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Abstract 

 

Microelectronics industry has experienced a tremendous change over the last few 

decades and has shown that Moore’s law has been followed by doubling the number of 

transistors on the chip every 18 months.  However, continuous scaling down of the transistors 

size is reaching the physical limits and data transfer through metal interconnects will not be able 

to catch up with the increasing data processing speed in the future.  Therefore, optical data 

transfer between chips and on-chip has been widely investigated.  Silicon based optoelectronics 

has received phenomenal attention since Si has been the core material on which microelectronic 

industry has been built.  However, due to the indirect bandgap nature of Si, its optical 

characteristics fall short compared to similar III-IV semiconductors.  The efforts in III-V 

incorporation on Si substrate have not been successful due to the incompatibility of the growth 

with complementary metal oxide semiconductor processing.  Germanium has been studied in 

order to develop a Si compatible technology and it has been shown that a direct bandgap 

material is achievable by alloying Sn in Ge.  Further investigations on Si-Ge-Sn material system 

showed its viability as a technology that can be used for fabrication of Si-compatible light 

source and detectors.  

The work presented in this dissertation is focused on the low temperature growth of Si-

Ge-Sn alloys.  High quality crystalline homoepitaxial silicon films were deposited at 250 °C 

using a plasma-enhanced chemical vapor deposition (PECVD) system.  Strain-relaxed Ge and 

SiGe films were also grown on Si substrate at 350-550 °C in a reduced pressure CVD system.  

Commercial precursors of silane and germane were used to grow the films at different chamber 

pressures.  Germanium-tin and silicon-germanium-tin alloys were grown by a cold-wall 

chemical vapor deposition system at low temperatures (300-450 °C) directly on Si substrates.  



 

Two different delivery systems were adopted for the delivery of stannic chloride and deuterated 

stannane as Sn precursors along with silane and germane.  Crystallinity and growth quality of 

the films were investigated through material characterization methods including X-ray 

diffraction, scanning electron microscopy and transmission electron microscopy.  Elemental 

characterization of the films was done using Rutherford backscattering measurement and 

energy-dispersive X-ray spectroscopy. Moreover, optical characterizations were performed 

using Raman spectroscopy and photoluminescence on the samples to investigate Sn 

incorporation in the films.   

Additionally, compressively strained (<1%) GeSn films on Ge buffer layers that were 

grown using a commercial CVD reactor were studied.  Material and optical characterization was 

performed on the films to investigate the film quality and Sn incorporation.  Investigation of the 

defects at the GeSn/Ge interface showed formation of symmetrical and asymmetrical Lomer 

misfit dislocations which stops propagation of defects parallel to the growth direction.  Cyclic 

annealing of the samples showed strain relaxation and enhancement of the quality of the films.  
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Chapter 1. Introduction 

 

1.1.  Motivation 

Integrated circuit (IC) technology has been based on silicon due to its exceptional 

material characteristics such as abundance on the earth (low cost), capability to be easily doped 

(high electron/hole mobility), high oxide quality (suitable for IC fabrication processes).  

Although there are other materials available to compete with Si in one or two of the mentioned 

properties, no material has been able to compete in all aspects. Therefore, Si technology has 

been adopted by industry for fabrication of microelectronic devices since 1970s.  The number of 

transistors on the chip has doubled every 1.5 years as predicted by Moore reaching the current 

minimum feature size of 14 nm by Intel
®
.  Scaling down the transistors allows higher data 

processing speed while the delay (RC) for data transfer on the chip does not decrease at the 

same rate. If the number of transistors on a chip doubles, the length of the top most metallic 

interconnects stays the same which causes the delay in data transfer rate to stay the same while 

the data processing speed has doubled [1-3].  In addition, optical interconnects are able to 

transfer more data through modulation of different sets of data.  This causes reduction in 

number of required wire connections.  Therefore, changing the chip interconnects from 

electrical to optical could be an approach to keep Moore’s law on the path. 

The main advantages in using optical interconnects are: extremely low loss for data 

transfer over long distances, low operation power [4] and easy clock and signal timing [5].  

However, a complete set of photonic devices is needed in order to bring data communication on 

the chip.  These devices are light emitters [6-8],  amplifiers, modulators, couplers, waveguides, 

switches and photodetectors.  Aside from the optical interconnects, Si optoelectronics provides 
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a variety of applications for production of cheap sensors and detectors for medical imaging and 

gas sensing. 

Indirect bandgap of Si, Ge, and their alloys have led researchers to take different 

approaches to monolithically grow these devices on Si such as: growth of direct bandgap III-V 

materials on Si [9], Ge bandgap engineering through strained growth or heavy n-doping [10], 

and doping Si with rare earth elements [11].  The main challenge of these methods is 

incompatibility of growth to complementary metal oxide semiconductor (CMOS) processing.  

For the growth of highly strained Ge on Si, high temperatures are needed to attain tensile strain; 

and, for the growth of III-Vs on Si, the possibility of auto-doping of the materials increases the 

complexity of such incorporation to Si technology.  Therefore, development of a Si-compatible 

optoelectronic system that could utilize the infrastructures of Si technology is highly demanded.  

 

1.2.  Silicon-germanium-tin technology 

Si photonics has taken a different route since all group IV materials have been 

investigated for achieving direct bandgap material.  Crystallizing in diamond structure and 

having a wide range of band gaps from 5.4 eV in diamond to -0.41 eV for semi-metal α-Sn were 

promising for alloying and forming a variety of different bandgap materials. Silicon germanium 

alloys were widely explored for enhancing the electrical properties of Si but other alloys were 

not explored due to high lattice mismatch and low solid solubility. The theoretical calculations 

for achieving direct bandgap material in GeSn alloys date back to 1991 [12]; however, high 

quality GeSn alloys were not achieved until recently [8].  Adding Si makes the Si-Ge-Sn system 

unique in terms of tuning the lattice constant and bandgap engineering by varying the 

compositions of Si, Ge, and Sn. These remarkable theoretical and experimental findings have 

resulted in an increased interest in studying GeSn and SiGeSn materials by different groups 
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around the world.  Figure 1 shows the trend of publications on GeSn and SiGeSn per year from 

2000 to August 2015.  The number of publications shows a sudden increase from 2005 and 

increases every year since 2008. Currently, the research is 65% on material studies and 35% on 

devices. 

 

Figure 1.  GeSn and SiGeSn publications from year 2000 to August 2015. The data is generated 

from Web of Science Thompson Reuters website. 

 

1.2.1. Si-Ge-Sn band structure 

Germanium is a pseudo-direct bandgap material with only 0.14 eV difference between 

conduction band edges at the L and Γ valleys at room temperature.  Incorporation of Sn into Ge 

to form an alloy lowers the Γ band edge at a rate faster than that of the L decrease which results 

in an indirect-to-direct transition in the bandgap of the Ge1-xSnx alloys [13].  Since this cross-

over is below 0.6 eV, the GeSn devices can only cover the mid-infrared range [14].  Addition of 

Si with a bandgap energy of 3.2 eV at its Γ valley would enable the GeSn technology to achieve 

higher bandgap energies.  Such an increase in the ternary alloy bandgap enables fabrication of 
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photonic devices for a wider infrared range (0.8 eV - 1.1 eV) [15].  Figure 2 shows the 

schematic of the bandgap diagram of Si, Ge, and Sn and their alloys of GeSn and SiGeSn.  The 

Γ bandgap edge is the direct transition while L and X depict the indirect transitions.  It is 

illustrated that in GeSn, Sn incorporation in Ge lowers the Γ valley faster than the L one.  

Silicon-germanium alloy has a higher bandgap due to the incorporation of Si in Ge and it is still 

indirect bandgap as both Si and Ge are indirect band gap. Incorporation of Sn in SiGe decreases 

the band gap like GeSn to achieve direct bandgap at higher bandgap energies. 

 

Figure 2.  Schematics of electronic band structures of Si, Ge, Sn, GeSn and SiGeSn. 

 

Bandgap calculations of GeSn and SiGeSn the bandgap for all highly symmetric points 

(Γ, L and X) could be achieved using the Vegard’s law.  Equation 1 shows the calculation of 

change in the Γ point energy as a function of Si, Ge, and Sn mole fraction (y, 1-x-y, x, 

respectively) in SiGeSn material: 

 
g Γ

             
   g Γ

Si          g Γ
Ge    g Γ

Sn                

                           (Equation 1) 

The bowing parameters of SiGe, GeSn and SiSn are taken as      = 2.49 eV,      = 

0.21 eV nm and      =3.915 eV, respectively [16].  Figure 3 (a) shows the change in the Γ and 
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L bandgap of GeSn and SiGeSn for different as a result of increase in the Sn incorporation.   

The bandgap calculation for the SiGeSn was done considering 10% Si in the lattice.  

Incorporation of Sn in Ge or SiGe changes the lattice size as well.  Equation 2 shows Vegard’s 

law for calculation of lattice constant depending on the different Si, Ge and Sn mole fractions 

and Figure 3b is the plot of the lattice constant vs. bandgap of the Si-Ge-Sn alloys.  

 

 
0

             
    

0

Si         0
Ge x  0

Sn                

                             (Equation 2) 

 

Lattice constants of the elements are  0
Si=5.431 Å,   0

  =5.658 Å, and   0
   =6.491 Å.  

The bowing parameters of SiGe, GeSn and SiSn are taken as      = 0.026 nm,      = 0.166 

nm, and       =0, respectively [16].  Engineering the bandgap and lattice constant could be 

used for the growth of lattice matched films with different energy gaps. Such GeSn/SiGeSn 

layers have been used for the design of double-heterostructure [17] and multiple quantum well 

[18] group IV laser diodes. 

 

Figure 3. The change in the bandgap edge and lattice constant of Si-Ge-Sn alloys. (a) The 

change in the direct and indirect bandgap edge of GeSn and SiGeSn as a result of Sn 

incorporation. (b) Bandgap diagram of Si-Ge-Sn alloys vs. lattice constant.  



 

6 

1.2.2. Si-Ge-Sn growth technique 

The main challenges in the growth of SiGeSn materials are the large lattice mismatch 

between Si, Ge, and α-Sn as well as low solid solubility of Sn in Si and Ge.  The solid solubility 

limit of Sn in Ge is 0.5% at room temperature while that of Sn in Si is less than 0.5% [19].  

Additionally, the diamond structure of Sn (α-Sn) is unstable above 13 °C and transforms into 

tetragonal structure (β-Sn).  Because of low solid solubility and instability of α-Sn structure, Sn 

is apt to precipitate from the Ge or SiGe lattice during growth or thermal processing.  

Consequently, growth of Sn content alloys is only possible away from the thermal equilibrium 

conditions.  Moreover, bond strength in germane (GeH4) is approximately 20% weaker than that 

of silane (SiH4) which results in lower growth temperature of GeSn alloys [20].  Therefore, 

growth of the GeSn alloy is not as challenging as SiGeSn growth because the GeSn films can be 

grown at lower temperatures which causes less Sn precipitation.  Whereas, SiGeSn growth 

needs higher growth temperature to break Si-H bonds which promotes Sn precipitation from the 

lattice.  Therefore, not only is the incorporation of Sn in Ge difficult but also it is even more 

difficult to incorporate Si at that low temperature.   

Several methods of growth, such as molecular beam epitaxy (MBE) [21] , sputtering 

[22], solid phase epitaxy [23], recrystallization [24], and chemical vapor deposition (CVD), 

have been employed to grow GeSn [25]. The highest material quality is reported from 

molecular beam MBE [21] and CVD systems [26].  For the MBE method, both gas source and 

solid source MBE have been used by different groups to grow GeSn films [27-37] .  

Kouvetakis’ group at Arizona State University (ASU) has established a hot-wall ultra-

high vacuum CVD method with great success in device fabrication [26].  In their reports of 

growing (Si)GeSn, higher order (di-, tri-, tetra-) silanes (SixH2x+2: x= 2-4) and higher order (di-, 
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tri-, tetra-) germanes (GexH2x+2: x= 2-4) were used [38].  In addition, more compound hetero-

nuclear Si-Ge molecules [(H3Ge)xSiH4-x or H3Si)xGeH4-x: x=1-4] were used for the growths 

when both Si and Ge precursors were needed [25, 39].  The GeSn films were grown with or 

without a Ge buffer layer and SiGeSn films were grown either on Ge or GeSn buffer layers.  

Vincent et al.,
 
[40] (from IMEC using atmospheric pressure CVD) and Kim et al., [41]  [from 

Applied Materials/Stanford University using reduced pressure CVD (RPCVD)] have reported 

successful growth of GeSn by digermane on a Ge buffered Si substrate.  In the latest reports, 

Wirth et al. (from Peter Grünberg Institute in Germany) have grown (Si)GeSn films without a 

buffer layer on Si and Ge substrates using a RPCVD system with showerhead technology [42, 

43].  They have used precursors of disilane and digermane for the growth of the films.  

High quality GeSn and SiGeSn films grown at low temperatures of 250-400 °C have 

been reported; however, there are two main issues with using such gases. 1. Commercial and 

low cost production of these gases are not available and they are either in-situ produced or are 

purchased at higher costs. 2. Due to the instability of higher order gases such as digermane 

(Ge2H6) and their being explosive, they are diluted in a carrier gas (e.g. H2, N2, Ar). This causes 

the growth to be restricted to only one carrier gas.  Additionally, due to safety considerations the 

amount of available gas could not exceed 15% or 154 grams in one bottle [44]. Therefore, 

researchers have tried using silane and germane rather than the higher order gases to reduce the 

safety risks and final product costs in order to commercialize the production of (Si)GeSn 

technology.  

On the other hand, there have not been many options available for the Sn precursor and 

stannic chloride (SnCl4) and deuterated stannane (SnD4) have mostly been used for Sn 

incorporation. The main issue with SnCl4 has been the etching behavior of the gas byproducts 
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especially when a p-doped film is being deposited using diborane (B2H6).  Both HCl and BCl3 

cause self-etching of the film and limit the growth rates [44].  Methylation of the SnCl4 

precursor [Sn(CH3)xCl4-x:x=1-4)] has been proposed as the solution for reduction of self-

etching; yet, there are not many successful reports available [45].   In spite of instability of SnD4 

in comparison with the other Sn precursors, its robust growth mechanism and high quality 

material growth has promoted researchers to still use this gas for device quality films.  The shelf 

life of SnD4 at room temperature is less than a week and the need for low temperature storage is 

a hurdle to make it usable in large scale [46].  Table I compares different methods of (Si)GeSn 

growth using different CVD systems.  

 

Table I.  Comparison of different CVD methods achieveing (Si)GeSn. 

Growth team 
Deposition 

system 

Deposition gas precursors 
 

Film Buffer 

layer 

Si Ge Sn    

Applied Materials [41] RP-CVD - Ge2H6 SnCl4  GeSn Ge 

IMEC [40] AP-CVD - Ge2H6 SnCl4  GeSn Ge 

ASU [38]  UHV-CVD Si4H10 Ge3H8, Ge4H10 SnD4  (Si)GeSn Ge 

ASU
 
[39] UHV-CVD SiGeH6 SiGeH6 SnD4  SiGeSn GeSn 

PGI-9 [42, 43] RP-CVD Si2H6 Ge2H6 SnCl4  (Si)GeSn No 

This work UHV-CVD SiH4 GeH4 SnCl4, SnD4  (Si)GeSn No 

 

1.3.  Organization 

The goal of this research was to develop a low temperature growth method of Si-Ge-Sn 

alloys using commercial precursors of silane and germane via CVD method.  In Chapter 2, the 

chemical vapor deposition systems that were used to grow the materials are explained. The 

majority of the material growth was done with a system that was designed and built in the 



 

9 

engineering research center at the University of Arkansas.  In Chapter 3, plasma enhanced  

CVD growth of Si and reduced pressure CVD of the Ge and SiGe materials are presented as 

low temperature growth methods.  In Chapter 4, growth and characterization of GeSn and 

SiGeSn films using stannic chloride are presented.  Chapter 5 discusses the growth of GeSn and 

SiGeSn films using in-situ gas mixing of SnD4, SiH4, and GeH4.  In Chapter 6, material 

characterization of compressively strained GeSn films grown with a mainstream CVD system is 

presented.  The study of defect formation and propagation as well as rapid thermal annealing of 

the films are discussed. The summary, conclusion and future work of this research are presented 

in Chapter 7.  
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Chapter 2. Chemical vapor deposition systems for material growth 

 

Three different deposition systems were used in this research for the growth of Si-Ge-Sn 

materials.  The main system for the growth of Si-Ge-Sn alloys was a cold-wall, ultra-high 

vacuum, plasma enhanced chemical vapor deposition (UHV-PECVD) system that was designed 

and built at the University of Arkansas engineering research center (UA ENRC).  A multi-

chamber chemical vapor deposition system was used for the growth of Si at low temperatures.  

An ASM Epsilon® reduced pressure chemical vapor deposition (CVD) rector was used for the 

growth of GeSn films.  The details of each system are discussed in the following sections. 

 

2.1.  The UHV-PECVD system 

 

2.1.1. The lab design 

A cold-wall UHV-PECVD system was designed for the growth of group IV 

semiconductor alloys.  Figure 4 shows the design of the lab that encloses the UHV-PECVD 

reactor.  Due to the usage of toxic gases, highest safety standards were implemented as can be 

seen in Figure 4. The gases were kept in exhausted gas cabinets in the gas farm with a sprinkler 

placed in each cabinet as a heat suppressor.  The flow of the toxic gases was limited by a 

restrictive flow orifice and an excessive flow sensor connected to a high pressure valve.  The 

gases were monitored by gas sniffers in the gas farm and in the lab.   

The gas lines passed through an exhausted secondary containment (shown by dotted 

lines in Figure 4) in order to connect the cylinders to the gas manifold.  Gases were mixed in the 

gas manifold prior to entering the process chamber.  After film deposition, the exhaust gases 

passed through the turbo pump and mechanical pump and reached the gas reactor column 

(GRC) to abate the toxic gases to non-hazardous salts.  Eventually, the gases were released to 
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the air through a burn box.  The details of different parts of the system are explained in the 

following sections. 

 

Figure 4. The lab design of the UHV-PECVD system. The lab was divided into three sections: 

gas farm (gas cylinders), chase (mechanical pump and chiller), and UHV-PECVD reactor lab.  

 

2.1.2.  The UHV-PECVD reactor design 

Figure 5 depicts the UHV-PECVD reactor design.  The reactor was composed of a load-

lock chamber and a process chamber that were separated with a gate valve. The load-lock 

chamber was pumped with a turbo-molecular pump and the process chamber was pumped with 

turbo-molecular and cryogenic pumps. The turbo-molecular pumps were backed by mechanical 

pumps.  The samples were transferred from the load-lock to the process chamber with a 

magnetic arm and were held with the substrate heater assembly.  The heating assembly was 
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capable of reaching 1000 °C and had a substrate rotation as high as 80 rpm for uniform film 

growth.  It could also be biased with plasma power as high as 80 W.  Additionally, a plasma 

electrode was facing the substrate holder from the bottom of the process chamber in order to 

form plasma. 

All the precursors except for tin precursors, SnCl4 and SnD4, were stored in the gas 

farm.  The design for the delivery of Sn in the chamber will be discussed in the following 

sections.  The flow of the gases to the process chamber was controlled with mass flow 

controllers (MFCs) which were calibrated for each gas. 

 

 

Figure 5. UHV-PE-CVD reactor design. 

 

The details of the system assembly and the different safety criteria that were taken into 

account for building the system are explained in the following sections. 
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2.1.3.  Process chamber and load-lock chamber assembly 

Growth of the materials took place in the process chamber; however, a load-lock 

chamber was designed so that the samples were loaded and pumped down in order to minimize 

the transfer of contamination into the process chamber.  Figure 6 shows the platform with the 

two chambers separated by a gate valve. The load-lock chamber was designed to reach a 

minimum pressure of 10
-8

 torr. The process chamber was pumped down to 10
-10

 torr after 

transferring the sample.  

 

 

Figure 6. The starting platform containing a load-lock chamber and a process chamber. 

 

2.1.4. Vacuum ranges, pumps, and pressure measurement  

Vacuum ranges 

In order to achieve ultra-high vacuum, the chamber was pumped with different pumps 

for different vacuum ranges.   The vacuum ranges were categorized based on the mean free path 

of the gases in the chamber.  The mean free path (λ) is the distance a molecule travels before 

hitting another one and it is calculated using Equation 3: 
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√      
       (Equation 3) 

where   is the universal gas constant and    is the Avogadro’s number.  Mean free path depends 

on the pressure ( ), temperature ( ), and diameter of the molecule ( ) [47].  Table II shows the 

number density and mean-free path for different ranges of pressure, calculated for nitrogen (d = 

3.8 × 10
-8

 cm).  The flow regime for each pressure range, the proper pumps and the vacuum 

gauges are also listed in Table II.  

 

Table II. Different pressure ranges, their properties, and required gauges and pumps. 

 

Pumps and gauges 

A mechanical pump was used to pump the chamber from atmospheric pressure to rough 

vacuum (10
-3

 torr).  The mean-free-path of molecules at this pressure range is around 5 cm 

which causes the gases to behave as a fluid and flow in the viscous regime [48].  In this regime, 

the gas can cool down a hot filament as it passes by.  This is the idea behind a Pirani gauge 

which is made of a Wheatstone bridge with two heated elements.  The convectron gauge was 

also used for the same range.  It works based on keeping the filament temperature constant as it 

Pressure range Pressure 

(Torr) 

Molecular   

density (cm
-3

) 

Mean free 

path (cm) 

Flow regime Vacuum gauge Pump type 

Atmosphere 

 

760 2.7×10
19

 7×10
-6

 Viscous Pirani Mechanical 

Rough vacuum 

 

 

10
-3

 3.5×10
13

 5 Transition Capacitance 

monameter 

Mechanical 

High vacuum 

 

 

10
-6

 3.5×10
10

 5×10
3
 Molecular Cold Cathode Turbo-

molecular 

Very high 

vacuum 

 

10
-9

 3.5×10
7
 5×10

6
 Molecular Cold Cathode Turbo-

molecular 

Ultra high 

vacuum 

10
-12

 3.5×10
4
 5×10

9
 Molecular Cold Cathode Cryogenic 
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is affected by the gas convection at different pressures.  Figure 7 shows the corrosion resistant 

and the non-corrosion resistant  mechanical pumps that were used for the process chamber and 

the load-lock chamber, respectively.  Figure 7c depicts the convectron gauge used in in the 

load-lock pump line.  

To reach the next stage of vacuum, a turbomolecular pump was used which can pump 

down the chamber from rough vacuum (10
-3

 torr) to very high vacuum (10
-9

 torr).  Increase of 

mean-free-path down to 5×10
6
 cm, which is larger than the size of the chamber, changes the 

flow regime to molecular flow [48].  The turbomolcular pumps need to be backed by a 

mechanical pump at all times to keep the pressure difference between both sides. Due to the 

presence of corrosive gases in the process chamber, the pumps were chosen to be corrosion 

resistant.    Figure 8 shows the corrosion resistant turbo-pump on the process chamber and the 

non-corrosion resistant turbo-pump on the load-lock chamber.  The turbo pumps were isolated 

from the chamber by a gate valve.  In order to control the pressure in the process chamber, a 

throttle valve was used before the turbo pump to reduce the pumping rate of the turbo (Figure 

8).  This was mainly done to maintain the pressure for the deposition. 

The pressure measurement in the range of rough vacuum and high vacuum was 

performed using a capacitance manometer which works based on the changes of the 

capacitance.  A movable diaphragm placed in front of a fixed sensor causes a change in the 

capacitance as the diaphragm changes position at different pressures.  As the sensor is not 

exposed to the gas, it is a suitable gauge for process gases.  A cold cathode gauge was used for 

measuring the pressures below 10
-4

 torr.  In a cold cathode gauge, a high voltage ionizes the 

gases to form plasma and then a magnetic field directs the ions to the other electrode.  The 

pressure is measured by the current produced in the electrode.  Cold cathode gauges should be 
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protected from pressures above 10
-4

 torr.  For this purpose, a high vacuum valve was used to 

isolate the cold cathode gauge.  Figure 9 shows the vacuum gauges installed on the process 

chamber and the load-lock chamber. 

 

 

Figure 7. Mechanical pumps and vacuum gauges used for the rough vacuum range. (a) 

Corrosion resistant mechanical pump (Edwards QDP40), (b) non-corrosion resistant mechanical 

pump (Edwards XDS10), and (c) Convectron gauge on the load-lock pump line. 

 

 

Figure 8. Turbo-pumps used for pumping the chambers down to very high vacuum range. (a) 

The corrosion resistant turbo-pump (Edwards STP) connected to the process chamber and (b) 

the non-corrosion resistant turbo-pump connected to the load-lock chamber.  
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Figure 9. Vacuum gauges used for monitoring the growth pressure.  Capacitance monometer 

gauge (a) and cold cathode gauge (b) installed on the process chamber. (c) Full range gauge 

including a pirani and a cold cathode gauge installed on the load-lock chamber.  

 

In order to reach ultra-high vacuum in the process chamber, a cryogenic pump was used 

only after reaching 10
-8

 torr to reduce the pressure down to 10
-10

 torr (Figure 10).  A cryogenic 

pump works based on a cold finger that is cooled down by a closed loop of liquid helium as low 

as 10 K.  At such low temperature, all the gases except for hydrogen, helium and neon are 

condensed.  Therefore, by reaching the ultimate base pressure using the cryogenic pump, the 

oxygen and water vapor are pumped down more efficiently.  

 

 

Figure 10. Cryogenic pump isolated from the process chamber by a gate valve. 

(a) (b) 

(c) 
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2.1.5. Substrate heater assembly 

The heating assembly consisted of a graphite heater coated with pyrolytic graphite for 

protection from oxidation.  The maximum achievable temperature by the heater assembly was 

1000 °C measured by a thermocouple located above the heater.  The thermocouple and wafer 

were at the same distance (12 mm) away from the heater for more accurate reading of substrate 

temperature.  The substrate holder was capable of rotation as high as 80 rpm for uniform film 

growth.  In order to assure that the heater assembly was compatible with the process gases, the 

materials used in the heater were custom made from molybdenum, stainless steel, and 

aluminum oxide ceramic.  In addition, in order to save the heating element from the etchant 

gases, an inert gas line was fed through the heater assembly to be used for the time of etch-

cleaning the chamber with plasma. The substrate heater was capable of accommodating 80 W of 

power if it was used as the biased electrode. 

 

 

Figure 11. Substrate heater assembly used in the process chamber. (a) Inside portion containing 

the heater  and (b) outside portion containing the electric and gas lines. 
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2.1.6.  Plasma electrode assembly 

An adjustable position plasma electrode was located below the substrate heater assembly 

to be able to generate plasma close and far from the substrate.  The electrode could achieve a 

minimum distance of 10 mm and a maximum distance of 121 mm from the substrate heater 

assembly.  The plasma electrode was designed with a dark space shield so that the far field 

plasma could be ignited with low plasma power without grounding the top substrate heater 

assembly.  Figure 12a shows the design of the electrode, Figure 12b shows the plasma 

electrode, and Figure 12c the H2+GeH4 plasma generated at 0.5 torr pressure and 5 W plasma 

power.   

 

 

Figure 12.  The plasma electrode used for striking plasma in the process chamber. (a) Side view 

and top view of the plasma electrode design. (b) Side view of the plasma electrode. (c) The 

H2+GeH4 plasma generated inside the chamber. 

 

2.1.7.  Safety consideration and design features 

Pumps and chamber connections 

Turbo pumps and the cryo pump were separated from the chambers by gate valves with 

the leak rates as low as           
 

 
.  The chambers and all the connections had ConFlat (CF) 

flanges with knife edge and Cu gasket which reduced the leak rate to           
 

 
.  Tempered 
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glass was used for the view port of the chambers.  The load-lock door had a Viton
®
 seal with a 

leak rate as low as          
 

 
 . The load-lock and process chambers were bakeable to 250 °C. 

The corrosion resistant turbo pump and the corrosion resistant mechanical pumps were 

both ballasted with nitrogen so that the process gases were diluted as they were being pumped 

from the chamber. The mechanical pumps were all dry scroll pumps in order to reduce the 

possibility of chamber contamination.  To save the cryo pump from exposure to process gases, 

an interlock system was designed to disable the gas entry when the cryo gate valve was open.  

In addition, the cryo gate valve closed if the chamber pressure exceeded 10
-7

 torr.  

 

Gas lines and manifold 

The gas lines were made from ¼” electro-polished stainless steel tubes with metal gasket 

face seal fittings (VCR
®
).  The VCR

®
 connections were used with nickel gaskets in order to 

keep the leak rates as low as            
 

 
 .  All the VCR connections were secured with a 

lock to reduce the possibility of loosening in case of stress application to the lines.  The gas 

lines and their connections were exhausted with a fan and secondary containment around them 

(Figure 13). 

 

 

Figure 13.  Secondary containment located above the gas manifold. All the MFCs and VCR 

connections were exhausted with secondary containment. 
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Gas cylinders, cabinets, and gas farm 

Gas cylinders were all placed in exhausted gas cabinets (Figure 14a).  A restrictive flow 

orifice of 0.01” was placed in the cylinder valve outlet in order to reduce the gas flow.  In 

addition, the gas panels for the toxic gases were equipped with an excessive flow meter that 

would shut off a high pressure valve if high gas flux was detected in the line.  The SiH4 gas 

cabinet had an IR detector that would detect if gas leakage occurred.   Gas cabinets were located 

in the gas farm outside the lab except for those used for Sn precursors.  Each cabinet was 

equipped with a sprinkler system that would cool down the cylinders in case of fire.   

 

Hazardous gas monitoring and alarm system  

A gas detection and alarm system was installed in order to detect a leak at 10% of the 

threshold limit value (TLV) for each gas.  The detectors would sniff the gases in the gas farm 

for each cabinet, in the lab over the gas manifold hood, and in the ambient (Figure 14b). The 

audio and visual alarms would go off in case of leak detection and the University of Arkansas 

police department would be informed automatically.  All the valves would shut off and the flow 

of all gases would be stopped in this situation.  

 

Hazardous gas abatement 

A gas reactor column (GRC) was placed after the corrosion resistant mechanical pump 

to abate the gases after being processed in the chamber (Figure 14c).  The abatement system 

works on the basis of making non-hazardous salts from hazardous gases. The line that connects 

the mechanical pump to the GRC was heated to prevent deposition of phosphorus if phosphine 

(PH3) was used in the process.  The GRC cartridge that abates the gases was heated as high as 

550 °C and the temperature was monitored at all times.  An alarm system would notify the 

building personnel if the temperature dropped.   
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2.1.8. Tin precursor delivery 

Stannic chloride and deuterated stannane were used as Sn precursors for the growth of GeSn 

and SiGeSn films.  Stannic chloride is a liquid and deuterated stannane is an unstable gas; 

therefore, two different delivery systems were designed and made for this purpose.  In the next 

subsections these two delivery systems are explained. 

 

 

Figure 14. Safety features implemented inside and outside the lab. (a) Exhausted gas cabinet in 

the gas farm, (b) gas sniffers that detect inside the lab (top) and in the gas farm (bottom), and (c) 

gas reactor column. 

  

Stannic chloride delivery 

Stannic chloride is a liquid that boils at 112 °C and has a vapor pressure of 18 torr at 

room temperature.  In order to deliver SnCl4, a bubbler system was designed so that a carrier 

gas could bubble through the liquid and transport SnCl4 to the chamber.  Due to fast oxidation 

of SnCl4 in air, an inert filled hood was used to fill the bubblers.  A mass flow controller that 

was calibrated for the carrier gas was used to control the gas flow due to the low amount of 

SnCl4 in the carrier gas.  Figure 15a shows the design for the bubbler system.  Two bubblers 

were connected in a way that the carrier gas passed through the first bubbler, entered the second 

one, bubbled through SnCl4, and then entered the gas manifold.  The reason for using two 

bubblers was to stop liquid back flow in the gas line.  If the pressure on the manifold side was 
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increased, it would push the SnCl4 liquid toward the second bubbler.  Excessive pressure on the 

gas manifold would not be able to push the liquid back toward the carrier gas bottle even if the 

second bubbler was filled with all the liquid.   

 

Figure 15. The bubbler system used for deligvering SnCl4 to the process chamber. (a) 

Schematics of the bubbler system design.  (b) The bubbler system with a heating jacket around 

the bubbler that contains the SnCl4. 

 

The second way of delivering the gas was to isolate the second bubbler by closing valve 

3 (V3) (Figure 15a) and use the vapor pressure of the SnCl4 liquid.  The vapor pressure could be 

increased by heating the bubbler using a heating jacket as shown in Figure 15b.  For this case, a 

low pressure mass flow controller was installed for more accurate control due to the low supply 

pressure.  

 

Deuterated stannane delivery 

Deuterated stannane is an unstable gas and its fast decomposition requires storage at 

liquid nitrogen temperature (-200 °C).  The boiling temperature of SnD4 is -56 °C and its 

stability at room temperature is less than one week [46].  In order to deliver the gas to the 

chamber, it needed to be warmed up but kept at dry ice temperature (-80 °C) to have a longer 

lifetime.  Furthermore, fast decomposition of SnD4 in the delivery line and MFC walls causes 

inaccurate flow readings.  This is mainly because MFCs work on the basis of measuring the 
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heat conductance of the gas as it passes through a heated bypass tube and controlling the flow 

with a needle valve.  As SnD4 is heated, it deposits on the line and causes less gas to pass and 

also changes the heat conductance of the tubing.  Therefore, the reading of MFC would not be 

accurate and a pressure-based system was adopted rather than using MFC. The operational 

diagram of a MFC is shown in Figure 16. 

 

Figure 16. Operational diagram of a MFC. 

 

Introduction of the gases in the chamber resulted in an increase in the pressure of the 

chamber.  The flow rate of the gases were calibrated by measuring the pressure as the flow rate 

increased.  The process chamber pressure was controlled by a throttle valve which was placed 

before the turbopump.  In order to calibrate the flow rates with the deposition pressure in the 

system, the throttle valve was placed at different opening positions and the flow rates of the 

gases were changed.  For example, at 1% open position of the throttle valve, the flow rate of Ar 

was changed from 5 to 50 sccm (at 5 sccm steps) and the corresponding pressure was recorded.  

The same procedure was adopted for germane and silane.  The partial pressures of all gases 

were measured by a capacitance monometer pressure gauge in the process chamber (Figure 5).  

Figure 17 shows the calibration of the pressure reading of argon and germane for different flow 

rates at 1 to 3% open position of the throttle valve. 
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Figure 17.  Calibration of pressure reading with the flow rate of gases in the process chamber. 

(a) Argon and (b) germane for different flow rates at 1 to 3% open position of the throttle valve. 

 

Deuterated stannane is liquid and has a vapor pressure of 17.4 torr at -112 °C and boils 

at 58 °C; therefore, it was kept in the -60 to -80 °C (using dry ice) temperature range to assure 

that it was in the liquid form and the vapor pressure of the gas could be used to deliver the gas 

to the chamber (Figure 18 a). In order to determine the partial pressure of SnD4, a needle valve 

was placed on the delivery line to control the gas flow in the chamber (Figure 18b).  By opening 

the needle valve at different positions, the partial pressure of the gas was controlled from 0 to 

1.5 mtorr range.  

 

 

Figure 18.  SnD4 delivery system containing a Dewar and gas panel. (a) The SnD4 bottle was 

placed in a Dewar covered with dry ice. The temperature was monitored with a thermocouple 

placed on the bottle. (b) The needle valve was placed after the gas regulators in order to control 

the SnD4 flow. 

(a) (b) 
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2.1.9. Final system design 

Figure 19 shows the final configuration of the UHV-PECVD system located in Lab 

350C at UA ENRC. The system was composed of the CVD reactor, the Sn precursor delivery 

system, gas manifold, and gas sniffers as explained in the prior sections.  

 

 

Figure 19. Cold-wall ultra-high vacuum plasma-enhanced chemical vapor deposition system: 

(a) load-lock chamber, (b) process chamber. (c)turbopump. (d) cryogenic pump, (e) substrate 

heater assembly, (f) the gas manifold hood, (g) the gas cabinet for stannic chloride bubbler 

system, (h) gas cabinet for stannane delivery system, (i) gas detector,  and (j) exhausted 

secondary containment. 

 
 

2.2.  Multi-chamber cluster tool 

The high vacuum plasma enhanced CVD chamber of a multi chamber cluster tool at UA 

ENRC Lab 350B was used to grow c-Si epitaxial layers (Figure 20a).  The samples were passed 
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through a load-lock to reach MPZ 1 by using an automatic arm.  After loading the sample 

through the loading station, the load-lock chamber was pumped down to 10
-3 

torr to keep the 

contaminants away from the process chamber.  The samples were transferred to the process 

chamber using an automatic arm.  The process chamber was pumped down to  10
-8

 torr  using a 

turbomolecular pump.  Samples were cut in 1”×1” sizes from a 500 µm thick CZ grown Si 

(100) wafer. They were placed facing down on the grounded top electrode, which was 15 mm 

away from the bottom powered electrode (Figure 20b).  

 

 
 

Figure 20. Multi-chamber cluster tool with five vacuum chambers. (a) Top view schematic of 

the system.  (b) Cross-sectional schematic of MPZ1 chamber showing the sample location and 

plasma electrode. 

 

2.3.  Reduced pressure CVD 

The GeSn alloy films received from ASM America Inc. were grown using an Epsilon® 

2000 Plus reactor which is a single wafer RPCVD epitaxial deposition system (Figure 21).  It 
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was comprised of a load-lock chamber and a process chamber with a cold-wall quartz 

deposition chamber encasing a silicon carbide coated graphite susceptor heated via an array of 

halogen lamps controlled by a closed loop feedback system.  The system featured a unique non-

contact wafer transfer technology called a Bernoulli wand that could transfer the sample without 

damaging the surface and provided the ability to achieve high throughput film growth. 

 

 
Figure 21. ASM Epsilon® 2000 Plus RPCVD reactor [49]. 
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Chapter 3. Silicon, Ge, and SiGe epitaxy 

 

All group IV elements (except Pb) form similar diamond crystal structure; therefore, 

studying the growth mechanism of Si and Ge and their alloys (SiGe) is essential in developing 

the technology for the growth of other group IV alloys. Silicon and Ge are fully miscible with 

different compositions and have less lattice mismatch in comparison with other group elements. 

However, Si is deposited at higher temperatures in comparison with Ge in regular CVD 

processes.  Growing high quality Si films at low temperatures is challenging.  In this chapter, 

low temperature growth of Si using plasma enhancement is discussed.  In the following 

subsections, growth of Ge and SiGe is presented using RPCVD processes.    

 

3.1.  Si epitaxy 

Low temperature silicon epitaxy has been mainly pursued to achieve abrupt doping 

profiles in metal–oxide–semiconductor field-effect transistor (MOSFET) channels [50] and thin 

film crystalline solar cells [51].  Elimination of auto-doping from bulk substrates to the grown 

film enables use of low cost substrates such as seeded glass and metallurgical grade silicon.  

The main drawback for such growth regime is reduction of growth rate and film quality; 

therefore, understanding the growth mechanism would help resolve the film quality issue as 

well as increasing the growth rate.  

Plasma enhanced chemical vapor deposition has been shown to be one of the methods 

for low temperature Si epitaxy [52].  Highly diluted silane (in hydrogen) plasma produces 

reactive radicals such as: SiH3, SiH2, SiH, Si, H2 and H as well as other excited states like 

SiHx
*
, and hydrogen breaks into atomic H or transits to a higher excited state [53].  Atomic 

hydrogen and SiH3 give rise to efficient removal of hydrogen from the surface.  This leads to 
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higher hydrogen mobility on the surface and an increase in the diffusion length of Si ad-atoms 

[54].  These two significant factors enable the Si ad-atoms to find the desired crystal sites 

resulting in crystalline epi-layer growth.  Applying appropriate low plasma power is critical, as 

bombardment energies above 15-20 eV would introduce defects in the grown film [55].  In this 

section, the epitaxy mechanism and role of hydrogen in achieving high crystal quality growth 

are discussed.  The samples in this study were grown using the high vacuum PECVD in the 

multi-chamber cluster tool.  

 

3.1.1. Silicon epitaxy using multi-vacuum system 

Experimental parameters were set through a semi-factorial design of experiments in the 

temperature range of 250-350 °C while deposition pressure was maintained constant at 500 

mtorr. Silane flow rate was varied from 2 to 5 sccm with hydrogen flow rate from 95 to 98 sccm 

to make dilution ratios (DR) of 20, 30 and 50.  Total flow was kept constant at 100 sccm. 

Applied RF power provided sustainable plasma power density (PPD) of 20, 50, 100 mW/cm
2
 in 

the one hour growth time.  Films were co-deposited on a Si and a glass sample.   Table III 

shows the details of the experiments. 

 

 Table III. Experimental design for different temperatures, ratios, and power densities. 

 Sample Temperature (°C) H2 (sccm) SiH4 (sccm) DR (H2:SiH4) PPD (mW/cm
2
) 

A 250 98.0 2.0 50 20 

B 250 96.7 3.3 30 50 

C 250 95.2 4.8 20 100 

D 350 96.7 3.3 30 20 

E 350 95.2 4.8 20 100 
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3.1.2. Raman spectroscopy  

Raman characterization of the grown samples shows crystalline and microcrystalline Si 

(µc-Si) films as can be seen in Figure 22.  Except for samples grown at 350 °C (D and E), no 

characteristic amorphous hump was found around 480 cm
-1

 for samples grown at 250 °C (A, B 

and C). The typical crystalline Si (c-Si) peak was seen at 520 cm
-1

. Samples were further 

investigated by eliminating the high count 520 cm
-1

 peak from the graph in order to search for 

an amorphous peak at 480 cm
-1

. No amorphous peak was observed for samples A and B and a 

barely discernible one was seen for C. Lower intensity of the 520 cm
-1

 peak in sample C also 

indicates the presence of less crystalline structure in the film. Raman spectroscopy was carried 

out at different places on the sample (and replicate runs) to ensure the reproducibility, 

reliability, and uniformity of the peaks; the same results appeared without any traces of 

amorphous characteristic hump in the samples A and B. 

 

 
Figure 22. Raman spectra Si samples grown on Si under different conditions. 

 

3.1.3. Transmission electron microscopy (TEM) 

A high resolution TEM image of sample A is shown in Figure 23a. Crystal orientation of 

the atoms can be obviously seen in the substrate as well as the grown film.  No amorphous 
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region is observed in the HR-TEM image. The film surface does not show any trace of stressed 

growth that can result in a saw-tooth shape. The absence of stress could be ascribed to the 

smooth nucleation at the film/substrate interface. The HR-TEM does not show any stacking 

faults and dislocations as the zoomed in image depicts in Figure 23b. The thickness of the 

grown Si epi-layers was measured to be 15 nm, indicating a growth rate of 0.25 nm/min. The 

TEM characterization, carried out randomly at different parts of the sample, revealed the same 

quality epi-layers. Convergent beam electron diffraction (CBED) of the layer was used to 

confirm the crystallinity and the absence of any possible faults in the film (Figure 23c). CBED 

is preferred to selective area diffraction due to the small thickness of the epi-layers; otherwise, 

the diffraction pattern would have had incorporation from the substrate as well. The presence of 

discs shows perfect crystal growth with no circular amorphous pattern. 

 

 

Figure 23.  HR-TEM cross-sectional image of sample A, deposited at 250 °C with DR of 50 and 

PPD of 20 mW/cm
2
.  (a) Low magnification TEM image showing the Si substrate and the 

grown film. (b) Higher magnification TEM showing high quality film growth. (c) Convergent 

beam electron diffraction of the film. 

 

Figure 24a is the HR-TEM image of sample B which was grown at higher PPD and 

lower DR compared to sample A but at the same temperature. It shows better film quality and 
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higher growth rate up to 0.34 nm/min reaching 20 nm of thickness. HR-TEM image shows 

perfect crystal growth of the film with the same crystal orientation of the substrate. The 

nucleation step at the substrate/film interface was initiated so perfectly that it is very hard to 

find and discern it (Figure 24b). Therefore, the thickness of the film was estimated by 

measuring the film thickness on the glass substrate. Smooth nucleation stopped development of 

stress in the film and the formation of a saw tooth features which result in a crystalline-to-

amorphous transition.  

The HR-TEM image does not show any stacking faults or dislocations (Figure 24c). 

Lower DR provided the ambient with more ad-atoms, resulting in higher growth rate, yet more 

precursor flow rate did not always result in a thicker crystalline film.  Higher PPD produces 

more atomic hydrogen and higher surface mobility of the ad-atoms, which is needed for 

crystalline growth.  

 

 

Figure 24. HR-TEM cross-sectional image of sample B, grown at 250 °C with a DR of 30 and 

PPD of 50 mW/cm
2
. (a) Low magnification TEM image showing the Si substrate and the grown 

film. (b) Higher magnification of the interface. (c) Higher magnification close to the film 

surface. 
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Figure 25 shows HR-TEM images of sample C, which was grown at the same 

temperature as samples A and B but with lower DR (20:1) and higher PPD (100 mW/cm
2
). 

Crystalline growth was started with rough nucleation on the surface (Figure 25c), which caused 

stress on the epi-layers. The films became non-epitaxial at some parts after 10 nm as a result of 

stressed growth. Formation of saw-tooth shape defects resulted in transition to amorphous Si 

(Figure 25 b) and microcrystalline (crystalline and amorphous mixed) film. High density of 

plasma was the main reason for the deterioration of the film quality; yet, it increased the growth 

rate to 0.75 nm/min and a thickness of 45 nm was achieved. Lower DR also affected the growth 

rate; however, low quality of the film cannot be ascribed to lower surface mobility of the ad-

atoms. 

 

Figure 25. HR-TEM cross-sectional image of sample C, grown at 250 °C with a DR of 20 and a 

PPD of 100 mW/cm
2
. (a) Low magnification TEM image showing the Si substrate and the 

grown film. (b) Crystalline to amorphous transition is seen between the dotted lines. (c) Rough 

nucleation is seen at the interface. 

 

The results show that conditions for growing epitaxial Si at low temperatures are very 

critical and dependent on one another and the amorphous transition happens when plasma 

power and hydrogen dilution are not in balance. Combination of proper plasma power, 
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hydrogen dilution, and temperature results in an experimental space where silicon epitaxy is 

feasible. Presence of hydrogen on the surface is of high importance and can have a constructive 

or destructive role in epitaxy based on the number of H atoms passivating surface Si dangling 

bonds. A dihydride surface, which is formed on Si surfaces at temperatures below 407 °C, 

hinders movement of ad-atoms on the surface by reducing the surface diffusion length [56-58]. 

On the other hand, dissociation of silane molecules to SiHx radicals and atomic hydrogen lowers 

the temperature at which the dihydride surface transitions to monohydride by H abstraction 

from the surface [59].  Therefore, it is expected that this conversion happens at low 

temperatures of 250-350 °C where the experiments of this work were done.  

Proper adjustment of plasma power results in the production of sufficient abstracting 

radicals such as SiH
•
3 and H

•
 while the surface is not bombarded with high energy radicals. Si 

epitaxy in a highly hydrogen diluted ambient is driven by two critical roles played by hydrogen: 

1) surface diffusion length enhancement of the ad-species; and, 2) selective etching of the 

amorphous and defective films. Parsons et al. have shown low dilution of hydrogen 

(H2/SiH4<10/1) leads to a decrease in the diffusion length, but larger hydrogen dilution results 

in increased diffusion length [54]. On the other hand, selective amorphous etching happens as 

atomic hydrogen breaks weak Si-Si bonds which leads to amorphous growth and leaves the sites 

open for crystalline growth [60]. Thereupon, hydrogen atoms etch adsorbed silyl to gas phase 

unless they are in a crystal site [61]. 

The obtained results indicate that at fixed temperature, having high hydrogen dilution 

allows lower plasma power density (sample A) and by decreasing the dilution, plasma power 

needs to be increased (sample B). This balance is only valid to certain limits as can be seen 
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from sample C; further decrease in dilution and increase in plasma power density leads to 

growth of μc-Si. Figure 26 shows the balance parameters needed for higher quality films. 

 

Figure 26. Balanced growth parameters achieved by DOE. Red line shows the increase in 

plasma power from samples A to C while dilution ratio is reduced from 50 to 20 (blue line). 

 

For A and B sample parameters, enough atomic H and SiHx radicals are produced while 

keeping the surface away from damage caused by energetic radicals. Higher plasma density 

results in higher energy radicals that cause rough surface nucleation and stressed film growth as 

well as defect introduction [55] as can be seen in sample C (Figure 25). Growth temperature is 

chosen to be 250-350 °C to ensure surface hydrogen coverage as well as to keep the growth in 

layer-by-layer mode [62]. Although more than one  hydrogen atom passivates surface Si 

dangling bonds at these temperatures, results of this work show that the number of hydrogen per 

atom does not affect epitaxial growth as long as appropriate plasma power is applied to produce 

hydrogen abstracting radicals such as SiH
•
3 and H

•
 [59]. Higher surface temperature in samples 

D and E (which were at 350 °C) have less dihydride surface as hydrogen desorbs at higher 

temperatures [56]; therefore, less plasma power density is more appropriate. Raman spectra of 
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sample E shows more a-Si:H which can be attributed to high plasma power density while 

sample D, which was grown at lower plasma density, shows less a-Si:H. The growth rate is 

determined by the number of reactive species ready to deposit per unit time; therefore, growth 

rate is low in higher DR and lower plasma densities. This trend can be clearly seen by 

comparing the growth rates from sample A to C. On the other hand, sample C did not show high 

quality in comparison to A and B due to the high plasma power.  This can be explained by the 

effect of rough interface nucleation on the growth of epi-layers [22]. 

 

3.1.4. Atomic force microscopy  

Increase in surface roughness and hydrogen content of the film are the main reasons for 

the transition of crystalline growth to amorphous at low temperatures [63].  The TEM images 

show that the films grown at balanced growth conditions have smooth surfaces. The AFM 

images of surface morphology confirm this claim. The average surface roughness over an area 

of 1 µm × 1 µm for bare Si substrate, and for samples A and B, were measured to be 0.128 nm, 

0.167 nm, and 0.136 nm, respectively (Figure 27). These values show that sample B which had 

a better film quality has less surface roughness. Surface roughness increase can be attributed to 

two major phenomena: high energy radical bombardment and atomic hydrogen etching of the 

surface.  

 

Figure 27. Comparison of AFM images of a epitaxial layers with bare Si over an area of 

1µm×1µm. (a) Bare Si substrate, (b) sample B, (c) sample C.  

(a) 

 
 

(b) 

 
 

(c) 
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The increase in roughness at higher dilution and lower plasma density is attributed to the 

etching of the surface by H radicals because deposition rate also decreases at these conditions. 

On the other hand, surface smoothing at these conditions was due to enhancement of ad-atom 

mobility on the surface. Therefore, achievement of surface roughness comparable to bare silicon 

implies the surface diffusion enhancement role of hydrogen surpasses the selective amorphous 

etching role.  

 

3.1.5. Fourier transform-infrared (FT-IR) spectroscopy  

Continuation of growth on a rough surface causes stressed and defective growth which 

results in accumulation of hydrogen at dislocations. Coulomb repulsion of hydrogen atom 

buildup could lead to distortion of lattices and finally discontinuation of epitaxial growth [64]. 

The FT-IR absorption spectra of the samples show the presence of low amounts of hydrogen in 

the grown films (Figure 28). The peak at 2000 cm
-1

 is attributed to SiH while 2100 cm
-1

 is 

attributed to SiH2 or the surface hydrogen mode at dislocations or grain boundaries. Sample E 

had 1.215% SiH and 0.251% SiH2 bonds while sample D had 0.619% SiH and 0.696% SiH2. 

This indicates more hydrogen passivation in the grain boundaries of sample D. The other 

samples showed an order of magnitude less hydrogen content. Sample A which was grown 

crystalline had 0.034% SiH and 0.058% SiH2 bonds and sample B, with highest film quality, 

had 0.024% SiH and 0.025% SiH2 bonds while sample C which had transition to 

microcrystalline had 0.043% SiH and  0.055% SiH2. This shows that samples deposited at 

epitaxial growth conditions show less hydrogen content. It can be inferred that in balanced 

growth conditions, hydrogen atoms are either pushed to interstitial sites,  such as bond center 

sites [65], or have been gradually diffused out as a perfect c-Si layer leaves no room for bonded 
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H atoms. Low surface roughness and low hydrogen content in the c-Si films show that thicker 

films are achievable at balanced growth condition.  

 

Figure 28. FT-IR absorption spectra of the samples A-E. 

 

3.1.6. Si epitaxy using cold-wall UHV-PECVD system 

In the previous sections, epitaxial growth of Si at 250-350 °C was studied using the 

PECVD chamber of  the multi-chamber cluster tool.  The parameter space that was taken into 

account included: 1. plasma power; 2. hydrogen/silane dilution ratio (DR); and, 3. growth 

temperature. Raman spectroscopy and HR-TEM study of the samples showed achievement of 

epitaxial growth of intrinsic Si at 250 °C. Successful films were grown at two dilution ratios of 

30 and 50, and plasma power densities of 50 and 20 mW/cm
2
, respectively. The same 

technology was transferred to the cold-wall UHV-PECVD system and new sets of runs were 

performed to enhance the results.  In order to increase the growth rate, the role of growth 

pressure and total flow rate was studied. The results show that doubling the total flow rate from 

100 sccm to 200 sccm increased the growth rate by a factor of 5.75.  
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Figure 29a depicts the Raman spectra of a sample grown at 250 °C with DR of 50 and 

plasma power density of 20 mW/cm
2
.  A crystalline Si peak at 520 cm

-1
 is observed without any 

amorphous peak at 480 cm
-1

. The crystallinity of the film was confirmed by TEM shown in 

Figure 29d. Comparison of this sample with the one grown at similar growth conditions in the 

multi vacuum system shows that increasing the total flow rate from 100 sccm to 200 sccm 

increased the film thickness from 20 nm to 115 nm.  However, it should be taken into account 

that the growth systems are different.  Growth at lower dilution ratios of 30 with higher plasma 

density also resulted in crystalline films. Figure 29b shows the Raman spectra and Figure 29e 

depicts the TEM image of the sample.  

 

 

Figure 29. Material characterization results for Si growth at 250 °C and 200 sccm total flow.  (a, 

d) Show the Raman spectra and XTEM image of sample grown at DR:50 and 0.5 torr pressure. 

Thickness of the layer is 115 nm. (b, e) Show the Raman spectra and XTEM image of sample 

grown at DR:30 and 0.5 torr pressure. (c, f) Show the Raman spectra and XTEM image of 

sample grown at DR:30 and 1 torr pressure. 

 

The role of deposition pressure in growth rate was studied by growing the films at 

different deposition pressures.  Change in growth pressure from 0.5 torr to 1 and 2 torr did not 
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result in fully epitaxial layers.  Figure 29c, f shows the result for DR:30, plasma power density 

20 mW/cm
-2

, and deposition pressure of 1 torr. Film thickness was measured to be 40 nm. A 

decrease in growth rate was observed associated with the role of atomic hydrogen in etching of 

non-epitaxial films at higher rates than epitaxial ones.  

 

3.2.  Germanium and SiGe Epitaxy 

Integration of Ge and SiGe active and passive opto-electronic devices in 

complementary-metal-oxide-semiconductor (CMOS) technology requires a low temperature 

growth method.  Achieving high quality growth at low temperatures is a challenge due to low 

decomposition rate of silane and germane and lower surface mobility of ad-atoms. Poor 

crystallinity of the films deteriorates optical efficiency and electronic transport properties of the 

films. In addition, high lattice mismatch between Si and Ge results in formation of a network of 

misfit dislocation at the interface and propagation of threading dislocations through the films.  

Annealing at elevated temperatures has been used to reduce the threading dislocation density 

(TDD) of the films to ~10
8
 cm

-2
.  Furthermore, growth of a sacrificial layer like SiGe or low-

temperature (LT) Ge, results in a reduction of threading dislocations through graded lattice 

change or merging of the defects.  High-temperature (HT) Ge growth on top of the sacrificial 

layer has been shown to achieve TDD on the order of ~10
7
 cm

-2
 [66-68].   

In this section, a two-step (LT:HT) growth method is adopted for the growth of Ge and 

the role of pressure and different carrier gases (Ar, N2, and H2) is presented. Silicon-germanium 

films were grown in a single step at 350-450 C and the role of pressure in increasing the 

material quality and Si incorporation at low temperature growth was studied. 
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3.2.1. Germanium growth 

Figure 30 shows the result of the 2Theta-Omega XRD scan from 004 plane. The peaks 

located at 69° belong to Si substrate and the peaks observed at 66° belong to Ge epi-layer .  All 

the plots were normalized on the Si peak by dividing the Ge peak intensity by Si peak intensity 

(Ge/Si peak intensity), so that the Ge peaks could be compared. Comparison of peak intensity 

and full width at half maximum (FWHM) of the samples grown using H2 carrier gas show that 

at 10 sccm H2 flow rate the FWHM was 0.62°. At flow rates of 25 and 100 sccm, the peaks had 

lower intensity and higher FWHM, ~2°. Using nitrogen and argon as carrier gas resulted in 

films with higher intensity and lower FWHM. However, Ge films grown with Ar showed higher 

intensity in comparison with N2 and FWHM of 0.1° which was less than half of that of using N2 

carrier gas (0.25°).  

 

 

Figure 30.  The XRD patterns obtained from (004) plane of the Ge films grown on Si at 

different flow rates of Ar,  H2, and N2 carrier gases.  
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The carrier gases affect the growth by increasing the mobility of Ge ad-atoms on the 

surface as well as transferring energy through inelastic collision and lowering the activation 

energy required for decomposition of GeH4. In addition, carrier gases remove the reaction 

byproducts and facilitate the growth. The low quality achieved with H2 could be attributed to 

the increased partial pressure of H2 byproduct which pushes back the decomposition reaction 

for the Ge deposition (GeH4Ge+2H2). Higher quality was achieved by Ar and N2 dilution as 

compared to the H2 diluted case, therefore, it may also be attributed to the reduction of H2 

partial pressure on the deposition surface. Due to the weight of Ar (42% greater than N2), a 

better surfactant role was observed because increasing the weight led to an increase  of 

momentum and that resulted in increasing the lateral mobility of Ge ad-atoms near the substrate 

surface. Higher weight of Ar also led to higher transfer of kinetic energy to GeH4 atoms, which 

reduced the decomposition activation energy required to break GeH4. Increased flow rate of Ar 

and N2 resulted in poor material quality which was attributed  to high dilution of GeH4 and lack 

of required Ge ad-atoms.  

Figure 31a shows the 2Theta-Omega XRD characterization of the two-step growth 

(LT:HT) at 0.5 torr. The LT step was kept at 300 °C and the HT step was performed at 500, 

550, and 600 °C. Figure 31b and Figure 31c show the change in the FWHM of Ge peaks and 

normalized Ge peak intensity for different growth pressures (0.1 to 1.0 torr) and HT step 

temperatures (500 to 600 °C), respectively. The results show that increasing the pressure 

resulted in higher Ge peak intensity as well as lower FWHM. A large difference was observed 

between the intensity and FWHM of the growth at 500 °C and the growth at 550 °C and 600 °C 

at lower pressures. However, the difference was minimized by increasing the pressure to 1.0 

torr. Achieving higher Ge intensity and lower FWHM showed that high quality Ge could be 



 

44 

grown at 50 to 100 °C lower temperatures if the pressure was increased from 0.1 to 1.0 torr. The 

measured thickness of the films grown at 550 °C showed that the film thickness increased from 

1188 nm at 0.1 torr pressure to 2734 nm at 1.0. This was mainly due to the increase in the 

residence time of the precursors in the chamber at higher pressures which led to an increase in 

the growth rate.  

 

Figure 31. The XRD analysis of Ge films grown in two steps (LT:HT).  (a) The XRD patterns 

of Ge films at fixed GeH4 and Ar flow rate. RSM of the Ge film grown at 550 °C shows 0.06% 

tensile strain (inset). (b) FWHM of the peaks was decreased by reduction of  temperature and 

pressure. (c) Ge/Si peak intensity increased by increasing the growth temperature and pressure. 

 

The XRD patterns of the Ge films show that as the growth temperature was increased, 

the Ge peak position was slightly shifted towards higher angles. Such increase in the reflection 

angle shows lower out-of-plane lattice constant of the Ge films which indicates that the films 

were tensile strained.  The inset of Figure 31a shows the reciprocal space map (RSM) of the Ge 

growth at 550 °C indicating 0.06% tensile strain. This was due to 44.8% lower thermal 

expansion coefficient of Si (2.6×10
-6

 °C
-1

) in comparison with Ge (5.9×10
-6

 °C
-1

). When Ge is 

grown at high temperature the lattice is relaxed on Si at that temperature but when it is cooled 
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down Si shrinks less than Ge and in-plane lattice constant of Ge remains bigger. Therefore, the 

Ge layer was tensile strained after it was fully cooled down to room temperature.  

 

3.2.2. Silicon-germanium growth 

Figure 32a shows the 2Theta-Omega XRD patterns for SiGe growth at 0.5 torr chamber 

pressure and from 350 to 450 °C with 1 sccm of SiH4 flow rate. Increase in the growth 

temperature resulted in an increase in the normalized SiGe peak intensity and a decrease in its 

FWHM. Comparison of SiGe FWHM (Figure 32 b) and SiGe counts (Figure 32c) for growth at 

pressures from 0.1 to 1.0 torr and temperatures of 350 to 450 °C show similar trends for the 

increase in temperature and pressure. Such similarity indicates that lowering the growth 

temperature could be compensated by increasing the growth pressure. Figure 32a also shows 

that the SiGe peak is shifted towards higher angles as the temperature is increased, which 

indicates that the Si content of the films is increasing.  

 

 

Figure 32. The XRD analysis of SiGe films grown in one step and different temperatures.  (a)  

The XRD patterns of SiGe films at fixed SiH4 flow rate of 1 sccm (b) FWHM of the peaks was 

decreased as a result of increase in the temperature and pressure. (c) The intensity of the SiGe/Si 

peak increased by increasing the growth temperature and pressure. 
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The mole fraction of Si     and Ge       could be calculated using Vegard’s law for 

binary alloys:  

  

  
  
     

         
     

 

  
   

    
          (Equation 4) 

where   

  
  
     

,   
  , and   

 

  
 are the lattice constants of SixGe1-x, Ge, and Si, respectively. The 

bowing parameter of SiGe is taken as   
    

= 0.026 nm [16]. Silicon composition calculations 

were performed for different growth pressures and temperatures as shown in Figure 33. 

The amount of incorporated Si was found to increase with increasing growth pressure 

and temperature. Increasing the pressure from 0.1 to 1.0 torr showed that the Si content was 

almost doubled for all temperature. The increase in low temperature growth (350 °C) is lower 

than at higher temperatures, which indicates that increasing the Si content needed further 

increase in growth pressure to compensate the temperature decrease. A similarity in the effect of 

pressure and temperature in the material quality and Si content of the films was observed. This 

could be explained as an increase in the residence time at higher pressure causing an increase in 

SiH4 decomposition rate.   

 

 

Figure 33. Increase in the Si incorporation in Ge lattice as a result of increase in the growth 

temperature and pressure at fixed SiH4 flow rate of 1 sccm.  
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Increasing SiH4 flow from 1 sccm to 4 sccm resulted in higher Si incorporation while 

decreasing the normalized SiGe counts as well as increasing FWHM of the peak. Figure 34a 

shows the XRD patterns for SiGe growth with different SiH4 flow rates. The RSM of SiGe film 

in the inset of  Figure 34a shows that the film was relaxed. The broadening of the SiGe peak in 

the omega direction showed lower quality of the film as Si content was increased.  Figure 34b 

shows the changes in SiGe/Si counts as well as the FWHM of the SiGe peak which was 

consistent with RSM results. 

Higher growth temperature was required to keep high quality SiGe growth for higher 

SiH4 flow due to higher activation energy for chemisorption of SiH4 molecules in comparison 

with GeH4. In addition, lower surface mobility of Si ad-atoms caused a reduction in the quality 

of SiGe film. 

 

 

Figure 34. The XRD analysis of SiGe films grown in one step and different flow rates. (a)  The 

XRD patterns SiGe films for different SiH4 flow rates of 1, 2 and 4 sccm.The inset is the RSM 

of sample grown with 4 sccm flow rate of SiH4  (b) An increase in the FWHM  and a decrease 

in the intensity of the peaks was observed as a result of an increase in SiH4 flow rate. (c)  Si 

incorporation was increased at higher SiH4 flow rates. 
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3.2.3. TEM and SEM characterization of Ge and SiGe 

Figure 35a displays the TEM characterization results of the Ge films which shows high 

material quality was achieved in the two-step growth method using Ar carrier gas. In order to 

compare the effect of a single step growth with a two-step growth, the TEM of a Ge layer that 

was grown at 550 °C without growing the Ge buffer layer at 300 °C is shown in Figure 35b. In 

addition, the TEM image of a two-step growth of Ge using H2 carrier gas is presented in Figure 

35c. The threading dislocation density of the two-step Ge growth using Ar was measured to be 

as low as 1.3 ×10
7 

 cm
-2

. A single step growth increased the TDD to 8.5×10
8
 cm

-2
 and the 

growth using hydrogen also resulted in highly defective film with a TDD average of 

5.0×10
8
 cm

-2
.  

The TDD of the Ge films was determined using etch pit measurement and compared 

with the results achieved from TEM measurement. The comparison of TDD using TEM 

(1.3×10
7

 cm
-2

) and etch pit measurements (1.7×10
7
 cm

-2
) for Ge films confirmed the accuracy of 

the measurements. 

 

 

Figure 35. TEM micrograph of the Ge films grown at different growth conditions (a) Two-step 

(LT: 300 °C, HT:550 °C) growth using Ar carrier gas. b) Single-step growth at 550 °C using Ar 

carrier gas  (c). Two-step (LT:300 °C, HT:550 °C) growth using H2 carrier gas. 
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Figure 36 compares the SEM images of Ge and SiGe films with their SEM images after 

etching in cold Schimmel solution.  The solution was prepared by mixing 55% of CrO3 (0.4 M) 

and 45% HF (49%) and it was cooled down to 2 °C [69]. Threading dislocations reach the 

surface and form small edges that have higher surface energy.  Therefore, they are etched faster 

in the solution and leave a pit behind. Threading dislocation density for SiGe was 2.3 ×10
7
 cm

-2
.  

The lower TDD for Ge growth is attributed to using two steps for Ge growth (LT and HT 

growth).   

 

 

Figure 36. SEM images after decorating the threading dislocation using Schimmel solution. (a) 

Two-step (LT: 300 °C, HT:550 °C) growth using Ar carrier gas. (b) Si0.17Ge0.83 film grown at 

450 °C. 

 

3.2.4. Conclusion 

In conclusion, Ge films were grown using a two-step (HT:LT) growth method with 

GeH4 and different carrier gases ( Ar, H2, and N2). Higher quality films were achieved using Ar 

as the carrier gas. Reduction in FWHM and an increase in Ge peak intensity indicated 

achievement of higher quality films as the temperature in the HT step was increased. A similar 

trend was observed when a fixed SiH4 flow rate was introduced to form SiGe alloys.  

Incorporation of Si was increased at higher temperatures and pressures. Although an increase in 

the SiH4 flow rate resulted in higher Si incorporation, lower quality material resulted at fixed 
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growth temperature. An increase in the growth pressure from 0.1 to 1.0 torr could compensate 

for the reduction in material quality as a result of ~100 °C lower growth temperature.  Analysis 

of SEM images showed achievement of TDD of 1.7×10
7
 cm

-2
 for a two-step  (LT: 300 °C, 

HT:550 °C) growth using Ar as a carrier gas. Scanning electron micrographs showed similar 

results as TEM for the measurement of the TDD after placing the samples in cold Schimmel 

solution. The Si0.17Ge0.83 film had a TDD of 2.3 ×10
7
  cm

-2
.   
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Chapter 4. GeSn and SiGeSn growth using SnCl4 precursor 

 

4.1.  GeSn growth using SnCl4 

Growth of Ge1-xSnx films via CVD has been reported by different groups.  The early 

results of CVD growth
 
at ASU showed the ability to grow Ge1-xSnx film directly on Si using a 

hot-wall UHV-CVD system with SnD4 as the Sn precursor along with different chemistries of 

germanium precursor [70].  Due to the high cost and instability of SnD4, other precursors such 

as stannic chloride have been explored [40, 41].  Films were grown using a high cost Ge 

precursor (Ge2H6) and carrier gases on a Ge buffered Si substrate.  Mantl et al., demonstrated 

direct growth of Ge1-xSnx on Si using showerhead [42] technology in a reduced pressure CVD 

chamber by employing SnCl4 and Ge2H6 precursors and carrier gases. In this chapter, direct 

growth of strain-relaxed Ge1-xSnx films on Si substrates is presented. The samples are grown 

using stannic chloride and germane as low-cost and commercially available precursors. 

 

4.1.1. Growth method 

The growth of Ge1-xSnx films was achieved without using any carrier gases and buffer 

layers.  The experiments were carried out at reduced pressures of 0.1, 0.3, 0.5, 0.75, 1.0, 1.50, 

and 2.0 torr and at temperatures as low as 300 °C.  Germane and SnCl4 were used as the 

precursors for Ge1-xSnx growth.  The gas flow ratio (GeH4/SnCl4) was set to 5, 3.3, 2.5 and 1.6.  

Depending on the growth parameters such as gas flow ratio and deposition pressure, a growth 

rate of 3.3 to 20 nm/min was achieved.  

 

4.1.2. Material characterization 

The 2Theta-Omega XRD scan was performed from the symmetric (004) plane to obtain 

the out-of plane lattice constant of the Ge1-xSnx films. Figure 37a shows the peak at 69° 
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corresponding to a satisfaction of the Bragg condition by Si (001) substrate, and the peaks at 

lower angles of 66-65° due to larger lattice size of the Ge1-xSnx layers.  The difference in the 

position of Ge1-xSnx peaks was due to the difference in the Sn mole fractions of Ge1-xSnx layers.  

Different compositions were achieved from 1% to 7% with desirable crystal quality.  The     

Ge1-xSnx peaks were broadened due to the presence of mosaicity in the GeSn crystal and 

formation of defects as a result of strain relaxation.  The FWHM of the Ge1-xSnx peaks was 

between 0.28 for 1%-Sn film and 0.36 for 7%-Sn film.  However, there was no trend showing 

that the FWHM of the peaks changed as the Sn composition was increased. 

In order to calculate the total lattice constant and the strain in the film, an asymmetric 

RSM from (-2 -2 4) plane was performed.  The RSM scans provided measurement of the in-

plane  ( lla ) and out-of-plane ( a ) lattice constant of Ge1-xSnx alloys.  The total lattice constant 

  
      was calculated by taking into account the elastic constants of Ge1-xSnx [71].  Knowing 

the total lattice constant, the Sn mole fractions were calculated through Vegard’s law with the 

bowing factor of b = 0.0166 Å
 
[72].  Figure 37b shows the RSM of a 6% Sn sample.  The x-axis 

shows Qz in reciprocal lattice unit (rlu) which is related to the out-of-plane lattice constant (L); 

the y-axis shows Qx which is related to the in-plane lattice constant (H or K).  The direction of 

the spread in the Ge0.94Sn0.06 peak does not show a compositional gradient in the sample 

because it was related to the relaxation of the lattice on Si substrate.  Large lattice mismatch 

between Si and GeSn is the main reason for a large spread in the omega direction.  The 

relaxation line in Figure 37b shows that the film was relaxed; if the peak was above the line it 

was tensile strained, if it was below the line the films was compressively strained.  The 

Ge0.94Sn0.06 peak was observed to be on the relaxation line and the relaxation was measured to 

be 97%. 
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Calculation of total strain in other samples showed that all the films were more than 

95% relaxed.  Table IV shows the lattice constants of the Ge1-xSnx alloys, their Sn mole fraction 

and strain relaxation percentage.  Ge1-xSnx films were almost fully relaxed mainly due to large 

lattice mismatch between Si (5.431 Å) and Ge1-xSnx (above 5.658 Å) and small critical 

thickness [73].  The other reason for relaxation of Ge (and similarly Ge1-xSnx) films on Si is the 

thermal mismatch between these two materials.  High temperature growth (above 500 °C) and 

rapid cool down has been the main method for achieving tensile strained Ge on Si [74].   

The Ge1-xSnx samples were grown at 300 °C for 30 minutes and the thermal mismatch 

between Si and Ge1-xSnx may have helped relax the compressive strain.  The strain was mainly 

relieved through formation of misfit dislocations including Lomer misfit dislocations.  The 

cross-sectional TEM image in Figure 37c shows formation of such dislocations at the           

Ge1-xSnx/Si interface.  In addition, Figure 37b shows that strain relaxation occurred by 

formation of misfit dislocations at the interface.  The TEM image shows that the grown film 

was fully epitaxial.  Film thickness of the samples is listed in Table IV. 

The SEM scan/EDX spectra of the samples show surface morphology of the sample as 

well as Sn incorporation in the Ge matrix.  The EDX spectra in Figure 37d show the presence of 

Ge, Si, and Sn in the Ge.94Sn.06 film.  Due to the high count collection of secondary electrons 

from the substrate, the ratio of Sn and Ge cannot exactly reveal the percentage of Sn in Ge.  The 

presence of carbon and oxygen in the EDX spectra was mainly due to the contamination and 

oxidation of the film after exposure to ambient air.  The EDX maps for Ge (Figure 37e) and Sn 

(Figure 37f) display uniform incorporation of Sn.  The SEM image shows continuous growth of 

Ge1-xSnx without observation of locally crystalline patches.  No segregation and precipitation of 

Sn was observed on the films which indicated robust and stable growth of the films.  
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Figure 37. Material characterization of Ge1-xSnx films on Si.  (a) The XRD pattern of Ge1-xSnx 

films on a Si substrate.  (b) The RSM from asymetrical plane (-2 -2 4) for Ge0.94Sn0.06.  (c) The 

TEM image of Ge.94Sn.06 film. (d) The EDX spectrum of Si/Ge.94Sn.06 film.  (e) The EDX 

surface maps of Ge and (f) Sn taken from scanning electron micrographs of Ge.94Sn.06 film. 

 

Table IV. Tin mole fraction, lattice constant and relaxation percentage of GeSn films. 

Sample # Sn% lla (nm) a (nm) a (nm) Relaxation % Thickness (nm) 

1 1.2 5.666 5.671 5.668 98% 615 

2 2.1 5.673 5.679 5.676 98% 423 

3 2.9 5.678 5.687 5.682 97% 295 

4 4.2 5.689 5.695 5.692 98% 207 

5 5.8 5.699 5.712 5.706 97% 108 

6 7.0 5.715 5.719 5.717 99% 532 
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4.1.3. Growth mechanism  

Growth of Ge1-xSnx on a Si substrate requires understanding the reactions and their 

byproducts.  Stannic chloride has a tendency to etch Ge due to the presence of chlorine.  The 

byproduct of GeH4+SnCl4 reaction is HCl which is an etchant gas for germanium and silicon 

[75].  The following reactions show different mechanisms of film deposition as well as HCl 

production in the chamber: 

                   (Equation 5) 

                                (Equation 6) 

                             (Equation 7) 

Higher substrate temperature results in a higher density of depositing ad-atoms (Ge and 

Sn); however, it will also result in production of HCl at a higher rate.  In addition, a higher flow 

rate of SnCl4 increases the production rate of HCl as well.  Controlling the temperature and flow 

rate of the gases could control the process so that growth is the dominant process in the 

chamber.  The Ge/Sn film will be etched by HCl through the following reactions: 

                        (Equation 8) 

                        (Equation 9) 

Predominance of etching over growth is the main mechanism that prevents direct growth 

of Ge1-xSnx on Si.  By controlling the flow through the MFCs, we have grown Ge1-xSnx films on 

Si at different pressures with a fixed flow ratio of GeH4/SnCl4 = 1.6.  Growth was observed at 

0.1 torr of deposition pressure and continued until the deposition pressure increased to 1.0 torr.  

Figure 38a shows the thickness of Ge1-xSnx films versus deposition pressure of the chamber as 



 

56 

well as Sn incorporation percentage.  Incorporation of Sn in the Ge lattice was increased by 

raising the pressure due to the higher residence time of the precursors in the chamber.  The 

residence time of the gases increased from 2 s at 0.1 torr to 19 s at 1.0 torr.  Meanwhile, HCl 

etched more of the Ge1-xSnx films during deposition at higher pressures.  This trend continued to 

1.0 torr and no growth was observed at 1.5 and 2.0 torr.  The increase in Sn composition from 

1% to 6% was accompanied with a reduction in the thickness from 615 nm to 108 nm. Films 

that were expected to have higher than 6% Sn content were not even deposited. Therefore, in 

order to grow higher Sn content films, the growth mechanism under fixed pressure and 

changing SnCl4 flow was studied. Higher film thickness and higher Sn incorporation was 

achieved as a result of the predominance of growth over etching.  Figure 38b shows Sn 

incorporation in Ge1-xSnx films versus SnCl4 flow rate at 0.75 torr deposition pressure.  The 

secondary axis of Figure 38b shows film thicknesses of the samples.  Due to the predominance 

of etching for higher SnCl4 flow rate, the films were mostly etched and the film thickness was 

less than 100 nm. 

Introduction of carrier gases has different effects on the growth of Ge1-xSnx films.  

Hydrogen changes the balance in the reaction to produce more HCl.  Consequently, the 

GeH4/SnCl4 ratio at which the Ge1-xSnx films were depositing did not result in growth when 

hydrogen was introduced in the chamber.  In addition, introduction of nitrogen and argon as 

carrier gases reduced the activation energy of the growth [42].  Although reduction of activation 

energy enabled easier breakdown of the molecules on the surface and enhanced the growth 

quality and growth rate, it prepared the conditions for easier etch due to the presence of an 

etchant agent.  Therefore, the presence of carrier gases pushed the competition between growth 

and etching towards etching, resulting in no film growth at even low flow rates of carrier gases. 
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Figure 38.  Growth mechanism of GeSn films on Si at different growth pressures and flow rates.  

(a) Variation of Sn incorporation percentage versus deposition pressure.  Films were etched 

away for deposition pressures higher than 1 torr.  The secondary axis on the right shows the 

reduction of film thickness as a result of increase in the deposition pressure.  (b) Tin 

incorporation and film thickness of the samples grown at 0.75 torr growth pressure versus SnCl4 

flow ratio. 

 

4.1.4. Raman spectroscopy 

The Ge1-xSnx films were further investigated by Raman spectroscopy in order to analyze 

the crystal structure.  Room temperature Raman spectra of the grown samples as well as a Ge 

reference sample are plotted in Figure 39a.  The measurement was done using a green laser 

(wavelength: 532 nm). The Ge-Ge longitudinal optical (LO) peak was observed at 300 cm
-1

 for 

the Ge reference sample while the Ge-Ge peak in the Ge1-xSnx films was shifted to lower 

wavenumbers due to the change in bond energy of Ge-Ge by incorporation of Sn atoms.  The 

intensity of the Ge-Ge LO peak at 300 cm
-1

 is normalized for all the samples for comparison of 

the peak positions.  In addition to the main Ge-Ge peak, the Raman spectra of Ge1-xSnx films 

show other peaks that were induced as a result of Sn incorporation.  The Ge-Sn LO peaks for 

different Sn mole fractions were observed at 250-260 cm
-1

 in the films.  A second peak of Ge-

Sn was observed at 285 cm
-1

, which can be seen as a shoulder of Ge-Ge main peak.  
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The peak positions were obtained by Lorentzian fitting to find the exact position for 

further analysis.  The shift in the Ge-Ge LO peak position depends on both strain and Sn 

composition of the films.  Theoretical calculations for the change in Ge-Ge peak position (Δω) 

are different for relaxed films and strained films for different Sn (x) content (           

       ).  The Ge-Ge peak is expected to shift by a factor of b = -30.30 for a strained alloy 

while this factor varies to b = -83.10 for a strain relaxed film [76].  Figure 39b shows the 

experimental data obtained for Ge-Ge and Ge-Sn Raman shift from the sample compared with 

the theoretical calculations.  The peak shifts match well with the theoretical calculations for 

strain relaxed films.  

 

Figure 39. Optical charactrization of the Ge1-xSnx samples using Raman spectroscopy.  (a) 

Raman spectra of the Ge1-xSnx film grown on a Si substrate.  (b) Ge-Ge and Ge-Sn peak shifts 

vs. Sn mole fraction. The solid symbols are experimental data and the lines are theoretical 

predictions for relaxed films.   

 

4.1.5. Photoluminescence (PL) 

A 690 nm Ti-Sapphire high power femtosecond laser and a PbS detector were used for 

PL measurement of the samples.  The PL measurements on Ge1-xSnx samples allow 

determination of the bandgap edge for various Sn compositions. Figure 40 depicts room 
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temperature PL intensity spectra for as-grown Ge1-xSnx films with 2%, 4%, 6% and 7% Sn mole 

fractions.  As indicated in Figure 40a, an increase of the Sn mole fraction resulted in a bandgap 

reduction.  Both direct and indirect PL peaks exhibited red-shift with Sn composition increases 

from 2% to 7%.  A Gaussian fitting function was employed to extract the PL peak positions of 

both direct and indirect transitions as described in reference 14.  In Ge0.94Sn0.06 and Ge0.93Sn0.07 

samples, the energy differences between direct and indirect transitions are very small; therefore, 

the PL emissions from these indirect and direct transitions could not be identified.  The PL 

peaks from the samples with 2%, 4%, 6%, and 7% Sn compositions are shown in Figure 40b as 

solid symbols.  The solid and the dashed lines show the direct and indirect bandgap energies, 

respectively, based on bowed Vegard’s law for the relaxed Ge1-xSnx alloy [14].  Since the       

Ge1-xSnx films were almost strain-free, as confirmed by XRD measurements, the experimental 

results closely followed the predicted values from Vegard’s law. 

 

 

Figure 40. Optical charactrization of the Ge1-xSnx samples using photoluminescence 

spectroscopy. (a) The PL specra of the Ge1-xSnx films with 2, 4, 6, and 7% Sn mole fraction 

showing a red shift in the bandgap of the films.  (b) The experimental data along with the 

theoretical calculations of direct (solid line) and indirect bandgap (dash line) of Ge1-xSnx alloy 

for different Sn compositions. 
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4.2.  Enhancement of material quality of GeSn films using Ar 

Growth of GeSn films using SnCl4 is greatly affected by the role of reaction byproducts 

during deposition of the films.  Etching of the Si substrate with the production of HCl in the 

GeH4+SnCl4 reaction has been the one of the main reasons for the growth of a Ge buffer layer 

prior to the GeSn growth.  In the reported GeSn growth using SnCl4 on Ge buffered substrate, 

H2 and N2 have been used as carrier gases [42, 77].  Elimination of carrier gas has enabled 

direct growth of GeSn material on Si substrate as discussed in Section  4.1; nonetheless, 

enhancement of film quality requires introduction of the carrier gas or increase in the growth 

temperature.  In this section, the effect of carrier gases on improving the material quality and 

optical properties of the films grown at different temperatures and pressures is presented. 

 

4.2.1. Growth method  

The GeSn films were grown with Ar carrier gas at various chamber pressures of 0.1, 0.5, 

and 1 torr and substrate temperatures of 300, 350, and 400 °C.  Germane and Ar flow rates were 

fixed at 10 and 25 sccm, respectively.  

 

4.2.2. Growth mechanism  

The main challenge in using SnCl4 as the Sn precursor is the etching behavior of SnCl4 

due to formation of HCl in the chamber as was shown in Section  4.1.3.  In the growth without 

the buffer layer (Section  4.1), SnCl4 flow rates above 5 sccm (GeH4 =10 sccm) resulted in no 

film growth.  An increase in the growth temperature above 300 °C or introducing gases (Ar or 

N2) led to no film growth which was interpreted as achieving equal growth and etching rates.  

Etching rate in H2 ambient is greater as H2 promotes formation of HCl indicated in Equation 6.  

In a separate run, a Ge layer of 1 µm thickness was etched at a rate of ~100 nm/min at 300 °C 
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with H2/SnCl4 ratio of 20.  In order to suppress the etching and increase the material quality 

using a carrier gas, lower flow rates (0.3 to 0.5 sccm) of SnCl4 and higher growth temperature 

were used.  Argon was used as the carrier gas to reduce the partial pressure of hydrogen on the 

surface thereby reducing film etching. 

 

4.2.3. Material characterization 

Figure 41a shows the XRD pattern from (004) plane of GeSn films with and without Ar 

carrier gas.  After normalizing the Si peaks, the GeSn peaks were compared.  The intensity of 

the GeSn peak showed an increase by approximately one order of magnitude after adding Ar as 

the carrier.  In addition, FWHM of the GeSn peaks decreased from 0.31 to 0.24 degrees. Figure 

41b and c compares the typical TEM of GeSn samples grown without and with Ar carrier gas, 

respectively.  The enhancement in the quality of material is observed by comparing the two 

figures. A higher density of threading dislocations and stacking faults was observed in the 

growth without Ar carrier gas.  The asymmetrical RSM scan of the samples from  (-2-24) plane 

show that samples were strain relaxed but the GeSn peak in the growth without Ar carrier gas 

had lower intensity.  The spread observed in the omega direction was due to the mosaicity of the 

film as a result of strain relaxation.  The comparison between the RSMs of samples without 

(Figure 41d) and with (Figure 41e) Ar carrier gas showed larger mosaic spread for the growth 

without Ar carrier gas. 

  
4.2.4. Optical characterization 

Photoluminescence 

A 690 nm Ti:sapphire laser was used for excitation and a liquid-nitrogen-cooled 

extended InGaAs detector (cutoff at 2.3 μm) was used for light detection. Figure 42 shows PL 

characterization of the GeSn samples grown with and without Ar at 300 °C and 350 °C.  The  
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Figure 41.  Material characterization of GeSn films grown with and without Ar carrier gas. (a) 

2Theta-Omega XRD scan of the GeSn samples.  (b) Cross sectional TEM image of GeSn film 

grown without and (c) with Ar carrier gas.  (d) The RSM scan of GeSn film grown without and 

(e) with Ar carrier gas. 

 

growth pressure was kept at 0.5 torr for all samples. The PL intensity of the material grown at 

300 °C without a carrier gas showed higher intensity than the one grown with Ar.  However, no 

growth was observed above 300 °C without Ar carrier gas.  For GeSn growth at 350 °C with Ar 

carrier gas, approximately three times higher intensity was observed which indicates higher 

quality of the grown material.  This increase in the material quality could be attributed to higher 

mobility of Ge ad-species at higher temperatures and the role of Ar carrier gas to act as a 

surfactant to further increase the surface mobility due to its large atomic size.  The PL peak 

positions of all samples were shifted from the Ge characteristic indirect peak at 1550 nm 

towards longer wavelengths.  This shift indicated incorporation of Sn in Ge lattice. 

The comprehensive  study on the growth at different temperatures and pressures showed 

that GeSn material growth using Ar as carrier gas was possible at temperatures higher than 300 

°C.  Figure 43a shows the PL measurement of the Ge0.98Sn0.02 films a at growth pressure of 0.5 

torr.  The integrated PL intensity and peak position of the growth at different pressures and 
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temperature are shown in Figure 43b and c, respectively.  Due to the low intensity PL spectra 

for the growth at 300 °C, the peak position was not taken into account for comparison.   

 

 

Figure 42.  Comparison of PL emission from samples grown with and without Ar carrier gas. 

 

Figure 43 b shows an increase in the PL intensity as the growth temperature was 

increased from 300 to 400 °C.  This could be attributed to higher mobility of Ge ad-species on 

the surface at higher temperatures.  It also shows that the PL intensity increased as the growth 

pressure was increased from 0.1 to 0.5 torr.  However, the intensity decreased at 1 torr growth 

pressure.  Comparison of the PL peak positions shows that the peak position was increased by 

increasing the growth pressure from 0.1 to 0.5 torr.  The PL peak position neither increased (nor 

decreased) significantly by further increasing of the growth pressure to 1 torr. 

 The peak shift in the PL spectra was due to the incorporation of Sn in the Ge lattice.  

Higher Sn incorporation resulted in larger shift in the peak towards the higher emission 

wavelengths.  The position of the peaks could also be shifted by the film strain but the XRD 

measurement of the films showed that samples were more than 95% strain relaxed.  Therefore, 

the shift in the peak position was only due to Sn incorporation in the films.  An increase in the 
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growth pressure caused a reduction in the PL intensity while the Sn incorporation was kept 

unchanged.  On the other hand, it was observed that an increase in the growth temperature from 

300 to 400 °C had directly affected the material quality.  Higher growth temperature led to 

higher Ge material quality; however, due to instability of Sn in the Ge lattice, growth 

temperatures beyond 400 °C are not recommended [78].  Increase in the growth pressure 

resulted in higher Sn incorporation as higher pressure increased the collision frequency and 

residence time of the molecules.  Increased molecular collision led to higher momentum transfer 

between the atoms and easier decomposition of GeH4 and SnCl4.  Due to lower bond energy of 

SnCl4 molecule than GeH4, more of the SnCl4 decomposed and higher Sn could be incorporated 

in the film [20].  This phenomenon could explain the increase in the peak shift of the GeSn 

films at higher pressures.  Increase in SnCl4 decomposition resulted in production of more HCl 

which is a film etchant and could lower the material quality and cause a reduction in PL peak 

intensity. 

 

 

Figure 43.  Optical charactrization of the GeSn samples using PL spectroscopy. (a) The PL 

emission of the samples grown with Ar carrier gas at 300 to 400 °C.  Change in PL intensity (b) 

and PL peak position (c) by increasing the pressure from 0.1 to 1 torr.  
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Ellipsometry 

The spectroscopic ellipsometry characterization tool was used to measure the refractive 

index (n), absorption coefficient (α), and thickness of the samples.  The n and α are 

compositional dependent and the characteristic of the samples changed with different Sn 

incorporation in the Ge lattice.  Data analysis of the samples showed a change in these optical 

properties for different samples.  In order to compare the changes in the optical properties of 

GeSn, the optical properties of a bulk Ge sample were also measured.   

Figure 44a shows the measured refractive index and absorption coefficient for a 

Ge0.98Sn0.02 sample grown at 350 °C, SnCl4 flow of 0.5 sccm, and growth pressure of 1 torr.  

The characterization result is compared to Ge bulk characteristic from 1000 to 2400 nm 

wavelength.  The bandgap edge of the Ge0.98Sn0.02 sample resulted in a shift in the characteristic 

curve of the GeSn sample towards longer wavelength in comparison with Ge.  Due to the 

increase in the absorption coefficient towards longer infrared wavelengths, the GeSn devices 

can operate at longer wavelengths.   

 

Figure 44.  Optical charactrization of the Ge1-xSnx samples using spectroscopic ellipspmetry.  

(a) Refractive index and (b)  absorption coefficient of bulk Ge and Ge0.98Sn0.02 sample grown at 

350 °C temperature and 1 torr chamber.  
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Measurement of film thickness using spectroscopic ellipsometry technique was 

performed to understand the growth mechanism of the films at different conditions.  Figure 45a 

shows the thickness measurement of the samples grown at 350 °C and 0.5 torr with flow rates of 

SnCl4 from 0.3 to 0.5 sccm.  The film thickness for all samples showed an increase from 0.1 torr 

to 0.5 torr but the thickness decreased above 0.5 torr.  The increase in the film thickness at 

higher pressures was the result of higher residence times of ad-species.  However, as discussed 

in the PL section, increased pressure resulted in a higher decomposition rate of SnCl4 with 

respect to GeH4 due to lower bond energy of the molecules [20].  Such higher decomposition 

rate resulted in higher production rate of HCl according to a previously discussed reaction 

(Equation 6).  High pressure results in more GeH4 etching because SnCl4 decomposition 

produces four HCl molecules which can etch four Ge atoms from crystal sites. Dominance of 

etching results in lower film thickness and lower material quality which results in lower PL 

intensity as can be seen in Figure 45b.  A similar phenomenon in decreasing the film thickness 

as a result of increase in the pressure was observed for higher growth pressure of GeSn films 

without carrier gas as discussed in Section  4.1. 

 

Figure 45.  Film thickness and PL intensity of GeSn films as a result of deposition pressure 

change.  (a) Change in the thickness and (b) PL intensity of the GeSn samples grown for 

different flow rates of SnCl4 at growth pressures of 0.1 to 1 torr at 350 °C growth temperature.  
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4.3.  SiGeSn growth using SnCl4 

Development of ternary alloy of SiGeSn is very important due to the ability of 

engineering the bandgap and lattice constant separately.  A wider bandgap SiGeSn layer could 

be grown lattice-matched to a GeSn to serve as a barrier layer for confinement of electrons and 

holes simultaneously.  Such GeSn/SiGeSn quantum well structures have been used to design 

semiconductor lasers [18].  However, growth of SiGeSn film is more challenging than GeSn 

due to lower decompostition rates of Si at the required growth temperature of the alloys.  Since 

Bauer et al. reported the first SiGeSn growth on a GeSn buffer layer using SiGeH6 and SnD4 

[39], only a few groups have successfully demonstated the SiGeSn growth [38, 43].  In all the 

growth methods, higher order silanes and germanes or silogermanes have been used for the 

growth.  In this section, the direct growth of SiGeSn films on Si substrate using a cold-wall 

UHV-CVD system is presented. Stannic chloride, germane and silane have been used as low 

cost precursors for Sn, Ge, and Si, respectively. 

 

4.3.1. Growth method 

The growth of SiGeSn films was carried out on p-type 4” Si (100) substrates having a 

resistivity of 10-20 Ω-cm.  Deposition pressure was varied from 0.1 to 1.5 torr at a substrate 

temperature of 300 °C.  The flow rate of gas precursors was controlled from 1 to 10 sccm.  The 

study of growth mechanism was performed in terms of the gas flow rate and pressure, as listed 

in  Table V.  

Table V. Mechanism study of SiGeSn growth. 

Parameters SiH4 (sccm) GeH4 (sccm) SnCl4 (sccm) Pressure (torr) Temperature ( °C) 

Flow rate  From 1 to 10 10 From 1 to 2 0.1 300 

Pressure  2 10 1 From 0.1 to 1.5 300 
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4.3.2. Material characterization  

Rutherford backscattering (RBS) 

The as-grown SiGeSn samples were characterized using RBS to determine the amount 

of Sn and Si incorporation in the Ge lattice.  Figure 46 shows the random and [001] aligned 

RBS data from a SiGeSn film with 3.1% Si and 1.9% Sn incorporation.  The thickness of the 

sample was measured to be 8 nm.  Comparison of the random and aligned spectra of this sample 

shows Si and Sn were substitutionally incorporated in the Ge lattice, however, in some samples 

the incorporation of Sn was shown to be not substitutional and the films were grown mostly 

amorphous.  Further investigation on the crystal quality of the films was done using XRD and 

TEM characterization.  

 

Figure 46. Random and aligned RBS spectra for a 8 nm Si0.03Ge0.95Sn0.02/Si film. 

 

X-ray diffraction 

The symmetric (004) 2Theta-Omega XRD scans of SiGeSn films with 4% Si and 3% Sn 

are shown in Figure 47a.  The SiGe and GeSn alloys are also shown as benchmark samples for 
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comparison.  The higher-angle peak of the Si substrate was recorded at ~69° while the peak at 

lower angles of 64-65° shows the SiGe, SiGeSn, and GeSn films.  Due to the smaller lattice 

constant of Si (a
Si

 = 5.431 Å) and the larger lattice constant of α-Sn (a
Sn

 = 6.491 Å) compared to 

Ge (a
Ge

 = 5.658 Å), the peaks for SiGe are shifted towards higher angles and the peak for GeSn 

is at lower angles with respect to the Ge (004) peak.  Depending on the incorporation 

percentage of Si and Sn, the peak of SiGeSn film is located between these two peaks when the 

films have equal strain. 

 

 

Figure 47. The XRD characterization of SiGe, GeSn, and SiGeSn films.  (a) The XRD pattern 

of SiGe, SiGeSn, and GeSn films from (004) planse and the superposition of the RSMs grown 

on Si substrate from (-2 -2 4) plane.  (b) The XRD pattern of different composition SiGeSn 

films. 

 

In order to calculate the lattice constant of the films, an RSM from an asymmetric plane 

was measured to extract in-plane ( ) and out-of-plane ( ) lattice constants.  The 

superposition of RSM of the SiGe, GeSn, and SiGeSn samples from the (-2 -2 4) plane is shown 

in the inset of Figure 47(a).  The x- and y-axis (Qy) shows the in-plane and out-of-plane lattice 

constants in the reciprocal lattice unit (rlu), respectively.  The spread of the RSM in the omega 

direction shows the presence of threading dislocations as the film was relaxed due to large 

lattice mismatch between Si and the SiGeSn films.  The RSM scans did not show compositional 

lla a
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gradient in the samples.  Calculation of the strain in the films showed that the samples were 

fully strain relaxed.  The out-of-plane lattice constant, measured from 2Theta-Omega scans, was 

used to calculate the total lattice constant based on Vegard’s law explained in Chapter 2 

(Equation 2).  The 2Theta-Omega XRD scans of the samples with Sn composition ranging from 

2% to 5% are given in Figure 47b. With the same Si incorporation, the peak shifted towards 

lower angles as the Sn incorporation increased.  The lattice constant of the samples are 

summarized in Table VI. 

 

 Table VI.  Composition, lattice constant and thickness of the SiGeSn samples. 

Sample # Si% Ge% Sn% (nm) Thickness(nm) 

1 3.1 95.0 1.9 5.665 8 

2 3.9 93.8 2.3 5.666 16 

3 3.9 93.3 2.8 5.671 16 

4 4.8 92.3 2.9 5.669 29 

5 3.9 92.0 4.1 5.681 61 

6 4.1 91.0 4.9 5.687 88 

 

 

Scanning electron microscopy 

Surface morphology investigated through SEM/EDX showed uniform composition 

across the 4% Si, 3% Sn sample (Figure 48).  The SEM micrographs in Figure 48a show 

continuous film growth without any crystalline patches or grains, indicating uniform material 

growth.  Figure 48b, c, and d show the Si, Ge, and Sn EDX maps of the Si0.04Ge0.93Sn0.03 

sample, respectively.  Composition uniformity was observed for all grown samples.  

 

a
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Figure 48. The SEM micrograph and EDX maps of the Si0.04Ge0.93Sn0.03 sample.  (a) SEM 

micrograph, (b) Si EDX map, (c), Ge EDX map, and (d) Sn EDX map. 

 

Transmission electron microscopy 

The SiGeSn film thicknesses were investigated using high-resolution TEM.  Figure 

49(a) shows the cross-sectional view of a Si0.04Ge0.91Sn0.05 layer on a Si substrate.  Formation of 

misfit dislocations at the SiGeSn/Si interface relaxed the epitaxial layer and no pseudomorphic 

growth was observed in any part of the sample.  The Fourier reciprocal lattice of the image 

using a fast Fourier transform (FFT) image processing technique was used to inspect the quality 

of the films.  Circular filtering masks were applied to different diffraction point pairs of (-200, 

200), (-3-1-1, 311) and (0-2-2, 022) to maximize image intensity and remove the background 

signals.  Selecting different diffraction point pairs enabled study of growth quality in different 

planes and defect formation at the interface.  The applied filtering mask to the (200, -200) 

diffraction point pairs is shown in Figure 49b.  The direct image of the diffraction plane was 

reconstructed by inverting the FFT.  The main reason to choose a filter for the (200, -200) pair 

plane was to see the reconstructed image in the growth direction of the film.   

Figure 49c is the inverse FFT of SiGeSn layer on top of Si substrate. The top part of the 

image shows SiGeSn layer and the bottom part of the image shows the Si substrate.  The arrow 

shows formation of a misfit dislocation at the SiGeSn/Si interface leading to a slight tilt in the 
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SiGeSn layer.  Inverse FFT of (-3-1-1, 311) and (0-2-2, 022) diffraction point pairs also 

revealed formation of misfit dislocations at the interface as well as high growth quality.   

 

 

Figure 49. TEM characterization of Si0.05Ge0.90Sn0.05 sample. (a) The cross-sectional TEM 

images of Si0.05Ge0.90Sn0.05 samples.  (b) FFT image processing by applying a circular mask at 

the (200, -200) diffraction point pairs.  (c) Reconstructed image of the sample achieved by 

inverse FFT of (b).  (d) Scanning TEM micrograph of  Si0.04Ge0.91Sn0.05.  (e) The EDX line scan 

showing the atomic percentage of Si, Ge and Sn along the scanned area in (d).  

 

Analysis of the film composition by cross-sectional SEM/EDX was done on different 

parts of the TEM sample and showed uniform Si and Sn incorporation.  Tin precipitation from 

the SiGeSn lattice was observed at some points as seen in the cross-sectional SEM micrograph  

(Figure 49d).  A line EDX scan of the segregated area showed the material composition of the 

film and the droplet.  Figure 49e shows that the composition of the film was Si0.04Ge0.91Sn0.05 
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while the droplet was Si0.05Sn0.95.  Due to the low solubility of Si in Sn, some of the Si had 

precipitated on the Si0.05Sn0.95 droplet. 

 

4.3.3. Growth mechanism  

 

Different flow rates of the precursors at various chamber pressures were studied to 

understand the growth mechanism of SiGeSn films, as was shown in Table V.  The etching 

mechanism was studied by changing the SnCl4 flow rate at fixed SiH4/GeH4 flow ratios.  The 

results showed that films were etched off when the SnCl4 flow rate was above 1 sccm. No film 

growth was achieved at any SiH4/GeH4 flow ratio when the SnCl4 flow rate was more than 1 

sccm, which was attributed to the increase in HCl byproduct as a result of increase in the SnCl4 

flow rate.  In deposition of a Si or Ge atom, 2 molecules of H2 are released.  The available H2 

could produce HCl (Equation 6) which is an etchant of Si and Ge.   

 

                                (Equation 6) 

 

The epitaxial growth of SiGeSn films was investigated by varying the SiH4/GeH4 flow 

ratio.  The SnCl4 flow rate and the chamber pressure were fixed at 1 sccm and 0.1 torr, 

respectively.  Figure 50a shows the Si and Sn incorporations and film thickness as a function of 

the SiH4/GeH4 flow ratio.  It is clear that as the SiH4/GeH4 flow ratio increased, the 

incorporation of Si and Sn increased until the ratio reached 0.4, after which the SiGeSn film 

became amorphous.  This can be explained as the increase in Si ad-atoms, associated with high 

SiH4 flow rates, reduced the surface mobility of the ad-atoms, resulting in a crystalline-

amorphous transition.  On the other hand, increasing SiH4/GeH4 flow ratio increased Sn 

incorporation.  This is in agreement with the notion that higher incorporation of smaller size Si 
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atoms would facilitate higher incorporation of the larger atomic size Sn into Ge without causing 

undue strain.  Furthermore, thicker films were achieved as the partial pressure of SiH4 was 

increased, as shown in Figure 50a.  

 The effect of deposition pressure on the Si and Sn incorporation was also studied.  

Precursor flow ratios were fixed at 1:2:10 for SnCl4:SiH4:GeH4.  Figure 50b shows the Si and 

Sn incorporation as a function of chamber pressure.  As the pressure was increased, the Sn 

incorporation increased from 2.8% to 4.9%, while the Si incorporation slightly changed from 

3.9% to 4.1%. A similar trend on the increase in Sn incorporation was observed in the GeSn 

growth presented in Section  4.1.3.   

 

 

Figure 50. Growth mechanism of SiGeSn films on Si at different precursor flow rates and 

depostion pressures.  (a) Increase in the Si (solid green circles) and Sn (solid blue squares) 

incorporation and increase in the film thickness (solid red triangles) as a result of SiH4/GeH4 

flow ratios.  (b) Similar trend was observed by increasing the deposition pressure. 

 

This was attributed to the residence time of the precursors which increased from 1.9 s at 

0.1 torr to 19 s at 1 torr deposition pressure.  Increased collision frequency of the atoms at 

higher pressure gave rise to the possibility of inelastic collision which caused the breakdown of 

the molecular bonds.  However, more Sn was incorporated as the bond energy of SnCl4 was 
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lower than SiH4 [20].  The film thickness kept increasing as the pressure rose but amorphous 

growth of SiGeSn film was observed at pressures greater than 1 torr.  This was due to further 

reduction of Si ad-atom surface mobility that also resulted in a concomitant sharp increase in 

deposition rate.   

 

4.3.4. Optical characterization  

Photoluminescence  

Figure 51a shows room temperature PL spectra for SiGeSn films with 3, 4, and 5% Sn 

and 4% Si mole fractions.  A shorter wavelength main peak and a longer wavelength shoulder 

were observed for each sample, corresponding to direct and indirect bandgap transitions, 

respectively.  As Sn composition increased, both direct and indirect peaks shifted towards 

longer wavelength, which agrees with theoretical study.  The direct and indirect bandgap 

energies were extracted by fitting the PL spectra with Gaussian curves [14] as illustrated in 

Figure 51a.  Figure 51b shows the bandgap energies as a function of Sn compositions.  The data 

were obtained from Figure 51a and the lines were calculated from Equation 1 in Section  1.2.1. 

(The bandgap of GeSn is also shown for comparison.) 

Since incorporation of Sn shifts the PL peak towards longer wavelength while the 

incorporation of Si shifts the PL towards shorter wavelength, the PL peak position of SiGeSn 

was determined by both Si and Sn compositions.  The experimental data were in agreement with 

theoretical calculations. Compared with GeSn material, the bandgap of SiGeSn was always 

wider with the same Sn composition, revealing that the SiGeSn film could be a good candidate 

for a barrier layer in SiGeSn/GeSn/SiGeSn double heterostructure or quantum well structures.   
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Figure 51. Optical characterization of the SiGeSn samples using PL spectroscopy. (a) PL 

spectra of the SiGeSn films with 3, 4, and 5% Sn and 4% Si mole fractions.  (b) Theoretical 

calculation of change in the direct (blue) and indirect (red) bandgap edges for Ge1-xSnx (dashed 

line) and Si0.04Ge0.96-xSnx (solid line) as a function of Sn incorporation (x).   
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Chapter 5. GeSn and SiGeSn growth using SnD4 precursor 

 

Growth of GeSn and SiGeSn alloys using SnD4 precursor in CVD systems have shown a 

robust growth method and high material quality [26].  However, usage of compound chemistries 

of higher order silanes and germanes or even more compound hetero-nuclear Si-Ge molecules 

has kept the growth from being commercially applicable. [25].  Additionally, handling and 

delivery of SnD4 requires design of new systems. Extended storage time of this gas is only 

successful at liquid nitrogen temperature (~ -200 °C) and the gas needs to be used after warming 

up the bottle to dry ice temperature (-80 °C).   

Moreover, due to rapid decomposition and deposition of Sn in the delivery line, highly 

diluted SnD4 gas (1% in H2) has been inevitable for more accurate readings of mass flow 

controllers as described in  1.2.2.  Therefore, SnD4 either has to be diluted before delivery, 

which requires a complicated delivery system, or the bottles must be purchased with diluted gas 

which limits the amount of gas available for deposition.  The other solution for deposition of the 

material is preparing the desired mixture in small bottles (~3 liters) containing SnD4 and higher 

order silanes and germanes and then using the mixture for deposition of the film [38]. The gases 

in those mixtures are mostly in-situ produced and mixed.  Each of the above methods of SnD4 

delivery may be used for research but are not up to the industrial use standard. 

In this chapter, the growth of low Sn content GeSn and SiGeSn films using in-situ gas 

mixing of SnD4 and low cost Si and Ge precursors (silane and germane) via a UHV-CVD 

system is presented.  

 

5.1.  Growth method 

Silane, germane, and deuterated stannane were used as the precursors for (Si)GeSn 

deposition and argon was used as the carrier gas.  The deposition pressure was in the range of 
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0.1 to 1 torr.  The films were grown at the temperature range of 300 to 450 °C.  The deposition 

time for the samples was 15 minutes.  The typical SnD4 pressure percentage in the chamber was 

4% and GeH4 was 96%.  The study of the growth mechanism was performed in terms of the gas 

flow rate and pressure, as listed in Table VII.   

 

Table VII.  Mechanism study of GeSn, SiGeSn growth. 

Alloy SiH4  

(mtorr) 

GeH4 

 (mtorr) 

SnD4 

 (mtorr) 

Deposition Pressure 

(torr) 
Temperature (°C) 

GeSn --- 10 0.5 - 1 0.1 - 1 300 - 450 

SiGeSn 1 - 2 10 0.5 - 1 0.1 - 1 300 - 450 

 

5.2.  Material characterization 

5.2.1. X-ray diffraction 

The 2Theta-Omega XRD scan of the GeSn samples from (004) plane is shown in Figure 

52a.  The Si (001) substrate peak was observed at 69° and the GeSn layers were at different 

angles from 65 to 66°. The out-of-plane lattice constants of the layers were directly calculated 

from the peaks observed in Figure 52a.  The total lattice constants of the films were calculated 

from the RSM as observed in the inset of Figure 52a. Additionally, the RSMs show that the 

films were relaxed with a spread in the omega direction that showed mosaicity of the films.  

This is because of the high density of defects in the film due to large lattice mismatch between 

GeSn and Si (more than 4.2%).  

The Sn composition of the GeSn samples were calculated using Vegard’s law as 

explained in Section  1.2.1. The XRD peaks showed that the films grown at higher temperatures 

incorporated less Sn in the Ge lattice.  The sample grown at 300 °C had 2% Sn incorporation 

while the one grown at 450 °C had only 0.5% Sn incorporation.  On the contrary, higher growth 
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temperatures resulted in higher material quality. This could be seen by comparing the GeSn 

peak intensities.  The growth at 300 °C had one order of magnitude lower peak counts 

compared with the one grown at 450 °C. The XRD patterns shown in Figure 52 are for the 

samples that were grown at a constant growth pressure of 1 torr with a fixed SnD4 partial 

pressure of 0.5 mtorr.  Reduction of the growth pressure from 1 torr to 0.1 torr gave similar 

XRD patterns. Increasing the partial pressure of SnD4 from 0.5 mtorr to 1 mtorr resulted in poor 

quality films. 

Introduction of SiH4 in the chamber resulted in the incorporation of Si in the GeSn 

lattice.  Figure 52b shows the 2Theta-Omega scan of the SiGeSn films grown at 0.5 torr 

deposition pressure. The peak at higher diffracted angle shows the growth at 450 °C with 2 

mtorr partial pressure of SnD4 and the lower count peak shows the sample grown at 400 °C with 

1 mtorr partial pressure of SiD4.  The RSM scan of the samples show that the films were strain 

relaxed; however, a larger spread was observed along the omega direction compared with the 

GeSn films.  The inset of Figure 52b shows the RSM for the Si0.17Ge0.91Sn0.02 film which was 

grown at 450 °C with 2 mTorr SiH4 partial pressure.  The spread in the SiGeSn films could be 

attributed to the incorporation of Si which has lower surface mobility in comparison with Ge. 

This resulted in a higher density of threading dislocations in the SiGeSn films and a larger 

spread in the RSM.  The Si and Sn incorporation in the SiGeSn samples were measured using 

EDX as they could not be directly measured through XRD. 

 

5.2.2. Energy-dispersive X-ray spectroscopy  

In order to study the uniformity of incorporation of the elements in the film, the samples were 

examined using a scanning electron microscope equipped with EDX. The EDX maps showed 

that as the growth temperature exceeded 400 °C, the Sn started to precipitate to the surface.  
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Growth at these temperatures was away from non-equilibrium conditions.  This characteristic of 

Sn was the main reason for low incorporation at high temperatures; therefore,  low temperature 

growth was preferred for more Sn incorporation. 

 

Figure 52. XRD characterization of GeSn and SiGeSn films grown on Si substrate. (a)The XRD 

pattern the GeSn peaks grown at different temperatures.  Inset shows the RSM of the 

Ge0.98Sn0.02 sample grown at 450 °C.  (b) The SiGeSn peaks are between 65-67º due to Si 

incorporation while the GeSn peaks are between 66-65º.  The inset shows the RSM of 

Si0.17Ge0.81Sn0.02.   



 

81 

 

Figure 53a, b, and c show the Si, Ge, and Sn EDX maps of the GeSn film grown at 450 

°C, respectively. There was no Si incorporated in the sample but the Si substrate map was 

observed due to low film thickness. The Sn map showed that Sn precipitation occurred at some 

points.  Figure 53d, e, and f show the Si, Ge and Sn EDX maps of the SiGeSn film grown at 400 

°C, respectively. No Sn precipitation was observed for the samples grown below 400 °C. The Si 

map could be attributed to both the Si substrate and Si in the film.  In order to confirm the Si 

incorporation in the film, a cross sectional EDX scan of the sample was performed using the 

TEM system.  

 

 

Figure 53. Energy dispersive X-ray (EDX) spectroscopy of the samples obtained from scanning 

electron microscope. GeSn: (a) Si EDX map, (b) Ge EDX map, and (c) Sn EDX map.  SiGeSn: 

(d) Si EDX map, (e) Ge EDX map, and (f) Sn EDX map. 

 

5.2.3. Transmission electron microscopy 

The crystal quality and the thickness of the samples were characterized using TEM. The 

TEM images show that the films were grown epitaxially on Si substrate and were relaxed 
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through an array of misfit dislocations. Figure 54 is the TEM image of the Ge0.99Sn0.01. The film 

was relaxed by formation of two types of dislocations: threading dislocations and Lomer 

dislocations.  

 

 

Figure 54. Transmission electron microscopy (TEM) image of the Ge0.99Sn0.01 film. (a) Low 

resolution TEM image. (b) Lomer misfit dislocation formed at the interface of GeSn/Si. The 

image was reconstructed from inverse FFT after applying a periodic mask to increase the 

contrast. 

 

Figure 54a shows that misfit dislocation could screw through the film and form a 

threading dislocation. Such dislocations lower the film quality by formation of non-radiative 

recombinations centers across the film.  Formation of Lomer misfit dislocations were also 

observed (Figure 54b).  Figure 54b was generated by taking the fast Fourier transform (FFT) 

from the TEM image and applying a periodic circular mask. The reconstructed figure, by taking 

the inverse FFT, increased the contrast and showed the atoms more clearly. In Figure 54b it can 

be seen that a Lomer misfit dislocation was formed without a threading component that screws 

through the film.  Formation of such dislocations at GeSn interfaces has been shown to have 

different 7-atom and 11-atom rings (will be further discussed in Section  6.2).  
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Figure 55a and b show the low resolution and high resolution TEM images of the 

SiGeSn film, respectively. A higher density of threading dislocations and stacking faults were 

observed due to the incorporation of Si in the GeSn lattice. This could be attributed to the low 

surface mobility of Si atoms on the surface at the low temperature of 400 °C. 

 

 

Figure 55. Transmission electron microscopy (TEM) image of the SiGeSn film. (a) Low 

resolution TEM image. (b) High magnification TEM image showing high density of threading 

dislocations at the interface of SiGeSn/Si.  

 

High angle annular dark field (HAADF) scanning transmission electron microscopy 

(STEM) of the samples was performed to confirm Si incorporation in the SiGeSn films and 

measure the amount of Si and Sn. Figure 56a shows the HAADF image with the cross sectional 

Z-contrast map of the Si0.08Ge0.90Sn0.02 film. The maps show uniform Si, Ge and Sn 

incorporation along the growth. An EDX line scan of the sample is shown in Figure 56b which 

shows the film was grown uniformly. Similar scans were done on other SiGeSn samples to 

confirm the composition. The results were in agreement with the lattice constant calculations 

using the Vegard’s law and  XRD data (Section  5.2.1) for SiGeSn films. 
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Figure 56. High angle annular dark field (HAADF) scanning TEM of the Si0.08Ge0.90Sn0.02 film. 

(a) Scanning TEM along with EDX maps of Si, Ge and GeSn. (b) The EDX line scan of the 

Si0.08Ge0.90Sn0.02 sample. 

 

5.3.  Optical characterization 

5.3.1. Raman spectroscopy 

The GeSn and SiGeSn films were characterized using Raman spectroscopy.  Figure 57a 

shows the normalized Raman spectroscopy of GeSn samples with different Sn compositions. A 

shift was observed in the Raman peak for the Ge-Ge bond towards lower wavenumbers. This is 

due to incorporation of Sn in the Ge lattice which changes the bond energy of the Ge atoms in 

the lattice. The change in the Ge-Ge bond from 300.00 cm
-1

 for bulk Ge to ω=297.4 cm
-1

 for 

Ge0.98Sn0.02 showed that the films were strain relaxed [76]. The Ge-Sn peak at 259.8 cm
-1

 

indicated incorporation of Sn in the Ge0.98Sn0.02 sample.  

The results are in agreement with the theoretical calculations presented in Section  1.2.1.  

The Raman shift of the SiGeSn films showed the presence of Ge-Sn, Ge-Ge, Si-Ge, and Si-Si 

peaks (Figure 57b). The Ge-Ge peaks were shifted to lower wavenumber due to Si and Sn 

incorporation.  The shift was measured to be 296.5 cm
-1

 for Si0.17Ge0.81Sn0.02 and 294.3 cm
-1

 for 
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the Si0.08Ge0.9Sn0.02. The Si-Ge peak was located at ~385 cm
-1

 and the Si-Si was at ~520 cm
-1

. 

The shift in the Si-Si peak of the Si0.17Ge0.81Sn0.02 from 520 cm
-1

 for bulk Si to 516 cm
-1

 showed 

that the peak was not from the Si substrate but from the incorporated Si in the film.  

 

 

Figure 57.  The Raman spectra of the (a) GeSn and (b) SiGeSn samples. 

 

5.3.2. Photoluminescence 

The PL characterization of the GeSn samples showed that incorporation of Sn in the Ge 

lattice resulted in an increase in the wavelength of emission spectra.  Figure 58 shows the 

normalized PL intensity of the GeSn samples with 0.5 to 2% Sn incorporation measured at room 

temperature. The observed peak was attributed to the indirect bandgap (at L valley) of the 

samples that shifted from 1550 for pure Ge toward longer wavelength of 1650 for 2% Sn 

incorporation.  The asymmetric shape of the peak was due to the presence of the direct emission 

of the films from the Γ-valley.  The direct emission of pure Ge is at 1870 nm at room 

temperature. The PL emission of the samples could change due to strain or Sn incorporation; 

however, as the samples were shown to be relaxed by RSM measurements, the observed 

changes were attributed to the Sn incorporation in the films.  
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Figure 58.  Photoluminescence spectra of the Ge1-xSnx films with 0.5 to 2% Sn mole fraction. 
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Chapter 6. Advanced GeSn material growth and characterization 

 

Scalable and commercial growth of high quality materials requires high throughput 

systems such as ASM Epsilon
® 

reduced-pressure CVD (RPCVD) reactors.  In this chapter, 

characterization, defect formation analysis, and material quality enhancement of Ge1-xSnx alloys 

are discussed. The films were grown on 8” diameter Si substrates via a Ge buffer layer.   

 

6.1.  Germanium-tin growth on Ge buffer 

The Ge1-xSnx alloys were grown in a single wafer RPCVD ASM Epsilon® reactor.  A 

specialized growth approach was adopted to grow the Ge1-xSnx layers at temperatures of less 

than 450 °C.  A relaxed buffer layer of Ge was on Si (001) as a virtual substrate prior to the 

growth of Ge1-xSnx alloys.  Strain relaxed Ge buffer layers were grown in situ and require 

additional optimization.  Table VIII shows the composition and film thickness of the grown 

samples.  Tin concentration was measured using SIMS and randomly checked by RBS.  The 

thickness of the samples was measured using TEM.  Figure 59 shows the composition 

measurements of the 7.0% Sn sample which was performed by RBS and ion channeling. 

 

Table VIII.  Composition and thickness and doping of the GeSn films.  

Sn% (x)  

(SIMS) 

Sn% (x)  

(RBS) 

Doping [B]  

(cm
-3

) 

Thickness  

(nm) 

0.9 - - 327 

1.4 - 3.0×10
19

 287 

2.6 3 - 257 

2.7 - 5.2×10
18

 173 

3.2 3.5 - 76 

3.2 - - 134 

6.0 - - 49 

7.0 7 - 240 

 



 

88 

 

Figure 59.   Random (black) and Si(001) aligned (red) RBS spectra of Ge0.93Sn0.07 with 

thickness of 240 nm on Ge buffer layer.  

 

6.1.1. Material characterization  

X-ray diffraction 

XRD measurements were performed to investigate Ge1-xSnx lattice size and Sn 

composition for the samples.  A symmetric 2Theta-Omega scan of the samples from (004) plane 

is shown in Figure 60.  The Si (001) substrate peak satisfied Bragg’s law at a higher angle of 

69º (on the right) while peaks from Ge buffer layer and Ge1-xSnx layers were diffracted at lower 

angles of 66-64º due to higher lattice constant.  The XRD data from (004) symmetric plane 

provided out-of-plane lattice constant of the layers. Therefore, an asymmetric RSM from          

(-2 -2 4) plane was utilized to precisely measure the in-plane and out-of-plane lattice constant of 

Ge1-xSnx alloys.  

Figure 61 shows the (-2 -2 4) RSM sketch of the samples where perfect cubic Ge peak 

was set as the reference at H coordinate of -2 and L coordinate of 4, assuming in-plane strain 

was isotropic.  The vertical line along H = -2 defines the pseudomorphic line where the Ge1-xSnx 
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crystal was grown on top of Ge with the same in-plane lattice constant (  ).  In-plane (  ) and 

out-of-plane (  ) lattice constants of the Ge1-xSnx alloys were obtained from RSM images.  

Total lattice constant ( 0
GeSn) of Ge1-xSnx layer was calculated through  

 0
GeSn 

(   2   )

(1 2 )
     (Equation 10) 

 

where   ,   , and     are in-plane lattice constant, out-of-plane lattice constant, and elastic 

Poisson ratio of GeSn, respectively.  Dependency of    to Sn composition percentage gives the 

corresponding value for Ge1-xSnx alloys as outlined in reference 71.  The plotted Poisson line 

(purple) on the RSM shows how alloys with similar Sn%, but different strain, would lie on the 

H–L plane. 

 

 

Figure 60.  The XRD pattern of of Ge1-xSnx/Ge films grown on Si substrate. 

 
A 100% pseudomorphic film is achieved when the in-plane (  ) lattice constant of Ge1-

xSnx equals that of relaxed Ge buffer layer.  In this case, the out-of-plane (  ) lattice constant is 

at its maximum height.  In a relaxed film (where pseudomorphicity is 0%) ,         0
GeSn.  
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XRD analyses  in this work showed a range of 46% to 100% pseudomorphic growth for 

different Sn% and thicknesses.   

 

Figure 61.   Sketch of RSM from assymetrical plane (-2 -2 4) for different Ge1-xSnx samples. 

 

The RSMs revealed that Ge1-xSnx films were not relaxed; they were either fully or 

partially strained.  Figure 62a and b compare the RSM of the alloys with 6.0% and 7.0% Sn.  

Increase in Sn% increased lattice mismatch which increased the compressive strain in the film.  

This allowed for a 6.0% Sn sample to be 100% pseudomorphic while the 7.0% Sn sample was 

only 49% pseudomorphic.  Although higher Sn composition of the alloy pushed the structure to 

a more relaxed growth, it was not the only factor in pseudomorphic growth of the film.  

Thickness of the epi-layer  can influence the strain condition of the grown film.  Figure 62c and 

(d) compare the samples with similar Sn composition of 3.2% and different thicknesses of 76 
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nm and 134 nm.  Pseudomorphicity of the former was measured to be 84% and the latter 72% 

(0.03% less in-plane strain w.r.t. 76 nm). 

 

 

Figure 62.   RSMs from (-2 -2 4) plane of GnSn film. (a) RSM of 6.0%,  (b) 7.0% Sn.   (c, d) 

The RSM of  3.2% Sn samples for two different thicknesses of 76 nm  and 128 nm, 

respectively.   

 

Compressively strained Ge1-xSnx layers can be grown on Ge to a certain thickness which 

is known as the critical thickness [79].  Lattice mismatch of the Ge and Ge1-xSnx causes strain in 

the Ge1-xSnx epi-layer but the film cannot accommodate such high strain beyond the critical 

thickness.  Therefore, it relaxes through the formation of defects (threading or misfit 

dislocations located at the interface).   
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The critical thickness is calculated with different methods, such as Matthews-Blakeslee 

(M-B) model [79] and People-Bean (P-B) model [80].  Calculations for mismatched 

heteroepitaxial layers are based on the assumption that the material is grown at thermal 

equilibrium conditions. However, most growth techniques for Ge1-xSnx use non-equilibrium 

conditions.  Therefore, finding the critical thickness (hc) for different materials is difficult.  

Figure 63 shows two different theoretical calculations for critical thickness of Ge1-xSnx films on 

relaxed Ge for different Sn compositions.  Measurements from samples in this work show that 

critical thickness calculated using the M-B model was more realistic for non-equilibrium growth 

conditions in comparison to the P-B model. 

 

 

Figure 63.   Theoretical calculations for critical thickness of Ge1-xSnx films on relaxed Ge buffer 

layer on Si using Matthew-Blakeslee (M-B) model (red dashed) and People-Bean (P-B) model 

(black solid).   

 

Additionally, RSMs were used to analyze the quality and crystallinity of the grown 

films.  Surfaces of samples grown with CVD were not as smooth as those grown with MBE, 

therefore, Kiessig fringes were not observed in the rocking curve or RSM images.  However, 

Figure 62a shows that the Ge.94Sn.06 film had higher growth quality with Kiessig fringes.  This 
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could be attributed to optimized Ge buffer growth with low defect densities.  Moreover, 

mosaicity of the films calculated by measuring the broadening Ge1-xSnx peak also revealed 

higher crystal quality for the Ge0.94Sn0.06 sample.   

 

Transmission electron microscopy 

Crystallinity, defect formation, and defect propagation of Ge1-xSnx layers are better 

investigated using high resolution TEM.  Transmission electron microscopy images revealed 

100% crystallinity in Ge and Ge1-xSnx films.  Germanium buffer layers were relaxed as their 

thicknesses were far above the critical thickness [79].  Consequently, lattice mismatch of Ge 

and Si caused the film to release the large accumulated energy and relieve the strain by 

formation of misfit dislocations at the Si/Ge interface (Figure 64).  Some of the misfit 

dislocations were confined at the Si/Ge interface while some became nucleation sites for 

threading dislocations. 

 
 

 

Figure 64.  Cross sectional TEM image of 6.0% and 7.0% Sn samples.  (a) TEM image of 

Si/Ge/Ge.94Sn.06 and (b) TEM image of Si/Ge/Ge.93Sn.07 films. 
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Germanium films showed a large number of threading dislocations that propagated 

through the film due to non-optimized growth conditions. This degradation of Ge growth 

quality (Figure 64b), offered the opportunity to study the propagation of these dislocations 

through Ge1-xSnx film.  The average density of threading dislocations in the Ge buffer layer was 

measured to be 9.71×10
8
 cm

2
. In Figure 64a, the extracted thickness of the Ge0.94Sn0.06 layer 

was 49 nm. Although the thickness was larger than the critical thickness calculated by M-B 

model, it was still lower than the P-B model calculation (100 nm).  The X-ray diffraction 

measurement showed that this film was 100% pseudomorphic.  The TEM image also verified 

high material quality of the film as revealed by observation of Kiessig fringes in the RSM 

image.  This was mainly due to optimized growth conditions for the Ge buffer layer in this 

sample.  Figure 64b shows the 240 nm Ge0.93Sn0.07 epi-layer  grown on 760 nm Ge strain-

relaxed buffer. The calculated critical thickness for 7.0% Sn incorporation in Ge was 7 nm 

using the M-B model (80 nm using P-B model).  Therefore, it is expected that Ge1-xSnx 

underwent the relaxation process through misfit dislocations at the Ge/GeSn interface as shown 

in Figure 65a.  The X-ray diffraction analysis revealed that 51% of the strain was relieved 

which agreed with the observation of threading dislocations and cross-hatch pattern seen in the 

AFM image (Figure 65b) of the sample. 

Investigation of TEM images showed that although misfit dislocations were a source for 

the generation of threading dislocations, Ge1-xSnx layers exhibited 80% fewer propagated 

threading dislocations than the Ge buffer layer. Figure 64b shows an area where threading 

dislocations stopped propagating in the Ge0.93Sn0.07 film.  The density of threading dislocations 

in Ge0.93Sn0.07 films was found to be as low as 3.0×10
7
cm

-2
, which indicated the high quality of 

the grown film. 
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Figure 65.  TEM and AFM analysis of 7.0% Sn sample.  (a)  High resolution TEM image 

delineation of a misfit dislocation at the interface of Ge/Ge.93Sn.07 film. (b) AFM image of the 

Ge.93Sn.07 sample. 

 

6.1.2. Optical characterization 

Raman spectroscopy 

The comparison of the Raman shift for the Ge-Ge bond in bulk Ge and Ge1-xSnx is 

shown for different Sn% composition in Figure 66. The inset demonstrates the Raman spectrum 

of the sample with 7.0% Sn incorporation compared to bulk Ge. Increasing the Sn composition 

reduced the Raman shift from ω0 = 300.00 cm
-1

 for bulk Ge to ω = 296.11 cm
-1

 for Ge1-xSnx 

alloy with 7.0% Sn composition.  Also, there was an additional Raman peak due to the Ge-Sn 

bonds at 260.86 cm
-1

. In samples with a lower percentage of Sn, this peak was hardly 

noticeable.  The measured shifts revealed the effect of Sn composition on the Ge1-xSnx lattice.  

Tin incorporation applied a strain on the lattice constant and caused a change in the Raman shift 

position of  Ge1-xSnx alloys.   

Theoretical calculation of strain contribution on Raman shift of Ge1-xSnx alloys are 

explained in reference 76.  The change in Raman shift due to the strain was calculated and 

compared with the experimental results in Figure 66.  Except for p-doped samples, the 
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experimental and theoretical results were fairly comparable.  The change in Raman shift was 

complicated for different Sn mole fractions and doping, therefore it is not presented here.   

 

 

Figure 66.  Theoretical calculation of the change in Raman shift for Ge-Ge bonds in strained   

Ge1-xSnx alloys along with measured experimental data.  The inset shows Raman shift 

measurement of Ge.93Sn.07 sample. 

 

Spectroscopic ellipsometry  

Spectroscopic ellipsometry was employed to measure compositional dependent 

refractive index (n), extinction coefficient (k), and absorption coefficient for both bulk Ge and 

the Ge0.93Sn0.07 sample.  Figure 67 shows the measured absorption coefficient for Ge0.93Sn0.07 

compared to Ge from 0.5-2.5 eV.  

 The comparison shows an increased absorption coefficient below 0.5 eV which includes 

the wavelengths longer than 1550 nm.  This enhanced absorption in the infrared would allow 

Ge1-xSnx active devices to operate at a longer wavelength than Ge.  The inset of Figure 67 
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shows measured refractive index (n) and extinction coefficient (k) of 7.0% Sn sample and Ge 

bulk. 

 

Figure 67.  Absorption coefficient of Ge0.93Sn0.07 film measured using spectroscopic 

ellipsometry. The inset shows the refractive index (n) and extinction coefficient (k) of 

Ge0.93Sn0.07 film compared to bulk Ge. 

 

Photoluminescence  

Photoluminescence was used to measure the bandgap edge for the Ge1-xSnx samples with 

various Sn compositions.  Figure 68 depicts normalized room temperature PL intensity versus 

energy for 0-7.0% Sn mole fraction in Ge layers.  The measurements were used to analyze the 

bandgap for the various Sn compositions as well as growth quality.  Due to high pumping 

power of the laser, both direct and indirect transitions were clearly observed.  The black solid 

line shows the PL for Ge buffer grown on Si substrate with a peak around 0.78 eV for direct 

transition and 0.68 for indirect transition.  The difference between PL peak position of Ge layer 
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bandgap and theoretical calculations of bulk Ge was due to the strain related effects and defects 

in the crystal structure of Ge buffer layer. 

 

 

Figure 68.  Normalized PL intensity of Ge buffer layer and Ge1-xSnx films at room temperature 

versus PL emission energy. 

 

Incorporation of 0.9% Sn shifted both direct bandgap and indirect bandgap towards 

lower energies; however, the reduction of the direct bandgap was more than the indirect 

bandgap.  For the 3.2% sample (134 nm thickness), it can be seen that the indirect peak and 

direct peak have almost overlapped and both can be seen at 0.7 eV.  For higher concentrations 

of Sn, such as 6 and 7.0%, the indirect gap and direct gap were completely overlapped such that 

direct and indirect PL spectra were not distinguishable.  The doped samples with 1.4 and 2.7% 

Sn samples do not follow the bandgap reduction trend that was observed in the undoped 

samples. 
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6.1.3. Discussion 

Incorporation of Sn in Ge lattice in near equilibrium growth conditions was a 

challenging task as solubility of Sn in Ge is very low (0.05%) and the melting point of bulk Sn 

is 232 °C.  Recent studies show that Sn nano-particles have an even lower melting point of 177 

°C which exacerbates the conditions [81].  This confirms the creation of a two-phase mixture at 

growth temperatures above 177 °C.  Instability of α-Sn allotrope above 13 °C and 15% larger 

lattice size increases the possibility of precipitation of Sn out of Ge lattice.  Therefore, a non-

equilibrium growth condition was needed to suppress the possible phase segregation on the 

growth surface or within the film.  Incorporation of more than 0.5% Sn is considered a 

supersaturation that may trigger nucleation and accumulation of Sn.  This breaks the GeSn 

matrix to Ge:Sn matrix and, upon continued growth, results in diffusion of the precipitated 

metal to the top surface thereby completing the phase segregation.   

The characterization measurements and analysis quantitatively and qualitatively identify 

substitutional incorporation of Sn in Ge matrix.  Germanium tin lattice constants (in-plane and 

out-of-plane) were determined by XRD using in-plane and out-of-plane lattice constant and 

Poisson ratio.  Tin content of the Ge1-xSnx alloys was calculated using Vegard’s law with a 

bowing factor of b1
GeSn

 = 0. 468 nm [71] and b2
GeSn

  = 0.166 nm [72].  Figure 69 depicts the plot 

of Sn% vs. lattice constant of Ge1-xSnx alloy.  Composition measurements through SIMS and 

RBS are also presented in the plot. Calculation of Ge1-xSnx lattice constant using the most recent 

bowing factor, b2
GeSn

 = 0.166 nm (red line), shows better agreement with experimental data 

from SIMS and RBS.  One such comparison of XRD and SIMS measurement for the 3.2% Sn 

sample showed 0.21% less Sn incorporated in the lattice. 

https://en.wikipedia.org/wiki/%C3%85
https://en.wikipedia.org/wiki/%C3%85
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Although there was good consistency between the measurement methods, SIMS and 

RBS yielded higher Sn content in the films than XRD.  This could have been an indication of 

Ge:Sn phase segregation on the surface in volume precipitates, or interstitial Sn in Ge matrix.  

Further investigation of film quality with AFM did not show any trace of Sn precipitation on the 

surface of the grown alloys.  In addition, high resolution cross-sectional TEM images did not 

show formation of Sn nuclei in the film.  This led to the conclusion that Sn was incorporated as 

interstitial defects or that further theoretical analysis of bowing factors and Ge1-xSnx film 

mechanics was still needed.  In addition, this inconsistency was more observable in the doped 

samples (1.4% and 2.7.0% Sn).  The lower size of boron atoms could affect the Ge1-xSnx films 

and result in smaller lattice size. 

 

 

Figure 69.  Germanium tin lattice constant of the films vs.  Sn composition of Ge1-xSnx alloys 

measured by XRD, SIMS and RBS.   

 

6.2.  Defect formation and propagation in GeSn films  

 

The difference in the lattice constant of Si, Ge, and Sn introduces a network of misfit 

dislocations to relax the biaxial strain in the film.  Although a majority of the misfit dislocations 
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can be trapped, some will thread through the film causing threading dislocations which 

decreases the performance of the final device [82]. Plastic relaxation of higher lattice constant 

materials (SiGe, Ge, GeSn) on top of Si forces the layers to form 60
o
 misfit dislocations.  These 

dislocations are caused by slip of (110) and (111) planes in the diamond lattice structure which 

has a screw component and will thread through the grown film.  Growth of low temperature Ge 

or SiGe film followed by the high temperature growth can be a solution to confine the threading 

dislocations [83].  Formation of Lomer misfit dislocations can also prevent the propagation of 

threading dislocations into the top layer. The main reason behind this phenomenon is that the 

Burgers vector in a Lomer misfit dislocation, for a (001) substrate, lies parallel to the interface.  

Therefore, the substrate and film lattices can match while no perpendicular component exists.  

In this case, the film is grown relaxed without introducing structural imperfections such as 

threading dislocations which degrade the material quality. 

Theory of Lomer dislocations was explained by Mader et al. [84] in 1974; thereafter, 

different models were proposed including a five-atom ring and seven-atom ring without 

dangling bonds [85].  These structural models are derived from high resolution electron 

microscope images along with image simulations.  Available models show that Lomer 

dislocations can combine two lattices through symmetric and asymmetric loops [86, 87]. In this 

section, defect formation and propagation mechanism in Ge1-xSnx films and its properties of 

trapping defects on the interface are discussed.  

6.2.1.  Relaxation theory and TEM analysis 

 

Formation and propagation of defects in the film is a direct consequence of lattice 

mismatch between the grown layer and the substrate layer.  Initially, films could be grown 

defect- free under full compressive strain but as soon as the layers start to relax the strain, 
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defects form and propagate through the film.  Measurements of strain in the films show that 

based on the Sn mole fraction and thickness, the samples were relaxed from 0 to 54% as 

discussed in Section  6.1.1. 

Relaxation of the films starts at different thicknesses based on the lattice constant of the   

Ge1-xSnx layers. A higher Sn composition film would have a higher lattice constant and 

relaxation starts at lower thicknesses.  The thickness beyond which the higher lattice constant 

layer cannot accommodate the strain is the critical thickness. The relaxation process starts by 

formation of defects, such as misfit dislocations, on the surface which will propagate through 

the film by threading dislocations.  

Large lattice mismatch between Si and Ge (4.2%) causes the Ge buffer layer to release 

the strain by formation of misfit dislocations at the Ge/Si interface. The Matthews-Blakeslee 

calculation for critical thickness of Ge growth on Si shows that this process should start after a 

few nanometers of growth (Section  6.1.1).  Figure 70a shows the schematic diagram of the 

samples with Ge1-xSnx layer grown on Ge buffer layer on Si substrate.  Formation of 60
o
 misfit 

dislocations as a result of plastic relaxation of Ge on top of Si forced the (110) and (111) planes 

to slip in the diamond lattice structure.  The screw component of misfit dislocation will thread 

through the grown film and form threading dislocations.  A cross-hatch pattern is observable as 

a result of formation of misfit dislocations on the interface of Si/Ge and Ge/GeSn; however, not 

all the dislocations propagate through the second layer.  Figure 70b shows the cross-hatch 

pattern observed by plan view TEM of the Ge0.93Sn0.07 sample.  The cross-hatch patterns formed 

at GeSn/Ge interface overlapped with those of Ge/Si in the image. The denser pattern was 

attributed to the Ge/Si interface due to higher lattice mismatch. Figure 70c is a scanning 

electron microscopy image of decorated threading dislocations at the surface delineated using 
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cold Schimmel solution (CrO3+HF) for 10 minutes.  The density of pits (1.1×10
7
 cm

-2
) was in 

good agreement with TDD measured from TEM micrographs (3.0×10
7
 cm

-2
) [1]. It also 

confirms that the quality of GeSn material was better than Ge buffer layer   (TDD: 9.71×10
8
  

cm
-2

) by an order of magnitude. 

 

 

Figure 70. Threading dislocation propagation from Ge buffer to the GeSn top layer. (a) 

Schematic diagram of threading dislocation propagation (b) Plan view TEM image of 

Ge0.93Sn0.07/Ge/Si(c) SEM image of  Ge0.93Sn0.07 film exposed to etch pit solution. 

 

Propagation of threading dislocations was studied in Ge buffer and GeSn layer. A higher 

density of treading dislocations was seen in all the Ge buffer layers. However, localization of  

threading dislocations was observed on the interface of Ge/GeSn interfaces.  Figure 71 shows 

that the defects had not passed through the GeSn film at several locations. 

The TEM images in Figure 71 show the cross-section of Ge buffer layer as well as the 

Ge0.968Sn0.032 layer for two thicknesses of 76 nm (Figure 71a) and 128 nm (Figure 71b).  

Thinner Ge0.968Sn0.032 film (76 nm) in Figure 71a had less relaxation than the thicker 

Ge0.968Sn0.032 film (128 nm) in Figure 71b, nonetheless, no cross-hatch pattern was observed on 

the surface of either film. This indicated misfit dislocations were not propagated through the 

GeSn film. 
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Figure 71.  Transmission  electron microscopy of Ge.968Sn.032/Ge films grown on Si substrate. 

(a) GeSn film with 76 nm thickness; (b) GeSn with 128 nm thickness. 

 

Higher density of threading dislocations in the Ge buffer layer gave lower quality of the 

film, however, it had provided the opportunity to investigate defect propagation in the Ge1-xSnx 

film.  The TEM image in Figure 71b shows that the Ge1-xSnx layer can lock the threading 

dislocations that are being propagated through the film at the GeSn/Ge interface.  No threading 

dislocations were formed at the Ge1-xSnx/Ge interface; however, some of the threading 

dislocations were able to pass through the Ge1-xSnx film. As a result of this phenomenon, the 

average density of threading dislocation in the Ge1-xSnx layer was far less than the Ge buffer 

layer.  The measurements show that the density of threading dislocations in the Ge buffer layer 

was 7.1×10
8 

cm
-2

 while that of the Ge1-xSnx layer is 5.0×10
7 

cm
-2

. This phenomenon was also 

seen in TEM images of different Sn mole fraction films. 

 

6.2.2. Formation of Lomer misfit dislocations 

Figure 72a shows the structure of Ge0.93Sn0.07 layer on Ge buffer. The thickness of this 

layer was 240 nm and the Ge buffer was 760 nm.  The critical thickness of such GeSn structures 
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was calculated to be 7 nm by M-B model and 80 nm by P-B model.  Therefore, the 240 nm 

Ge0.93Sn0.07 layer underwent a relaxation process through formation of a network of misfit 

dislocations on the surface and propagation of threading dislocations throughout the film.  

 

 

Figure 72.  TEM image of Ge.93Sn.07/Ge/Si film and atomic models of GeSn and Ge. (a) Low 

resolution TEM of the Ge.93Sn.07/Ge/Si film. (b) High resolution TEM image of misfit 

dislocations at the interface of Ge.93Sn.07/Ge film. Symmetrical (c) and asymmetrical (d) misfit 

dislocation observed at the GeSn/Ge interface [the white boxes in (b) are rotated 45
o
 CCW]. (e 

,f) The atomic models of (c) and (d). 

 

Figure 72b shows misfit dislocations at two points.  This is in agreement with the XRD 

analysis that showed 52% relaxation and a network of cross-hatch pattern that may be seen in 

the plan view TEM image (Figure 70b).  Measurement of the TDD in Ge buffer layer and GeSn 

film showed that 80% of threading dislocations were trapped at the interface of Ge/GeSn 

(Figure 72a).  The density of threading dislocations in Ge1-xSnx films was measured to be as low 

as 3.0×10
7 

cm
-2

, which indicated a higher quality of the grown film with respect to the Ge buffer 

layer. 
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Misfit dislocations can also form Lomer dislocations [88] on the surface by forming 

closed loops at the GeSn/Ge interface. Formation of such dislocations stops propagation of 

defects along the growth direction. A Lomer misfit dislocation is a 90
o
 misfit dislocation that 

does not have a screw component in contrast to the regular 60
o
 misfit dislocation.  Formation of 

his kind of misfit dislocation at the GeSn/Ge interface leads to less threading dislocations in the 

Ge1-xSnx films.  Figure 72c (rotated 45
o
 CCW) shows the higher magnification of Lomer 

dislocations that formed a symmetrical Lomer dislocation.  Other kinds of Lomer misfit 

dislocations are also observable at the interface as shown in Figure 72d (rotated 45
o
 CCW) ─ an 

asymmetrical Lomer dislocation.  Different models may be fit to the Lomer dislocations to 

show how the atoms are placed to relieve the stress and keep the top surface defect free. The 

most recurrent Lomer dislocations are presented in Figure 72  (e, f).  Figure 72e and f show a 

seven-atom-ring symmetrical and an eleven-atom-ring asymmetrical Lomer dislocation, 

respectively. 

 

6.3.  Thermal annealing of GeSn samples for strain relaxation 

Incorporation of Sn into the Ge lattice reduces the height of the Γ valley at a faster rate 

than that of the L valley. Indirect-direct crossover is achieved with ~8% Sn incorporation [28]; 

however, strain in the lattice changes the predicted bandgap [89]. Germanium tin layers are 

grown compressively strained due to a lattice constant of GeSn higher than that of Ge and Si. 

This compressive strain requires more Sn for a direct bandgap, while tensile strained GeSn 

films can achieve direct bandgap at lower Sn compositions. Several studies have been 

performed for this purpose but due to the variety of structures and film thicknesses, the results 

are not complete yet [41, 90, 91]. Roucka et al. investigated rapid thermal annealing of GeSn/Si 

structures [90]. In another recent study, post growth annealing was performed on a 30 nm 
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Ge0.9Sn0.1/Ge/Si sample for only one composition [41]. Li et al. reported on strain relaxation of 

a Ge0.9218Sn0.0782 film in the range of 440-540 °C [91]. In this section, studies of strain relaxation 

and material quality enhancement of GeSn layers through cyclic annealing at temperatures 

between 450 - 500 °C are presented. 

 

6.3.1. Experimental setup 

The annealing process was conducted after growth in a rapid thermal annealing (RTA) 

system. The samples were kept in nitrogen ambient during the process to avoid thermal 

oxidization. The temperature was controlled through a feedback loop pyrometer and a 

thermocouple. 

  

6.3.2. Results and discussion 

The as-grown samples measured 51-100% compressive strain. Samples were then 

annealed at 450-500 °C for 1-4 cycles.  Figure 73 shows the out-of-plane lattice constant of the 

annealed samples measured by an XRD 2Theta-Omega rocking curve. Change in the out-of 

plane lattice constant was attributed to either strain relaxation, or to Sn precipitation on the 

surface of the film. Relaxation of compressively strained samples resulted in reduction of the 

out-of-plane lattice constant. The results in  Figure 73 indicate that higher temperature and more 

cycles gave a greater reduction in the out-of-plane lattice constant.  

The as-grown Ge0.94Sn0.06 sample had 76 nm thickness and was 100% pseudomorphic 

before annealing. The RSM technique shows both in-plane and out-of-plane lattice constants of 

the GeSn layers. Figure 74a shows the effect annealing had on the of out-of-plane lattice 

constant of the Ge0.93Sn007 sample that was initially 49% compressively strained and had a 

thickness of 240 nm. Examination of  Figure 74a shows that annealing at 500 °C reduced the 



 

108 

out of plane lattice constant as well as the FWHM of the GeSn XRD peak. This indicates that 

the material quality improved. The RSM scan of the as-grown Ge0.93Sn007 sample in Figure 47 b 

shows that the GeSn peak was between the vertical pseudomorphic line and relaxation line. 

Figure 47c shows that annealing the sample for three cycles of 30 s duration at 500 
o
C pushed 

the GeSn peak towards the relaxation line and reduced the FWHM.  

 

 

Figure 73.  Out-of-plane strain of GeSn film annealed for 1-4 cycles at 450-500 °C for 30 sec. 

 

The PL spectra of the samples were collected by an off-axis set-up using a 690 nm femto 

second pulsed laser source. The PL spectra in Figure 75a shows that annealing at 450 °C for 2 

cycles reduced the FWHM of the as-grown film from 0.33 to 0.27 eV.  The peak position of the 

PL spectrum for the annealed sample at 450 °C and 2 cycles red shifted which indicates a 

reduction in the band gap as expected for less strained films [89]. It can be seen that annealing 

at 500 °C was detrimental to the film quality. Figure 75b-d show the RSM scans of the as grown 

and annealed samples at 500 °C for one cycle and three cycles, respectively. Movement of the 

GeSn peak towards the relaxation line showed a reduction in compressive strain, but the 
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increase in the XRD FWHM of the GeSn peak indicated material degradation. Additionally, the 

total lattice constant of the film was reduced which indicated Sn segregation out of the GeSn 

lattice. 

 

 

Figure 74. XRD analysis of the Ge0.93Sn0.07 sample treated with  cyclic anealing. (a) The XRD 

2Theta-Omega rocking curve of  Ge0.93Sn0.07 annealed for 30 s at 450 °C for 1 and 3 cycles and 

at 500 °C for 2 and 4 cycles. (b) RSM of the as-grown film and (c) annealed sample for 4 cycles 

of 30 s at 500 °C. 

 

 

Figure 75. Optical and material characterization of Ge0.94Sn0.06  sample treated with cyclic 

annealing. (a) PL spectra for the Ge0.94Sn0.06 as grown and annealed films  at 450 °C for 2 and 4, 

and at 500 °C for 1 and 3 cycles of 30 s. (b) RSM of the as grown sample, (c) annealed at 500 

°C for 1 cycle of 30 s, and (d) 3 cycles of 30 s. 
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Chapter 7. Summary and future work 

 

7.1.  Summary  

In this research, low temperature growth of Si-Ge-Sn alloys was studied.  A systematic 

study was done in order to use commercially available gases of silane and germane for the 

growth of the Si-Ge-Sn materials.  A plasma-enhanced CVD process was employed as the 

method to lower the growth temperature of Si from 1000 °C to 250 °C.  Achievement of high 

quality Si homoepitaxy showed the effectiveness of using this method for low temperature Si 

Epitaxy.  In the growth of Ge and SiGe films, an RPCVD method was used and the effect of 

higher pressure growth was studied for higher material quality and higher Si incorporation at 

lower temperatures.  The results show that increasing the growth pressure from 0.1 torr to 1 torr 

resulted in higher film quality and doubling the Si incorporation in the films.  Characterizations 

using XRD showed Si incorporation as much as 17% at the growth temperature of 450 °C.  

These results were used for benchmarking the GeSn and SiGeSn growth using the RPCVD 

method. In addition, the effect of different carrier gases (Ar, H2 and N2) in the growth of Ge 

films was studied and showed that higher quality films were achieved using Ar.  

Direct growth of GeSn and SiGeSn films on Si substrates was achieved using an 

RPCVD method.  The films were grown using two different methods of Sn delivery for the 

stannic chloride and deuterated  stannane precursors.  Characterization showed successful 

incorporation of Sn up to 7% in the growth with stannic chloride without using a carrier gas.  

However, it was observed that usage of stannic chloride resulted in etching of the films as they 

were grown.  This etching behavior was attributed to the production of HCl which is an etchant 

of Ge.  Therefore, no growth was observed in high flow rates of stannic chloride.  A similar 

trend was observed in the growth for SiGeSn films using stannic chloride.  However, uniform 
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epitaxial SiyGe1-x-ySnx films with different Si and Sn compositions (0.02≤x≤0.05, 0.03≤y≤0.05) 

were achieved in the conditions away from the etching regime.  In order to improve the film 

quality, Ar was used as a carrier gas with low flow rates of stannic chloride.  Optical 

characterization of the samples showed that more than four times higher PL intensities were 

achievable by introduction of Ar as carrier gas and an increase in the temperature.  The material 

characterization showed that an increase in the growth pressure from 0.1 torr to 0.5 torr resulted 

in higher Sn incorporation, PL intensity, and film thickness.  In order to achieve more robust 

growth of GeSn and SiGeSn films, an innovative method of in-situ gas mixing silane and 

germane with deuterated stannane was adopted.  Material characterizations showed 

incorporation of 2% Sn and up to 17% Si in the lattices.  

Material characterization of the compressively strained GeSn films on Ge buffer showed 

that high quality films could be achieved using a commercially available large-area CVD 

system.  Study of defect formation and propagation in these films showed that formation of 

symmetrical and asymmetrical Lomer misfit dislocations at the GeSn/Ge interface played a big 

role in the high quality GeSn film growth.  Such a characteristic makes GeSn a unique 

candidate for a universal compliant layer on which different lattice mismatched films could be 

grown.  Additionally, cyclic annealing of the GeSn epi-layers resulted in the reduction of 

compressive strain in the films as well as enhancement of material quality.  However, the 

appropriate recipes were different depending on the Sn mole fraction and epi-layer  thickness. 

Lower film thicknesses required lower temperatures to suppress segregation, while lower Sn 

content material needed more annealing cycles. 
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7.2.  Future work 

7.2.1. High pressure growth 

Study of the effect of pressure on the growth of the films showed that higher material 

quality could be achieved by increasing the growth pressure. It was also observed that reduction 

of material quality and Si incorporation at low temperature growth could be compensated by 

increasing the growth pressure in Ge and SiGe films.  Therefore, it is expected that growth of 

high quality GeSn and SiGeSn films could be achieved at high growth pressures. 

  

7.2.2. Plasma enhancement 

Increasing Sn composition and material quality of the Si-Ge-Sn alloys is a challenge for 

fabrication of efficient devices.  There is a trade-off between these two since higher Sn is 

incorporated at lower temperature and higher quality is achieved at higher temperatures. In 

order to tackle this challenge, methods that promote growth away from thermal equilibrium 

conditions is required. In this regard, plasma enhanced growth of GeSn materials is of great 

importance. As was discussed in Chapter 3, low temperature and high quality Si growth is 

possible using plasma enhanced CVD.  Therefore, growth of Si-Ge-Sn alloys needs to be 

studied using this method.  

 

7.2.3. Atomic source 

The second method that can serve the same purpose is using an atomic source for 

breaking the atomic bonds of the molecules and promoting lower temperature growth.  Figure 

76 shows the schematic of an atomic source that is composed of a gas inlet and a tungsten 

filament.  The filament is covered with a stainless steel shield to keep the flow of the gas toward 

the filament. This method could be used to produce highly reactive radicals of hydrogen, silane, 
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and methane.  Incorporation of Si and C at low temperature is more challenging due to higher 

stability of the molecules and this method will help by breaking silane and methane to their 

radicals of SiHx and CHx, respectively.   

 
Figure 76. Atomic source for production of highly reactive radicals of gases. 

 

7.2.4. Deuterated stannane gas mixing 

Deposition of GeSn and SiGeSn materials using SnD4 resulted in more robust growth 

and higher film quality; however, Sn incorporation higher than 2% was not achieved using in-

situ gas mixing.  Higher flow of pure SnD4 resulted in poor film quality; therefore, diluting gas 

with the proper carrier gas is a potential solution to overcome this problem. Figure 77 shows the 

design of a SnD4 gas mixing system.  A pressure based system is proposed in order to dilute the 

SnD4 gas with a diluent gas.  The SnD4 gas would be stored at liquid nitrogen temperature (-200 

°C) to be safe from decomposition and warmed up to dry ice temperature (-80 °C) to increase 

the vapor pressure.  

 The mixing bottle would be pressurized to the required pressure and the pressure 

monitored with the pressure gauge.  The diluent gas (Ar, H2 or N2) would be used to raise the 

total pressure to reach the planned dilution ratio.  A ferromagnetic stirring motor would be used 

at the bottom of the bottle in order to reduce the time needed to mix the gases.  The presence of 

SnD4 would be tested by a residual gas analyzer prior to entering the gas manifold.  The bottle 
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would be pumped down every day after finishing the runs.  This would reduce the possibility of 

Sn deposition in the mixing bottle as presence of solid Sn promotes decomposition of the SnD4 

gas.   

 
Figure 77.  Design of SnD4 gas mixing system. The system is composed of a mixing bottle, a 

stirring motor, a vacuum gauge, a residual gas analyzer, and a turbo pump.  
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Appendix A: Description of Research for Popular Publication 

 

We are living in the information age in which computers and digital devices have 

changed all aspects of traditional life such as communication.  Microelectronics companies have 

tried to make their devices available to all the people by reducing their production costs and 

increasing the efficiency of the devices.  This effort has resulted in a digital revolution in the 

world where people’s needs are met largely by using electronic devices.  Additionally, 

ccommunication in the modern world is almost impossible without using current digital 

technology.  In order to enhance the communication speed, new materials need to be developed 

for a data communication in the computer systems.   

Currently, optical communication is well established for long distance data transfer but 

the same technology should be incorporated inside the computer chips to increase the data 

transfer speed.  Wire connection is still in use for connecting the devices on the chip which 

limits the speed and volume of the transferred data.  Optical interconnects are designed to be 

used as superhighways that can replace long connections on the chip. Increasing the data 

transfer speed on the chip results in achieving lower data processing time and, subsequently, 

smaller and cheaper devices.  In order to be able to transfer data on the chip, electronic signals 

need to be transformed to optical by using modulators, then sent through lasers, transferred by 

waveguides, and received by photodetectors.  Developing a material that can be used for all 

these devices and still be compatible with silicon CMOS technology is challenging.  

Additionally, the material should be low cost so that it could win the price competition in 

industry.  

Silicon-germanium-tin is a material system that enables fabrication of lasers, detectors, 

and waveguides needed for sending and receiving data on a chip. However, low cost production 
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of Si-Ge-Sn alloys is a challenge due to instability of Sn precursors. Researchers at the 

University of Arkansas have developed new methods for low cost production of these materials 

that are industrially scalable.  A custom designed chemical vapor deposition system was built 

that can use low cost commercially available gases for the growth of Si-Ge-Sn alloys. Despite 

the challenges for incorporation of Sn in Ge and SiGe films, Mosleh et al. have been able to 

grow films that have up to 7% Sn and 17% Si. “This is the first time GeSn and SiGeSn was 

deposited directly on Si using all commercial gas precursors,” said Mr. Mosleh. These results 

are very promising for the growth of device structures such as lasers and photo detectors. Dr. 

Naseem and Mr. Mosleh have patented their exceptional results which could lead to a big 

change in the future of Si technology.  In the next stage of the research, higher Sn incorporation 

as well as higher material quality are targeted.  
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Appendix B: Executive Summary of Newly Created Intellectual Property 

 

1. Low temperature growth of Si at 250 °C 

2. Direct growth of GeSn and SiGeSn films on Si substrates using commercially 

available gases of silane, germane, and stannic chloride 

3.  Buffer-free growth of GeSn and SiGeSn films using in-situ gas mixing of deuterated 

stannane with commercial precursors. 
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Appendix C: Potential Patent and Commercialization Aspects of Listed Intellectual 

Property Items 

 

C. 1 Patentability of Intellectual Property (Could Each Item be Patented) 

The three items listed were considered first from the perspective of whether or not the 

item could be patented. 

1. The measured value for the low temperature Si growth could not be patented 

2. The method for growing GeSn and SiGeSn directly on Si without buffer layer is 

patentable. 

3. The method for growing GeSn and SiGeSn using SnD4 is patentable 

 

C. 2 Commercialization Prospects (Should Each Item Be Patented) 

The three items listed were then considered from the perspective of whether or not the 

item should be patented. 

1. Not applicable 

2. A provisional patent has been filed on Dec. 30, 2014 for this patent:  Application 

number: 62097914.  

3. An invention disclosure was filed with the technology licence office but the 

inventors decided to withdraw as the intellectual merit for this invention was not 

satisfying. 

 

 C. 3 Possible Prior Disclosure of IP 

The following items were discussed in a public forum or have published information 

that could impact the patentability of the listed IP. 
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1. Not applicable 

2. Not applicable 

3. Not applicable 
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Appendix D: Broader Impact of Research 

 

D. 1 Applicability of Research Methods to Other Problems 

The methods that were used for the growth of Si-Ge-Sn materials could be applied for 

different gas precursors and films.  Handling of each gas might be different but the delivery 

methods are similar and could be applied in different research areas.  Growth methods that were 

used in this research are similar to the current growth methods that are used in industry and 

other research groups. Therefore, different composition of materials that have a gaseous 

precursor could be grown on different substrates. However, the process for each deposition 

needs optimization of precursors and carrier gases flow rates and deposition temperature. 

 

D. 2 Impact of Research Results on U.S. and Global Society 

Currently, optical data transfer technology is being used for data transfer between 

computer racks in data centers in the US and globally.  This technology needs further 

enhancement by having data transfer between the chips and on the chip.  This is possible using 

materials that can efficiently emit and detect light.  The method proposed for the growth of Si-

Ge-Sn can significantly change the industry to move towards low cost production of the 

material and subsequently fabrication of the required devices.  

 

D. 3 Impact of Research Results on the Environment 

Incorporation of GeSn alloys in Si technology increases the efficiency of the electronic 

devices. Such increase in the efficiency reduces the power consumption which directly affects 

the usage of fossil fuels that pollute the environment. Therefore, this research could have a 
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positive impact on saving the environment from excessive use of fossil fuels which causes 

global warming. 
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Appendix E: Microsoft Project for MS MicroEP Degree Plan 
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Appendix F: Identification of All Software Used in Research and Dissertation Generation  

 

Computer #1: 

Model Number: Vaio SVS131 

Serial Number: 535148950700037 

Location: Personal laptop 

Owner: Aboozar Mosleh 

Software #1: 

Name: Microsoft Office 2010 

Purchased by: Aboozar Mosleh 

Software #2: 

Name: Microsoft Project 2010 

Purchased by: MSDN Academy Alliance through Engineering 

Software #3: 

Name: Write-N-Cite III 

Purchased by: Free download available from RefWorks.com, activated by uark student 

account 

 

Computer #2: 

Model Number: Corsair 

Serial Number: Gigabyte – 1/H/CGC22900355 

Location: ENRC Room 2993 

Owner: Dr. Shui-Qing Yu 

Software #1: 

Name: OriginLab 9 

Purchased by: Dr. Shui-Qing Yu 
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G. 4 List of applied patent  

 

30) “Heteroepitaxial growth of Ge-Sn alloys,” A. Mosleh, S-Q Yu, H. A. Naseem, M. A. Alher 

and L. Cousar, US patent application number: 62097914, Dec 2014. 
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Appendix H: Sample preparation procedure 

 

Germanium-tin films were grown on 4” (001) p-type Si substrates with 5-10 Ω·cm 

resistivity.  Prior to loading the samples, they were cleaned in a two-step process: 1. piranha 

etch solution [H2SO4:H2O2 (1:1)], 2. oxide strip HF dipping [H2O:HF (10:1) using 48% pure 

HF] followed by nitrogen blow drying.  The final oxide strip step was not followed by a water 

rinse as it reduces the life-time of hydrogen passivation and exposes the surface to ambient 

oxygen. 

Silicon crystallizes in the diamond lattice structure where each atom has four nearest 

neighbors. For a clean (unpassivated) (100) silicon surface, the surface silicon atoms are left 

with two dangling bonds.  The surface reconstructs itself into a lower energy structure which is 

different from the bulk. Reconstruction changes the position of the atoms up to five layers and 

the surface forms what is called a 2×1 periodic structure (Figure H.1).  In this reconstruction, 

two surface atoms with two dangling bonds come closer to form a bond and leave the other 

bond  dangling. This process is called dimerization. Hydrogen terminates these dimers and 

makes a monohydride surface.  

 

Figure H.1. Top view of Hydrogen passivated Si (100) surface.  a) (1×1) surface 

(unreconstructed). (b) Dimers are formed on the surface to make a (2×1) reconstruction. 
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Surface reconstruction is different at different temperatures. At temperatures above 407 

C the surface is monohydride, while below this temperature it is partially dihydride. A 1×1 

surface reconstruction allows two hydrogen atoms to be bonded to the surface Si atoms. It has 

been reported that epi-layer growth requires a temperature >370C [92] as around 407C most 

of the dihydride on HF dipped surfaces are converted to monohydride by H2 desorption 

Figure H.1 shows pathways of diffusion parallel and perpendicular to the dimer on a 2×1 

Si (100) surface. The activation energy for diffusion parallel to the dimer is different from 

perpendicular diffusion.  Activation energies for Si ad-atom diffusion on a bare Si (100) 2×1 

surface are 0.6 eV and 1 eV for parallel and perpendicular to dimer rows, respectively. 

However, it is increased to 1.5 and 1.7 eV for parallel and perpendicular to dimer rows, 

respectively, for a monohydride surface.  

The energy barrier caused by hydrogen passivation is of great importance as preparation 

plays a crucial role in the nucleation step needed for epitaxial growth. Therefore, capping Si 

dangling bonds with hydrogen (HF dipping) should be done with special care. Hydrogen 

passivated silicon surfaces can resist reaction with oxygen and water vapor for several minutes. 

However, it cannot resist this reaction for long as spectroscopic ellipsometry study of Si (100) 

shows 0.5 Å of oxide is grown on hydrogen-terminated Si (100) surface after 20 min.  Also, 

having a hydrophobic surface is not a true indicator of an oxide-free surface because the 

oxidation mechanism starts with oxidizing the Si back bonds while keeping the surface 

hydrogen-terminated. This process accelerates in the presence of water. Therefore, rinsing a 

hydrogen passivated surface after HF dipping oxidizes the surface faster. This is the reason HF 

dipped hydrogen-passivated samples are blow-dried with nitrogen rather than rinsed in water. 
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