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Abstract 

 

Monte Carlo methods are becoming more and more popular in statistics due to the fast 

development of efficient computing technologies.  One of the major beneficiaries of this advent 

is the field of Bayesian inference. The aim of this thesis is two-fold: (i) to explain the theory 

justifying the validity of the simulation-based schemes in a Bayesian setting (why they should 

work) and (ii) to apply them in several different types of data analysis that a statistician has to 

routinely encounter. In Chapter 1, I introduce key concepts in Bayesian statistics. Then we 

discuss Monte Carlo Simulation methods in detail. Our particular focus in on, Markov Chain 

Monte Carlo, one of the most important tools in Bayesian inference.  We discussed three 

different variants of this including Metropolis-Hastings Algorithm, Gibbs Sampling and slice 

sampler. Each of these techniques is theoretically justified and I also discussed the potential 

questions one needs too resolve to implement them in real-world settings. In Chapter 2, we 

present Monte Carlo techniques for the commonly used Gaussian models including univariate, 

multivariate and mixture models. In Chapter 3, I focused on several variants of regression 

including linear and generalized linear models involving continuous, categorical and count 

responses.  For all these cases, the required posterior distributions are rigorously derived.  I 

complement the methodological description with analysis of multiple real datasets and provide 

tables and diagrams to summarize the inference. In the last Chapter, a few additional key aspects 

of Bayesian modeling are mentioned. In conclusion, this thesis emphasizes on the Monte Carlo 

Simulation application in Bayesian Statistics. It also shows that the Bayesian Statistics, which 

treats all unknown parameters as random variables with their distributions, becomes efficient, 

useful and easy to implement through Monte Carlo simulations in lieu of the difficult 

numerical/theoretical calculations. 
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Chapter 1: Theory of Bayesian Inference 

1.1 Introduction 

We begin with a motivation for Bayesian inference for parameter learning from real datasets. Let 

𝐷 = { 𝑥1, 𝑥2, … , 𝑥𝑛} be a dataset consisting of 𝑛 independent and identically distributed (i.i.d.) 

observations from a distribution 𝑓(𝑥|𝜃) where 𝜃 can be a scalar or vector of unknown 

parameters. The goal of statistical inference is to learn about 𝜃. Some of the commonly used 

techniques for this purpose are:  

(i) Method of Moments (MoM):  equate the empirical moments computed from the sample to the 

theoretical moments obtained analytically from the definition of 𝑓. Then, solve for 𝜃. 

(ii) Maximum likelihood (ML): Define the likelihood of the observed sample as a function of 

unknown 𝜃 and solve for 𝜃 that maximizes this function: 

𝐿(𝜃) =∏𝑓(𝑥𝑖|𝜃)

𝑛

𝑖=1

  ,      𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥
θ

𝐿(𝜃) 

 𝜃 is referred to as the maximum likelihood estimate (MLE) for 𝜃.  

For the above two approaches, one commonality is that we assume 𝜃 has one fixed value in 

reality that we do not know and try to come up an estimate for that single number.  In Bayesian 

inference, we assume 𝜃 is also uncertain so it has a probability distribution. The role of the data 

is to provide information about the probability distribution of 𝜃. Hence, unlike ML and MoM 

where we try learn about the “true” value of the parameter, in Bayesian inference, we try to learn 

about its probability distribution.  
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1.1.1 Prior Distribution 

Prior distribution for 𝜃, denoted by 𝜋(𝜃), is reflects our idea about the uncertainty in 𝜃 before we 

observe any data. Usually this distribution is constructed using information from previous studies 

of similar kind and expert scientific knowledge. For example, if we are interested in a model for 

spending of consumers during the Thanksgiving week of 2016, the consumer spending data from 

thanksgiving week of past five years can be used to construct the relevant prior distribution.  

Depending on our idea about the reliability of prior distribution, we can use a highly informative 

(low-variance) or diffused (large variance) or completely non-informative (all values are equally 

likely) prior specifications.  Most of the time, if we do not have much idea about likely values of 

a model parameter, we generally use prior distributions with large uncertainty (variance). 

 

We give a very simple example. Suppose 𝑥1, 𝑥2, … , 𝑥𝑛 are 𝑛 i.i.d. observations from 𝑁(𝜃, 1) and 

our goal is to learn about 𝜃. We may choose π(𝜃) =  𝑁(𝜇0, 𝜏
2) for some constants 𝜇0 and 𝜏2. If 

we choose 𝜏2 very small, it reflects our strong belief that the 𝜃 is highly likely to be close to 𝜇0. 

On the other hand, if we choose 𝜏2 = 10000, it would mean values of 𝜃 far away from 𝜇0 are 

also likely. An extreme case would be to choose 𝜏2 = +∞ , which would mean all real values 

are equally likely for 𝜃 (essentially, 𝜋(𝜃) =  1(𝜃 ∈ ℝ) ), so there is no prior center. Similarly, 

for a binary dataset 𝑥1, 𝑥2, … , 𝑥𝑛~𝐵𝑒𝑟(𝑝) assigning 𝜋(𝑝) = 𝑢𝑛𝑖𝑓(0,1) amounts to a non-

informative prior. In some cases, as with the normal example, non-informative priors have an 

infinite integral, so they are also referred to as improper priors.  
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When we have more than one parameter (𝜃 is a vector), the prior distribution can be specified as 

(i) independently on each component on 𝜃 or (ii) jointly on the entire vector or (iii) decomposing 

the joint distribution as product of conditionals as marginal as  

 

𝜋(𝜃1, 𝜃2, … , 𝜃𝑝) =  𝜋(𝜃1)𝜋(𝜃2|𝜃1)…𝜋(𝜃𝑝|𝜃1, 𝜃2, … 𝜃𝑝−1) 

 

so that, we can start with a marginal prior for 𝜃1, conditional prior for 𝜃2 given 𝜃1, conditional 

prior for 𝜃3 given (𝜃1, 𝜃2) and so on. In Chapters 2 and 3, we show examples of all three kinds of 

prior specifications.  

 

1.1.2 Hierarchical Model 

In a Bayesian inference, whenever we are uncertain about exact values of a parameter, we assign 

a probability distribution to it. For example, in the above setting of data from 𝑁(𝜃, 1), one may 

also treat the two parameters of the prior distribution 𝜇0 and 𝜏2 as unknown. In that case, we 

need to assign a joint probability distribution to these two quantities – we refer to that 

distribution as hyper-prior (prior on prior parameters).  Thus, these parameters and probability 

distributions can be stacked in a hierarchy with the observed data being at the lowest level. 

 

1.1.3 Posterior Distribution 

The posterior distribution reflects the uncertainty in 𝜃 after we observe the dataset 𝐷. The 

probability model for the data depends on 𝜃 through the likelihood function 𝐿(𝜃). The posterior 

distribution for 𝜃, denoted by 𝜋(𝜃|𝐷), is the conditional distribution of 𝜃 given data calculated 

as follows using Bayes theorem: 
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𝜋(𝜃|𝐷) =
𝐿(𝐷|𝜃) 𝜋(𝜃)

∫ 𝐿(𝐷|𝜃) 𝜋(𝜃)𝑑𝜃
 

 

It is useful to note that the denominator of above expression is a normalizing constant (free of 𝜃, 

only a function of data), so we can write: 

𝜋(𝜃|𝐷) ∝ 𝐿(𝐷|𝜃) 𝜋(𝜃) 

Posterior ∝  Likelihood ∗  Prior 

Posterior distribution involves the observed dataset as conditioning variable. Since the posterior 

distribution is the centerpiece of Bayesian inference, it must be a proper density. It is useful to 

remember that use of improper prior distribution is acceptable as long as it does not lead to an 

improper joint or marginal posterior for one or more parameters.  

 

Most of the time, it is of interest to find a prior having the same functional form as likelihood 

(when viewed as a function of the parameter), so that the posterior and prior belong to the same 

family of distributions with different parameters. We refer to such priors as conjugate prior. As 

we will see in Chapter 2, for any Gaussian dataset, a normal prior for population mean and an 

Inverse-Gamma prior for population variance will act as conjugate priors. 

 

1.1.4 Posterior Inference 

Once we obtain the posterior distribution of 𝜃 as above, we can study its properties like posterior 

mean/median/variance/quantiles by analyzing the function 𝜋(𝜃|𝐷). In general, we can compute 

𝜋(𝜃 ∈ 𝐴|𝐷) for any region 𝐴 in the range of 𝜃 either analytically or numerically. 

 

For example, if we want to obtain the mean or median of the parameter, we could use: 
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mean = ∫𝜃𝜋(𝜃|𝐷)𝑑𝜃 ;median = 𝑀 where ∫ 𝜋(𝜃|𝐷)𝑑𝜃
𝜃≤𝑀

=
1

2
 

 

Usually, mean or median is used as point-level summary of the posterior distribution. We may 

also report an interval within which the parameter lies with a specified probability calculated 

from its posterior distribution. This is referred to as credible set. For example, an (1-𝛼) credible 

set for a parameter 𝜃 can be defined as the interval {𝜃: 𝑎 ≤ 𝜃 ≤ 𝑏} where  

∫ 𝜋(𝜃|𝐷)𝑑𝜃
𝑏

𝑎

 = 1 − 𝛼 

Typically, for real valued parameters, 𝑎 and 𝑏 are chosen as 
𝛼

2
 and (1 −

𝛼

2
) quantiles of the 

posterior for 𝜃. For non-negative valued parameters (such as scale or precision parameters), one 

can use credible sets of the form {𝜃: 𝜃 ≤ 𝑏}.  

 

In many situations (as we are going to see later), especially when 𝜃 is a vector of parameters 

(like the location and scale parameters of a normally distributed data where the range of both 

components of 𝜃 are unbounded), it is often difficult to extract the properties of 𝜃 as above 

because of difficulties in solving the problem analytically or numerically. One alternative 

approach is to follow Monte-Carlo (MC) methods described below. 

 

1.2 Monte Carlo Methods 

Monte Carlo methods refer to simulation-based approximation to evaluate analytically 

intractable integrals of the forms described above.  The foundation for Monte Carlo method 

comes from the law of large numbers that says: 
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Theorem 1: If X is a random variable with 𝐸|𝑋| < ∞ and 𝑥1, 𝑥2, … , 𝑥𝑚 are i.i.d draws from the 

distribution of X, then as 𝑚 → ∞ 

1

𝑚
∑ 𝑥𝑖
𝑚
𝑖=1  →  𝐸(𝑋)   with probability 1 

Hence, if we are asked to compute any integral of the form ∫𝑔(𝜃)𝜋(𝜃|𝐷)𝑑𝜃 for a known 

integrable function 𝑔, we can alternatively simulate a large number of ( i.i.d.) observations 

𝜃1, 𝜃2, … , 𝜃𝑚 from posterior density of 𝜃, evaluate the function 𝑔 at those 𝑚 points and 

approximate this integral with 
1

𝑚
∑ 𝑔(𝜃𝑖)
𝑚
𝑖=1 .  We give some examples below. 

(a) If our interest is to know the posterior probability of a set {𝜃: 𝑎 ≤ 𝜃 ≤ 𝑏}, we rewrite that as 

∫ 𝜋(𝜃|𝐷)𝑑𝜃
𝑏

𝑎
  = ∫ 1(𝑎 ≤ 𝜃 ≤ 𝑏)𝜋(𝜃|𝐷)𝑑𝜃. 

So, using 𝑔(𝜃) = 1(𝑎 ≤ 𝜃 ≤ 𝑏)  we can repeat the above mentioned steps to approximate this 

probability.   

(b) Consider a vector of parameters: 𝛉 = (𝜃1, 𝜃2, 𝜃3)
𝑇 and we want to get posterior correlation 

between 𝜃1 and 𝜃3. We can express this using the following formula: 

corr(𝜃1𝜃3) =
cov(𝜃1𝜃3)

𝑠𝑑(𝜃1)𝑠𝑑(𝜃3)
=

𝐸(𝜃1𝜃3) − 𝐸(𝜃1)𝐸(𝜃3)

√𝐸(𝜃1
2) − 𝐸(𝜃1)2 √𝐸(𝜃3

2) − 𝐸(𝜃3)2
 

All of the integrals in above expression can similarly be evaluated by using large number of 

draws from 𝜋(𝜃1, 𝜃2, 𝜃3|𝐷) and it turns out to be the correlation coefficient 𝑟 between posterior 

samples of 𝜃1 and 𝜃3.  

The utility of Monte Carlo methods depends on our ability to generate a large number of 

observations from the target posterior of 𝜃. Next, we discuss some variations of Monte Carlo 

methods. 
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1.2.1 Exact Monte Carlo 

When 𝜃 is a scalar, in many situations,  𝜋(𝜃|𝐷) is standard is easy to directly sample from. A 

trivial example could be the posterior density of 𝜇 when we have 𝑛 i.i.d observations from 

𝑁(𝜇, 1) and the prior 𝜋(𝜇) =  𝑁(𝜇0, 𝜎0
2) is completely specified. It is easy to see that the 

posterior of 𝜇 will also be normal and can be sampled a large number of times efficiently.   

 

When 𝜋(𝜃|𝐷) is not a standard density, one can use techniques like inverse cumulative 

distribution function (CDF), acceptance-rejection sampling or importance sampling to draw 

samples from it. While availability of closed form inverse CDF is essential for the first one, the 

efficiency of the latter two techniques will depend on finding an easy-to-draw-from density 

function that is reasonably similar to the target density.  

 

Moving to a multi-dimensional 𝜃, drawing from its joint posterior is still possible in some cases 

(such as mean vector of a multivariate normal with completely known dispersion matrix).  

Alternatively, one can also draw from the joint posterior by using conditional and marginal 

draws in succession. To understand this, note that, we can always write: 

𝜋(𝜃1, 𝜃2, … 𝜃𝑝|𝐷) =  𝜋(𝜃1|𝐷) ∏𝜋(𝜃𝑖|𝜃1:(𝑖−1), 𝐷)

𝑛

𝑖=1

    

Hence, starting with a draw from marginal posterior of 𝜃1, we draw every other 𝜃𝑖 from its 

conditional posterior given the previously drawn components of  𝜃. Combining these 𝑝 

univariate draws produces one draw exactly from the joint posterior of 𝜃. We shall see 

illustration of this technique in Chapters 2 and 3.  
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In many examples, specifically in those involving complex hierarchical structures, analytically 

integrating out the components of 𝜃 to find the above chain of marginal and conditional 

distributions can be a difficult task.  In those cases, we use a Markov chain to traverse the range 

of 𝜃. However, using a Markov chain would necessitate one more level of convergence to hold 

(more on that later). Hence, whenever exact sampling is an option, we must always adopt that. 

 

1.2.2 Markov Chain Monte Carlo 

We begin with a few relevant definitions. A sequence of a random variable {𝑥(0), 𝑥(1), … } is a 

Markov Chain if the conditional distribution of 𝑥(𝑛), given 𝑥(0), 𝑥(1), … , 𝑥(𝑛−1) , only depends on 

𝑥(𝑛−1).  

If 𝑥(0)~𝑓0(𝑥
(0)), then 

f1(𝑥
(1)) = ∫𝑞(𝑥(1)|𝑥(0)) 𝑓0(𝑥

(0)) 𝑑𝑥(0) 

Here, 𝑞(𝑥(1)|𝑥(0)) is called transition kernel of the Markov chain. In general,  

𝑓𝑡(𝑥
(𝑡)) = ∫𝑞(𝑥(𝑡)|𝑥(𝑡−1)) 𝑓𝑡−1(𝑥

(𝑡−1)) 𝑑𝑥(𝑡−1)  

If 𝑝𝑠(𝑥) is a probability density function such that 𝑥(𝑡) ∼ 𝑝𝑠  ⇒ 𝑥
(𝑡+1) ∼ 𝑝𝑠  

then 𝑝𝑠(𝑥) is called stationary distribution for the Markov Chain. Obviously, the form of 𝑝𝑠 (if it 

exists) depends on the form of 𝑞.  If we simulate 𝑥(0) ∼ 𝑝𝑠,  all subsequent steps will produce 

(correlated) samples from 𝑝.  

 

Think of a Markov chain on 𝜃 with stationary distribution 𝜋(𝜃|𝐷). If we can start with a 𝜃(0) 

drawn from this distribution, all subsequent samples will also be draws from the posterior, so all 
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Monte Carlo based computations can be performed using them.  So, we need to address two 

issues:  

(A) How can we find a transition kernel 𝑞 with stationary distribution same as 𝜋(𝜃|𝐷)? 

(B) If (A) is resolved, how do we circumvent the requirement that 𝜃(0) must be drawn from the 

posterior? 

We provide answer to (A) in the next section and focus on (B) here.  We present a few concepts 

and results related to Markov chains for that. See Isaacson and Madsen (1976) for details.  

We call a distribution 𝑝𝐿(𝑥) to be the limiting distribution of a Markov chain if,  

𝑝𝐿(𝐴) = lim
𝑡→∞

𝑃(𝑋(𝑡) ∈  𝐴|𝑋(0) = 𝑥(0)) 

does not depend on the initial state 𝑥(0).  Limiting distribution may or may not exists for a 

Markov chain. 

We call a Markov chain irreducible, if there is a path to go from every state to every other state.  

We call a Markov chain aperiodic if for any two states 𝑎 and 𝑏, the gcd of all path lengths that go 

from 𝑎 to 𝑏 is 1. We call a Markov chain positive recurrent, if starting from any state, the 

expected time to return to that state is finite.  Now, we state the main result that addresses 

question B.  

Theorem 2: For an ergodic (irreducible, aperiodic and positive recurrent) Markov chain, there 

exists a limiting distribution which is also its unique stationary distribution.  

 

It implies if we can (answer Question (A) and) find an ergodic Markov chain with stationary 

distribution 𝜋(𝜃|𝐷), the marginal distribution of draws from that chain will converge to a 

limiting distribution which is same as the stationary distribution 𝜋(𝜃|𝐷), irrespective of the 
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distribution of the initial parameter vector 𝜃(0).  This sampling technique is referred to as 

Markov chain Monte Carlo (MCMC; Gilks 1995). 

 

Suppose 𝑞(𝜃(𝑡+1)|𝜃(𝑡)) be a transition kernel with stationary distribution 𝜋(𝜃|𝐷).  If we draw 

𝜃(0) from any distribution of our choice (or alternatively set it equal to a fixed value) and keep 

drawing 𝜃(1), 𝜃(2) as: 

𝜃(0)  
𝑞(𝜃(1)|𝜃(0))
→         𝜃(1)  

𝑞(𝜃(2)|𝜃(1))
→         𝜃(2)  → ⋯ 

then, after a large number of draws 𝑁 are completed, 𝜃(𝑁+1), 𝜃(𝑁+2), … can be approximated as 

correlated samples from 𝜋(𝜃|𝐷).  Thus, we need to discard a large number of initial draws, 

referred to as burn-in period in an MCMC. 

 

How do we remove the correlation? For that, we only collect at draws of the Markov chain at a 

certain interval 𝑑 such as 𝜃(𝑁+1), 𝜃(𝑁+𝑑+1), 𝜃(𝑁+2𝑑+1), …  Larger the value of 𝑑 is, weaker is the 

correlation between the successive observations. This procedure of only using observations at a 

certain interval is called thinning. An MCMC algorithm typically uses both burn-in and thinning 

so that the leftover samples approximate as much as possible a set of independent draws from 

𝜋(𝜃|𝐷).   

 

1.3 Theory and Methods in MCMC 

Now, we focus on exploring options for transition kernel that has 𝜋(𝜃|𝐷) as the stationary 

distribution. In the following, I will describe three kinds of methods in MCMC with necessary 

theoretical justification. 
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1.3.1 Metropolis-Hastings Algorithm 

Consider a situation where we have the closed form expression for 𝜋(𝜃|𝐷). We do not know 

how to sample from it but, given a point 𝜃, we can evaluate it up to a normalizing constant.  The 

Metropolis-Hastings (MH) algorithm works in this scenario by proposing successive values of 𝜃 

from a proposal distribution g that is completely known and easy to draw from (Chib and 

Greensburg 1995). Given 𝜃(𝑖), we can draw 𝜃(propose) from g(𝜃(propose)|𝜃(𝑖)). So, the recent 

most state of 𝜃 serves as a parameter in g.  Then, we calculate an acceptance probability pA 

given by 

𝑝𝐴 =  𝑝𝜃(𝑖)→𝜃(propose) =
𝜋(𝜃(propose)|𝐷)

𝜋(𝜃(𝑖)|𝐷)
∗
g(𝜃(𝑖)|𝜃(propose))

g(𝜃(propose)|𝜃(𝑖))
  ⋀  1 

Finally, we set the next state of 𝜃 as: 

𝜃(𝑖+1) = {
  𝜃(propose)    with probability 𝑝𝐴 

𝜃(𝑖)         with probability 1 − 𝑝A
 

One key aspect of MH algorithm is to ensure a reasonable rate of acceptance for the proposals. A 

good proposal distribution will produce a value of pA close to 1(so we accept what we propose 

most of the time). If a proposal distribution produces small values of 𝑝𝐴 close to 0 most of the 

time, the Markov chain of 𝜃 often gets stuck at current states and covers only a few states in a 

long time. In applications, it may be difficult to choose a proposal distribution with large 

acceptance probability most of the times. Two types of choices are frequent in literature: 

 

(i) Random walk proposal: Propose the new state of 𝜃 from a distribution centered at its current 

state and a small proposal variance. If 𝜃 is real valued, we can use g(𝜃(propose)|𝜃(𝑖)) ∼ 

𝑁(𝜃(𝑖), 𝜏2). (Notice that, with this choice of proposal, the ratio involving g disappears from 𝑝𝐴 
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but that is not generally true when the proposal is not normal.)  So, every time we are trying to 

move a certain distance away in either direction from the present state, similar to the principle of 

a random walk. If 𝜏 is small, we propose in close proximity of the current state, hence we expect 

𝑝𝐴 to be reasonably large and acceptance rate to go up. But, at the same time, because our moves 

are small, it may take a long time to traverse the entire domain of 𝜃. Moreover, if the target 

distribution is multimodal with low and high probability regions mixed with each other, a small 

proposal variance would make it difficult to propose a direct move from one mode to another 

without passing through the low probability region (that would mean the move is highly likely to 

be rejected). Hence, as a result, we may keep moving only within a small sub-domain for a long 

time. 

Choosing 𝜏 large would probably reduce the extent of above problem by proposing points that 

are more scattered across the domain of 𝜃 but it would more frequently result in low values of 𝑝𝐴 

and subsequent rejection. To understand this, notice that 𝑝𝐴 depends on the ratio of the posterior 

at current and proposed states. If the proposed state is far away from current state, it can 

potentially be in a low posterior probability region and that would make that ratio too small.  

 

Hence, we need to have balance these two conflicting objectives to set a value of 𝜏:  efficiently 

covering the entire domain of 𝜃 while ensuring we are not rejecting too many moves. In practical 

experience, a proposal variance that would result in 30% − 50% acceptance rate, is reasonable.  

We can set a target acceptance rate in this region and then increase or decrease 𝜏 based on 

observing a too high or too low acceptance rate.  We have presented an example showing the 

effect of 𝜏 on acceptance rate in (refer the figure) in Chapter 2.  Harrio et al. (1999) discusses 

how to use an adaptive proposal distribution in this context. 
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(ii) Independent proposal: Here, we do not use the current state of 𝜃 to propose a new state. So, 

we can write g(𝜃(propose)|𝜃(𝑖)) =  g(𝜃(propose)), free of 𝜃(𝑖).  In that case 𝑝𝐴 becomes a 

function of the ratio of posterior and proposal compared at current and proposed states. 

𝑝𝐴 = [
π

 g 
(θ(propose))

π

g
(θ(𝑖))⁄ ]⋀1 

The advantage is that the proposal is not connected to what 𝜃 currently is, so we can propose 

values more scattered across the domain. For example, one may use the prior for 𝜃 as its 

proposal and then compute 𝑝𝐴 to accept/reject that move.  One of the requirements for this to 

work well is that the high probability regions under the g and the 𝜋 should not be different. 

Sometimes, one may use a part of the posterior as proposal so they are not too different in shape. 

If they are too different, we may end up proposing too many values that have very low values of 

𝜋

g
 and are likely to be rejected. The Random walk proposal avoids this problem by proposing a 

move centered at an already accepted stare of 𝜃.  See Gåsemyr (2003) on how to choose the 

independent proposal distribution adaptively.  

 

For practical applications involving exponential families, most often it is computationally 

efficient to calculate  log 𝑝𝐴 and then generate an exp (1) random number to perform the accept-

reject step.  This follows from the fact that 𝑢 ∼ Unif(0,1) ⇒ − log 𝑢 ∼ exp(1).  

 

Next, we theoretically show that, the Markov chain we proposed here has the target posterior as 

its stationary distribution. We assert that the required conditions for applying Theorem (refer) is 

already satisfied. The Markov chain is aperiodic because at every transition, there is a nonzero 

probability of remaining at the current state. It is clearly irreducible as well.  
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Basically, this is a Markov Chain with transition kernel f(𝜃(𝑖+1)|𝜃(𝑖)) ∗ 𝑝𝜃(𝑖)→𝜃(𝑖+1) , so 𝜃(𝑖) can 

be any value. Then the prerequisite is that 𝜋(𝜃) is the stationary distribution of kernel 

q(𝜃(𝑖+1)|𝜃(𝑖)) = f(𝜃(𝑖+1)|𝜃(𝑖)) ∗ 𝑝𝜃(𝑖)→𝜃(𝑖+1). I will prove as follows. 

 

p(𝜃(𝑖) = a, 𝜃(𝑖+1) = b) = p(𝜃(𝑖) = a) ∗ p(𝜃(𝑖+1) = b|𝜃(𝑖) = a) = 𝜋(𝑎) ∗ f(b|a) ∗ 𝑝a→b 

p(𝜃(𝑖) = b, 𝜃(𝑖+1) = a) = p(𝜃(𝑖) = b) ∗ p(𝜃(𝑖+1) = a|𝜃(𝑖) = b) = 𝜋(𝑏) ∗ f(a|b) ∗ 𝑝b→a 

𝑝a→b = (
𝜋(b)

𝜋(a)
∗
f(a|b)

f(b|a)
)⋀1；𝑝b→a = (

𝜋(a)

𝜋(b)
∗
f(b|a)

f(a|b)
)⋀1 

Case-1: 

𝜋(b)

𝜋(a)
∗
f(a|b)

f(b|a)
< 1; 𝑝a→b =

𝜋(b)

𝜋(a)
∗
f(a|b)

f(b|a)
; 𝑝b→a = 1 

p(𝜃(𝑖) = a, 𝜃(𝑖+1) = b) = p(𝜃(𝑖) = b, 𝜃(𝑖+1) = a) = 𝜋(b) ∗ f(a|b) 

Case-2: 

𝜋(b)

𝜋(a)
∗
f(a|b)

f(b|a)
> 1; 𝑝a→b = 1; 𝑝b→a =

𝜋(a)

𝜋(b)
∗
f(b|a)

f(a|b)
 

p(𝜃(𝑖) = a, 𝜃(𝑖+1) = b) = p(𝜃(𝑖) = b, 𝜃(𝑖+1) = a) = 𝜋(𝑎) ∗ f(b|a) 

Case-3 

𝜋(b)

𝜋(a)
∗
f(a|b)

f(b|a)
> 1; 𝑝a→b = 𝑝b→a = 1; 𝜋(𝑎) ∗ f(b|a) = 𝜋(𝑏) ∗ f(a|b) 

p(𝜃(𝑖) = a, 𝜃(𝑖+1) = b) = p(𝜃(𝑖) = b, 𝜃(𝑖+1) = a) 

So it is always true that 

p(𝜃(𝑖) = a, 𝜃(𝑖+1) = b) = p(𝜃(𝑖) = b, 𝜃(𝑖+1) = a) 

if we use kernel q(𝜃(𝑖+1)|𝜃(𝑖)) = f(𝜃(𝑖+1)|𝜃(𝑖)) ∗ 𝑝𝜃(𝑖)→𝜃(𝑖+1). 
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𝜋(𝜃(𝑖+1) = 𝑏)   = ∫𝑞(𝜃(𝑖+1) = 𝑏|𝜃(𝑖) = 𝑎) ∗ 𝜋(𝜃(𝑖) = 𝑎) 𝑑𝜃(𝑖)

= ∫p(𝜃(𝑖) = a, 𝜃(𝑖+1) = b)𝑑𝜃(𝑖) = ∫p(𝜃(𝑖) = b, 𝜃(𝑖+1) = a) 𝑑𝜃(𝑖+1)

= ∫𝑞(𝜃(𝑖+1) = 𝑎|𝜃(𝑖) = 𝑏) ∗ 𝜋(𝜃(𝑖) = 𝑏) 𝑑𝜃(𝑖+1)

= 𝜋(𝜃(𝑖) = 𝑏) ∗ ∫𝑞(𝜃(𝑖+1) = 𝑎|𝜃(𝑖) = 𝑏) 𝑑𝜃(𝑖+1) = 𝜋(𝜃(𝑖) = 𝑏) 

𝜃(𝑖) and 𝜃(𝑖+1) are from identical distribution 𝜋(𝜃), so 𝜋(𝜃) is stationary for kernel 

q(𝜃(𝑖+1)|𝜃(𝑖)) = f(𝜃(𝑖+1)|𝜃(𝑖)) ∗ 𝑝𝜃(𝑖)→𝜃(𝑖+1). 

 

1.3.2 Gibbs Sampling 

If parameters 𝛉 is a vector (𝜃1
𝜃2
), and posterior distribution of 𝛉 is π(𝛉|data ) = π(𝜃1, 𝜃2|data), 

which is not standard to simulate from, then we can integrate marginal posterior distributions of 

𝜃1 and 𝜃2 and they are π(𝜃1|data) = ∫π(𝜃1, 𝜃2|data)𝑑𝜃2 and π(𝜃2|data) =

∫π(𝜃1, 𝜃2|data)𝑑𝜃1. 

π(𝜃1
(1)|data) = ∫ 𝜋(𝜃1

(1), 𝜃2
(0)|𝑑𝑎𝑡𝑎)

𝜃2
(0)

d𝜃2
(0) = ∫ 𝜋(𝜃1

(1)|𝜃2
(0), 𝑑𝑎𝑡𝑎)

𝜃2
(0)

∗ 𝜋(𝜃2
(0)|𝑑𝑎𝑡𝑎)d𝜃2

(0)
 

= ∫ 𝜋(𝜃1
(1)|𝜃2

(0), 𝑑𝑎𝑡𝑎)
𝜃2
(0)

∗ [∫ 𝜋(𝜃1
(0), 𝜃2

(0)|𝑑𝑎𝑡𝑎)
𝜃1
(0)

d𝜃1
(0)] d𝜃2

(0)
 

= ∫ 𝜋(𝜃1
(1)|𝜃2

(0), 𝑑𝑎𝑡𝑎)
𝜃2
(0)

∗ [∫ 𝜋(𝜃2
(0)|𝜃1

(0), 𝑑𝑎𝑡𝑎) ∗
𝜃1
(0)

𝜋(𝜃1
(0)|𝑑𝑎𝑡𝑎)d𝜃1

(0)] d𝜃2
(0)

 

 

= ∫ [∫ 𝜋(𝜃1
(1)|𝜃2

(0), 𝑑𝑎𝑡𝑎) ∗ 𝜋(𝜃2
(0)|𝜃1

(0), 𝑑𝑎𝑡𝑎)𝑑𝜃2
(0)

𝜃2
(0)

]
𝜃1
(0)

∗ 𝜋(𝜃1
(0)|𝑑𝑎𝑡𝑎)d𝜃1

(0)
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= ∫ 𝑞(𝜃1
(0) → 𝜃1

(1))
𝜃1
(0) ∗ 𝜋(𝜃1

(0)|𝑑𝑎𝑡𝑎)d𝜃1
(0)

, 

where 𝑞(𝜃1
(0) → 𝜃1

(1)) = ∫ π(θ1
(1)|θ2

(0), data) ∗ π(θ2
(0)|θ1

(0), data)dθ2
(0)

θ2
(0) . 

𝜃1
(0) → 𝜃2

(0) → 𝜃1
(1) → 𝜃2

(1) → 𝜃1
(2)… 

 

Generalized to general situations, kernel q is {𝜋(𝜃𝑖|𝜃−𝑖) ∶ 𝑖 = 1,2, … , 𝑝} (use the recent value). 

Through this kernel, we can get a Markov Chain with our target distribution as stationary 

distribution. And this Markov Chain simulation method with full conditional kernel is called 

Gibbs Sampling (Gelfand 2000). Gibbs Sampling is a special type of Metropolis Hasting 

Sampling with independent M-H kernel. Acceptance probability pθ(i)→θ(i+1) = 
𝜋(𝜃(𝑖+1))

𝜋(𝜃(𝑖))
∗
q(𝜃(𝑖))

q(𝜃(𝑖+1))
 

where 𝜋(𝜃(𝑖)) = 𝜋(𝜃(𝑖)|𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟𝑠) and q(𝜃(𝑖)) = 𝜋(𝜃(𝑖)|all others). And acceptance 

probability is equal to 1 always. One drawback of Gibbs Sampling is that the samples will be 

correlated. The more steps in Gibbs Sampling in multiple parameters 𝛉, the more correlated 

samples are. To reduce the correlation, if there are multiple parameters to be simulated, we 

should partition 𝛉 into as few blocks as possible so that it is easy to draw from its joint 

distribution within each block. 𝑥1, 𝑥2, … , 𝑥𝑛~MVN3(𝛍, 𝜮), we want to draw from π(𝛍, 𝚺|data). 

There are total 9 parameters. 

𝛉 = (μ1, μ2, μ3, 𝜎1
2, 𝜎2

2, 𝜎3
2, 𝜎12, 𝜎13, 𝜎23)

𝑇 

Generally, to simplify the simulation and keep low correlation, people tend to separate them into 

two partitions. 

𝛉1 = 𝐮 = (μ1, μ2, μ3)
𝑇; 𝛉2 = 𝛴 = (

𝜎1
2 𝜎12 𝜎13

𝜎21 𝜎2
2 𝜎23

𝜎31 𝜎32 𝜎3
2

) 



17 

 

Then simulate from π(𝛍|𝜮, 𝑑𝑎𝑡𝑎) and π(𝜮|𝛍, 𝑑𝑎𝑡𝑎). Table 1 shows how the number of 

partitions affect the simulation accuracy. 

Partition Number Too Few Too Many 

Advantages Low or No Correlation Standard to Draw 

Disadvantages Difficult to Draw High Correlated 

Table 1 Choice of number of blocks in Gibbs sampler 

 

1.3.3 Slice Sampling 

Slice sampling (Neal 2003) is a useful tool to draw samples from a posterior distribution which is 

not standard and not easy to draw from. However, the posterior needs to have certain properties 

to be suitable for slice sampling. Suppose parameter θ with a target distribution f(θ). We can 

implement Slice sampling if following conditions are satisfied. f(θ) can be written as f(θ) =

g(θ)h(θ) with h(θ) always positive. It is not easy to draw samples from f(θ), and we do know 

how to draw from truncated version of g(θ). 

We need to introduce a new random variable in this sampling, say u. And u given θ follows 

uniform distribution, u~unif(0, h(θ)). Then u given θ have probability density function as 

follows. 

π(u|θ) =
1

h(θ)
∗ 1(𝑢 < h(θ)) ⟹ 

f(u, θ) = π(u|θ) ∗ f(θ) = g(θ)h(θ)
1

h(θ)
∗ 1(𝑢 < h(θ)) = g(θ) ∗ 1(𝑢 < h(θ)) 

⟹ f(θ|u) = g(θ) ∗ 1(θ ∈ H(u)) 

where 𝐻 is the inverse function of 𝐻. We know how to draw samples from π(u|θ) and f(θ|u), 

then we can use full conditional distribution to draw samples step by step. 
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1.4 Predictive Distributions 

Suppose, we are given a set of i.i.d. observations 𝑦1, 𝑦2, … , 𝑦𝑛~f(θ). How can we predict the 

possible values of a new observation 𝑦𝑛+1?  For this, note that the conditional distribution of this 

new observation given the observed data points can be written as 

𝑦𝑛+1~ f(𝑦𝑛+1|y1, 𝑦2, … , 𝑦𝑛) = ∫ f(𝑦𝑛+1, θ|𝑦1, 𝑦2, … , 𝑦𝑛) 𝑑θ

= ∫  f(𝑦𝑛+1|θ, 𝑦1, 𝑦2, … , 𝑦𝑛)f(θ|𝑦1, 𝑦2, … , 𝑦𝑛) 𝑑θ

= ∫ f(𝑦𝑛+1|θ)f(θ|𝑦1, 𝑦2, … , 𝑦𝑛) 𝑑θ 

This is called posterior predictive distribution of 𝑦𝑛+1. In other words, we draw θ’s from 

posterior distribution derived from the data and prior, and then draw one value of 𝑦𝑛+1 using 

each simulated θ. We can use these samples to summarize different characteristics of 𝑦𝑛+1. 
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Chapter 2: Bayesian Inference for Gaussian Datasets: 

 

2.1 Introduction 

Gaussian distribution, which is also called normal distribution, is one of the most important and 

common distribution in real world. There is one dimensional and one component normal 

distribution (X~N(μ, 𝜎2)). And there are other more complicated types of normal distributions, 

such as many dimensional normal distribution (X~MVN2((
μ1
μ2
), (
𝜎1
2 𝜎12
𝜎21 𝜎2

2 ))), many components 

normal distribution (X~𝑝1N(μ1, 𝜎1
2) + 𝑝2N(μ2, 𝜎2

2)), and many dimensional and many 

components normal distribution (X~𝑝1MVN2((
μ1
μ2
), (
𝜎1
2 𝜎12
𝜎21 𝜎2

2 ) + 𝑝2MVN2((
μ3
μ4
), (
𝜎3
2 𝜎34

𝜎43 𝜎4
2 )). 

 

2.2 Univariate Normal 

𝑦1, 𝑦2, … , 𝑦𝑛 come from a normal distribution with mean μ and variance𝛿2 (𝑦𝑖~𝑁(μ, 𝜎
2)), and 

We want to estimate these two parameters from given data. We can easily calculate the mean and 

variance directly through Maximum Likelihood Estimation, but we want to regard both of them 

as random variables with some distributions and use Bayesian Method to estimate parameters 

through Monte Carlo Method. Likelihood of the data is Likelihood = ∏
1

√2𝜋𝜎2
exp (−

(𝑦𝑖−μ)
2

2𝜎2
)𝑛

𝑖=1 . 

It is not hard to find that the conjugate priors can be normal distribution and inverse gamma 

distribution (which has been mentioned above) for μ and 𝜎2 respectively. Then prior for 𝜎2 is 

𝜎2~𝐼𝐺𝑎𝑚𝑚𝑎(𝑎0, 𝑏0) and have the probability density function 𝜋(𝜎2) =

𝑏0
𝑎0

𝛾(𝑎0)
(
1

𝜎2
)𝑎0+1exp (−

𝑏0

𝜎2
), where 𝑎0 and 𝑏0 are known. I will do Exact sampling, MCMC 

sampling, and MH sampling. So for μ, I will put forward two priors μ~𝑁(μ0, 𝜏0
2) and 
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μ~𝑁(μ0, 𝑐0𝜎
2). The first one is independent prior which I will use in the MCMC sampling and 

MH sampling, while the second one is dependent prior which I will use in the Exact Sampling. 

The probability density functions for them are as follows. 

𝜋(μ) =
1

√2𝜋𝜏0
2
exp (−

(μ − μ0)
2

2𝜏0
2 ) ; 𝜋(μ) =

1

√2𝜋𝑐0𝜎2
exp (−

(μ − μ0)
2

2𝑐0𝜎2
) 

the truth is that if we are able to use exact sampling in some distributions, we should prefer the 

Exact Sampling all the time to other methods. 

 

2.2.1 Dependent prior and exact sampling 

Before going into normal estimation, I will introduce a conjugate prior for the variance. Inverse 

gamma distribution is common treated as the prior of the variance of the normal distribution in 

Bayesian statistics. 

If 𝑥1, 𝑥2, … , 𝑥𝑛 ~ N (0,𝜎2), 𝜎2 unknown, then 

L (𝜎2) ∝  ∏
1

√𝜎2
∗ exp(−

𝑥𝑖
2

2 ∗ 𝜎2
) ∝  (

1

𝜎2
)

𝑛
2
∗ exp (−

∑𝑥𝑖
2

2 ∗ 𝜎2
) ∝

𝑛

𝑖=1

 (
1

𝜎2
)
𝛼−1

∗ exp (−𝛽 ∗（
1

𝜎2
）) 

As we can see, the likelihood of the reciprocal of the variance has the form of gamma 

distribution, and due to this characteristics, the 𝜎2 have a so-called inverse gamma distribution.  

So if 𝜋(𝜎2)  ∝  (
1

𝜎2
)
𝑎+1

∗ exp (−𝑏 ∗（
1

𝜎2
）) , then we say 𝜎2~ IGamma (a, b). Here, a is 

called the shape and b is called the scale of the inverse gamma. 
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And if so, 
1

𝜎2
 ~ Gamma (a, b). Here, a is called the shape parameter, but b is called the rate 

parameter of the gamma distribution. And then if we want to simulate random numbers through 

Monte Carlo method for 𝜎2, then we can simulate Gamma (a, b) and take the reciprocal. 

For Exact Sampling in this case, because there are two parameters and we only have the joint 

distribution, first of all we need to derive the marginal distribution for one of them. After we get 

the marginal distribution and draw a sample from the marginal distribution, we can use 

conditional distribution for the other parameter to draw sample. Draw large amount of samples 

from the above procedure and then calculate the properties of these parameters. I will derive the 

posterior marginal distribution of μ and conditional distribution of 𝜎2 next. 

Joint Posterior: 

π(μ, 𝜎2|data) ∝ (
1

𝜎2
)

𝑛
2
exp (−

∑ (𝑦𝑖 − μ)
2𝑛

𝑖=1

2𝜎2
) ∗ (

1

𝜎2
)

1
2
exp(−

(μ − μ0)
2

2𝑐0𝜎2
)

∗ (
1

𝜎2
)𝑎0+1exp (−

𝑏0
𝜎2
) 

⟹ π(𝜎2|μ, data) ∝ (
1

𝜎2
)

𝑛
2
+
1
2
+𝑎0+1

∗ exp(−
1

𝜎2
∗ (
∑ (𝑦𝑖 − μ)

2𝑛
𝑖=1

2
+
(μ − μ0)

2

2𝑐0
+ 𝑏0)) 

⟹ π(𝜎2|μ, data)~𝐼𝐺𝑎𝑚𝑚𝑎(
𝑛 + 1

2
+ 𝑎0,

∑ (𝑦𝑖 − μ)
2𝑛

𝑖=1

2
+
(μ − μ0)

2

2𝑐0
+ 𝑏0) 

⟹ π(μ|data) = ∫(
1

𝜎2
)

𝑛
2
+
1
2
+𝑎0+1

∗ exp(−
1

𝜎2
∗ (
∑ (𝑦𝑖 − μ)

2𝑛
𝑖=1

2
+
(μ − μ0)

2

2𝑐0
+ 𝑏0))𝑑𝜎

2 

=
𝛾(
𝑛 + 1
2 + 𝑎0)

(
∑ (𝑦𝑖 − μ)2
𝑛
𝑖=1

2 +
(μ − μ0)2

2𝑐0
+ 𝑏0)

𝑛+1
2
+𝑎0

∝ (
∑ (𝑦𝑖 − μ)

2𝑛
𝑖=1

2
+
(μ − μ0)

2

2𝑐0
+ 𝑏0)

−(
𝑛+1
2
+𝑎0) 

∝ (1 +
(μ − 𝐷)2

𝐸
)

−(
𝑛+1
2
+𝑎0)

; D =
μ0 + 𝑐0∑𝑦𝑖
𝑐0𝑛 + 1
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𝐸 =
2𝑐0𝑏0 + 𝑐0∑(𝑦𝑖)

2 + μ0
2

𝑐0𝑛 + 1
− (
μ0 + 𝑐0∑𝑦𝑖
𝑐0𝑛 + 1

)2 

Then marginal posterior distribution for μ is T distribution with degree of freedom v = 2𝑎0 + 𝑛, 

location D, and scale 𝜎 = √
𝐸

𝑣
 (random number = D + 𝜎 ∗ 𝑡v, 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 π(μ|data)). After draw a 

sample from the posterior marginal for μ, we can draw a sample from π(𝜎2|μ, data). There two 

special cases about the distributions I want to mention. X~N(0,
1

𝜆
) ;  𝜆~𝐺𝑎𝑚𝑚𝑎 (

𝑟

2
,
𝑟

2
) ⟹ X~𝑡𝑟 

and X~N(μ, 𝜎2); 𝜎2~𝐼𝐺𝑎𝑚𝑚𝑎 (
𝑟

2
,
𝑟

2
) ⟹ X~𝑡𝑟 𝑤𝑖𝑡ℎ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 μ. 

 

2.2.2 Independent prior and Gibbs Sampling 

For MCMC sampling, we do not need to derive any marginal distribution and are able to draw 

from full conditional distributions from a Markov Chain one by one until getting a very large 

sample size. 

Joint Posterior: 

π(μ, 𝜎2|data) ∝ (
1

𝜎2
)

𝑛
2
exp (−

∑ (𝑦𝑖 − μ)
2𝑛

𝑖=1

2𝜎2
) ∗ exp (−

(μ − μ0)
2

2𝜏0
2 ) ∗ (

1

𝜎2
)𝑎0+1exp (−

𝑏0
𝜎2
) 

⟹ π(μ|𝜎2, data) ∝ exp (−
∑ (𝑦𝑖 − μ)

2𝑛
𝑖=1

2𝜎2
) ∗ exp (−

(μ − μ0)
2

2𝜏0
2 )

∝ exp (−

(μ − (
𝜏0
2∑𝑦𝑖 + 𝜎

2μ0
𝜎2 + 𝜏0

2𝑛
))2

2 𝜏0
2𝜎2 (𝜎2 + 𝜏0

2𝑛)⁄
) 

⟹ π(𝜎2|μ, data) ∝ (
1

𝜎2
)

𝑛
2
exp(−

∑ (𝑦𝑖 − μ)
2𝑛

𝑖=1

2𝜎2
) ∗ (

1

𝜎2
)
𝑎0+1

exp (−
𝑏0
𝜎2
)

∝ (
1

𝜎2
)

𝑛
2
+𝑎0+1

∗ exp(−
1

𝜎2
∗ (
∑ (𝑦𝑖 − μ)

2𝑛
𝑖=1

2
+ 𝑏0)) 
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From the derivation above we know both posterior full conditional distributions and can draw 

from them step by step. 

π(𝜎2|μ, data)~𝐼𝐺𝑎𝑚𝑚𝑎(
𝑛

2
+ 𝑎0,

∑ (𝑦𝑖 − μ)
2𝑛

𝑖=1

2
+ 𝑏0) 

π(μ|𝜎2, data)~𝑁(
𝜏0
2∑𝑦𝑖 + 𝜎

2μ0

𝜎2 + 𝜏0
2𝑛

, 𝜏0
2𝜎2 (𝜎2 + 𝜏0

2𝑛)⁄ ) 

As we can see from the mean of the posterior normal distribution for μ, it can be rewritten as 

𝜏0
2𝑛

𝜎2 + 𝜏0
2𝑛
∗
∑𝑦𝑖
𝑛
+

𝜎2

𝜎2 + 𝜏0
2𝑛
∗ μ0 =

𝜏0
2𝑛

𝜎2 + 𝜏0
2𝑛
∗ 𝑦̅ +

𝜎2

𝜎2 + 𝜏0
2𝑛
∗ μ0 =

∑(𝑤𝑖 ∗ 𝑚𝑒𝑎𝑛)

∑𝑤𝑖
 

and with n going to infinite we have 
∑(𝑤𝑖∗𝑚𝑒𝑎𝑛)

∑𝑤𝑖

𝑛→∞
→   𝑦̅. 

 

2.2.3 Independent prior and MH sampling within Gibbs 

To apply Metropolis Hasting Sampling within Gibbs Sampling in univariate normal estimation, 

the exactly same independent priors for 𝜎2 and μ from the Gibbs sampling in MCMC will be 

used. But the difference is that instead of simulating 𝜎2 from inverse gamma distribution which 

can be derived from the posterior density function, we propose a dependent log normal 

distribution for 𝜎2 to use MH Sampling to simulate 𝜎2 from the most recent 𝜎2 value, which can 

properly deal with the positive property of 𝜎2. The proposal distribution for 𝜎2 is 

𝜋(𝜎2)~𝐿𝑁(μ1, 𝜏1
2) with μ1 = log (𝜎𝑜𝑙𝑑

2 ) and 𝜏1
2 to be some suitable constant keeping the 

acceptance rate between 30% to 40%. In other words, log(𝜎𝑛𝑒𝑤
2 )~𝑁(log(𝜎𝑜𝑙𝑑

2 ) , 𝜏1
2). The 

acceptance probability of the proposal distribution is 

𝑝𝜎𝑜𝑙𝑑
2 →𝜎𝑛𝑒𝑤

2 = (
𝜋(𝜎𝑛𝑒𝑤

2 |μ, 𝑑𝑎𝑡𝑎)

𝜋(𝜎𝑜𝑙𝑑
2 |μ, 𝑑𝑎𝑡𝑎)

∗
q(𝜎𝑜𝑙𝑑

2 |𝜎𝑛𝑒𝑤
2 )

q(𝜎𝑛𝑒𝑤
2 |𝜎𝑜𝑙𝑑

2 )
)⋀1 

Similar to Gibbs Sampling in MCMC, the posterior density of 𝜎2 is 
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π(𝜎2|μ, data) ∝ (
1

𝜎2
)

𝑛
2
+𝑎0+1

∗ exp (−
1

𝜎2
∗ (
∑ (𝑦𝑖 − μ)

2𝑛
𝑖=1

2
+ 𝑏0)) 

The density of proposal distribution are as follows. 

𝜋(𝜎𝑛𝑒𝑤
2 |𝜎𝑜𝑙𝑑

2 ) ∝
1

𝜎𝑛𝑒𝑤2
exp(−

[log(𝜎𝑛𝑒𝑤
2 ) − log(𝜎𝑜𝑙𝑑

2 )]2

2𝜏1
2 ) 

𝜋(𝜎𝑜𝑙𝑑
2 |𝜎𝑛𝑒𝑤

2 ) ∝
1

𝜎𝑜𝑙𝑑
2 exp (−

[log(𝜎𝑜𝑙𝑑
2 ) − log(𝜎𝑛𝑒𝑤

2 )]2

2𝜏1
2 ) 

𝑝𝜎𝑜𝑙𝑑
2 →𝜎𝑛𝑒𝑤

2 = (
𝜋(𝜎𝑛𝑒𝑤

2 |μ,𝑑𝑎𝑡𝑎)

𝜋(𝜎𝑜𝑙𝑑
2 |μ,𝑑𝑎𝑡𝑎)

𝜎𝑛𝑒𝑤
2

𝜎𝑜𝑙𝑑
2 )⋀1 = (

(
1

𝜎𝑛𝑒𝑤
2 )

𝑛
2
+𝑎0

∗exp(−
1

𝜎𝑛𝑒𝑤
2 ∗(

∑ (𝑦𝑖−μ)
2𝑛

𝑖=1
2

+𝑏0))

(
1

𝜎𝑜𝑙𝑑
2 )

𝑛
2
+𝑎0

∗exp(−
1

𝜎𝑜𝑙𝑑
2 ∗(

∑ (𝑦𝑖−μ)
2𝑛

𝑖=1
2

+𝑏0))

)⋀ 1 with 

q(𝜎𝑜𝑙𝑑
2
|𝜎𝑛𝑒𝑤
2

)

q(𝜎𝑛𝑒𝑤
2

|𝜎𝑜𝑙𝑑
2
)
=
𝜎𝑛𝑒𝑤
2

𝜎𝑜𝑙𝑑
2  . Then use full conditional posterior distribution for μ to draw μ conditional 

on 𝜎2. Use log normal proposal distribution to draw new 𝜎2 based on the most recently 𝜎2, and 

use acceptance probability derived above to decide if reject or accept the new 𝜎2 compared to a 

uniform random number within (0, 1). Then continue to do these steps large amount of times to 

realize a MH Sampling within Gibbs Sampling in MCMC. 

 

2.3 Mixture Normal 

There are k normal distributions with different means and variance, 

{𝑁(μ1, 𝜎1
2), 𝑁(μ2, 𝜎2

2),… ,𝑁(μ𝑘, 𝜎𝑘
2)}. Probability density function of X is 

𝜋(𝑦) = 𝜋1𝑁(𝑦|μ1, 𝜎1
2) + 𝜋2𝑁(𝑦|μ2, 𝜎2

2) + ⋯+ 𝜋𝑘𝑁(𝑦|μ𝑘, 𝜎𝑘
2) =∑𝜋𝑖𝑁(𝑦|μ𝑖, 𝜎𝑖

2)

𝑘

𝑖=1

 

with 𝜎𝑖
2 > 0, 𝑎𝑛𝑑 ∑ 𝜋𝑖

𝑘
𝑖=1 = 1. And any distribution can be modeled as a mixture of infinitely 

many normal distributions (𝑁(μ, 𝜎2)’s) with different sets of parameters. 𝜋(𝑦) =

∑ 𝜋𝑖𝑁(𝑦|μ𝑖, 𝜎𝑖
2)+∞

𝑖=1  with ∑ 𝜋𝑖
𝑘
𝑖=1 = 1 (𝑘 → +∞). The parameters we need to estimate are 

{𝜋1, 𝜋2, … , 𝜋𝑘}, {μ1, μ2, … , μ𝑘}, and {𝜎1
2, 𝜎2

2, … , 𝜎𝑘
2}. The prior for each component of 𝛍 and 𝝈2 
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are normal and inverse gamma distributions respectively. We will use Dirichlet Distribution with 

parameter 𝜶0 as the prior for probabilities 𝝅. 

𝝅~Dir(𝜶0 = (𝛼1, 𝛼2, … , 𝛼𝑘)); 𝜋(𝐏) ∝ 𝜋1
𝛼1−1 ∗ 𝜋2

𝛼2−1 ∗ … ∗ 𝜋𝑘
𝛼𝑘−1 

with ∑ 𝜋𝑖
𝑘
𝑖=1 = 1. Because it is not possible or extremely hard to draw samples from 

𝜋(𝝅|𝛍, 𝝈2, 𝑑𝑎𝑡𝑎), which is not standard, we will use latent variable Z. For observation j, define 

𝑧𝑗  (𝑧𝑗 ∈ {1,2, … , 𝑘}) represents the component the observation comes from the mixture normal. 

For example, 𝑧2 = 3 means 𝑦2~𝑁(μ3, 𝜎3
2). And then we have conditional likelihood, given z=i, 

is 𝜋(𝑦|𝑧 = 𝑖) = 𝑁(𝑦|μ𝑖, 𝜎𝑖
2) with prior for Z is 𝑃(𝑍 = 𝑖) = 𝜋𝑖. Hence likelihood 

𝜋(𝑦) =∏𝜋(𝑦𝑗|𝑧𝑗 = 𝑖)𝑃(𝑍 = 𝑖)

𝑛

𝑗=1

=∏𝜋𝑖𝑁(𝑦𝑗|μ𝑖, 𝜎𝑖
2)

𝑛

𝑗=1

 

, from which after integrating out of Z we can get the actual marginal distribution of Y. Using 

hierarchical method to write out posterior distribution of all parameters layer by layer. 

𝜋(𝑦|𝑧 = 𝑖) = 𝑁(𝑦|μ𝑖, 𝜎𝑖
2), 𝑃(𝑍 = 𝑖) = 𝜋𝑖, 𝜋(μ𝑖|𝜎𝑖

2)~𝑁(μ0, 𝑐0𝜎
2) (use dependent prior here), 

𝜋(𝜎𝑖
2)~𝐼𝐺(𝑎0, 𝑏0), and 𝝅~Dir(𝛼1, 𝛼2, … , 𝛼𝑘). Joint posterior distribution and conditional 

posterior distributions are derived as follows. 

𝜋(𝒁, 𝛍, 𝝅, 𝝈2|𝑑𝑎𝑡𝑎)

∝∏ 𝑁(𝑦𝑗|μ𝑧𝑗 , 𝜎𝑧𝑗
2 )

𝑛

𝑗=1
∗∏ 𝜋𝑧𝑗

𝑛

𝑗=1
∗∏ 𝑁(μ𝑖|𝜎𝑖

2)
𝑘

𝑖=1

∗∏ 𝐼𝐺(𝜎𝑖
2) ∗ 𝐷𝑖𝑟(𝜶0)

𝑘

𝑖=1
 

𝜋(𝒁|𝛍, 𝝅, 𝝈2, 𝑑𝑎𝑡𝑎) ∝∏ 𝑁(𝑦𝑗|μ𝑧𝑗 , 𝜎𝑧𝑗
2 )

𝑛

𝑗=1
∗∏ 𝜋𝑧𝑗

𝑛

𝑗=1
; 𝜋(𝑧𝑗|𝛍, 𝝅, 𝝈

2, 𝑑𝑎𝑡𝑎)

∝ 𝑁 (𝑦𝑗|μ𝑧𝑗 , 𝜎𝑧𝑗
2 ) ∗ 𝜋𝑧𝑗 

To get posterior distribution for z of each observation j, we have: 
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𝑃(𝑧𝑗 = 1) ∝ 𝑁(𝑦𝑗|μ1, 𝜎1
2)𝜋1;  𝑃(𝑧𝑗 = 2) ∝ 𝑁(𝑦𝑗|μ2, 𝜎2

2)𝜋2; … 

 𝑃(𝑧𝑗 = 𝑘) ∝ 𝑁(𝑦𝑗|μ𝑘 , 𝜎𝑘
2)𝜋𝑘 

𝑃(𝑧𝑗 = 1) =
𝑁(𝑦𝑗|μ1, 𝜎1

2)𝜋1

∑ 𝑁(𝑦𝑗|μ𝑖, 𝜎𝑖
2)𝜋𝑖

𝑘
𝑖=1

; 

 𝑃(𝑧𝑗 = 𝑡) =
𝑁(𝑦𝑗|μ𝑡, 𝜎𝑡

2)𝜋𝑡

∑ 𝑁(𝑦𝑗|μ𝑖, 𝜎𝑖
2)𝜋𝑖

𝑘
𝑖=1

;  ∑𝑃(𝑧𝑗 = 𝑡)

𝑘

𝑡=1

= 1 

This is a posterior multinomial distribution with 𝑃(𝑧𝑗 = 𝑡) mentioned above for Z. And then I 

will derive the posterior distribution for 𝝅 as Dirichlet Distribution as follows. 

𝜋(𝝅|𝒁, 𝛍, 𝝈2, 𝑑𝑎𝑡𝑎) ∝ (∏ 𝜋𝑧𝑗

𝑛

𝑗=1
) ∗ 𝜋(𝜋1, 𝜋2, … , 𝜋𝑘)

∝ (∏ 𝜋𝑖
𝑛𝑖

𝑘

𝑖=1
) ∗ 𝜋1

𝛼1−1 ∗ 𝜋2
𝛼2−1 ∗ … ∗ 𝜋𝑘

𝛼𝑘−1 

∝ 𝜋1
𝛼1+𝑛1−1 ∗ 𝜋2

𝛼2+𝑛2−1 ∗ … ∗ 𝜋𝑘
𝛼𝑘+𝑛𝑘−1 ~𝐷𝑖𝑟(𝛼1 + 𝑛1, 𝛼2 + 𝑛2, … , 𝛼𝑘 + 𝑛𝑘) 

Where 𝑛𝑡 represents number of observations which fall in category t. Given z values, posterior 

distributions for each component of the k normal distributions are similar to the normal 

distribution simulation before, and the only difference is that we will only use the data belonging 

to the specific categories. We have 

𝜋(𝛍|𝒁, 𝝅, 𝝈2, 𝑑𝑎𝑡𝑎) ∝∏ 𝑁(𝑦𝑗|μ𝑧𝑗 , 𝜎𝑧𝑗
2 )

𝑛

𝑗=1
∗∏ 𝑁(μ𝑖|𝜎𝑖

2)
𝑘

𝑖=1
 

and then we have 

𝜋(μ𝑖|𝒁, 𝝅, 𝝈
2, 𝑑𝑎𝑡𝑎) ∝ ∑ 𝑁(𝑦𝑗|μ𝑖, 𝜎𝑖

2)

𝑗:𝑧𝑗=𝑖

∗ 𝑁(μ𝑖|𝜎𝑖
2) 

Similarly, we can get 

𝜋(𝜎𝑖
2|𝒁, 𝛍, 𝝅, 𝑑𝑎𝑡𝑎) ∝ ∑ 𝑁(𝑦𝑗|μ𝑖, 𝜎𝑖

2)

𝑗:𝑧𝑗=𝑖

∗ 𝑁(μ𝑖|𝜎𝑖
2) ∗ 𝐼𝐺(𝜎𝑖

2) 
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In generally, k is unknown, and we need to determine value k and do the k-means clustering first. 

Also for k different normal distributions, the set of parameters {𝑧𝑖, 𝜋𝑖 , 𝜎𝑖
2} for each iteration is not 

identifiable. Rearrangement of the sets of parameters need to be done according to some 

consistent methods, such as order according to 𝜋1, 𝜋2, … , 𝜋𝑘 and order according to μ1, μ2, … , μ𝑘 

in all the iterations. 

 

2.4 Multivariate Normal 

Sequence of random vectors {𝒙1, 𝒙2, … , 𝒙𝑛} (each of whom is p dimensional random vector) 

follows multivariate normal distribution. In other words, 𝒙1, 𝒙2, … , 𝒙𝑛~𝑀𝑉𝑁𝑝(𝛍, 𝜮), where 

dispersion matrix 𝜮 = ((𝜎𝑖𝑗)) is positive definite. To get the posterior distribution, we need to 

propose the priors for parameters 𝛍 and 𝜮 respectively. For 𝛍, it is not difficult find that 

multivariate normal distribution is a conjugate prior, and we have 𝛍~𝑀𝑉𝑁𝑝(𝛍0, 𝜆0𝜮). When 

talking about 𝜮, we need to apply a Wishart distribution to be the prior. Density function and 

parameters of Wishart distribution are shown as follows. 

𝚽𝑝∗𝑝~𝑊𝑖𝑠ℎ𝑎𝑟𝑡𝑝(𝑑, 𝑨); 𝜋(𝚽) ∝ |𝚽|
𝑑−𝑝−1
2 exp (−

1

2
𝑡𝑟𝑎𝑐𝑒(𝑨−1𝚽)) ; 𝑑 > 𝑝 − 1 

To make the posterior distribution easy to be obtained, we will use 𝚽 = 𝜮−1 as our parameter. 

Then we have 𝒙1, 𝒙2, … , 𝒙𝑛~𝑀𝑉𝑁𝑝(𝛍,𝚽
−1) and 𝛍~𝑀𝑉𝑁𝑝(𝛍0, 𝜆0𝚽

−1). And we have 

𝚽~𝑊𝑖𝑠ℎ𝑎𝑟𝑡𝑝(𝑑0, 𝑨0). Then I will derive the posterior distribution of both parameter sets 

following. 

Likelihood ∝ |𝚽|
𝑛
2exp {−

1

2
∑{(𝒙𝑖 − 𝛍)

𝑇𝚽(𝒙𝑖 − 𝛍)}

𝑛

𝑖=1

} 

π(𝛍) ∝ |𝚽|
1
2exp {−

1

2
(𝛍 − 𝛍0)

𝑇
𝚽

𝜆0
(𝛍 − 𝛍0)} 
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∑{(𝒙𝑖 − 𝛍)
𝑇𝚽(𝒙𝑖 − 𝛍)}

𝑛

𝑖=1

=∑{(𝒙𝑖 − 𝒙̅ + 𝒙̅ − 𝛍)
𝑇𝚽(𝒙𝑖 − 𝒙̅ + 𝒙̅ − 𝛍)}

𝑛

𝑖=1

=∑{(𝒙𝑖 − 𝒙̅)
𝑇𝚽(𝒙𝑖 − 𝒙̅)}

𝑛

𝑖=1

+ 𝑛(𝒙̅ − 𝛍)𝑇𝚽(𝒙̅ − 𝛍) 

π(𝛍|𝚽, 𝑑𝑎𝑡𝑎) ∝ exp(−
1

2
𝑛(𝒙 − 𝛍)𝑇𝚽(𝒙̅ − 𝛍)) exp(−

1

2
(𝛍 − 𝛍0)

𝑇
𝚽

𝜆0
(𝛍 − 𝛍0)) 

π(𝛍|𝚽, 𝑑𝑎𝑡𝑎)~𝑀𝑉𝑁𝑝(
𝑛𝒙̅ +

𝛍0
𝜆0

𝑛 +
1
𝜆0

, ((𝑛 +
1

𝜆0
)𝚽)−1) 

(𝚽|𝛍, data) ∝ exp(−
1

2
𝑡𝑟𝑎𝑐𝑒(𝑳𝚽)) ∗ |𝚽|

𝑛+𝑑+1−𝑝−1
2 ; 𝑳 = 𝑺 + 𝑩 + 𝑪 + 𝑨−1 

𝑩 =  𝑛(𝒙̅ − 𝛍)(𝒙̅ − 𝛍)𝑇; 𝑺 =∑(𝒙𝑖 − 𝒙̅){(𝒙𝑖 − 𝒙̅)
𝑇}

𝑛

𝑖=1

; 𝑪 =
(𝛍 − 𝛍0)(𝛍 − 𝛍0)

𝑇

𝜆0
 

 

𝜋(𝚽|𝛍, data)~𝑊𝑖𝑠ℎ𝑎𝑟𝑡𝑝(𝑛 + 𝑑 + 1, 𝑳
−1) 

From the above full conditional posterior distributions, we can draw samples for all the model 

parameters. 

 

2.5 Data Analysis 

We implement the above sampling schemes discussed above with two real datasets and report 

the posterior summaries using tables and diagrams. 

 

2.5.1 Iris Dataset 

This dataset (Anderson 1935) includes measurements in centimeters of the variables sepal length 

and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. 

For our purpose, we utilize only a part of the dataset corresponding to the third species Iris 
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Virginica. All four variables for this species satisfies assumption of Gaussian distribution 

according to Shapiro-Wilk test of normality (Shapiro and Wilk 1965). 

 
Assume Sepal Width in the data set follows normal distribution, say Sepal Width~N(μ, 𝜎2). I 

estimate parameters with MCMC Gibbs sampling, Exact Sampling, and MCMC MH sampling 

respectively. First of all, in MH sampling I choose 30 different variances (the acceptance rate for 

30 variances shown in Figure 1) for proposed kernel, and choose the one giving approximately 

36% acceptance rate with variance 0.4096.  

 

Figure 1. MH variance selection for univariate Normal 

Then I simulated the mean μ and variance 𝜎2 from the normal distribution with three different 

methods. And the simulation results and summary for parameters posterior distributions are 

shown in Figure 2 and Table 2 as follows. 
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Figure 2. Univariate Normal simulation with three methods 
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 Mean (μ) 95% credible set μ Mean (𝜎2) 95% credible set 𝜎2 
 

MCMC 2.974608 (2.861793,3.086442) 0.181001 (0, 0.2502999) 

 

EXACT 2.976459 (2.860402,3.097457) 0.1789585 (0, 0.2431916) 

 

MH 2.974037 (2.857938,3.095774) 0.1832657 (0, 0.2485039) 

 

Table 2 Posterior summary for univariate Normal 

Next, I consider (Sepal Length, Sepal Width, Petal Length, Petal Width) as a random vector 

following multivariate normal distribution, of which each variable follows univariate normal 

distribution. In other words, 𝐱~𝑀𝑉𝑁4(𝛍, 𝜮) with 𝛍 = (μ1, μ2, μ3, μ4) and 𝜮 = ((𝜎𝑖𝑗)) which is a 

4 by 4 positive definite symmetric dispersion matrix. And what I will do next is to estimate mean 

and dispersion matrix for this 4 dimensional multivariate normal distribution with method I have 

mentioned above.  The simulation result and posterior distributions summaries of 4 components 

of 𝛍 are shown in Figure 3 and Table 3. The simulation result and posterior distribution 

summaries of components of 𝜮 are shown in Figure 4 and Table 4. 

 

Figure 3. Multivariate Normal mean posterior simulation 
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 Mean 95% Credible Set 

 

μ
1
 (Sepal Length) 6.588038 (6.41531, 6.76037) 

 

μ
2
 (Sepal Width) 2.973634 (2.885054, 3.063353) 

 

μ
3
 (Petal Length) 5.551997 (5.400633, 5.705720) 

 

μ
4
 (Petal Width) 2.026225 (1.947174, 2.099770) 

 

Table 3 Posterior summary for mean in multivariate Normal 

 

Figure 4. Multivariate Normal dispersion matrix posterior simulation 

 



33 

 

0.4353 

 

(0.2949, 0.6287) 

 

0.1015 

 

(0.0416, 0.1796) 

0.3269 

 

(0.2123, 0.4927) 

0.0539 

 

(0.0045, 0.1161) 

0.10152 

 

(0.0416, 0.1796) 

 

0.1123 

 

(0.0755, 0.1689) 

0.07725 

 

(0.0261, 0.1427) 

0.0518 

 

(0.0251, 0.0890) 

0.3269 

 

(0.2123, 0.4927) 

 

0.0772 

 

(0.0261, 0.1427) 

0.3292 

 

(0.2198, 0.4826) 

0.0538 

 

(0.0096, 0.1053) 

0.05395 

 

(0.0045, 0.1161) 

 

0.0518 

 

(0.0251, 0.0890) 

0.0538 

 

(0.0096, 0.1053) 

0.0818 

 

(0.0557, 0.1196) 

Table 4 Posterior summary for dispersion matrix in multivariate Normal 

In table 4, first line of the cell is mean, and the second line is 95% credible set. 

 

2.5.2 Old Faithful Dataset 

This dataset (Azzalini and Bowman, 1990) consists of 272 observations on eruptions from the 

Old Faithful geyser in Yellowstone National Park, Wyoming, USA. Each observation has two 

measurements: time duration for an eruption and waiting time for the next eruption, both 

measured in minutes. We focus only on modeling the density for the latter one. The histogram of 

the data (refer to Figure) shows a bimodal distribution indicating the potential for using a 

mixture normal distribution with two components.  

Looking at the histogram (refer figure), we decide use two components mixture normal 

distribution based on some prior knowledge, which is 

y = 𝑝1𝑁(μ1, 𝜎1
2) + 𝑝2𝑁(μ2, 𝜎2

2)     ;      𝑝1 + 𝑝2 = 1 

And the simulation results plot and summary of the posterior distributions of parameters are 

shown in the Figure 5 and Table 5 respectively. Figure 6 shows the probabilities for each 

observation coming from the first normal component, and it also shows the proportion of times 

any particular observation was assigned to first component.  Figure 7 shows the density of the 
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data and the estimated density of the mixture normal. From the picture, we can find that the two 

components mixture normal distribution can well represent the data. 

 

Figure 5. Component-wise mean and variance simulation in mixture Normal 

 

 μ
1
 𝜎12 μ

2
 𝜎22 π1 

Mean 54.57479 33.87583 80.07864 34.51825 0.3636252 

95% Credible 

set 

(53.20014, 56.11021) (0, 45.98382) (79.06056, 

80.98137) 

(0, 42.69847) (0.3060050, 

0.4217375) 

Table 5 Posterior summary in mixture Normal 
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Figure 6. Component probability and indicators simulation in mixture Normal 

 

Figure 7. Posterior estimate of mixture Normal density 
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Chapter 3: Bayesian Inference in Regression 

 

3.1 Introduction 

Now, we turn our focus to another common area of data analysis- regression. Regression is a 

useful tool for many real-world problems whenever we want to find relationships between 

different variables or try to predict one of them using the value of other variables. In the 

following, we deal with several different kinds of regression.  

 

3.2 Linear Regression 

In normal distribution, 𝑦1, 𝑦2, … , 𝑦𝑛~𝑁(μ, 𝜎
2), and we can rewrite 𝑦𝑖 in another way of 

regression as 𝑦𝑖 = μ ∗ 1 + 𝜀 ;  𝜀~𝑁(0, 𝜎
2). Adding covariates to the regression and making it 

general, we have 𝑦𝑖 = 𝒙𝑖
𝑇𝜷 + 𝜀𝑖 ;  𝜀𝑖~𝑁(0, 𝜎

2), which also be considered as the normal 

distribution with mean dependent on covariates, as 𝐘~N(𝐗𝛃, 𝜎2). In this linear regression, the 

parameters we need to estimate are 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑝)
𝑇 and 𝜎2. For 𝜎2, use the same inverse 

gamma prior distribution 𝜎2~𝐼𝐺𝑎𝑚𝑚𝑎(𝑎0, 𝑏0). But for 𝜷, we will have different forms of 

multivariate normal distributions, 𝜷~𝑀𝑉𝑁𝑝(𝜷0, 𝑐0𝜎
2𝑰𝑝) and 𝜷~𝑀𝑉𝑁𝑝(𝜷0, 𝜏0

2𝑰𝑝) for Exact 

Sampling and MCMC respectively. 

 

3.2.1 Dependent Prior and exact sampling 

To use Exact Sampling in this case I will derive the marginal distribution of 𝜷 and conditional 

distribution of 𝜎2. After drawing a sample for 𝜷, draw a sample for 𝜎2 conditional on 𝜷. Before 

going into calculation of the marginal and conditional, let’s look at the prior and likelihood we 

have. 
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Likelihood = (
1

2𝜋𝜎2
)𝑛 2⁄ exp(−

(𝐘 − 𝐗𝛃)𝑇(𝐘 − 𝐗𝛃)

2𝜎2
)

∝ (
1

𝜎2
)𝑛 2⁄ exp (−

(𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷)

2𝜎2
) 

𝑃𝑟𝑖𝑜𝑟 𝜋(𝜎2) =
𝑏0
𝑎0

𝛾(𝑎0)
(
1

𝜎2
)𝑎0+1exp (−

𝑏0
𝜎2
) ∝ (

1

𝜎2
)𝑎0+1exp (−

𝑏0
𝜎2
) 

Prior 𝜋(𝜷) = (
1

2𝜋𝑐0𝜎2
)𝑝 2⁄ exp (−

(𝜷 − 𝜷0)
𝑇(𝜷 − 𝜷0)

2𝑐0𝜎2
) ∝ (

1

𝜎2
)𝑝 2⁄ exp (−

(𝜷 − 𝜷0)
𝑇(𝜷 − 𝜷0)

2𝑐0𝜎2
) 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝜋(𝜷, 𝜎2|𝑑𝑎𝑡𝑎)

∝ (
1

𝜎2
)

(𝑛+𝑝) 2⁄ +𝑎0+1

exp (−
(𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷)

2𝜎2
−
(𝜷 − 𝜷0)

𝑇(𝜷 − 𝜷0)

2𝑐0𝜎2
−
𝑏0
𝜎2
) 

⟹ 𝜋(𝜎2|𝜷, 𝑑𝑎𝑡𝑎)~𝐼𝐺((𝑛 + 𝑝) 2⁄ + 𝑎0,
(𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷)

2
+
(𝜷 − 𝜷0)

𝑇(𝜷 − 𝜷0)

2𝑐0
+ 𝑏0) 

⟹ 𝜋(𝜷|𝑑𝑎𝑡𝑎)

∝ ∫(
1

𝜎2
)

(𝑛+𝑝) 2⁄ +𝑎0+1

∗ exp (−
(𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷)

2𝜎2
−
(𝜷 − 𝜷0)

𝑇(𝜷 − 𝜷0)

2𝑐0𝜎2
−
𝑏0
𝜎2
)𝑑𝜎2

∝
𝛾((𝑛 + 𝑝) 2⁄ + 𝑎0)

(
(𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷)

2 +
(𝜷 − 𝜷0)𝑇(𝜷 − 𝜷0)

2𝑐0
+ 𝑏0)

(𝑛+𝑝) 2⁄ +𝑎0

∝ (
(𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷)

2
+
(𝜷 − 𝜷0)

𝑇(𝜷 − 𝜷0)

2𝑐0
+ 𝑏0)

−[(𝑛+𝑝) 2⁄ +𝑎0]

∝ (1 +
(𝜷 − 𝑪)𝑇𝑨(𝜷 − 𝑪)

𝑫
)−[(𝑛+2𝑎0+𝑝) 2⁄ ] 

𝑨 = 𝑐0𝑿
𝑇𝑿 + 𝑰𝑝; 𝑪 = 𝑨

−1𝜷0 + 𝑐0𝑨
−1𝑿𝑇𝒀 
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𝑫 = 𝑐0𝒀
𝑇𝒀 + 𝜷0

𝑇𝜷0 + 2𝑐0𝑏0 − 𝜷0
𝑇𝑨−1𝜷0 − 𝑐0𝜷0

𝑇𝑨−1𝑿𝑇𝒀 − 𝑐0𝒀
𝑇𝑿𝑨−1𝜷0

− 𝑐0
2𝒀𝑇𝑿𝑨−1𝑿𝑇𝒀 

So the marginal posterior distribution of 𝜷 is non-central multivariate t distribution with degrees 

of freedom v = 𝑛 + 2𝑎0, location parameter 𝐋𝐨𝐜 = 𝑪, and scale parameter 𝚺 = (
(𝑛+2𝑎0)𝑨

𝑫
)−1. 

Then we have both marginal and conditional distributions,  𝜋(𝜷|𝑑𝑎𝑡𝑎)~𝑀𝑉𝑇(v, 𝐋𝐨𝐜, 𝚺) and 

𝜋(𝜎2|𝜷, 𝑑𝑎𝑡𝑎)~𝐼𝐺(𝑎1, 𝑏1). The next step we will use Monte Carlo Method to draw many 

samples from these two distributions and estimated what we want to obtain. 

 

3.2.2 Independent Prior and Gibbs Sampling 

On the other hand, if we want to use MCMC in this estimation, we only need to draw full 

conditional distributions for both of them. Most of the procedures in calculations are similar to 

the Exact Sampling above and the main difference is 𝜷 will follow a multivariate normal 

distribution instead of multivariate t distribution. Part of the procedures are shown as follows. 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝜋(𝜷, 𝜎2|𝑑𝑎𝑡𝑎)

∝ (
1

𝜎2
)
𝑛 2⁄ +𝑎0+1

∗ exp (−
(𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷)

2𝜎2
−
(𝜷 − 𝜷0)

𝑇(𝜷 − 𝜷0)

2𝜏0
2 −

𝑏0
𝜎2
) 

⟹ 𝜋(𝜎2|𝜷, 𝑑𝑎𝑡𝑎)~𝐼𝐺(𝑛 2⁄ + 𝑎0,
(𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷)

2
+ 𝑏0) 

𝜋(𝜷|𝜎2, 𝑑𝑎𝑡𝑎) ∝ exp(−
(𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷)

2𝜎2
−
(𝜷 − 𝜷0)

𝑇(𝜷 − 𝜷0)

2𝜏0
2 )

∝ exp(−
1

2
∗
(𝜷 − 𝜎2𝑨−1𝜷0 − 𝜏0

2𝑨−1𝑿𝑇𝒀)𝑇𝑨(𝜷 − 𝜎2𝑨−1𝜷0 − 𝜏0
2𝑨−1𝑿𝑇𝒀)

𝜎2𝜏0
2 ) 

Where 𝑨 = 𝜎2𝑰𝑝 + 𝜏0
2𝑿𝑇𝑿. So as derived above the conditional distributions are multivariate 

normal and inverse gamma. 
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As we can see from the above derivation, there is a special property of normal distributions. 𝛴𝑑 

and 𝛴0 are dispersion matric calculated for the parameters from the data and the prior 

respectively. Then we have the property as follows. 

Posterior Dispersion =  (𝛴𝑑
−1 + 𝛴0

−1)−1 

Posterior Precision = Prior Precision + Data Precision 

Precision ∗ Mean in Post =  Precision ∗ Mean in Prior + Precision ∗ Mean in Data 

 

3.2.3 Prediction using posterior samples 

Similar to drawing new observations from posterior predictive distribution, we can make 

prediction on regression based on new predictor 𝒙𝑛𝑒𝑤 and all previous data. For example, in 

linear regression y = 𝒙𝑇𝜷 + 𝜀; 𝜀~𝑁(0, 𝜎2). 

f(𝑦𝑛𝑒𝑤|𝒙𝑛𝑒𝑤, (𝑦1, 𝑥1), … , (𝑦𝑛, 𝑥𝑛))

= ∫𝑓(𝑦𝑛𝑒𝑤|𝒙𝑛𝑒𝑤, 𝜷, 𝜎2)𝑓(𝜷, 𝛿2|(𝑦1, 𝑥1), … , (𝑦𝑛, 𝑥𝑛)) 𝑑𝜷𝑑𝜎
2 

In other words, given new observation, we calculate the regression value based on each 

parameter set from the simulation. And after getting the large amount of prediction results from 

all the parameters, summary the prediction. 

Some kinds of regression models (for example, linear regression) have two types of prediction. 

One is mean prediction, and the other one is observation prediction. The former one does not 

include the error term and only calculate the regression value based on the regression mean. The 

2nd prediction includes the error term, and after getting the predicted mean, will add the random 

error to the predicted value. Same liner regression example y = 𝒙𝑇𝜷+ 𝜀; 𝜀~𝑁(0, 𝜎2). Calculate 
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y = 𝒙𝑇𝜷 for each parameter set, and we can get predicted mean. In the other hand, calculate y =

𝒙𝑇𝜷+ 𝜀, and we can get predicted observation. 

 

3.3 Regression with Binary Response 

Now, we look at models with binary response so we have to use a suitable link function to relate 

the covariates to the response. We use the probit link here as it has a nice representation through 

auxiliary variable that works efficiently in a Monte Carlo method. 

 

3.3.1 Probit Regression 

Assume, Y is a binary variable can be 0 or 1, and 𝑥1, 𝑥2, … , 𝑥𝑝 are covariates. In logistic 

regression we have 

P(Y = 1) =
exp (𝒙𝑇𝜷)

1 + exp (𝒙𝑇𝜷)
= f(𝑊) 

We have W=𝒙𝑇𝜷 (linear model and R → R), and f(𝑊) =
exp (𝑊)

1+exp (𝑊)
 (logistic and R→ (0,1)). In 

Probit Model instead of using f(W), we use F(x)=Φ(x) (CDF of standard normal distribution and 

R→ (0,1)). Then P(Y = 1) = Φ(𝒙𝑇𝜷) and it is called Probit Model. 

L(data|𝜷) ∝∏L(𝑦𝑖|𝜷)

𝑛

𝑖=1

∝∏[Φ(𝒙𝑖
𝑇𝜷)]𝑦𝑖 ∗ [1 − Φ(𝒙𝑖

𝑇𝜷)]1−𝑦𝑖

𝑛

𝑖=1

 

π(𝛃) ∝ MVN𝑝(𝜷0, 𝜮0) 

π(𝛃|data) ∝ L(data|𝜷) ∗ π(𝛃) =∏[{[Φ(𝒙𝑖
𝑇𝜷)]𝑦𝑖 ∗ [1 − Φ(𝒙𝑖

𝑇𝜷)]1−𝑦𝑖]

𝑛

𝑖=1

∗ π(𝛃) 
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By introducing the cumulative probability function of standard normal, it is also extremely hard 

to simulate samples from this distribution no matter what method used here. To simplify this, 

latent variable (auxiliary variable) will be used. We introduce a latent variable z such that 

 y = {
1, 𝑖𝑓 𝑧 > 0
0, 𝑖𝑓 𝑧 < 0

, 𝑎𝑛𝑑 𝑧~𝑁(𝐱𝑇𝜷, 1) 

Due to identifiability of the combination of the coefficients and the variance, we use constant 1 

as the variance for z also in order to make sure that we have P(Y = 1) = Φ(𝒙𝑇𝜷). By 

introducing z which is unobserved, y only directly depends on the value of z and also have the 

probability of P(Y = 1) = Φ(𝒙𝑇𝜷). 

𝑃(𝑌 = 1) = 𝑃(𝑍 > 0) = 𝑃 (
𝑍 − 𝒙𝑇𝜷

1
>
−𝒙𝑇𝜷

1
) = 1 − 𝑃 (

𝑍 − 𝒙𝑇𝜷

1
≤
−𝒙𝑇𝜷

1
)

= 1 − Φ(−𝒙𝑇𝜷) = Φ(𝒙𝑇𝜷) 

 

Given y = {
1, 𝑖𝑓 𝑧 > 0
0, 𝑖𝑓 𝑧 < 0

, 𝑧~𝑁(𝐱𝑇𝜷, 1), π(β) ∝ MVN𝑝(𝜷0, 𝜮0), and 𝜮0 = 𝜏0
2 ∗ 𝑰𝑝. Then the joint 

posterior distribution and the posterior distribution of each parameter is calculated as follows. 

Π(𝛃, 𝐙|data) ∝ L(data|𝐙) ∗ π(𝐙|𝛃) ∗ π(𝛃) 

∝ {∏[1(𝑧𝑖 > 0)
𝑦𝑖 ∗ 1(𝑧𝑖 < 0)

1−𝑦𝑖 ∗ exp(−
(𝑧𝑖 − 𝒙𝑖

𝑇𝜷)2

2
)]

𝑛

𝑖=1

} ∗ exp (−
(𝛃 − 𝛃𝟎)

𝑇𝜮0
−1(𝛃 − 𝛃𝟎)

2
) 

∝ {∏[1(𝑧𝑖 > 0)
𝑦𝑖 ∗ 1(𝑧𝑖 < 0)

1−𝑦𝑖 ∗ exp(−
(𝑧𝑖 − 𝒙𝑖

𝑇𝜷)2

2
)]

𝑛

𝑖=1

} ∗ exp (−
(𝛃 − 𝛃𝟎)

𝑇(𝛃 − 𝛃𝟎)

2𝜏02
) 

Π(𝛃|𝐙, data) ∝ exp (−
(𝛃 − 𝑨−𝟏𝛃𝟎 − 𝜏0

2𝑨−𝟏𝑿𝑇𝐙)𝑇𝑨(𝛃 − 𝑨−𝟏𝛃𝟎 − 𝜏0
2𝑨−𝟏𝑿𝑇𝐙)

2𝜏02
) 

Where 𝑨 = 𝑰𝑝 + 𝜏0
2𝑿𝑇𝑿. Initial value of 𝛽0 is obtained as follows. 

P(𝑦 = 1) = Φ(𝒙𝑇𝜷) = Φ(𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝); 𝑠𝑒𝑡 𝑥𝑖 = 0 ∀𝑖 
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P(𝑦 = 1) = Φ(𝛽0) ⟹ 𝛽0 = Φ(𝑝0)
−1 

Other part of the initial value of 𝜷 will be calculated from the least square method. Then we can 

derive that 𝛃~𝑀𝑉𝑁𝑝(𝑨
−𝟏𝛃𝟎 + 𝜏0

2𝑨−𝟏𝑿𝑇𝐙, (
𝑨

𝜏02
)−𝟏). 

Π(𝑧𝑖|𝛃, 𝑦𝑖 = 1) ∝ 1(𝑧𝑖 > 0) ∗ exp (−
(𝑧𝑖 − 𝒙𝑖

𝑇𝜷)2

2
) 

Π(𝑧𝑖|𝛃, 𝑦𝑖 = 0) ∝ 1(𝑧𝑖 < 0) ∗ exp (−
(𝑧𝑖 − 𝒙𝑖

𝑇𝜷)2

2
) 

𝑧𝑖~𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑁(𝒙𝑖
𝑇𝜷, 1). And then we can use formula as follows to simulate 𝑧𝑖 from the 

truncated normal distribution. 

μ~unif(0,1); X~Truncated N(μ, 𝜎2) 𝑤𝑖𝑡ℎ𝑖𝑛 (𝑎, 𝑏) 

P(X ≤ c) =
Φ(
𝑐 − μ
𝜎 ) − Φ(

𝑎 − μ
𝜎 )

Φ(
𝑏 − μ
𝜎 ) − Φ(

𝑎 − μ
𝜎 )

 

After simulating a large amount of parameters, in terms of a new data point 𝒙𝑛𝑒𝑤, making a 

prediction on the category of y is our next step. 

P(𝑦𝑛𝑒𝑤 = 1) = ∫P(𝑦𝑛𝑒𝑤 = 1|𝑧𝑛𝑒𝑤) ∗ 𝑓(𝑧𝑛𝑒𝑤) 𝑑𝑧𝑛𝑒𝑤 = Φ(𝒙𝑛𝑒𝑤𝑇𝜷) 

Φ(𝒙𝑛𝑒𝑤𝑇𝜷1) = 𝑝1, Φ(𝒙
𝑛𝑒𝑤𝑇𝜷2) = 𝑝2, … ,Φ(𝒙

𝑛𝑒𝑤𝑇𝜷𝑁) = 𝑝𝑁; 𝑝̅ =
∑ 𝑝𝑖
𝑁
𝑖=1

𝑁
 

Or we can use hierarchical method here. 

𝑧1
𝑛𝑒𝑤~𝑁(𝒙𝑛𝑒𝑤𝑇𝜷1, 1), 𝑧2

𝑛𝑒𝑤~𝑁(𝒙𝑛𝑒𝑤𝑇𝜷2, 1), … , 𝑧𝑁
𝑛𝑒𝑤~𝑁(𝒙𝑛𝑒𝑤𝑇𝜷𝑁, 1) 

{𝑦1
𝑛𝑒𝑤, 𝑦2

𝑛𝑒𝑤, … , 𝑦𝑁
𝑛𝑒𝑤}; p(𝑦𝑛𝑒𝑤 = 1) =

#( 𝑦𝑛𝑒𝑤 = 1) 

𝑁
 

 

 

 



43 

 

3.3.2 Ordinal Probit regression 

Assume Y has k ordinal categories, and we change categories into y = 1,2, … , 𝑘. We will use 

(k+1) α’s (𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑘+1, with k-1 unknown parameters) to separate the real number line 

into k ordinal categories with 𝛼1 = −∞ and 𝛼𝑘+1 = +∞. To make this sampling possible and 

simpler, we will also introduce a latent variable Z such that y=i if z ∈ (𝛼𝑖, 𝛼𝑖+1) and 

Z~N(𝒙𝑇𝜷, 𝜎2). Then the response variable Y is only directly determined by Z. Here 𝑝𝑖 

represents the probability y will fall into the 𝑖𝑡ℎ category. P’s need to satisfy ∑ 𝑝𝑖 = 1
𝑘
𝑖=1  with (k-

1) degree of freedom. And then we will have 

𝑝𝑖 = 𝑃(𝑦 = 𝑖) = 𝑃(𝛼𝑖 < z < 𝛼𝑖+1) = 𝑃(z < 𝛼𝑖+1) − 𝑃(z < 𝛼𝑖)

= Φ(
𝛼𝑖+1 − 𝒙

𝑇𝜷

𝜎
) − Φ(

𝛼𝑖 − 𝒙
𝑇𝜷

𝜎
) 

For that these two sets (𝛼𝑖 = 2, 𝛼𝑖+1 = 4,𝜷 = (2,3)
𝑇, 𝜎 = 7)𝑇 and (𝛼𝑖 = 20, 𝛼𝑖+1 = 40, 𝜷 =

(20,30)𝑇 , 𝜎 = 70)𝑇 will give out the same probability 𝑝𝑖, we need to fix one of these 

parameters, which is generally 𝜎 = 1. Then we will have the probability as 

𝑝𝑖 = Φ(𝛼𝑖+1 − 𝒙
𝑇𝜷) − Φ(𝛼𝑖 − 𝒙

𝑇𝜷) 

Free parameters are {𝛼2, 𝛼3, … , 𝛼𝑘, 𝛽0, 𝛽1, … , 𝛽𝑝}. For any constant c if we have {𝛼2 + 𝑐, 𝛼3 +

𝑐,… , 𝛼𝑘 + 𝑐, 𝛽0 + 𝑐, 𝛽1, … , 𝛽𝑝}, then 

𝛼2 − 𝒙
𝑇𝜷 = 𝛼2 − 𝛽0 − 𝛽1𝑥1 −⋯− 𝛽𝑝𝑥𝑝 = (𝛼2 + 𝑐) − (𝛽0 + 𝑐) − 𝛽1𝑥1 −⋯− 𝛽𝑝𝑥𝑝 

The parameterization is not identifiable. And generally people will tend to set 𝛼2 = 0 to keep it 

identifiable. So we have (k-2) free α’s. Similar to Probit Model, independent multivariate normal 

prior will be used for 𝜷 (𝜷~𝑀𝑉𝑁𝑝(𝜷0, 𝜏0
2 ∗ 𝑰𝑝)) and univariate normal prior will be used for Z. 

Prior for α’s is shown as follows. And because α’s only depend on the value of Z, I will derive 

the posterior distribution for α’s directly. 
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π(𝛼2, 𝛼3, … , 𝛼𝑘) ∝ 1(𝛼𝑘 > 𝛼𝑘−1 > ⋯ > 𝛼3 > 0) 

𝑦𝑗 = 2 𝑖𝑓  𝛼2 = 0 < 𝑧𝑗 < 𝛼3; 𝑦𝑗 = 3 𝑖𝑓  𝛼3 < 𝑧𝑗 < 𝛼4; … 

𝑦𝑗 = 𝑘 𝑖𝑓  𝛼𝑘 < 𝑧𝑗 < 𝛼𝑘+1 = ∞ 

⟹ max
𝑦𝑗=𝑖−1

𝑧𝑗 ≤ 𝛼𝑖 ≤ max
𝑦𝑗=𝑖

𝑧𝑗 ⟹ π(𝛼𝑖|𝑧, 𝑑𝑎𝑡𝑎)~𝑢𝑛𝑖𝑓( max
𝑦𝑗=𝑖−1

𝑧𝑗 , max
𝑦𝑗=𝑖

𝑧𝑗) 

Jointly posterior distribution and posterior distribution for other parameters are derived as 

follows. 

π(𝜶, 𝑍, 𝜷|𝑑𝑎𝑡𝑎) ∝∏(L(𝑦𝑗|𝑧𝑗 , 𝜶)π(𝑧𝑗|𝜷)) ∗ π(𝜶) ∗ π(𝜷)

∝∏ {1(𝛼𝑖 < 𝑧𝑗 < 𝛼𝑖+1)
1(𝑦𝑗=𝑖)

∗ exp (−
(𝑧𝑗 − 𝒙𝑗

𝑇𝜷)
2

2
)}

𝑛

𝑗=1

∗ 1(𝛼𝑘 > 𝛼𝑘−1 > ⋯ > 𝛼3 > 0) ∗ exp (−
(𝛃 − 𝛃𝟎)

𝑇(𝛃 − 𝛃𝟎)

2𝜏02
) 

𝛃~𝑀𝑉𝑁𝑝 (𝑨
−𝟏𝛃𝟎 + 𝜏0

2𝑨−𝟏𝑿𝑇𝐙, (
𝑨

𝜏02
)
−𝟏

) ; 𝑨 = 𝑰𝑝 + 𝜏0
2𝑿𝑇𝑿 

Π(𝑧𝑗|𝛃, 𝑦𝑗 = i) ∝ 1(𝛼𝑖 < 𝑧𝑗 < 𝛼𝑖+1)
1(𝑦𝑗=𝑖)

∗ exp(−
(𝑧𝑗 − 𝒙𝑗

𝑇𝜷)
2

2
) 

𝑧𝑗 follows truncated normal with pdf above. Procedures to get the initial value for 𝛽0 and free α’s 

are shown as follows. 

𝑝1̂ = 𝑃(𝑦 ≤ 1) = Φ(0 − 𝛽0); 𝑝2̂ = 𝑃(𝑦 ≤ 2) = Φ(𝛼3 − 𝛽0);… 

Then we can simulate 𝜶, 𝑍, 𝜷 from the posterior distribution derived above sequentially. 

 

3.4 Poisson Regression 

Data {𝑦1, 𝑦2, 𝑦3… , 𝑦𝑛} are counts and we want to fit a regression model on the observations with 

some covariates {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝}(𝑓𝑜𝑟 𝑖 = 1, … , 𝑛). Assume count data follows Poisson 
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distribution, in other words 𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) with some 𝜆𝑖’s. And we need to regression on 𝜆𝑖 

with covariates for each observation. Because 𝜆𝑖 only can take positive real numbers, we do 

some transformation on the 𝜆𝑖. 

log(𝜆𝑖) = 𝒙𝑖
𝑇𝜷+ 𝜀𝑖, 𝜀𝑖~𝑁(0, 𝜎

2)  ;   (𝜷, 𝜎2, 𝒙𝑖) → 𝜆𝑖 → 𝑦𝑖 

To make the regression easy and can be realized, we do another transformation here log(𝜆𝑖) =

Ƞ𝑖 (because Ƞ𝑖 can be any real number and 𝜆𝑖 only can be positive). Then the relationship will 

become as follows. 

𝑒Ƞ𝑖 = 𝜆𝑖;  𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒
Ƞ𝑖) 

And due to the above relationship, initial values of Ƞ𝑖 in MCMC is as follows. 

Ƞ𝑖 = log (𝑦𝑖 + 0.5) 

I will do MH sampling and Slice sampling to realize the MCMC method to do the parameters’ 

estimation as follows. 

 

3.4.1 Using Metropolis-Hastings within Gibbs  

In MH sampling, for jointly binary posterior distribution of 𝜷 and 𝜎2 I will do Exact sampling 

within MCMC. So here I will use dependent prior for 𝜷, which is 𝜷~𝑀𝑉𝑁𝑝(𝜷0, 𝑐0𝜎
2) 

(multivariate normal distribution). Similar to linear regression, inverse gamma prior will be used 

for 𝜎2, (𝜎2~𝐼𝐺(𝑎0, 𝑏0)). Proposed distribution (kernel) for Ƞ is normal distribution with mean 

equal to the most recent Ƞ and constant being some suitable constant. In other words, 

Ƞ𝑛𝑒𝑤~𝑁(Ƞ𝑜𝑙𝑑, 𝜏2). Next I derive the posterior distribution for each parameter and illustrate the 

MH procedure. 

Likelihood =∏
1

𝑦𝑖!
(𝑒Ƞ𝑖)𝑦𝑖𝑒(−𝑒

Ƞ𝑖)
𝑛

𝑖=1
∝∏ 𝑒Ƞ𝑖𝑦𝑖𝑒(−𝑒

Ƞ𝑖)
𝑛

𝑖=1
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𝜋(Ƞ𝑖) =
1

√2𝜋𝜎2
exp (−

1

2

(Ƞ𝑖 − 𝒙𝑖
𝑇𝜷)2

𝜎2
) ∝

1

√𝜎2
exp (−

1

2

(Ƞ𝑖 − 𝒙𝑖
𝑇𝜷)2

𝜎2
) 

𝜋(𝜷) ∝
1

(𝑐0𝜎2)𝑝 2⁄
exp (−

1

2

(𝜷 − 𝜷0)
𝑇(𝜷 − 𝜷0)

𝑐0𝜎2
) ;  𝜋(𝜎2) ∝ (

1

𝜎2
)
𝑎0+1

exp (−
𝑏0
𝜎2
) 

Posterior ∝ Likelihood ∗ 𝜋(Ƞ𝑖) ∗ 𝜋(𝜷) ∗ 𝜋(𝜎
2) 

And similar to the Exact sampling for the linear regression, we know that posterior distribution 

of 𝜎2 is inverse gamma distribution and the marginal posterior distribution of 𝜷 is non-central 

multivariate t distribution. 

𝜎2~IG(
𝑛 + 𝑝

2
+ 𝑎0,

1

2

(𝜷 − 𝜷0)
𝑇(𝜷 − 𝜷0)

𝑐0
+
(Ƞ − 𝑿𝜷)𝑇(Ƞ − 𝑿𝜷)

2
+ 𝑏0) 

𝜷~MVT(𝚺, 𝛍, v); v = n + 2𝑎0, 𝛍 = 𝑨
−1𝜷0 + 𝑐0𝑨

−1𝑿𝑇Ƞ, 𝚺 = [
𝑨(n + 2𝑎0)

𝑪
]−1 

𝑤𝑖𝑡ℎ 𝑪 = 𝑐0Ƞ
𝑇Ƞ + 𝜷0

𝑇𝜷0 + 2𝑐0𝑏0 − 𝜷0
𝑇𝑨−1𝜷0 − 𝑐0𝜷0

𝑇𝑨−1𝑿𝑇Ƞ − 𝑐0𝒀
𝑇𝑿𝑨−1𝜷0

− 𝑐0
2Ƞ𝑇𝑿𝑨−1𝑿𝑇Ƞ ; and  𝑨 = 𝑐0𝑿

𝑇𝑿 + 𝑰𝑝 

Posterior Ƞ𝑖  ∝ 𝑒
Ƞ𝑖𝑦𝑖 ∗ 𝑒(−𝑒

Ƞ𝑖) ∗ exp(−
1

2

(Ƞ𝑖 − 𝒙𝑖
𝑇𝜷)2

𝜎2
) = 𝑓(Ƞ𝑖) 

We will use MH sampling here for Ƞ𝑖. With normal proposal and target 𝑓(Ƞ𝑖). And due to the 

normal symmetry the acceptance probability is simplified as follows, which is similar to MH in 

univariate normal simulation. 

𝑝Ƞ𝑜𝑙𝑑→Ƞ𝑛𝑒𝑤 =
𝑓(Ƞ𝑛𝑒𝑤)

𝑓(Ƞ𝑜𝑙𝑑)
∗
𝑞(Ƞ𝑜𝑙𝑑|Ƞ𝑛𝑒𝑤)

𝑞(Ƞ𝑛𝑒𝑤|Ƞ𝑜𝑙𝑑)
=
𝑓(Ƞ𝑛𝑒𝑤)

𝑓(Ƞ𝑜𝑙𝑑)
 

And we propose a new Ƞ𝑛𝑒𝑤 from normal distribution with mean Ƞ𝑜𝑙𝑑 and some variance, and 

we calculated the acceptance probability to compare with a uniform random number within (0, 

1). And in the real simulation I take the logarithm of the probability to reduce the complicated 

calculation. The acceptance will be tracked and I will change the variance of the proposal to keep 
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it within 30%-40%. Then iteratively do the simulation for all the parameters until get a relatively 

large sample. 

 

3.4.2 Using slice sampling within Gibbs 

Instead of using MH sampling to simulate Ƞ, I will use Slice sampling to simulate Ƞ. Priors used 

here is exactly same with the priors in MH sampling just mentioned above. But there is no 

proposal, and I will draw samples of Ƞ by adding a random variable u to implement Slice 

sampling. I will only explain the sampling of Ƞ in details next. 

Posterior Ƞ𝑖  ∝ 𝑒
(−𝑒Ƞ𝑖)⏟  
ℎ(Ƞ𝑖)

∗ 𝑒Ƞ𝑖𝑦𝑖 ∗ exp (−
1

2

(Ƞ𝑖 − 𝒙𝑖
𝑇𝜷)2

𝜎2
)

⏟                    
𝑔(Ƞ𝑖)

 

π(𝑢𝑖|Ƞ𝑖)~unif (0, 𝑒
(−𝑒Ƞ𝑖)) ; π(𝑢𝑖|Ƞ𝑖) ∝

1

𝑒(−𝑒
Ƞ𝑖)
∗ 1(𝑢𝑖 < 𝑒

(−𝑒Ƞ𝑖)) 

𝑓(𝑢𝑖, Ƞ𝑖) ∝ 𝑒
Ƞ𝑖𝑦𝑖 ∗ exp (−

1

2

(Ƞ𝑖 − 𝒙𝑖
𝑇𝜷)2

𝜎2
) ∗ 1(𝑢𝑖 < 𝑒

(−𝑒Ƞ𝑖)) 

𝑓(Ƞ𝑖|𝑢𝑖) ∝ 𝑒
Ƞ𝑖𝑦𝑖 ∗ exp (−

1

2

(Ƞ𝑖 − 𝒙𝑖
𝑇𝜷)2

𝜎2
) ∗ 1(Ƞ𝑖 < log (−log (𝑢𝑖))) 

𝑓(Ƞ𝑖|𝑢𝑖)~𝑁(𝒙𝑖
𝑇𝜷+ 𝜎2𝑦𝑖 , 𝜎

2)   ;  Ƞ𝑖 < log (−log (𝑢𝑖)) 

So we can use full conditional distribution above to draw samples in turn. 

 

3.5 First order Autoregressive Time Series 

In economy, marketing and many other areas, data flows associated with time are very common 

and important. And most of the time, time series data like this tends to have autocorrelation 

between themselves. In other words, the future data value is affected by the previous data values 

and can be predicted based on the previous data values. For these kinds of time series data 
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𝑥1, 𝑥2, … , 𝑥𝑇 (𝑡 = 1,2, … , 𝑇), we want to fit a model which can capture the relationships between 

themselves as time interval changing and make a prediction on it. As the beginning of the it, I 

first fit an Autoregressive model with one lag, AR(1). The model is as follows 

𝑥𝑡 − 𝜇 = ɸ(𝑥𝑡−1 − 𝜇) + 𝜀𝑡; 𝜀𝑡~𝑁(0, 𝜎
2) 

Next I will use MCMC simulation within Bayesian to do the estimation of the parameters. In 

AR(1) model, time series needs to be stationary, in other words constant mean, constant variance 

and constant covariance between same time interval. Also to keep the time series, we need the 

modulus of ɸ strictly less than 1, which can satisfy that all the roots of the characteristic equation 

are great than 1. Then I will use uniform distribution within (-1,1) as the prior of ɸ. For 𝜇 and 

𝜎2, I will use the independent prior distributions, which are normal distribution and inverse 

gamma distribution respectively. There is another parameter of the time series model which 

needs to be estimated, the very beginning of the time series 𝑥0 to get 𝑥1. To get the distribution 

of 𝑥0, and keep all the time series have the same variance, I will use a normal distribution with 

mean and variance as a function of other parameters. 

Likelihood ∝∏(
1

σ2
)
1
2exp (−

1

2

(Xt − μ −Φ ∗ (Xt−1 − μ))
2

σ2
)

T

t=1

 

Priors ∶ Φ~Unif(−1,1) ; σ2~IG(a0, b0) ; x0~N(μ,
σ2

1 − Φ2
) ;  μ~N(μ0, σ0

2) 

⟹ π(x0|σ
2, μ, Φ)~N(μ + x1Φ− μΦ,σ

2) 

⟹ π(σ2|μ, x0, Φ)~IG(a1, b1) 

a1 =
1 + T

2
+ a0 ;  b1 =

1

2
∑(xt − μ − Φ(xt−1 − μ))

2

T

t=1

+
1

2
(1 − Φ2)(x0 − μ)

2 + b0 

⟹ π(μ|σ2, x0, Φ)~N(μ1, σ1
2) 
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μ1 =
[σ0
2(1 − Φ)∑(xt −Φxt−1)+σ0

2x0(1 − Φ
2) + σ2μ0]

A
; σ1
2 =

σ0
2σ1
2

A
 

 A = σ0
2T(1 −Φ)2 + σ0

2(1 − Φ2) + σ2 

Φ|σ2, μ, x0 ∝ N(μ2, σ2
2)1(−1 < Φ < 1)√1 − Φ2exp (

Φ2(x0 − μ)
2

2σ2
) 

μ2 =
∑(xt − μ)(xt−1 − μ)

∑(xt−1 − μ)2
; σ2
2 =

σ2

∑(xt−1 − μ)2
 

We can find that the posterior distribution of Φ is not standard distribution, so I will use 

Metropolis Hastings Sampling with the proposed distribution is independent. Proposal is the first 

part of the posterior, which is 𝑁(𝜇2, 𝜎2
2) truncated within (-1,1). Then the accept probability is  

𝑃𝑟𝑜𝑏 =
√1 − 𝛷𝑛𝑒𝑤2 ∗ exp (

𝛷𝑛𝑒𝑤
2 (𝑥0 − 𝜇)

2

2𝜎2
)

√1 − 𝛷𝑜𝑙𝑑
2 ∗ exp (

𝛷𝑜𝑙𝑑
2 (𝑥0 − 𝜇)2

2𝜎2
)

 

Based on the AR(1) model estimated above, prediction of the time series is our next step. So I 

derive the posterior predictive distributions as follows. 

𝑥𝑇+1 − μ = Φ(𝑥𝑇 − μ) + N(0, 𝜎
2) ⟹ 𝑥𝑇+1 = μ + Φ(𝑥𝑇 − μ) + N(0, 𝜎

2) 

𝑥𝑇+2 = μ + Φ(𝑥𝑇+1 − μ) + N(0, 𝜎
2) = μ + Φ(Φ(𝑥𝑇 − μ) + N(0, 𝜎

2)) + N(0, 𝜎2)

= μ + Φ2(𝑥𝑇 − μ) + ΦN(0, 𝜎
2) + N(0, 𝜎2) 

⟹ 𝑥𝑇+𝑁 = μ + Φ
𝑁(𝑥𝑇 − μ) + 𝐲

′𝒛 ;  𝐲 = (Φ0, Φ1, … ,Φ𝑁−1)′ ;  𝒛 = 𝑢𝑛𝑖𝑓(𝑁) 

From the posterior predictive distributions above, we can find that as predictive time interval 

increasing the variance is increasing. This is also means that in the long term prediction, the 

uncertainty is much larger than the short term prediction. This is proved as follows. 

𝑉𝑎𝑟(𝑥𝑇+1|𝑥𝑇) = 𝜎
2 ;  𝑉𝑎𝑟(𝑥𝑇+2|𝑥𝑇) = Φ

2𝜎2 + 𝜎2 ;  

𝑉𝑎𝑟(𝑥𝑇+𝑁|𝑥𝑇) = 𝜎
2∑Φ2𝑗
𝑁−1

𝑗=0
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3.6 Data Analysis 

In this section, we use several real-world datasets to carry out parameter estimation and out-of-

sample prediction. 

 

3.6.1 Birth-rate Dataset 

This dataset (Weintraub 1962) consists of Birth Rates, per capita income, proportion of 

population in farming and infant mortality during early 1950s for 30 nations. I use Exact 

Sampling with the regression function y = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀 ;  𝜀~𝑁(0, 𝜎
2), which is 

BR~PCI+PDF with both numeric covariates from data set. Before regression procedure, I leave 

out Philippines and Austria to check the prediction accuracy. Figure 8 and Table 6 give out the 

simulation result and posterior distribution summaries for variance of normal error and all the 

coefficients of covariates. 

 

Figure 8. Parameters simulation from exact MC in linear regression 
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Parameter Mean 95% Credible Set 

𝜎2 59.54153 (0, 89.15135) 

Intercept 17.9496 (4.30476, 32.72799) 

PCI -0.002356502 (-0.014615, 0.008894) 

PPF 27.20564 (0.224339, 53.159042) 

Table 6 Posterior summary for exact MC in linear regression 

After finishing the regression estimation, I want to check the regression accuracy of this model, 

and plug in the Philippines and Austria data. As have explained previous, I make both mean and 

observation prediction. The simulation of the posterior predictive distribution and the summary 

of the predictive distribution are given in Figure 9 and Table 7. It shows that the mean prediction 

credible interval, which incorporates smaller variance and has a smaller interval, does not give a 

good prediction. However, the observation prediction interval, which has more variance and 

larger, include the true value. 

 

Figure 9. Prediction from exact MC in linear regression 

Red line in Figure 9 is the true value of the prediction data. 
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 True Obs 95% Credible Mean 95% Credible Obs 

Philippines 21.3 (29.22596, 43.59412) (18.92557, 52.87955) 

Austria 14.8 (18.89994, 26.60434) (6.193693, 37.564797) 

Table 7 Prediction results from exact MC in linear regression 

 

After that, I use MCMC Sampling with the regression function y = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +

𝜀 ;  𝜀~𝑁(0, 𝜎2), which is IMR~PCI+PDF with both the same numeric variables. I also leave out 

Philippines and Austria to check the prediction accuracy. Similar to the Exact example above, 

Figure 10 and Table 8 gives out the simulation and summaries of the parameters. 

 

Figure 10. Parameters simulation from MCMC in linear regression 
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Parameter Mean 95% Credible Set 

𝜎2 360.3697 (0, 555.2955) 

Intercept 61.19677 (25.38162, 93.97517) 

PCI -0.04039937 (-0.06741, -0.01241) 

PPF 36.49901 (-26.55976, 103.13510) 

Table 8 Posterior summary for MCMC in linear regression 

After I have simulated large amount of sets of parameters from the posterior distribution, I use 

the same prediction method for both mean prediction and observation prediction. As we can see 

from Figure 11, the simulation results from posterior predictive distribution of this model is 

worse than the last one which parameters are estimated through Exact sampling. And from Table 

9, we also can find in this prediction, only the observation credible interval for Austria includes 

the true value. But for Philippines, neither observation credible interval nor mean credible 

interval includes the true value. 

 

Figure 11. Prediction from MCMC in linear regression 
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 True Obs 95% Credible Mean 95% Credible Obs 

Philippines 21.3 (66.82059,102.41722) (41.55966, 126.07538) 

Austria 14.8 (37.43068, 55.58567) (8.510534, 85.203908) 

Table 9 Prediction results from MCMC in linear regression 

 

3.6.2 Low Birth Weight Data 

This dataset (Hosmer et al. 2013) includes information on 189 women, 59 of which had low birth 

weight babies and 130 of which had normal birth weight babies. Data were collected at Baystate 

Medical Center, Springfield, Massachusetts during 1986. In the dataset, I choose binary variable 

LOW as response with two categories (0 and 1). Predictors are AGE (numeric), LWT (numeric), 

RACE (categorical with 3 categories 1, 2, and 3), SMOKE (categorical with 2 categories 0 and 

1), PTL (categorical with 4 categories 0, 1, 2, and 3), HT (categorical with 2 categories 0 and 1), 

UI (categorical with 2 categories 0 and 1), and FTV (categorical with 6 categories 0, 1, 2, 3, 4, 

and 6). After check the data, find that there is only one observation fall in category 3 of variable 

PTL and there is only one observation fall in category 6 of variable FTV. We want to create 

dummy variables for categorical predictors. When you create one column for each category of a 

predictor, the underlying assumption is that you have a reasonable number of observations 

falling into that category. So for predictor PTL, I will combine categories 3 and 2 together. 

Similarly, for predictor FTV I will combine categories 4 and 6. Then the model and the 

parameters which we need to estimated is as follows. 

LOW = {
1, 𝑖𝑓 𝑧 > 0
0, 𝑖𝑓 𝑧 < 0

, 𝑎𝑛𝑑 𝑧~𝑁(𝐱𝑇𝜷, 1) 
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So there are totally 13 coefficients 𝛽’s (excluding intercept). Then I will use the formula and 

method illustrated above to do the MCMC and get the simulation of all the parameters. Figure 12 

shows the simulation of four coefficients.  

 

Figure 12. Parameters simulation in Probit regression 

And when I am doing the regression, I leave out two observations to check the prediction 

accuracy. And the prediction probability is shown as below in Figure 13 and the Table 10 gives 

out the mean and 95% credible interval of the prediction probabilities. And from the prediction 

results, observation 1 has the mean probability 0.2513769 to be in category 1 which is a good 

prediction with true category 0. Meanwhile, observation 2 also has a large probability to be in 

category 1, which also gives out a reasonable prediction. 
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Figure 13. Prediction in Probit regression 

 True Cat Mean Prob. 95% Credible Interval 

Observation 1 0 0.2513769 (0.1341832, 0.3963629) 

Observation 2 1 0.7369638 (0.3590383, 0.9684874) 

Table 10 Prediction results in Probit regression 

 

3.6.3 Copenhagen Housing Condition Dataset 

This dataset (Madsen 1976) classifies 1681 residents of twelve areas in Copenhagen, Denmark 

in terms of: (i) the type of housing they had (1=tower blocks, 2=apartments, 3=atrium houses 

and 4=terraced houses), (ii) their feeling of influence on apartment management (1=low, 

2=medium,3=high), (iii) their degree of contact with neighbors (1=low, 2=high), and (iv) their 

satisfaction with housing conditions (1=low, 2=medium, 3=high).  In this example, I use 

satisfaction with 3 ordinal categories (low, medium, and high) as response, and I use housing 

(tower, apartments, atrium, and terraced four categories), influence (low, medium, and high 3 
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categories), and contact (low and high 2 categories) as predictor, which are all categorical 

variables. I will use the method illustrated in the Ordinal Probit regression section. Here k=3, 𝛃 

is three dimensional vector, and one free α needs to be estimated. But we need to construct 

dummy variables to implement the regression on the categorical predictors. That is why we 

have 6 coefficients (excluding intercept) to estimate. 

𝑃(𝑦 = 𝑖) = Φ(
𝛼𝑖+1 − 𝒙

𝑇𝜷

1
) − Φ(

𝛼𝑖 − 𝒙
𝑇𝜷

1
) 

Simulated parameters and their posterior summaries are shown in Figure 14 and Table 11. 

 

 

Figure 14. Parameters simulation in ordinal Probit regression 
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Covariate Effect Mean 95% Credible Set 

House: Apartment -0.3518009 (-0.4946149, -0.2112778) 

House: Atrium -0.2178059 (-0.40814113, -0.04152039) 

House: Terraced -0.6668755 (-0.8447894, -0.4856407) 

Influence: Middle 0.3438438 (0.2214866, 0.4651268) 

Influence: High 0.7775783 (0.6363497, 0.9259575) 

Contact: High 0.220256 (0.1116209, 0.3330477) 

Table 11 Posterior summary in ordinal Probit regression 

I also leave three data points which belong to 1th, 2nd, and 3rd categories respectively out to 

make the make prediction on them and make comparison with the real results. Posterior 

prediction results are shown in Table 12 as follows. 

 True Cat Cat1 Pred Prob Cat2 Pred Prob Cat3 Pred Prob 

Observation1 1 0.37852361 0.2850438 0.3364326 

Observation2 2 0.25706374 0.2745559 0.4683803 

Observation3 3 0.09635675 0.1872627 0.7163805 

Table 12 Prediction results in ordinal Probit regression 

From the prediction results in Table 12, we can find that for observation 1 and observation 3 the 

model gives out the right prediction. But for observation 2 the model gives out the wrong 

prediction as category 3. 

 

3.6.4 Ear Infection in Swimmers Dataset 

This dataset (Hand et al. 1994) come from the 1990 Pilot Surf/Health Study of New South Wales 

Water Board, Sydney, Australia. The first column takes values 1 or 2 according to the recruit's 
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perception of whether (s)he is a Frequent Ocean Swimmer, the second column has values 1 or 4 

according to recruit's usually chosen swimming location (1 for non-beach, 4 for beach), the third 

column has values 2 (aged 15-19), 3 (aged 20-25), or 4 (aged 25-29), the fourth column has 

values 1 (male) or 2 (female) and finally, the fifth column has the number of self-diagnosed ear 

infections that were reported by the recruit. For analyzing this dataset, I will use count data as 

response, and use 4 categorical predictors which result in the 5 dummy column in X matrix 

(excluding intercept). We have 𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒
Ƞ𝑖) and Ƞ𝑖 = 𝒙𝑖

𝑇𝜷 + 𝜀𝑖, 𝜀𝑖~𝑁(0, 𝜎
2). First, I use 

Exact sampling within MCMC including MH sampling with normal proposal Ƞ𝑛𝑒𝑤~𝑁(Ƞ𝑜𝑙𝑑, 𝜏2) 

to do the simulation. Before that, I choose the acceptance rate which produces reasonable 

acceptance rate within 30% - 40%. Then, I present the simulated parameters and summary of the 

parameters in Figure 15 and Table 13 as follows. 

 

Figure 15. Parameters Simulation (MH) in Poisson regression 
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Parameter Mean 95% Credible Set 

𝜎2 1.378531 (0, 1.828749) 

Frequent -0.5510663 (-0.9303471, -0.1701346) 

              Beach -0.6616766 (-1.0670469, -0.2718842) 

20-24 -0.412349 (-0.88021871, 0.05270854) 

25-29 -0.1993489 (-0.6889213, 0.2801244) 

Female 0.1522128 (-0.2809000, 0.5737834) 

Table 13 Posterior summary (MH) in Poisson regression 

Following this analysis, I will use the same count data as response, and use the same 4 

categorical predictors which result in the 5 dummy column in X matrix (excluding intercept) in 

Slice Sampling. The simulated parameters from the posterior distribution and the summary are 

given in Figure 16 and Table 14 as follows. 

 

Figure 16. Parameters simulation (slice sampler) in Poisson regression 
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Parameter Mean 95% Credible Set 

𝜎2 1.50149 (0, 2.012371) 

Frequent -0.5411584 (-0.9433834, -0.1500580) 

Beach -0.6652607 (-1.0873000, -0.2512824) 

20-24 -0.4061987 (-0.89930632, 0.08860746) 

25-29 -0.2082604 (-0.7215410, 0.3207603) 

Female 0.1414067 (-0.336434, 0.574386) 

Table 14 Posterior summary (slice sampler) in Poisson regression 

 

3.6.5 Tree Ring Dataset 

The tree-ring dataset (Originator: Swetnam, T.W., Caprio, A.C. and Lynch, A.M., 

https://www.ncdc.noaa.gov/paleo/study/5083)  contains annual measurement between 837 AD 

and 1989 AD at Italian Canyon, New Mexico from PIFL Limber Pine at an altitude of 2894 m. 

There are two columns in the dataset, of which the first column is year and the second column is 

the ring data. Before fitting the stationary AR(1) model, I verify its stationarity using the test 

developed in Priestley and Rao (1969). Then, I divide the data into two parts. First part is 

training dataset, and the other test dataset have the last 30 observations which I will predict. The 

model is as follows, and the prior distributions, posterior distributions, and simulation procedures 

are exactly same with what I have illustrated in the Time Series chapter 3.5. 

𝑥𝑡 − 𝜇 = ɸ(𝑥𝑡−1 − 𝜇) + 𝜀𝑡; 𝜀𝑡~𝑁(0, 𝜎
2) 

The simulation results of the parameters and the posterior distribution summary are in Figure 17 

and Table 15 respectively. The prediction result is shown in Figure 18. 

https://www.ncdc.noaa.gov/paleo/study/5083)
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Figure 17. Parameters simulation in AR(1) time series 

Summary ɸ 𝜎2 𝜇 

Mean 0.1856 0.1865 0.9989 

95% Credible Set (0.1262,0.2435) (0, 0.1996) (0.9671,1.0299) 

Table 15 Posterior summary in AR(1) time series 
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Figure 18. Prediction in AR(1) time series 

Most of the true values lie within 95% predictive interval, which is good. But from the prediction 

result, we did not find the variance is increasing, and the reason is because that ɸ and 𝜎2 and 

both very small, close to 0. So the variance’s increasing trend is not evident in this graph. 
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Chapter 4: Additional Topics in Bayesian Inference 

4.1 Introduction 

We have discussed the theoretical details underlying the Monte Carlo methods for Bayesian 

inference and gave many different examples of how to implement it. However, there are many 

other aspects of Bayesian modeling that one needs to be aware of before applying it to a problem 

and making decision based on the output. In the following, we discuss two of them.  

 

4.2 Assessing Convergence in MCMC 

As we have noted in Chapter 1, the validity of Monte Carlo method is dependent on our ability to 

draw a large number of independent samples from the target posterior so that empirical 

summaries converge to theoretical summaries. In case of MCMC, we need an additional 

convergence, because the samples we draw are not from the target distribution, but from a 

Markov chain that converges to the target distribution. Hence, it is important to check for 

convergence before we decide how many draws we are going to include in the MCMC. There 

are several different ways to assess convergence (Brooks and Roberts 1998, Plummer et al. 

2006). 

 

4.3 Model Comparison in Bayesian Inference 

Consider a regression setting.  One of the commonly encountered problem in regression is to 

decide on appropriate number of covariates. More covariates result in better fit but increases the 

dimension of parameter space and risks poor out-of-sample prediction. In likelihood-based 

methods, one uses criterion such as AIC or BIC (Akaike 1987; Burnham and Anderson 2004) 

that adds a penalty based on how many parameters are being used. No of parameters is not a 
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well-defined criterion in Bayesian method since, as we have seen with examples in Chapter 3, 

different sampling schemes may have different number of parameters for the same model, based 

on how we introduce auxiliary variables. There are alternative criteria in literature that are more 

suitable for a hierarchical model (Plummer 2008, Wilberg and Bence 2008). 
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