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Abstract 

 Within the United States type 2 diabetes is an ever growing health epidemic. The prevalence in 

the adult population has quadrupled over the past 30 years and is expected to continue on a similar path 

in the coming decades. While the cause of type 2 diabetes is multifactorial, it is considered to be an 

acquired condition related to environmental contributors including poor diet, obesity, and physical 

inactivity, which may be managed to alter the course or progression of the disease. Preventative or 

maintenance measures emphasize nutritional intervention strategies, including encouraging individuals to 

follow a nutrient-dense, high-fiber diet with ample whole-grains, such as brown rice. A number of scientific 

studies have determined that regular consumption of brown rice is linked with improved diet quality and 

adequate fiber intake. Furthermore, researchers have demonstrated the various health properties of 

brown rice and its nutritional constituents and conclusively shown that brown rice is beneficial and 

effective in managing blood glucose and insulin levels. However, while the effects on glucose and insulin 

are well understood, there is limited research regarding its effects on GLP-1 and ghrelin, two satiety 

hormones which are fundamental in the progression of diabetes. Despite extensive evidence supporting 

an inverse relationship between regular brown rice consumption and the risk of type 2 diabetes, multiple 

national-level studies have reported that the majority of Americans seldom consume brown rice. 

Previously, much focus has been placed on examining rice consumption in the population as a whole; 

little information is currently available addressing geographical trends. Therefore, the first objective of this 

research was to provide details on nutrient intake and rice consumption patterns in the Southern U.S., the 

region where diabetes is most prevalent. Secondly, in the interest of promoting brown rice consumption, 

the Korean rice cake (Seolgitteok) has been suggested as a potential functional food product which could 

simultaneously increase rice intake and satisfy U.S. consumers’ increasing demand for ethnic foods. 

Thus, the second objective was to investigate the health effects of consuming Seolgitteok made with 

varying ratios of white-to-brown rice flour, in hopes of enhancing the consumption of brown rice among 

American consumers.  
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Introduction 

 
Diabetes is a major health problem worldwide, especially in the United States where the 

incidence and prevalence are expected to rise dramatically in the next few decades (CDC, 2014). 

According to the 2014 National Diabetes Statistics Report, published by the United States Center for 

Disease Control and Prevention (CDC), 29.1 million Americans have diabetes mellitus (type 1, type 2 or 

gestational) and 86 million Americans have pre-diabetes (CDC, 2014). Researchers at the National 

Institute of Health (NIH) estimate that the incidence of diabetes will rise from 14% of Americans in 2010, 

to somewhere between 21% and 33% of Americans by 2050 (Boyle et al. 2010).  

Type 2 diabetes (T2DM) is an acquired and progressive disease characterized by insulin 

resistance and β-cell failure (NIH, 2014). According to statistics published by the CDC (2014), it is the 

most common form of diabetes, accounting for 90% to 95% of the diagnosed cases in the United States. 

Pre-diabetes is defined as a higher than normal fasting blood glucose level, between 100 and 125 mg/dL. 

Individuals with pre-diabetes have a 15% to 30% increased risk for developing T2DM. Fortunately, the 

onset of T2DM can be delayed, and in some cases, prevented, by implementing lifestyle changes such as 

improving food choices and physical activity (CDC, 2014).  

 Whole grain foods, including brown rice, are inversely related to the risk of T2DM (Fung et al. 

2002; Sun et al. 2010; Ye et al. 2012). Brown rice lowers postprandial blood glucose response and 

improves insulin sensitivity (Ito et al. 2005; Panlasigui and Thompson 2006). These anti-diabetic 

properties can be partially attributed to the fiber and resistant starch content of brown rice. The fiber found 

primarily in the bran layer of brown rice, specifically the insoluble fiber, helps lower postprandial blood 

glucose and insulin responses (Seki et al. 2005). However, brown rice consumption in the United States 

remains relatively low despite the health and anti-diabetic benefits of brown rice.  

 Ethnic foods, particularly those with added nutritional value or those containing functional health 

properties, have been growing in popularity among consumers in the United States (Sloan, 2010). The 

Korean rice cake, Seolgitteok, is of particular interest because the traditional recipe, which calls for white 

rice flour, may be adjusted by substitution of brown rice flour; thereby improving the micro- and 
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macronutrient content. Furthermore, introducing a new rice-based product, such as Seolgitteok, to the 

U.S. market may promote brown rice consumption. Previously, researchers determined the sensory 

characteristics of Seolgitteok deemed most acceptable by American consumers (Cho et al. 2014; Cho et 

al. 2016); however, the health effects of consuming Seolgitteok made with brown rice have not yet been 

investigated.  

 The goals of this research were: (I) to determine the dietary and rice consumption patterns of 

Caucasians in the Southern region of the United States and (II) to determine the anti-diabetic health 

effects of Korean rice cakes (Seolgitteok) made from brown rice. The hypotheses were (I) average 

dietary intake in the Southern region of the United States will be consistent with national data, rice 

consumption in the region will be relatively low, and regular rice consumption will be associated with 

improved nutrient intakes, and (II) Korean rice cake made from brown rice will contain more resistant 

starch and dietary fiber, produce lower postprandial blood glucose, insulin, and ghrelin response, and 

produce higher GLP-1 and satiation responses compared to rice cakes made with white rice. The 

objectives of part (I) were to (1) assess average micro- and macronutrient intake and frequency of rice 

consumption in Caucasians in the Southern region of the United States and (2) to evaluate the potential 

relationship between diet quality and rice intake. The objectives of part (II) were (1) to analyze the 

functional starch composition and the dietary fiber content in three variations of rice Seolgitteok and (2) to 

determine the effects of consuming Seolgitteok on postprandial blood glucose, insulin, GLP-1, and ghrelin 

response, as well as satiation in healthy (normoglycemic) and pre-diabetic (hyperglycemic) adults. 
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Literature Review 

 

1. Diabetes Mellitus 

Diabetes mellitus is a disease characterized by insufficient or depleted insulin (CDC, 2014; Kahn 

and Flier, 2000; Muoio and Newgard, 2008). There are three main classifications of diabetes with different 

etiologies, all evolving around alterations in insulin. Insulin is an anabolic hormone, mainly produced in 

the β-cells of the pancreas. Type 2 diabetes (T2DM) begins with insulin resistance in the muscle and 

adipose tissue and progressively leads to β-cell failure (CDC, 2014; Kahn and Flier, 2000; Muoio and 

Newgard, 2008). In insulin resistance, insulin is able to bind to the receptor on cells, but the cells do not 

properly respond to the insulin signal. In skeletal muscle, the GLUT4 transporter does not move to the 

membrane surface after insulin binding, and therefore does not take up glucose from the bloodstream 

(Kahn and Flier, 2000; Muoio and Newgard, 2008). In adipose tissue, insulin resistance is due to a 

decrease in the amount of mRNA that codes for the GLUT4 transporter (Kahn and Flier, 2000). When 

cells don’t properly respond to the binding of insulin the glucose remains in circulation (Kahn and Flier, 

2000; Muoio and Newgard, 2008). As a result, the pancreas produces increasing quantities of insulin to 

meet the growing demand; this leads to progressive β-cell failure (CDC, 2014; Muoio and Newgard, 

2008). 

Diabetes is a widespread epidemic with a rapidly increasing incidence and prevalence (CDC, 

2014). Approximately 29.1 million Americans have diabetes mellitus, which equates to nearly one in every 

ten people in the United States. In 2012 alone, there were 1.7 million newly diagnosed cases of diabetes 

in people 20 years of age and older; with a total prevalence of 10.8% in adult females and 14% in adult 

males (CDC, 2014). Experts have estimated that by 2050, one-fifth to one-third of American adults will 

have diabetes (Boyle et al. 2010). Currently, T2DM accounts for 90% to 95% of the diagnosed cases 

(CDC, 2014). The high rate of T2DM in the United States is largely attributed to physical inactivity, 

excessive intake of energy dense foods and rising obesity rates (CDC, 2014). Risk factors for T2DM 

include genetics, a family history of T2DM, age, obesity, physical inactivity, hypertension, and ethnicity 
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(NIH, 2014). High-risk ethnic groups in the United States include American Indians, Alaskan Natives, 

African Americans, Hispanics, and Asian Americans (NIH, 2014).  

Aside from a decreased quality of life, T2DM can lead to serious secondary complications, 

including: vision loss, kidney failure, heart disease, stroke, and amputations of lower extremities (CDC, 

2014). There are several conditions associated with diabetes, some of which include nerve disease, non-

alcoholic fatty liver disease, periodontal disease, hearing loss and depression. Diabetes poses an 

enormous financial burden; it is estimated to have cost the United States 245 billion dollars in 2012 and 

health care costs for those with diabetes are 2-3 times higher than those without diabetes (CDC, 2014).  

 Approximately 86 million Americans are pre-diabetic (pre-DM), which equates to more than one-

third of the population (CDC, 2014). Pre-diabetes is defined as a higher than normal fasting blood glucose 

level, more precisely, between 100 and 125 mg/dL. Individuals with pre-diabetes have a 15% to 30% 

increased risk for developing T2DM within five years (CDC, 2014). Fortunately, physical activity, 

moderate weight loss and a healthy meal plan can delay and potentially prevent the onset of T2DM 

(CDC, 2014).  

 Diet and exercise modifications have proven to be successful in the management of pre-DM. The 

Diabetes Prevention Program (DPP) (2002) was a lifestyle intervention research study that included over 

1,000 participants. Participants received one of two treatments: a lifestyle intervention or pharmaceutical 

therapy (metformin) (DPP, 2002). The intervention was designed to increase weight loss (7% of initial 

body weight) and physical activity (150 min moderate physical activity per week), while providing 

participants with counseling, education and support (DPP, 2002). A substantial part of the intervention 

focused on improving dietary habits (DPP, 2002). Participants were encouraged to reduce fat 

consumption (25% of daily energy from fat) and balance energy intake (500-1,000 calories per day less 

than the estimated calories needed to maintain initial body weight) by making healthier food choices 

(DPP, 2002). As a result of the intervention, the incidence of diabetes was reduced by fifty-eight percent 

compared to the control (DPP, 2002). A ten-year follow up study on the Diabetes Prevention Program 

found that the lifestyle intervention group managed to maintained a lower incidence of T2DM, even 

compared to participants who were receiving metformin (DPP, 2009).  
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 Research shows that nutritional treatment is an essential part of the prevention and management 

of T2DM. Currently, the American Diabetes Association’s (ADA) dietary recommendations for T2DM 

focus on reducing total energy intake, while increasing consumption of nutrient dense foods and dietary 

fiber (ADA, 2016). The current evidence is inconclusive on the exact amount of carbohydrates 

recommended for T2DM, but individuals are encouraged to consume carbohydrates from fruits, 

vegetables, whole grains, legumes, and dairy products (ADA, 2016; Evert et al. 2013). In line with these 

recommendations, a recent study using National Health and Nutrition Examination Survey (NHANES) 

data from 1991 to 2011, reported that females with a history of gestational diabetes who consumed a low 

carbohydrate diet, high in protein and fat from animal sources had a greater risk for developing T2DM 

compared to females who consumed a low carbohydrate diet, high in protein and fat diet from plant 

sources (Bao et al. 2016). AlEssa and colleagues (2016) reported females with diets high in fiber and low 

in starch had improved levels of two major biomarkers predicative of T2DM risk, adiponectin and HbA1c. 

However, only the females who had higher intakes of cereal fiber, which includes brown rice, also had 

decreased levels of C-reactive protein levels, another indicator of T2DM risk (AlEssa et al. 2016). Further 

emphasizing the importance of consuming nutrient-dense and high fiber foods rather than simply 

restricting carbohydrate intake. 

 

2. Rice Consumption in the United States 

Rice consumption in the United States is relatively low, especially brown rice, despite the known 

health benefits. Between 1994 and 1996, 17.4% of American adults reported consuming one-fourth cup 

of either white rice, brown rice, or rice flour daily (Batres-Marquez et al. 2009). Between 2001 and 2002, 

that percentage marginally increased to 18.0% (Batres-Marquez et al. 2009). However, despite the 

increase in the number of people consuming rice, the portion size decreased by 8.0% (Batres-Marquez 

and Jensen, 2005; Batres-Marquez et al. 2009). A more recent study evaluating NHANES data from 2005 

to 2010, reported that approximately 60% of American adults consume less than one-eighth cup of rice 

daily (Nicklas et al. 2014).  



6 
 
 

In the former studies on rice consumption, researchers assessed Americans’ all-inclusive rice 

intake, combining white rice, brown rice, and rice flour. Data from adults in the 1994-1996 Continuing 

Survey of Food Intakes by Individuals (CSFII) (n=9,318) and the 2001-2002 NHANES (n=4,744) was 

included. Participants were classified as either rice consumers; those who reported consuming at least 

half of a serving (one-fourth cup) of white rice, brown rice, or rice flour daily, or non-consumers; those 

who reported consuming less than a half serving of white rice, brown rice, or rice flour daily (Batres-

Marquez and Jensen, 2005; Batres-Marquez et al. 2009).  

Batres-Marquez and colleagues (2005 and 2009) determined the age groups 20 to 24 years and 

60 years and older contained the largest percentage of non-consumers (Batres-Marquez and Jensen, 

2005; Batres-Marquez et al. 2009). Of those 20 to 24 years, 78.7% were non-consumers and of those 60 

years of age and older, 82.1% were non-consumers. Middle-age adults, between the ages of 25 and 39, 

contained the largest portion of rice consumers, with 19.9% reporting daily consumption of either white 

rice, brown rice, or rice flour (Batres-Marquez and Jensen, 2005; Batres-Marquez et al. 2009). 

Additionally, the authors reported that the vast majority of the rice consumed was white; brown rice only 

accounted for a mere 1.3% (Batres-Marquez et al. 2009).  

Caucasians (white, non-Hispanics) had the least percentage of rice consumers, with 12.4% 

reporting rice consumption. Caucasians also consumed the smallest portion size compared to other 

races/ethnicities (Batres-Marquez et al. 2009). There was no significant difference between genders, but 

females tended to consume more brown rice than males (Batres-Marquez and Jensen, 2005).  

Rice consumption varied based on geographical region. Total consumption in the Midwestern 

region of the United States was 40% less and the portion size was 16% smaller compared to the national 

averages (Batres-Marquez and Jensen, 2005). Trends in socio-economic status were identified as well: 

lower income and lower education were both associated with greater rice consumption; all-inclusive of 

white rice, brown rice, and rice flour (Batres-Marquez et al. 2005).  

Americans who consumed rice tended to consume more grains (specifically whole-grains), fruits, 

vegetables, meat, poultry, and fish. Rice consumers had reduced intakes of total fat, saturated fat and 

added sugar compared to non-consumers (Batres-Marquez and Jensen, 2005; Batres-Marquez et al. 



7 
 
 

2009; Nicklas et al. 2014). In the three previous studies, rice consumption was positively associated with 

greater intakes of fiber, folate, iron, and potassium (Batres-Marquez and Jensen, 2005; Batres-Marquez 

et al. 2009; Nicklas et al. 2014). Additionally, rice consumers were more likely to have a healthier body 

mass index (BMI) (Batres-Marquez and Jensen, 2005). In summary, rice consumption has been 

associated with improved diet quality and health status.   

 

3. Brown Rice and Health Benefits  

Americans who consumed high amounts of brown rice, defined as two or more one-half cup 

servings per week, tended to be leaner and more physically active (Sun et al. 2010). These individuals 

tended to have an overall healthier diet, with higher intakes of fruits, vegetables and whole grains and 

lower intakes of red meat and trans fat (Sun et al. 2010). Individuals who consumed white rice five or 

more times per week had a 17% greater risk for developing T2DM. However, those who consumed at 

least two servings of brown rice per week had an 11% decreased risk of developing T2DM compared to 

those who ate less than one serving per week (Sun et al. 2010).  

   Low glycemic index foods are linked to improved metabolic control, while high glycemic foods 

are positively correlated with T2DM risk. Brown rice elicits only a small, transient rise in postprandial 

glucose compared to white rice. In-vitro starch digestion of brown rice lowered glucose release by 23.7 

percent compared to white rice (Panlasigui and Thompson, 2006). Randomized-crossover studies with 

both healthy and T2DM subjects, found brown rice consumption significantly reduced incremental area 

under the curve for glucose compared to white rice (Ito et al. 2005; Hsu et al. 2008; Panlasigui and 

Thompson, 2006).  

In brown rice, the outer bran and germ layers remain intact. These layers are rich in key nutrients 

and phytonutrients, such as protein, fat, B vitamins, α-tocopherol, polyphenols and γ-oryzanol (Babu et al. 

2009; Ito et al. 2005; Panlasigui and Thompson, 2006; Shobana et al. 2011; Tian et al. 2004). 

Additionally, removal of the bran during polishing, results in substantial losses in dietary fiber. This fiber 

portion serves as a barrier against digestive enzymes, slowing the digestion process and reducing the 

availability and release of glucose. Nutrients found in the bran layer, including phytic acid and 
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polyphenols, also protect against digestion and lower glucose release (Panlasigui and Thompson, 2006). 

Brown rice also contains ɣ-aminobutyric acid (GABA), which enhances pancreatic release of insulin (Seki 

et al. 2005).  

Brown rice provides approximately four grams of fiber per cup, while white rice provides less than 

one gram per cup (USDA, 2016). The recommended amount of fiber per day for adults ranges depending 

on age: from 28 to 34 grams for males and 22 to 28 grams for females. However, many Americans fall 

short of the recommendation (Trumbo et al. 2002). A recent report using NHANES data from 2011-2012 

found that males over the age of 20 consume an average of 20.3 grams and females over the age of 20 

consume an average of 16.1 grams of fiber per day (USDA, 2014). The 2015 Dietary Guidelines for 

Americans suggested consuming more whole grain foods, like brown rice, daily to increase dietary fiber 

intake (USDA, 2015).  

According to the United States Department of Agriculture (USDA) National Nutrient Database for 

Standard Reference (2016), raw medium-grain brown rice contains 3.4 grams of fiber per 100 grams of 

rice and cooked contains about 1.8 grams of dietary fiber per 100 grams of rice. Brown rice flour contains 

4.6 grams of dietary fiber per 100 grams of flour. Whereas, dry medium-grain white rice only contains 1.4 

grams of dietary fiber and cooked contains 0.3 grams of dietary fiber per 100 grams of rice. White rice 

flour contains 2.4 grams of dietary fiber per 100 grams of flour (USDA, 2016).   

            Bednar and colleagues (2001) evaluated the fiber content of dry brown rice and reported that 100 

grams of dry brown rice contains 5.7 grams of total fiber, slightly higher than the USDA report. Of the 5.7 

grams of dietary fiber, about 75% (4.3 grams) is insoluble fiber and about 25% (1.4 grams) is soluble 

fiber. Brown rice flour contains 5.1 grams of total dietary fiber per 100 grams of dry weight. In rice flour 

about 67% (3.4 grams) of the fiber is insoluble, and about 33% (1.7 grams) is soluble (Bednar et al. 

2001).  

 Seki and colleagues (2005) demonstrated the importance of the insoluble fiber portion of the bran 

in attenuating postprandial glucose and insulin responses. Brown rice was compared to white rice and 

destarched, defatted rice bran to determine which component is responsible for lowering postprandial 

glucose and potentiating pancreatic secretion of insulin. The insoluble fiber portion of the bran produced 
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the lowest postprandial blood glucose and insulin levels, as well as the lowest incremental area under the 

curve. The rice bran itself is 27.0% dietary fiber by weight; 24.5% insoluble and 2.5% soluble fiber 

(Kahlon and Woodruff, 2003).  

 

4. Satiety Hormones  

The satiety hormones ghrelin and glucagon-like peptide-1 (GLP-1) are of specific interest 

because of their roles in the development and management of T2DM (Broglio et al. 2001; Dezaki et al. 

2006; Tong et al. 2010; Tourrel et al. 2002; Xu et al. 1999; Zander et al. 2002). Ghrelin stimulates 

appetite prior to a meal while GLP-1 promotes satiety after a meal (Austin and Marks, 2009; Baggio and 

Drucker, 2007; Nakazato et al. 2001; Wren et al. 2001). Levels of both hormones are decreased in 

persons with insulin resistance, but they remain essential in the regulation and maintenance of glucose 

and insulin levels (Anderwald et al. 2003; Gagnon et al. 2015; Katsuki et al. 2004; Kjems et al. 2003; 

Pöykkö et al. 2003; Pulkkinen et al. 2010; Toft-Nielsen et al. 2001; Vilsbøll et al. 2003; Zander et al. 

2002). 

4.1. Ghrelin 

Ghrelin is a potent orexigenic hormone, commonly referred to as the hunger hormone. Ghrelin 

has several important roles in the body such as regulating appetite, promoting food intake, short and 

long-term energy balance, and glucose and insulin homeostasis. Ghrelin is produced in the gastric 

fundus, by the neuroendocrine cells located in the mucosal layer (Khawaja et al. 2012). It can also be 

produced in other tissues including the pancreas, kidneys, gastrointestinal tract, pituitary, lungs and in 

smaller quantities in the hypothalamus (Van der Lely et al. 2004).  

Ghrelin is primarily released from the fundus of the stomach. It crosses the blood-brain-barrier 

and binds to receptors in several regions of the brain. Particularly high expression is found in the dentate 

gyrus, hippocampus, arcuate nucleus, and hypothalamus. Other areas include the piriform cortex, 

paraventricular nucleus, and the olfactory nerve layer (Nakazato et al. 2001). Once ghrelin binds, it 

stimulates the activation and release of neuropeptide Y (NPY) and agouti-related protein (AgRP) in the 



10 
 
 

arcuate nucleus (Anderwald et al. 2003; Katsuki et al. 2004; Nakazato et al. 2001). These neuropeptides 

are responsive to leptin as well, and help regulate appetite and body weight. Ghrelin competes with leptin 

for these binding sites, and reverses the appetite suppressing effects of leptin (Nakazato et al. 2001). 

Ghrelin has two forms, unacylated ghrelin and acylated ghrelin. In acylated ghrelin, the third 

serine is octanoylated, making it the active form (Pulkkinen et al. 2010; Van der Lely et al. 2004). A higher 

ratio of acylated ghrelin to unacylated ghrelin is associated with insulin resistance (Pulkkinen et al. 2010). 

In obesity and T2DM, ghrelin levels are decreased, but the ratio of acylated ghrelin to unacylated ghrelin 

is higher (Katsuki et al. 2004; Pöykkö et al. 2003; Pulkkinen et al. 2010). 

Ghrelin’s primary function is to maintain energy balance by stimulating appetite and food intake. 

Administration of ghrelin in humans and animals in both the fasting and fed states, increased food 

consumption regardless of the level of satiation (Nakazato et al. 2001; Wren et al. 2001). Ghrelin 

treatment resulted in significant body weight increases (Nakazato et al. 2001). 

Aside from energy balance, ghrelin is involved in glucose and insulin homeostasis. In healthy 

subjects, administration of ghrelin impaired insulin and glucose metabolism. Injections resulted in 

significantly greater fasting and postprandial blood glucose levels. In addition to decreasing glucose 

tolerance, ghrelin also inhibits insulin secretion (Broglio et al. 2001; Tong et al. 2010). Studies have found 

that ghrelin and insulin can indirectly influence one another. First, use of an antagonist on the growth 

hormone receptor, the main receptor for ghrelin, resulted in increased insulin secretion (Dezaki et al. 

2004; Dezaki et al. 2006). Second, gene-deletion studies showed removal of the ghrelin gene reversed 

glucose intolerance induced by a high fat diet (Dezaki et al. 2006).  

Insulin is important for reducing ghrelin after food consumption. In healthy persons, insulin directly 

suppresses ghrelin in insulin-sensitive tissues, such as in the stomach, and indirectly suppresses ghrelin 

by decreasing the expression of NPY (neuropeptide Y). However, the ability to suppress ghrelin levels is 

not as profound in individuals with T2DM and it continues to decline with prolonged insulin treatment 

(Anderwald et al. 2003).  

Several factors can influence ghrelin levels, including an individual’s health status and the 

composition of the meal. In lean and healthy persons, ghrelin will decrease proportional to the caloric 
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content of the meal. However, in persons with insulin resistance, food intake fails to fully suppress ghrelin, 

resulting in insufficient satiation (Pöykkö et al. 2003).  

Ghrelin is also a potent stimulator of gastric emptying. The inability of food intake to appropriately 

suppress ghrelin, not only decreases satiation, but also increases gastric emptying rate (Levin et al. 

2006). This subsequently results in increased food and energy intake, and eventual weight gain.  

The composition of the meal is important for regulating ghrelin. In a crossover study by Erdmann 

et al. (2004), 14 healthy male and female subjects received five test meals: a fat-rich meal (584±96 kcals; 

0% of calories from carbohydrate, 14.5% protein, 85.5% fat), a protein-rich meal (551±81 kcals; 0% 

carbohydrate, 83.0% protein, 17% fat), a carbohydrate-rich meal (658±54 kcals; 79.7% carbohydrate, 

12.4% protein, 7.9% fat), a variety of assorted fruits (434±45 kcals; 93.3% carbohydrate, 6.7% protein, 

0% fat), and a variety of assorted vegetables (140±11 kcals; 75.0% carbohydrate, 25% protein, 0% fat). 

The authors found that consumption of the carbohydrate-rich meal was the only treatment that decreased 

ghrelin (Erdmann et al. 2014). Consumption of the fat-rich, protein-rich, assorted fruit, and assorted 

vegetable meals all increased postprandial ghrelin levels. However, self-reported feelings of satiation did 

not differ after the three macronutrient-rich meals. Therefore the relationship between postprandial ghrelin 

level and feelings of satiety may only apply to carbohydrate-rich meals (Erdmann et al. 2004). In a study 

by Khawaja et al. (2012), high glycemic index foods decreased postprandial ghrelin levels for sixty 

minutes while low glycemic index foods decreased ghrelin five times longer (Khawaja et al. 2012).  

4.2. Glucagon-like peptide-1 

GLP-1 is gastrointestinal satiety hormone. GLP-1 stimulates insulin secretion in a glucose-

dependent manner and improves health of pancreatic islet cells. GLP-1 decreases speed of gastric 

emptying, increases satiety, and reduces food consumption. Because of its powerful effects on insulin 

response, β-cell health, and satiation, it has potential clinical applications for the treatment of T2DM.   

  The precursor to GLP-1 is proglucagon, which is found in the α-cells in the pancreas, the L-cells 

of the gastrointestinal tract, and in the hypothalamus. GLP-1 secretion is highest in the distal ileum and 

colon. GLP-1 is secreted in response to the presence of nutrients in the gastrointestinal tract (Austin and 

Marks, 2009; Baggio and Drucker, 2007). Secretion occurs in two phases, the first being ten to fifteen 



12 
 
 

minutes after a meal and a second phase, thirty to sixty minutes after (Austin and Marks, 2009; Baggio 

and Drucker, 2007). 

In addition to direct contact with nutrients, GLP-1 release is regulated by insulin, cholecystokinin, 

leptin, gastric inhibitory hormone, gastrin releasing peptide and acetylcholine. The GLP-1 receptor (GLP-

1R) is found in pancreatic cells, the lungs, heart, kidney, stomach, intestines, pituitary, and in the central 

nervous system (Baggio and Drucker, 2007).  

Postprandial alterations in GLP-1 levels correspond to changes in regional cerebral blood flow to 

the left dorsolateral prefrontal cortex, particularly in the left-middle and inferior frontal gyri. This area of the 

brain is associated with satiety. Changes in regional cerebral blood flow also occur in the hypothalamus, 

the area of the brain responsible for regulating food consumption (Pannacciulli et al. 2007).  

GLP-1 response depends on several factors, including the amount of food consumed, the meal 

composition, and health status (Baggio and Drucker, 2007; Vilsbøll et al. 2003). Nutrient composition of a 

meal largely determines the GLP-1 response. Raben and associates (2003) compared various 

macronutrient-rich meals containing similar amounts of energy and fiber. This study reported that the 

protein-rich meal (32% of calories) produced the greatest GLP-1 response, followed by the carbohydrate-

rich meal (65% of calories), and then the fat-rich meal (65% of calories) (Raben et al. 2003).  

Dietary fiber (DF) and resistant starch (RS) content of a meal also impact GLP-1. DF and RS are 

associated with increased satiety; however, satiety levels after high DF and RS meals are inconsistently 

related to GLP-1. Several studies have found that DF and RS have marginal influence on GLP-1 (Elliott et 

al. 1993; Karhunen et al. 2010; Klosterbuer et al. 2012; Raben et al. 1994; Willis et al. 2010). In a 

crossover study, Elliott and colleagues (1993) investigated the effects of consuming a brown rice meal, 

containing 75 grams of carbohydrate, on postprandial GLP-1 levels in healthy subjects. Over a three hour 

period, the brown rice meal did not significantly increase GLP-1 levels from the baseline. The control 

glucose meal, containing 75 grams of glucose, resulted in higher postprandial glucose and insulin levels 

and significantly increased GLP-1 levels between thirty and sixty minutes after consumption (Elliott et al. 

1993).  
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An individual’s health can also influence GLP-1. Levels are decreased in persons with insulin 

resistance (Gagnon et al. 2015; Kjems et al. 2003; Toft-Nielsen et al. 2001; Vilsbøll et al. 2003). Despite 

the decrease, GLP-1 still promotes insulin secretion in a glucose-dependent manner. Several studies 

have found GLP-1 infusions significantly enhanced insulin response and stabilized glucose (Ahrén et al. 

2003; Degn et al. 2004; Flint et al. 2001; Kjems et al. 2003; Zander et al. 2002). However, a higher dose 

of GLP-1 was required to normalize glucose in T2DM (Kjems et al. 2003).  

 GLP-1 can have beneficial effects on pancreatic islet cells. GLP-1 improves β-cell sensitivity to 

glucose, de novo insulin synthesis, and β-cell function and viability. The β-cells of diabetics are three 

times less responsive to GLP-1 due to a combination of decreased number of β-cells and decreased β-

cell function (Kjems et al. 2003).  

Zander and colleagues (2002) found that GLP-1 treatment in T2DM significantly improved β-cell’s 

sensitivity to glucose. In-vitro studies on GLP-1 and GLP-1 analogs showed great improvements in 

pancreatic cell number, neogensis, proliferation and differentiation (Tourrel et al. 2002; Xu et al. 1999). In-

vitro GLP-1 treatment also resulted in a significantly greater number of insulin-containing islet cells (Farilla 

et al. 2001; Tourrel et al. 2002; Xu et al. 1999). 

GLP-1 is primarily known for its role as a satiety hormone. GLP-1 promotes satiety, in part, by 

increasing the stomach and upper intestine volume, which slows the rate of gastric emptying. Delgado-

Aros and associates (2002) found that GLP-1 treatment in healthy subjects significantly reduced the 

speed of gastric emptying. Flint and colleagues (2001) found significantly reduced rates of gastric 

emptying in obese males. Zander and associates (2002) found that six weeks of GLP-1 infusions in 

T2DM reduced gastric emptying rate by 43 percent. In addition, GLP-1 infusions significantly reduced 

feelings of hunger and prospective food intake and resulted in significant weight loss.  

GLP-1 improves the uptake of glucose, enhances β-cell function and increases insulin synthesis. 

GLP-1 and derivatives have shown great potential in the management of T2DM. Current therapeutic 

approaches include use of long-acting GLP-1 receptor agonist, inhibitors of GLP-1 degradation, and GLP-

1 derivatives that are resistant to degradation (Degn et al. 2004; Gagnon et al. 2015). The American 

Diabetes Association (ADA, 2016) recommends including GLP-1 agonist medication for individuals who 



14 
 
 

cannot successfully control their Hemoglobin A1C levels after 3 months of using Metformin or other 

noninsulin monotherapy methods alone.  

It seems plausible that therapeutic approaches would aim to suppress ghrelin activity and 

enhance GLP-1 activity. Until recently, the relationship, if any, between these two satiety hormones was 

unknown. However, Gagnon and colleagues (2015) found that ghrelin has a significant role in stimulating 

postprandial GLP-1 release. Pre-treatment of mice with acylated ghrelin prior to an oral glucose tolerance 

test (OGTT) resulted in significantly higher postprandial GLP-1 responses. The amount of insulin released 

was not significantly higher in the ghrelin treated group, but the glucose tolerance significantly improved. 

When the ghrelin-receptor was blocked, the ability of glucose to stimulate GLP-1 was significantly lower 

and insulin secretion was significantly reduced. Furthermore, researchers found treatment of human and 

mice L-cells with ghrelin resulted in a significantly greater release of GLP-1 (Gagnon et al. 2015). 
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Nutrient Intake and Rice Consumption in the Southern United States 

 
Abstract 

The diabetes belt, identified by the CDC in 2011, spanned across much of the Southern United 

States, consisting of 644 counties in 15 neighboring states. Within the diabetes belt, the prevalence of 

diabetes was at least 11.7%, while the, while the rest of the country had an average rate of 8.5%. 

Consumption of fiber-rich whole grains, including brown rice, is inversely related to type 2 diabetes. 

However, the majority of Americans fall short of consuming adequate fiber. The purpose of this research 

was to determine the average nutrient intake and rice consumption of Caucasians in the Southern U.S. 

and to evaluate the potential relationship between diet quality and frequency of rice consumption. A 7-day 

food frequency questionnaire was administered and data from 60 males and 106 females, with a mean 

age of 30.8±14.3 (SD) (18-30yoa, n=111; 31-50yoa, n=30; 51-70yoa, n=25) were included. Participants 

who consumed white rice, brown rice, or both, two or more times in a seven day period were classified as 

rice consumers (RC) (n=39). Mean energy intake was 1930±47 kilocalories/day (43.7±0.5% 

carbohydrate, 16.5±0.5% protein, 36.5±0.4% lipid, energy percent). Mean dietary fiber intake was 

22.1±0.8 grams/day, surpassing the national average of 15.6 grams, but short of the recommendation. 

Ages 18-30 consumed more protein (%) than ages 31-50 (P<0.05). Ages 51-70 consumed more fat (%) 

than those 18-30yoa (P<0.05). Ages 31-50 consumed more dietary fiber than ages 18-30 and 51-70, and 

more polyunsaturated fat than ages 18-30 (P<0.05). The majority reported consuming white rice one-to-

three times per month (34.9%) and brown rice less than one time per month (54.6%). Ages 31-50 were 

the most frequent consumers of both white- and brown rice. Compared to non-rice consumers (NRC), RC 

had higher daily intakes of energy, dietary fiber, polyunsaturated fat, vitamins A, C, E, thiamin, niacin, 

folate, potassium, calcium, iron, phosphorus, magnesium, copper, manganese, and selenium (P<0.05). 

Key findings include that rice, brown rice in particular, is consumed infrequently and that regular 

consumption, regardless of whether it is white- or brown rice, is associated with adequate nutrient 

intakes, most notably dietary fiber, and improved diet quality. 
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Introduction 

 
Diabetes is a major health epidemic worldwide and especially here in the United States. In 2010, 

it was reported that approximately one in ten people in the U.S. had been diagnosed with diabetes (CDC, 

2014). That number is estimated to increase to as many as one in three adults by 2050 (Boyle et al. 

2010). Type 2 diabetes (T2DM) accounts for 90-95% of the diagnosed cases of diabetes (CDC, 2014).  

Based on analysis of county-level data, experts at the CDC identified a portion of the U.S. with a 

very highly concentrated prevalence of diabetes, now termed the “diabetes belt.” The diabetes belt 

consists of 15 states, primarily in the Southern U.S., where diabetes affects more than 11.7% of the 

population. Researchers attributed the heightened prevalence of diabetes to the high obesity rate and 

physical inactivity (Barker et al. 2011; CDC, 2014).  

  Recommendations for T2DM include consuming carbohydrates from nutrient- and fiber dense 

sources, such as brown rice. Brown rice provides dietary fiber, vitamins, minerals, phytic acid, 

polyphenols, and ɣ-aminobutyric acid (GABA), each of which have been found to contain some level of 

anti-diabetic properties (Ito et al. 2005; Panlasigui and Thompson, 2006; Seki et al. 2005; Tian et al. 

2004). Despite the documented health benefits rice consumption, most especially brown rice, remains 

consistently low in the U.S.  

 The majority of U.S. adults reportedly consume less than one-eighth cup of rice daily (Nicklas et 

al. 2014). Rice consumption patterns tend to vary based on demographic characteristics: Caucasians 

(white, non-Hispanic) and ages 20 to 24 years and 60 years and older tend to consume rice the least 

(Batres-Marquez and Jensen, 2005; Batres-Marquez et al. 2009).  

Regular rice consumption has been linked to better diet quality; consumption is positively 

associated with the intake of whole-grains, fruits, vegetables, meat, poultry, fish, fiber, folate, iron and 

potassium (Batres-Marquez and Jensen, 2005; Batres-Marquez et al. 2009; Nicklas et al. 2014; Sun et al. 

2010). Additionally, consumption is negatively associated with the intake of fat (total), saturated fat, and 

added sugar (Batres-Marquez and Jensen, 2005; Batres-Marquez et al. 2009; Nicklas et al. 2014; Sun et 

al. 2010). Furthermore, Sun et al. (2010) determined that adults who consumed one-half cup serving of 
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brown rice two or more times per week, were more likely to be physically active and have a lower body 

mass index (BMI).   

The purpose of this research was to better understand the current dietary intake and the average 

frequency of rice consumption of the white, non-Hispanic (Caucasian) population in the Southern U.S. 

and identify any trends between regular rice consumption and improved nutrient intakes. The objectives 

were to (1) assess the average micro- and macronutrient intakes and frequency of rice consumption in 

the target population and compare and contrast major findings by gender and age and (2) to evaluate the 

potential relationship between average nutrient intake and rice consumption. 
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Materials and Methods 

Participant Profile 

The Institute of Research Board at the University of Arkansas approved this human study to be 

conducted at the University of Arkansas Food Science Department (IRB approval #13-07-024, Appendix 

C-I). A sample of 166 adult male and female volunteers, with an average age of 30.8±14.3 (SD) years old, 

completed a Food Frequency Questionnaire (FFQ). Inclusion criteria included white, non-Hispanics, 18 to 

70 years old and currently residing in the South. In order to identify any trends or patterns in dietary intake 

and rice consumption, two variables were used to categorize responses. Participants were grouped by 

gender (female, n=106; male, n=60) and also by age (young adults, 18-30 years, n=111; middle-age 

adults, 31-50 years, n=30; older adults, 51-70 years, n=25). For the purpose of this study, participants 

were classified as rice consumers (RC) (n=39) if they reported consuming white rice, brown rice, or both, 

two or more times per week.   

Food Frequency Questionnaire Analysis 

A seven-day food frequency questionnaire (FFQ) was distributed at the University of Arkansas’ 

main campus and in the surrounding area (Fayetteville, Arkansas, USA) (Appendix A). The FFQ provided 

an exhaustive list of food items and asked participants to report the quantity and frequency of 

consumption for each. FFQ responses were analyzed using Axxya System Nutritionist Pro™ software 

version 4.3.0 (Stafford, Texas, USA) based on USDA References. The questionnaire included additional 

questions intended to assess average frequency of white and brown rice consumption. Participants’ were 

instructed to specify their gender and age on the questionnaire as well.  

Statistical Analysis 

SAS 9.4© (SAS Institute Inc. Cary, NC, USA) was used to analyze data and determine statistical 

significance. Values are expressed as means ± standard error of the mean (SEM) unless otherwise 

specified as standard deviation (SD). Significant differences were computed using analysis of variance 

(ANOVA), and a P-value of less than 0.05 was considered significant. 
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Results and Discussion 

The 2015 Dietary Guidelines for Americans reported, based on evidence from National Health 

and Nutrition Examination Surveys (NHANES) conducted from 1999-2010, that the average adult, 19 

years of age (yoa) and older, consumes between 1,765 and 2,514 kilocalories per day depending on 

gender (USDA, 2015). The mean energy intake for the participants in this study (n=166) was 1930±47 

kilocalories, falling within the average range reported by the USDA (Table 1). According to the 2015 

Dietary Guidelines, it is recommended that adult (19yoa and older) males consume between 2,000 and 

3,000 kilocalories per day and females consume between 1,600 and 2,400 kilocalories per day depending 

on physical activity level and other health factors (USDA, 2015). In the present study, the average energy 

intake for both genders fell within the recommended ranges (Table 1).  

Participants’ combined daily energy intake from protein (16.5±0.5%) (n=166) was within the 

acceptable macronutrient distribution range (AMDR) of 10-35% (Trumbo et al. 2002; USDA, 2015). This 

finding is consistent with the national average for adults (19yoa and older) of approximately 16.0% 

(USDA, 2015). Daily energy intake from carbohydrate was 43.7±0.5%, slightly less than the AMDR of 45-

65% (Trumbo et al. 2002; USDA, 2015) and below the national average of 49.0% (USDA, 2014). 

The 2015 Dietary Guidelines reported that nearly all Americans do not meet the recommendation 

for dietary fiber and listed fiber as a nutrient considered to be of substantial public health concern in the 

U.S. (USDA, 2015). The recommended amount of fiber for adult males is between 28 and 34 grams 

depending on age (19-30yoa, 33.6 g; 31-50yoa, 30.8 g; 51+yoa, 28 g), however, the national average for 

adult males is 18.2 grams per day (USDA, 2015). The recommended amount of fiber for adult females is 

22 to 28 grams depending on age (19-30yoa, 28 g; 31-50yoa, 25.2 g; 51+yoa, 22.4 g) and the national 

average is 14.8 grams per day, also short of the recommendation (USDA, 2015). In the present study, the 

average fiber intake was 22.1±0.8 grams; higher than the national average of 15.6 grams, but still below 

the recommendation (USDA, 2015). Combined averages for both males (total, 23.6±1.6 g; 18-30yoa, 

22.4±1.9 g; 31-50yoa, 29.1±4.7 g; 51-70yoa, 21.0±1.9 g, per day) and females (total, 21.3±0.9 g; 18-

30yoa, 20.2±0.9 g; 31-50yoa, 25.7±3.6 g; 51-70yoa, 21.6±2.3 g, per day) fell short of the 
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recommendations (Table 1). The USDA recommends increasing intake of whole grains, such as brown 

rice, to boost daily fiber intake (USDA, 2015). 

In the present study, energy intake from lipid was 36.5±0.4%, above the AMDR of 20-35% 

(Trumbo et al. 2002; USDA, 2015) and above the national average of 33.0% (USDA, 2015). The average 

daily fat intake was 79.7±2.3 grams. Males consumed an average of 89.3±4.5 grams of fat daily, less than 

the national average for adult males of 94.5±1.2 grams (USDA, 2015). Females consumed an average of 

74.3±2.4 grams of total fat daily, greater than the national average for adult females of 66.4±0.7 (USDA, 

2015).  

Solid fats, such as trans-fat and saturated fat, are consumed in excessive amounts in the U.S. 

Adults consume, on average, 16% of daily energy from solid fats and 11% of that is from saturated fat 

(USDA, 2015). The average daily saturated fat intake for participants in this study was 25.4±0.8 grams, or 

approximately 8.4% of daily energy intake, below the national average. The Dietary Guidelines 

recommend not consuming more than 10% of calories from saturated fat (USDA, 2015). Experts 

recommend further decreasing intake to less than 7.0% to reduce the risk of cardiovascular disease 

(USDA, 2015). 

In this study, 3.3% of energy intake was from alcohol, or approximately 64 kilocalories (data not 

shown). The Dietary Guidelines reported that alcohol is one of the top contributors to energy intake in 

adults, accounting for 3.8% of the daily energy intake (USDA, 2015). 

 Average cholesterol intake in males was previously considered excessive, with the major 

contributors being eggs, egg products, chicken, and beef (USDA, 2010). The USDA previously 

recommended cholesterol intake be below 300 mg per day (USDA, 2010). However, more recent 

evidence has failed to link cholesterol intake to serum cholesterol levels, therefore no recommendations 

were included in the most recent version of the Dietary Guidelines and cholesterol was no longer listed as 

a nutrient of concern for over-consumption (USDA, 2015). The national average for males is 348 mg and 

225 mg for females (USDA, 2015). Mean intake in this study was 274.7±10.7 mg, below the previously 

recommended amount. The average for males (301.3±16.8 mg) was marginally over the previous USDA 

recommendation, but still well below the national average for males. Interestingly, females consumed an 
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average of approximately 260 mg of cholesterol, which is lower than the previously recommended 

amount, but higher than the national average for females. 

In the present study, middle-age adults had a significantly larger portion of energy intake from 

carbohydrates (45.6±1.1%) compared to older adults (43.1±1.3%) (P<0.05) (Figure 1). Both the young 

and older adult groups did not meet the AMDR of 45-65% for carbohydrate. Young adults consumed a 

significantly larger portion of energy from protein (16.9±0.3%) compared to middle-age adults 

(15.2±0.4%) (P<0.05). Finally, older adults consumed a significantly larger portion of energy from lipid 

(38.5±1.0%) when compared to young adults (36.0±0.5%) (P<0.05) (Figure 1). 

In addition to macronutrient composition, fiber and polyunsaturated fat intake also varied between 

age groups. Middle-age adults consumed significantly more fiber (27.2±2.8 g) compared to the young 

adults (21.0±0.9 g) and older adults (21.3±1.6 g) (P<0.05). Middle-age adults consumed significantly 

more polyunsaturated fat (19.0±2.1 g) than young adults (16.0±0.6 g) (P<0.05), but did not differ from the 

older adults (17.3±1.2 g).   

The majority of participants (34.9%) reported consuming white rice 1 to 3 times per month, 

followed by less than once per month (34.3%). The remaining 30.8% of participants reported consuming 

white rice at least once weekly (Figure 2A). More than half of participants reported consuming brown rice 

less than once a month (54.6%) and exactly one-third reported consuming brown rice between 1 and 4 

times per month (Figure 2B). Only a small number of respondents reported consuming brown rice at least 

two times per week (12.1%).  

The recommended amount of refined grains for a 2,000-calorie diet is 3.0 ounces per day, 

however, approximately 70% of Americans consume more than that (USDA, 2015). The USDA suggests 

replacing at least half of refined grains with whole-grains, and recommends adults consume at least 3-4 

ounces of whole gains daily depending on gender (USDA, 2015). Recent research revealed that nearly all 

Americans do not meet the recommendation for whole grains; however, consumption significantly 

increased between 2001-2004 and 2007-2010 for adults (19-70yoa) (USDA, 2015). The USDA mentions 

that a diet with adequate whole grains, will partially fulfill daily requirements of other short-fall nutrients, 

including 32% fiber, 42% iron, 35% folic acid, 29% magnesium, and 16% of vitamin A (USDA, 2015). 
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In the U.S., 4.4% of all grains consumed are from rice or rice dishes (USDA, 2010). The present 

study found rice consumption to be low and white rice, a refined grain, was consumed more frequently 

than brown rice, a whole grain. Only a small number of participants reported consuming brown rice two or 

more times weekly. This finding is consistent with prior research by Kennedy and Luo (2015) which 

reported that, based on analyses of the 2007-2008 NHANES and the Food Commodity Intake Database, 

the vast majority of U.S. adults do not consume brown rice regularly.  

In order to equally evaluate white and brown rice consumption, responses were grouped into 

three categories: <1x per month, 1-4x per month, or ≥2x per week (Table 2). One response was missing 

from the young adult group for frequency of brown rice consumption (n=110). For all age categories, the 

majority reported consuming white rice 1-4x per month, and the second highest number reporting white 

rice consumption <1x per month. For brown rice, the majority in each age category reported consuming 

brown rice <1x per month, followed by 1-4x per month. 

Participants were considered rice consumers (RC) if they reported consumption at least two times 

per week, and those who consumed rice less frequently or not at all were considered non-rice consumers 

(NRC). RCs were further categorized by the type of rice consumed: white rice-only consumers (WRC, 

n=19), brown rice-only consumers (BRC, n=16), and white and brown rice consumers (WRC+BRC, n=4); 

who consumed both white and brown rice separately at least twice a week. 

Middle-age adults had the greatest percentage of RC for both white (20.0%) and brown (20.0%) 

rice. For young adults, the number of RC decreased from white rice (15.3%) to brown rice (11.8%). None 

of the older adults were WRC, but one participant in that age group was a BRC (Table 2).  

As previously mentioned, Batres-Marquez and associates reported that individuals in their early 

twenties and individuals over the age of sixty greatest number of non-consumers, consistent with the 

present study (Batres-Marques and Jensen, 2005; Batres-Marquez 2009).  

Several significant differences were found when comparing nutrient intakes of NRC (n=127) to 

RC (n=39) (Table 3). RC had significantly higher daily energy intake than NRC (P<0.05); consistent with 

several previous studies (Batres-Marques and Jensen, 2005; Batres-Marquez 2009; Fulgoni et al. 2010; 

Kennedy and Luo, 2015). Fiber intake was also significantly greater for RC than NRC (P<0.05); also in 
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agreement with previous findings (Batres-Marques and Jensen, 2005; Batres-Marquez 2009; Fulgoni et 

al. 2010; Nicklas et al. 2014). In addition, RC also had a significantly higher polyunsaturated fatty acid 

intake (P<0.05).  

An inverse relationship between rice consumption and fat (total) and saturated fat intake has 

been reported previously by multiple authors (Batres-Marques and Jensen, 2005; Batres-Marquez 2009; 

Fulgoni et al. 2010; Kennedy and Luo, 2015). However, the above study found no difference in fat (total) 

or saturated fat between RC and NRC.  

RC had significantly greater intakes of several micronutrients, including: vitamins A, C, and E, 

thiamin, niacin, folate, potassium, calcium, iron, phosphorus, magnesium, copper, manganese and 

selenium (Table 3) (P<0.05). Improved intakes for vitamins A and C, thiamin, niacin, and folate have been 

reported in previous work (Fulgoni et al. 2010; Kennedy and Luo, 2015). Intakes of riboflavin, pyridoxine 

(vitamin B6), and cobalamin (vitamin B12) were greater in RC, however, not significantly as seen in prior 

studies (Fulgoni et al. 2010; Kennedy and Luo, 2015). RC had significantly greater intakes of numerous 

minerals, including: potassium, iron, phosphorus, magnesium, copper, manganese, and selenium, also 

supported by findings of previous research (Batres-Marques and Jensen, 2005; Batres-Marquez 2009; 

Kennedy and Luo, 2015; Fulgoni et al. 2010; Nicklas et al. 2014). It is important to note that the formerly 

mentioned studies may have used different methodology or included different populations and the criteria 

for determining a “rice consumer” may vary. 

Several differences were found when NRC and RC were analyzed based on gender (Table 3). 

Average intakes of calories, sugar, calcium, phosphorus, magnesium, and copper remained significantly 

greater for RC compared to NRC for females (P<0.05), but not for males. Average intakes of vitamin C, 

vitamin E, niacin, folate, and iron remained significantly greater for RC compared to NRC for males 

(P<0.05), but not females. Male RC also had a significantly greater intake of pyridoxine and cobalamin 

compared to male NRC (P<0.05). Both male and female RC had significantly higher intakes of fiber, 

manganese, and selenium compared to NRC of the same gender (P<0.05).  

The nutrient intake of rice consumers was further analyzed based on the type of rice consumed. 

All three categories of rice consumers (WRC, BRC, WRC+BRC) had greater intakes of calories compared 
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to NRC (Table 4). BRC and WRC+BRC had a slightly higher percentage of daily energy intake from 

protein compared to NRC and WRC. All three categories of rice consumers had a lower intake of calories 

from lipids compared to NRC. Both BRC and WRC+BRC had significantly higher intakes of fiber than 

NRC (P<0.05).  

BRC had significantly higher intakes of several nutrients compared to NRC, including: fiber, 

vitamin A, vitamin C, phosphorus, magnesium, copper, and selenium. Interestingly, BRC did not consume 

significantly higher amounts of any nutrient compared to WRC. WRC+BRC had significantly higher 

intakes of fiber, beta-carotene, and vitamin C than WRC and NRC (P<0.05).  

As stated, BRC and WRC+BRC both had significantly higher intakes of fiber, and several 

vitamins and minerals compared to non-consumers. While WRC had negligible differences compared to 

NRC. No significant difference in nutrient intake was found between brown rice-only consumers and white 

rice-only consumers, indicating that the improved nutrient intake seen in rice consumers may not be 

reliant on the variety of rice. The frequency used to evaluate rice consumption (rice consumers defined by 

consumption 2 or more times per week) may not be sufficient to produce significant differences in nutrient 

intake.  

Much of the white rice consumed in the United States is enriched providing important B-vitamins, 

including thiamin, riboflavin, niacin, and fortified, providing folic acid (USDA, 2016). White rice also 

provides iron and zinc (USDA, 2016). Brown rice contains fiber, magnesium, phosphorus and other 

important micronutrients (USDA, 2016). Despite the nutrients present in rice, whether the nutrients are 

naturally occurring and/or added via enrichment or fortification processes, it is unlikely that rice 

consumption in this study was directly or solely responsible for the significant increases in nutrient 

consumption seen in RC.  

Batres-Marquez and colleagues reported that rice consumers generally have diets that are higher 

in grains, vegetables, meat, poultry, and fish (Batres-Marquez et al. 2009).  Further, rice is a dish that is 

typically prepared with vegetables or meat, rather than alone, providing even more fiber, vitamins, and 

minerals.  
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While there may not be a direct correlation, the current evidence supports that there is an 

important link between rice consumption and diet adequacy. As stated, when compared to non-

consumers, rice consumers had significantly greater intakes of vitamin A, vitamin C, vitamin E, folate, and 

magnesium, all of which are on the USDA’s list of largely under-consumed nutrients, referred to as 

“shortfall nutrients.” Additionally, rice consumers had significantly greater intakes of calcium, potassium, 

and fiber, which the USDA has classified as under-consumed nutrients of substantial public health 

concern because inadequate intake is associated with adverse health conditions (USDA, 2015).  

There are several limitations to this study. Primarily limitations stem from use of a seven-day food 

frequency questionnaire, which require volunteers to rely on memory to recall food intake accurately and 

honestly. Food recalls are also often associated with underreporting of calorie intake. A second limitation 

to this study was the sample characteristics; there was a much higher response rate from females and 

younger adults. Another limitation to this study is that the survey included questions about frequency of 

rice consumption, but the survey did not include questions on serving size/portion. Finally, it would have 

been beneficial to include questions on respondent’s health status, including BMI, physical activity level, 

or lifestyle. Additionally, information on education level and household income would have been beneficial 

in assessing dietary patterns and rice consumption trends. 
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Conclusion 

 
This study provides detailed information on the dietary habits of Caucasians in the Southern 

region of the United States. Energy intake from fat tended to increase with age. Middle-age adults had 

higher intakes of carbohydrate and fiber. Compared to national averages, there were a few minor 

discrepancies. Average energy intake from fat was higher than the national average, but saturated fat 

was lower. Dietary fiber intake was above the national intake. Frequency of rice consumption was 

consistently low, with white rice being the more preferred. Some unfavorable trends were also identified; 

rice consumption was positively associated with higher daily energy intake. Overall, rice consumers had 

substantially improved intakes of dietary fiber and several vitamins and minerals. Differences in nutrient 

intake and diet quality were even more apparent when brown rice was consumed, as opposed to white 

rice alone. These findings suggest that there are potential benefits to including regular rice consumption, 

as part of a healthy, adequate diet.  
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http://www.health.gov/dietaryguidelines/dga2005/document/pdf/DGA2005.pdf
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Tables and Figures 

 
 
Table 1. Dietary Intake Information 

 Total (n=166) Males (n=60) Females (n=106) 

Calories (kcals) 1930.9 ± 46.8 2130.7 ± 88.9a 1817.8 ± 50.2b 

CHO (%) 43.7 ± 0.5 42.7 ± 0.8 44.3 ± 0.7 

PRO (%) 16.5 ± 0.2 17.1 ± 0.4 16.2 ± 0.3 

Lipid (%) 36.5 ± 0.4 36.6 ± 0.6 36.4 ± 0.6 

Fiber (g) 22.1 ± 0.8 23.6 ± 1.6 21.3 ± 0.9 

Total Fat (g) 79.7 ± 2.3 89.3 ± 4.5a 74.3 ± 2.4b 

      SFA1 (g) 25.4 ± 0.8 28.8 ± 1.4a 23.4 ± 0.8b 

     MUFAS2 (g) 31.2 ± 1.0 35.6 ± 2.1a 28.7 ± 1.0b 

     PUFAS3 (g) 16.7 ± 0.6 17.6 ± 1.3 16.2 ± 0.6 

Cholesterol (mg) 274.7 ± 10.7 301.3 ± 16.8 259.7 ± 13.7 

Values reflect means + standard error of the mean (SEM). Superscripts not sharing a common letter 
within the same row are significantly different between genders at P<0.05; absence of a superscript 
implies means are not significantly different from each other. 1) Saturated Fatty Acid 2) Monounsaturated 
Fatty Acid 3) Polyunsaturated Fatty Acid. 
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Table 2. Frequency of White and Brown Rice Consumption by Age Group 

White Rice Consumption 
 

Frequency Young Adults (n=111) Middle-age Adults (n=30) Older Adults (n=25) 

<1 per month 30.6% 36.7% 48.0% 

1-4 per month 54.1% 43.3% 52.0% 

≥ 2 per week 15.3% 20.0% 0.0% 

Brown Rice Consumption 

 
Frequency Young Adults (n=110) Middle-age Adults (n=30) Older Adults (n=25) 

<1 per month 55.5% 50.0% 56.0% 

1-4 per month 32.7% 30.0% 40.0% 

≥ 2 per week 11.8% 20.0% 4.0% 

Young adults- 18-30yoa; Middle-Age Adults- 31-50yoa; Older Adults 51-70yoa. 
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Table 3. Key Nutrient Intakes for Non-Rice Consumers and Rice-Consumers  

 
Total 

 

Male 

 

Female 

 
Nutrient NRC1) RC2) NRC RC NRC RC 

Calories (kcals) 1863.4 ± 47.9b 2150.7 ± 118.6a 2090.2 ± 88.1 2225.2 ± 216.8 1751.3 ± 53.2b 2086.9 ± 122.2a 

Protein % 16.4 ± 0.3 16.8 ± 0.5 16.8 ± 0.5 17.6 ± 0.7 16.2 ± 0.3 16.2 ± 0.6 

Carbohydrate % 43.3 ± 0.6 44.9 ± 1.3 42.1 ± 0.9 44.3 ± 1.2 44.0 ± 0.7 45.5 ± 2.3 

Lipid % 36.9 ± 0.5 35.2 ± 0.9 37.1 ± 0.8 35.4 ± 1 36.8 ± 0.6 35.0 ± 1.4 

Fiber (g) 20.6 ± 0.8b 27.2 ± 2.3a 21.0 ± 1.5b 29.7 ± 3.6a 20.4 ± 0.9b 24.9 ± 2.9a 

Total Fat (g) 77.9 ± 2.5 85.8 ± 5.3 88.5 ± 4.7 91.3 ± 10.4 72.6 ± 2.8 81.0 ± 4.3 

SFA3) (g) 24.8 ± 0.8 27.1 ± 1.6 29.2 ± 1.5 27.9 ± 2.9 22.7 ± 1 26.4 ± 1.6 

MUFA4) (g) 30.7 ± 1.2 32.8 ± 2.1 35.8 ± 2.5 35.2 ± 4.2 28.2 ± 1.1 30.7 ± 1.7 

PUFA5) (g) 16.1 ± 0.5b 18.8 ± 1.8a 16.2 ± 0.9 20.7 ± 3.5 16.0 ± 0.7 17.2 ± 1.3 

Cholesterol (mg) 264.5 ± 12.0 308.0 ± 23.2 294.9 ± 16.5 316.3 ± 41.5 249.5 ± 15.8 300.9 ± 25.3 

Sugar (g) 85.2 ± 3.4b 103.2 ± 9.3a 98.2 ± 7.2 105.3 ± 13.9 78.9 ± 3.4b 101.3 ± 12.9a 

Vitamin A (RE) 1013.5 ± 55.3b 1258.2 ± 126.1a 1142.5 ± 107.7 1390.7 ± 226.2 949.7 ± 62.4 1144.7 ± 131.9 

Beta-Carotene (µg) 1192.2 ± 99.2 1514.6 ± 194.9 1345.8 ± 213.3 1675.3 ± 290.3 1116.3 ± 104.3 1376.9 ± 265.7 

Vitamin C (mg) 121.9 ± 6.6b 158.6 ± 15.6a 122.1 ± 12.3b 173.6 ± 22.2a 121.7 ± 7.8 145.7 ± 21.9 

Vitamin D (µg) 2.7 ± 0.2 3.2 ± 0.3 3.6 ± 0.3 3.9 ± 0.6 2.3 ± 0.2 2.7 ± 0.4 

Vitamin E (mg) 5.8 ± 0.3b 8.0 ± 1.2a 5.9 ± 0.6b 9.6 ± 2.4a 5.7 ± 0.4 6.6 ± 0.7 

Thiamin (mg) 1.6 ± 0.1b 1.9 ± 0.2a 1.7 ± 0.1 2.1 ± 0.3 1.5 ± 0.1 1.8 ± 0.2 

Riboflavin (mg) 2.3 ± 0.1 2.7 ± 0.2 2.6 ± 0.1 3.0 ± 0.3 2.2 ± 0.1 2.4 ± 0.2 

Niacin (mg) 24.1 ± 1.2b 28.9 ± 2.2a 26.2 ± 1.5b 32.5 ± 3.1a 23 ± 1.6 25.8 ± 3 

Pyridoxine (mg) 2.2 ± 0.1 2.6 ± 0.2 2.3 ± 0.1b 2.9 ± 0.3a 2.1 ± 0.2 2.4 ± 0.3 

Folate (µg) 398.5 ± 22.8b 521.4 ± 49.0a 415.4 ± 30.1b 588.3 ± 77.3a 390.2 ± 30.8 464 ± 61.3 

Cobalamin (µg) 7.2 ± 0.5 9.1 ± 0.8 7.5 ± 0.7b 10.4 ± 1.3a 7.1 ± 0.7 8.0 ± 0.9 

Biotin (µg) 15.9 ± 0.8 19.1 ± 1.7 18.5 ± 1.7 21.9 ± 3.2 14.6 ± 0.8 16.6 ± 1.6 

Sodium (mg) 2027.1 ± 67.9 2258.2 ± 128.6 2279.8 ± 132 2347.8 ± 198 1902.2 ± 74.7 2181.5 ± 170.8 

Potassium (mg) 2799.3 ± 88.2b 3363.7 ± 218.7a 3093.8 ± 177.9 3666.6 ± 352.7 2653.8 ± 95.1 3104.0 ± 266.2 

Calcium (mg) 790.6 ± 29.2b 937.5 ± 66.6a 952.2 ± 57 996.3 ± 120.7 710.7 ± 30b 887.2 ± 69.0a 

Iron (mg) 16.8 ± 1.0b 21.2 ± 1.9a 17.3 ± 1.2b 23.2 ± 2.9a 16.5 ± 1.3 19.6 ± 2.5 

Phosphorus (mg) 1294.7 ± 36.6b 1559.7 ± 89.9a 1476.9 ± 67.6 1688.2 ± 159.2 1204.8 ± 40.2b 1449.6 ± 93.4a 

Magnesium (mg) 299.5 ± 8.9b 370 ± 25.9 a 325.5 ± 17.6 397.6 ± 42.8 286.7 ± 9.7b 346.5 ± 31.2a 

Zinc (mg) 14.8 ± 0.8 17.4 ± 1.5 16.0 ± 1 19.7 ± 2.4 14.2 ± 1.2 15.5 ± 1.8 

Copper (mg) 1.3 ± 0.0b 1.6 ± 0.1a 1.4 ± 0.1 1.7 ± 0.2 1.2 ± 0.0b 1.5 ± 0.1a 

Manganese (mg) 3.3 ± 0.1b 4.5 ± 0.4 a 3.3 ± 0.2b 4.7 ± 0.6a 3.3 ± 0.1b 4.3 ± 0.5a 

Selenium (µg) 58.6 ± 2.1b 75.8 ± 6.3a 65.9 ± 3.8b  86.2 ± 11.1a 55 ± 2.5b 66.8 ± 6.6a 

Values are expressed as mean  SEM. Superscripts not sharing a common letter within the same nutrient 
for each subgroup (total, male, female) are significantly different at P<0.05; absence of a superscript 
implies means are not significantly different from each other. 1) NRC: Non-Rice Consumer; participants 
who reported not consuming rice two or more times per week (total n=127; male n=42; female n=85); 2) 
RC: Rice-Consumer; participants who reported consuming rice two or more times per week (total n=39; 
male n=18; female n=21); 3) Saturated Fatty Acid; 4) Monounsaturated Fatty Acid; 5) Polyunsaturated Fatty 
Acid. 
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Table 4. Key Nutrient Intakes for Non-Rice Consumers and Rice Consumers Based on Rice Type  

Nutrient NRC1) WRC2) BRC3) WRC + BRC4) 

Calories (kcals) 1863.4 ± 47.9 2133.8 ± 184.4 2171.5 ± 181.2 2147.5 ± 331.4 

Protein % 16.4 ± 0.3 16.2 ± 0.6 17.4 ± 0.7 17.6 ± 2.5 

Carbohydrate % 43.3 ± 0.6 45.2 ± 2.3 43.3 ± 1.6 49.8 ± 1.9 

Lipid % 36.9 ± 0.5 35.6 ± 1.4 35.9 ± 1.2 30.1 ± 1.5 

Fiber (g) 20.6 ± 0.8c 23.8 ± 3.3bc 29.2 ± 3.6ab 34.9 ± 6.3a 

Total fat (g) 77.9 ± 2.5 85.9 ± 8.3 88.2 ± 8.0 75.4 ± 14.9 

SFA5) (g) 24.8 ± 0.8 27.5 ± 2.0 27.3 ± 2.8 23.8 ± 4.2 

MUFA6) (g) 30.7 ± 1.2 32.4 ± 3.3 34.5 ±3.2 27.6 ± 5.5 

PUFA7) (g) 16.1 ± 0.5 18.8 ± 3.0 19.2 ± 2.3 16.9 ± 4.8 

Cholesterol (mg) 264.5 ± 12.0 298.0 ± 26.3 305.6 ± 32.3 365.5 ± 156.3 

Sugar (g) 85.2 ± 3.4 105.8 ± 15.6 100.3 ± 12.5 102.4 ± 26.7 

Vitamin A (RE) 1013.5 ± 55.3b 1032 ± 109.6ab 1454.6 ± 224.3a 1547.3 ± 673.6ab 

Beta-Carotene (µg) 1192.2 ± 99.2b 1105.1 ± 197.5b 1746.5 ± 339.2ab 2532.7 ± 772.3a 

Vitamin C (mg) 121.9 ± 6.6c 133.8 ± 19.2bc 167.6 ± 23.3ab 240 ± 72.5a 

Vitamin D (µg) 2.7 ± 0.2 3.7 ± 0.5 2.5 ± 0.4 3.9 ± 1.8 

Vitamin E (mg) 5.8 ± 0.3 8.7 ± 2.1 8 ± 1.6 5.2 ± 1.3 

Thiamin (mg) 1.6 ± 0.1 2 ± 0.3 1.7 ± 0.2 2.4 ± 0.8 

Riboflavin (mg) 2.3 ± 0.1 2.8 ± 0.3 2.4 ± 0.2 3.1 ± 1.1 

Niacin (mg) 24.1 ± 1.2 29.5 ± 3.4 27.1 ± 2.6 33 ± 10.4 

Pyridoxine (B6) mg 2.2 ± 0.1 2.7 ± 0.3 2.4 ± 0.2 3.3 ± 1.1 

Folate (µg) 398.5 ± 22.8b 523.3 ± 74.7ab 472.3 ± 60.1ab 708.7 ± 224.9a 

Cobalamin (µg) 7.2 ± 0.5 9.4 ± 1.3 8.6 ± 0.9 9.3 ± 3.8 

Biotin (µg) 15.9 ± 0.8 17.8 ± 2.1 18.7 ± 1.9 26.9 ± 12.4 

Pantothenic acid (mg) 8.2 ± 0.5 10.5 ± 1.6 8.2 ± 1.0 12.2 ± 5.3 

Sodium (mg) 2027.1 ± 67.9 2156.5 ± 162.8 2431.8 ± 197.0 2047.1 ± 662.8 

Potassium (mg) 2799.3 ± 88.2 3109.2 ± 311.6 3498.7 ± 348.6 4032.1 ± 659.4 

Calcium (mg) 790.6 ± 29.2 882.7 ± 78.8 1009.2 ± 129.6 911.2 ± 152.5 

Iron (mg) 16.8 ± 1.0 22.8 ± 2.9 18.4 ± 2.0 24.8 ± 9.3 

Phosphorus (mg) 1294.7 ± 36.6b 1477.8 ± 130.1ab 1619.8 ± 149.1a 1708.8 ± 220.0ab 

Magnesium (mg) 299.5 ± 8.9b 337.5 ± 35.5ab 391.7 ± 44.4a 438 ± 62.0a 

Zinc 14.8 ± 0.8 18.7 ± 2.3 15.4 ± 1.6 19.5 ± 8.0 

Copper (mg) 1.3 ± 0.0b 1.5 ± 0.2ab 1.7 ± 0.2a 1.7 ± 0.2ab 

Manganese (mg) 3.3 ± 0.1b 4.1 ± 0.6a 4.7 ± 0.6a 5.5 ± 1.0a 

Selenium (µg) 58.6 ± 2.1b 71 ± 10.3ab 79.9 ± 9.0a 82.3 ± 15.1ab 

Values are expressed as mean  SEM. Superscripts not sharing a common letter within the same nutrient 
are significantly different among groups at P<0.05; absence of a superscript implies means are not 
significantly different from each other. 1) NRC: Non-rice consumer; consume rice less than two times per 
week (n=127); 2) WRC: White rice-consumer; consume only white rice on two or more times per week 
(n=19); 3) BRC: Brown rice-consumer; consume only brown rice on two or more times per week (n=16); 4) 
WRC + BRC: White and brown rice consumers; consume white and brown rice separately 2 or more 
times per week (n=4); 5) Saturated Fatty Acid; 6) Monounsaturated Fatty Acid; 7) Polyunsaturated Fatty 
Acid. 
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Figure 1. Macronutrient Composition by Age Group; (Young adults: 18-30yoa, n=111; middle-
age: 31-50yoa, n=30; older adults: 51-70yoa, n=25). Values reflect means + standard error of 
the mean (SEM); Bars marked with different superscriptions within the same macronutrient are 
significantly different at P<0.05. 
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Figure 2. Average Frequency of White and Brown Rice Consumption; (A) Frequency of white 

rice consumption, n=166; (B) frequency of brown rice consumption, n=165. 
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Effect of Korean Rice Cakes on Blood Glucose, Insulin, and Satiety Hormone Levels 

 

Abstract 

A human research study was conducted in order to determine the effects of Korean rice cake 

(Seolgitteok) on postprandial glucose, insulin, satiety hormones, and appetite in healthy (normoglycemic) 

and pre-diabetic (hyperglycemic) persons. Using a randomized-crossover design, 23 participants 

consumed one of three rice cakes (white rice, WRC; brown rice, BRC; and mixture of equal parts white 

and brown rice, MRC) with a one-week washout period between. Each Seolgitteok contained 50 g of total 

starch based on rice flour analysis, and additional ingredients remained consistent. Blood samples were 

collected intravenously at 15 minutes prior to and 0, 30, 60, 90, 120, and 180 minutes after consumption 

and self-reported feelings of satiety were collected at each time interval using a visual analog scale 

(VAS). The BRC contained significantly more insoluble fiber (3.3±0.3 g/100 g) compared to the MRC 

(1.6±0.3 g/100 g) and WRC (0.8±0.3 g/100 g) (P<0.05). Average postprandial blood glucose response 

was significantly lower at time point 60 for the BRC compared to the MRC and WRC (P<0.05). Glucose 

net incremental area under the 0-3 h curve (niAUC) for the BRC (1941±341 mg·(3h)·dL-1) was 

significantly lower than the WRC (3487±550 mg·(3h)·dL-1) (P<0.05), but not the MRC (2970±427 

mg·(3h)·dL-1). Insulin niAUC for the BRC (2968±493 µU·(3h)·L-1) was reduced by approximately 13% and 

18% compared to the MRC (3407±607 µU·(3h)·L-1) and WRC (3595±633 µU·(3h)·L-1) respectively, but 

the difference was not statistically significant. No differences were observed between treatments for the 

satiety hormones, GLP-1 and ghrelin, and plasma concentrations remained predominately unaffected by 

consumption of the test meals. Based on participants’ subjective appetite responses, the BRC was 

reportedly 10-15% more satiating over the 3 hour postprandial time period compared to the WRC and 

MRC. These findings suggest that Seolgitteok made from brown rice has a potential for use as functional 

food to improve postprandial hyperglycemia and promote satiety.  
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Introduction 

 
Diabetes mellitus is the seventh leading cause of death in the United States, making it a 

significant health concern for the population (CDC, 2014). Upwards of 29 million U.S. adults age 20 years 

and older have diabetes and another 86 million are at risk for developing diabetes (CDC, 2014). It is 

estimated that by 2050, diabetes could affect as many as one in three U.S. adults (Boyle et al. 2010). 

Pre-diabetes is a condition defined as a fasting blood glucose level between 100 and 125 mg/dL. 

Pre-diabetic (pre-DM) persons are at a 15% to 30% increased risk for developing type 2 diabetes (T2DM) 

within five years (CDC, 2014). In 2012, it was estimated that one-third of Americans over the age of 20 

had pre-diabetes and over half of adults 65 years and older had pre-diabetes (CDC, 2014). 

The onset of T2DM can be delayed or prevented through lifestyle modifications (CDC, 2014). The 

Diabetes Prevention Program (DPP) Research Group (2009) reported that implementing a lifestyle 

intervention, which promoted a healthy diet and regular physical activity, reduced the incidence of T2DM 

by 58% compared to the control group and maintained the lower incidence over a ten year time period 

(DPP, 2009). For the prevention and management of T2DM, it is recommended that individuals consume 

carbohydrates from nutrient dense sources such as fruits, vegetables, whole grains, and legumes, as well 

as consume adequate dietary fiber (American Diabetes Association, 2016; Evert et al. 2013). Diets high 

in whole-grains and cereal fiber have been found to improve major biomarkers associated with the 

development of T2DM (AlEssa et al. 2016; Giacco et al. 2014; Yu et al. 2014).  

 Consumption of brown rice, an unrefined whole grain, is inversely associated with the risk of 

T2DM and may be beneficial for the management of hyperglycemia (Fung et al. 2002; Sun et al. 2010). 

The outer bran and germ layers, which provide protection against enzymatic digestion and encompass 

vital nutrients and phytonutrients, remain intact in brown rice, while only the starchy endosperm remains 

in white rice. These two layers reduce the portion of available carbohydrate and provide dietary fiber, 

slowing the digestion and absorption of the rice, thus improving the postprandial metabolic response 

(Babu et al. 2009; Shobana et al. 2011). Furthermore, refining, or polishing, results in substantial losses 

of nutrient including protein, fat, B vitamins, vitamin E, phytic acid, polyphenols and γ-oryzanol (Babu et 
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al. 2009; Shobana et al. 2011). Much of the dietary fiber in brown rice is insoluble. Insoluble fiber 

improves glycemic control and insulin sensitivity (Seki et al. 2005). Further, Sun et al. (2010) reported that 

individuals who consumption of two or more half-cup servings of brown rice weekly, reduced their risk of 

T2DM by 11% when compared to those who consumed less than one serving weekly (Sun et al. 2010).  

There are two satiety hormones important for the development and management of T2DM: 

ghrelin and glucagon-like peptide-1 (GLP-1). Ghrelin, referred to as the “hunger hormone,” is typically 

highest prior to a meal, stimulating appetite and promoting food intake. In normoglycemic persons and 

persons with a BMI<25 kg/m2, levels decrease proportional to a meal’s caloric content (Pöykkö et al. 

2003). However, because insulin is required to counter-regulate circulating ghrelin levels, the ability to 

suppress ghrelin in the fed state is less effective for individuals with insulin resistance (Anderwald et al. 

2003).  

Ghrelin treatment in normoglycemic subjects decreased fasting and fed glucose tolerance and 

decreased postprandial insulin secretion (Broglio et al. 2001; Tong et al. 2010). Deletion of the ghrelin 

gene reportedly improved insulin responsiveness and reversed glucose intolerance induced by a high fat 

diet (Broglio et al. 2001; Dezaki et al. 2004; Dezaki et al. 2006; Tong et al. 2010).  

GLP-1 is a gastrointestinal satiety hormone that stimulates pancreatic secretion of insulin in a 

glucose-dependent manner, reduces food intake, lowers gastric emptying rate, and improves pancreatic 

islet cell health. GLP-1 secretion is stimulated by direct contact with nutrients in the gastrointestinal tract. 

Secretion is biphasic, occurring at 10-15 and then 30-60 minutes post-meal (Austin and Marks, 2009; 

Baggio and Drucker, 2007). GLP-1 response depends on the amount of food consumed, macronutrient 

composition of a meal, and a person’s health status (Baggio and Drucker, 2007; Vilsbøll et al. 2003).  

Similar to ghrelin, insulin is necessary for the regulation of GLP-1 and insulin resistance is 

associated with reduced GLP-1 (Gagnon et al. 2015; Kjems et al. 2003; Vilsbøll et al. 2003; Toft-Nielsen 

et al. 2001). Despite this reduction, GLP-1 remains essential for promoting appropriate insulin secretion 

after food intake. Several studies have reported that therapeutic GLP-1 treatment significantly improves 

glucose control and insulin response (Ahrén et al. 2003; Degn et al. 2004; Flint et al. 2001; Kjems et al. 

2003; Zander et al. 2002).  
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Gagnon et al. (2015) reported that ghrelin has a substantial role in the regulation of postprandial 

GLP-1 secretion. Ghrelin treatment prior to food consumption resulted in significantly higher levels of 

post-meal GLP-1 and significantly enhanced glucose clearance. Moreover, blocking the ghrelin receptor 

was found to lessen post-meal GLP-1 release and insulin secretion (Gagnon et al. 2015).  

 Recently, there has been a growing interest among U.S. consumers for ethnic foods that contain 

added health benefits, such as the Korean rice cake (Sloan, 2010). The traditional Korean rice cake, 

Seolgitteok, is made by steaming a mixture of milled white rice flour, salt, sugar, and water. However, 

researchers previously reported that Americans tended to dislike the chewy consistency and modest 

flavor profile of the traditional recipe (Lee, 2010; Lee et al. 2010; Yoon, 2005). In order to increase 

consumer acceptance in the U.S., Cho et al. (2014) tested partial and full replacement of white rice flour 

with brown rice flour and adjusted the amount of sugar added. These modifications were found to 

enhance consumers’ perception of and preference for Seolgitteok, specifically in regards to flavor and 

texture characteristics (Cho et al. 2014). More in-depth sensory analyses found that full substitution of 

white-for-brown rice was deemed acceptable by consumers and could be marketable in the U.S. (Cho et 

al. 2016). 

The purpose of this study was to assess the health effects of 3 different Korean rice cakes 

(Seolgitteok) (white rice, brown rice, and mixture of equal parts white and brown rice). The objectives of 

this research were (1) to determine the nutrient composition of Seolgitteok and (2) to evaluate the overall 

effects of consuming Seolgitteok on postprandial blood glucose, insulin, ghrelin, GLP-1 and satiation and 

the effects in healthy (normoglycemic) and pre-diabetic (hyperglycemic) adults. 
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Materials and Methods 

Participant Profile 

 The Institute of Research Board (IRB) at the University of Arkansas approved this human study 

to be conducted at the University of Arkansas Food Science Department (IRB #14-09-086, Appendix C-

II). Participants were recruited from the University of Arkansas and the surrounding Fayetteville area 

(Fayetteville, Arkansas, USA). Subjects were screened to determine eligibility and to ensure they were 

non-smokers, had no diagnosed illnesses, did not take any medications, and did not consume two or 

more servings of alcohol per week. Subjects were asked to fast for ten to twelve hours prior to the 

screening in order to measure subjects’ fasting blood glucose (FBG). FBG levels were determined in 

duplicate using a lancing device and Accu-Chek® Aviva Blood Glucose Meter (Roche Diabetes Care, Inc, 

Indianapolis, Indiana, USA). Healthy (normoglycemic; FBG<100 mg/dL) and pre-DM (hyperglycemic; 

100<FBG<125 mg/dL) subjects were selected to participate. 

Anthropometric measurements were taken at the time of the screening using a Seca® digital 

measuring and weighing station (Chino, California, USA) with participants barefoot, in the free-standing 

position. Body height was measured to the nearest 0.01 cm and body weight was measured in the fasting 

state to the nearest 0.01 kg. Body mass index (BMI) was calculated as weight (in kilograms) divided by 

height (in meters) squared.  

Subjects signed consent forms prior to the start of the study. In total, 23 subjects between the 

ages of 21 and 45 completed the study. There were twelve male and eleven female subjects included. 

Five of the males and 7 of the females were healthy (normoglycemic) and 7 of the males and 4 of the 

females were pre-DM (hyperglycemic). 

Study Design 

The study was a randomized-crossover design. There was a washout period between treatments 

of at least one week. Subjects received three treatments: a control treatment consisting of white rice 

(WRC), and two experimental treatments, one consisting of a mixture of white and brown rice (1:1) (MRC) 

and one consisting of brown rice (BRC). Subjects fasted for a minimum of ten hours prior to the treatment. 
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Subjects were allowed five minutes to consume the entire rice cake (containing 50 g of starch) and drink 

all of the water (250 mL) provided. Blood samples were collected intravenously at seven time points. 

Treatment Preparation 

Rice and Rice Flour  

A short grain rice variety was used for this study. Both white and brown rice was purchased from 

a Korean market in Dallas, Texas (HMART, Dallas, Texas, USA). Prior to making the rice flour, 1 kilogram 

of white rice and 1 kilogram of brown rice were soaked separately in 3 liters of water (1:3 rice-to-water 

ratio). The white rice was soaked for a period of 3 hours at 20°C and the brown rice was soaked for a 

period of 24 hours at 4°C. After soaking, the rice drained for 1 hour at 20°C in a colander. After the rice 

was soaked and drained, 1 kilogram of rice was weighed and 12 g of unrefined sea salt (RHEE BROS., 

Inc., Hanover, Maryland, USA) was added. Then, rice was milled in a rice miller (Model: Small Stainless 

Roller machine #283, Korea Food Machine Union Co., Daegu, Republic of Korea). The gap between the 

two stainless rollers was 2 mm. After the rice had been milled one time, 100 mL of water was added to 

the white rice and 130 mL of water was added to the brown rice and sufficiently mixed into the flour. Rice 

flours were then milled two additional times under the same conditions. The rice flour was then stored in a 

double zip-lock bag at 4°C until preparation of the Korean rice cakes (Seolgitteok). Flour was stored for a 

maximum period of 24 hours prior to use.  

Seolgitteok Preparation  

Prior to steaming, 500 g of white rice flour, 500 g of brown rice flour, and a mixture of 250 g of 

white rice flour and 250 g of brown rice flour was weighed. Each of the 3 rice flours was sieved in a U.S. 

standard testing sieve, No. 12 with 1.70-mm opening (VWR International, LLC. Radnor, Pennsylvania, 

USA) to ensure equal size flour particles. Next, 50 g of generic table sugar was added to each of the 

three rice flours. A white, cotton Mainstays™ flour sack towel (Wal-Mart Inc., Bentonville, AR, USA) was 

used to line the inner portion of the first tier of the digital steamer (Hamilton Beach Digital Two-Tier Food 

Steamer #37537, Hamilton Beach Brands, Inc., Southern Pines, North Carolina, USA). The rice and 

sugar mixtures were added to the cloth-lined digital steamer. The rice cakes were steamed for 25 minutes 
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and cooled at room temperature for 5 minutes. After the rice cakes are cooled, the cake was removed 

from the cloth and the entire rice cake was weighed (due to the fact that various factors can influence the 

starch content of rice cakes, including weather conditions, researcher error, etc., the individual 

Seolgitteok portion size was calculated for all treatments on every study date.) Once the rice cakes were 

weighed, an exact serving size was calculated for each rice cake to ensure subjects were consuming a 

serving containing exactly 50 g of starch.  

Starch and Dietary Fiber Analysis  

Total starch content was determined in duplicate for the three rice flours (dry weight) using a 

Megazyme kit and a modified KOH method (Wicklow, Ireland). The mean total starch content of each rice 

flour was then used to calculate the portion size of the three rice Seolgitteok (post-steaming) on each 

date of the human study. Additionally, for each treatment date, all rice Seolgitteok samples were analyzed 

after steaming for total starch content using the same materials and methods described above. The 

Englyst in-vitro starch digestion method was used to determine the functional starch fractions for the flour 

and for the control and treatment samples in duplicates on each date of the human study (Englyst, 1992).   

Dietary fiber content of the three rice flours and rice Seoligtteok was analyzed in duplicates using 

a Megazyme kit (Wicklow, Ireland).  

Food Frequency Questionnaire  

 A seven-day food frequency questionnaire (FFQ), containing a comprehensive list of foods 

followed by serving size, was provided to each of the subjects during the study period. The FFQ asked 

the quantity and frequency of consumption for each item. Subjects’ responses were analyzed using 

Axxya System Nutritionist Pro™ software version 4.3.0 (Stafford, Texas, USA) based on USDA 

References.  

Subjective Appetite Response  

Self-reported appetite ratings were measured using a visual analog scale (VAS) at each time 

interval of the study (Appendix B). Subjects were instructed to place an “X” along a line with opposing 

anchors, from “extremely hungry” to “extremely full.” Subject responses were later given a corresponding 
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numerical value (extremely hungry=0, hungry=10, semi-hungry=20, no particular feeling=30, semi-

satisfied=40, satisfied=50, extremely full=60). Net incremental area under the curve (niAUC) was 

calculated for responses using the trapezoidal approximation (Matthews et al. 1990). 

Blood Collection and Analysis  

Approximately 7.0 mL of blood was collected intravenously at each time interval into a BD 

vacutainer coated with EDTA (Becton, Dickinson and Company©, Franklin Lakes, New Jersey, USA). A 

baseline fasting blood sample was taken (time point -15) prior to consuming the rice cake. Immediately 

following consumption of the rice cake, the first postprandial blood collection (time point 0) occurred, and 

subsequent collections occurred at 30, 60, 90, 120, and 180 minutes.  

Blood samples were centrifuged at 3000 revolutions per minute (rpm) for 10 minutes at 4°C in an 

Allegra™ X-22R Centrifuge (Beckman Coulter, Inc., Brea, California, USA). Plasma was then collected 

and stored at -20°C. Plasma glucose concentrations were determined using an ACE Alera™ Clinical 

Analyzer (West Caldwell, New Jersey, USA). Plasma insulin concentrations were measured using an 

enzyme-linked immunosorbent assay (ELISA) kit from Mercodia (Uppsala, Sweden). Plasma GLP-1 

concentrations were determined using an enzyme immunoassay (EIA) kit (Sigma-Aldrich, Co. LLC. St. 

Louis, Missouri, USA). Ghrelin concentrations were also determined using an EIA kit (RayBiotech, Inc., 

Norcross, Georgia, USA). Incremental area under the curve was calculated for glucose and insulin using 

the trapezoidal rule (Matthews et al. 1990). 

Statistical Analysis  

Subjects were randomly assigned to one of three sequence groups (WRC-MRC-BRC, n=8; MRC-

BRC-WRC, n=7; BRC-WRC-MRC, n=8) to control for possible treatment carryover effects.  

Summary statistics were calculated for all data and expressed as sample means and sample 

standard deviation or standard error of the mean, as specified below. Two sample independent t-test 

were used to analyze descriptive participant characteristics by genders and FBG levels. One-way 

analysis of variance (ANOVA) was used to compare nutrient composition (starch and fiber) between 

treatments and to analyze energy and micronutrient intake from the seven-day FFQs. Additionally, one-
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way ANOVA was used to compare differences in treatment effects at independent time points and 0-3 h 

net incremental change from baseline (iAUC) for plasma glucose, insulin, and satiety responses and used 

to compare differences in iAUC within and between subject groups. One-way ANOVA was also used to 

determine differences for baseline and postprandial plasma ghrelin and GLP-1 at independent time 

intervals. Where significance was found, Tukey’s studentized range test (HSD) post hoc test was 

conducted to determine significant differences among the means. 

Multiple-factor, cross-over, repeated measures analysis of variance (ANOVA) was used to 

examine significant differences between and within subjects and subject groups for the treatments over 

time for the plasma measurements and appetite ratings. Gender, FBG levels and rice type were treated 

as fixed effects having a factorial treatment structure. The carryover effect between visits in the cross-

over portion of the model was considered negligible. Time was treated as a repeated measure for each 

subject’s plasma and appetite measurements. Means were compared using a protected least significant 

difference (LSD) procedure where appropriate. 

Values are expressed as means ± standard deviation (SD) in reference to participant profile and 

nutrient content of the treatments (starch and dietary fiber data). All remaining values are expressed as 

means ± standard error of the mean (SEM), unless otherwise specified. Statistical analyses were 

performed using Statistical Analysis System (SAS, Release 9.4, SAS Institute, Inc. Cary, North Carolina, 

USA). A P-value of less than 0.05 was considered statistically significant.  
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Results 

 

Participant Profile 

After screening and subject selection, data from 23 individuals was included: 12 males and 11 

females with a mean age of 28.8±1.2 years (Table 1). The mean fasting blood glucose (FBG) for the 

subjects was 99.3±1.5 mg/dL and the average body mass index (BMI) was 28.4±1.3 kg/m2. Eight subjects 

were normal weight (BMI 18.5-24.9), 6 were overweight (BMI 25.0-29.9) and 9 were obese (BMI ≥30.0). 

Of the subjects, 19 were Caucasian, 2 Latino or Hispanic, and 1 Asian from India.   

 

Starch and Dietary Fiber Analysis  

 The WR flour contained significantly more total starch compared to the MR and BR flours 

(P<0.05) (Table 2). The BR flour contained significantly more total dietary fiber and insoluble fiber 

compared to the WR and MR flours (P<0.05).  

 Based on starch analysis of the rice cake samples from separate study days, the total starch 

content (per serving) was 52.2±2.8 g, 51.6±2.1 g, and 51.4±5.0 g for the WRC, MRC, and BRC 

respectively (Table 3). The BRC contained a greater amount of dietary fiber compared to the WRC and 

MRC (P<0.05). Both the MRC and BRC had similar amounts of soluble fiber, while the WRC contained a 

lesser amount. The BRC also contained more insoluble fiber compared to both the WRC and MRC 

(P<0.05) (Table 3). 

 

Food Frequency Questionnaire (FFQ) 

 The analysis of the seven-day FFQ is presented in Table 4. There were no significant differences 

in daily energy, carbohydrate, protein, lipid, and dietary fiber intake based on gender. In addition, there 

were no significant differences between the FFQ results of the healthy and pre-DM subject groups (data 

not shown).  
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Subjective Appetite Response  

Based on the subjects’ self-reported appetite ratings, measured at each time interval using a 

VAS, responses did not differ between treatments (Figure 1). Overall there was a significant effect of time 

(P<0.0001), but there was no effect of treatments over time. There was a marginal effect of fasting blood 

glucose (P<0.09) and FBG over time (P<0.08) for VAS responses. 

Comparison of the niAUC revealed the BRC was 10-15% more satiating (WRC, 3044±504; MRC, 

2902±355; BRC, 3360±408). The healthy participants reported feeling ~20-40% fuller after consumption 

of the BRC and WRC when compared to the pre-DM participants (Figure 2).  

 

Postprandial Blood Glucose, Insulin, and Satiety Hormone Response  

Postprandial Glucose Response 

The BRC significantly reduced glucose levels at 60 m compared to the WRC and MRC (P<0.05) 

(Figure 3). Mean niAUC was significantly reduced after consumption of BRC compared to the WRC 

(WRC, 3487±550; MRC, 2970±427; BRC, 1941±341 mg·(3h)·dL-1) (P<0.05). Glucose responses did not 

differ between males and females (data not shown).  

Plasma glucose responses did not differ within the healthy subject group (n=12); glucose reached 

concentration maximum (Cmax) at 30 m and promptly returned to near-baseline values by 2 h following all 

treatments (Figure 4A). There was no significant difference in niAUC among treatments (WRC, 

2470±466; MRC, 2261±435; BRC, 1588±343 mg·(3h)·dL-1).  

For the pre-DM group (n=11), glucose responses differed more conspicuously (Figure 4B). For 

the WRC and MRC, there was a plateau at 30 m, thereafter glucose remained considerably elevated and 

did not return to baseline until 3 h indicating protracted glucose clearance. The BRC response curve was 

similar to that of the healthy participants’, however, glucose did not reach near-baseline values until the 3 

h mark. Within the pre-DM subject group, the niAUC for the BRC was significantly decreased compared 

to the WRC (WRC, 4597±947; MRC, 3743±705; BRC, 2326±604 mg·(3h)·dL-1) (P<0.05). 

Compared to the healthy subjects, the pre-DM subjects had a significantly greater spike in 

glucose immediately upon consuming the WRC (time point 0) (P<0.04). Their glucose was significantly 
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elevated again at 60 m and decreased much more gradually thereafter (P<0.04) (Figure 5A). 

Comparatively, MRC responses were similar at 30 m, but the rate of glucose clearance differed drastically 

between the groups in the subsequent 2 h period (Figure 5B). In contrast, the BRC responses were more 

similar, with the exception of time interval 90 (P<0.02) (Figure 5C). The niAUC of glucose response for 

healthy group was approximately 46, 40 and 25 percent lower for the white, mixed and brown rice 

treatments respectively, compared to the pre-DM group. 

 

Postprandial Insulin Response 

None of the treatments resulted in a significant difference for plasma insulin responses (Figure 6). 

Overall there was a significant effect of time (P<0.0001) on insulin, but no significant effect treatment over 

time. The BRC reduced the niAUC by an average of 15% compared with the other rice cakes, but the 

difference was not significant (WRC, 3595±633; MRC, 3407±607; BRC, 2968±493 µU·(3h)·L-1). 

Insulin responses did not differ between genders (data not shown). Insulin responses also did not 

differ within the healthy group (niAUC for WRC, 3166±811; MRC, 2699±628; BRC, 3105±768 µU·(3h)·L-1) 

or within the pre-DM group (niAUC for WRC, 4063±1006; MRC, 4181±1051; BRC, 2818±638 µU·(3h)·L-1) 

(Figure 7).  

 

Postprandial GLP-1 Response 

Plasma GLP-1 responses did not significantly change in response to the different test meals 

(Figure 8). Postprandial GLP-1 concentrations fluctuated sparingly and never rose above baseline values 

for the white- and mixed rice cakes (Figure 8). The BRC tended to steadily increase GLP-1 

concentrations, resulting in concentrations above fasting at latter time intervals.  

GLP-1 concentrations did not vary within the two subject groups, nor did they vary based on 

gender (data not shown). Baseline and postprandial GLP-1 concentrations varied to a small degree 

between subject groups for the WRC, but responses to the MRC and BRC were nearly indistinguishable 

(Figure 9).  
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Postprandial Ghrelin Response 

Likewise, the test meals did not elicit any significant changes in plasma ghrelin concentrations 

(Figure 10). Overall, there was a significant effect of treatment over time (P<0.04). The BRC tended to 

maintain postprandial ghrelin concentrations marginally below baseline, but the responses were still 

comparable for all 3 rice cakes. The healthy subjects had consistently higher fasting and postprandial 

ghrelin concentrations, but ghrelin levels remained unchanged for both subject groups (Figure 11). 
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Discussion 

 
The present study was conducted in 23 healthy (normoglycemic) and pre-diabetic 

(hyperglycemic) adults to assess the effects of consuming 3 Korean Seolgitteok variations on major 

plasma indicators of T2DM, including postprandial blood glucose, insulin, ghrelin, and GLP-1. It was 

hypothesized that the BRC would improve postprandial metabolic responses, relative to the WRC. The 

primary finding was that modifying the traditional Seolgitteok recipe by substituting white rice- for brown 

rice significantly lowered post-meal blood glucose levels. The overall insulin demand was reduced by an 

average of 15% following the brown rice Seolgitteok. It is worth mentioning that a partial substitution with 

brown rice (mixture of equal parts white and brown rice) was not sufficient to cause considerable 

improvements in the metabolic response, with regards to glucose and insulin. Plasma GLP-1 and ghrelin 

remained unchanged in response to the different treatments and neither satiety hormone appeared to be 

susceptible to, or correspond with fluctuations in plasma glucose or insulin in this study. 

The favorable effects of brown rice on the metabolic response have been attributed to its physical 

properties, structure, and nutrient content. Using various methods including static soaking, gastric 

simulators and magnetic resonance imaging, Kong et al. (2011) provided evidence on the significant role 

of the fiber-rich bran layer in altering digestion and absorption. The bran layer acts as a protective coat, 

blocking moisture and gastric secretions from being absorbed by the rice, thereby preventing starch 

hydrolysis and impeding gastric emptying (Kong et al. 2011).  

Aside from the physicochemical properties, several constituents present in the bran layer such 

as, lipids, polyphenolic compounds and phytic acid, have all been investigated for their suggested role in 

restoring glucose tolerance and insulin sensitivity. However, human-based research conducted by Seki et 

al. (2005) determined that dietary fiber, notably the insoluble fraction, is the predominant component in 

the rice bran responsible for such improvements. The study emphasized the synergistic effects of dietary 

fiber on pancreatic secretion of insulin, subsequently lowering the quantity required to stabilize plasma 

glucose (Seki et al. 2005). Research findings by Mofidi et al. (2012) also points towards insoluble fiber as 

the primary constituent involved in reducing the glycemic response.  
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In the present study, the BRC contained 2.5-fold more dietary fiber (total) per serving compared 

to the WRC. Furthermore, the BRC contained roughly 4-fold more insoluble fiber per serving. Accordingly, 

the improved postprandial glucose and insulin levels in response to the BRC can be reasonably attributed 

to the differences fiber content.  

It is important to also address the resistant starch content, which could have contributed to the 

results as well. The crystalline structure of resistant starch prevents amylases from hydrolyzing starch into 

glucose thus inhibiting digestion as it travels the length of the gastrointestinal tract (Englyst et al. 1992; 

Syihus et al. 2005). Resistant starch is known to decrease postprandial glucose and enhance insulin 

sensitivity (Behall et al. 2006; García-Rodríguez et al. 2013; Nilsson et al. 2008; Robertson et al. 2003; 

Sanz et al. 2010). Based on portion size, the BRC contained more resistant starch compared to the WRC, 

but the difference was less than a gram. Consequently, it can be assumed that dietary fiber was 

predominately responsible for the change in glucose.  

 The BRC markedly decreased glucose throughout the duration of the study and significantly 

reduced the niAUC, indicating that the BRC has a lower glycemic index than the other treatments. 

Consumption of the BRC tended to potentiate insulin as well when compared to white rice, but to a lesser 

degree than observed with glucose. After intake of the BRC, levels of both plasma biomarkers rapidly 

descended upon reaching Cmax at 30 m, evidence of an immediate and effective insulin response.  

 The healthy (normoglycemic) participants were able to maintain normal plasma glucose 

concentrations consistently regardless of rice type, while glucose clearance after the white- and mixed 

rice cakes progressed at a lesser rate and over a longer duration for the pre-DM participants, indicating 

impaired glucose metabolism. By contrast, the brown rice proved to be highly effective in reducing 

glucose regardless of subjects’ fasting blood glucose level. However, there was a considerable variation 

in the glucose responses of the white- and brown rice for the pre-DM subjects; the BRC reduced the 

niAUC by nearly half compared with the WRC. These results indicate that the improved glucose response 

to the brown- as opposed to the white rice Seolgitteok, is amplified in subjects with disordered or impaired 

metabolism.   
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 Within the healthy group, insulin responses from intervals 60 to 180 m differed sparingly between 

the treatments, and there was a <2% difference in niAUC of the white- and brown rice meals. The insulin 

response of the pre-DM subjects was approximately 25% greater than that of the healthy subjects 

following the WRC, suggesting a larger requirement for insulin to reduce blood glucose in response to a 

high glycemic index food. As observed with glucose, there was a considerable reduction in insulin 

between treatments for the pre-DM participants; niAUC was approximately 30% less for the brown rice 

treatment compared with the white rice.  

 Ito et al. (2005) conducted comparable research in adults with fasting blood glucose levels below 

110 mg/dL (7 female, 12 male). Subjects consumed test meals containing equal loads of carbohydrate in 

a randomized order. Incremental glucose responses did not differ within the first hour, but the 0-2 h iAUC 

was significantly reduced for the brown rice compared with the white rice (Ito et al. 2005). The authors 

also found no significant variation in insulin between the white and brown rice (Ito et al. 2005). 

 The present findings are also consistent with research by Panlasigui and Thompson (2006), 

which investigated glycemic responses to white and brown rice meals, in healthy persons (n=10) and type 

2 diabetics (n=9). The authors reported that brown rice lessened the glucose response for all subjects. 

Moreover, the impact of brown rice was more substantial for the hyperglycemic subjects when compared 

with their response to white rice (Panlasigui and Thompson, 2006).  

 Somewhat similar results were found in a recent cross-over study that evaluated the acute effects 

of consuming brown versus white rice meals in males with and without metabolic syndrome (Shimabukuro 

et al. 2014). Within the healthy group, differences in the glucose and insulin responses to the 2 

treatments were insignificant. However, for the subjects with metabolic syndrome, iAUC (0-4 h) glucose 

and insulin responses were significantly reduced in response to the brown rice (Shimabukuro et al. 2014). 

These results are consistent with the above study: larger variations in glucose and insulin following the 

white- versus brown rice meals were more apparent in subjects with disordered or impaired metabolism.  

 This is also consistent with a study by Jenkins et al. (1981), which concluded that brown rice did 

not evoke any measurable changes on the glucose responses of healthy subjects compared to white rice 

containing equivalent portions of available carbohydrate. However, research by Karupaiah et al. (2011) 
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showed that significant differences can exist, albeit findings are somewhat contradictory. Normoglycemic 

subjects’ postprandial blood glucose responses to white- versus brown rice differed significantly at 

several time intervals, but differences in iAUC (0-3 h) for glucose and insulin were insignificant (Karupaiah 

et al. 2011).  

 Studies have suggested that meals rich in dietary fiber have minimal impact on glucose and 

insulin metabolism in healthy persons, despite the significant improvements noted in those with impaired 

glucose tolerance.  In a cross-over, Ullrich and Albrink (1982) reported little variation in the postprandial 

glucose and insulin responses of healthy males following carbohydrate meals either high (41.0 g) or low 

(12.4 g) in dietary fiber. After the initial investigation, researchers further increased the fiber content of the 

high-fiber meal by one-third, yet the even-higher fiber meal failed to alter the plasma biomarkers (Ullrich 

and Albrink 1982). Cara et al. (1992) found similar results, stating that 3 meals enriched with 10 grams of 

dietary fiber from oat bran, rice bran, or wheat fiber failed to improve glucose or insulin over the low-fiber 

(2.8 g) control in normolipidemic, normoglycemic males. Frost et al. (2003) reported dietary fiber-enriched 

pasta induced no change in healthy subjects either, although it should be taken into consideration that 

less than 2 g of fiber was added in that specific study.  

 However, it was later shown that a dietary fiber-enriched cereal meal with close to 15 g of total 

dietary fiber significantly lowered AUC for glucose in type 2 diabetics (n=15) compared with a 

conventional cereal meal containing under 3 g of dietary fiber (Kim et al. 2016). Similar results were 

obtained in two separate studies by Mofidi et al. (2012) and Tucker et al. (2014) that examined the 

glucose-lowering effects of various bread-type products, ranging in dietary fiber, in overweight/obese and 

type 2 diabetic males.   

 In terms of satiety hormone responses, the effects of the different rice treatments on GLP-1 were 

insignificant. The incretin hormones, GLP-1 and glucose-dependent insulinotropic peptide (GIP), are 

responsible for upwards of 50% of postprandial insulin secretion (Burcelin, 2005; Drucker, 2006; Gautier 

et al. 2005; Holst and Gromada, 2004). However, in the present study, insulin responses did not appear 

to correspond with changes in GLP-1.   
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 Additionally, for nearly half of the study participants, post-meal GLP-1 concentrations failed to 

increase above baseline for one or more of the treatments. The inconsistent GLP-1 responses may be 

attributed to a number of variables. Factors such as the time of intake, the meal composition, and a 

participant’s health status can alter postprandial GLP-1 levels (Baggio and Drucker, 2007; Raben et al. 

2003; Vilsbøll et al. 2003). 

 Previous research by Elliott et al. (1993) showed that postprandial GLP-1 was unaffected after a 

brown rice meal, while a glucose meal matched for available carbohydrate content (75 g), resulted in 

significantly higher GLP-1 concentrations accompanied by elevations in plasma glucose and insulin. 

Consistent with the above findings, a study conducted by Kim et al. (2016) found that a dietary fiber-

enriched meal reduced postprandial hyperglycemia in type 2 diabetics, but failed to significantly alter gut 

hormone levels, including GLP-1, compared to the control (Kim et al. 2016). Several other studies support 

that foods high in dietary fiber and/or resistant starch have minimal influence on GLP-1, offering an 

explanation as to why no effects on net concentrations were evident in the current study (Elliott et al. 

1993; Karhunen et al. 2010; Klosterbuer et al. 2012; Raben et al. 1994; Willis et al. 2010). According to 

these data, the acute effects of Seolgitteok on GLP-1 are limited, therefore further research is warranted 

to investigate the potential effects of repeated consumption. 

 Similarly, ghrelin was not significantly changed from baseline upon ingestion of the rice cakes. 

The brown rice was the sole treatment that tended to consistently suppress ghrelin below fasting level, 

but nonetheless, the differences in postprandial responses between treatments were insignificant.  

 There is limited research currently available comparing the effects of brown and white rice 

consumption on ghrelin levels in humans, but somewhat comparable research has been carried out using 

other carbohydrate-based meals. Khawaja et al. (2012) examined the effects of various flatbreads on 

glucose, insulin, and ghrelin responses in persons with and without type 2 diabetes. The low-glycemic 

index bran flatbread reduced 0-5 h glucose and insulin responses overall, with a more pronounced effect 

in the participants with hyperglycemia when compared with their respective response to the high-glycemic 

index flatbread. The low-glycemic bran flatbread was able to significantly reduce postprandial plasma 

ghrelin, inconsistent with the current results (Khawaja et al. 2012). 
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 Gruendel et al. (2006) determined that fiber-enriched meals, derived from carob pulp, which is 

abundant in polyphenols and contains insoluble fiber, significantly reduced acylated ghrelin levels in 20 

healthy individuals, but had no impact on total ghrelin or insulin. The authors elaborated further, stating 

that acylated ghrelin was significantly reduced 1 h after ingestion of 3 meals enriched with either 5-, 10-, 

or 20-grams. However, only the two higher doses of fiber (10 and 20 g) significantly reduced the ratio of 

acylated to total ghrelin, indicating that the postprandial effects of insoluble fiber on ghrelin are dose-

dependent (Gruendel et al. 2006). This former study offers potential explanations as to why no variation 

was observed in the current study. First, the dose of fiber was likely insufficient to elicit significant 

changes in ghrelin. Secondly, plasma levels of biologically active acylated ghrelin may have been altered 

by the meals, but the present study did not measure the concentrations of acylated ghrelin. 

In a cross-over study published by Weickert et al. (2006), healthy females (n=14) consumed 

isocaloric meals consisting of either low-fiber white bread or high-insoluble fiber bread enriched using 

10.5 g of either wheat- or oat cereal fiber. According to the researchers, only the wheat fiber-enriched 

bread significantly suppressed ghrelin levels, but the authors were unable to provide a definitive 

explanation as to why the wheat, but not oat-fiber elicited a lower ghrelin response (Weickert et al. 2006). 

Thus, more in-depth research is necessary to assess the impact of cereal fibers from varying plant 

sources on regulating postprandial ghrelin.  

 Furthermore, Weickert et al. (2006) stated that subjects’ 0-5 h self-reported feelings of satiety 

were unaffected regardless of plasma ghrelin concentrations or fiber content, consistent with the results 

of the present study. Research by Karhunen et al. (2010) also observed that a psyllium fiber-rich meal, 

which significantly reduced postprandial glucose, insulin and GLP-1 levels in healthy individuals, had 

limited influence on satiation responses. The results of the mentioned studies were contradicted by Blom 

et al. (2005) who provided evidence of a significant correlation between ghrelin levels in healthy subjects 

and satiation following carbohydrate-based meals. Therefore, additional research needs to be explored to 

understand the relationship between satiety hormones and subjective feelings of satiation.  
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Conclusion 

In conclusion, substitution with brown rice flour decreased postprandial glucose response and 

tended to mitigate insulin demand compared to the traditional Seolgitteok made from white rice flour. The 

benefits from using brown over white rice were much more pronounced in participants with impaired 

glucose tolerance, as oppose to the healthy participants. Postprandial GLP-1 and ghrelin remained 

considerably unchanged and the differences in postprandial concentrations between the rice cakes were 

equivocal, indicating that a larger dose of fiber is necessary to elicit significant effects. Taken together, 

these data suggest that Seolgitteok made with brown rice has beneficial effects on glucose and insulin 

metabolism, and may be a particularly useful functional food for individuals with impaired glucose 

metabolism to prevent or delay the onset of type 2 diabetes.   
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Tables and Figures 

 
 
Table 1. Subject Characteristics 

 Age (years) BMI1) (kg/m2) FBG2) (mg/dL) 

Total (n=23) 28.8 ± 1.2 28.4 ± 1.3 99.3 ± 1.5 

Healthy (n=12) 26.3 ± 1.0 25.6 ± 1.2 94.2 ± 1.2 

Male (n=5) 27.4 ± 0.7 26.2 ± 2.2 96.4 ± 1.6 

Female (n=7) 25.5 ± 1.5 25.2 ± 1.5 92.7 ± 1.6 

Pre-Diabetic (n=11) 31.5 ± 2.0 31.5 ± 2.1 104.8 ± 1.7 

Male (n=7) 30.5 ± 2.3 31.5 ± 1.9 106.0 ± 2.5 

Female (n=4) 33.3 ± 4.3 31.3 ± 5.1 102.6 ± 0.8 

Values reflect means + standard error of the mean (SEM). 1) Body Mass Index (kilograms body 
weight/meters2). 2) Fasting Blood Glucose (milligrams/deciliter). 
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Table 2.  Starch and Dietary Fiber Composition of Rice Seolgitteok Flour 

Components g/100g WR Flour MR Flour BR Flour 

Total Starch 90.0 ± 1.3a 84.7 ± 2.1b 82.2 ± 1.6b 

RDS1) 39.0 ± 3.3 34.7 ± 0.7 34.4 ± 0.0 

SDS2) 40.7 ± 4.0 48.1 ± 0.9 48.5 ± 1.0 

RS3) 20.3 ± 0.7 18.4 ± 1.2 17.8 ± 0.1 

Total Dietary Fiber 1.9 ± 0.7c 3.5 ± 0.7b 5.7 ± 0.7a 

Soluble Fiber 0.9 ± 0.6 0.8 ± 0.6 1.2 ± 0.4 

Insoluble Fiber 1.0 ± 0.3c 2.7 ± 0.9b 4.4 ± 0.7a 

Values reflect means (dry weight basis) + standard deviation (SD). Total starch and functional starch 
analyses were performed in quadruplicate and dietary fiber analyses were performed in sextuplicate. 
Superscripts not sharing a common letter within the same row are significantly different at P<0.05; values 
not followed by a superscript indicate means are not significantly different from each other. WR: white 
rice; MR: mixed rice; BR: brown rice. 1) Rapidly digestible starch 2) slowly digestible starch 3) resistant 
starch. 
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Table 3.  Starch and Dietary Fiber Composition of Rice Cake (Seolgitteok, g/serving) 

 
WRC MRC BRC 

Serving Size (g) 102.4 ± 2.5 110.3 ± 0.9 115.8 ± 1.4 

Total Starch 52.2 ± 2.8 51.6 ± 2.1 51.4 ± 5.0 

RDS1) 42.9 ± 3.6 42.7 ± 5.2 42.5 ± 4.3 

SDS2) 6.3 ± 2.9 5.7 ± 1.5 5.3 ± 1.3 

RS3) 3.0 ± 2.6 3.2 ± 5.1 3.6 ± 2.7 

Total Dietary Fiber 1.6 ± 0.4c 3.3 ± 0.7b 5.6 ± 0.6a 

Soluble Fiber 0.8 ± 0.5b 1.5 ± 0.7ab 1.7 ± 0.2a 

Insoluble Fiber 0.8 ± 0.7b 1.8 ± 0.8b 3.8 ± 0.6a 

Values reflect means + standard deviation (SD). Serving sizes represent the portion of the total weight 
containing 50 g of total starch based on rice flour analyses. Total and functional starch analyses were 
performed for on samples for each treatment date (WRC, n=17; MRC, n=17; BRC, n=16); dietary fiber 
analyses were performed in sextuplicate. Superscripts not sharing a common letter within the same row 
are significantly different at P<0.05; values not followed by a superscript indicate means are not 
significantly different from each other. WRC: white rice cake; MRC: mixed rice cake; BRC: brown rice 
cake. 1) Rapidly digestible starch 2) slowly digestible starch 3) resistant starch. 



70 
 
 

Table 4. Subject Food Frequency Questionnaire (FFQ) Data 

 Total (n=23) Males (n=12) Females (n=11) 

Calories (kcals) 2089.0 ± 179.9 1997.5 ± 290.4 2188.8 ± 213.7 

CHO (%) 41.2 ± 2.2 37.5 ± 3.3 45.2 ± 2.5 

PRO (%) 17.4 ± 0.9 18.3 ± 1.5 16.4 ± 1.0 

Lipid (%) 38.8 ± 1.7 40.9 ± 2.6 36.5 ± 1.9 

Fiber (g) 24.7 ± 2.4 22.0 ± 3.8 27.6 ± 2.9 

Total Fat (g) 90.1 ± 7.8 89.0 ± 11.2 91.3 ± 11.5 

      SFA1 (g) 29.1 ± 3.0 29.2 ± 4.4 29.1 ± 4.4 

     MUFAS2 (g) 34.8 ± 3.1 34.2 ± 4.2 35.5 ± 4.9 

     PUFAS3 (g) 18.4 ± 1.5 17.9 ± 2.1 19.1 ± 2.1 

Sugar (g) 103.1 ± 13.8 95.4 ± 22.8 111.4 ± 15.4 

Values reflect means + standard error of the mean (SEM). No significant difference in nutrient intake was 
found for males v. females. 1) Saturated fatty acid 2) monounsaturated fatty acid 3) polyunsaturated fatty 
acid. 
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 Figure 1. Mean Incremental Δ in Self-Reported Feelings of Satiation Determined From Subject 
Responses on Visual Analog Scale (n=23). Values reflect means ± SEM. 1) VAS scale: 
extremely hungry=0, hungry=10, semi-hungry=20, no particular feeling=30, semi-satisfied=40, 
satisfied=50, extremely full=60. WRC, white rice cake; MRC, mixed rice cake; BRC, brown rice 
cake. 
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 Figure 2. Mean Incremental AUC of Self-Reported Feelings of Satiation Determined from 
Subject Responses on Visual Analog Scales (n=23); healthy (n=12) v. pre-DM (n=11). Values 
reflect means ± SEM. WRC, white rice cake; MRC, mixed rice cake; BRC, brown rice cake; pre-
DM, pre-diabetic; niAUC, net incremental area under the curve.  
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 Figure 3. Mean Incremental Δ in Plasma Glucose Concentrations (n=23). Values reflect means 
± SEM. *Difference between WRC and BRC at 60 m, P<0.01. **Difference between MRC and 
BRC at 60 m, P<0.03. WRC, white rice cake; MRC, mixed rice cake; BRC, brown rice cake. 
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Figure 4. Mean Incremental Δ in Plasma Glucose Concentration for Healthy and Pre-Diabetic 
Subjects; A) healthy subjects with a normal fasting blood glucose (FBG < 100 mg/dL-1) (n=12); B) 
pre-DM subjects with a high fasting blood glucose levels 100 < FBG < 125 mg/dL-1) (n=11). Values 
reflect means ± SEM. WRC, white rice cake; MRC, mixed rice cake; BRC, brown rice cake; pre-DM, 
pre-diabetic. 
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Figure 5. Comparison of Mean Incremental Δ in Plasma Glucose Concentration Based on Fasting 
Blood Glucose; subjects with healthy fasting blood glucose (FBG < 100 mg/dL-1) (n=12) v. subjects 
with high fasting blood glucose levels 100 < FBG < 125 mg/dL-1) (n=11); A) white rice cake; B) 
mixed rice cake; C) brown rice cake. Values reflect means ± SEM. *Difference between healthy and 
pre-DM at 0 m and 60 m, P<0.05. **Difference between healthy and pre-DM at 90 m, P<0.02. WRC, 
white rice cake; MRC, mixed rice cake; BRC, brown rice cake; pre-DM, pre-diabetic.  
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 Figure 6. Mean Incremental Δ in Plasma Insulin Concentrations (n=23). Values reflect means ± 
SEM. WRC, white rice cake; MRC, mixed rice cake; BRC, brown rice cake. 
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Figure 7. Mean Incremental Δ in Plasma Insulin Concentration for Healthy and Pre-Diabetic 
Subjects; A) healthy subjects with a normal fasting blood glucose (FBG < 100 mg/dL-1) (n=12); B) 
pre-DM subjects with a high fasting blood glucose levels 100 < FBG < 125 mg/dL-1) (n=11). Values 
reflect means ± SEM. WRC, white rice cake; MRC, mixed rice cake; BRC, brown rice cake; pre-DM, 
pre-diabetic. 
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Figure 8. Mean Plasma GLP-1 Concentrations (n=23). Values reflect means ± SEM. WRC, 
white rice cake; MRC, mixed rice cake; BRC, brown rice cake. 
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Figure 9. Comparison of Plasma GLP-1 Concentrations Based on Fasting Blood Glucose; subjects 
with healthy fasting blood glucose (FBG < 100 mg/dL-1) (n=12) v. subjects with high fasting blood 
glucose levels 100 < FBG < 125 mg/dL-1) (n=11); A) white rice cake; B) mixed rice cake; C) brown 
rice cake. Values reflect means ± SEM. WRC, white rice cake; MRC, mixed rice cake; BRC, brown 
rice cake; pre-DM, pre-diabetic. 
 

A 

B 

C 



80 
 
 

 

 

 

 

 

 

 

 Figure 10. Mean Plasma Ghrelin Concentrations (n=23). Values reflect means ± SEM. WRC, 
white rice cake; MRC, mixed rice cake; BRC, brown rice cake. 
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Figure 11. Comparison of Plasma Ghrelin Concentration Based on Fasting Blood Glucose; subjects 
with healthy fasting blood glucose (FBG < 100 mg/dL-1) (n=12) v. subjects with high fasting blood 
glucose levels 100 < FBG < 125 mg/dL-1) (n=11); A) white rice cake; B) mixed rice cake; C) brown 
rice cake. Values reflect means ± SEM. WRC: white rice cake; MRC: mixed rice cake; BRC: brown 
rice cake; pre-DM, pre-diabetic.  
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Conclusion 

 In conclusion rice, predominately brown rice, is consumed infrequently in the Southern region of 

the United States, where type 2 diabetes is most prevalent. In addition, regular rice consumption, 

regardless of rice type, is associated with improved diet quality and more adequate intake of numerous 

shortfall nutrients, including, dietary fiber. Further, Seolgitteok made using brown rice has proven to be 

beneficial in lowering postprandial blood glucose and insulin responses in humans and improved appetite 

response. This research demonstrates that Seolgitteok may be beneficial for promoting rice consumption 

and contains anti-diabetic properties. 
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Appendices  

Appendix A: 

Food Frequency Questionnaire for Nutrient Intake and Rice Consumption Survey 

 
 

Gender: Female or Male           Age: ___________    Subject ID number ___________ 
  

Food Frequency Questionnaire   

This questionnaire asks you about your eating patterns over the past week, which includes the 
time from exactly one week ago until the last meal you had before you fill out this questionnaire.  
For each food item listed, respond by indicating your usual intake of that food per day or week. 
Check “X” on the Day/Week column if you don’t eat the food or if you have it once or twice a year. 
This questionnaire will take about 15 minutes to complete.  
 

Description Amt Unit Quantity Day/Week 

Breads Cereals and Grain Products     

Whole grain breads (whole wheat, rye, pumpernickel) 1.00 slice   

White breads (burger/hot dog bun-1/2 item, French bread-1 slice) 1.00 serving   

English muffin, bagel, pita bread 0.50 item   

Whole grain crackers: Triscuits, Wheat Thins, etc. (4-6 each) 5.00 item   

Other crackers: Saltines, Ritz, etc. (4-6 each) 5.00 item   

Tortilla, corn, 6 inch diameter (medium) 1.00 item   

Muffins 1.00 item   

Pancakes (2), waffles (1-7 inch diameter) 1.00 serving   

Whole grain hot cereal: rolled oats, rolled wheat 0.50 cup   

Instant or quick hot cereal: cream of wheat, cream of rice 0.50 cup   

Cold cereals: shredded wheat, raisin bran, or bran flakes 0.75 cup   

Cold cereals: Frosted Flakes, Sugar Smacks, etc. 0.75 cup   

Rice, cooked 0.50 cup   

Pasta, cooked 0.50 cup   

     

Fruits and Juices     

Apple or pear, fresh, medium 1.00 item   

Banana, medium 1.00 item   

Orange (1 item) or grapefruit (1/2 item) 1.00 serving   

Peach (1), nectarine (1/2) or apricots (2) 1.00 serving   

Berries (in season) 0.75 cup   

Cantaloupe, medium (in season) 0.25 cup   

Other melon (watermelon, honeydew, casaba) 1.00 cup   

Pineapple, fresh 0.50 cup   

Dried fruits: raisins (2 Tbsp), dates (2), prunes (2), dried apricots 
(4) 

0.25 cup   

Canned fruit or frozen fruit 0.50 cup   
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Orange or grapefruit juice 0.50 cup   

Tomato juice or vegetable juice 0.50 cup   

Other juices: apple, grape, pineapple, or cranberry 0.50 cup   

Fruit drinks: lemonade, punch, Koolaid 0.50 cup   

     

Fats and Oils     

Vegetable oils: corn, safflower, soy, etc 1.00 Tbsp   

Olive oil 1.00 Tbsp   

Shortening 1.00 Tbsp   

Lard 1.00 Tbsp   

Margarine 1.00 tsp   

Butter 1.00 tsp   

Mayonnaise 1.00 Tbsp   

Regular salad dressings 1.00 Tbsp   

Low-calorie dressings 1.00 Tbsp   

Sour cream 1.00 Tbsp   

Cream cheese 1.00 Tbsp   

Half & Half, table cream 1.00 Tbsp   

     

Milk, Yogurt and Cheeses     

Skim milk or low fat milk 1.00 cup   

Whole milk 1.00 cup   

Chocolate milk 1.00 cup   

Yogurt 1.00 cup   

Cheese: cheddar, Colby, American, Monterey Jack, etc. 1.00 oz.   

Other cheeses: Swiss, mozzarella, ricotta, string, etc. 1.00 oz.   

Cottage cheese 0.50 cup   

     

Vegetables     

Salads: lettuce, celery, green peppers, onions 1.00 cup   

Dark green leafy vegetables, raw or cooked 0.50 cup   

Carrots, raw or cooked 0.50 cup   

Tomatoes, fresh, medium 1.00 item   

Starchy vegetables, cooked: corn, peas, mixed vegetables 0.50 cup   

Other vegetables, cooked: green beans, beets, zucchini 0.50 cup   

Cauliflower, broccoli, brussel sprouts, cabbage 0.50 cup   

Winter squash, cooked: acron, butternut, hubbard 0.50 cup   

White potato, baked, broiled, or mashed 1.00 item   

Sweet potatoes or yams, cooked 0.50 cup   

     

Beverages     

Cola drinks (1 can = 12 fl. oz) 12.00 fl.oz.   

Diet cola drinks (1 can = 12 fl. oz) 12.00 fl.oz.   
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Non-cola drinks: 7-Up, Sprite, Slice, etc. (1 can/12 fl. oz) 12.00 fl.oz.   

Diet non-cola drinks (1 can = 12 fl. oz) 12.00 fl.oz.   

Coffee or tea (1 cup = 8 fl. oz) 8.00 fl.oz.   

Decaffeinated coffee or teas: Sanka, herbal tea, etc. 8.00 fl.oz.   

Hot chocolate or cocoa 1.00 cup   

Beer (1 can = 12 fl. oz) 12.00 fl.oz.   

Wine, dry or table (red, white, or blush) 4.00 fl.oz.   

Liquor: vokda, whiskey, gin, rum, etc. 1.50 fl.oz.   

     

Protein Foods     

Legumes: lentils, pinto beans, navy beans, cooked 1.00 cup   

Nuts and seeds: peanuts, almonds, sunflower seeds, etc. 0.25 cup   

Peanut butter, nut butters 1.00 Tbsp   

Tofu or other meat substitutes 3.00 oz.   

Beef: rib roast, steak, pot roast, veal, etc. 3.00 oz.   

Beef, ground, cooked 3.00 oz.   

Pork: chops, roast, ham 3.00 oz.   

Lamb: chops, roast 3.00 oz.   

Poultry: chicken, turkey, duck 3.00 oz.   

Fish, canned with oil: tuna, sardines 3.00 oz.   

Tuna, water packed 3.00 oz.   

Fish, fresh or frozen, no breading: trout, halibut, sole, etc. 3.00 oz.   

Shellfish: shrimp, scallops, lobster, clams 3.00 oz.   

Eggs, whole, large 1.00 item   

Egg substitutes or egg whites 0.25 cup   

Lunch meats: bologna, salami, etc. 1.00 item   

Frankfurters or sausage link (4 in x 1 1/8 in) 1.00 item   

     

Desserts and Sweets     

Cookies: chocolate chip, oatmeal, peanut butter, etc. 2.00 item   

Brownies, 2 in. 1.00 item   

Doughnut or sweet roll 1.00 item   

Cake, 1/12 of 9 in. 1.00 slice   

Granola bars (1 item) or granola (1/2 cup) 1.00 item   

Pie, 1/8 of whole pie 1.00 slice   

Gelatin, flavored 0.50 cup   

Pudding or custard 0.50 cup   

Ice Cream 0.50 cup   

Ice Milk 0.50 cup   

Sherbet 0.50 cup   

Candy bar, chocolate bar (1 bar), M&Ms (1 pkg.) 1.00 item   

Hard candy, gum drops, Lifesavers 1.00 item   
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How many times do you consume white rice? 

(1) <1 serving/month         (2) 1-3 servings/month       
(3) 1 serving/week             (4) 2-4 servings/week      (5) >5 servings/week 

      (6)                 per week  
 
How many times do you consume brown rice? 

(1) <1 serving/month         (2) 1-4 servings/month     (3)  >2 servings/week 
(4)                 per week  
 

Thank you for your participation and your time! 

Miscellaneous Foods     

Fast food - pizza 1.00 slice   

Fast food - hamburger or cheeseburger 1.00 item   

Fast food - burrito or taco 1.00 item   

Bacon 2.00 slice   

Popcorn, popped 2.00 cup   

Potato chips, corn chips, tortilla chips 1.00 oz.   

Catsup or chili sauce 1.00 Tbsp   

Tomato based sauce (spaghetti sauce) 0.50 cup   

Pickles or pickle relish (1 Tbsp) 1.00 Tbsp   

Olives 5.00 item   

Sauces: soy sauce, steak sauce, barbeque sauce 1.00 Tbsp   

Brown gravy, giblet gravy, or white sauce 0.25 cup   

Soups, vegetable or noodle type 1.00 cup   

Soups, cream 1.00 cup   

Chewing gum 1.00 item   

Sugar, honey, jam, jelly, syrups 1.00 Tbsp   

 
Can you think of any other food or drink that you had in the past week that was not on this form?  
If so, what was it?  What was the amount?  How many times did you have this in the past week? 

Food _______________________________________________  

Amount _________________________   How often?  ________ per day, ________ per week 

  

Food _______________________________________________ 

Amount _________________________   How often?  ________ per day, ________ per week 

    

Food _______________________________________________  

Amount _________________________   How often?  ________ per day, ________ per week 

   

Food _______________________________________________  

Amount _________________________   How often?  ________ per day, ________ per week 
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Appendix B: 

Visual Analog Scale 
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Appendix C: 

(I) IRB Approval Form #13-07-024 
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 (II) IRB Approval Form #14-09-086 
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