumner et al., 1986). Gypsum mitigates subsoil acidity through 

the precipitation or sorption of Al3+, which reduces the influence of Al on plants. The large 
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availability and presence of alkalizing agents [CaCO3, CaO, MgO, Ca(OH)2 and CaMg(CO3)2] 

present make certain CCBs good candidates for use as a liming agent (McCarty et al., 1994; Jala 

and Goyal, 2006). Additionally, due to the nature of the desulfurization process, DFGD by-

products contain large amounts of gypsum which can be used to mitigate subsoil acidity (Chen et 

al., 2001). 

Phung et al. (1978) measured the impact of liming an acidic Reyes silty clay (Sulfic 

Haplaquept) (pH 4.1) with Class F fly ash at rates of 0, 0.4, 1, 2, 5, and 10% by weight for a 4-

month period. After 4 months, application of 5% (w/w) fly ash increased the soil pH from 4.1 to 

6.3 and exchangeable soil Ca increased from 5 to 20.1 cmolc kg-1. Exchangeable soil Al in the 

soil decreased from 8.8 cmolc kg-1 in the control soil to 0.2 and 0 cmolc kg-1 for the 5 and 10% 

(w/w), respectively. The increase in exchangeable soil Ca and soil pH and decrease in 

exchangeable soil Al created soil conditions that were more favorable for plant growth (Phung et 

al., 1978). 

Chapman (1984) surface applied fly ash to silt-loam fields in Pulaski County, Arkansas at 

application rates equivalent to 4.5, 9, and 13.5 Mg ha-1 to monitor effectiveness of fly ash as a 

lime source in comparison to agricultural lime applied at a rate equivalent to 4.5 Mg ha-1. After 

12 months, the pH of the soil within the top 10-cm had increased from 5.2 to 5.8 for the 

limestone treatment and from 5.2 to 5.5, 5.7, and 5.9 for the 4.5, 9, and 13.5 Mg ha-1 treatments, 

respectively. Fly ash applied at the 9 and 13.5 Mg ha-1 application rates was as effective as 

limestone applied at a 4.5 Mg ha-1 application rate. Electrical conductivity (EC) was greatest in 

soil that received limestone and was 10 µS cm-1 greater than that for the fly ash treatment with 

the largest EC. Extractable soil P, K, and Na were similar between the limestone and fly ash 
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treatments. Soil treated with limestone had greater extractable soil Ca, whereas soil treated with 

fly ash had greater levels of extractable soil Mg compared to an unamended control. 

Crews and Dick (1998) incorporated an FGD by-product into the A horizon (0-17 cm 

depth interval) of an acid (pH ~ 4.4) forest Hapludult (Rayne silt loam) at rates equivalent to 

0.25, 0.5, 1, 1.5, 2, and 2.5 times the soil’s lime requirement. Soil pH in the 0-17 cm depth 

interval increased from DFGD by-product application from 4.4 to 6.0, 7.0, and 7.0 for the 0.5, 1, 

and 2 times application rates, respectively. 

McCarty et al. (1994) investigated the liming potential of fly ash, bed ash, residue from a 

limestone-injection multistage burner (LIMB), and spray dryer baghouse residue (SDBR) by 

incorporating the liming materials into bulk samples of an acidic (pH 4.2) Psammentic Hapludult 

at rates equivalent to 0, 2.8, 5.6, 11.2, and 22.5 Mg ha-1. At the 5.6 Mg ha-1 application rate, soil 

pH was 5.7, 5.5, 5.1, and 5.0 for the bed ash, LIMB residue, SDBR residue, and fly ash, 

respectively. At the 22.4 Mg ha-1 application rate, soil pH was 8.0, 7.7, 7.1, and 6.1 bed ash, 

LIMB residue, SDBR residue, and fly ash, respectively. As a comparison, the pH of soil 

incubated with calcium carbonate at a rate equivalent to 9.0 Mg ha-1 was 7.7. When the 

application rates of liming materials were adjusted from a weight basis to a CaCO3 equivalence 

basis, the differences between the liming materials were greatly reduced. When adjusted to a 

CaCO3 equivalence, there was no difference in pH between soils treated with fly ash and CaCO3 

and there was no difference between bed ash, LIMB residue, and SDBR residue. 

 

Crop Response to CCB Land Application 

 In addition to use as a liming material, the presence of several plant essential nutrients 

provides potential for CCBs, such as fly ash and DFGD by-products, to be used as a fertilizer or 
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soil amendment to improve plant growth. Fly ash and DFGD by-products contain elevated 

concentrations of P, K, Ca, Mg, S, Fe, B, Mo, Ni, and Zn, all of which are considered essential 

plant nutrients. 

 Chen et al. (2005) examined the use of DFGD by-products as a S source and the effect of 

land application on growth of alfalfa (Medicago sativa) and soybean (Glycine max) by applying 

DFGD by-products at rates equivalent to 0, 16 and 67 kg S ha-1. Aboveground alfalfa biomass 

increased up to 40% by the treatments of DFGD by-products compared to untreated controls. 

There was no difference in yield between plots that received DFGD by-products and 

conventional agricultural gypsum. Plots receiving application of the DFGD by-product had a 

yield increase over the untreated control by 3.3 to 11.6%. 

 Chen et al. (2001) surface applied several FGD by-products to an acidic soil at rates 

equivalent to 0, 0.5, 1 and 2 times the soil’s lime requirement to monitor alfalfa growth. Alfalfa 

productivity at the 1x application rate was 7-8 times greater than that for the unamended control 

and 30% greater than that for the conventional agricultural lime. Alfalfa yield was similar from 

the 2x compared to the 1x application rate. A yield increase compared to conventional ag lime 

can be attributed to the elevated concentrations of essential plant nutrients added in DFGD by-

products. 

 Chen et al. (2008) examined the use of a DFGD by-product as a S source for growing 

corn. A DFGD by-product was applied to a silt-loam soil with neutral pH at rates equivalent to 0 

(control) and 33 kg S ha-1 annually over a 4-yr period from 2002 to 2005. Corn yield 

significantly increased during the first two years, but did not differ from the control in the final 

two years. 
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 Sharma et al. (2001) investigated the effect of incorporating fly ash into the 0-30 cm 

depth of soil and the effect that incorporation would have on maize and rice yields. Fly ash was 

added to soil at rates equivalent to 0 (control) and 22.4 Mg ha-1 at two locations for both maize 

and rice. Corn yield significantly increased at both locations from 5.8 to 6.3 Mg ha-1 and from 

13.2 to 13.9 Mg ha-1. Rice yield response to fly ash was less than that for corn, but rice yield 

increased by 1.3% and 4.4% compared to an unamended control. The results from this 

experiment were similar to an experiment performed by Sikka and Kansal (1995) who noted an 

increase in rice yield in plots that received 2 and 4% (w/w) application of fly ash. 

 Wang and Shi (2015) used a modified FGD by-product (MFGD) as a soil amendment for 

the growth of sweet potatoes (Ipomoea batatas). Modified FGD by-product was applied to soil at 

rates equivalent to 0 (control), 750 (T1), and 1500 kg ha-1 (T2). Addition of the MFGD increased 

the average potato weight from 0.11 kg to 0.17 and 0.19 kg for T1 and T2, respectively. Total 

sweet potato yield increased from 18.8 Mg ha-1 for the control to 26.5 and 28.9 Mg ha-1 for T1 

and T2, respectively. Addition of MFGD by-products to sweet potato also resulted in a change in 

size distribution of harvested potatoes. Treatments receiving MFGD had a significant decrease in 

the amount of small potatoes and a significant increase in medium- and large-sized potatoes. In 

addition to an increase in overall yield, total concentrations of sugars, protein, starch, β-carotene, 

and vitamin C were significantly greater than those in potatoes that did not receive treatment. 

 Sale et al. (1996) added unweathered fly ash to a clay-loam topsoil in soil mixtures 

ranging from 0 to 100% fly ash (v/v) to monitor barley (Hordeum vulgare L. var. Leduc) growth 

response. Barley emergence was delayed in soil mixtures greater than 6.25% fly ash, but overall 

growth was not reduced until > 25% application rates. Barley height and grain yields were 

significantly greater from the 6.25 and 12.5% application rates compared to an unamended 
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control. Barley height and grain yield did not differ between the control and the 25% application 

rate. Barley height and yield were significantly reduced when soil received > 50% fly ash 

compared to an unamended control. The decrease in yield were attributed to an increase in pH, 

EC, and excess concentrations of B due to the presence of alkalizing agents and soluble salts in 

the fly ash. 

 Khan and Khan (1996) added Class F fly ash to a loamy soil at rates ranging from 0 to 

100% (v/v) at 10% increments to monitor growth response of tomatoes (Solanum lyopersicum). 

Tomato shoot length increased 40-90% and root length increased 20-80% compared to the 

unamended control across all fly ash application rates. Tomato shoot and root length, yield, and 

plant height were all significantly greater than that from the unamended control at all application 

rates, although increases were most pronounced at application rates ranging from 40-70%. 

Increases in tomato characteristics and yield followed a parabolic trend with 10% and 90% 

application rates being most similar to the unamended control. The decreases were attributed to 

trace element toxicity, boron toxicity, an increase in salinity, or a combination of all three. 

 

Environmental Impacts 

Arsenic, Selenium, and Mercury 

 The presence of potentially toxic and phytotoxic elements in CCBs has inhibited the 

large-scale use of CCBs as a soil amendment. Arsenic, Se, and Hg are the three major trace 

elements that pose a significant risk form the land application of CCBs (USEPA, 2008, Korcak, 

1995, Wright et al., 1998). The fate and transport of As from the combustion of coal is a concern 

due to the high concentration present in CCBs and the acute toxicity of As. Eary et al. (1990) 

reported the concentration of As in fly ashes can range from 2 to 400 mg kg-1 compared to the 
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typical soil ranges of 1 to 50 mg kg-1. Arsenic may be present in several chemical compounds in 

fly ashes depending on the type of coal, operating conditions and ash pH. In Class C fly ashes 

with high concentrations of CaO, volatile arsenic trioxide (As2O3) may react with CaO to form 

calcium arsenate (Ca3As2O8). Arsenic compounds primarily exist in two oxidation states, As (III) 

and As (V), and are commonly present in the environment as the oxyanions arsenite (AsO3
3-) and 

arsenate (AsO4
3-). The speciation of As in CCBs is important because speciation will dictate the 

fate and transport of As in the environment. 

 Jackson and Miller (1998) analyzed 23 fly ashes from coal-fired power plants in the 

southeastern United States using ion chromatography-inductively coupled plasma mass 

spectrometry to determine the speciation of As. Twenty-one of the 23 fly ashes analyzed had As 

(V) as the predominant As species. The two fly ashes that had As (III) as the predominant As 

species were acidic fly ashes.  

 In the desulfurization process, calcium sorbents react with SO2 in the flue gas forming 

calcium sulfate and facilitates the capture of As as calcium arsenate (Al-Abed et al., 2008). Al-

abed et al. (2008) analyzed several FGD samples from coal-fired power plants in Pennsylvania 

for speciation and environmental availability of As. Arsenic in the FGD light fraction (i.e., less 

than 0.01% total weight) was 10 times greater than that in the heavy fraction. The labile fraction 

of As was 18.1% and the oxide (i.e., amorphous and crystalline) was 56.7%. The As leaching 

profile was observed to be amphoteric with concentrations being greatest at low and high pH. 

Spectroscopy indicated that As existed primarily as As (V). The alkalinity of FGD by-products 

and presence of insoluble Ca-As compounds resulted in low environmental availability. 

However, in acidic conditions, arsenic may be released due to the acidic dissolution of Ca-As 

compounds (Al-Abed et al., 2008). 
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 In the environment, As behaves similarly to orthophosphate, but the existence of two 

oxidation states makes As more susceptible to soil pH and redox chemistry (Walsh et al., 1977). 

In aerated soil conditions, arsenate [As (V)] predominates; however, in reducing conditions, 

arsenite is the most prevalent form. The change of As (V) to As (III) can be driven solely by a 

change in redox potential (Eh)/pH, but the reduction may be assisted by anaerobic 

microorganisms. When soil Eh drops below 300 mV in acidic conditions or -100 mV in alkaline 

conditions, arsenous acid (H3AsO3) becomes the stable arsenic species. In aerated soils, arsenate 

comprised 90% of dissolved As, but only 15-40% in anaerobic conditions. Although As exists in 

the soil primarily as an oxyanion, leaching of arsenic from soils is inhibited by Fe and Al oxides, 

clays and SOM. In general, sorption of As (V) is greater than As (III), but less than 

orthophosphate. Based on a study of lake sediment suspensions indicated that As solubility 

increased 25 times when soil Eh decreased from 500 to -200 mV and up to 50% of soil As was 

solubilized (Alloway, 1995). The solubility of As was directly related to the concentration of iron 

in solution indicating that the dissolution of oxyhydroxides released sorbed arsenic. The release 

of As from the dissolution of oxyhydroxides may also occur when soils become acidic, 

especially below pH 5.0. 

 Plants vary considerably in their tolerance to elevated concentrations of As in the soil. 

Certain crops, such as potatoes (Solanum tuberosum), tomatoes, and tobacco (Nicotiana 

tabacum), are highly tolerant to As toxicity, whereas crops such as cucumbers (Cucumis sativus), 

onions (Allium cepa), and alfalfa are highly susceptible (Walsh et al., 1977). Arsenic is taken up 

from the soil solution as arsenate by phosphate transporters in plants (Zhao et al., 2009). 

However, certain crops, such as rice, are able to take up arsenite through the silicon pathway in 

root cells and efflux towards the xylem. Bioaccumulation of As in the environment is a concern, 
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but arsenic rarely accumulates in the edible portions of plants because phytotoxicity typically 

occurs before plants reach maturity. The greatest concentration of As in plants is usually present 

in plant roots and intermediate levels in vegetative tissue. Animal or human As toxicity is 

typically attributed to the ingestion of surface residues rather than consumption of edible 

portions of plants (Walsh et al., 1977).  

Transport of arsenic in the environment is determined by speciation of As. Arsenic (V) 

compounds are typically bound to soil and organic matter and less susceptible to runoff than As  

(III). Similar to sorbed orthophosphate, As (V) can be lost from the soil profile via erosion. The 

more soluble As (III) can be lost from the soil profile in runoff water or by leaching through the 

profile.  

Selenium occurs naturally in the environment, but the combustion of coal releases Se into 

the environment at a rate 1.5 to 2.5 times greater than natural weathering (Klein et al., 1975). 

Unlike other trace elements in CCBs, Se is an essential nutrient for humans and animals in small 

quantities. However, Se has a very narrow range between what is considered a deficiency (< 40 

µg day-1) and what is considered to be toxic (> 400 µg day-1), making accumulation of Se in the 

environment problematic (Fordyce, 2007). Although Se is essential for animal and human health, 

Se is not considered an essential plant nutrient. Eary et al. (1990) reported that the concentration 

of Se in fly ashes can range from 0.2 to 130 mg kg-1 compared to the typical soil ranges of 0.1 to 

2 mg kg-1. Selenium compounds can exist in four oxidation states, but Se (IV) and Se (VI) are 

the most prominent and exist in the environment as selenite (SeO3
2-) and selenate (SeO4

2-), 

respectively. The speciation of Se in CCBs is important because selenite and selenite behave 

differently in the environment. 
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Jackson and Miller (1998) analyzed 23 fly ashes from coal-fired power plants in the 

southeastern United States using ion chromatography-inductively coupled-plasma mass 

spectrometry (IC-ICP-MS) to determine the predominant speciation of Se . Similar to As, 21 of 

the 23 fly ashes analyzed had Se (IV) as the predominant Se species. The two fly ashes that had 

Se (VI) as the predominant Se species were acidic fly ashes. 

 During the desulfurization process, calcium sorbents used to trap SO2 emissions react 

with semi-volatile Se to produce calcium selenite (CaSeO3) (Al-Abed et al., 2008). Al-Abed et 

al. (2008) analyzed several FGD samples from Pennsylvania coal-fired power plants for 

speciation and environmental availability of Se using x-ray absorption spectroscopy (XAS), x-

ray fluorescence spectroscopy (XRF), and sequential chemical extraction (SCE) techniques. The 

concentration of Se in the light fraction of the FGD by-products was 10 times greater than those 

in the heavier fraction. The concentrations of labile Se were 34% compared to 18.1% for As. 

Due to the increase in the labile fraction, the oxide fraction contained only 38.5% selenium. X-

ray absorption spectroscopy results indicated that the predominant presence of Se (IV) as the 

major selenium species. Although Se (IV) was the dominant species present in the FGD samples, 

Se (VI) was measured in only small amounts. Selenium leachate concentrations were lowest at 

acidic pHs (pH 4 to 5) and increased steadily with maximum concentrations of Se being 

identified at pH 11.  

 Plant availability and movement of Se within the soil profile are influenced by soil pH, 

Eh, oxidation state, and soil characteristics. Selenate is most prevalent in aerated, alkaline soils, 

whereas selenite and biselenite (HSeO3
-) are typically present in neutral and acidic soils. Selenite 

adsorption is due to a mechanism known as ligand exchange and selenite behaves similar to 

phosphate and arsenate (Alloway, 1995). Selenate behaves similar to nitrate and sulfate by 
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forming outer-sphere, surface complexes and is adsorbed much weaker than selenite. Although 

selenite adsorbs tightly to soil colloids, selenite can be displaced by addition of phosphate to the 

soil. Increasing soil pH results in increased mobility of both selenite and selenate (Alloway, 

1995). Soil pH is the primary factor affecting selenium sorption, but clay mineralogy is also a 

factor. 

 Plants are able to absorb Se from both the soil and atmosphere, but plants vary greatly in 

their ability to accumulate selenium. Some plants, such as rapeseed (Brassica napus), are able to 

absorb large concentrations of Se (i.e., > 1000 mg kg-1) without negative effects, whereas plants 

such as alfalfa can only tolerate Se concentrations of less than ~ 250 µg L-1 without suffering 

from selenium toxicosis (Alloway, 1995). Selenite is the more toxic form of selenium, but, due 

to immobilization by adsorption to soil colloids, selenate is typically the cause of selenium 

toxicity in plants. Asher et al. (1977) concluded that selenate was transported within the plant 

followed the same pathway as SO4
2--S and absorbed selenium is immediately transported to new 

growth. Once in the plant, inorganic Se is converted to organoselenium compounds by plant 

metabolic processes. Organoselenium compounds act as analogues for S, effectively interfering 

with cellular biochemical reactions. Sulfate effectively competes with Se for plant uptake and 

excess sulfate can drastically reduce the amount of Se absorbed by plants. Mikkelson et al. 

(1988) reported that Se uptake by alfalfa was reduced from 948 to 6 mg kg-1 in the presence of 

sulfate. Therefore, excess concentrations of sulfate in DFGD by-products may inhibit 

accumulation of Se in plant biomass. 

 Due to the acute toxicity of Hg, there is concern regarding the release of Hg from CCBs. 

Mercury salts produce highly acute toxicity, whereas organomercurials such as alkyl-mercury 

compounds cause chronic and irreversible nervous system damage. The amount of Hg in FGD 
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materials is below the limit set by CWA-503 and ranges from 0.14 to 1.17 mg kg-1 compared to 

background soil concentrations of 100 µg kg-1 (Baligar et al., 2011; Watts and Dick, 2014). 

Mercury exists in the environment in three oxidation states, Hg (0), Hg (I), and Hg (II), with Hg 

(0) and Hg (II) being the most prevalent. 

 Al-Abed et al. (2008) analyzed several FGD residues from Pennslyvania power plants for 

the speciation, distribution, and leaching characteristics of Hg. Mercury concentrations located in 

the light fraction of FGD residues were 100 times greater than in the heavy fraction (i.e., 115.4 

compared to 1.1 mg kg-1 for the light and heavy fractions, respectively) indicating the importance 

of the size distribution of FGD particles. Only 0.3% of FGD-Hg was water soluble compared to 

72.3% of FGD-Hg being strongly complexed. Residual Hg in the form of mercuric sulfide 

accounted for 27.3% of extracted Hg. Leachate concentrations were greatest at a pH around 1.2, 

but was only 0.1 mg kg-1 in the range of pH 5 to 11, which is more representative of natural soil 

conditions. 

 Soil Eh, pH, and Cl- concentrations are the parameters that determine the speciation of 

Hg in the environment, which will affect Hg retention and mobility (Alloway, 1995). Although 

oxidation of Hg can occur solely by soil chemical characteristics, transformations of Hg may 

also be facilitated by soil microbes. Mercury (II) is the most common oxidation state present in 

nature and normally occurs as HgCl2 at pH < 7 and with a redox potential above 400 mV 

(Alloway, 1995). In alkaline soils, Hg(OH)2 is the more stable form of Hg (II). In reducing soil 

conditions, Hg (0) is stable in the form of Hg2S or HS-. As soil Eh increases, HgS can form and 

precipitate out of soil solution. Mercury (II) rarely exists in soil solution and is typically 

adsorbed on the surfaces of inorganic and organic soil material. Retention of Hg (II) is due to 

hydroxoligands in the presence of sesquioxides and various ligands in the presence of humic 
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materials. Mercury (II) may also be fixed in low-solubility sulphide and selenide precipitates. 

Mercury adsorption is greatest at pH 7 where HgOHCl is the prominent species. At acidic pH < 

5.5 SOM is responsible for Hg sorption. Due to the strong adsorption of Hg in soil, plant uptake 

is minimal and leaching is insignificant. Lindberg et al. (1979) reported excess concentrations of 

Hg located adjacent to plant roots, indicating that the roots act as a barrier to plant uptake. 

 Plant uptake of Hg can also be inhibited by interactions with other trace elements present 

in CCBs. Shanker et al. (1996) investigated the interaction between Se and Hg in soil and their 

impact on uptake of Hg by radish (Raphanus sativus) plants. The Hg-Se interaction was 

examined by adding selenite and selenate at concentrations ranging from 0 to 6 µg mL-1 to sandy 

and loamy soils with 2 and 5 µg mL-1 mercury and subsequently analyzing plant concentrations 

of mercury. As concentrations of selenite and selenate increased, there was a significant decrease 

in Hg uptake in both soils as evidenced by plant tissue concentrations of Hg. Shanker et al. 

(1996) proposed that the formation of insoluble Hg-Se complexes made Hg unavailable for plant 

uptake. The presence of excess Se in CCBs may further inhibit uptake of Hg by plants grown on 

CCB-amended soil. 

 

Leaching and Runoff of Trace Elements 

 The addition of excess CCBs to agricultural land can result in the off-site movement of 

toxic trace elements through runoff and leaching. Movement of effluent and leachate to nearby 

aquatic ecosystems can cause changes in turbidity, pH, EC, alkalinity, and hardness (Dellantonio 

et al., 2010). The physiochemical characteristics of CCB effluent and leachate determines the 

environmental availability of trace elements. Effluent and leachate redox potential determine the 

speciation of trace elements, whereas effluent and leachate pH determines availability. The redox 
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potential of CCB leachate and effluent is strongly correlated to the disposal method, whereas 

effluent and leachate originating from wet disposal sites tend to have the lowest redox potentials 

(Ladwig et al., 2005). These solutions are still considered oxidizing with Eh values ranging 

between -50 and +400 mV. Coal combustion by-product mineralogy determines the mode of 

occurrence which, along with pH, plays an essential role in the environmental availability of 

trace elements. Elements located within the glassy crystalline structure of CCBs are typically 

considered environmentally unavailable, whereas surface-associated elements are more 

susceptible to leaching and runoff. As flue gases cool, volatile elements, such as As, B, Hg, Cl, 

Cr, Mo, Se, and S, adsorb to the surface of fly ash particles, whereas elements such as Ba, Co, 

Cr, Mn, Ni, and Pb tend to be evenly distributed between the ash matrix and surface (Izquierdo 

and Querol, 2012). The alkaline nature of Class C fly ashes and high-Ca DFGD by-products 

effectively inhibits the environmental availability of several trace elements.  

Beryllium, Cd, Co, Ni, Pb, and Zn are minimally soluble at pH 7 to 10 and can be 

considered a low concern under environmental conditions (i.e., mildly acidic to alkaline soil pH) 

(Izquierdo and Querol, 2012). Although these elements may not be available under normal 

environmental conditions, solubility may be increased significantly if applied or incorporated 

into acidic soils. Because their availability is directly correlated to pH, addition of excess CCBs 

will not result in a substantial release of these elements as long as effluent and leachate pH are 

not acidic. 

Mobility of trace elements such as Be, Cd, Co, Ni, Pb, and Zn vary between CCB 

samples and is dependent on solution pH and concentration within the CCB. EPRI (2006) 

analyzed 84 US fly ashes and identified only five samples that had detectable Be concentrations. 

The five samples that had detectable Be had concentrations of 0.8 to 0.9 µg kg-1 Be and were 
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below pH 6. Although Cd can be highly soluble and toxic, fly ashes tend to have very low 

concentrations of Cd (<1.5 ppm) (Izquierdo and Querol, 2012). Cadmium in fly ash is insoluble 

at near neutral and alkaline pHs and only 3 to 9% of fly-ash cadmium was extractable at pH 4. 

Cobalt in CCBs is primarily associated with crystalline-Fe species making Co insoluble and 

environmentally unavailable at acidic, neutral, and alkaline pHs (Izuierdo and Querol, 2012). 

Ward et al. (2003) reported only 1.5 to 2.5% Co was available under TCLP leaching. Nickel has 

been reported to be distributed between the silicate and magnetic fractions, where the extractable 

Ni is solubilized from the non-magnetic fraction (Kim and Kazonich, 2004). The largest leachate 

concentrations of Ni occurred using a pH 1 extractant, but sharply decreased to < 1% in mildly 

acidic conditions (Kim et al., 2003; Ward et al., 2003). The majority of fly ash-Pb exists in the 

internal glassy matrix and therefore is environmentally unavailable (Warren and Dudas, 1988). 

Several authors (Kim et al., 2003; Moreno et al., 2005; Nathan et al., 1999; Praharaj et al., 2002; 

Ward et al., 2003) reported < 1% and < 0.1% leachable Pb for acidic and alkaline ash samples, 

respectively, demonstrating the unlikeliness for Pb to leach to groundwater or reach surface 

water in runoff. Zinc is usually present at greater concentrations than other trace elements, but 

the amphoteric nature of Zn makes Zn highly insoluble at near neutral to near alkaline pH. Zinc 

may be present in leachate and runoff at 1.0 and 0.1 mg kg-1 for acidic and alkaline solutions, 

respectively (Izquierdo and Querol, 2012). 

Unlike the previously mentioned elements, oxyanionic-forming species such as As, Cr, 

and Se display maximum solubility at pH 7 to 10. Boron and Mo solubility do not vary with pH, 

making solubility at acidic pHs an issue (Izquierdo and Querol, 2012). Arsenic, Cr, and Se are of 

a greater concern due to their potentially acute toxicity and increased mobility in the 
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environment. The mobility of these elements may be further enhanced by changes in redox 

potential. 

As mentioned previously, As has a tendency to form oxyanionic species in the form of 

arsenite and arsenate. Arsenate behaves similarly to orthophosphate by sorbing to soil particles 

and will not leach or runoff. However, similar to orthophosphate, arsenate can be eroded from a 

soil profile in runoff. Arsenic is most soluble at low pH, which decreases with increasing pH 

(Grisafe et al., 1988). Although As is amphoteric in nature, the formation of insoluble Ca-

arsenate compounds at alkaline pHs makes loss of arsenic through leaching or runoff at alkaline 

pH unlikely. Grisafe et al. (1988) reported toxic concentrations of arsenic in acidic (pH 4.0) 

leachates, but As concentrations at pH 6 were below EPA toxicity levels. Leachate redox 

potential plays an equally important role as pH in determining the mobility of As. Dusing et al. 

(1992) leached three coal fly ashes with solutions ranging in Eh from -300 to + 600 mV. In 

oxidizing conditions, arsenic concentrations ranged from 0.2 to 0.7 mg kg-1 and increased to 3.6 

to 7.4 mg kg-1 in reducing conditions. The large increase in leachate arsenic concentrations can 

be attributed to the reduction of insoluble arsenate to highly soluble arsenite. 

 The solubility and mobility of Cr in the environment are dependent on oxidation state. 

Hexavalent Cr compounds, such as chromates (CrO4
2-) and dichromates (Cr2O7

2-), are widely 

recognized for their high solubility and for being carcinogenic (Huggins and Hoffman, 2004). 

Trivalent Cr is significantly less soluble than Cr (VI) and is of less of an environmental and 

health concern. Huggins et al. (1999) analyzed several coal fly ash samples using x-ray 

absorption, fine-structure spectroscopy to determine chromium speciation. Of the fly ash samples 

analyzed, Cr (VI) only comprised 3 to 5% of the total chromium present in the fly ash with the 

remaining being Cr (III). Under normal environmental conditions, Cr (III) behaves similarly to 
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other trace metal cations. Adsorption and solubility of Cr (III) are influenced by soil CEC and 

soil pH and movement throughout the soil profile is lowest at near neutral pH and greatest in 

alkaline conditions (Izquierdo and Querol, 2012). Under alkaline and oxidizing conditions, Cr is 

likely to exist in the highly mobile Cr (VI) form. In conjunction with alkaline pHs, adsorption of 

Cr (VI) to soil colloids is further inhibited by excess sulfate in CCBs (Fruchter et al., 1990). 

Unlike As, Cr (VI) mobility is not inhibited by the formation of insoluble Ca compounds in 

alkaline conditions. 

 Of all the trace elements present in fly ash and DFGD by-products, selenium poses the 

greatest risk for groundwater and surface water contamination. Selinite and selenate compounds 

display greater mobility in the environment compared to other metalates (Cornelis et al., 2008). 

Grisafe et al. (1988) leached several fly ash samples in solutions of varying pH. When using a 

pH 4 leachate, concentrations of As, Cd, Cr, Pb, and Se were all above the EPA maximum 

contamination levels of 10 µg L-1 and the safe levels for aquatic life of 5 µg L-1. However, at pH 

6, Se was the only trace element that was above EPA toxicity levels. Concentrations of Se at pH 

8 ranged from 70 to 170 µg L-1, which exceeded EPA toxicity limits and did not drop below 

accepted levels until pH 11.6. Rainwater that has been exposed to atmospheric conditions has a 

pH of ~ 5.7 (Grisafe et al., 1988), which is sufficient to solubilize CCB-Se and cause leaching 

and runoff of Se at concentrations that exceed EPA’s maximum contaminant level. Ecological 

data suggests that Se concentrations of 8 to 14 µg L-1 can cause reproductive failure and dietary 

toxicity in aquatic organisms (Grisafe et al., 1988). The elevated concentrations of Se present at 

pH > 6 can be attributed to the presence of the highly soluble selenate ion. Cantrell et al. (2014) 

leached a weathered and a fresh Class-C FA with deionized water, rainwater, and groundwater 

and reported concentrations of Se, As, and Cr at or near EPA maximum daily loads (MDL) 
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regardless of water type and extraction time. Extraction of As and Se were unaffected by 

extraction time whereas Cr concentrations increased with extraction time. 

 Due to potential acute toxicity of Hg, environmental contamination from Hg through 

runoff or leaching has been a primary focus of the EPA. Sorption of Hg to fly ash is controlled 

by Cl- due to the formation of mobile HgCL2, which is mobile in the environment. Although Hg 

is of concern when land applying CCBs, low concentrations of Hg have been reported in fly ash 

leachate. Several authors (Nathan et al., 1999; Pflughoeft-Hassett, 2004; Sanchez et al., 2006) 

have reported that concentrations of Hg in leachate across pH ranges of 4.5 to 13 were below < 

0.2 µg L-1.  

 Unlike As, Cr, and Se, B and Mo are considered plant essential nutrients. Up to 80% of 

Mo in fly ash is associated with the surface of coal combustion by-products, which is three times 

more soluble than Mo associated with the magnetic fraction of fly ash (Kukier et al., 2003). The 

solubility of molybdate (MoO4
2-) is fairly consistent in the pH range 5 to 11.5. Decreased 

solubility of molybdate has been observed below pH 5 when it is believed to be associated with 

Al oxyhydroxides and above pH 11.5 when it is believed to incorporate into ettringite structures 

(Kumarathasan et al., 1990; Jones, 1995).  

 Similar to Mo, B has a dominant surface association in fly ash and is therefore extremely 

mobile. Cox et al. (1978) analyzed several fly ash samples from southern Illinois and western 

low-sulfur coal for B and reported a concentration range of 1320 to 1900 mg B kg-1. Leachate pH 

did not affect leachate B concentrations with 50% B being leached at pHs between 6 and 8 and 

38% at pH 10. In the pH range 6 to 8, a 15-min contact with water resulted in leaching of all 

soluble B from the fly ash. Although pH did not affect leachate concentrations, pH affected 

dissolution rate. There was no difference between leachate B concentrations between acidic and 
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alkaline fly ashes, indicating a lack of pH dependency on solubility. Several authors (James et 

al., 1982; Sear et al., 2003; Ward et al., 2003) reported leachate B concentrations ranging from 

17 to 65%. The high solubility and lack of pH dependence makes B contamination of surface and 

groundwater a concern. This is further complicated by the rate of B dissolution limiting the 

effectiveness of settling ponds at mitigating B runoff. 

 

Plant Uptake 

 There is concern that application of CCBs in large volumes may lead to phytotoxicity and 

plant uptake of trace elements that may be toxic to humans and/or animals. Similar to leaching 

and runoff, soil conditions such as pH, redox potential, and CEC affect the phytoavailability of 

trace elements and heavy metals. Under reducing conditions, elements such as selenium and 

chromium are adsorbed to the soil and will be less available than when under oxidizing 

conditions. In contrast, under reducing conditions, elements such as arsenic are more soluble and 

mobile in the environment. The elements that are of the most concern with regards to plant 

uptake are B, As, Cr, Se, and Mo due to the high mobility of oxyanionic compounds (Clark et al., 

2001). 

 Stehouwer et al. (1996) planted alfalfa and tall fescue (Festuca arundinacea) in soil 

mixed with FGD by-products at rates equivalent to 0, 3.5, 7, 14 and 29 g kg-1 to monitor plant 

uptake of macro-, micro-, and trace elements. Application of FGD by-products to alfalfa resulted 

in an increase in N and a decrease in P and K, whereas application to fescue had no effect on the 

uptake of N, P, and K. Tissue concentrations of Ca, S, Mo, and B increased for both alfalfa and 

fescue. Boron tissue concentrations increased from 65.1 to 76.8 mg kg-1 in alfalfa and from 21.8 

to 39.9 mg kg-1 in fescue. Molybdenum concentrations increased from < 0.1 to 4.9 mg kg-1 in 
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alfalfa and from 0.2 to 4.3 mg kg-1. Tissue concentrations of As, Ba, Cd, Cr, Pb, and Se did not 

change due to addition of the FGD products. 

 Chen et al. (2001) applied FGD by-products and ag lime to an acidic Typic Fragiudalf at 

rates equivalent to 0, 0.5, 1, and 2 times the soil’s lime requirement to monitor uptake of trace 

elements by alfalfa. Similar to Stehouwer (1996), tissue concentrations of Mo increased 

significantly with application of FGD by-products. There was no difference in tissue 

concentrations of Mo between FGD by-product and ag-lime treatments. The increase in Mo 

uptake can be attributed to the increase in Mo solubility and mobility at alkaline pH. Tissue B 

concentrations increased significantly compared to the unamended control. Essential plant 

micronutrient tissue concentrations were in the range normally present in alfalfa. Tissue 

concentrations of As, Cr, Pb, Hg, and Se were unaffected by the application of FGD by-products. 

 Adriano et al. (2001) conducted a 3-yr field study to assess the effects of land applying 

large quantities of coal fly ash, at rates equivalent to 0, 280, 560 and 1120 Mg ha-1, to 

centipedegrass (Eremochloa ophioroides). Fly ash applied was rototilled 15 cm into the soil and 

allowed to weather for 8 months prior to the seeding of the centipedegrass. There was no effect 

of fly ash application on N, K, Ca, Na, Al, Cu, Fe, Ag, Cd, Cr, Hg, Ni, Pb, Sb, and Tl on grass 

tissue concentrations at all application rates. However, grass tissue concentrations of As, B, Mo, 

and Se increased as application rate increased (Adriano et al., 2001). 

 Sale et al. (1996) incorporated unweathered fly ash from a Canadian power plant at 

concentrations ranging from 0 to 100% (v/v) fly ash to monitor growth response of barley on fly-

ash-incorporated soils. Although the incorporated fly ash increased plant growth, barley tissue 

concentrations of B, Mo, and Se in certain treatments resulted in toxicity or excess uptake that 

could prove to be harmful to animal and/or human consumption. Boron toxicity symptoms 
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became evident in soil treated with ≥ 6.25% fly ash and silage and straw B concentrations 

exceeded concentrations considered necessary for plant growth. Grain, straw, and silage tissue 

Se concentrations increased consistently as the amount of fly ash increased. Selenium 

concentrations increased from < 0.1 to 2, < 0.1 to 3.4, and from < 0.1 to 1.2 mg kg-1 in the silage, 

grain, and straw, respectively. Molybdenum concentrations increased from < 0.1 to 12.3, < 0.1 to 

4, and from < 0.1 to 21.3 mg kg-1 in the silage, grain, and straw, respectively. The increase in 

tissue-Mo altered the Cu/Mo ratio from 216 to 0.6, 186 to 1.6, and from 133 to 0.5 in the silage, 

gain, and straw, respectively. The decrease in the tissue Cu/Mo concentration ratio can cause 

molybdenosis in ruminant animals and must be accounted for when using CCBs as a soil 

amendment for forage crops (Miller et al., 1991). 

 

Justification 

 Coal production in the United States is responsible for generating more than 123 million 

Mg of CCBs, of which only 40% are being used beneficially (ACAA, 2008). This leaves 

approximately 68 million Mg of CCBc to be disposed of in landfills and surface impoundment 

ponds. Coal by-products, such as fly ash by-products, have physical and chemical characteristics 

that are beneficial for use in agriculture as a soil amendment. Coal by-products contain vital 

essential plant mineral nutrients, such as B, Ca, Cu, Fe, Na, Mg, K, S, and Zn. Dry flue gas 

desulfurization by-products originating from lignitic and subbituminous coal have large 

concentrations of calcium and gypsum, providing potential for use as a liming material and as an 

amelioration option for treating subsoil acidity. However, emissions control technologies 

installed by coal burning power plants in response to environmental regulations have resulted in 

the generation of new and unstudied by-products, particularly DFGD products. In response to 
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environmental regulations, coal-fired power plants have combined conventional desulfurization 

processes with the injection of activated carbon to remove Hg (Personal communication with 

Mark Cantrell, 2016). This new emission control process has resulted in the generation of new 

DFGD by-products that may be chemically dissimilar from DFGD by-products produced 

previously. 

Although the liming characteristics of fly ash and DFGD by-products have been studied 

previously, the incorporation of new desulfurization technologies at the John W. Turk Coal Plant 

in Fulton, Arkansas and the generation of high-calcium-containing DFGD by-products warrants 

further research into the liming characteristics and environmental impacts of land application. 

Plant uptake and bioaccumulation of potentially toxic trace elements, especially in 

agroecosystems, is a concern with sustained land application. Furthermore, if large volumes of 

DFGD by-products were to be utilized as a soil amendment, runoff water could lead to the 

degradation of nearby adjacent aquatic and terrestrial ecosystems. Research is needed to 

understand the long-term impacts of land applying DFGD by-products on soil, plant, and runoff 

water quality.  

 

Objectives and Hypotheses 

The first objective of this study was to quantify the liming characteristics of a DFGD by-

product in comparison to a high-Ca fly ash and reagent-grade CaCO3 and to monitor the ability 

of the DFGD by-product to increase soil pH when incubated with an acidic clay soil. The second 

and primary objective of this study was to determine the effects of land applying a high-Ca 

DFGD by-product to a silt-loam pasture soil on 1) runoff and runoff chemistry; 2) plant uptake 

of trace elements from DFGD application; 3) the potential accumulation of trace elements in the 
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soil over a 1-yr time period. It was hypothesized that due to the high Ca concentrations of Class-

C FAs, the coal by-products would be as effective as CaCO3 at increasing soil pH at the 1x 

application rate, and more effective at the 2x application rate. Additionally, It was hypothesized 

that land application of a high-Ca DFGD by-product to a silt-loam pasture soil would 1) increase 

runoff FWM concentrations and loads of Cr, Se, V, and U in the first 3 mo following application 

relative to an unamended control; 2) increase runoff pH and EC in the first 3 mo following 

application relative to an unamended control; 3) increase plant biomass relative to an unamended 

control over a 12 month period; 4) increase plant tissue concentrations of As, Cr, Se, V, and U in 

the first 3 mo relative to an amended control; 5) increase soil concentrations of As, Ca, S, and V 

for 6 months following application relative to an unamended control.  
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Table 1. Physical and chemical characteristics of coal mined  

from the Gillette coal field in the Powder River Basin,  

Wyoming (USGS, 1999). 

 

  Range  

Variable 

# of 

Samples Minimum Maximum Mean 

Moisture1 108 14.5 42.3 27.47 

Ash1 87 3.5 25.06 7.45 

Total Sulfur1 87 0.2 1.16 0.48 

Calorific Value2 85 3740 9950 8220 

lb SO23 85 0.44 3.27 1.25 

MMMFBTU4 85 4580 10560 8910 

Antimony5 49 <0.01 17 0.72 

Arsenic5 62 <0.20 19 2.3 

Beryllium5 64 <0.078 3.3 0.35 

Cadmium5 56 <0.007 3 0.39 

Chromium5 65 <0.59 50 7 

Cobalt5 65 <0.38 27 2.3 

Lead5 65 <0.50 17 2.9 

Manganese5 66 0.18 210 22 

Mercury5 66 <0.006 27 0.17 

Nickel5 66 <0.71 35 5 

Selenium5 56 <0.08 16 1.4 

Uranium5 61 <0.11 12 1.5 
1 Values are in percent and on as-received basis 
2 Value is in British thermal units (Btu) 
3 Value is in pounds per million Btu and on an as-received basis 
4 Value is in Btu and on a moist, mineral-matter-free basis 
5 Values are in parts per million (ppm) on a whole-coal and  

remnant moisture basis 
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Table 2. Typical chemical characteristics of Class-C and F  

fly ashes (U.S. Patent WO2012091915 A1). 

 

 

 

 

 

 

 

 

 

 

  

  Proportion (wt. %) 

Component Class C Class F 

SiO2 20-40 50-65 

Al2O2 10-30 10-30 

Fe2O3 3-10 3-10 

MgO 0.5-8 0.5-3 

SO3 1-8 0.3-8 

C 0.5-2 0.25-3 

H2O 0.33-3 0.33-3 

CaO 25-35 0-10 

K2O 0.5-4 0.5-4 

Na2O  0.5-6  1-6 
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Table 3. Major and trace elements in fly ash, flue gas desulfurization  

(FGD) by-products, and bottom ash. 

 

Major Elements (g kg-1) Fly Ash1 FGD2 Bottom Ash1 

Al 70-140 13-74 59-130 

Ca 7.4-150 122-312 5.7-150 

Fe 34-130 29-110 40-160 

K 6.2-21 1.2-8.8 4.6-18 

Mg 3.9-23 5.9-69 1.6-11 

S 1.9-34 41-126 BDL-15 

Si 160-270 25-139 160-280 

Trace Elements (mg kg-1)    
As 22-260 44.1-186 2.6-21 

B 120-1000 145-418 BDL-3600 

Be 2.2-26 1.6-15.1 0.21-14 

Cd BDL-3.7 1.7-4.9 BDL 

Cr 27-300 16.9-76.6 51-1100 

Cu 62-220 30.8-251 39-120 

Hg 0.01-0.51 BDL BDL-0.07 

Mn 91-700 127-207 85-890 

Mo 9.0-60 8.6-25.5 3.8-27 

Ni 47-230 29.0-80.6 39-440 

Pb 21-230 11.3-59.2 8.1-53 

Se 1.8-18 3.6-15.2 BDL-4.2 

Sr 270-3100 308-565 270-2000 

V BDL-360 20.1-122 BDL-250 

Zn 63-680 108-208 16-370 

BDL: Below detection limit     
1 EPRI (2009)    
2 Kost et al. (2005)    
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Chapter Two 

 Liming Characteristics of a High-calcium Dry Flue Gas Desulfurization By-product and a 

Class-C Fly Ash 
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Abstract 

Due to coal’s availability and low cost, coal combustion continues to be the United 

States’ primary energy source. However, coal combustion produces large quantities of waste 

material. Some coal combustion by-products (CCBs) have chemical and physical characteristics 

that make them potentially useful as soil amendments. The objectives of this study were to 

characterize a relatively new, high-calcium dry flue gas desulfurization (DFGD) by-product and 

compare its agronomic liming potential to a Class-C fly ash (FA) and reagent-grade calcium 

carbonate (CaCO3). Calcium carbonate equivalence (CCE), degree of fineness (DOF), and 

effective neutralizing value (ENV) for each CCB were determined using standard methods. The 

CCBs and CaCO3 were also incubated with an acidic (~ 4.5) clay sub-soil at application rates 

equivalent to 0, 0.5, 1, and 2 times the soil’s lime requirement and compared to an unamended 

control. Soil pH was then measured periodically during a 40-day incubation. The ENV of 79.4% 

for the DFGD by-product and 57.3% for the FA were comparable to those of commercially 

available liming materials, but were significantly lower (P < 0.05) than that of reagent-grade 

CaCO3. After 40 days of incubation at the 0.5x application rate, both CCBs raised the pH of the 

clay soil to only 5.0, while the CaCO3 raised the pH to 6.5. After 40 days at the 1x rate, all three 

materials had raised the soil pH to between 6.5 and 7.0, although the FA increased the soil pH 

more slowly than did the other two materials. At the 2x rate, both CCBs increased the soil pH to 

between 7.5 and 8.0, while the CaCO3 increased the soil pH to only 7.0. Both CCBs appear to be 

useful as soil liming materials, although care should be taken to avoid over-application, as this 

may make the soil too alkaline for optimum plant growth.  
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Introduction 

 Coal combustion for energy production accounted for 39% of the 3.9 billion kilowatt-

hours of electricity generated in the United States in 2014 [1]. Although natural gas is expected 

to eventually surpass coal as the primary fossil fuel source for electrical power generation in the 

United States, the availability and low cost of coal will likely allow coal to continue to be a 

major source of energy for approximately the next 35 years [1]. However, in addition to 

electricity, the coal-combustion process also produces large quantities of waste materials. In 

2008, it was estimated that more than 123 million Mg of coal combustion by-products (CCBs) 

were produced, making CCBs the second largest waste stream in the United States behind 

municipal solid waste [2]. In 2007, only 44% of the CCBs generated in the United States were 

beneficially reused, which left 68 million Mg to be disposed of in landfills or surface 

impoundments [3]. The primary beneficial reuse fly ash is in concrete and concrete products, 

which represents 43% of beneficially reused fly ash. As of 2012 in the United States, 310 active 

on-site landfills and 735 on-site surface impoundments were used to dispose of CCBs that were 

not beneficially reused [4].  

Several types of waste products are produced from the combustion of coal for power 

generation. Fly ash (FA) is a CCB that is removed from flue gases by various types of particle-

filtration equipment at coal-fired power plants. Fly ash consists of particles that have been fused 

into spherical, glassy, amorphous aluminosilicates and is classified into one of two categories 

depending on the composition of the coal being burned. Class-C FA has a high calcium (Ca) 

concentration (25 to 35%) and is derived from the burning of lignite and subbituminous coals, 

whereas Class-F FA has a low Ca concentration (0 to 10%) and originates from the burning of 

anthracite and bituminous coals [5]. Class-C FA is often referred to as “high-lime ash” and is a 
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common by-product of coal-fired power plants burning low sulfur coals from Wyoming and 

Montana [6].  

A more recently produced waste material is flue gas desulfurization (FGD) by-products, 

which result from emissions-control processes that inject a calcium sorbent into the flue gases to 

trap and remove sulfur dioxide (SO2) from the emissions streams. Dry FGD (DFGD) systems 

often remove SO2 and FAs simultaneously, resulting in a by-product that is a mixture of FA, 

unreacted sorbent, calcium sulfite (CaSO3• ½ H2O), and calcium sulfate (CaSO4•2H2O) [7]. In 

response to recent environmental regulations, coal-fired power plants have combined 

conventional desulfurization processes with the injection of activated carbon to remove mercury 

(Hg) (personal communication, Mark Cantrell, Arkansas Electric Power2016). This new 

emissions-control process has resulted in the generation of new DFGD by-products that may be 

chemically dissimilar from DFGD by-products produced previously. 

Because they contain unspent sorbent, DFGD by-products are typically alkaline and have 

the potential to be used as substitutes for agricultural lime. Dry FGD by-products containing 

Class-C FA can have particularly high concentrations of Ca and are often described as high-Ca 

DFGD by-products. The growing concern regarding long-term storage of CCBs has led to 

increased interest in finding beneficial uses for these by-products. High-Ca CCBs may have 

potential for use in agriculture as a liming material, which can lead to a reduction in the volume 

of CCBs destined for disposal in landfills and surface impoundments, while helping to 

ameliorate soil acidification. 

It is estimated that 25 to 30% of the world’s soils are acidic enough to cause reductions in 

crop yields, decreased bioavailability of essential plant nutrients, and increased availability of 

potentially phytotoxic elements such as aluminum (Al) and manganese (Mn) [8]. Acidification of 
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soils may be caused by a variety of processes including acidic precipitation and leaching of basic 

cations, but is most often caused by nitrification, the process whereby ammonium (NH4
+) is 

oxidized to nitrate (NO3
-), which yields protons (i.e., H+ ions) [9]. Regular application of liming 

materials, such as lime (CaCO3), burnt lime (CaO), hydrated lime [Ca(OH)2], and dolomitic 

limestone [CaMg(CO3)2], have been used historically to raise soil pH back to desired levels after 

years of acidification has lowered the soil pH beyond the minimum desired pH range for optimal 

plant growth. The presence of highly soluble CaO and Ca(OH)2 in Class-C FA and DFGD by-

products provides greater risk for increasing soil pH above 7 and neutralizing soil acidity beyond 

the site of incorporation [10].  

Considering that DFGD by-products are a relatively new CCB that has been minimally 

studied, the objectives of this study were to characterize a high-Ca DFGD by-product and 

compare its agronomic liming potential to a Class-C FA and reagent-grade CaCO3. It was 

hypothesized that due to the high Ca concentrations of Class-C FAs, the coal by-products would 

be as effective as CaCO3 at increasing soil pH at the 1x application rate, and more effective at 

the 2x application rate.  

 

Materials and Methods 

Initial Soil Collection and Characterization 

A grab sample of soil was collected from the 122 to 155-cm depth interval of a Pickwick 

silt loam (fine-silty, mixed, semiactive, thermic Typic Paleudults) [11] located under a Loblolly 

pine (Pinus taeda) plantation at the University of Arkansas Agricultural Research and Extension 

Center in Fayetteville, Arkansas (36°09’91.54”N 94°16’58.39”W). This soil was chosen for its 

acidic pH (~ 4.5) and high clay content. The soil was air-dried at 21°C for 7 d and ground to pass 
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a 2-mm sieve. Soil texture was determined to be clay (i.e., 37% sand, 20% silt, 43% clay) using a 

modified 12-hr hydrometer method [12]. The liming requirement of the soil (to achieve pH 7.0) 

was measured using the Shoemaker, Mclean and Pratt (SMP) buffer method [13] and was 

determined to be 34.9 Mg ha-1. Initial soil pH was determined potentiometrically using a 1:1 

(v:v) soil:0.01M CaCl2 slurry. 

 

Liming Reagents 

The three liming materials used in this experiment were reagent-grade CaCO3, a Class-C 

FA, and a high-Ca, DFGD by-product. The Class-C FA was collected by an electrostatic 

precipitator and a silo baghouse from the Flint Creek Power Plant in Benton County, Arkansas 

[14]. The DFGD by-product was generated by a dry scrubber using an Alstom Novel Integrated 

Desulfurization design at the John W. Turk Power Plant in Hempstead County, Arkansas 

(personal communication, Mark Cantrell, 2015). Both power plants burn subbituminous coal 

from the Powder River Basin in Wyoming (personal communication, Mark Cantrell, 2015). The 

John W. Turk power plant utilizes calcium hydroxide [Ca(OH)2] as the sorbent in the 

desulfurization process (personal communication, Mark Cantrell, 2015). Trace element 

concentrations of the Class-C FA and DFGD by-product were determined by inductively coupled 

plasma mass spectrometry (ICP-MS) following a microwave digestion in concentrated HNO3. 

 

Effective Neutralizing Value 

The effective neutralizing value (ENV) of the liming materials was calculated using the 

degree of fineness (DOF) and the CaCO3 equivalence (CCE). The DOF was determined in 

triplicate by passing each of the three liming materials through 20-, 60-, and 100-mesh sieves 
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(0.84, 0.25, and 0.15-mm mesh size, respectively) and calculating the percentage of material by 

weight that passed through each sieve relative to the 20 g of initial material. Sieving of the 

material was conducted in accordance with ASTM C110-14 by manually sieving in a lateral and 

vertical motion, while occasionally jarring the sieve, for a total of 10 minutes [15]. Calcium 

carbonate equivalence was determined potentiometrically using an Orion 710a pH meter and an 

Orion 9107bn pH probe (ThermoFisher Scientific, Waltham, MA) by adding 100 mL of 1N 

hydrochloric acid (HCl) to 2.0 g of liming material and back-titrating to pH 7.0 with 1N sodium 

hydroxide (NaOH) in accordance with ASTM C25-11 [16]. The ENV was calculated using the 

following equation: 

  

𝐸𝑁𝑉 =
(𝐴+𝐵+𝐶)×𝐶𝐶𝐸

100
 ,                                                                      [1] 

 

where A is equal to 0.4 times the percentage of particle passing a 20-mesh sieve minus the 

percentage of particle passing a 60-mesh sieve, B is equal to 0.8 times the percentage of particle 

passing a 60-mesh sieve minus the percentage of particle passing a 100-mesh sieve, and C is equal 

to 1.0 times the percentage particle passing a 100-mesh sieve. 

 

Incubation Study 

Samples were prepared in triplicate for each of the three liming materials (i.e., reagent-

grade CaCO3, FA, and DFGD) and an unamended control that were destructively sampled at 

nine sampling times (i.e., 0, 5, 10, 15, 20, 25, 30, 35, and 40 d of incubation). Therefore, there 

were a total of 270 samples prepared initially for incubation (3 liming materials x 9 time points x 

3 rates x 3 replicates + 1 control x 9 time points x 3 replicates). Liming materials were added to 
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20 g of air-dry soil in 50-mL centrifuge tubes at application rates equivalent to 0x (control), 0.5x, 

1x, and 2x (0, 0.175, 0.35, and 0.7 g, respectively) the soil’s SMP buffer liming requirement. The 

tubes were thoroughly mixed by shaking for 5 min in a side-to-side shaker. Following mixing, 

samples were adjusted to a gravimetric moisture content of 22%, based on the estimated field 

moisture capacity using deionized water [17]. Soil pH was measured by adding 20 mL of 0.01M 

CaCl2 to 20 g of soil and mixing for 5 min in a side-to-side shaker. The pH of the resulting slurry 

was measured within 1 min of shaking the mixture. Soil pH measurements were made on 

triplicate samples every 5 days for the duration of the 40-d incubation period. 

 

Statistical Analyses 

 A one-factor analysis of variance (ANOVA) was conducted using the PROC MIXED 

procedure in SAS (version 9.3; SAS Institute Inc., Cary, NC) to evaluate the effect of liming 

material on their liming characteristics (i.e., DOF, CCE, and ENV). In addition, a three-factor 

ANOVA was conducted using the PROC MIXED procedure in SAS to evaluate the effects of 

liming material, rate, time, and their interactions on soil pH response. When appropriate, means 

were separated by least significant difference (LSD) at the α = 0.05 level. 

 

Results and Discussion 

Initial CCB Characterization 

The mean pH of the three liming reagents used was 10.6, 12.3, and 8.4 for the DFGD by-

product, FA, and reagent-grade CaCO3, respectively (Table 1). Both the DFGD by-product and 

Class-C FA had elevated concentrations of trace elements which may warrant concern when 

being evaluated as a soil amendment. As a result of the high concentration of trace elements and 
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soluble salts, the EC was 2.41 and 2.73 mS cm-1 for the DFGD by-product and Class-C FA, 

respectively (Table 1). The EC of the reagent-grade CaCO3 was 0.042 mS cm-1. Continuous 

application of either the DFGD by-product or Class-C FA may cause an increase in soil EC and 

limit growth for plants that are sensitive to saline soils [10]. 

 

Liming Characteristics 

 All three liming characteristics evaluated in this study (i.e., CCE, DOF, and ENV) 

differed somewhat among liming materials. The CCE of the DFGD by-product (84.4%) was 

lower (P < 0.05) than that for reagent-grade CaCO3 (100%), while CCE for Class-C FA (60.3%) 

was also lower (P < 0.05) than that for the DFGD by-product (Figure 1). In contrast to CCE, 

DOF for the DFGD by-product and Class-C FA were similar to one another (P > 0.05), 

averaging 94.1 and 95.1 %, but both were lower (P < 0.05) than that for reagent-grade CaCO3 

(Figure 1). Similar to CCE, but in contrast to DOF, ENV of the DFGD by-product (79.4%) was 

lower (P < 0.05) than that for reagent-grade CaCO3 (100%), while CCE for Class-C FA (57.3%) 

was also lower (P < 0.05) than that for the DFGD by-product (Figure 1). The low ENV for the 

Class-C FA can be attributed to the low CCE of 60.3%. The DFGD CCE of 84.4% was similar to 

the values reported by Kost et al. [7] who reported a CCE range of 41.6 to 97.7% for spray-dryer 

DFGD by-products. Schlossberg et al. [18] stated that CCEs of Class-C FAs can be as high as 

60%, which is similar to the CCE of the Class-C FA examined in this experiment. Although CCE 

and ENV of the DFGD by-product were lower than that for reagent-grade CaCO3, most 

commercially available liming materials have ENVs ranging between 70 and 90, which is a 

range that includes the mean measured ENV for the DFGD by-product evaluated in this study 

[19]. 
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Incubation Study 

As expected, soil pH differed (P < 0.001) among liming material-application rate 

treatment combinations over time throughout the 40-d incubation period (Table 2). For all 

material-rate combinations, with the exception of the unamended control, soil pH generally 

sharply increased from day 0 to day 20, followed by a period of either a more gradual soil pH 

increase or no further increase from day 20 to day 40. The greatest differences among treatment 

combinations occurred among liming materials over time within an application rate. 

Within 1 min after shaking the soil of the unamended control treatment, initial soil pH 

averaged 4.3 (Figure 2; Table 3). Soil pH in the unamended control remained virtually 

unchanged throughout the entire duration of the 40-d incubation period (Figure 2; Table 3). 

Within 5 d of incubation, the pH of soil receiving CaCO3 at the 0.5x application rate was 

significantly greater (5.8) than the pH of soil that was incubated with the Class-C FA or DFGD 

by-product (4.6) (Figure 2; Table 3). After 10 d of incubation, the pH of soil receiving the 0.5x 

rate of CaCO3 was significantly greater (6.3) than the pH of the DFGD- (5.0) and the FA-treated 

soil (4.7). From day 20 to day 40, soil pH did not differ between the DFGD and FA-treated soils. 

After 40 d of incubation, the pH of soil receiving the three liming materials had increased (P < 

0.05) from a pH of 4.3 in the unamended control to 6.7, 5.0 and 4.8 for the reagent-grade CaCO3, 

DFGD by-product, and FA treatments, respectively. 

 At the 1x application rate, the DFGD by-product and FA were more effective at raising 

soil pH than at the 0.5x application rate. After 5 d of incubation, the pH of the soils incubated 

with the DFGD by-product and FA at the 1x application rate were greater (P < 0.05) than those 

in the soils receiving the same amendments at the 0.5x application rate (Figure 2; Table 3). After 

10 d of incubation, and for the remainder of the 40-d incubation period, there was no difference 
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in soil pH between reagent-grade CaCO3-amended soil and DFGD by-product-amended soil at 

the 1x application rate. Between 10 and 30 d of incubation at the 1 x rate, soil pH was lower (P < 

0.05) in the FA treatment than in the reagent-grade CaCO3 and DFGD by-product treatments, 

which did not differ. Soil pH did not differ among the three treatments at the 1x rate after 30 d of 

incubation. After 40 d of incubation at the 1x application rate, soil pH had increased (P < 0 .05) 

from 4.3 in the unamended control to 7.0, 7.0, and 6.7 in the reagent-grade CaCO3, DFGD by-

product, and FA treatments, respectively, which did not differ from one another. 

 Compared to the 0.5 and 1x rates, soil pH responses were even more pronounced for the 

2x application rate. After 10 d of incubation at the 2x rate, the pH of the soil that was amended 

with either the DFGD by-product or FA was greater (P < 0.05) than that for the soil amended 

with the reagent-grade CaCO3 (Figure 2; Table 3). From day 10 to day 40, the pH of soil 

incubated with either the Class-C FA or DFGD by-product at the 2x application rate was greater 

(P < 0.05) than the pH of soil incubated with reagent-grade CaCO3. After 40 d of incubation, the 

pH of the soils receiving the three liming materials at the 2x application rate had increased from 

4.3 in the unamended control to 7.3, 8.0, and 8.0 for the reagent-grade CaCO3, DFGD by-

product, and FA treatments, respectively. The pH of soils incubated with either the Class-C FA 

or DFGD by-product was greater (P < 0.05) than the pH of soil incubated with reagent-grade 

CaCO3, but did not differ from each other. 

Both CCBs evaluated in this study have potential for use as soil liming materials. 

Calcium carbonate is relatively insoluble in water and the solubility of CaCO3 decreases rapidly 

above pH 6.0 [20]. Once the soil pH exceeds 7.0, CaCO3 effectively becomes insoluble. This 

explains why the pH of soil amended with CaCO3 at the 2x application rate was not greater (P > 

0.05) than that of the soil amended with CaCO3 at the 1x application rate. Calcium oxide (CaO) 
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and Ca(OH)2 have greater CCEs and continue to be soluble at greater pHs than CaCO3, resulting 

in greater equilibrium soil pHs. The large concentrations of CaO and Ca(OH)2 typically present 

in the Class-C FA and DFGD by-product may explain why both liming materials were able to 

raise soil pH to 8.0 when amended at the 2x application rate. 

 The ability of the FA and DFGD by-product to raise soil pH to 7 over approximately the 

same time period as CaCO3 suggests that these by-products may be viable alternatives to 

traditional liming materials. The results of this experiment are similar to those reported in 

previous experiments where different CCBs were used. Punshon et al. [21] mixed a weathered 

FGD by-product with an acidic Paleudult (pH 5.4) at several application rates and reported an 

increase in soil pH from 5.5 to 8.1 in soil amended with by-product at application rates of 168 

and 224 Mg ha-1. Adriano et al. [6] mixed a Class-F (i.e., low calcium) FA with an acidic 

Udifluvent (pH 4.9) at an application rate of 1120 Mg ha-1 and reported an increase in soil pH to 

6.45. McCarty et al. [22] incubated soil with bed ash, FA, limestone-injection multistage burner 

(LIMB) residue, spray dryer residue (SDR), and CaCO3 with an acidic Hapludult (pH 4.2) at 

application rates ranging up to 22.4, 22.4, 22.5, 89.6 and 18.0 Mg ha-1 for the bed ash, LIMB, 

SDR residue, FA and CaCO3, respectively. The pH of the soils at the largest application rates 

were 8.0, 7.7, 7.1, 7.7 and 7.8 for the bed ash, LIMB residue, SDR residue, FA, and CaCO3, 

respectively. The ability for the CCBs tested to increase soil pH in that experiment was in 

directly related to their respective CCEs [22]. When the means of soil pH were adjusted for 

covariance of CCE, there was no difference between the FA and CaCO3. 

In this study, both the Class-C FA and DFGD by-product were able to raise the soil pH to 

8.0 when applied at the 2x application rate. Most crops grow best in soils with a slightly acidic 

pH and can become stressed (i.e., due to a nutrient limitation or toxicity) if the soil pH is too 
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alkaline. Therefore, caution must be exercised when using CCBs to avoid over-application and 

raising the soil pH so high that plant growth and productivity are negatively affected. 

 In addition to the ability to neutralize soil acidity at the surface, DFGD by-products 

contain large concentrations of CaSO4•2H2O (i.e., gypsum), which has been shown to ameliorate 

subsoil acidity. Sumner et al. [23] reported a 20% decrease in exchangeable Al at a depth of 105 

cm following surface application of gypsum at a rate of 10 Mg ha-1. Gypsum-amended soil had a 

greater Ca saturation in the subsoil (i.e., the 5- to 105-cm depth interval) than the unamended 

control. Wendell and Ritchey [24] observed a similar trend in acidic soil columns amended with 

a high-Ca DFGD by-product. Leachate-Al concentrations were greater than that in the 

unamended control as a result of DFGD by-product addition, resulting in a decrease in the soil’s 

exchangeable Al percentage [24]. 

 Another possible use for these CCBs is in the reclamation of soils that have been 

disturbed by surface mining. Surface mining is a process can that cause severe soil acidification 

resulting from the exposure of Fe-sulfides in overburden materials [25]. Because acid mine lands 

are often very acidic (pH < 4.50), there is potential for large-scale use of alkaline CCBs to 

neutralize overburden acidity without creating alkaline soils. By increasing soil pH, the solubility 

and mobility of potentially toxic elements, such as arsenic, can be reduced [26]. Stehouwer et al. 

[25] and Stehouwer et al. [27] examined the effects on element solubility and mobility, as well as 

plant growth by amending minespoil material with DFGD by-products in a series of greenhouse 

studies. When applied at rates ranging from 30 to 120 g kg-1, fescue (Festuca arundinacea 

Shreber) growth improved likely due to the increase in tissue concentrations of Ca, Mg, and S. 

At rates exceeding 120 g kg-1, the soil became too alkaline and cementation of the soil occurred 

as a result of the formation of ettringite [(Ca6Al2(SO4)3(OH)12•26 H2O)]. With increasing 
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application rate of the DFGD by-products, there was an increase in leachate pH, EC, dissolved 

organic C, Ca, Mg, and S. The concentrations of leachate As, B, Cu, Ni, and Se varied depending 

on the concentration of DFGD by-product and spoil type. Utilizing CCBs as a minespoil 

amendment may be more desirable than as an agronomic soil amendment because of the 

potential for plant uptake of trace elements by agronomic crops. 

 

Summary and Conclusions 

 Each year, millions of megagrams of CCBs are disposed of in landfills and surface 

impoundments, which increases the likelihood of accidental releases to the environment. Certain 

CCBs, such as Class-C FAs and DFGD by-products, possess physical and chemical properties 

that make them potentially useful as soil liming materials. Use of CCBs in lieu of conventional 

agriculture liming materials may be a viable alternative to mitigating soil acidity in an 

economical and environmentally friendly manner, provided a local source of CCBs is available. 

The presence of gypsum in DFGD by-products provides the additional benefit of reducing 

subsoil acidity by acting as a source of Ca2+ ions and lowering levels of exchangeable Al3+. 

However, the presence of trace elements and heavy metals warrants caution if CCBs are used as 

a soil amendment.  

 The results of this experiment support the hypothesis that when CCBs, specifically Class-

C FA and DFGD by-product, are added to an acidic subsoil at a rate equivalent to the SMP 

buffer lime requirement, the soil pH after 40 d would be similar to the pH in reagent-grade 

CaCO3-amended soil. Results also supported the hypothesis that the pH of soil incubated with 

the DFGD by-product and Class-C FA at 2x the SMP buffer lime requirement would be greater 

than soil incubated with reagent-grade CaCO3. This experiment demonstrated that the relatively 
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new DFGD by-product has similar liming characteristics to reagent-grade CaCO3 and a Class-C 

FA, which may provide a viable alternative use of DFGD by-product as a soil amendment and 

liming material and would diminish the need to dispose of these materials in landfills and surface 

impoundments. 
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Table 1. Mean chemical characteristics of a  

high-Ca dry flue gas desulfurization (DFGD)  

by-product from the John W. Turk Power Plant in  

Hempstead County, Arkansas and a Class-C fly ash  

(FA) from the Flint Creek Power Plant in Benton  

County, Arkansas. The CaCO3 used in this  

experiment was reagent grade. 

 

 

† pH was measured in a 1:1 0.01 M CaCl2: solid slurry 

‡ EC was measured in a 2:1 DI water: Reagent slurry 

° CaCO3 pH= 8.44; EC= 0.042 mS cm-1 

 

 

 

 

 

 

Parameter DFGD       FA 

pH† 10.64 12.28 

EC‡ (mS cm-1) 2.41 2.73 

   

Trace element (mg kg-1) 

     Be 21.47 3.98 

     V 137.68 57.71 

     Cr 81.14 72.07 

     Co 16.92 54.32 

     Ni 43.08 29.19 

     Cu 73.16 49.60 

     Zn 140.83 50.50 

     As 13.33 14.56 

     Se 12.86 5.28 

     Rb 1.38 48.39 

     Cd 0.44 0.71 

     Cs 1.27 2.60 

     Hg 0.81 0.00 

     Pb 0.20 108.24 

     Th 3.43 28.40 

     U 5.34 1.57 
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Table 2. Analysis of variance summary of the effects  

of liming material (i.e., product), rate, and time  

(i.e., days into incubation), and their interactions on  

soil pH after 40 days of incubation in a clay soil. 

 

Source of Variation Soil pH 

 
____ P ____ 

Liming material < 0.001 

Rate < 0.001 

     Liming material*rate < 0.001 

Time < 0.001 

     Liming material*time 0.002 

     Rate*time < 0.001 

          Liming material*rate*time < 0.001 
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Table 3. Mean pH of soil incubated with reagent-grade CaCO3, Class-C fly ash (FA), and a 

high-Ca dry flue gas desulfurization (DFGD) by-product at rates equivalent to 0.5x, 1x, and 2x 

the Shoemaker-Mclean-Pratt (SMP) lime requirement over a 40-day period. 

 

    Application Rate 

  0.5x 1x 2x 

Day Control FA DFGD CaCO3 FA DFGD CaCO3 FA DFGD CaCO3 

0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 

5 4.0e† 4.6d 4.6d 5.8bc 5.0d 5.7c 6.2b 6.7a 6.8a 6.7a 

10 4.1e 4.7d 5.0cd 6.3b 5.3c 6.2b 6.4b 7.5a 7.4a 6.3b 

15 4.3e 4.7e 4.7e 6.6bc 5.4d 6.4c 6.6bc 7.9a 7.6a 6.8b 

20 4.3f 4.6f 4.7f 6.7cd 6.0e 6.4de 6.4de 8.2a 7.7b 7.0c 

25 4.2f 5.1e 4.9e 6.6bc 6.0d 6.5c 6.8bc 7.7a 7.9a 6.9b 

30 4.2f 4.8e 4.7e 6.9d 6.9d 6.9d 7.0cd 8.1a 7.6b 7.1c 

35 4.2d 4.8d 4.8d 6.8bc 6.8bc 6.5c 7.0b 7.9a 7.7a 7.1b 

40 4.2e 4.8d 5.0d 6.7c 6.7c 7.0bc 7.0bc 8.0a 8.0a 7.3b 
† Means followed by a different letter within a row are significantly different (P < 0.05) 
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Figure 1. Calcium carbonate equivalence (CCE), degree of fineness (DOF), and effective 

neutralizing value (ENV) of reagent-grade CaCO3, a high-Ca dry flue gas desulfurization 

(DFGD) by-product, and a Class-C fly ash. Bars of the same color with different letters are 

significantly different (P < 0.05). 
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Figure 2. Soil pH response after incubation at 0.5x, 1x, and 2x the Shoemaker-Mclean-Pratt 

(SMP) liming requirement with reagent-grade CaCO3, Class-C fly ash, and a high-Ca dry flue 

gas desulfurization (DFGD) by-product over a 40-day period.  
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Chapter Three 

 Land Application Effects of a High-Calcium, Dry Flue Gas Desulfurization By-product on 

Trace Elements in Runoff 
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Abstract 

 Due to its low cost and large abundance, coal continues to be the primary energy source 

for electricity generation in the United States. The desulfurization of flue gases during coal 

combustion produces dry flue gas desulfurization (DFGD) by-products that have properties that 

make them potentially useful as a soil amendment. However, DFGD by-product behavior once 

land-applied and exposed in the environment has not been well investigated, particularly trace 

element levels in runoff from DFGD-treated fields. The objective of this study was to evaluate 

the effects of land application of a high-Ca, DFGD by-product compared to an unamended 

control on trace elements in runoff, plant tissue, and the top 30 cm of the soil profile throughout 

one year following application. A high-Ca, DFGD by-product was applied once on May 18, 

2015 at 9 Mg DFGD ha-1 to small plots of a highly weathered Ultisol under managed-grassland 

land use in northwest Arkansas. Runoff was collected following each runoff-producing 

precipitation event. Plant and soil samples were collected prior to application and several times 

following application. Seasonal [i.e., Summer (May to August), Fall (August to November), 

Winter (November to February), and Spring (February to May)] and annual runoff and runoff pH 

and electrical conductivity did not differ (P > 0.05) between DFGD treatments. Seasonal flow-

weighted mean Ni concentrations and seasonal V loads were greater (P < 0.05) when amended 

compared to the unamended control during at least one season by 44.5 and 86.9% for Ni and V, 

respectively. Aboveground dry matter and tissue concentrations of As, Se, Cr, Co, Hg, V, and U 

were greater (P < 0.05) when amended compared to the unamended control. In June 2015, 

aboveground DM and tissue concentrations of As, Se, Cr, Co, Hg, V, and U were greater in the 

amended treatment than in the unamended control by 83.3, 175, 235, 119, 134, 52.9, 471, and 

254%, respectively. Trace element concentrations in plant tissue decreased from the greatest 
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concentration to pre-application concentrations within 6 mo following application. The soil pH 

in the amended treatment 6 mo after application (pH = 6.44) was greater (P < 0.05) than in the 

unamended control, which did not change (P > 0.05) over time throughout the experiment. Soil 

concentrations and contents of Ca, S, and Na increased (P < 0.05) compared to the unamended 

control over time from DFGD amendment. Six months after application, Mehlich-3 extractable S 

and Na concentrations were 170 and 52.1%, respectively, greater in the amended than in the 

unamended control, and Mehlich-3 extractable S and Na contents were 166 and 50.9% greater, 

respectively, than in the unamended control. Mehlich-3 extractable Ca concentration and content 

in the top 10 cm were 26.6 and 30.4% greater, respectively, in the amended than in the 

unamended control. Based on the results of this study, it appears that land application of a high-

Ca DFGD by-product at rates ≤ 9 Mg ha-1 can increase soil pH and extractable soil Ca and S 

with only temporary effect on trace element concentrations in plant tissue, while having minimal 

effects on trace elements in runoff and soil. Thus, this material may be suitable for land 

application as a liming material. 
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Introduction 

 The Clean Air Act Amendment (CAAA) of 1990 required coal-fired power plants to 

reduce emissions of sulfur dioxide (SO2) resulting in the installation of desulfurization systems, 

which create flue gas desulfurization (FGD) by-products. Sulfur dioxide is removed from 

emission streams by injecting a calcium based sorbent [i.e., calcium carbonate (CaCO3), calcium 

hydroxide [Ca(OH)2], or calcium oxide (CaO)] into the flue gases to react with and remove SO2  

from the emissions stream (Punshon et al., 2001). The desulfurization process results in the 

generation of FGD by-products that are primarily hydrous and anhydrous calcium sulfite 

(CaSO3) and calcium sulfate (CaSO4). Dry FGD (DFGD) emissions control systems often 

stabilize FGD by-products with fly ash, resulting in a by-product that is a mixture of unreacted 

calcium sorbent, fly ash, calcium sulfite hemihydrate (CaSO3•0.5 H2O), anhydrite (CaSO4) and 

gypsum (CaSO4•2H2O) (Kost et al., 2005). Dry FGD systems that stabilize FGD by-products 

with Class-C (high lime; Adriano et al., 2001) fly ash result in the generation of high-Ca DFGD 

by-products. 

Considering DFGD by-products contain unreacted sorbent and Ca-oxides, which are 

present in fly ash, DFGD by-products are typically alkaline and have been successfully used as a 

substitute for agricultural lime for increasing soil pH (Stehouwer et al., 1996; Crews and Dick, 

1998; Chen et al., 2001). Although CaCO3 is the most commonly used agricultural liming 

material, the relative insolubility of CaCO3 inhibits the ability of CaCO3 to raise the soil pH 

much beyond the site of incorporation (Baligar et al., 2011). The presence of highly soluble Ca-

oxides such as Ca(OH)2 and CaO in DFGD by-products, provide greater potential for increasing 

soil pH beyond the site of application (Clark et al., 2001). The ability of CaCO3 to raise soil pH 

decreases as soil pH nears 7, whereas CaO and Ca(OH)2 can continue to increase soil pH above 
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7. The ability to raise soil pH can mitigate Al and Mn toxicity, which can become prevalent in 

acidic soils. Manganese toxicity can cause necrosis and chlorosis in some plant leaves and Al 

toxicity can cause a reduction in root growth and symptoms similar to drought stress (Foy, 1984; 

Kamprath and Foy, 1985). Alleviating Al and Mn toxicity by soil liming can increase plant 

growth and crop yields (Foy, 1984). Application of gypsum (CaSO4•2H2O) to soil has been 

reported to alleviate subsoil acidity symptoms by forming soluble, but non-phytotoxic, cationic 

aluminum sulfate (AlSO4
+) complexes, which reduces Al phytotoxicity (Sumner et al., 1986). 

Wendell and Ritchey (1996) reported a 25-fold increase in leachate-Al in soil columns that 

received FGD by-products as a soil amendment, resulting in a reduction in the soils 

exchangeable Al percentage. 

Flue gas desulfurization by-products can also be used as a nutrient source due to elevated 

concentrations of plant-essential nutrients. Kost et al. (2005) performed an extensive assessment 

of 59 DFGD by-products from 13 coal-fired power plants and reported that appreciable 

quantities of plant-essential Ca, Mg, Fe, S, B, Cu, Mn, Ni, P, and Zn were present among the 

various DFGD by-products. Sloan et al. (1999) applied FGD residue to alfalfa (Medicago sativa 

L.) grown on B-deficient soils at rates of 0, 0.46, and 3.75 Mg ha-1 prior to seeding. Alfalfa root 

concentrations of B, S, and Mo significantly increased in the FGD-amended treatment compared 

to an unamended control. Similar to Sloan et al. (1999), Chen et al. (2001) reported increased B 

and Mo concentrations in alfalfa tissue grown on an acidic (pH 4.8) Fragiudalf amended with a 

FGD by-product compared to an unamended control. However, unlike Sloan et al. (1999), Chen 

et al. (2001) reported a 7-8-fold yield increase of alfalfa compared to an unamended control 

when the FGD by-product was applied at a rate equivalent to the liming requirement of the soil. 

When three different FGD by-products were mixed with an acidic (pH 4.0) Dystrochept in pots, 
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there was a significant increase in plant dry matter, soil pH, and maize (Zea mays L.) shoot 

concentrations of Ca, P, and Mg compared to an unamended control (Clark et al., 2006). There 

was also a decrease in P- and Mg-deficiency symptoms and Al toxicity compared to an 

unamended control (Clark et al., 2006). Punshon et al. (2001) conducted a mesocosm experiment 

to monitor the effects of FGD by-product incorporation on establishment of maize, soybean 

(Glycine max L.), radish (Raphanus sativus L), and cotton (Gossypius hirsutus), as well as the 

effects of incorporation on nutrient concentrations in the plant and soil. Application of the FGD 

by-product resulted in significantly greater soil pH and HNO3-extractable B, Ca, and Mg and a 

numerical increase in extractable K in the soil below the incorporation layer (Punshon et al., 

2001). In addition, leaf B and Mo concentrations increased in maize, cotton, soybean, and radish 

compared to the unamended control (Punshon et al., 2001). Leaf and root Ca concentrations in 

maize and cotton were also significantly increased compared to an unamended control (Punshon 

et al., 2001). 

 Although DFGD by-products have potential for use as a soil amendment, the presence of 

soluble salts and potentially toxic trace elements warrant concern when these by-products are 

used as a soil amendment. Punshon et al. (2001) reported an increase in leaf and root As and Se 

concentrations in maize, cotton, soybean, and radish compared to an unamended control. 

Application of the FGD residue also resulted in a significant increase in HNO3-extractable soil 

As, Se, and Sr as well as an increase in total elemental soil As, Be, Co, and Se concentrations 

below the incorporation layer (Punshon et al., 2001). There was also a significant increase in 

leachate salinity in all mesocosms receiving FGD by-products compared to an unamended 

control. Similar to Punshon et al. (2001), Chen et al. (2001) reported an increase in alfalfa tissue 

As and Hg concentrations compared to an unamended control. Crews and Dick (1998) reported 



83 

 

B toxicity in the plant tissue of Northern red oak (Quercus rubra L.) when a FGD by-product 

was applied at a rate that was twice the soil’s lime requirement. Leachate Pb concentrations in 

treatments receiving the FGD by-products were significantly increased compared to those from 

an unamended control (Crews and Dick, 1998). 

In 2013, 32 million megagrams of FGD by-products were generated in the United States, 

but only 37% were reused beneficially, leaving a plethora of FGD by-products destined for 

landfills or surface impoundments (ACAA, 2014). One of the primary beneficial reuses of 

DFGD by-products is in wallboard or concrete. Although large-scale land application in row-

crop agriculture is unlikely, if it were to be shown that DFGD by-products could be utilized as a 

soil amendment without adverse environmental effects, millions of megagrams of DFGD by-

product could be diverted from landfills and surface impoundments. If DFGD by-products were 

to be used as a soil amendment, the effects of land application on the various potential 

environmental fates of the material, including runoff, plant uptake, and soil storage changes, 

needs to be studied under field conditions.  

Currently, there is a lack of knowledge from field studies regarding the effects of land-

applying DFGD by-products, particularly regarding trace element concentrations and loads in 

runoff. Consequently, more information is needed before DFGD by-products can be considered 

environmentally safe to use as a soil amendment on agricultural lands. The objective of this field 

study was to evaluate seasonal and annual effects of land application of a high-Ca, DFGD by-

product to a highly weathered Ultisol under managed-grassland land use on trace elements in 

runoff water, plant tissue, and the top 30 cm of the soil profile over a 12-mo period following a 

single application. It was hypothesized that, due to elevated concentrations of trace elements in 

coal combustion by-products, there would be a significant increase in runoff concentrations of 
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trace elements in the first 3-month season following application. It was also hypothesized that 

land application would result in a significant increase in plant tissue concentrations of As, Cr, 

Hg, and Se for in the first 3-mo season following application. Additionally, it was hypothesized 

that land application would result in a significant increase in soil pH and extractable soil Ca and 

S. 

 

Materials and Methods 

Site Description 

 As previously described in Pirani (2005) and McMullen (2014), six plots, 6-m long by 

1.5-m wide, were located at the University of Arkansas System Division of Agriculture’s 

Arkansas Agricultural Research and Extension Center in Fayetteville, AR on a 5% west-to-east 

slope. The research plots were located in an area mapped as a Captina silt loam (fine-silty, 

siliceous, active, mesic Typic Fragiudult; USDA-NRCS, 2015) with ground cover predominately 

tall fescue (Festuca arundinacea), clover (Trifolium spp.), Johnson grass (Sorghum halepense L.) 

and Bermuda grass (Cynodon dactylon L.) (Pirani, 2005; McMullen, 2014). Pirani (2005) 

measured soil particle-size distribution and determined that each 10-cm interval to a depth of 30 

cm was silt loam, with sand, silt, and clay ranging from 27.6 to 31.4%, 56.9 to 63.1%, and 55.5 

to 15.6 %, respectively. Aluminum gutters were positioned on the down-slope edge of each plot 

to direct runoff into subsurface collection bottles and were covered with acrylic sheets to prevent 

direct precipitation from contaminating and/or diluting collected runoff. Steel borders were 

located around the perimeter of each plot to prevent runon and channel runoff towards the 

aluminum gutters. 
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Study Area History 

 From 2003 to 2012 prior to this study, the same field plots used in this study received 

broiler litter as an annual soil amendment (Pirani, 2005; McMullen, 2014). Broiler litter was 

applied at three application rates [0 (control), 5.6 (low), and 11.2 Mg dry litter ha-1 (high)] in a 

randomized complete block design with two replications for each application rate. No litter was 

applied in the two years immediately preceding the initiation of this study. 

 

Experimental Design and Application Rates 

For this study, the six original experimental plots were re-arranged with three replications 

of two field treatments (i.e., amended and unamended) to evaluate the effects of DFGD land 

application on runoff, plant, and soil properties. To compensate for the three application rates of 

broiler litter previously used, each treatment (amended and unamended) contained a randomly 

assigned replicate plot of the control, low, and high broiler-litter treatments from the previous 

broiler litter experiment. Dry FGD by-product treatments in this study included two application 

rates imposed once as a single application. The DFGD by-product was applied at a rate of 0 

(unamended) and 9 (amended) Mg DFGD ha-1. The DFGD by-product was applied manually 

evenly over the plots using a flour sifter on May 18, 2015. 

 

Dry Flue Gas Desulfurization Byproduct Analyses 

 The DFGD by-product was collected from the John W. Turk Power Plant in Hempstead 

County, AR and was produced by a dry scrubber using an Alstom Novel Integrated 

Desulfurization design (Personal communication with Mark Cantrell, Arkansas Electric Power, 

2015). The pH of the DFGD byproduct was determined potentiometrically using a 2:1 (v/m) 
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0.01M CaCl2:DFGD mixture using an Orion 710a pH meter with an Orion 9107bn pH probe 

(Thermofisher Scientific, Waltham, MA). The electrical conductivity (EC) of the DFGD by-

product was also determined potentiometrically using a 2:1 (v/m) distilled water: DFGD mixture 

using an Orion Star A215 conductivity meter with an Orion 01305MD conductivity cell 

(Thermofisher Scientific, Waltham, MA). Acid-extractable plant nutrients (i.e., P, K, Ca, Mg, S, 

Na, Fe, Mn, Zn, Cu, and B) and trace elements (i.e., Be, V, Cr, Co, Ni, As, Se, Rb, Cd, Cs, Hg, 

Pb, Th, and U) were determined by inductively coupled, argon-plasma mass spectrometry (ICP-

MS) (iCAP™ Q ICP-MS, Thermo Scientific, Waltham, MA) following microwave acid digestion 

using 12 mL of 70% (w/w) HNO3 and 3 mL of 37% (w/w) HCl per 0.5 g DFGD by-product. Dry 

FGD-Hg concentrations were determined by ALS Environmental, Inc. (Tucson, AZ) by thermal 

decomposition amalgamation in accordance with EPA method 7473 (USEPA, 2007). 

 

Soil Collection and Analyses 

 Prior to application of the DFGD by-product to field plots in May 2015, four soil samples 

were collected in 10-cm intervals from the top 30 cm in each plot and combined to form a single 

composite soil sample per depth per plot. Soil samples were also collected six and 12 months 

following application in November 2015 and May 2016 in 10-cm intervals from the top 30 cm in 

each plot and combined to form a single composite soil sample per depth per plot. Soil samples 

were oven dried at 70°C for at least 48 hours and ground to pass a 2-mm mesh sieve for chemical 

analyses. Mehlich-3 extractable soil nutrients (i.e., P, K, Ca, Mg, S, Na, Fe, Mn, Zn, Cu, and B) 

were determined using a 1:10 (m/v) soil-to-extractant ratio (Zhang, 2014) and analyzed by ICP. 

Acid-extractable trace elements (i.e., As, Cd, Co, Cr, Ni, Pb, Rb, Se, V, Th, and U) were 

determined by ICP-MS (iCAP™ Q ICP-MS, Thermo Scientific, Waltham, MA) following 
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microwave acid digestion using 12 mL of 70% (w/w) HNO3 and 3 mL of 37% (w/w) HCl per 0.5 

g of soil using a CEM MARS 5 microwave reaction system (CEM Corporation, Matthews, NC). 

Soil-Hg concentrations were determined for the 0- and 6-mo time periods by thermal 

decomposition amalgamation (ALS Environmental, Inc., Tucson, AZ) in accordance with EPA 

method 7473 (USEPA, 2007).  

In May 2016, soil bulk density samples were collected in 10-cm intervals from the top 30 

cm in each plot. A 4.8-cm-diameter, stainless steel core chamber was manually driven into the 

ground with a slidehammer. Samples were oven-dried at 70oC for at least 48 hours and weighed 

for bulk density determinations. Measured soil concentrations for each of the three soil sampling 

times were converted to soil contents, on a plot-by-plot basis, using a 10-cm sampling interval 

and the measured bulk densities from the May 2016 sampling. Therefore, it was assumed that 

soil bulk density in each 10-cm interval in the top 30 cm did not change over the 1-yr period 

following by-product application. 

 

Plant Sampling and Analyses 

 Plant biomass samples were hand-collected to a height of 10 cm using two randomly 

located 0.25-m2 quadrats from each plot that were combined to form one composite sample per 

plot. Biomass samples were collected in November 2014, May, June, July, August, September, 

and November 2015, and May 2016. Collected biomass samples were dried for 1 week at 55oC 

in a forced-air drier and weighed for dry matter (DM) determination. Dried biomass was ground, 

sieved through a 2-mm mesh screen, and then digested using 12 mL of 70% (w/w) HNO3 and 3 

mL of 37% (w/w) HCl per 0.5 g DM using a CEM MARS 5 microwave reaction system (CEM 

Corporation, Matthews, NC). Digested tissue samples were used to determine trace element 
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concentrations (As, Cd, Co, Cr, Cu, Ni, Pb, Rb, Se, V, Th, U, and Zn) by inductively coupled, 

argon-plasma mass spectrometry (iCAP™ Q ICP-MS, Thermo Scientific, Waltham, MA). Dry-

matter-Hg concentrations were determined for November 2014 and May, June, July, August, 

September, and November 2015 tissue samples by thermal decomposition amalgamation (ALS 

Environmental, Inc., Tucson, AZ) in accordance with EPA method 7473 (USEPA, 2007). 

 

Runoff Collection and Analyses 

 Following DFGD application, runoff water was collected from each plot after every 

runoff-producing precipitation event from May 18, 2015 to May 18, 2016. The first 15 mL of 

runoff from each plot was used to determine pH and EC in the laboratory immediately following 

runoff collection and then discarded. Runoff pH was measured using a pH electrode (Orion 

Triode, No. 91-79) and EC was measured using a conductivity cell (VWR symphony, No. 

11388-382). Any remaining runoff sub-sample, up to 250 mL, was filtered through a 1.6-µm 

glass microfiber filter (Whatman GFA- 1820-110; Whatman International Ltd., Maidston, 

England) and then vacuum-filtered through a 0.45-µm Metricel membrane filter (GN-6; Pall Life 

Sciences Corporation, Ann Arbor, MI). Runoff volumes varied between runoff-producing 

precipitation events, thus the first 15 mL used for pH and EC measurements were prioritized. 

Following filtration, up to three, 20-mL aliquots were acidified using one drop of 36% (w/w) 

HCl per 10 mL of filtrate. Acidified samples were stored at 4°C until further analyses. Excess 

runoff samples were then discarded. Acidified aliquots were used to determine trace element 

concentrations (As, Be, Cd, Co, Cr, Cu, Ni, Pb, Rb, Se, V, Th, U, and Zn) by ICP-MS (iCAP™ Q 

ICP-MS, Thermo Scientific, Waltham, MA). Runoff-Hg was determined using a manual cold-

vapor technique (ALS Environmental, Inc., Tucson, AZ) in accordance with EPA method 7470a 
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(USEPA, 1994) for the first 7 mo following application only (i.e., May to December 2015) due 

to the cost of Hg analyses. 

 

Plot Management and Weather Data Collection 

 After each biomass sampling, all remaining above-ground biomass in the plots was 

removed using a push mower to a height of approximately 10 cm. Runoff collection gutters and 

bottles were cleaned prior to most precipitation events. 

An on-site weather station monitored wind speed, air temperature, relative humidity, and 

solar radiation every 30 min. Precipitation was measured using an on-site tipping bucket rain 

gauge.  

 

Calculations 

 Flow-weighted mean (FWM) runoff concentrations (mg L-1) and cumulative runoff loads 

(g ha-1) were determined seasonally (i.e., Summer, Autumn, Winter, and Spring) and annually 

for the 12-mo period following application of the DFGD by-product. For the purpose of this 

experiment, Summer was defined as the third week of May to the third week of August, Autumn 

was defined as the third week of August to the third week of November, Winter was defined as 

the third week of November to the third week of February, and Spring was defined as the third 

week of February to the third week of May. Flow-weighted mean concentrations were calculated 

by dividing the total elemental mass collected in runoff for each plot during the time period of 

interest by the total volume of runoff for the respective time period. Loads were calculated by 

dividing the total elemental mass in runoff for each plot during the time period of interest by the 

plot area (9 m2). Mean runoff pH and EC were calculated for each plot seasonally and annually. 
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Cumulative plant uptake was calculated by multiplying measured elemental concentrations in the 

aboveground DM by the mass of harvested DM, and then summing the mass of elements for the 

12-mo experimental duration. 

 

Statistical Analyses  

 Based on a completely random design, a two-factor analysis of variance (ANOVA) was 

used to evaluate seasonal effects of DFGD by-product application on runoff volume, runoff pH 

and EC, and runoff FWM trace element concentrations and loads using the PROC MIXED 

procedure in SAS (version 9.4; SAS Institute Inc., Cary, NC). Similarly, a two-factor ANOVA 

was used to evaluate the effects of DFGD by-product application and time on plant tissue 

concentrations of trace elements using the PROC MIXED procedure in SAS. A one-factor 

ANOVA was used to evaluate the effects of by-product application on annual FWM runoff 

concentrations and loads and cumulative 1-yr plant uptake of trace elements using the PROC 

MIXED procedure in SAS. A three-factor ANOVA was used to evaluate the effects of DFGD 

by-product application, time, and depth on Mehlich-3 extractable soil nutrient and trace element 

concentrations and contents using the PROC MIXED procedure in SAS. When appropriate, 

means were separated by least significant difference (LSD) at the 0.05 level. 

 

Results and Discussion 

DFGD By-product Characterization 

 The DFGD by-product used in this study contained appreciable concentrations of both 

essential plant nutrients and trace elements. Plant nutrient concentrations in the DFGD by-

product ranged from 0.3 to 410 g kg-1 for Zn and Ca, respectively (Table 1). Trace element 
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concentrations ranged from 0.4 to 138 mg kg-1 for Cd and V, respectively (Table 1). The major 

and trace element concentrations contained in the DFGD by-product used in this experiment 

were similar to the concentration ranges reported by Kost et al. (2005) for 59 different DFGD 

by-products from IL, KY, MI, MN, NY, OH, TN, and WV. Considering the elemental 

composition of the DFGD by-product used in this field study, runoff water quality concerns 

could potentially arise from land application of this material. 

 

Pre-treatment Uniformity 

 Due to the varied history of the plots used in this field study, it was necessary to evaluate 

pre-treatment uniformity of DM and near-surface soil characteristics prior to initial DFGD by-

product application. Based on two aboveground DM harvests (i.e., November 2014 and May 

2015) and one soil sampling (i.e., May 2015) prior to DFGD by-product application, there was 

no difference in aboveground DM between the amended treatment and the unamended control on 

either sample date (Table 2). Only one plant property differed between treatments, where plant-

tissue Hg concentration was 42.2% greater (P < 0.05) in the amended treatment than in the 

unamended control in November 2014 (Table 2). In May 2015, there was no difference in tissue-

Hg concentration between the amended treatment and unamended control (Table 2). However,   

tissue-Cu concentrations in the May 2015 sampling were 54% greater (P < 0.05) in the amended 

treatment than in the unamended control. 

 Soil pH and EC and Mehlich-3 extractable soil nutrient concentrations did not differ 

between the amended treatment and unamended control in all depth intervals prior to application 

(Table 3). Soil Ni concentrations (Table 3) and contents (Table 4) were greater (P < 0.05) in the 

10- to 20-cm depth interval of the unamended control and soil U concentrations (Table 3) were 
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greater (P < 0.05) in the unamended control in the 20- to 30-cm depth interval than in the 

amended treatment. Although the plots used in this field experiment received annual broiler litter 

application for an extended period of time prior to DFGD by-product application, the plots had 

not been amended with broiler litter for at least two years prior to the initiation of this 

experiment. Consequently, since plant tissue and soil trace element concentrations between pre-

assigned treatments differed only slightly, any differences observed after DFGD application in 

this study were assumed to be the result of the actual DFGD by-product application rather than 

due to inherent differences among plots prior to land application of the DFGD by-product. 

 

DFGD-Application Effects on Runoff and Runoff Water Quality 

 No noticeable temporal patterns in runoff (Figure 1) and runoff pH and EC (Figure 2) 

existed over the 12-mo study period. There were also no discernable patterns in mean runoff 

concentrations of As, Se, Cu, Be, and Cs (Figures 1, 3, and 4). However, in contrast to runoff and 

runoff pH and EC, runoff V concentrations in both the amended treatment and unamended 

control were greatest immediately following application, and then slowly decreased over 75 days 

following application (Figure 5). In contrast to V, runoff Zn concentrations started low 

immediately after application, but continued to increase for the remainder of the field experiment 

in both the amended treatment and unamended control (Figure 5). Mean runoff concentrations of 

U in the unamended control and amended treatment were near 0.5 µg L-1 immediately following 

application, but concentrations decreased to ~ 0.1 µg U L-1 25 days following application (Figure 

6). Although runoff V and U were initially high concentrations, the temporal trends for both 

treatments were similar. Mean runoff concentrations of Co, Ni, and Pb spiked midway through 

the experiment. Runoff Co concentrations from the amended treatment noticeably increased 
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starting 92 days after application and ending 187 days after application, while the unamended 

control remained relatively unchanged (Figure 6). Runoff Ni concentrations from the amended 

treatment increased 78 days after application and decreased 209 days after application (Figure 7). 

Mean runoff Ni concentration in the unamended control increased periodically between day 78 

and 209 after application. Runoff Pb concentrations from the amended treatment began to 

increase 78 days after application and decreased 187 days after application (Figure 7). In the 

unamended control, there was a similar increase in runoff Pb concentrations 112 days after 

application, but an immediate decrease occurred thereafter, which did not occur in the amended 

treatment. Similar to runoff Pb, runoff Rb concentrations started to increase 78 days after 

application, but a similar trend was also observed from the unamended control (Figure 8). Runoff 

Cr concentrations in the amended treatment increased to 4 µg L-1 by 94 days after application 

and to 6.6 µg L-1 by 116 days after application, but a similar trend did not occur in the 

unamended control (Figure 8). There was a spike in runoff Cd concentrations by 27 days after 

application and a similar spike in runoff Th concentrations by 43 days after application (Figure 

9). However, there were also similar spikes in mean runoff concentrations of Cd and Th 

concentrations in the unamended control (Figure 9).  

Annual FWM concentrations and loads of all trace elements examined in this study were 

unaffected (P > 0.05) by DFGD application (Table 5). Similarly, annual runoff and runoff pH 

and EC (Table 5) were unaffected (P > 0.05) by DFGD application. Of the 99 runoff samples 

collected that were analyzed for Hg, only 17 were above the detection limit of 0.05 µg L-1. 

Consequently, neither annual FWM Hg concentrations nor cumulative loads differed between 

treatments. 
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 Flow-weighted mean Ni concentration and V load differed (P < 0.05) between DFGD 

treatments among seasons (Table 6). Flow-weighted mean Ni concentration was 44.5%, greater 

(P < 0.05) from the amended treatment than the unamended control during the Fall season, while 

there was no effect of by-product treatment during the other three seasons (Figure 10). Vanadium 

load was 86.9% greater (P < 0.05) from the amended treatment than from the unamended control 

during the summer season, while there was no difference between treatments during the other 

three seasons (Figure 11). Flow-weighted mean As and U concentrations and Cr, Co, Ni, Cu, Se, 

Cd, Pb, and U loads were unaffected (P > 0.05) by both DFGD-by-product treatment and season 

(Table 6). 

Despite no treatment effects on annual FWM concentrations or loads, numerous seasonal 

differences in runoff water quality occurred between treatments. Averaged across DFGD 

treatment, runoff and runoff pH and EC, 12 of the 15 measured FWM elemental concentrations 

and 6 of the 15 elemental loads differed (P < 0.05) among seasons (Table 6). Seasonal runoff 

was greatest (P < 0.05) during the winter season, which did not differ from that during the 

summer season (Table 7). Seasonal EC was greatest (P < 0.05) during the fall season and lowest 

in the winter season (Table 7). The increase in runoff EC during the fall season may be attributed 

to the large FWM concentrations of Cr, Co, Ni, Cu, and Rb, which were also greatest during the 

fall season (Table 7). Runoff pH was greater (P < 0.05) during the fall, winter, and spring 

seasons, which did not differ, than during the summer season (Table 7). Flow-weighted mean V 

and Cs concentrations were greatest during the summer season, whereas FWM Se, Pb, and Cd 

concentrations were greatest during the spring season (Table 7). Seasonal Cs and Th loads were 

greatest during the summer season, whereas seasonal Be, Zn, As, and Rb loads were greatest 
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during the winter season (Table 7). The increase in Be, Zn, As, and Rb loads during the winter 

season may be attributed to increased runoff during the winter season (Table 7).  

 Averaged across seasons, by-product treatment had little effect on the water quality 

parameters examined in this study. Runoff and runoff pH and EC were unaffected (P > 0.05) by 

by-product treatment (Table 8). Flow-weighed mean Rb concentration and load were 47.2 and 

69.8% greater (P < 0.05), respectively, in the unamended control compared to the amended 

treatment (Table 8).  

 Currently, there is a lack of literature on the land-application effects of DFGD by-

products on runoff quantity and quality. The lack of impact of land application of DFGD by-

product on runoff FWM trace element concentrations and loads measured in this study was 

similar to that reported by Haefner et al. (1997), who evaluated the effects of land application of 

a FGD by-product to an abandoned mine land. Haefner et al. (1997) applied DFGD by-products 

at a rate of 280 Mg ha-1 and reported measured runoff As, Hg, Pb, and Se concentrations were 

typically below the detection limit and never exceeded the Environmental Protection Agency’s 

(EPA) maximum contaminant levels (MCLs; USEPA, 2016). Torbert and Watts (2014) applied 

FGD gypsum, which differs from DFGD by-products due to the lack of fly ash, to a sandy-loam 

Hapludult at rates of 0 (control), 2.2, 4.4, and 8.9 Mg ha-1 to evaluate the effect of application on 

runoff quality under simulated rainfall. After a 1-hr runoff event, runoff concentrations of trace 

elements (i.e., total As, Hg, Al, Sb, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Ag, V, Se, Th, and CrVI) 

were all below minimum detection limits, which ranged from 0.1 to 30 µg L-1 for Hg and Al, 

respectively.  
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DFGD-Application Effects on Aboveground Dry Matter 

 Unlike the runoff water quality parameters that were examined, there were greater effects 

of DFGD-by-product application on aboveground DM and trace element concentrations in plant 

tissue. Prior to application of the DFGD by-product (i.e., May 2015), there was no difference in 

aboveground DM and tissue concentrations of As, Se, V, Cr, Co, Hg and U between treatments. 

However, after treatment, aboveground DM and tissue V, Cr, Co, As, Se, Hg, and U 

concentrations differed (P < 0.05) between DFGD-by-product treatments over time (Table 9).  

Following the first harvest, when aboveground DM did not differ between DFGD-by-product 

treatments, aboveground DM decreased and remained similar over time for the remainder of the 

1-yr study period (Figure 12). The periodic disturbance from harvesting aboveground DM may 

have prevented growth from returning to pre-application levels. However, with the exception of 

the November 2015 sampling, aboveground DM was greater from the amended treatment than 

from the unamended control, indicating that land application of the DFGD by-product has 

fertilizer-nutrient value to stimulate plant growth. The composition of plant species in each plot 

may have also affected aboveground DM over time. Each plot had varying abundances of 

Johnson grass, clover, tall fescue, and Bermuda grass. Clover and tall fescue are cool-season 

species, whereas Johnson and Bermuda grass are warm-season species. The decrease in 

aboveground DM from August to November 2015 may be the result of the warm-season plants 

beginning to go dormant for the up-coming fall/winter seasons. Similar to the results of this 

study, application of a DFGD by-product to an acidic (pH ~ 4.4) Hapludult resulted in a 75% 

increase in growth of Northern red oak compared to the unamended control when applied at a 

rate equivalent to 1.5 times the soil’s lime requirement (Crews and Dick, 1998). 
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 Tissue concentrations of Hg, As, V, Se, Cr, Co, and U increased in the amended 

treatment 1 mo after application (i.e., June 2015) compared to the unamended control. One mo 

after application, the tissue Hg concentration in the amended treatment was 52.9% greater (P < 

0.05) than that in the unamended control (Figure 12). Tissue As concentrations in the amended 

treatment were 175% greater (P < 0.05) than those in the unamended control in June 2015, but 

did not differ (P > 0.05) from the unamended control in July and August 2015 (Figure 13). After 

the June 2015 sampling, tissue As concentrations in the amended treatment did not change over 

time (P > 0.05) for the remainder of the experiment, but were again greater (P < 0.05) than the 

unamended control in November 2015 and May 2016. Tissue As concentrations in the amended 

treatment were 104 and 70.5% greater than the unamended control for November 2015 and May 

2016, respectively. Selenium and Cr tissue concentrations in the amended treatment were greater 

(P < 0.05) than those in the unamended control in June and July 2015, but did not differ (P > 

0.05) from the unamended control in August and November 2015 and May 2016 (Figure 14). 

Tissue Se concentrations were 235 and 134% greater in the amended treatment than in the 

unamended control in June and July 2015. Tissue Cr concentrations in the amended treatment 

were 119 and 228% greater than those in the unamended control in June and July 2015 (Figure 

14). After June 2015, there was no difference in tissue V and Co concentrations between 

treatments (Figures 13 and 15). In the June 2015 sampling, tissue V and Co concentrations in the 

amended treatment were 471 and 134% greater, respectively, than those in the unamended 

control. Tissue U concentrations in the amended treatment were two-fold greater than those in 

the unamended control (Figure 15). Tissue U concentrations in the amended treatment were 

254% greater than those in the unamended control in June 2015 and 140% greater than those in 

the unamended control in August 2015. 
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The large increases in tissue Cr and Se concentrations were somewhat expected due to 

the increased mobility of selenate and chromate in the oxidizing environments (Alloway, 1995), 

which existed in this field study. Unlike Cr and Se, the significant increase in tissue 

concentrations of As were somewhat unexpected. Although As tends to undergo ligand exchange 

in soils and becomes bound to soil colloids, the somewhat low clay content (i.e., 5 to 15 % clay) 

in the top 30 cm of the soil profile may have limited As fixation and increased As bioavailability. 

Another possible explanation for the significant increase in tissue As concentrations in the 

amended treatment is the competitive uptake of phosphate with arsenate. Meharg and Macnair 

(1992) reported that phosphate and arsenate are taken up by plants through the same transport 

system. Similar to As, V exists in oxidizing soil environments primarily as the oxyanion 

vanadate (H2VO4
-) and behaves similarly to As and P in the environment (Alloway, 1995; Gabler 

et al., 2009). Because vanadate competes with As and P for adsorption sites on soil colloids, the 

significant increase in tissue V concentrations in the amended treatment may be the result of 

being out competed by phosphate and arsenate, which tend to have greater affinities than V for 

adsorption onto soil colloids (Mikkonen and Tummavuori, 1994; Jeong et al., 2007). Punshon et 

al. (2001) incubated a Typic Paleudult with FGD by-products at rates of 0, 55.5, 111, 167, and 

222 Mg FGD ha-1 to monitor the effects of application on plant growth and tissue composition in 

corn, soybean, radish, and cotton. Leaf and root tissue As and Se concentrations of all four crops 

were significantly affected by FGD incorporation (Punshon et al., 2001). Although tissue As and 

Se concentrations increased relative to the unamended control, there was no effect of FGD 

application on germination rates and all FGD application rates resulted in increased aboveground 

DM (Punshon et al., 2001).  
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Similar FGD treatment effects were reported by Adriano et al. (2001), where a Class-F 

fly ash, which has less Ca-oxides than Class-C fly ash, was incorporated into a silt-loam soil. 

Incorporation resulted in a significant increase in tissue As and Se concentrations in 

centipedegrass (Eremochloa ophiroides) (Adriano et al., 2001). Adriano et al. (2001) reported no 

increase in tissue Cr and Hg concentrations, which differed from the results of this experiment. 

Trace element concentrations measured in this study were dissimilar to those reported by Chen et 

al. (2001), who reported no effect of application of a FGD by-product on alfalfa tissue As, Cr, 

Pb, Hg, and Se concentrations. The soil used in the Chen et al. (2001) study was an acidic, silt-

loam-textured Alfisol, which may have had differential effects on the bioavailability of trace 

elements compared to the slightly acidic Ultisol soil used in the present field study. 

Averaged across DFGD-by-product treatment, plant tissue Cu, Rb, Cs, Pb, and Th 

concentrations differed (P < 0.05) over time (Table 9). Tissue concentrations of Cu, Cs, and Th 

were greatest (P <0.05) in June 2015, whereas tissue Rb concentrations were greatest (P < 0.05) 

in July 2015 (Table 10). In August 2015, tissue Pb concentrations were greatest, but did not 

differ (P > 0.05) from those in May and June 2015 (Table 10). 

Averaged across time, tissue Cu, Zn and Cs concentrations differed (P < 0.05) between 

DFGD-by-product treatments (Table 9). Both tissue Cu and Cs concentrations were greater in the 

amended treatment than in the unamended control (Table 11). Tissue Be, Ni, and Cd 

concentrations were unaffected (P > 0.05) by both DFGD-by-product treatment and time (Table 

9). 

Application of the DFGD by-product also had a significant effect on the cumulative plant 

uptake of trace elements. Cumulative plant uptake of V, Cr, Co, Cu, Zn, As, Se, Cs, Hg, Pb, Th, 

and U was greater (P < 0.05) in the amended treatment than in the unamended control (Table 
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11). Cumulative plant uptake of V, Cr, Co, Cu, Zn, As, Se, Cs, Hg, Pb, Th, and U were 318, 144, 

100, 63.4, 65.7, 157, 169, 139, 100, 83.3, 100, and 400% greater, respectively, in the amended 

treatment than in the unamended control. In contrast, cumulative plant uptake of Be, Ni, Rb, and 

Cd were unaffected (P > 0.05) by DFGD-by-product treatment (Table 11). 

 

DFGD-Application Effects on Soil Properties 

 With the exception of soil EC and acid-extractable Se concentration, all other soil 

properties measured in this study were affected (P < 0.05) by time, DFGD-by-product 

application, soil depth, or their interactions (Table 12). Soil EC and Se concentration were 

unaffected (P > 0.05) by any experiment factor evaluated in this study and averaged 150 µS cm-1 

and 1.2 μg kg-1, respectively, throughout the duration of the study. Application of the DFGD by-

product generally had a greater impact on Mehlich-3 extractable soil nutrients than on acid-

extractable trace elements.  

Averaged across soil depth, soil pH and Mehlich-3 extractable soil S, Na, and Mn 

concentrations differed (P < 0.05) between DFGD-by-product treatments over time (Table 12). 

Prior to application of the DFGD by-product, there was no difference in soil pH and Mehlich-3 

extractable soil S, Na, and Mn concentrations between treatments (Figure 16). Six mo after 

application, soil pH for the amended treatment (pH = 6.44) was significantly greater (P < 0.05) 

than that in the unamended control (pH = 6.15; Figure 16). Soil pH did not differ (P > 0.05) 

between treatments by 1 yr after application. Mehlich-3 extractable S concentration in the 

amended treatment was 170% greater than in the unamended control 6 mo after application, but 

did not differ (P > 0.05) from the unamended control by 1 yr after application (Figure 16). There 

was a significant decrease (P < 0.05) in Mehlich-3 extractable Mn concentration in the amended 
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treatment following application of the DFGD by-product (Figure 16). Mehlich-3 extractable Mn 

concentrations in the amended treatment were 43% lower than that in the unamended control 6 

mo after application (Figure 16). Mehlich-3 extractable Na concentrations by 6 mo and 1 yr after 

application in both treatments were greater (P < 0.05) than those prior to application of the 

DFGD by-product. The magnitude of increase was slightly greater in the amended treatment than 

in the unamended control (Figure 16). Concentrations of Mehlich-3 extractable Na were 52.1 and 

50.4% greater (P < 0.05) in the amended treatment than in the unamended control 6 mo and 1 yr 

after application, respectively (Figure 16). 

The ability of FGD by-products to act as liming materials has been reported by others. 

The DFGD by-product that was used in this experiment was used in a previous study to examine 

its liming characteristics. The DFGD by-product used in this experiment had a CaCO3 

equivalence (CCE) of 84.4% and an effective neutralizing value (ENV) of 79.4%, which are 

similar to commercially available liming materials (Burgess-Conforti et al., 2016). The DFGD 

by-product used in this experiment was as effective as reagent-grade CaCO3 at increasing soil pH 

when incubated with an acidic (pH ~4.3) clay soil at a rate equivalent to the soil’s lime 

requirement and more effective than reagent-grade CaCO3 at raising soil pH when incubated at a 

rate two times the soil’s lime requirement. Punshon et al. (2001) reported that the surface pH of 

soil used in a mesocosm study increased from 5.5 to 8.1 in mesocosms receiving the FGD by-

product.  

Soil pH is known to vary temporally due to changes in soil moisture, microbiological 

activity, and root activity. In this field study, there were varying amounts of clover in each plot. 

Having more legumes present could have increased N2 fixation, which subsequently could have 

undergone nitrification. Nitrification releases H+ ions into the soil, which would decrease soil 
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pH. If one or more plots had greater nitrification rates than other plots, an additional effect on 

soil pH could have occurred in addition to application of the DFGD by-product. 

Averaged across time, Mehlich-3 extractable soil Ca and Na concentrations differed (P < 

0.05) between DFGD-by-product treatments across soil depths (Table 12). Mehlich-3 extractable 

soil Ca concentration was greatest (P < 0.05) in the top 10 cm in both treatments compared to 

that in the other two depth intervals (Figure 17). In the amended treatment, Mehlich-3 extractable 

Ca concentration in the top 10 cm was 26.6% greater than that in the same depth interval for the 

unamended control (Figure 17). There was no difference (P > 0.05) in Mehlich-3 extractable Ca 

concentration between treatments in the 10- to 20- and 20- to 30-cm depth intervals. Mehlich-3 

extractable Na did not differ (P > 0.05) in the unamended control between depth intervals. 

Mehlich-3 extractable Na concentrations in the amended treatment were 60.8 and 27.8% greater 

than the unamended control in the 0- to 10- and 20- to 30-cm depth interval, respectively, but did 

not differ (P > 0.05) from the unamended control in the 10- to 20-cm depth interval (Figure 17). 

The ability of DFGD by-products to act as a Ca and S source has also been previously 

reported. When a FGD by-product was incorporated into a Typic Paleudult, acid-extractable soil 

Ca increased from 280 mg kg-1 in the unamended control to 1677 mg kg-1 in the soil receiving an 

FGD by-product at a rate of 55 Mg FGD ha-1 (Punshon et al., 2001). Chen et al. (2005) applied 

two types of FGD (FGD-containing vermiculite and FGD-containing perlite) by-products to a 

slightly acidic (pH ~ 6.1) Fragiudalf and reported increases in Mehlich-3 extractable S 

concentrations in both the 0- to 15- and 15- to 30-cm depth intervals. In the same experiment, 

Mehlich-3 extractable Ca concentrations increased in the top 15 cm after amendment compared 

to the unamended control (Chen et al., 2005). 
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Although DFGD by-products can act as a nutrient source, application of the DFGD by-

product in this field experiment resulted in a temporary decrease in Mehlich-3 extractable Mn 

and Zn. Punshon et al. (2001) also reported a decrease in extractable Mn and Zn in the soil 

receiving FGD by-products. A possible explanation may be the displacement of Mn and Zn by 

cations (i.e., Ca, Cd, Cu) and oxyanions (i.e., H2PO4
-, H2AsO4

-, H2VO4
-) that have greater 

affinities for adsorption sites, resulting in increased bioavailability and leachability. 

Averaged across time and soil depth, Mehlich-3 extractable soil Fe and acid-extractable 

Ni, Rb, and Cs concentrations differed (P < 0.05) between DFGD-by-product treatments (Table 

12). Mehlich-3 extractable Fe and acid-extractable Ni, Rb, and Cs concentrations were 10.0, 

22.7, 17.1, and 20% greater (P < 0.05), respectively, in the unamended control compared to the 

amended treatment (Table 13). 

Averaged across time and DFGD-by-product treatment, soil pH and Mehlich-3 

extractable soil K, Mg, S, Fe, Zn, Cu, and B and acid-extractable Be, V, Cr, Co, Ni, Rb, Cs, Pb, 

and Th concentrations differed (P < 0.05) among soil depths (Table 12). The soil pH of 6.3 in the 

top 10 cm was greater (P < 0.05) than the pH of 6.2 and 6.1 in the 10- to 20- and 20- to 30-cm 

depth intervals, respectively (Table 14). Except for Fe, Mehlich-3 extractable K, Mg, S, Zn, Cu, 

and B concentrations were greatest in the top 10 cm compared to the other two soil depth 

intervals. Mehlich-3 extractable Fe concentration was greatest in the 20- to 30-cm depth interval, 

but did not differ (P > 0.05) from that in the 10- to 20-cm depth interval. Acid-extractable Be, V, 

Cr, Co, Ni, Pb, and Th concentrations were greatest in the 20- to 30-cm depth interval, but did 

not differ (P > 0.05) from those in the 10- to 20-cm depth interval (Table 14). Acid-extractable 

Rb concentration was also greater (P < 0.05) in the 20- to 30- than that in the 10- to 20-cm depth 

interval. 
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Averaged across soil depths and DFGD-by-product treatments, Mehlich-3 extractable soil 

P, Fe, and Zn and acid-extractable Be, V, Cr, Co, As, Cd, Cs, Pb, Th, and U concentrations 

differed (P < 0.05) over the 1-yr time period of this field study (Table 12). Mehlich-3 extractable 

P, Fe, and Zn concentrations were greatest prior to application of the DFGD by-product, but did 

not differ (P > 0.05) from those by 1 yr after application (Table 15). Prior to application, 

concentrations of Mehlich-3 extractable P, Fe, and Zn were greater than those 6 mo after 

application by 60.5, 22.8, and 60%, respectively. Acid-extractable V, Cr, As, Cs, and Pb 

concentrations were also greatest prior to application of the DFGD by-product. The 

concentrations of acid-extractable V, Cr, As, Cs, and Pb were greater than those 6-mo after 

application by 23.2, 59.0, 25.0, 20, and 27.5%, respectively (Table 15). Acid-extractable U 

concentration was greatest prior to application, but did not differ from concentrations by 6 mo 

after application. Concentrations of acid-extractable U were 116.7% greater than those 1 yr after 

application. By 1 yr after application, acid-extractable Be, Co, Cd, and Th concentrations were 

greater compared to prior to or by 6 mo after application. One yr after application, concentrations 

of acid-extractable Be, Co, Cd, and Th were 40.0, 61.5, 100, and 126% greater than those 6 mo 

after application (Table 15). 

Using the measured soil bulk density at the end of the field study and assuming there was 

no change in bulk density in any of the three, 10-cm depth intervals over the course of the 1-yr 

study, elemental soil concentrations were converted to contents to better assess effects of DFGD 

application on elemental soil storage changes by soil depth and over time. With the exception of 

Mehlich-3 extractable soil K content, all other elemental soil contents measured in this study 

were affected (P < 0.05) by time, DFGD-by-product application, soil depth, or their interactions 

(Table 16). Mehlich-3 extractable soil K content was unaffected (P > 0.05) by any experiment 
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factor evaluated in this study and averaged 149 kg ha-1 in the top 30 cm throughout the duration 

of the study.  

Similar to soil S and Na concentrations, averaged across soil depth, Mehlich-3 extractable 

soil S and Na contents differed (P < 0.05) between DFGD-by-product treatments over time 

(Table 16). Prior to application of the DFGD by-product, there was no difference (P > 0.05) in 

Mehlich-3 extractable S and Na contents between treatments (Figure 18). By 6 mo after 

application, Mehlich-3 extractable S content was 166% greater (P < 0.05) in the amended 

treatment than in the unamended control (Figure 18). Mehlich-3 extractable Na content increased 

(P < 0.05) in in both treatments by 6 mo and 1 yr after application compared to pre-application 

levels (Figure 18). 

  Similar to soil Ca concentration, averaged across time, Mehlich-3 extractable soil Ca 

content differed (P < 0.05) between DFGD-by-product treatments across soil depths (Table 16). 

In the top 10 cm, Mehlich-3 extractable Ca content in the amended treatment was 30.4% greater 

(P < 0.05) than in the unamended control (Figure 19). Mehlich-3 extractable Ca content did not 

differ among soil depth intervals in the unamended control. There was no difference (P > 0.05) 

in Mehlich-3 extractable Ca content between treatments in the 10- to 20- and 20- to 30-cm depth 

intervals (Figure 19). 

Averaged across time and soil depth, Mehlich-3 extractable soil Fe and Mn and acid-

extractable Ni, Cd, Hg, and Pb contents differed (P < 0.05) between DFGD-by-product 

treatments (Table 16). Mehlich-3 Extractable Fe and Mn and acid-extractable Ni, Cd, and Pb 

contents were 9.3, 25.7, 21.4, 15.7, and 16.7% greater (P < 0.05), respectively, in the unamended 

control compared to the amended treatment (Table 17). Acid-extractable Hg content in the 

amended treatment was 289% greater (P < 0.05) than in the unamended control. 
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Averaged across time and DFGD-by-product treatment, Mehlich-3 extractable soil Mg, 

S, Fe, Mn, Zn, Cu, and B and acid-extractable Be, V, Cr, Co, Ni, Se, Rb, Cd, Cs, Pb, Th, and U 

contents differed (P < 0.05) among soil depths (Table 16). Mehlich-3 extractable Mg, S, Zn, Cu, 

and B contents were greatest (P < 0.05) in the top 10 cm, whereas Mehlich-3 extractable Fe and 

Mn contents were greatest (P < 0.05) in the 20- to 30-cm depth interval (Table 18). The contents 

of Mehlich-3 extractable Mg, S, Zn, Cu, and B in the 0- to 10-cm depth interval were 28.9, 42.2, 

62.0, 52.2, and 200%, respectively, greater than the 10- to 20-cm depth interval, (Table 18). 

Mehlich-3 extractable Fe and Mn in the 20- to 30-cm depth interval were 48.5 and 42.3%, 

respectively, greater than the 0- to 10-cm depth interval. Acid-extractable Ni, Cd, and Pb 

contents were greatest (P < 0.05) in the 20- to 30-cm depth interval. Acid-extractable Be, V, Cr, 

Co, Se, Rb, Th, and U contents were also greatest (P < 0.05) in the 20- to 30-cm depth interval, 

but did not differ (P > 0.05) from those contents in the 10- to 20-cm depth interval (Table 18). 

The contents of acid-extractable Be, V, Cr, Co, Se, Rb, Th, and U in the 20- to 30-cm depth 

interval were 66.7, 89.1, 76.6, 81.9, 62.5, 50.0, 70.0, and 82.8%, respectively, greater than the 0- 

to 10-cm depth interval. Acid-extractable Cs content was greatest in the 10- to 20-, but did not 

differ (P > 0.05) from that in the 20- to 30-cm depth interval. The content of acid extractable Cs 

was 100% greater than that of the 0- to 10-cm depth interval. 

Averaged across soil depths and DFGD-by-product treatments, Mehlich-3 extractable soil 

P, Fe, Mn, and Zn and acid-extractable Be, V, Cr, Co, As, Se, Cs, Pb, Th, and U contents 

differed (P < 0.05) over the 1-yr duration of this field study (Table 16). Mehlich-3 extractable P, 

Fe, Mn, and Zn contents were greatest (P < 0.05) prior to application of the DFGD by-product, 

but did not differ (P > 0.05) from those contents by 1 yr after application (Table 19). The 

contents of Mehlich-3 extractable P, Fe, Mn, and Zn prior to application were 61.1, 23.4, 36.7, 
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and 56.5%, respectively, greater than those 6 mo after application. Acid-extractable Cr and Th 

contents were greatest by 52.7 and 28.0% (P < 0.05) prior to application of the DFGD by-

product compared to 6 mo after application. Acid-extractable V, Se, and Pb contents were also 

greatest (P < 0.05) prior to application, but did not differ (P > 0.05) from those by 6 mo after 

application (Table 19). The contents of acid-extractable V, Se, and Pb prior to application were 

158, 100, and 33.3%, respectively, greater than those 1 yr after application. Acid-extractable As 

content was greatest (P < 0.05) by 6 mo after application, but did not differ (P > 0.05) from pre-

application levels. By 1 yr after application, acid-extractable Co, Cs, and U contents were greater 

(P < 0.05) than those at the other two time periods. The contents of acid-extractable Co, Cs, and 

U were 32.7, 100, and 120%, respectively, greater than those prior to application (Table 19). 

Acid-extractable Be content was also greatest (P < 0.05) by 1 yr after application, but did not 

differ (P > 0.05) from pre-application levels (Table 19). 

 

Environmental Impacts 

When utilized as a soil amendment applied to a managed grassland, DFGD by-product 

application produced greater aboveground DM compared to the unamended control for the three 

months following application, with minimal impact on environmental quality based on the 

measurements conducted in this study. If DFGD by-products were to be utilized as a pasture soil 

amendment, plant tissue and runoff concentrations of potentially toxic trace elements cannot 

exceed thresholds deemed safe for grazing animals. Tissue concentrations of Se were greatest 

one month after application and reached 2.6 mg kg-1. According to the National Research 

Council (NRC, 1983), livestock do not suffer from Se toxicity until feed has reached 

concentrations of 4 to 5 mg Se kg-1. The maximum mean concentration of As in the plant tissue 
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was 0.15 mg kg-1, which is much lower than the 2 mg As kg-1 feed restriction set by the 

European Union (EU) (Bampidis et al., 2013). The NRC reported that 50 and 100 mg As kg-1 

feed are the maximum tolerable doses of inorganic and organic As, respectively, in the diet of 

cattle (NRC, 2001). Although there was a significant increase in tissue Co concentrations from 

DFGD-by-product application, tissue Co concentrations were within the recommended range of 

100 to 500 µg Co kg-1 DM for cattle feedstuffs (NRC, 2001). The maximum tolerable Cr 

concentration for cattle feedstuffs ranges from 1000 to 3000 mg Cr kg-1 (NRC, 2001), which 

exceeds the plant tissue Cr concentrations reported in this study. The mean plant tissue Hg 

concentration in the DFGD-by-product amended treatment one month after application was 20.3 

µg kg-1, which is below the maximum tolerable concentration of 100 µg kg-1 set by the EU 

(Bampidis et al., 2013). The mean plant tissue V concentration in the amended treatment was 

0.76 mg kg-1 one month after application, which is below the 50 mg V kg-1 for cattle diets and 

below 7 mg V kg-1 for lamb diets (NRC, 2001). Land application of DFGD by-products for 

pasturelands may result in the contamination of ponds used for drinking water by cattle. 

However, none of the runoff water quality parameters measured in this experiment exceeded 

EPA’s Safe Drinking Water Act standards or recommended limits for trace element 

concentrations in cattle drinking water (USEPA, 2016; NRC, 2001; Table 20). 

The significant increase in cumulative plant uptake of V, Cr, Co, Cu, Zn, As, Se, Cs, Hg, 

Pb, Th, and U from DFGD application compared to the unamended control also demonstrates the 

potential for accumulation of trace elements in aboveground DM. Land application of DFGD by-

products may warrant caution depending on the designated use of the land and aboveground DM. 

Management techniques, including growth of hyperaccumulating vegetation, may be an 

advantageous method for mining the soil of trace elements applied in the DFGD by-product for 
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disposal, while still providing environmental benefits. Unlike aboveground DM, there was 

minimal effect of application on soil concentrations and contents of Mehlich-3 extractable 

nutrients and acid-extractable trace elements. The DFGD by-product was a liming material and a 

Ca and S source for the top 30 cm of the soil profile without increasing trace element 

concentrations. 

Considering two main loss mechanisms (i.e., plant uptake/removal and runoff) of 

elements applied in the DFGD-by-product treatment and the elemental composition of the DFGD 

by-product itself were directly measured, the percentages of plant uptake/removal and runoff 

losses of trace elements relative to that applied were calculated. Overall, the percentage of 

element accounted for by the sum of runoff, plant uptake/removal, and soil storage changes 

relative to that applied in the DFGD by-product ranged from -53.2% for Th to 1116% for Rb 

(Table 21). In general, the percentage of element accounted for by runoff, plant uptake/removal, 

and soil storage changes was typically low. Except for Rb and Cs, less than 1% of the trace 

elements added in the DFGD by-product were accounted for in runoff (Table 21). The 

percentage of element accounted for in runoff ranged from < 0.01 to 3.8% for Be and Cr and Rb, 

respectively. The percentage of element accounted for in plant uptake/removal was typically 

greater than that for runoff and ranged from 0.1 to 1112% for Be and Rb, respectively. Less than 

10% of Be, V, Cr, Co, Ni, Cu, As, Hg, and Th applied in the DFGD by-product was accounted 

for in runoff, plant uptake/removal, and soil storage changes over the 1-yr study period (Table 

21). The amount of Se, Cd, and U applied in the DFGD by-product accounted for in runoff, plant 

uptake/removal, and soil storage changes ranged from 11.4 to 21.5% for Se and Cd, respectively 

(Table 21). Zinc, Rb, Cs, and Pb applied in the DFGD by-product had greater than 50% 

accounted for in runoff, plant uptake/removal, and soil storage change (Table 21). More than 
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100% of Pb applied in the DFGD by-product was accounted for in plant uptake/removal, which 

may be related to the 44.8% decrease in soil Pb storage (Table 21). More than 1000% of Rb 

added in the DFGD by-product was accounted for by plant uptake/removal (Table 21). Over the 

1-yr study period, 138.4 g Rb ha-1, on average, were measured as cumulative plant 

uptake/removal from the amended treatment compared to 94 g Rb ha-1, on average, from the 

unamended control. Land application of the DFGD by-product added approximately 12.4 g Rb 

ha-1, which could explain the difference between the two treatments if spatial variability was 

taken into consideration.  

In the environmental conditions present during this experiment, volatilization of the trace 

elements studied was not expected. It is also possible that some quantity of trace elements may 

have leached below the 30-cm depth interval measured in this experiment or leached below the 

root zone (i.e., ~ 1 m) and out of the soil profile altogether. Although the DFGD by-product had 

minimal effects on runoff quantity and quality, accumulation of trace elements in the 

environment through long-term application, in time, might increase the amount of trace elements 

exported from the point of application via runoff. Though this study did not monitor the effects 

of land application of a high-Ca DFGD by-product on leaching of trace elements below the 30-

cm depth interval, it is known that certain heavy-metal trace elements, such as Se and Cr, are 

prone to leaching (Alloway, 1995; Kabata-Pendias and Pendias, 2001; Pirani et al., 2006), which 

could have implications on groundwater quality and movement of these elements in the soil 

profile and to neighboring ecosystems.  
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Summary and Conclusions 

  Over the 1-yr duration of this field study, land application of the DFGD by-product had 

minimal effect on runoff, runoff water quality, and trace elements in the soil. There was no 

difference in runoff or runoff pH and EC between the amended treatment and unamended 

control. Flow-weighted mean Ni concentrations and seasonal V loads were greater for one of 

four 3-mo seasons in the amended treatment compared to the unamended control. Averaged 

across soil depth, the DFGD-by-product-amended treatment had greater soil S and Na 

concentrations and contents compared to the unamended control by 6 mo and 1 yr after 

application. Averaged across time, the DFGD-by-product amended treatment had greater 

extractable soil Ca concentrations and contents in the top 10 cm than in the other soil depth 

intervals. Averaged across soil depth, soil pH in the DFGD-by-product-amended treatment was 

also greater compared to the unamended control by 6 mo after application.  

The greatest accumulation of trace elements was in the plant tissue. Over the 1-yr study, 

cumulative plant uptake of V, Cr, Co, Cu, Zn, As, Se, Cs, Hg, Pb, Th, and U were greater in the 

amended treatment compared to the unamended control. Plant tissue As, Co, Cr, Hg, Se, V, and 

U concentrations were significantly affected by time and DFGD application. Plant tissue As, Co, 

Cr, Hg, Se, V, and U concentrations significantly increased within 1 mo following application 

compared to pre-application concentrations, but either decreased to pre-application levels or did 

not differ from the unamended control within 3 to 6 mo after application. Vanadium appeared to 

be the most mobile trace element in the DFGD by-product, thus caution should be taken if V 

mobility and/or toxicity are concerns. Aboveground DM was greater in the amended treatment 

compared to the unamended control but never exceeded tolerable limits for cattle feed. High-Ca, 
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DFGD by-products may be a beneficial soil amendment for pasturelands if accumulation of trace 

elements in the environment do not exceed levels deemed appropriate for animal feeds. 

 The results of this experiment partially supported the initial hypothesis that application of 

the DFGD by-product would increase runoff concentrations of trace elements within the first 3-

mo. Only seasonal V loads significantly increased within the first 3-mo season following 

application in the amended treatment. Results also supported the hypothesis that plant tissue As, 

Cr, Hg, and Se concentrations would be increased compared to the unamended control within the 

first 3-mo season following application. This field study demonstrated that a high-Ca, DFGD by-

product could be applied to a managed grassland with minimal effects on runoff water quality 

within 1-yr following land-application.  

There is currently a lack of knowledge on the effects of land-application of CCBs on 

runoff water quality. Continued long-term study is needed to fully understand the effects of land 

application of CCBs on fate of trace elements contained in CCBs, particularly in diverse 

environmental conditions. The lack of data on trace element leaching from the amended soil in 

this experiment hinders any definitive conclusions about the fate and transport of trace elements 

in surface-applied DFGD by-products. Long-term application may also lead to accumulation of 

trace elements in the environment, which can further degrade soil, plant, groundwater, and/or 

runoff quality. If DFGD by-products were to be diverted from landfills and surface impounds for 

use as a soil amendment, research must show that the environmental impacts are minimal 

compared to current disposal methods. 
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Table 1. Chemical characteristics of a high-Ca, dry flue gas  

desulfurization (DFGD) by-product from the John W. Turk  

Power Plant in Hempstead County, AR.  

 

Parameter Mean (± Standard Error) 

pH 10.6 (0.29) 

ECa 2.4 (0.24) 

Acid-extractable Nutrients (g kg-1)  

     P 10.3 (0.05) 

     K 4.7 (0.02) 

     Ca 410 (0.60) 

     Mg 49.8 (0.07) 

     S 89.7 (0.44) 

     Na 14.1 (0.14) 

     Fe 64.2 (0.28) 

     Mn 0.2 (0.01) 

     Zn 0.3 (0.04) 

     Cu 0.2 (0.01) 

     B 1.0 (0.01) 

Trace Elements (mg kg-1)  

     Be 21.5 (0.11) 

     V 138 (0.74) 

     Cr 81.1 (0.21) 

     Co 16.9 (0.21) 

     Ni 43.1 (0.13) 

     As 13.3 (0.06) 

     Se 12.9 (0.10) 

     Rb 1.4 (0.01) 

     Cd 0.4 (0.02) 

     Cs 1.3 (0.12) 

     Hg 0.8 (0.01) 

     Pb 0.2 (0.02) 

     Th 3.4 (0.02) 

     U 5.3 (0.01) 
a DFGD by-product electrical conductivity (EC) is in mS cm-1 

 

 

  



118 

 

Table 2. Aboveground dry matter (DM) and trace element concentrations from November 2014 

and May 2015 immediately prior to application of a high-Ca, dry flue gas desulfurization by-

product.  

 

       November-14       May-15 

Parameter Treated Control  Treated Control 

DMa 2.7a† 1.5a  4.2a 3.9a 

Trace Elements (µg kg-1)      

     Be < 0.01a < 0.01a  < 0.01a 9.0a 

     V 58.8a 43.6a  144a 75.1a 

     Cr 141a 180a  192a 112a 

     Co 85.1a 48.4a  146a 102a 

     Ni 666a 384a  674a 580a 

     Cu 5398a 4643a  6484a 4211b 

     Zn 35412a 30902a  36751a 29000a 

     As 43.6a 32.5a  84.6a 66.0a 

     Se 603a 589.3a  600a 459a 

     Rb 5870a 4625a  5640a 6602a 

     Cd 39.0a 25.2a  36.6a 34.6a 

     Cs 162a 81.4a  236a 170a 

     Hg 31.7a 22.3b  14.7a 12.0a 

     Pb 112a 72.4a  156a 114a 

     Th 108a 47.4a  32.1a 20.0a 

     U 3.6a 1.9a  5.5a 2.8a 
a Dry matter data is in Mg ha-1 

† Means with the same letters within a row are not significantly different from each other at α = 

0.05. 
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Table 3. Initial Mehlich-3 extractable soil nutrient and trace element concentrations of a Captina 

silt loam in northwest Arkansas prior to application of a high-Ca, dry flue gas desulfurization by-

product.  

 

 Depth (cm) 

Parameter 

0 to 10  10 to 20  20 to 30 

Treated Control   Treated Control   Treated Control 

pH 6.3a† 6.3a  6.2a 6.2a  6.1a 6.1a 

ECa 173a 130a  146a 169a  165a 130a 

Mehlich-3 Extractable (mg kg-1) 

     P 299a 265a  261a 261a  259a 261a 

     K 188a 173a  113a 118a  92.2a 99.7a 

     Ca 1769a 1569a  12410a 1216a  1112a 1148a 

     Mg 170a 152a  107a 93.3a  79.0a 71.3a 

     S 22.2a 21.3a  13.5a 14.1a  9.6a 10.6a 

     Na 8.4a 8.2a  6.8a 7.1a  7.3a 7.7a 

     Fe 220a 232a  242a 263a  268a 289.0a 

     Mn 276a 300a  254a 288a  273a 307a 

     Zn 27.8a 23.3a  11.8a 13.5a  6.5a 8.4a 

     Cu 13.6a 11.7a  5.8a 7.1a  2.6a 3.0a 

     B 0.3a 0.3a  0.1a 0.1a  0.02a 0.03a 

Trace Elements (µg kg-1) 

     Be 0.6a 0.6a  0.6a 0.6a  0.6a 0.9a 

     V 13.8a 17.4a  21.2a 23.7a  20.0a 25.0a 

     Cr 15.8a 23.4a  26.3a 27.8a  22.4a 31.6a 

     Co 5.5a 6.6a  7.0a 10.4a  9.3a 8.4a 

     Ni 3.5a 4.0a  4.3b 6.4a  4.6a 6.3a 

     As 4.0a 4.9a  6.0a 6.1a  5.4a 6.6a 

     Se 1.2a 1.3a  1.2a 1.3a  1.1a 1.5a 

     Rb 7.2a 7.4a  7.2a 7.0a  7.3a 8.9a 

     Cd 0.1a 0.1a  0.1a 0.1a  0.1a 0.1a 

     Cs 0.6a 0.6a  0.6a 0.6a  0.6a 0.7a 

     Pb 21.2a 25.4a  26.3a 34.1a  32.9a 30.0a 

     Th 1.6a 1.9a  2.5a 2.4a  2.9a 2.7a 

     U 1.3a 1.4a   1.3a 1.3a   1.2b 1.4a 

† Means with the same letter within a soil depth are not significantly different from each other at 

α = 0.05. 
a Electrical conductivity (EC) is in µS cm-1 
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Table 4. Initial Mehlich-3 extractable soil nutrient and trace element contents of a Captina silt 

loam in northwest Arkansas prior to application of a high-Ca, dry flue gas desulfurization by-

product.  

 

  Depth (cm) 

 0 to 10   10 to 20   20 to 30 

Parameter Treated Control   Treated Control   Treated Control 

Mehlich-3 Extractable (kg ha-1) 

     P 326a† 279a  330a 347a  368a 360a 

     K 204a 183a  144a 156a  131a 138a 

     Ca 1903a 1644a  1587a 1600a  1575a 1577a 

     Mg 184a 161a  136a 123a  112.4a 98.8a 

     S 24.0a 22.3a  17.4a 18.7a  13.6a 14.6a 

     Na 9.1a 8.6a  8.7a 9.4a  10.3a 10.6a 

     Fe 238a 243a  311a 347a  380a 399a 

     Mn 297a 313a  326a 378a  388a 421a 

     Zn 30.1a 24.6a  14.9a 17.7a  9.3a 11.5a 

     Cu 14.9a 12.0a  7.3a 9.5a  3.7a 4.2a 

     B 0.4a 0.4a  0.1a 0.1a  0.03a 0.05a 

Trace Elements (g ha-1)    

     Be  0.6a 0.6a  0.8a 0.8a  0.9a 1.2a 

     V 14.8a 18.3a  27.4a 31.3a  28.4a 34.5a 

     Cr 17.0a 24.8a  34.3a 36.6a  31.9a 43.6a 

     Co 5.9a 7.0a  9.0a 13.9a  13.2a 11.6a 

     Ni 3.7a 4.2a  5.6b 8.4a  6.6a 8.7a 

     As 40.1a 38.9a  32.5a 36.6a  25.9a 41.5a 

     Se 4.3a 5.2a  7.8a 8.1a  7.6a 9.1a 

     Rb 1.3a 1.4a  1.5a 1.8a  1.5a 2.1a 

     Cd 7.8a 7.8a  9.3a 9.1a  10.4a 12.2a 

     Cs 0.1a 0.1a  0.1a 0.2a  0.2a 0.2a 

     Pb 0.6a 0.6a  0.8a 0.7a  0.9a 1.0a 

     Th 22.9a 26.6a  34.1a 45.2a  46.6a 41.3a 

     U 1.7a 2.0a   3.2a 3.1a   4.2a 3.7a 

† Means with the same letter within a soil depth are not significantly different from each other at 

α = 0.05. 
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Table 5. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a managed 

grassland on annual runoff, runoff pH, runoff electrical conductivity, and annual flow-weighted 

mean (FWM) concentrations and cumulative loads of trace elements.  

 

Parameter Treated Control 

Runoff (mm) 185a 219a 

pH 6.5a 6.5a 

Electrical Conductivity (µS cm-1) 246a 246a 

FWM (µg L-1)   
     Be 0.07a† 0.08a 

     V 8.5a 6.2a 

     Cr 1.4a 1.4a 

     Co 2.2a 2.2a 

     Ni 5.5a 6.6a 

     Cu 29.8a 37.2a 

     Zn 555a 791a 

     As 2.5a 2.8a 

     Se 2.2a 3.2a 

     Rb 29.9a 50.6a 

     Cd 0.6a 1.0a 

     Cs 0.3a 0.2a 

     Hg 1.9a 0.9a 

     Pb 4.3a 5.2a 

     Th 0.4a 0.3a 

     U 0.3a 0.2a 

Load (mg ha-1)   
     Be 1.4a† 1.7a 

     V 136a 97.2a 

     Cr 21.7a 21.6a 

     Co 33.7a 33.5a 

     Ni 86.4a 103a 

     Cu 465a 580a 

     Zn 8677a 12364a 

     As 38.9a 43.2a 

     Se 35.0a 49.2a 

     Rb 467a 789a 

     Cd 10.1a 15.9a 

     Cs 4.3a 2.6a 

     Hg 7.7a 2.4a 

     Pb 67.2a 81.5a 

     Th 5.5a 4.1a 

     U 5.1a 3.6a 

† Means with the same letter within a row are not significantly different from each other at α = 

0.05. 
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Table 6. Analysis of variance summary of the effects of treatment, season and their interactions 

on runoff, runoff pH and electrical conductivity (EC), flow-weighted mean (FWM) 

concentrations, and runoff loads of trace elements from a managed grassland that received a 

high-Ca, dry flue gas desulfurization by-product. 

 

  Source of Variation 

Parameter Treatment Season Treatment*Season 

 
__________________________________ P __________________________________ 

Runoff Volume 0.47 0.01 0.20 

pH 0.66 0.01 0.64 

EC 1.00 < 0.01 0.65 

FWM Concentration    
     Be 0.95 0.04 0.24 

     V 0.05 < 0.01 0.77 

     Cr 0.74 0.05 0.65 

     Co 0.21 < 0.01 0.12 

     Ni 0.37 < 0.01 0.05 

     Cu 0.40 < 0.01 0.80 

     Zn 0.21 < 0.01 0.07 

     As 0.47 0.21 0.31 

     Se 0.83 < 0.01 0.91 

     Rb 0.03 < 0.01 0.63 

     Cd 0.95 < 0.01 0.38 

     Cs 0.15 < 0.01 0.18 

     Pb 0.19 < 0.01 0.47 

     Th 0.58 < 0.01 0.85 

     U 0.19 0.30 0.52 

Load    
     Be 0.35 0.01 0.14 

     V 0.16 < 0.01 0.01 

     Cr 0.99 0.36 0.02 

     Co 0.99 0.85 0.46 

     Ni 0.52 0.10 0.13 

     Cu 0.27 1.00 0.56 

     Zn 0.23 < 0.01 0.24 

     As 0.60 0.01 0.06 

     Se 0.19 0.10 0.22 

     Rb 0.05 0.02 0.56 

     Cd 0.26 0.61 0.50 

     Cs 0.20 < 0.01 0.07 

     Pb 0.67 0.35 0.71 

     Th 0.51 < 0.01 0.37 

     U 0.24 0.39 0.13 
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Table 7. Effect of season on runoff, mean runoff electrical conductivity and pH, and flow-

weighed mean (FWM) concentrations and cumulative loads of trace elements from a managed 

grassland that received a high-Ca, dry flue gas desulfurization by-product. 

 

  Season 

Parameter Summer Fall Winter Spring 

Runoff (mm) 56.5ab† 30.1b 86.6a 29.5b 

Electrical conductivity (uS-1 cm) 201bc 381a 160c 241b 

pH 6.3b 6.6a 6.6a 6.51a 

FWM Concentration (µg L-1)  
     Be 0.1a 0.04b 0.1ab 0.1a 

     V 13.2a 2.7b 2.6b 3.28b 

     Cr 1.0b 2.1a 0.8b 0.92b 

     Co 1.3b 2.9a 0.9b 3.44a 

     Ni 3.2c 8.3a 3.9bc 5.59b 

     Cu 23.6b 44.7a 15.1b 52.56a 

     Zn 267c 445b 644a 692.99a 

     As 2.1ab 2.1ab 1.8b 2.83a 

     Se 1.3b 2.6b 1.8b 4.63a 

     Rb 17.2c 81.1a 23.9bc 38.09b 

     Cd 0.6b 0.7b 0.4b 1.38a 

     Cs 0.4a 0.1b 0.04b 0.09b 

     Pb 1.7c 5.5b 1.9c 8.90a 

     Th 0.6a 0.1b 0.1b 0.10a 

     U 0.2a 0.2a 0.2a 0.25a 

Load (mg ha-1)  
     Be 0.5ab 0.1c 0.6a 0.3bc 

     V 75.4a 8.0b 22.8b 8.2b 

     Cr 5.2a 7.0a 6.8a 2.7a 

     Co 6.7a 9.1a 8.3a 9.5a 

     Ni 17.2b 26.3ab 37.0a 14.6b 

     Cu 129a 126a 133a 134a 

     Zn 1484b 1301b 5556a 2179b 

     As 11.7ab 5.7b 16.6a 7.0b 

     Se 7.3b 7.1b 15.7a 12.0ab 

     Rb 86.8b 243a 211a 86.6b 

     Cd 3.0a 2.1a 3.5a 4.4a 

     Cs 3.0a 0.2b 0.4b 0.2b 

     Pb 9.2a 17.4a 17.1a 30.7a 

     Th 3.5a 0.3b 0.7b 0.3b 

     U 1.2ab 0.7b 1.4a 0.6b 

† Means within the same row with the same letter are not significantly different at α = 0.05. 
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Table 8. Effect of treatment on runoff, mean runoff electrical conductivity  

and pH, and flow-weighted mean (FWM) concentrations and cumulative  

loads of trace elements from a managed grassland that received a high-Ca, dry  

flue gas desulfurization by-product. 

 

Parameter Control Treated 

Runoff (mm) 54.9a† 46.9a 

Electrical conductivity (µS cm-1) 246a 246a 

pH 6.5a 6.5a 

FWM Concentration (µg L-1)              

     Be 0.8a 0.8a 

     V 4.9b 6.2a 

     Cr 1.1a 1.3a 

     Co 1.9a 2.4a 

     Ni 4.9a 5.5a 

     Cu 35.8a 32a 

     Zn 488a 537a 

     As 2.1a 2.3a 

     Se 2.6a 2.5a 

     Rb 47.7a 32.4b 

     Cd 0.8a 0.7a 

     Cs 0.1a 0.2a 

     Pb 3.9a 5.1a 

     Th 0.2a 0.2a 

     U 0.2a 0.2a 

Load (mg ha-1)  
     Be 0.4a 0.3a 

     V 24.3a 32.9a 

     Cr 5.4a 5.4a 

     Co 8.4a 8.4a 

     Ni 23.3a 19.4a 

     Cu 145a 116a 

     Zn 3091a 2169a 

     As 10.8a 9.7a 

     Se 12.3a 8.8a 

     Rb 197a 116b 

     Cd 4.0a 2.5a 

     Cs 0.6a 1.1a 

     Pb 20.4a 16.8a 

     Th 1.0a 1.4a 

     U 0.9a 1.0a 

† Means within the same row with the same letter are not significantly  

different at α = 0.05.  
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Table 9. Analysis of variance summary of the effects of treatment  

(i.e., control or treated), time (i.e., 0, 1, 2, 3, 6 and 12 mo after  

application), and their interactions on aboveground dry matter (DM)  

and plant tissue concentrations of trace elements. 

 

  Source of Variation 

Parameter Treatment Time Treatment*Time 

 
______________________________ P ___________________________ 

DM < 0.01 < 0.01 0.04 

Be 0.56 0.25 0.73 

V 0.01 < 0.01 0.01 

Cr < 0.01 < 0.01 < 0.01 

Co < 0.01 0.05 0.05 

Ni 0.89 0.22 0.51 

Cu 0.01 < 0.01 0.17 

Zn <0.01 0.81 0.96 

As < 0.01 < 0.01 < 0.01 

Se < 0.01 < 0.01 < 0.01 

Rb 0.59 0.01 0.68 

Cd 0.93 0.82 0.99 

Cs 0.03 0.01 0.87 

Hg < 0.01 < 0.01 0.04 

Pb 0.20 0.04 0.74 

Th 0.20 0.01 0.78 

U < 0.01 < 0.01 < 0.01 
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Table 10. Effect of time on aboveground dry matter (DM) and plant tissue concentrations of 

trace elements in a managed grassland amended with a high-Ca, dry flue as desulfurizatgion by-

product. 

 

  

Parameter 

Sample Date 

May 2015 June 2015 July 2015 August 2015 November 2015 May 2016 

DMa 4.0a† 2.6b 2.6b 2.6b 2.4b 2.8b 

Trace Elements (µg kg-1) 

Be 4.5a 22.5a 6.7a 13.9a 16.4a 12.7a 

V 110b 447a 178b 61.2b 63.7b 71.7b 

Cr 152b 329a 175b 144b 127b 105b 

Co 124bc 194a 176ab 120c 140abc 129bc 

Ni 627ab 685a 524ab 477ab 483ab 469b 

Cu 5348c 8213a 7450ab 6300bc 6471bc 3733d 

Zn 32876a 34693a 33666a 31314a 36123a 33990a 

As 75.3b 106a 60.5bc 55.5bc 53.9c 62.3bc 

Se 530c 1720a 1083b 929bc 679bc 604c 

Rb 6121bc 8030ab 9187a 6649bc 5889bc 4954c 

Cd 35.6a 34.5a 32.3a 34.9a 27.0a 33.6a 

Cs 204b 533a 153b 326ab 174.1b 222b 

Hg 13.3b 16.8a 7.2c 7.3c 9.0c - 

Pb 126abc 141ab 39.9c 153a 48.8c 58.4bc 

Th 26.1a 30.7a 12.5bc 23.1ab 10.4bc 8.4c 

U 4.2c 12.4a 1.8c 8.0b 2.9c 1.5c 
a Aboveground DM is in Mg ha-1 

† Means with the same letter within a row are not significantly different at α = 0.5. 
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Table 11. Effect of application of a high-Ca, dry flue gas desulfurization by-product on 

aboveground dry matter (DM) and plant tissue concentrations of trace elements, and on 

cumulative plant uptake of trace elements.  

 

  Treatment Effect  Annual Plant Uptake (g ha-1) 

Parameter Control Treated  Control Treated 

DM (Mg ha-1) 2.4b† 3.3a  - - 

Trace Elements       

     Be 16.3a‡ 9.3a  0.2a† 0.2a 

     V 78.8b 231a  1.1b 4.6a 

     Cr 126b 218a  1.8b 4.4a 

     Co 121b 173a  1.7b 3.4a 

     Ni 548a 540a  8.2a 10.9a 

     Cu 5789b 6715a  80.8b 132a 

     Zn 30496b 37058a  437b 724a 

     As 49.3b 88.8a  0.7b 1.8a 

     Se 640.3b 1208a  8.8b 23.7a 

     Rb 6630a 6981a  94.0a 138a 

     Cd 32.8a 33.1a  0.5a 0.7a 

     Cs 199b 338a  2.8b 6.7a 

     Hg 9.3b 12.1a  0.1b 0.2a 

     Pb 78.4a 110a  1.2b 2.2a 

     Th 16.1a 20.8a  0.2b 0.4a 

     U 2.8b 7.4a  0.04b 0.2a 

† Means within the same row with the same letter are not significantly different at α = 0.05. 

‡Trace elements are in µg kg-1 
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Table 12. Analysis of variance summary of the effects of time (T) (i.e., 0, 6 and 12 mo after 

application), treatment (TRT) (i.e., control or treated), soil depth (D) (i.e., 0-10, 10-20, and  

20-30 cm depth interval), and their interactions on soil pH, electrical conductivity (EC), and  

concentrations of Mehlich-3 extractable soil nutrients and trace elements. 

 

  Source of Variation 

Parameter T TRT D T*TRT TRT*D T*D T*TRT*D 

 _____________________________________________ P _____________________________________________ 

pH 0.08 0.03 < 0.01 0.04 0.34 0.62 0.19 

EC 0.80 0.82 0.48 0.40 0.14 0.91 0.35 

        

P 0.01 0.37 0.67 0.30 0.82 0.99 0.85 

K 0.22 0.57 < 0.01 0.59 0.78 0.60 0.61 

Ca 0.10 0.01 < 0.01 0.52 < 0.01 0.83 0.62 

Mg 0.19 0.10 < 0.01 0.57 0.87 0.82 0.20 

S 0.03 0.01 < 0.01 0.01 0.32 0.70 0.73 

Na < 0.01 < 0.01 < 0.01 < 0.01 0.04 0.56 0.44 

Fe < 0.01 0.01 0.02 0.11 0.79 0.28 0.56 

Mn < 0.01 < 0.01 0.14 0.04 0.25 0.81 0.41 

Zn 0.03 0.18 < 0.01 0.10 0.68 0.36 0.11 

Cu 0.28 0.67 < 0.01 0.68 0.82 0.80 0.51 

B 0.30 0.48 < 0.01 0.49 0.46 0.73 0.36 

        

Be 0.02 0.31 0.02 0.92 0.30 0.71 0.42 

V < 0.01 0.39 0.01 0.23 0.91 0.52 0.72 

Cr < 0.01 0.15 0.04 0.09 0.54 0.54 0.90 

Co < 0.01 0.28 0.01 0.86 0.47 0.89 0.61 

Ni 0.11 < 0.01 < 0.01 0.34 0.61 0.25 0.67 

As < 0.01 0.41 0.15 0.46 0.79 0.34 0.77 

Se 0.46 0.12 0.28 0.86 0.69 0.74 0.88 

Rb 0.19 0.01 < 0.01 0.52 0.55 0.34 0.28 

Cd < 0.01 0.50 0.45 0.76 0.93 0.94 0.78 

Hg 0.49 0.03 0.30 0.72 0.56 0.99 0.96 

Cs < 0.01 < 0.01 < 0.01 0.18 0.60 0.71 0.33 

Pb < 0.01 0.13 < 0.01 0.79 0.43 0.85 0.59 

Th < 0.01 0.42 0.01 0.21 0.92 0.90 0.86 

U < 0.01 0.11 0.26 0.92 0.32 0.16 0.84 
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Table 13. Effect of application of a high-Ca, dry flue  

gas desulfurization by-product to a silt-loam soil on  

soil pH, electrical conductivity (EC), and concentrations  

of Mehlich-3 extractable soil nutrients and trace elements.  

 

  Treatment 

Parameter Control Treated 

pH 6.2b† 6.3a 

ECa 149a 151a 

Mehlich-3 Extractable (mg kg-1) 

     P 238a 216a 

     K 119a 127a 

     Ca 1221b 1360a 

     Mg 92.5a 109a 

     S 16.7b 26.0a 

     Na 9.7b 13.4a 

     Fe 242a 220b 

     Mn 282a 221b 

     Zn 13.2a 10.8a 

     Cu 6.1a 5.5a 

     B 0.1a 0.2a 

Trace Elements (µg kg-1) 

     Be 0.7a 0.6a 

     V 15.4a 14.2a 

     Cr 18.4a 16.1a 

     Co 8.7a 7.9a 

     Ni 5.4a 4.4b 

     As 4.4a 4.1a 

     Se 1.3a 1.1a 

     Rb 8.2a 7.0b 

     Cd 0.1a 0.1a 

     Hg 276b 811a 

     Cs 0.6a 0.5b 

     Pb 25.6a 23.5a 

     Th 3.4a 3.2a 

     U 1.1a 1.0a 

† Means within the same row with different letters are  

significantly different at α = 0.05. 
a EC is in µS cm-1 
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Table 14. Effect of soil depth in a Captina silt-loam that a received a high-Ca, dry flue gas 

desulfurization by-product on soil pH, electrical conductivity (EC), and concentrations of 

Mehlich-3 extractable soil nutrients and trace elements. 

 

  Depth (cm) 

Parameter 0 to 10 10 to 20 20 to 30 

pH 6.3a† 6.2b 6.1c 

ECa 153a 155a 143a 

Mehlich-3 Extractable (mg kg-1) 

     P 243a 222a 216a 

     K 169a 106b 93.3b 

     Ca 1671a 1139b 1061b 

     Mg 144a 92.6b 65.0c 

     S 31.0a 18.0b 15.0b 

     Na 13.4a 10.7b 10.6b 

     Fe 215b 234ab 244a 

     Mn 243a 241a 270a 

     Zn 19.6a 9.9b 6.5b 

     Cu 9.9a 5.3b 2.3b 

     B 0.3a 0.1b 0.04b 

Trace Elements (µg kg-1) 

     Be 0.5b 0.6ab 0.7a 

     V 12.0b 15.3ab 17.3a 

     Cr 14.4b 17.8ab 19.5a 

     Co 6.8b 8.8a 9.3a 

     Ni 4.2b 4.9ab 5.6a 

     As 3.7a 4.3a 4.7a 

     Se 1.1a 1.1a 1.3a 

     Rb 6.8b 7.2b 8.7a 

     Cd 0.1a 0.1a 0.1a 

     Hg 706a 627a 296a 

     Cs 0.5b 0.5b 0.6a 

     Pb 20.9b 25.7a 27.1a 

     Th 2.7b 3.4ab 3.8a 

     U 1.1a 1.0a 1.0a 

† Means within the same row with different letters are significantly different at α = 0.05. 
a EC is in µS cm-1 
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Table 15. Effect of time on the soil pH, electrical conductivity (EC), and concentrations of 

Mehlich-3 extractable soil nutrients and trace elements in a Captina silt loam that received a 

high-Ca, dry flue gas desulfurization by-product. 

 

  Months After Application 

Parameter 0 6 12 

pH 6.2b† 6.3a 6.2b 

ECa 153a 146a 152a 

Mehlich-3 Extractable (mg kg-1) 

     P 268a 167b 246a 

     K 131a 105a 132 

     Ca 1343a 1310ab 1218b 

     Mg 112a 89.9a 100a 

     S 15.2b 25.3a 23.5a 

     Na 7.6b 13.2a 13.8a 

     Fe 253a 206b 234a 

     Mn 283a 205b 266a 

     Zn 15.2a 9.5b 11.2ab 

     Cu 7.2a 4.9a 5.3a 

     B 0.2a 0.2a 0.1a 

Trace Elements (µg kg-1) 

     Be 0.6ab 0.5b 0.7a 

     V 20.2a 16.4b 7.9c 

     Cr 25.6a 16.1b 11.0c 

     Co 7.9b 6.5b 10.5a 

     Ni 4.9ab 4.5b 5.3a 

     As 5.5a 4.4b 2.8c 

     Se 1.3a 1.1a 1.2a 

     Rb 7.5a 7.1a 8.1a 

     Cd 0.1b 0.1b 0.2a 

     Hg 465a 621a - 

     Cs 0.6a 0.5b 0.4c 

     Pb 28.3a 22.2b 23.2b 

     Th 2.3b 2.3b 5.2a 

     U 1.3a 1.2a 0.6b 

† Means within the same row with different letters are significantly different at α = 0.05. 
a EC is in µS cm-1 
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Table 16. Analysis of variance summary of the effects of time (T) (i.e., 0, 6 and 12 mo after 

application), treatment (TRT) (i.e., control or treated), soil depth (D) (i.e., 0-10, 10-20, and 20-30 

cm depth interval), and their interaction on soil contents of Mehlich-3 extractable soil nutrients  

and trace elements. 

 

  Source of Variation 

Element T TRT D T*TRT TRT*D T*D T*TRT*D 

 _____________________________________________ P _____________________________________________ 

P 0.01 0.40 0.51 0.33 0.95 0.96 0.86 

K 0.25 0.53 0.08 0.60 0.90 0.53 0.65 

Ca 0.12 0.01 < 0.01 0.58 0.01 0.85 0.76 

Mg 0.22 0.10 < 0.01 0.73 0.95 0.85 0.32 

S 0.04 0.01 0.04 0.02 0.48 0.85 0.91 

Na < 0.01 < 0.01 0.66 < 0.01 0.09 0.94 0.60 

Fe < 0.01 0.05 < 0.01 0.22 0.76 0.38 0.65 

Mn < 0.01 < 0.01 < 0.01 0.06 0.63 0.93 0.57 

Zn 0.03 0.19 < 0.01 0.13 0.85 0.45 0.18 

Cu 0.25 0.65 < 0.01 0.72 0.89 0.79 0.51 

B 0.25 0.44 < 0.01 0.52 0.38 0.64 0.35 

        

Be 0.04 0.35 < 0.01 0.89 0.36 0.77 0.56 

V < 0.01 0.54 < 0.01 0.26 0.92 0.33 0.80 

Cr < 0.01 0.27 < 0.01 0.12 0.65 0.37 0.92 

Co < 0.01 0.34 < 0.01 0.88 0.32 0.75 0.64 

Ni 0.25 0.01 < 0.01 0.35 0.52 0.44 0.72 

As < 0.01 0.43 0.34 0.55 0.28 0.69 0.56 

Se < 0.01 0.60 < 0.01 0.46 0.91 0.27 0.81 

Rb 0.55 0.20 0.01 0.84 0.89 0.82 0.91 

Cd 0.16 0.02 < 0.01 0.51 0.44 0.42 0.37 

Hg 0.45 0.02 0.46 0.71 0.62 0.96 0.95 

Cs < 0.01 0.61 < 0.01 0.77 0.82 0.85 0.80 

Pb < 0.01 < 0.01 < 0.01 0.25 0.66 0.88 0.50 

Th < 0.01 0.26 < 0.01 0.90 0.27 0.78 0.67 

U < 0.01 0.52 < 0.01 0.22 0.83 0.48 0.79 
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Table 17. Effect of application of a high-Ca, dry flue gas desulfurization  

by-product to a Captina silt-loam soil on the content of Mehlich-3  

extractable soil nutrients and trace elements. 

 

         Treatment 

Parameter Control Treated 

Mehlich-3 Extractable (kg ha-1) 

     P 297a† 270a 

     K 143a 155a 

     Ca 1494b 1664a 

     Mg 111a 132a 

     S 20.1b 31.4a 

     Na 12.0b 16.5a 

     Fe 304a 278b 

     Mn 352a 280b 

     Zn 15.6a 12.9a 

     Cu 7.2a 6.5a 

     B 0.2a 0.2a 

Trace Elements (g ha-1) 

     Be 0.8a 0.8a 

     V 19.6a 18.5a 

     Cr 23.2a 20.7a 

     Co 11.0a 10.1a 

     Ni 6.8a 5.6b 

     As 32.8a 29.4a 

     Se 5.5a 5.2a 

     Rb 1.6a 1.4a 

     Cd 10.3a 8.9b 

     Hg 331b 957a 

     Cs 0.2a 0.2a 

     Pb 0.7a 0.6b 

     Th 32.3a 30.1a 

     U 4.3a 4.1a 

† Means within the same row with the same letter are not significantly  

different at α = 0.05. 
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Table 18. Effect of soil depth in a Captina silt-loam soil that received a high-Ca, dry flue gas 

desulfurization by-product on the content of Mehlich-3 extractable soil nutrients and trace 

elements. 

 

  Depth (cm) 

Element 0 to 10 10 to 20 20 to 30 

Mehlich-3 Extractable (kg ha-1) 

     P 258a† 292a 302a 

     K 180a 137ab 131b 

     Ca 1778a 1478b 1481b 

     Mg 154a 119b 91.3b 

     S 33.0a 23.2b 21.1b 

     Na 14.2a 13.8a 14.8a 

     Fe 229c 304b 340a 

     Mn 256c 315b 377a 

     Zn 20.9a 12.9b 9.0b 

     Cu 10.5a 6.9b 3.1c 

     B 0.3a 0.1b 0.1b 

Trace Elements (g ha-1) 

     Be 0.6b 0.8a 1.0a 

     V 12.8b 19.9a 24.2a 

     Cr 15.4b 23.2a 27.2a 

     Co 7.2b 11.5a 13.1a 

     Ni 4.5c 6.3b 7.8a 

     As 35.5a 28.5a 29.3a 

     Se 4.0b 5.8a 6.5a 

     Rb 1.2b 1.4a 1.8a 

     Cd 7.2c 9.4b 12.1a 

     Hg 730a 788a 416a 

     Cs 0.1b 0.2a 0.19a 

     Pb 0.5c 0.6b 0.8a 

     Th 22.3b 33.5a 37.9a 

     U 2.9b 4.4a 5.3a 

† Means within the same row with the same letter are not significantly different at α = 0.05. 
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Table 19. Effect of time on the content of Mehlich-3 extractable soil nutrients and trace elements 

in a Captina silt loam that received a high-Ca, dry flue gas desulfurization by-product. 

 

  Months After Application 

Parameter 0 6 12 

Mehlich-3 Extractable (kg ha-1) 

     P 335a† 208b 307a 

     K 159a 127a 161a 

     Ca 1648a 1603ab 1486b 

     Mg 136a 109a 120a 

     S 18.4b 30.3a 28.6a 

     Na 9.5b 16.3a 17.1a 

     Fe 320a 259b 294.4a 

     Mn 354a 259b 334a 

     Zn 18.0a 11.5b 13.2ab 

     Cu 8.6a 5.8a 6.1a 

     B 0.2a 0.2a 0.1a 

Trace Elements (g ha-1) 

     Be 0.8ab 0.7b 0.9a 

     V 25.8a 21.0a 10.0b 

     Cr 31.3a 20.5b 13.9c 

     Co 10.1b 8.3b 13.4a 

     Ni 6.2a 5.8a 6.7a 

     As 35.9a 37.6a 19.8b 

     Se 7.0a 5.6a 3.5b 

     Rb 1.6a 1.4a 1.5a 

     Cd 9.4a 9.0a 10.3a 

     Hg 545a 743a - 

     Cs 0.1b 0.1b 0.2a 

     Pb 0.8a 0.7a 0.6b 

     Th 36.1a 28.2b 29.4b 

     U 3.0b 2.9b 6.6a 

† Means within the same row with the same letter are not significantly different at α = 0.05. 
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Table 20. Drinking water limitations of cattle and  

maximum contaminant levels for trace elements under the  

Safe Drinking Water Act (SDWA) (NRC, 2001). Adapted  

from United States Safe Drinking Water Act of 1974  

(USEPA, 2016). 

 

  Limit (µg L-1) 

Element Cattle SDWA 

As 50 10 

Be 4 4 

Cd 5 5 

Cr 100 100 

Co 1000 - 

Cu 1000 1300 

Pb 15 15 

Hg 10 2 

Ni 250 - 

Se 50 50 

V 100 - 

Zn 5000 - 

U - 30 
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Table 21. The percent of element from a land-applied high-Ca, dry flue gas desulfurization by-

product accounted for in runoff, aboveground dry matter (DM), and soil storage changes over a 

1-yr time period.  

 

  Percentage of Element Accounted For 

Element Runoff DM Soil Storage Change Total  

Be < 0.01 0.1 0.2 0.3 

V 0.01 0.4 -3 -2.6 

Cr < 0.01 0.6 -6.5 -5.9 

Co 0.02 2.2 7.2 9.4 

Ni 0.02 2.8 0.4 3.2 

Cu 0.02 6.9 -0.4 6.5 

Zn 0.7 57.1 -1.1 56.7 

As 0.03 1.5 -28.5 -27.0 

Se 0.03 20.5 -9.1 11.4 

Rb 3.8 1112 -0.2 1116 

Cd 0.3 16.5 4.7 21.5 

Cs 0.04 58.7 2.2 60.9 

Hg 0.03 2.7 - 2.7 

Pb 3.7 122 -44.8 80.9 

Th 0.02 1.4 -54.6 -53.2 

U 0.01 0.3 18.9 19.2 
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Figure 1. Time series trends of mean runoff and mean runoff Cs concentrations from a managed 

grassland that received a high-Ca, dry flue gas desulfurization by-product. Error bars represent 

standard errors about the mean. 
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Figure 2. Time series trends of mean runoff pH and runoff electrical conductivity (EC) from a 

managed grassland that received a high-Ca, dry flue gas desulfurization by-product. Error bars 

represent standard errors about the mean. 
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Figure 3. Time series trends of mean runoff As and Se concentrations from a managed grassland 

that received a high-Ca, dry flue gas desulfurization by-product. Error bars represent standard 

errors about the mean. 
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Figure 4. Time series trends of mean runoff Cu and Be concentrations from a managed grassland 

that received a high-Ca, dry flue gas desulfurization by-product. Error bars represent standard 

errors about the mean. 
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Figure 5. Time series trends of mean runoff V and Zn concentrations from a managed grassland 

that received a high-Ca, dry flue gas desulfurization by-product. Error bars represent standard 

errors about the mean. 
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Figure 6. Time series trends of mean runoff U and Co concentrations from a managed grassland 

that received a high-Ca, dry flue gas desulfurization by-product. Error bars represent standard 

errors about the mean. 
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Figure 7. Time series trends of mean runoff Ni and Pb concentrations from a managed grassland 

that received a high-Ca, dry flue gas desulfurization by-product. Error bars represent standard 

errors about the mean. 
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Figure 8. Time series trends of mean runoff Rb and Cr concentrations from a managed grassland 

that received a high-Ca, dry flue gas desulfurization by-product. Error bars represent standard 

errors about the mean. 
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Figure 9. Time series trends of mean runoff Cd and Th concentrations from a managed grassland 

that received a high-Ca, dry flue gas desulfurization by-product. Error bars represent standard 

errors about the mean. 
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Figure 10. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a 

managed grassland on seasonal flow-weighted mean Ni concentration. Means with the same 

letter are not significantly different at α = 0.05. 
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Figure 11. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a 

managed grassland on seasonal V load. Means with the same letter are not significantly different 

at α = 0.05. 
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Figure 12. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a 

managed grassland on aboveground dry matter (DM) and tissue Hg concentration. Means with 

the same letter are not significantly different at α = 0.05. 
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Figure 13. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a 

managed grassland on tissue As and V concentrations. Means with the same letter are not 

significantly different at α = 0.05. 
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Figure 14. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a 

managed grassland on tissue Se and Cr concentrations. Means with the same letter are not 

significantly different at α = 0.05. 
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Figure 15. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a 

managed grassland on tissue Co and U concentrations. Means with the same letter are not 

significantly different at α = 0.05. 
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Figure 16. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a 

managed grassland on soil pH and Mehlich-3 extractable soil S, Na, and Mn concentrations. 

Means with the same letter are not significantly different at α = 0.05. 
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Figure 17. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a 

managed grassland on Mehlich-3 extractable soil Ca and Na concentrations. Means with the 

same letter are not significantly different at α = 0.05. 
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Figure 18. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a managed 

grassland on Mehlich-3 extractable soil S and Na contents. Means with the same letter are not 

significantly different at α = 0.05. 
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Figure 19. Effect of application of a high-Ca, dry flue gas desulfurization by-product to a 

managed grassland on Mehlich-3 extractable soil Ca content. Means with the same letter are not 

significantly different at α = 0.05. 
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Summary and Overall Conclusions 

As predicted, the high-Ca DFGD by-product used in this experiment was as capable at 

raising soil pH as conventional liming materials. The ENV of the DFGD by-product was lower 

than that of reagent-grade CaCO3, but was similar to those of most commercially available 

liming materials. When incubated with an acidic clay soil, the DFGD by-product was as capable 

as reagent-grade CaCO3 at increasing soil pH, and more effective when incubated at a rate that 

was twice the soil’s lime requirement. In the field, there was also a significant increase in soil pH 

in plots receiving the DFDG by-product. Although the soil pH in plots receiving the DFGD by-

product 6 mo after application was only 0.3 pH units greater than the control, if soil samples 

were collected closer to the time of application, the soil pH would most likely be greater than 

6.44. The ability for this high-Ca DFGD by-product to raise soil pH above 7.0 may be 

advantageous, but the possibility of increasing soil pH above 8.0 warrants caution when being 

applied in large amounts. 

Over the 12-mo period of this experiment, seasonal FWM concentrations of Ni and 

seasonal loads of V were the only water quality parameters measured that significantly increased 

upon treatment with the DFGD by-product. There was no difference in annual or seasonal runoff 

volume, pH, or EC between the treated and unamended control. There was also no difference in 

annual FWM concentrations and 12-mo cumulative trace elements loads between the treated and 

unamended control. 

 There was a greater effect of application of the DFGD by-product on aboveground dry 

matter (DM) than runoff. Aboveground DM was significantly greater in the DFGD by-product 

amended treatment for 3 mo following application and may be attributed to the large 
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concentrations of essential plant nutrients in the by-product. Tissue As, Co, Cr, Hg, Se, V, and U 

concentrations were significantly greater in the amended treatment than in the unamended 

control for 3 mo following application. The low clay content of the soil in the research area and 

the long-term application of broiler litter prior to the beginning of this study may have reduced 

the ability for these trace elements to adsorb to soil colloids and increased their bioavailability. 

However, the concentrations of these trace elements never reached or exceeded levels deemed 

dangerous for consumption by cattle. Except for U, tissue As, Co, Cr, Hg, Se, and V 

concentrations either returned to pre-application levels or did not differ from the unamended 

control 3 mo after application. There was no difference in tissue U concentrations between the 

treated and unamended control 6 mo after application. Over the 12-mo experiment, cumulative 

plant uptake of As, Co, Cr, Cs, Cu, Hg, Pb, Se, Th, V, U, and Zn were significantly greater in the 

DFGD by-product amended treatment than in the unamended control. 

 There was no effect of application of the DFGD by-product on trace element soil 

concentrations and contents. Extractable soil Ca, S, and Na concentrations and contents were 

significantly greater in the amended treatment than the unamended control. This demonstrates 

the ability of this desulfurization by-product to act as a Ca and S source and may help explain the 

increase in aboveground DM. There was a decrease in Mehlich-3 extractable soil Mn 

concentrations 6 mo after application, but concentrations returned to pre-application levels 

within 12 mo. Previous research has highlighted the possibility of inducing saline soils due to the 

large concentrations of soluble salts present in FGD by-products. Soil electrical conductivity 

(EC) in the amended treatment did not differ from the unamended control during the 12-mo 

experiment. Soil EC in both treatments did not exceed 200 µS cm-1 during the duration of this 

experiment. 
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 The results of this experiment indicate that bioaccumulation of trace elements in 

aboveground biomass is of greater concern than contamination of runoff waters. However, 

continuous long-term application of DFGD by-products may increase runoff concentrations of 

trace elements as accumulation in the environment occurs. Management practices could be 

developed to help mitigate concern regarding accumulation of DFGD-by-product-applied trace 

elements in the environment. Growth of hyperaccumulating plants can be used to phytoremediate 

soils receiving DFGD by-products by mining trace elements from the soil. Application of DFGD 

by-products to a soil with greater clay content may also help sequester trace elements in the soil. 

Further research is needed to fully understand the environmental impacts of land applying DFGD 

by-products. Application in diverse environmental conditions can help extend information 

regarding potential impacts of land application. If it were to be shown that land application of 

these DFGD by-products has minimal environmental impacts, millions of megagrams of DFGD 

by-products can be diverted from landfills and surface impoundments, which pose significant 

environmental risk. 
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Appendix A. This appendix contains the calcium carbonate equivalence (CCE), degree of 

fineness, and effective neutralizing value (ENV) data that was inserted into the SAS program in 

Appendix B. 

Material rep CCE (%) DOF ENV (%) 

Fly Ash 1 60.54 94.4 56.93473 

Fly Ash 2 58.12 95.7 57.71243 

Fly Ash 3 62.2 95.1 57.32056 

DFGD 1 83.34 93.6 79.05089 

DFGD 2 84.2 94.3 79.56585 

DFGD 3 85.72 94.3 79.58273 

CaCO3 1 100 100 100 

CaCO3 2 100 100 100 

CaCO3 3 100 100 100 
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Appendix B. This appendix contains the SAS program used to analyze the data in Appendix A. 

data soil; 

  infile 'CCE_DOF_ENV data.csv' firstobs = 2 delimiter = "," ; 

  input Material $ rep CCE DOF ENV; 

run; 

 

proc print data = soil; 

run; 

 

title3 ‘CCE’; 

proc MIXED data = soil; 

 class Material; 

 model CCE=Material; 

 lsmeans Material / diff; 

 run; 

 

title3 ‘DOF’; 

proc MIXED data = soil; 

 class Material; 

 model DOF=Material; 

 lsmeans Material / diff; 

 run; 

 

title3 ‘ENV’; 

proc MIXED data = soil; 

 class Material; 

 model ENV=Material; 

 lsmeans Material / diff; 

 run; 

 quit;  
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Appendix C. This appendix contains the spreadsheet of soil pH response data that was inserted 

into the SAS program contained in Appendix D. 

Day Product Rate Rep pH 

0 Control 0 1 4.398 

0 Control 0 2 4.297 

0 Control 0 3 4.25 

5 Control 0 1 4.018 

5 Control 0 2 4.073 

5 Control 0 3 3.944 

10 Control 0 1 4.039 

10 Control 0 2 4.208 

10 Control 0 3 4.129 

15 Control 0 1 4.303 

15 Control 0 2 4.492 

15 Control 0 3 4.247 

20 Control 0 1 4.262 

20 Control 0 2 4.35 

20 Control 0 3 4.294 

25 Control 0 1 4.225 

25 Control 0 2 4.18 

25 Control 0 3 4.234 

30 Control 0 1 4.151 

30 Control 0 2 4.239 

30 Control 0 3 4.207 

35 Control 0 1 4.153 

35 Control 0 2 4.173 

35 Control 0 3 4.146 

40 Control 0 1 4.256 

40 Control 0 2 4.042 

40 Control 0 3 4.223 

0 Lime 0.5 1 5.268 

0 Lime 0.5 2 5.272 

0 Lime 0.5 3 5.539 

5 Lime 0.5 1 5.872 

5 Lime 0.5 2 6.105 

5 Lime 0.5 3 5.569 

10 Lime 0.5 1 6.235 

10 Lime 0.5 2 6.128 

10 Lime 0.5 3 6.487 
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Appendix C. (continued).  This appendix contains the spreadsheet of soil pH response data that 

was inserted into the SAS program contained in Appendix D. 

Day Product Rate Rep pH 

15 Lime 0.5 1 6.568 

15 Lime 0.5 2 6.627 

15 Lime 0.5 3 6.645 

20 Lime 0.5 1 6.696 

20 Lime 0.5 2 6.66 

20 Lime 0.5 3 6.701 

25 Lime 0.5 1 6.746 

25 Lime 0.5 2 6.689 

25 Lime 0.5 3 6.245 

30 Lime 0.5 1 6.875 

30 Lime 0.5 2 6.785 

30 Lime 0.5 3 6.973 

35 Lime 0.5 1 6.846 

35 Lime 0.5 2 6.748 

35 Lime 0.5 3 6.66 

40 Lime 0.5 1 6.933 

40 Lime 0.5 2 5.958 

40 Lime 0.5 3 7.103 

0 Lime 1 1 5.509 

0 Lime 1 2 5.988 

0 Lime 1 3 6.089 

5 Lime 1 1 6.401 

5 Lime 1 2 6.711 

5 Lime 1 3 5.569 

10 Lime 1 1 6.477 

10 Lime 1 2 6.53 

10 Lime 1 3 6.295 

15 Lime 1 1 6.49 

15 Lime 1 2 6.773 

15 Lime 1 3 6.644 

20 Lime 1 1 6.471 

20 Lime 1 2 6.45 

20 Lime 1 3 6.262 

25 Lime 1 1 7.044 

25 Lime 1 2 6.62 

25 Lime 1 3 6.736 
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Appendix C. (continued).  This appendix contains the spreadsheet of soil pH response data that 

was inserted into the SAS program contained in Appendix D. 

Day Product Rate Rep pH 

0 Fly Ash 0.5 1 4.339 

0 Fly Ash 0.5 2 4.387 

0 Fly Ash 0.5 3 4.216 

5 Fly Ash 0.5 1 4.55 

5 Fly Ash 0.5 2 4.586 

5 Fly Ash 0.5 3 4.619 

10 Fly Ash 0.5 1 4.736 

10 Fly Ash 0.5 2 4.667 

10 Fly Ash 0.5 3 4.773 

15 Fly Ash 0.5 1 4.594 

15 Fly Ash 0.5 2 4.801 

15 Fly Ash 0.5 3 4.776 

20 Fly Ash 0.5 1 4.508 

20 Fly Ash 0.5 2 4.48 

20 Fly Ash 0.5 3 4.757 

25 Fly Ash 0.5 1 4.98 

25 Fly Ash 0.5 2 5.235 

25 Fly Ash 0.5 3 5.01 

30 Fly Ash 0.5 1 4.749 

30 Fly Ash 0.5 2 4.909 

30 Fly Ash 0.5 3 4.838 

35 Fly Ash 0.5 1 4.776 

35 Fly Ash 0.5 2 4.791 

35 Fly Ash 0.5 3 4.821 

40 Fly Ash 0.5 1 4.896 

40 Fly Ash 0.5 2 4.849 

40 Fly Ash 0.5 3 4.633 

0 Fly Ash 1 1 4.326 

0 Fly Ash 1 2 4.511 

0 Fly Ash 1 3 4.524 

5 Fly Ash 1 1 5.317 

5 Fly Ash 1 2 4.825 

5 Fly Ash 1 3 4.733 

10 Fly Ash 1 1 5.261 

10 Fly Ash 1 2 5.316 

10 Fly Ash 1 3 5.245 
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Appendix C. (continued).  This appendix contains the spreadsheet of soil pH response data that 

was inserted into the SAS program contained in Appendix D. 

Day Product Rate Rep pH 

15 Fly Ash 1 1 5.058 

15 Fly Ash 1 2 5.513 

15 Fly Ash 1 3 5.621 

20 Fly Ash 1 1 6.442 

20 Fly Ash 1 2 6.235 

20 Fly Ash 1 3 5.44 

25 Fly Ash 1 1 6.133 

25 Fly Ash 1 2 5.913 

25 Fly Ash 1 3 5.982 

30 Fly Ash 1 1 6.987 

30 Fly Ash 1 2 7.392 

30 Fly Ash 1 3 6.322 

35 Fly Ash 1 1 6.333 

35 Fly Ash 1 2 6.936 

35 Fly Ash 1 3 7.016 

40 Fly Ash 1 1 6.166 

40 Fly Ash 1 2 6.891 

40 Fly Ash 1 3 7.053 

0 Fly Ash 2 1 5.174 

0 Fly Ash 2 2 6.028 

0 Fly Ash 2 3 5.534 

5 Fly Ash 2 1 6.866 

5 Fly Ash 2 2 6.501 

5 Fly Ash 2 3 6.781 

10 Fly Ash 2 1 6.694 

10 Fly Ash 2 2 7.651 

10 Fly Ash 2 3 8.048 

15 Fly Ash 2 1 7.945 

15 Fly Ash 2 2 7.836 

15 Fly Ash 2 3 7.897 

20 Fly Ash 2 1 7.783 

20 Fly Ash 2 2 8.21 

20 Fly Ash 2 3 8.509 

25 Fly Ash 2 1 7.007 

25 Fly Ash 2 2 8.316 

25 Fly Ash 2 3 7.821 
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Appendix C. (continued). This appendix contains the spreadsheet of soil pH response data that 

was inserted into the SAS program contained in Appendix D. 

Day Product Rate Rep pH 

30 Fly Ash 2 1 8.003 

30 Fly Ash 2 2 7.985 

30 Fly Ash 2 3 8.37 

35 Fly Ash 2 1 7.695 

35 Fly Ash 2 2 7.898 

35 Fly Ash 2 3 8.177 

40 Fly Ash 2 1 7.934 

40 Fly Ash 2 2 8.097 

40 Fly Ash 2 3 8.095 

0 DFGD 0.5 1 4.624 

0 DFGD 0.5 2 4.625 

0 DFGD 0.5 3 4.623 

5 DFGD 0.5 1 4.592 

5 DFGD 0.5 2 4.634 

5 DFGD 0.5 3 4.669 

10 DFGD 0.5 1 5.268 

10 DFGD 0.5 2 4.92 

10 DFGD 0.5 3 4.918 

15 DFGD 0.5 1 4.682 

15 DFGD 0.5 2 4.788 

15 DFGD 0.5 3 4.661 

20 DFGD 0.5 1 4.465 

20 DFGD 0.5 2 4.713 

20 DFGD 0.5 3 4.859 

25 DFGD 0.5 1 4.991 

25 DFGD 0.5 2 4.758 

25 DFGD 0.5 3 4.903 

30 DFGD 0.5 1 4.543 

30 DFGD 0.5 2 4.861 

30 DFGD 0.5 3 4.655 

35 DFGD 0.5 1 4.661 

35 DFGD 0.5 2 4.862 

35 DFGD 0.5 3 4.902 

40 DFGD 0.5 1 5.113 

40 DFGD 0.5 2 5.015 

40 DFGD 0.5 3 5.005 
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Appendix C. (continued). This appendix contains the spreadsheet of soil pH response data that 

was inserted into the SAS program contained in Appendix D. 

Day Product Rate Rep pH 

0 DFGD 1 1 5.086 

0 DFGD 1 2 4.933 

0 DFGD 1 3 4.16 

5 DFGD 1 1 5.723 

5 DFGD 1 2 6.115 

5 DFGD 1 3 5.353 

10 DFGD 1 1 6.549 

10 DFGD 1 2 5.325 

10 DFGD 1 3 6.589 

15 DFGD 1 1 6.404 

15 DFGD 1 2 6.386 

15 DFGD 1 3 6.33 

20 DFGD 1 1 6.518 

20 DFGD 1 2 6.223 

20 DFGD 1 3 6.484 

25 DFGD 1 1 6.527 

25 DFGD 1 2 6.476 

25 DFGD 1 3 6.595 

30 DFGD 1 1 6.928 

30 DFGD 1 2 6.829 

30 DFGD 1 3 6.889 

35 DFGD 1 1 6.31 

35 DFGD 1 2 6.621 

35 DFGD 1 3 6.607 

40 DFGD 1 1 6.981 

40 DFGD 1 2 7.078 

40 DFGD 1 3 6.818 

0 DFGD 2 1 5.835 

0 DFGD 2 2 5.734 

0 DFGD 2 3 5.663 

5 DFGD 2 1 6.982 

5 DFGD 2 2 6.397 

5 DFGD 2 3 7.145 

10 DFGD 2 1 7.345 

10 DFGD 2 2 7.364 

10 DFGD 2 3 7.369 
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Appendix C. (continued). This appendix contains the spreadsheet of soil pH response data that 

was inserted into the SAS program contained in Appendix D. 

Day Product Rate Rep pH 

15 DFGD 2 1 7.312 

15 DFGD 2 2 7.562 

15 DFGD 2 3 7.87 

20 DFGD 2 1 7.608 

20 DFGD 2 2 7.932 

20 DFGD 2 3 7.512 

25 DFGD 2 1 7.745 

25 DFGD 2 2 8.09 

25 DFGD 2 3 7.854 

30 DFGD 2 1 7.503 

30 DFGD 2 2 7.756 

30 DFGD 2 3 7.59 

35 DFGD 2 1 7.583 

35 DFGD 2 2 7.619 

35 DFGD 2 3 7.789 

40 DFGD 2 1 8.036 

40 DFGD 2 2 7.52 

40 DFGD 2 3 8.354 

 

 

 

  



169 

 

Appendix D. This appendix contains the SAS program used to analyze soil pH response data 

presented in Appendix C. 

data soil; 

  infile 'IncubationSAS.csv' firstobs = 2 delimiter = "," ; 

  input Day Product $ Rate rep pH; 

run; 

 

proc print data = soil; 

run; 

 

proc mixed data = soil method = type3; 

  class Product Rate rep Day; 

  model pH = Product Rate Product*Rate Day Product*Day 

             Rate*Day Product*Rate*Day / ddfm = kr; 

  lsmeans Product*Rate*Day / diff; 

run; 

quit; 
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Appendix E. This appendix contains the annual runoff, mean runoff electrical conductivity, and 

runoff pH data that was inserted into the SAS program presented in Appendix G. 

Plot Treatment mm EC pH 

1 Treated 197.778 274.499 6.633 

2 Treated 218.478 236.912 6.490 

3 Control 338.422 231.573 6.511 

4 Control 163.511 258.852 6.453 

5 Treated 141.367 227.020 6.432 

6 Control 156.222 248.312 6.502 
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Appendix F. This appendix includes the annual FWM concentration data that was 

inserted into the SAS program presented in Appendix G. 

  (µg L) 

Plot TRT Be V Cr Co Ni Cu Zn As 

1 Treated 0.104 8.043 2.328 2.805 8.323 30.599 668.109 3.069 

2 Treated 0.043 8.063 1.138 2.596 5.499 33.628 632.789 2.456 

3 Control 0.078 9.738 1.911 3.648 10.798 54.842 1287.913 4.048 

4 Control 0.085 4.201 1.122 1.339 4.625 31.723 549.043 1.916 

5 Treated 0.067 9.128 0.701 1.061 2.772 25.087 365.447 1.947 

6 Control 0.075 4.729 1.115 1.450 4.495 24.913 537.496 2.330 
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Appendix F. (continued) This appendix includes the annual FWM concentration 

data that was inserted into the SAS program in Appendix G. 

  (µg L) 

Plot TRT Se Rb Cd Cs Pb Hg Th U 

1 Treated 2.200 34.748 0.764 0.228 5.232 2.222 0.393 0.243 

2 Treated 2.443 37.723 0.643 0.232 5.099 2.567 0.232 0.337 

3 Control 4.945 70.065 1.917 0.307 10.337 0.820 0.532 0.369 

4 Control 1.879 53.843 0.549 0.095 2.863 0.615 0.108 0.159 

5 Treated 2.075 17.275 0.523 0.360 2.566 0.965 0.435 0.209 

6 Control 2.624 27.742 0.589 0.088 2.458 1.350 0.150 0.167 
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Appendix G. This appendix contains an example of the SAS program used to analyze the data 

presented in Appendix E and F. 

 

Title3 'Annual FWM, Runoff, EC, pH'; 

 

data Runoff; 

  infile 'Annual_FWM(µg.L).csv' firstobs = 2 delimiter = "," ; 

  input Plot Treatment $ mm EC pH Be V Cr Co Ni Cu Zn As Se Rb Cd Cs Pb Hg Th U; 

run; 

 

proc print data = runoff; 

run; 

 

title3 'mm'; 

proc MIXED data=runoff; 

 class Treatment; 

 model mm=Treatment 

 lsmeans Treatment / diff; 

 run; 
 

title3 'EC'; 

proc MIXED data=runoff; 

 class Treatment; 

 model EC=Treatment 

 lsmeans Treatment / diff; 

 run; 
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Appendix H. This appendix includes the cumulative load data that was inserted into the SAS 

program in Appendix I. 

  (mg/ha) 

Plot TRT Be V Cr Co Ni Cu Zn As 

1 Treated 2.063 125.653 36.369 43.827 130.018 478.031 10437.341 47.942 

2 Treated 0.938 125.956 17.774 40.558 85.902 525.337 9885.574 38.362 

3 Control 2.643 152.136 29.853 56.988 168.696 856.757 20120.064 63.235 

4 Control 1.397 65.632 17.526 20.923 72.258 495.586 8577.278 29.929 

5 Treated 1.047 147.136 10.955 16.570 43.306 391.911 5709.100 30.421 

6 Control 1.167 73.882 17.421 22.655 70.222 389.201 8396.876 36.404 

          
  



175 

 

Appendix H. (continued). This appendix includes the cumulative load data that was inserted 

into the SAS program in Appendix I. 

  (mg/ha) 

Plot TRT Se Rb Cd Cs Pb Hg Th U 

1 Treated 34.369 542.841 11.942 3.562 81.733 12.344 6.137 6.835 

2 Treated 38.168 589.320 10.047 3.624 79.660 8.556 3.623 5.259 

3 Control 77.247 1094.57 29.953 4.799 161.486 2.733 8.313 5.771 

4 Control 29.351 841.149 8.576 1.479 44.722 1.367 1.695 2.490 

5 Treated 32.413 269.881 8.175 5.622 40.084 2.144 6.795 3.261 

6 Control 40.990 433.387 9.208 1.379 38.397 3.000 2.348 2.615 
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Appendix I. This appendix contains an example of the SAS program used to analyze the data 

presented in Appendix H. 

 

Title3 'Cumulative Load'; 

 

data Runoff; 

  infile 'Cumul_Runoff_Load(mg.ha).csv' firstobs = 2 delimiter = "," ; 

  input Plot Treatment $ Be V Cr Co Ni Cu Zn As Se Rb Cd Cs Pb Hg Th U; 

run; 

 

proc print data = runoff; 

run; 

 

title3 'Be'; 

proc MIXED data=runoff; 

 class Treatment; 

 model Be=Treatment 

 lsmeans Treatment / diff; 

 run; 

 

title3 'V'; 

proc MIXED data=runoff; 

 class Treatment; 

 model V=Treatment 

 lsmeans Treatment / diff; 

 run; 
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Appendix J. This appendix contains the seasonal runoff flow-weighted mean concentration data 

that was inserted into the SAS program in Appendix L. 

   (FWM µg/L) 

 

Plot TRT Season Be V Cr Co Ni Cu Zn 

1 T 1 0.118 14.001 1.092 1.452 3.456 17.906 195.326 

1 T 2 0.053 3.188 5.094 4.018 13.398 32.303 559.932 

1 T 3 0.114 2.901 0.671 1.249 4.680 16.023 721.884 

1 T 4 0.154 3.311 0.965 4.478 7.800 62.027 746.599 

2 T 1 0.053 15.788 0.890 0.802 2.748 22.875 227.127 

2 T 2 0.029 4.022 1.625 4.959 8.972 39.766 393.028 

2 T 3 0.021 1.848 0.525 0.755 2.407 14.871 481.924 

2 T 4 0.103 2.726 0.826 4.055 5.880 39.047 779.441 

3 C 1 0.142 14.209 0.922 1.161 3.668 24.423 274.528 

3 C 2 0.042 1.882 1.020 2.161 6.508 44.501 355.465 

3 C 3 0.066 2.681 0.829 1.096 5.461 14.952 705.780 

3 C 4 0.078 2.301 0.858 2.957 3.972 33.336 795.947 

4 C 1 0.080 8.861 0.979 2.061 3.540 31.192 397.187 

4 C 2 0.025 0.935 1.301 0.835 5.820 36.131 320.069 

4 C 3 0.129 3.159 1.032 0.793 4.834 16.916 643.608 

4 C 4 0.021 0.913 1.141 1.790 3.392 63.838 584.681 

5 T 1 0.079 13.104 0.740 0.826 2.186 20.929 260.581 

5 T 2 0.051 2.894 0.928 2.583 7.052 49.579 663.310 

5 T 3 0.031 4.909 0.573 0.268 1.733 12.145 674.027 

5 T 4 0.100 6.067 1.015 2.729 5.976 60.383 742.902 

6 C 1 0.084 13.040 1.124 1.366 3.514 24.519 252.813 

6 C 2 0.033 3.277 2.699 2.910 8.050 65.810 383.845 

6 C 3 0.075 2.839 0.894 0.958 3.998 15.454 638.775 

6 C 4 0.119 4.340 0.704 4.603 6.518 58.513 508.395 
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Appendix J. (continued) This appendix contains the seasonal runoff flow-weighted mean 

concentration data that was inserted into the SAS program in Appendix L. 

 

   (FWM µg/L) 

 

Plot TRT Season As Se Rb Cd Cs Pb Th U 

1 T 1 2.195 1.311 12.608 0.571 0.473 1.651 0.759 0.169 

1 T 2 2.089 1.865 59.251 0.657 0.058 6.880 0.191 0.249 

1 T 3 2.566 1.595 18.387 0.351 0.029 2.757 0.071 0.168 

1 T 4 3.519 3.588 35.354 1.741 0.154 11.894 0.117 0.228 

2 T 1 2.085 1.070 9.214 0.422 0.533 1.476 0.450 0.346 

2 T 2 2.626 2.713 66.801 0.965 0.049 8.954 0.062 0.290 

2 T 3 1.237 1.364 23.562 0.178 0.028 1.399 0.054 0.151 

2 T 4 1.988 3.110 30.501 0.904 0.085 9.060 0.132 0.291 

3 C 1 2.122 1.183 14.759 0.443 0.608 1.527 0.975 0.221 

3 C 2 1.350 2.184 92.361 0.738 0.046 4.951 0.091 0.214 

3 C 3 1.871 1.892 25.619 0.603 0.045 1.766 0.079 0.154 

3 C 4 2.034 4.028 16.922 1.918 0.034 13.360 0.113 0.132 

4 C 1 1.810 1.478 38.909 0.931 0.197 1.861 0.278 0.134 

4 C 2 0.773 1.779 130.730 0.318 0.072 2.843 0.034 0.059 

4 C 3 2.259 1.813 36.234 0.209 0.052 2.368 0.038 0.208 

4 C 4 1.571 2.320 44.443 0.955 0.035 5.301 0.058 0.105 

5 T 1 1.913 1.299 9.642 0.396 0.554 1.619 0.683 0.247 

5 T 2 3.424 4.028 72.360 0.897 0.056 4.553 0.031 0.187 

5 T 3 1.037 1.566 18.618 0.302 0.026 1.165 0.055 0.067 

5 T 4 3.430 6.772 32.661 1.513 0.127 9.209 0.094 0.309 

6 C 1 2.639 1.702 17.923 0.576 0.166 1.765 0.241 0.112 

6 C 2 2.278 3.012 64.833 0.485 0.060 4.620 0.111 0.224 

6 C 3 2.073 2.326 20.694 0.550 0.071 2.103 0.138 0.150 

6 C 4 4.427 7.988 68.675 1.268 0.112 4.560 0.091 0.418 
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Appendix K. This appendix contains the seasonal runoff, electrical conductivity (EC), and 

runoff pH, and seasonal load data that was inserted into the SAS program in Appendix L. 

      Load (mg/ha) 

 

Plot TRT SSN mm EC pH Be V Cr Co Ni 

1 T 1 59.722 226.24 6.56 0.706 83.619 6.524 8.674 18.576 

1 T 2 45.444 429.08 6.74 0.240 14.489 23.148 18.261 54.799 

1 T 3 76.111 225.83 6.66 0.864 22.082 5.105 9.503 32.058 

1 T 4 16.500 216.84 6.58 0.254 5.464 1.591 7.389 11.583 

2 T 1 54.589 143.44 6.21 0.289 86.186 4.857 4.380 13.500 

2 T 2 29.889 363.15 6.72 0.086 12.022 4.858 14.823 24.133 

2 T 3 99.944 202.14 6.67 0.212 18.465 5.246 7.545 21.655 

2 T 4 34.056 238.92 6.37 0.352 9.282 2.813 13.810 18.023 

3 C 1 59.422 138.59 6.22 0.843 84.434 5.479 6.897 19.616 

3 C 2 53.444 370.78 6.75 0.226 10.057 5.453 11.550 31.304 

3 C 3 151.278 126.12 6.61 0.993 40.555 12.545 16.579 74.352 

3 C 4 74.278 290.80 6.46 0.580 17.091 6.376 21.961 26.554 

4 C 1 43.011 256.52 6.37 0.344 38.111 4.212 8.863 13.704 

4 C 2 23.000 363.23 6.50 0.058 2.150 2.993 1.920 12.047 

4 C 3 73.333 149.70 6.49 0.944 23.165 7.565 5.813 31.903 

4 C 4 24.167 265.96 6.46 0.051 2.206 2.757 4.326 7.378 

5 T 1 95.200 178.28 5.99 0.750 124.754 7.043 7.868 18.731 

5 T 2 12.222 340.10 6.38 0.062 3.537 1.135 3.157 7.757 

5 T 3 15.111 105.90 6.83 0.048 2.885 0.865 0.405 2.358 

5 T 4 18.833 283.80 6.52 0.188 11.426 1.912 5.140 10.129 

6 C 1 26.889 264.77 6.31 0.226 35.063 3.021 3.672 8.504 

6 C 2 16.667 425.25 6.40 0.056 5.462 4.498 4.850 12.075 

6 C 3 103.500 149.27 6.60 0.776 29.379 9.257 9.913 37.243 

6 C 4 9.167 153.96 6.71 0.109 3.979 0.645 4.220 5.377 
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Appendix K. (continued) This appendix contains the seasonal runoff, electrical conductivity 

(EC), and runoff pH, and seasonal load data that was inserted into the SAS program in Appendix 

L. 

   Load (mg/ha) 

 

Plot TRT SSN Cu Zn As Se Rb Cd Cs 

1 T 1 106.937 1166.530 13.111 7.831 75.299 3.410 2.823 

1 T 2 146.798 2544.581 9.494 8.476 269.261 2.986 0.263 

1 T 3 121.953 5494.343 19.531 12.141 139.947 2.673 0.222 

1 T 4 102.344 1231.888 5.806 5.921 58.334 2.873 0.254 

2 T 1 124.871 1239.863 11.381 5.840 50.300 2.305 2.909 

2 T 2 118.857 1174.717 7.848 8.108 199.660 2.884 0.146 

2 T 3 148.632 4816.564 12.363 13.628 235.486 1.781 0.279 

2 T 4 132.977 2654.430 6.770 10.592 103.874 3.077 0.290 

3 C 1 145.129 1631.307 12.608 7.027 87.703 2.635 3.615 

3 C 2 237.831 1899.763 7.216 11.672 493.619 3.945 0.246 

3 C 3 226.188 10676.880 28.306 28.626 387.558 9.129 0.681 

3 C 4 247.610 5912.114 15.105 29.922 125.689 14.243 0.256 

4 C 1 134.161 1708.347 7.786 6.358 167.352 4.003 0.845 

4 C 2 83.101 736.159 1.778 4.091 300.679 0.732 0.166 

4 C 3 124.050 4719.792 16.569 13.295 265.714 1.535 0.383 

4 C 4 154.275 1412.980 3.797 5.607 107.404 2.307 0.085 

5 T 1 199.240 2480.727 18.210 12.371 91.796 3.773 5.275 

5 T 2 60.597 810.713 4.185 4.923 88.440 1.097 0.068 

5 T 3 18.353 1018.529 1.567 2.366 28.134 0.456 0.039 

5 T 4 113.720 1399.131 6.460 12.754 61.512 2.850 0.240 

6 C 1 65.930 679.787 7.097 4.577 48.193 1.549 0.446 

6 C 2 109.684 639.742 3.796 5.020 108.055 0.808 0.100 

6 C 3 159.950 6611.319 21.452 24.072 214.186 5.690 0.730 

6 C 4 53.637 466.029 4.058 7.322 62.952 1.162 0.102 
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Appendix K. (continued) This appendix contains the seasonal runoff, electrical conductivity 

(EC), and runoff pH, and seasonal load data that was inserted into the SAS program in Appendix 

L. 

   Load (mg/ha) 

 

Plot TRT SSN Pb Th U 

1 T 1 9.861 4.535 1.008 

1 T 2 31.265 0.867 1.132 

1 T 3 20.982 0.542 1.277 

1 T 4 19.625 0.193 3.417 

2 T 1 8.057 2.454 1.891 

2 T 2 26.762 0.184 0.868 

2 T 3 13.986 0.536 1.511 

2 T 4 30.854 0.449 0.990 

3 C 1 9.076 5.793 1.314 

3 C 2 26.458 0.487 1.145 

3 C 3 26.714 1.192 2.329 

3 C 4 99.238 0.841 0.982 

4 C 1 8.004 1.197 0.575 

4 C 2 6.539 0.078 0.136 

4 C 3 17.369 0.280 1.525 

4 C 4 12.810 0.140 0.255 

5 T 1 15.415 6.497 2.349 

5 T 2 5.564 0.037 0.228 

5 T 3 1.761 0.083 0.101 

5 T 4 17.344 0.177 0.583 

6 C 1 4.747 0.648 0.300 

6 C 2 7.700 0.186 0.374 

6 C 3 21.770 1.431 1.557 

6 C 4 4.180 0.083 0.383 
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Appendix L. This appendix contains an example of the SAS program used to analyze the data 

presented in Appendix J and K. 

 

Title3 'Seasonal Runoff Effects'; 

 

data runoff; 

  infile 'SASSeasonalRunoff2.csv' firstobs = 2 delimiter = "," ; 

  input Plot Treatment $ Season $ mm EC pH Be_FWM Be_load V_FWM V_load Cr_FWM 

Cr_load Co_FWM Co_load Ni_FWM Ni_load Cu_FWM Cu_load Zn_FWM Zn_load As_FWM 

As_load Se_FWM Se_load Rb_FWM Rb_load Cd_FWM Cd_load Cs_FWM Cs_load Pb_FWM 

Pb_load Th_FWM Th_load U_FWM U_load; 

run; 

 

proc print data = runoff; 

run; 

 

 

title3 'Seasonal Runoff'; 

proc Mixed data = runoff; 

 class Treatment Season; 

 model mm = Treatment Season Treatment*Season ; 

 lsmeans Treatment Season Treatment*Season / diff ;  

 run; 

  

title3 'Seasonal EC'; 

proc Mixed data = runoff; 

 class Treatment Season; 

 model EC = Treatment Season Treatment*Season ; 

 lsmeans Treatment Season Treatment*Season / diff ;  

 run; 

 

title3 'Seasonal pH'; 

proc Mixed data = runoff; 

 class Treatment Season; 

 model pH = Treatment Season Treatment*Season ; 

 lsmeans Treatment Season Treatment*Season / diff ;  

 run; 

 

title3 'Seasonal Be FWM'; 

proc Mixed data = runoff; 

 class Treatment Season; 

 model Be_FWM = Treatment Season Treatment*Season ; 

 lsmeans Treatment Season Treatment*Season / diff ;  

 run; 
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Appendix M. This appendix contains dry matter (DM), tissue concentration, and plant uptake 

data that was inserted into the SAS program in appendix N. 

   (Mg/ha) (µg/kg) 

Time Plot Treatment DM Be V Cr Co Ni Cu 

0 1 Treated 4.35 0.00 245.20 326.12 165.32 832.30 6144.70 

0 2 Treated 4.10 0.00 113.64 167.59 162.83 820.38 7215.32 

0 3 Control 4.23 27.13 71.76 112.52 79.06 532.78 3560.98 

0 4 Control 3.99 0.00 107.33 149.17 103.82 622.50 4410.42 

0 5 Treated 4.11 0.00 73.88 83.98 110.81 369.36 6092.84 

0 6 Control 3.34 0.00 46.15 74.18 123.98 586.63 4662.22 

1 1 Treated 3.88 0.00 564.81 343.06 235.28 696.31 8831.49 

1 2 Treated 3.13 26.72 356.36 507.20 194.63 495.29 7865.22 

1 3 Control 2.63 0.00 41.74 192.78 91.06 834.89 7670.96 

1 4 Control 1.11 0.00 112.58 139.31 99.85 434.98 6289.04 

1 5 Treated 2.90 54.15 1358.41 504.39 386.48 961.16 8378.98 

1 6 Control 2.21 53.91 244.87 286.79 157.52 688.74 10242.89 

2 1 Treated 3.44 0.00 317.01 254.93 221.04 425.04 7128.83 

2 2 Treated 3.01 0.00 358.62 280.79 207.14 326.57 7728.48 

2 3 Control 1.87 27.05 60.74 86.78 130.98 684.18 8131.68 

2 4 Control 2.36 0.00 44.35 69.93 104.39 811.48 6131.32 

2 5 Treated 3.35 13.38 225.51 269.38 154.37 604.18 7927.93 

2 6 Control 1.78 0.00 64.39 88.48 235.39 290.21 7651.84 

3 1 Treated 3.46 25.70 85.65 205.55 101.20 611.36 7754.05 

3 2 Treated 2.99 0.00 62.98 190.20 103.15 589.57 8767.91 

3 3 Control 1.80 0.00 50.69 87.17 115.42 535.18 4253.34 

3 4 Control 2.36 24.17 53.49 185.17 197.17 401.78 5809.06 

3 5 Treated 3.43 0.00 65.17 113.16 104.15 335.36 5624.65 

3 6 Control 1.72 33.32 49.20 82.50 98.50 386.63 5589.99 

 

  



184 

 

Appendix M. (continued). This appendix contains dry matter (DM), tissue concentration, and 

plant uptake data that was inserted into the SAS program in appendix N. 

   (Mg/ha) (µg/kg) 

Time Plot Treatment DM Be V Cr Co Ni Cu 

6 1 Treated 2.77 0.00 63.83 161.30 196.14 604.71 5596.08 

6 2 Treated 2.22 12.65 56.02 76.98 204.79 252.48 6657.10 

6 3 Control 2.54 54.65 41.69 147.74 98.12 762.79 5763.45 

6 4 Control 2.05 0.00 107.65 142.53 111.36 391.04 6558.52 

6 5 Treated 2.29 0.00 56.98 78.31 108.32 256.83 6771.88 

6 6 Control 2.37 31.32 55.88 153.44 120.50 629.45 7481.15 

12 1 Treated 3.57 11.43 55.50 140.26 170.56 525.83 4866.16 

12 2 Treated 3.09 22.72 60.75 71.66 137.03 435.16 3914.95 

12 3 Control 2.42 0.00 109.75 101.39 101.03 571.93 3020.44 

12 4 Control 2.10 19.53 100.26 102.84 123.89 399.22 2745.27 

12 5 Treated 2.90 0.00 47.16 145.15 141.83 572.80 3614.15 

12 6 Control 2.62 22.33 56.53 70.73 97.44 308.20 4233.73 
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Appendix M. (continued). This appendix contains dry matter (DM), tissue concentration, and 

plant uptake data that was inserted into the SAS program in appendix N. 

   (µg/kg)     
Time Plot Treatment Zn As Se Rb Cd 

0 1 Treated 32236.24 101.36 458.36 7139.37 48.97 

0 2 Treated 41904.36 80.59 573.35 4719.21 38.60 

0 3 Control 20298.56 55.82 326.40 4417.87 20.99 

0 4 Control 32267.93 64.62 614.27 6067.36 38.08 

0 5 Treated 36114.47 71.81 768.45 5062.48 22.08 

0 6 Control 34434.52 77.57 437.99 9319.60 44.58 

1 1 Treated 44149.55 159.23 2237.63 8747.94 27.92 

1 2 Treated 34976.57 154.67 2434.76 6368.39 40.01 

1 3 Control 34537.97 32.89 680.52 6998.38 31.90 

1 4 Control 28960.19 61.13 1063.42 10420.33 48.92 

1 5 Treated 31979.55 151.03 3284.33 9649.40 36.48 

1 6 Control 33552.22 75.01 618.55 5998.07 21.75 

2 1 Treated 35407.89 70.97 956.19 9747.77 21.43 

2 2 Treated 37032.52 75.41 1513.09 6384.82 46.37 

2 3 Control 40175.25 40.67 718.27 8899.62 24.53 

2 4 Control 25338.88 23.36 614.34 9733.28 49.32 

2 5 Treated 33476.00 79.68 2093.40 14740.33 32.99 

2 6 Control 30568.26 73.00 601.10 5618.26 19.27 

3 1 Treated 38763.30 95.91 1964.64 7680.69 44.51 

3 2 Treated 37280.70 61.09 529.48 5134.35 38.62 

3 3 Control 31414.62 25.15 399.58 6502.27 30.67 

3 4 Control 26749.95 56.46 982.26 7625.05 35.19 

3 5 Treated 27936.83 40.21 754.43 7690.99 26.91 

3 6 Control 25741.15 54.33 945.21 5262.07 33.48 
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Appendix M. (continued). This appendix contains dry matter (DM), tissue concentration, and 

plant uptake data that was inserted into the SAS program in appendix N. 

   (µg/kg)     
Time Plot Treatment Zn As Se Rb Cd 

6 1 Treated 36392.66 88.98 903.31 6167.51 39.60 

6 2 Treated 43124.39 63.51 522.96 4887.88 16.77 

6 3 Control 23818.55 21.95 577.48 6149.29 46.36 

6 4 Control 32575.26 46.89 879.69 6967.95 19.72 

6 5 Treated 43867.91 64.60 531.97 4972.16 17.06 

6 6 Control 36961.23 37.42 660.81 6187.65 22.56 

12 1 Treated 31645.79 77.37 785.49 5363.05 34.43 

12 2 Treated 40624.48 51.22 798.55 4420.88 20.51 

12 3 Control 20773.31 49.08 787.98 4159.72 29.33 

12 4 Control 40735.19 40.83 190.43 3640.10 36.34 

12 5 Treated 40139.41 110.74 632.94 6775.22 43.35 

12 6 Control 30021.12 50.49 427.12 5366.82 37.68 
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Appendix M. (continued). This appendix contains dry matter (DM), tissue concentration, and 

plant uptake data that was inserted into the SAS program in appendix N. 

   (µg/kg) 

Time Plot Treatment Cs Hg Pb Th U 

0 1 Treated 220.10 15.00 145.46 51.46 9.55 

0 2 Treated 296.67 17.00 155.68 29.33 4.38 

0 3 Control 141.56 13.00 106.21 22.01 2.88 

0 4 Control 190.39 13.00 167.71 22.19 4.46 

0 5 Treated 193.57 12.00 107.03 15.64 2.59 

0 6 Control 180.83 10.00 70.88 15.91 1.10 

1 1 Treated 686.72 19.00 136.29 27.66 19.15 

1 2 Treated 308.48 19.00 112.05 26.95 14.80 

1 3 Control 65.91 13.00 62.27 7.09 5.50 

1 4 Control 254.70 11.00 131.83 21.32 4.50 

1 5 Treated 1009.12 23.00 264.76 44.50 23.93 

1 6 Control 871.72 16.00 136.29 54.79 6.36 

2 1 Treated 268.22 8.00 45.73 17.86 3.86 

2 2 Treated 71.56 7.00 35.96 14.08 0.89 

2 3 Control 91.38 6.00 43.17 12.48 0.80 

2 4 Control 43.07 6.00 31.79 8.16 0.32 

2 5 Treated 258.60 9.00 42.15 13.08 3.33 

2 6 Control 184.32 7.00 40.66 9.33 1.31 

3 1 Treated 602.94 7.00 119.67 24.29 16.81 

3 2 Treated 516.59 5.00 459.07 46.90 14.12 

3 3 Control 164.97 7.00 64.66 14.51 4.01 

3 4 Control 235.26 6.00 121.77 19.69 5.16 

3 5 Treated 211.63 8.00 36.08 14.09 3.04 

3 6 Control 226.39 11.00 117.17 18.95 5.00 
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Appendix M. (continued). This appendix contains dry matter (DM), tissue concentration, and 

plant uptake data that was inserted into the SAS program in appendix N. 

   (µg/kg) 

Time Plot Treatment Cs Hg Pb Th U 

6 1 Treated 349.71 15.00 59.96 10.23 4.27 

6 2 Treated 160.36 8.00 55.37 8.12 3.14 

6 3 Control 40.49 6.00 29.89 7.67 0.30 

6 4 Control 246.76 8.00 42.07 16.43 3.55 

6 5 Treated 163.12 10.00 65.98 8.26 5.16 

6 6 Control 84.07 7.00 39.71 11.48 0.74 

12 1 Treated 304.09 - 34.75 8.90 1.10 

12 2 Treated 161.36 - 72.99 9.50 1.66 

12 3 Control 191.50 - 86.93 5.47 2.05 

12 4 Control 179.11 - 27.67 15.19 1.30 

12 5 Treated 304.99 - 37.65 4.20 2.20 

12 6 Control 190.47 - 90.28 7.11 0.86 
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Appendix M. (continued). This appendix contains dry matter (DM), tissue concentration, and 

plant uptake data that was inserted into the SAS program in appendix N. 

  (g/ha) 

Plot Treatment Be V Cr Co Ni Cu Zn 

1 Treated 0.13 5.02 5.28 3.89 13.45 145.17 780.96 

2 Treated 0.18 3.16 4.08 3.09 9.56 130.50 725.17 

3 Control 0.30 0.99 1.92 1.52 10.02 80.10 419.43 

4 Control 0.10 1.22 1.86 1.73 7.47 71.99 436.15 

5 Treated 0.20 5.48 3.70 3.11 9.73 121.18 666.17 

6 Control 0.31 1.17 1.73 1.89 6.96 90.28 454.17 
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Appendix M. (continued). This appendix contains dry matter (DM),tissue concentration, and 

plant uptake data that was inserted into the SAS program in appendix N. 

  (g/ha) 

Plot Treatment As Se Rb Cd Cs Hg Pb Th U 

1 Treated 2.16 26.06 161.28 0.78 8.68 0.23 2.02 0.54 0.20 

2 Treated 1.52 19.73 98.32 0.64 4.79 0.18 2.82 0.43 0.12 

3 Control 0.62 8.61 91.19 0.46 1.81 0.13 1.10 0.19 0.04 

4 Control 0.70 9.61 98.70 0.52 2.58 0.11 1.32 0.24 0.05 

5 Treated 1.61 25.33 155.60 0.56 6.57 0.20 1.73 0.32 0.12 

6 Control 0.87 8.21 92.18 0.44 3.95 0.12 1.14 0.27 0.03 
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Appendix N. This appendix contains an example of the SAS program that was used to run the 

DM and plant tissue concentration data contained in Appendix M. 

 

Title3 'Plant Tissue Concentrations'; 

 

data biomass; 

  infile 'SASPlant.csv' firstobs = 2 delimiter = "," ; 

  input Time Plot Treatment $ Biomass Be V Cr Co Ni Cu Zn As Se Rb Cd Cs Pb Hg Th U; 

run; 

 

proc print data = biomass; 

run; 

 

 

title3 'Biomass'; 

proc MIXED data = Biomass; 

 class Time Treatment; 

 model Biomass = Time Treatment Treatment*Time ; 

 lsmeans Time Treatment Treatment*Time / diff ;  

 run; 

 

 

title3 'Be'; 

proc MIXED data = Biomass; 

 class Time Treatment; 

 model Be = Time Treatment Treatment*Time ; 

 lsmeans Time Treatment Treatment*Time / diff ;  

 run; 
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Appendix N. This appendix contains an example of the SAS program used to run the cumulative 

plant uptake data presented in Appendix M. 

 

Title3 'Cumulative Plant uptake'; 

 

data biomass; 

  infile 'SASCumulativePlant.csv' firstobs = 2 delimiter = "," ; 

  input Plot Treatment $ Be V Cr Co Ni Cu Zn As Se Rb Cd Cs Hg Pb Th U; 

run; 

 

proc print data = biomass; 

run; 

 

title3 'Biomass'; 

proc MIXED data=Biomass; 

 class Treatment; 

 model Biomass=Treatment 

 lsmeans Treatment / diff; 

 run; 

 

title3 'Be'; 

proc MIXED data=Biomass; 

 class Treatment; 

 model Be=Treatment 

 lsmeans Treatment / diff; 

 run; 
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Appendix O. This appendix contains the bulk density, soil pH, EC, and soil elemental 

concentrations data that were inserted into the SAS program in Appendix P. 

    (g/cm3) (µS/cm) (mg/kg) 

Time Plot Treatment Depth BD pH EC P K Ca Mg 

0 1 Treated 0 0.99 6.36 169.31 308.00 180.00 1809.00 180.0 

0 2 Treated 0 1.09 6.24 157.87 151.00 163.00 2018.00 119.0 

0 3 Control 0 1.10 6.37 123.88 250.00 194.00 1619.00 172.0 

0 4 Control 0 0.98 6.33 167.95 152.00 95.00 1282.00 105.0 

0 5 Treated 0 1.16 6.14 193.35 439.00 222.00 1481.00 211.0 

0 6 Control 0 1.05 6.08 100.11 394.00 232.00 1806.00 181.0 

6 1 Treated 0 0.99 6.59 155.03 168.00 146.00 1760.00 110.0 

6 2 Treated 0 1.09 6.69 195.07 160.00 150.00 2101.00 100.0 

6 3 Control 0 1.10 6.23 88.77 225.00 163.00 1485.00 148.0 

6 4 Control 0 0.98 6.25 144.32 193.00 137.00 1347.00 127.0 

6 5 Treated 0 1.16 6.47 95.70 56.00 76.00 1964.00 97.0 

6 6 Control 0 1.05 6.21 187.86 363.00 214.00 1694.00 167.0 

12 1 Treated 0 0.99 6.29 161.50 210.00 179.00 1910.00 181.0 

12 2 Treated 0 1.09 6.21 197.03 384.00 248.00 2222.00 230.0 

12 3 Control 0 1.10 6.32 144.45 277.00 187.00 1351.00 118.0 

12 4 Control 0 0.98 6.19 189.25 146.00 104.00 1148.00 87.0 

12 5 Treated 0 1.16 6.28 129.52 146.00 144.00 1540.00 125.0 

12 6 Control 0 1.05 6.35 153.22 345.00 206.00 1539.00 141.0 

0 1 Treated 10 1.26 6.21 181.50 274.00 100.00 1274.00 118.0 

0 2 Treated 10 1.22 6.16 123.20 350.00 160.00 1328.00 151.0 

0 3 Control 10 1.17 6.19 137.69 266.00 141.00 1268.00 112.0 

0 4 Control 10 1.33 6.24 195.76 156.00 56.00 996.00 47.0 

0 5 Treated 10 1.38 6.28 133.92 159.00 81.00 1121.00 54.0 

0 6 Control 10 1.44 6.06 173.82 363.00 158.00 1383.00 121.0 

6 1 Treated 10 1.26 6.66 118.05 149.00 172.00 1095.00 166.0 

6 2 Treated 10 1.22 6.55 189.20 49.00 78.00 1114.00 67.0 

6 3 Control 10 1.17 6.17 186.27 39.00 40.00 1190.00 67.0 

6 4 Control 10 1.33 6.19 147.48 175.00 78.00 1009.00 61.0 

6 5 Treated 10 1.38 6.48 144.82 278.00 142.00 1242.00 107.0 

6 6 Control 10 1.44 6.09 120.22 272.00 120.00 1208.00 89.0 
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Appendix O. (continued) This appendix contains the bulk density, soil pH, EC, and soil 

elemental concentrations data that were inserted into the SAS program in Appendix P. 

    (g/cm3) (µS/cm) (mg/kg) 

Time Plot Treatment Depth BD pH EC P K Ca Mg 

12 1 Treated 10 1.26 6.23 137.47 224.00 98.00 1002.00 95.0 

12 2 Treated 10 1.22 6.11 148.85 361.00 160.00 1111.00 135.0 

12 3 Control 10 1.17 6.28 191.04 274.00 112.00 1078.00 85.0 

12 4 Control 10 1.33 6.02 173.11 174.00 48.00 953.00 46.0 

12 5 Treated 10 1.38 6.18 116.37 154.00 58.00 1016.00 47.0 

12 6 Control 10 1.44 6.14 173.22 281.00 103.00 1107.00 99.0 

0 1 Treated 20 1.43 6.19 180.48 257.00 75.00 1140.00 86.0 

0 2 Treated 20 1.43 6.11 182.05 320.00 127.00 1126.00 112.0 

0 3 Control 20 1.34 6.05 122.78 266.00 97.00 1247.00 72.0 

0 4 Control 20 1.36 6.09 140.34 196.00 62.00 1091.00 39.0 

0 5 Treated 20 1.39 6.01 134.08 201.00 74.00 1069.00 39.0 

0 6 Control 20 1.43 6.06 127.03 321.00 140.00 1107.00 103.0 

6 1 Treated 20 1.43 6.21 96.33 120.00 57.00 1464.00 96.0 

6 2 Treated 20 1.43 6.19 114.50 33.00 57.00 896.00 36.0 

6 3 Control 20 1.34 6.15 177.78 182.00 58.00 1017.00 34.0 

6 4 Control 20 1.36 6.09 142.70 184.00 60.00 950.00 40.0 

6 5 Treated 20 1.39 6.14 178.77 138.00 45.00 1004.00 55.0 

6 6 Control 20 1.43 6.02 151.11 225.00 98.00 1035.00 52.0 

12 1 Treated 20 1.43 6.05 162.55 227.00 83.00 909.00 68.0 

12 2 Treated 20 1.43 6.07 161.42 328.00 286.00 986.00 117.0 

12 3 Control 20 1.34 6.12 98.10 273.00 147.00 1058.00 65.0 

12 4 Control 20 1.36 6.02 172.16 206.00 49.00 1004.00 34.0 

12 5 Treated 20 1.39 6.01 129.26 176.00 60.00 1004.00 36.0 

12 6 Control 20 1.43 6.05 104.86 238.00 105.00 990.00 86.0 
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Appendix O. (continued) This appendix contains the bulk density, soil pH, EC, and soil 

elemental concentrations data that were inserted into the SAS program in Appendix P. 

    (mg/kg) 

Time Plot Treatment Depth S Na Fe Mn Zn Cu B 

0 1 Treated 0 21.96 7.31 219.00 298.00 32.30 15.78 0.16 

0 2 Treated 0 18.64 8.30 216.00 255.00 10.29 2.64 0.32 

0 3 Control 0 20.83 8.47 221.00 306.00 26.46 12.02 0.50 

0 4 Control 0 20.00 6.34 210.00 321.00 12.40 3.03 0.08 

0 5 Treated 0 25.89 9.56 225.00 275.00 40.81 22.60 0.53 

0 6 Control 0 23.15 9.78 267.00 275.00 31.00 18.76 0.44 

6 1 Treated 0 79.17 21.27 203.00 179.00 4.69 10.17 0.43 

6 2 Treated 0 35.52 22.04 197.00 79.00 4.29 1.09 0.26 

6 3 Control 0 20.02 9.61 214.00 302.00 22.49 9.28 0.35 

6 4 Control 0 18.54 10.85 198.00 288.00 19.03 7.28 0.25 

6 5 Treated 0 61.63 18.66 173.00 71.00 4.11 0.99 0.25 

6 6 Control 0 21.58 10.36 247.00 253.00 29.15 17.27 0.38 

12 1 Treated 0 31.52 22.71 201.00 221.00 19.37 8.54 0.38 

12 2 Treated 0 45.43 23.56 217.00 234.00 33.63 17.95 0.44 

12 3 Control 0 26.42 14.32 229.00 275.00 20.89 10.40 0.02 

12 4 Control 0 25.81 10.76 190.00 285.00 12.47 3.50 0.35 

12 5 Treated 0 32.08 15.12 204.00 203.00 7.18 2.66 0.23 

12 6 Control 0 29.99 11.83 244.00 250.00 22.56 13.91 0.06 

0 1 Treated 10 13.53 6.66 234.00 271.00 14.02 6.72 0.03 

0 2 Treated 10 13.87 6.19 240.00 246.00 15.45 8.42 0.07 

0 3 Control 10 13.59 7.09 257.00 285.00 14.44 6.72 0.15 

0 4 Control 10 12.04 6.28 237.00 305.00 9.47 2.98 0.02 

0 5 Treated 10 13.21 7.42 252.00 245.00 6.06 2.26 0.12 

0 6 Control 10 16.71 8.03 295.00 274.00 16.43 11.52 0.15 

6 1 Treated 10 6.49 11.85 159.00 178.00 4.61 10.75 0.13 

6 2 Treated 10 61.15 18.99 159.00 78.00 4.72 0.79 0.13 

6 3 Control 10 6.28 15.47 186.00 86.00 4.04 0.90 0.11 

6 4 Control 10 11.66 8.31 213.00 262.00 10.51 3.72 0.02 

6 5 Treated 10 13.42 9.64 254.00 266.00 14.60 8.05 0.10 

6 6 Control 10 15.13 11.26 258.00 266.00 13.45 8.00 0.08 
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Appendix O. (continued) This appendix contains the bulk density, soil pH, EC, and soil 

elemental concentrations data that were inserted into the SAS program in Appendix P. 

    (mg/kg) 

Time Plot Treatment Depth S Na Fe Mn Zn Cu B 

12 1 Treated 10 19.73 16.78 240.00 260.00 7.55 3.17 0.02 

12 2 Treated 10 25.35 16.24 261.00 256.00 11.77 7.04 0.03 

12 3 Control 10 20.62 11.64 258.00 283.00 9.40 4.11 0.05 

12 4 Control 10 20.07 9.68 223.00 297.00 8.34 2.93 0.05 

12 5 Treated 10 23.36 11.62 215.00 233.00 5.48 2.32 0.05 

12 6 Control 10 17.61 9.62 260.00 244.00 7.13 4.37 0.05 

0 1 Treated 20 9.66 9.12 244.00 292.00 7.47 3.03 0.01 

0 2 Treated 20 9.51 6.65 271.00 287.00 7.58 2.96 0.01 

0 3 Control 20 9.90 7.57 271.00 329.00 10.87 2.83 0.02 

0 4 Control 20 10.96 7.07 260.00 351.00 7.85 2.43 0.05 

0 5 Treated 20 9.70 6.08 290.00 241.00 4.54 1.83 0.05 

0 6 Control 20 11.06 8.52 336.00 243.00 6.50 3.82 0.03 

6 1 Treated 20 58.82 17.62 208.00 138.00 4.88 1.36 0.06 

6 2 Treated 20 6.33 11.31 167.00 279.00 5.32 0.69 0.05 

6 3 Control 20 10.26 11.69 239.00 312.00 7.32 2.17 0.05 

6 4 Control 20 9.25 5.98 232.00 282.00 6.86 2.22 0.05 

6 5 Treated 20 9.48 12.13 135.00 73.00 4.08 0.80 0.03 

6 6 Control 20 10.46 10.86 269.00 300.00 7.28 2.78 0.05 

12 1 Treated 20 16.13 15.78 224.00 263.00 4.99 1.73 0.05 

12 2 Treated 20 24.21 17.98 277.00 281.00 7.48 3.01 0.01 

12 3 Control 20 16.41 9.45 268.00 314.00 6.97 2.33 0.05 

12 4 Control 20 19.47 12.57 240.00 345.00 7.63 2.40 0.05 

12 5 Treated 20 17.27 9.82 244.00 256.00 4.77 1.87 0.05 

12 6 Control 20 11.64 9.62 214.00 281.00 4.17 2.26 0.05 
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Appendix O. (continued) This appendix contains the bulk density, soil pH, EC, and soil 

elemental concentrations data that were inserted into the SAS program in Appendix P. 

    (µg/kg) 

Time Plot Treatment Depth Be V Cr Co Ni Zn As 

0 1 Treated 0 0.71 15.84 17.17 6.42 3.92 46.91 4.56 

0 2 Treated 0 0.37 11.19 15.09 4.32 3.32 43.38 3.85 

0 3 Control 0 0.57 21.10 36.40 7.29 4.51 43.42 5.70 

0 4 Control 0 0.65 15.74 17.81 6.44 3.79 24.40 3.95 

0 5 Treated 0 0.60 14.37 15.08 5.74 3.16 22.93 3.58 

0 6 Control 0 0.42 15.45 16.05 6.20 3.63 42.99 5.15 

6 1 Treated 0 0.40 7.58 8.21 4.73 2.89 36.93 1.97 

6 2 Treated 0 0.27 15.48 13.96 5.40 3.37 29.87 4.39 

6 3 Control 0 0.32 11.70 11.19 5.65 3.88 34.49 3.31 

6 4 Control 0 0.52 14.24 13.13 5.76 3.57 22.38 3.60 

6 5 Treated 0 0.50 15.75 18.40 5.67 3.71 22.17 3.53 

6 6 Control 0 0.64 14.31 12.74 6.33 5.06 66.17 5.33 

12 1 Treated 0 0.68 4.72 5.91 7.39 3.17 27.88 1.81 

12 2 Treated 0 0.76 6.55 5.90 10.43 6.04 61.61 3.20 

12 3 Control 0 0.76 9.35 10.82 14.04 5.98 36.16 3.68 

12 4 Control 0 0.33 5.76 9.87 9.08 4.22 15.83 1.98 

12 5 Treated 0 0.65 13.34 16.62 10.53 5.05 14.94 3.20 

12 6 Control 0 0.37 2.61 14.24 0.01 6.36 10.32 3.89 

0 1 Treated 10 0.59 18.63 23.87 6.52 4.26 27.08 5.33 

0 2 Treated 10 0.45 18.38 19.69 6.79 4.36 28.04 5.44 

0 3 Control 10 0.37 18.96 26.96 7.84 5.09 28.18 5.07 

0 4 Control 10 0.62 29.29 26.16 8.98 7.60 25.87 6.77 

0 5 Treated 10 0.74 26.54 35.44 7.65 4.39 21.34 7.31 

0 6 Control 10 0.79 22.86 30.21 14.32 6.42 29.41 6.45 

6 1 Treated 10 0.44 15.79 19.63 5.73 3.40 25.59 4.01 

6 2 Treated 10 0.44 11.22 11.54 5.39 3.58 48.07 3.47 

6 3 Control 10 0.50 17.51 19.39 6.17 4.27 23.12 4.36 

6 4 Control 10 0.47 12.71 10.45 8.91 4.13 20.90 3.35 

6 5 Treated 10 0.74 26.34 27.79 8.43 6.07 23.01 5.81 

6 6 Control 10 0.57 14.14 11.25 5.59 3.72 23.97 4.22 
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Appendix O. (continued) This appendix contains the bulk density, soil pH, Ec, and soil 

elemental concentrations data that were inserted into the SAS program in Appendix P. 

    (µg/kg) 

Time Plot Treatment Depth Be V Cr Co Ni Zn As 

12 1 Treated 10 0.79 4.24 5.84 9.54 4.69 8.34 1.84 

12 2 Treated 10 0.76 6.94 9.52 11.95 5.19 18.00 2.97 

12 3 Control 10 1.08 11.38 14.41 12.01 6.61 15.85 3.31 

12 4 Control 10 0.40 6.72 9.98 9.97 4.73 10.80 2.14 

12 5 Treated 10 0.58 5.00 7.06 8.50 3.36 7.21 1.77 

12 6 Control 10 1.09 8.19 10.76 13.54 5.79 12.97 3.30 

0 1 Treated 20 0.81 26.78 27.81 13.15 5.59 20.90 6.53 

0 2 Treated 20 0.71 19.21 25.16 7.43 4.93 20.65 5.79 

0 3 Control 20 0.77 21.69 24.79 9.42 5.91 27.50 5.45 

0 4 Control 20 0.94 26.45 32.19 7.96 5.78 23.92 7.23 

0 5 Treated 20 0.39 14.05 14.26 7.25 3.34 13.11 3.76 

0 6 Control 20 0.94 27.07 37.75 7.94 7.24 38.58 7.16 

6 1 Treated 20 0.65 17.35 16.51 7.29 4.36 16.60 4.06 

6 2 Treated 20 0.82 36.23 29.03 8.87 7.76 33.73 11.57 

6 3 Control 20 0.67 16.30 21.46 7.22 6.22 16.80 4.17 

6 4 Control 20 0.64 18.50 17.53 8.04 5.05 24.01 4.22 

6 5 Treated 20 0.35 11.09 11.04 5.00 3.47 12.44 2.52 

6 6 Control 20 0.60 19.30 15.75 6.91 6.54 67.71 5.41 

12 1 Treated 20 0.45 4.61 6.25 11.61 4.01 9.18 1.73 

12 2 Treated 20 0.80 12.13 17.34 13.54 6.67 11.55 3.61 

12 3 Control 20 1.04 10.65 13.60 12.49 6.34 12.72 3.22 

12 4 Control 20 0.62 7.58 10.17 10.94 5.89 13.20 2.22 

12 5 Treated 20 0.72 5.04 9.13 8.59 3.52 6.32 1.74 

12 6 Control 20 0.83 16.99 20.99 14.49 7.60 7.99 3.77 
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Appendix O. (continued) This appendix contains the bulk density, soil pH, Ec, and soil 

elemental concentrations data that were inserted into the SAS program in Appendix P. 

    
 (µg/kg) 

Time Plot Treatment Depth Se Rb Cd Cs Pb Hg Th U 

0 1 Treated 0 1.32 7.99 0.10 0.63 24.11 1955 2.03 1.36 

0 2 Treated 0 0.78 5.88 0.08 0.45 15.74 792 0.88 1.09 

0 3 Control 0 1.57 7.89 0.11 0.63 29.44 624 1.98 1.66 

0 4 Control 0 0.90 7.43 0.10 0.61 23.40 203 1.59 1.16 

0 5 Treated 0 1.42 7.73 0.09 0.65 23.78 117 1.82 1.30 

0 6 Control 0 1.45 6.99 0.09 0.54 23.30 195 2.13 1.42 

6 1 Treated 0 0.73 4.88 0.09 0.32 16.11 2540 2.50 0.94 

6 2 Treated 0 0.78 5.12 0.08 0.36 17.06 805 1.80 0.93 

6 3 Control 0 0.96 6.97 0.09 0.56 20.06 747 2.47 1.15 

6 4 Control 0 0.86 6.38 0.09 0.52 19.86 209 1.91 0.98 

6 5 Treated 0 0.94 6.37 0.10 0.50 20.18 128 1.87 1.16 

6 6 Control 0 1.99 9.79 0.13 0.70 24.52 162 0.68 1.56 

12 1 Treated 0 0.67 4.87 0.14 0.23 16.27 - 2.66 0.10 

12 2 Treated 0 1.11 7.10 0.20 0.32 23.38 - 4.37 0.99 

12 3 Control 0 1.26 9.97 0.22 0.52 27.93 - 6.73 0.83 

12 4 Control 0 0.89 6.55 0.16 0.35 21.06 - 4.55 0.38 

12 5 Treated 0 1.04 8.22 0.17 0.46 22.99 - 5.81 0.96 

12 6 Control 0 1.12 1.79 0.05 0.37 7.32 - 2.28 2.19 

0 1 Treated 10 0.90 6.79 0.10 0.56 22.65 1599 2.24 1.15 

0 2 Treated 10 1.51 7.49 0.11 0.60 24.13 831 1.61 1.27 

0 3 Control 10 1.19 7.34 0.10 0.58 28.40 519 2.20 1.28 

0 4 Control 10 1.24 7.18 0.12 0.60 37.82 156 2.59 1.21 

0 5 Treated 10 1.03 7.35 0.12 0.59 32.24 76 3.60 1.60 

0 6 Control 10 1.53 6.45 0.12 0.49 36.10 162 2.28 1.43 

6 1 Treated 10 0.70 6.40 0.11 0.50 21.79 2658 2.63 1.08 

6 2 Treated 10 0.69 5.90 0.07 0.42 17.99 658 2.15 1.20 

6 3 Control 10 0.88 6.90 0.09 0.56 21.87 354 2.58 1.11 

6 4 Control 10 0.74 6.95 0.10 0.56 28.00 255 2.12 1.05 

6 5 Treated 10 1.30 5.91 0.11 0.47 23.92 94 2.89 1.19 

6 6 Control 10 1.05 6.42 0.09 0.44 19.80 164 1.96 1.08 
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Appendix O. (continued) This appendix contains the bulk density, soil pH, Ec, and soil 

elemental concentrations data that were inserted into the SAS program in Appendix P. 

    
 (µg/kg) 

Time Plot Treatment Depth Se Rb Cd Cs Pb Hg Th U 

12 1 Treated 10 1.06 5.70 0.16 0.27 22.99 - 4.05 0.26 

12 2 Treated 10 1.43 8.29 0.19 0.40 26.63 - 5.90 0.60 

12 3 Control 10 1.15 10.51 0.19 0.56 25.58 - 6.18 0.37 

12 4 Control 10 0.71 7.95 0.15 0.44 21.81 - 5.11 0.41 

12 5 Treated 10 1.10 6.03 0.15 0.32 18.93 - 3.72 0.40 

12 6 Control 10 1.60 10.55 0.21 0.53 31.59 - 6.71 0.60 

0 1 Treated 20 1.30 7.62 0.12 0.62 43.30 627 3.61 1.23 

0 2 Treated 20 1.45 8.43 0.11 0.66 27.10 166 2.86 1.21 

0 3 Control 20 1.30 8.68 0.12 0.72 31.98 158 3.16 1.32 

0 4 Control 20 0.97 8.44 0.11 0.68 29.12 72 2.98 1.48 

0 5 Treated 20 0.44 5.97 0.08 0.45 28.15 61 2.31 1.07 

0 6 Control 20 2.24 9.47 0.14 0.69 29.02 61 1.91 1.60 

6 1 Treated 20 1.38 7.42 0.08 0.56 24.79 1049 3.41 1.17 

6 2 Treated 20 2.03 9.88 0.14 0.70 29.25 332 1.82 1.37 

6 3 Control 20 1.41 8.48 0.07 0.67 22.24 605 3.24 1.12 

6 4 Control 20 1.53 8.29 0.12 0.68 28.68 165 3.05 1.28 

6 5 Treated 20 0.42 5.84 0.08 0.45 17.59 103 2.51 0.90 

6 6 Control 20 1.11 9.74 0.12 0.67 26.22 149 1.41 1.44 

12 1 Treated 20 0.98 7.16 0.14 0.35 23.17 - 4.62 0.43 

12 2 Treated 20 1.54 10.91 0.22 0.55 30.19 - 7.18 0.59 

12 3 Control 20 1.65 10.54 0.18 0.53 26.81 - 6.89 0.56 

12 4 Control 20 1.02 9.33 0.17 0.48 23.35 - 4.99 0.49 

12 5 Treated 20 0.99 6.76 0.14 0.34 20.29 - 4.38 0.38 

12 6 Control 20 1.43 13.12 0.15 0.72 26.93 - 7.69 0.39 
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Appendix P. This appendix contains an example of the SAS program used to analyze the soil 

concentrations in Appendix O. 

 

Title3 'Effect of Application on Soil Concentrations'; 

 

data Soil; 

  infile 'SASSoil.csv' firstobs = 2 delimiter = "," ; 

  input Time Plot Treatment $ Depth pH EC P K Ca Mg S Na Fe Mn Zn Cu B Be V Cr Co Ni As 

Se Rb Cd Cs Pb Hg Th U; 

run; 

 

proc print data = Soil; 

run; 

 

 

 title3 'pH'; 

proc MIXED data = Soil; 

 class Time Treatment Depth; 

 model pH = Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth ; 

 lsmeans Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth / diff; 

run; 

 

 title3 'EC'; 

proc MIXED data = Soil; 

 class Time Treatment Depth; 

 model EC = Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth ; 

 lsmeans Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth / diff; 

run; 

 

 

title3 'P'; 

proc MIXED data = Soil; 

 class Time Treatment Depth; 

 model P = Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth ; 

 lsmeans  Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth / diff; 

run; 
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Appendix Q. This appendix contains the soil content data that were inserted into the SAS 

program in Appendix R. 

    (kg/ha) 

Time Plot Treatment Depth P K Ca Mg S Na 

0 1 Treated 0 304.52 177.97 1788.55 177.97 21.71 7.23 

0 2 Treated 0 164.92 178.03 2204.04 129.97 20.36 9.07 

0 3 Control 0 273.93 212.57 1773.95 188.46 22.82 9.28 

0 4 Control 0 149.67 93.54 1262.36 103.39 19.69 6.24 

0 5 Treated 0 508.36 257.08 1715.00 244.34 29.98 11.07 

0 6 Control 0 413.70 243.60 1896.28 190.05 24.31 10.27 

6 1 Treated 0 166.10 144.35 1740.11 108.76 78.28 21.03 

6 2 Treated 0 174.75 163.83 2294.69 109.22 38.79 24.07 

6 3 Control 0 246.53 178.60 1627.12 162.16 21.94 10.53 

6 4 Control 0 190.04 134.90 1326.36 125.05 18.26 10.68 

6 5 Treated 0 64.85 88.01 2274.31 112.33 71.37 21.61 

6 6 Control 0 381.15 224.70 1778.68 175.35 22.66 10.88 

12 1 Treated 0 207.63 176.98 1888.41 178.95 31.16 22.45 

12 2 Treated 0 419.40 270.86 2426.84 251.20 49.62 25.73 

12 3 Control 0 303.51 204.90 1480.30 129.29 28.95 15.69 

12 4 Control 0 143.76 102.41 1130.41 85.67 25.41 10.60 

12 5 Treated 0 169.07 166.75 1783.32 144.75 37.15 17.51 

12 6 Control 0 362.25 216.30 1615.93 148.05 31.49 12.42 

0 1 Treated 10 345.51 126.10 1606.50 148.80 17.06 8.40 

0 2 Treated 10 425.35 194.44 1613.88 183.51 16.86 7.52 

0 3 Control 10 312.17 165.47 1488.09 131.44 15.95 8.32 

0 4 Control 10 207.37 74.44 1324.00 62.48 16.00 8.35 

0 5 Treated 10 218.63 111.38 1541.41 74.25 18.16 10.20 

0 6 Control 10 521.57 227.02 1987.13 173.86 24.01 11.54 

6 1 Treated 10 187.89 216.89 1380.78 209.32 8.18 14.94 

6 2 Treated 10 59.55 94.79 1353.81 81.42 74.31 23.08 

6 3 Control 10 45.77 46.94 1396.55 78.63 7.37 18.16 

6 4 Control 10 232.63 103.69 1341.28 81.09 15.50 11.05 

6 5 Treated 10 382.26 195.25 1707.79 147.13 18.45 13.26 

6 6 Control 10 390.82 172.42 1735.68 127.88 21.74 16.18 
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Appendix Q. (continued). This appendix contains the soil content data that were inserted into 

the SAS program in Appendix R. 

    (kg/ha) 

Time Plot Treatment Depth P K Ca Mg S Na 

12 1 Treated 10 282.46 123.58 1263.51 119.79 24.88 21.16 

12 2 Treated 10 438.71 194.44 1350.17 164.06 30.81 19.74 

12 3 Control 10 321.56 131.44 1265.11 99.75 24.20 13.66 

12 4 Control 10 231.30 63.81 1266.84 61.15 26.68 12.87 

12 5 Treated 10 211.75 79.75 1397.03 64.63 32.12 15.98 

12 6 Control 10 403.75 147.99 1590.57 142.25 25.30 13.82 

0 1 Treated 20 368.75 107.61 1635.69 123.39 13.86 13.09 

0 2 Treated 20 456.41 181.14 1605.99 159.74 13.56 9.48 

0 3 Control 20 356.14 129.87 1669.56 96.40 13.25 10.14 

0 4 Control 20 265.96 84.13 1480.43 52.92 14.87 9.59 

0 5 Treated 20 278.80 102.64 1482.80 54.10 13.45 8.43 

0 6 Control 20 458.64 200.03 1581.67 147.17 15.80 12.17 

6 1 Treated 20 172.18 81.78 2100.57 137.74 84.40 25.28 

6 2 Treated 20 47.07 81.30 1277.94 51.35 9.03 16.13 

6 3 Control 20 243.67 77.65 1361.62 45.52 13.74 15.65 

6 4 Control 20 249.68 81.42 1289.10 54.28 12.55 8.11 

6 5 Treated 20 191.42 62.42 1392.64 76.29 13.15 16.83 

6 6 Control 20 321.48 140.02 1478.79 74.30 14.95 15.52 

12 1 Treated 20 325.70 119.09 1304.25 97.57 23.14 22.64 

12 2 Treated 20 467.82 407.91 1406.31 166.87 34.53 25.64 

12 3 Control 20 365.51 196.81 1416.51 87.03 21.97 12.65 

12 4 Control 20 279.53 66.49 1362.37 46.14 26.42 17.06 

12 5 Treated 20 244.13 83.23 1392.64 49.94 23.96 13.62 

12 6 Control 20 340.05 150.02 1414.50 122.88 16.63 13.74 
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Appendix Q. (continued). This appendix contains the soil content data that were inserted into 

the SAS program in Appendix R. 

    (kg/ha) (g/ha) 

Time Plot Treatment Depth Fe Mn Zn Cu B Be 

0 1 Treated 0 216.52 294.63 31.93 15.60 0.16 0.70 

0 2 Treated 0 235.91 278.51 11.24 2.88 0.35 0.40 

0 3 Control 0 242.15 335.29 28.99 13.17 0.55 0.63 

0 4 Control 0 206.78 316.08 12.21 2.98 0.08 0.64 

0 5 Treated 0 260.55 318.45 47.26 26.17 0.61 0.70 

0 6 Control 0 280.35 288.75 32.55 19.70 0.46 0.44 

6 1 Treated 0 200.71 176.98 4.64 10.06 0.43 0.40 

6 2 Treated 0 215.16 86.28 4.69 1.19 0.28 0.29 

6 3 Control 0 234.48 330.90 24.64 10.17 0.38 0.35 

6 4 Control 0 194.97 283.59 18.74 7.17 0.25 0.51 

6 5 Treated 0 200.33 82.22 4.76 1.15 0.29 0.58 

6 6 Control 0 259.35 265.65 30.61 18.13 0.40 0.67 

12 1 Treated 0 198.73 218.50 19.15 8.44 0.38 0.67 

12 2 Treated 0 237.00 255.57 36.73 19.60 0.48 0.83 

12 3 Control 0 250.92 301.32 22.89 11.40 0.02 0.83 

12 4 Control 0 187.09 280.63 12.28 3.45 0.34 0.32 

12 5 Treated 0 236.23 235.07 8.31 3.08 0.27 0.75 

12 6 Control 0 256.20 262.50 23.69 14.61 0.06 0.38 

0 1 Treated 10 295.07 341.73 17.68 8.47 0.04 0.74 

0 2 Treated 10 291.67 298.96 18.78 10.23 0.09 0.55 

0 3 Control 10 301.61 334.47 16.95 7.89 0.18 0.43 

0 4 Control 10 315.05 405.44 12.59 3.96 0.03 0.83 

0 5 Treated 10 346.51 336.88 8.33 3.11 0.17 1.02 

0 6 Control 10 423.86 393.69 23.61 16.55 0.22 1.13 

6 1 Treated 10 200.50 224.46 5.81 13.56 0.16 0.55 

6 2 Treated 10 193.23 94.79 5.74 0.96 0.16 0.53 

6 3 Control 10 218.28 100.93 4.74 1.06 0.13 0.59 

6 4 Control 10 283.14 348.28 13.97 4.95 0.03 0.62 

6 5 Treated 10 349.26 365.76 20.08 11.07 0.14 1.02 

6 6 Control 10 370.70 382.20 19.33 11.49 0.11 0.82 
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Appendix Q. (continued). This appendix contains the soil content data that were inserted into 

the SAS program in Appendix R. 

    (kg/ha) (g/ha) 

Time Plot Treatment Depth Fe Mn Zn Cu B Be 

12 1 Treated 10 302.64 327.86 9.52 4.00 0.03 0.99 

12 2 Treated 10 317.19 311.11 14.30 8.56 0.04 0.93 

12 3 Control 10 302.78 332.12 11.03 4.82 0.06 1.26 

12 4 Control 10 296.44 394.81 11.09 3.89 0.07 0.54 

12 5 Treated 10 295.63 320.38 7.54 3.19 0.07 0.79 

12 6 Control 10 373.57 350.59 10.24 6.28 0.07 1.57 

0 1 Treated 20 350.09 418.97 10.72 4.35 0.01 1.16 

0 2 Treated 20 386.52 409.34 10.81 4.22 0.01 1.01 

0 3 Control 20 362.83 440.48 14.55 3.79 0.03 1.03 

0 4 Control 20 352.81 476.29 10.65 3.30 0.07 1.28 

0 5 Treated 20 402.26 334.29 6.30 2.54 0.07 0.54 

0 6 Control 20 480.07 347.20 9.29 5.46 0.04 1.34 

6 1 Treated 20 298.44 198.00 7.00 1.95 0.09 0.94 

6 2 Treated 20 238.19 397.93 7.59 0.98 0.07 1.17 

6 3 Control 20 319.99 417.72 9.80 2.91 0.07 0.90 

6 4 Control 20 314.81 382.66 9.31 3.01 0.07 0.87 

6 5 Treated 20 187.26 101.26 5.66 1.11 0.04 0.49 

6 6 Control 20 384.34 428.64 10.40 3.97 0.07 0.86 

12 1 Treated 20 321.40 377.36 7.16 2.48 0.07 0.65 

12 2 Treated 20 395.08 400.78 10.67 4.29 0.01 1.13 

12 3 Control 20 358.81 420.40 9.33 3.12 0.07 1.40 

12 4 Control 20 325.67 468.15 10.35 3.26 0.07 0.84 

12 5 Treated 20 338.45 355.09 6.62 2.59 0.07 1.00 

12 6 Control 20 305.76 401.49 5.96 3.23 0.07 1.19 
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Appendix Q. (continued). This appendix contains the soil content data that were inserted into 

the SAS program in Appendix R. 

    (g/ha) 

Time Plot Treatment Depth V Cr Co Ni Zn As 

0 1 Treated 0 15.66 16.97 6.35 3.88 46.38 4.50 

0 2 Treated 0 12.22 16.48 4.72 3.63 47.38 4.21 

0 3 Control 0 23.12 39.89 7.99 4.94 47.58 6.24 

0 4 Control 0 15.50 17.54 6.34 3.73 24.02 3.89 

0 5 Treated 0 16.63 17.46 6.64 3.65 26.56 4.14 

0 6 Control 0 16.22 16.86 6.51 3.82 45.14 5.41 

6 1 Treated 0 7.49 8.12 4.67 2.86 36.51 1.95 

6 2 Treated 0 16.90 15.25 5.90 3.68 32.63 4.80 

6 3 Control 0 12.82 12.27 6.19 4.25 37.79 3.63 

6 4 Control 0 14.02 12.93 5.67 3.52 22.04 3.55 

6 5 Treated 0 18.24 21.30 6.57 4.30 25.68 4.09 

6 6 Control 0 15.02 13.37 6.65 5.31 69.48 5.59 

12 1 Treated 0 4.66 5.84 7.30 3.13 27.56 1.79 

12 2 Treated 0 7.15 6.44 11.39 6.60 67.29 3.50 

12 3 Control 0 10.24 11.86 15.38 6.55 39.62 4.03 

12 4 Control 0 5.68 9.72 8.94 4.15 15.59 1.95 

12 5 Treated 0 15.45 19.25 12.20 5.85 17.30 3.71 

12 6 Control 0 2.74 14.95 0.01 6.68 10.83 4.09 

0 1 Treated 10 23.50 30.09 8.23 5.37 34.14 6.72 

0 2 Treated 10 22.34 23.93 8.26 5.30 34.07 6.61 

0 3 Control 10 22.25 31.64 9.20 5.98 33.07 5.95 

0 4 Control 10 38.94 34.78 11.94 10.11 34.39 9.00 

0 5 Treated 10 36.49 48.73 10.51 6.04 29.34 10.05 

0 6 Control 10 32.84 43.40 20.57 9.22 42.26 9.27 

6 1 Treated 10 19.91 24.76 7.23 4.29 32.27 5.06 

6 2 Treated 10 13.64 14.02 6.55 4.36 58.42 4.22 

6 3 Control 10 20.55 22.75 7.24 5.01 27.14 5.11 

6 4 Control 10 16.89 13.89 11.84 5.49 27.78 4.46 

6 5 Treated 10 36.23 38.21 11.59 8.34 31.64 7.99 

6 6 Control 10 20.31 16.17 8.04 5.35 34.43 6.06 
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Appendix Q. (continued). This appendix contains the soil content data that were inserted into 

the SAS program in Appendix R. 

    (g/ha) 

Time Plot Treatment Depth V Cr Co Ni Zn As 

12 1 Treated 10 5.34 7.37 12.03 5.91 10.51 2.32 

12 2 Treated 10 8.44 11.58 14.52 6.31 21.88 3.61 

12 3 Control 10 13.36 16.91 14.09 7.76 18.61 3.89 

12 4 Control 10 8.93 13.26 13.25 6.28 14.35 2.84 

12 5 Treated 10 6.87 9.71 11.69 4.62 9.91 2.43 

12 6 Control 10 11.76 15.47 19.46 8.31 18.64 4.74 

0 1 Treated 20 38.42 39.90 18.86 8.02 29.99 9.36 

0 2 Treated 20 27.40 35.89 10.59 7.03 29.46 8.26 

0 3 Control 20 29.04 33.19 12.61 7.91 36.82 7.29 

0 4 Control 20 35.89 43.69 10.80 7.85 32.46 9.81 

0 5 Treated 20 19.49 19.78 10.06 4.64 18.18 5.21 

0 6 Control 20 38.68 53.93 11.35 10.35 55.12 10.23 

6 1 Treated 20 24.90 23.69 10.46 6.26 23.82 5.83 

6 2 Treated 20 51.67 41.41 12.65 11.07 48.11 16.51 

6 3 Control 20 21.83 28.73 9.66 8.33 22.49 5.58 

6 4 Control 20 25.11 23.78 10.91 6.86 32.59 5.72 

6 5 Treated 20 15.38 15.31 6.93 4.81 17.26 3.50 

6 6 Control 20 27.58 22.50 9.87 9.34 96.74 7.72 

12 1 Treated 20 6.62 8.97 16.66 5.75 13.17 2.48 

12 2 Treated 20 17.30 24.73 19.31 9.51 16.48 5.15 

12 3 Control 20 14.26 18.21 16.72 8.49 17.03 4.31 

12 4 Control 20 10.29 13.80 14.85 7.99 17.91 3.01 

12 5 Treated 20 7.00 12.66 11.92 4.88 8.77 2.41 

12 6 Control 20 24.27 29.99 20.70 10.86 11.42 5.39 
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Appendix Q. (continued). This appendix contains the soil content data that were inserted into 

the SAS program in Appendix R. 

    (g/ha)     
 

  

Time Plot Treatment Depth Se Rb Cd Cs Pb Hg Th U 

0 1 Treated 0 1.31 7.90 0.10 0.62 23.84 1932.9 2.01 1.34 

0 2 Treated 0 0.86 6.43 0.08 0.49 17.19 865.0 0.96 1.20 

0 3 Control 0 1.72 8.64 0.12 0.69 32.26 683.7 2.17 1.82 

0 4 Control 0 0.88 7.32 0.10 0.60 23.05 199.9 1.57 1.14 

0 5 Treated 0 1.64 8.95 0.11 0.75 27.53 135.5 2.11 1.51 

0 6 Control 0 1.53 7.33 0.10 0.56 24.46 204.8 2.24 1.49 

6 1 Treated 0 0.72 4.83 0.09 0.32 15.93 2511.3 2.47 0.93 

6 2 Treated 0 0.86 5.59 0.09 0.39 18.64 879.2 1.97 1.01 

6 3 Control 0 1.05 7.64 0.10 0.61 21.97 818.5 2.71 1.26 

6 4 Control 0 0.85 6.28 0.09 0.51 19.56 205.8 1.88 0.96 

6 5 Treated 0 1.08 7.38 0.11 0.58 23.37 148.2 2.16 1.35 

6 6 Control 0 2.09 10.27 0.14 0.73 25.74 169.1 0.71 1.64 

12 1 Treated 0 0.66 4.82 0.13 0.23 16.09 - 2.63 0.10 

12 2 Treated 0 1.21 7.76 0.21 0.35 25.53 - 4.77 1.08 

12 3 Control 0 1.38 10.92 0.24 0.57 30.60 - 7.37 0.91 

12 4 Control 0 0.87 6.45 0.16 0.35 20.74 - 4.48 0.38 

12 5 Treated 0 1.20 9.52 0.20 0.53 26.62 - 6.72 1.11 

12 6 Control 0 1.17 1.87 0.05 0.39 7.69 - 2.40 2.30 

0 1 Treated 10 1.13 8.56 0.12 0.70 28.56 2016.3 2.83 1.45 

0 2 Treated 10 1.84 9.10 0.13 0.73 29.33 1009.9 1.95 1.55 

0 3 Control 10 1.39 8.61 0.12 0.68 33.33 609.1 2.58 1.50 

0 4 Control 10 1.65 9.55 0.16 0.79 50.27 207.4 3.44 1.60 

0 5 Treated 10 1.41 10.11 0.16 0.81 44.34 104.5 4.95 2.21 

0 6 Control 10 2.20 9.27 0.17 0.70 51.86 232.8 3.27 2.06 

6 1 Treated 10 0.89 8.07 0.14 0.63 27.48 3351.7 3.32 1.36 

6 2 Treated 10 0.83 7.17 0.09 0.51 21.86 199.7 2.61 1.46 

6 3 Control 10 1.03 8.10 0.11 0.66 25.67 415.5 3.03 1.30 

6 4 Control 10 0.99 9.24 0.13 0.74 37.22 339.0 2.81 1.39 

6 5 Treated 10 1.79 8.13 0.15 0.65 32.89 129.3 3.97 1.64 

6 6 Control 10 1.51 9.22 0.13 0.63 28.45 235.6 2.81 1.55 
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Appendix Q. (continued). This appendix contains the soil content data that were inserted into 

the SAS program in Appendix R. 

    
 (g/ha) 

Time Plot Treatment Depth Se Rb Cd Cs Pb Hg Th U 

12 1 Treated 10 1.33 7.19 0.20 0.34 28.99 - 5.11 0.32 

12 2 Treated 10 1.74 10.08 0.23 0.48 32.36 - 7.17 0.73 

12 3 Control 10 1.35 12.33 0.22 0.65 30.02 - 7.25 0.43 

12 4 Control 10 0.94 10.57 0.20 0.58 28.99 - 6.79 0.54 

12 5 Treated 10 1.51 8.30 0.20 0.44 26.03 - 5.11 0.55 

12 6 Control 10 2.30 15.16 0.30 0.76 45.39 - 9.64 0.87 

0 1 Treated 20 1.87 10.93 0.17 0.89 62.13 899.6 5.18 1.77 

0 2 Treated 20 2.07 12.02 0.15 0.94 38.65 236.8 4.08 1.72 

0 3 Control 20 1.74 11.62 0.16 0.96 42.82 211.5 4.23 1.77 

0 4 Control 20 1.31 11.45 0.15 0.92 39.52 97.7 4.05 2.01 

0 5 Treated 20 0.60 8.28 0.12 0.63 39.04 84.6 3.20 1.49 

0 6 Control 20 3.20 13.53 0.21 0.99 41.46 87.2 2.72 2.28 

6 1 Treated 20 1.98 10.65 0.11 0.81 35.57 1505.1 4.90 1.68 

6 2 Treated 20 2.89 14.08 0.20 1.00 41.72 473.5 2.59 1.96 

6 3 Control 20 1.89 11.35 0.10 0.90 29.77 810.0 4.34 1.50 

6 4 Control 20 2.07 11.25 0.16 0.92 38.91 223.9 4.14 1.73 

6 5 Treated 20 0.58 8.11 0.12 0.62 24.40 142.9 3.48 1.25 

6 6 Control 20 1.58 13.92 0.17 0.96 37.47 212.9 2.02 2.06 

12 1 Treated 20 1.41 10.27 0.19 0.50 33.25 - 6.64 0.62 

12 2 Treated 20 2.19 15.55 0.32 0.79 43.06 - 10.24 0.84 

12 3 Control 20 2.21 14.12 0.25 0.71 35.89 - 9.23 0.76 

12 4 Control 20 1.38 12.66 0.23 0.65 31.68 - 6.77 0.67 

12 5 Treated 20 1.38 9.37 0.20 0.47 28.14 - 6.08 0.53 

12 6 Control 20 2.05 18.75 0.22 1.02 38.48 - 10.98 0.56 
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Appendix R. This appendix contains an example of the SAS program used to analyze the soil 

contents presented in Appendix Q. 

 

Title3 'Effect of Application on Soil Contents'; 

 

data Soil; 

  infile 'SASSoilContent.csv' firstobs = 3 delimiter = "," ; 

  input Time Plot Treatment $ Depth P K Ca Mg S Na Fe Mn Zn Cu B Be V Cr Co Ni As Se Rb 

Cd Cs Pb Hg Th U; 

run; 

 

proc print data = Soil; 

run; 

 

title3 'P'; 

proc GLIMMIX data = Soil; 

 class Time Treatment Depth; 

 model P = Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth ; 

 lsmeans  Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth / diff lines; 

run; 

 

 title3 'K'; 

proc GLIMMIX data = Soil; 

 class Time Treatment Depth; 

 model K = Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth ; 

 lsmeans Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth / diff lines; 

run; 

 

title3 'Ca'; 

proc GLIMMIX data = Soil; 

 class Time Treatment Depth; 

 model Ca = Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth ; 

 lsmeans Time Treatment Depth Treatment*Time Treatment*Depth Time*Depth 

Time*Treatment*Depth / diff lines; 

run; 
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Appendix S. Diagram and pictures of the research plots used in Chapter 3 (Photos by author). 
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