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Abstract 

 

This research investigated the use of carbon nanotubes (CNTs) as a treatment to increase 

the permeability of a bacterial cell wall.  Recombinant Escherichia coli BL21 (DE3) containing a 

plasmid that expressed Green Fluorescent Protein (GFP) and -lactamase were exposed to CNTs 

under various levels of agitation for different times.  Fluorescence assay for GFP, optical 

absorbance for -lactamase activity, and Transmission Electron Microscopy (TEM) were used to 

determine the amount of released protein, and visually examine the permeability enhancement of 

the cells, respectively. It was found that more -lactamase was present in the culture fluid after 

treatment with CNTs in a dose dependent manner.  Indeed, CNTs can lyse the cells up to 90% of 

maximum when compared to lysozyme treatment. Based on TEM, it is believed that this 

treatment damaged the cell walls to make E. coli permeable, causing periplasm proteins and 

enzymes to leak out into the medium.  Consequently, CNTs can be used as lysis agents when it is 

undesirable to add an additional enzyme (lysozyme) to cause the release of intracellular proteins. 

 

Keywords: Carbon nanotubes, Membrane damage, Cell wall permeability, Escherichia coli 
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Chapter 1. Introduction 

 

1.1.  Motivation 

In this chapter, first, we will review the structure of  Escherichia coli cell envelope. Then 

uptake across the outer membrane via hydrophilic and hydrophobic pathways will be reviewed.  

Also, different chemicals and antibiotics that can enhance the outer membrane permeability will 

be introduced. Then, the effect of physical damage on permeability of cell membrane and the 

nanoparticles that have been used to damage the cell walls will be presented. At the end, 

properties of carbon nanotubes (CNTs) that will be relevant for this thesis will be reviewed. 

Next, CNTs structure and the different methods of producing them, including the method that 

was used for the experiments will be illustrated. Then, functionalization of nanotubes will be 

examined. Lastly, the way functionalized nanotubes can be used to make cells permeable in 

order to extract proteins will be covered.  

 

1.2.  Structure of the E. coli cell envelope 

The E.coli cell (Figure 1) is composed of an inner and an outer membrane which are 

separated by peptidoglycan layer. Also, it has an aqueous phase between the outer membrane and 

the inner membrane which is known as periplasm. Cytoplasmic membrane proteins are able to 

generate energy and enzymatic synthesis. They can also translocate the cell components, export 

the toxic byproducts and transport nutrients[1]. In the absence of a utilized transport system, the 

cytoplasmic membrane works as an enormous obstacle for hydrophilic molecules. On the other 

hand, even moderately hydrophobic molecules are able to get in or even cross the lipid bilayer at 

certain temperatures[2]. 
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Figure 1. Schematic of Escherichia coli structure[3]. 

 

The periplasm is a negatively charged section which consists of polypeptides and 

saccharides. Many enzymes such as processing enzymes for conversion of non-transportable 

metabolites to transport substrates exist in the periplasm. The peptidoglycan of the periplasm has 

barrier function and is vital for the cell. 

The inner layer contains phospholipids while the outer membrane contains 

lipopolysaccharide (LPS)[4]. Because of the LPS which carries a net negative charge, gram-

negative cells have negative surface charge[5]. They can be treated with ethylenediamine tetra 

acetate (EDTA) in order to loose divalent cations and subsequent disturbance of the outer 

membrane. 

The combination of divalent cation cross-bridging of LPS and negative charge provides 

gram-negative cells with many of properties, such as resistance to hydrophobic antibiotics, bile 

salts, detergents, proteases, lipases, and lysozyme[6]. Some so-called "major" proteins exist in 
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the outer membrane. They may have important roles in their anchor of the outer membrane and 

peptidoglycan. 

 

1.3.  Uptake across the outer membrane 

 

1.3.1. Hydrophilic pathway 

Using porins(the water-filled channels of proteins), hydrophilic compounds can pass the 

outer membrane [6]. Organisms have different exclusion limit of porin pores of membranes and 

area of the channels. For instance, E. coli can pass the trisaccharides [6] or tetrapeptides [7], 

whereas Pseudomonas aeruginosa porins only allows those saccharides with molecular weights 

of greater than 6000 to pass. The molecular properties of the porin channel including channel 

size and ionic selectivity, and also the total number of available channels per cell, determine the 

rate of uptake of variable hydrophilic compounds [4]. 

1.3.2. Hydrophobic pathway 

Many lipid bilayer membranes allow the amphiphilic molecules and hydrophobic 

compounds can pass across the many lipid membranes[8], but the outer membranes of E. coli 

cells are not permeable to the hydrophobic or amphiphilic molecules. 

It would seem that the hydrophobic uptake pathway is very inefficient in E. coli as a 

gram-negative bacterium compared to some gram-positive bacteria [9]. Furthermore, in 

Salmonella with heptose-deficient LPS, divalent cations can block the pathway [9]. It can be 

suggested that hydrophobic uptake pathway in most gram-negative bacteria such as E. coli and 

Salmonella does not exist due to high-surface negative charge and the effects of divalent cation 

bridging of LPS molecules. 
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1.4.  Enhancement of outer membrane permeability by chemicals and antibiotics 

1.4.1. Ethylenediamine tetra acetate (EDTA)  

In order to enhance the permeability of outer membrane of many gram-negative bacteria 

especially E. coli, EDTA can be used due to its strong divalent cation-chelating function [10]. 

The mechanism of making holes on outer membrane is unknown yet. It seems that EDTA causes 

the loss of 30% to 67% of substantial amounts of LPS for E. coli. After EDTA treatment, the 

outer membrane seems to remain continuous and there no noticeable holes in the outer 

membrane [10]. 

The number of particles and holes can be decreased through freeze crack and it will be 

the main change in outer-membrane substructure. Ultracentrifugation can separate the released 

LPS into two fractions [11]. The first fraction which is called F1 contains linked protein and lipid 

and the second one, F2, is apparently pure LPS. F2 may have different sugar composition than 

bulk LPS and because of the release of F2, the outer membrane will become permeable. In E. 

coli, during EDTA treatment, a larger amount of protein is secreted[10]. 

 

1.4.2. Polymyxins 

The major cause of rodlike pits of the membranes of gram-negative bacteria is 

Polymyxin[12]. The polycationic part of polymyxin is able to displace divalent cations. On the 

other hand, using chelation, EDTA is able to remove divalent cations. This is the main difference 

between polymyxin and EDTA that it seems to release little LPS into the medium. Moreover, the 

outer membrane of polymyxin-treated cells seems to be unstable because they can secrete high 

amounts of proteins. On the other hand, EDTA-treated cells due to their thicker membrane, can 

save more periplasmic proteins inside the cells. The hydrophobic ends of polymyxin can 
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facilitate the release of periplasmic proteins. This can destabilize bilayers by interacting with 

both the polar and nonpolar regions of lipids[13]. 

 

1.4.3. Aminoglycosides 

Polycationic aminoglycoside antibiotics (e.g., streptomycin, gentamicin) are able to 

permeabilize the outer membranes of the organisms by interacting with divalent-cation binding 

sites. A great majority of evidence suggest that aminoglycosides can act like EDTA and 

polymyxin at the same site [14].  

 

1.5.  Protein release of the outer membrane 

Some gram-negative bacteria such as E. coli have few proteins that are released out of the 

cell. Some organisms can naturally release proteins across their outer membrane. P. aeruginosa 

of phospholipase C has unique secretion among all organisms. The secretion of this organism is 

not accompanied by the release of phosphate-binding protein or periplasmic β-lactamase [15]. 

Furthermore, during phospholipase release, no β-lactam nitrocefin can secrete across the outer 

membrane[15]. On the other hand, after phosphate limitation, the amounts of phospholipase C 

and alkaline phosphatase enhance in the periplasm.  

1.5.1. Physical damage of outer membrane 

The cells also would be permeable by mechanical damage treatments. For instance, E. 

coli cells exposed to their reagent grade water become susceptible to deoxycholate and 

lysozyme[16]. According to the electron microscopic examination of these cells, outer 

membrane blebbing had occurred. Likewise, E. coli outer membrane could be more permeable to 

lysozyme through aerosolization. Mg2+ can reverse the sensitivity of aerosolized E. coli to 
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lysozyme. Also, it is important to know that energy metabolism should be applied to fully repair 

the outer membranes. Similarly, freeze-thawing E. coli strains leads to secrete of cyclic 

phosphodiesterase as well as improved vulnerability to dyes, enzymes, and detergents[17].  

Recently, nanostructured materials have been used as an agent to increase the 

permeability of the cells through physical damage of outer membrane. The most applicable 

nanostructured materials are silver and nanostructured materials based on silver, gold 

nanoparticles, aluminum nanoparticles, zinc oxide nanoparticles, and carbon nanotubes. 

Silver nanoparticles 

Silver nanoparticles have high tendency to react with sulfur and phosphorus. Silver 

nanoparticles can damage the cell membrane because of the high amount of sulfur-containing 

proteins on the cell walls. Silver nanoparticles with small diameter (< 20 nm) can attach to these 

proteins of cell walls because they have high particle penetration and greater antibacterial 

activity due to their larger surface-to-volume ratios[18]. Consequently, they can make the 

membrane permeable, and finally kill the bacteria[19]. Low concentration of Ag+ ions can inhibit 

respiratory chain enzymes and enhance the membrane permeability[20]. 

The effect of silver nanoparticles on the cell morphology of E. coli has been shown in 

Figure 2 and Figure 3 using TEM. In Figure 2, the structure of the untreated E. coli cells has 

been depicted. As shown, the cells are intact and DNA molecules are randomly presented in the 

cells. According to Figure 3, the cytoplasmic membrane separates from cell walls. The inhibitory 

activity of silver ions is high because of the thick layer of the peptidoglycan in E. coli cell wall. 

Figure 3(a) gives an overview of the structure of the silver treated E. coli cells. The condensed 

form of DNA shown in Figure 3(b) and Figure 3(c)–(f) are enlarged magnifications of cells. As 

shown in Figure 3(e) and (f), there is no cell wall in that cell and just cytoplasm and many small 
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particles are in a region which may be the last life stage of the Ag+ ion treated E. coli[20]. Silver 

ions interacted with nucleic acids and formed the particles containing silver ions and sulfur ions. 

These particles have been suggested to be the main cause of cell damage[21]. 

 

Figure 2. Structure of the intact E. coli cells.[20] 

 

 

Figure 3. Structure of the silver treated E. coli cells. (a) A significant bright region in the center 

of the cell. (b) Compressed form of DNA. (c) A remarkable space between the cytoplasm and the 

cell membrane. (d) Dark particles containing silver ions and sulfur ions around the cell. (e) A 

cell contained many dark particles. (f) The damaged cell membrane[20]. 
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Gold  nanoparticles 

Gold nanoparticles have high antimicrobial efficacy when they have been mixed with 

antibiotics[22]. The antibacterial effect of aminoglycosidic antibiotics on a range of gram-

negative bacteria especially E. coli could increase by mixing with gold nanoparticles. Compared 

to Cefaclor, which is a second-generation β-lactam antibiotic, and to gold nanoparticles alone, a 

mixture of Cefaclor and gold nanoparticles have effective antimicrobial activity on E. coli[23]. 

Cefaclor can damage the cell walls by making pores and prevents the production of the 

peptidoglycan layer. Also, the gold nanoparticles can make the cell wall permeable by generating 

holes and cause cell death[24]. 

Alumina nanoparticles   

The alumina nanoparticles have surface positive charge at pH 7. The adhesion of 

nanoparticles on the bacterial cell walls may occur due to electrostatic interaction between the E. 

coli cells which have negative charge and the alumina nanoparticles [25]. By increasing the 

concentration of the particles in the medium, the adhesion has been increased. Increasing the 

adhesion led to a negative effect on growth. Bacterial adhesion may be caused by the 

electrostatic interaction between bacteria and alumina nanoparticles surface. Generation of 

reactive oxygen species (ROS) is the main cause of cell wall damage and consequently cell death 

[26]. 

Zinc oxide nanoparticles   

Zinc oxide nanoparticles have been found to be extremely toxic among antimicrobial 

metal oxides which have been studied so far. This is the active ingredient in most sunscreen, 

demonstrating low toxicity to humans in contrast to their potent antimicrobial efficacy [27]. 

Also, zinc oxide nanoparticles display negligible effect on human cells and have selective 
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toxicity to bacteria [28]. Nanostructured zinc oxide particles with average diameter of 12 nm can 

disintegrate the cell membrane and enhance the membrane permeability and consequently inhibit 

the growth of E. coli [29]. 

The antibacterial activity of zinc oxide nanoparticles can be illustrated by many 

mechanisms. One of the methods for the stoppage of growth of bacteria is the production of 

hydrogen peroxide from zinc oxide nanoparticles surface [30]. It is assumed that the number of 

zinc oxide nanoparticles per unit volume increases with decreasing particle size. Subsequently, 

the surface area increases which leads to an increase in the production of hydrogen peroxide. 

Also, releasing Zn2+ ions may be another mechanism for zinc oxide antibacterial activity which 

can damage the cell membrane [28]. 

Up to this point, several methods have been discussed to increase the permeability of 

cells. The most appropriate method is the one in which the efficiency is relatively high and it 

does not make any trouble for the following purification processes. Lysozyme could lyse the 

cells by damaging the cell walls and has the highest efficiency among the methods. However, the 

presence of lysozyme may require separation of it from the product, which is resource and time 

consuming and could be undesired. According to the aforementioned cases, CNTs have been 

proposed as an appropriate method to damage the cell walls and enhance the permeability of the 

cells without using any enzyme which might be less resource and time consuming in comparison 

with lysozyme. CNTs and their properties, structure and growth, functionalization and toxicity 

will be reviewed in the following section.  
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1.6.  Carbon nanotube 

Carbon nanotubes are nanoscale hollow cylinders of carbon which basically consist of 

“rolled” sheets of graphene (Figure 4). Carbon nanotubes can be found in single-walled 

(SWCNT) and multi-walled carbon nanotube (MWCNT) types and can be produced with very 

large aspect ratios. These two different types of CNTs (SWCNT and MWCNT) may vary in 

length, in some cases being up to hundreds of micrometers[31]. The carbon nanotubes may differ 

in shape, physical characteristics, dimension, chemical composition, surface coatings, or surface 

functionalization. CNTs usually contain residual metal catalysts. On the other hand, purified 

CNTs are the ones which have minimum amount of residual metal catalysts. Single-walled 

carbon nanotubes (SWCNTs) have a diameter of approximately 1-2 nm because they consist of a 

single rolled graphene sheet. MWCNTs, depending on the number of rolled sheets of graphene, 

have a diameter in the range of 2-100 nm. Many single-walled tubes arranged one inside the 

other in order to make a MWCNT.  

 

 
Figure 4. Schematic of graphene sheet and single-walled carbon nanotube (SWCNT). (a) Carbon 

atoms that covalently bonded in a honeycomb lattice formed the graphene sheet. (b) An 

equivalent single-walled carbon to a sheet of graphene. This sheet has been rolled into a cylinder 

shape[31]. 

 

In order to synthesize CNT, a carbon source and an energy source is required. Several 

methods exist that are used to produce or manufacture CNTs. A metal catalyst can play an 
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important role in enhancing sample homogeneity and yield, and in decreasing the synthesis 

temperature, based on synthesis methods materials. Also, catalysts characteristics (e.g. shape, and 

crystallinity) can play an important role in determination of the diameter of the tube. In order to 

make the product as pure as possible, sometimes post-synthesis treatments are used to remove 

residual catalyst which may exist after synthesis. Also, some purification techniques are used to 

remove the catalyst. Selective oxidation of the amorphous carbon is the main goal of the typical 

purification technique. In this technique, first, at a controlled temperature, the amorphous carbon 

is washed and then sonicated the in an acid (HCl, HNO3, H2SO4) or base (NaOH) [32].  

Due to their structure, high surface energy, and relatively small size, CNTs can be 

difficult to discrete in the bulk form, and they have a tendency to agglomerate quickly when 

released in the medium. 

Individual carbon nanotubes have been used as test systems for one-dimensional electron 

theories, as photonic devices, and as nano­electromechanical resonators. The small size of 

carbon nanotubes also make them very good lysis agent by making a mechanical rupture to the 

cell walls. This application of nanotubes as lysis agents will be the focus of this thesis. 

 

1.6.1. Nanotube structure and growth 

The carbon atoms in a nanotube are covalently bonded in a honeycomb lattice, so a 

nanotube is equivalent to a graphene sheet that has been rolled into a cylinder, as seen in Figure 

4. Carbon nanotubes are extremely stable, and they can form whenever a source of carbon is 

heated in the presence of catalyst particles to help initiate the structure. Multi-walled nanotubes 

(many concentric graphene cylinders) with many defects have been found naturally in 10,000 

year-old ice core samples and in common flames[33], as well as in a 400-year-old Damascus 
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saber [34], but more controlled fabrication methods are used to make nanotubes for laboratory 

study. The first reported nanotubes were formed by arc discharge, in which graphite was heated 

with a large current[35]. Graphite can also be heated by shining a laser on it inside a hot (around 

1000 ○C) furnace; a technique known as laser ablation. In both arc discharge and laser ablation, 

the catalysts are metal particles — such as iron, cobalt, or nickel — that are mixed with the 

graphite. 

Another  method for growing carbon nanotubes is chemical vapor deposition (CVD) in 

which a hydrocarbon gas like methane or ethylene is flowed through a 700-950 ○C furnace[36]. 

CVD is currently the best method for the growth of single-walled nanotubes with minimal 

defects, and the locations of the nanotubes can be controlled by first photo-lithographically 

patterning the substrate.  

There has also been recent progress in selectively destroying only the metallic nanotubes 

on a sample with a plasma reaction, and in using pieces of one nanotube as a template for growth 

of identical nanotubes[37]. Further improvements will need to be made in these directions before 

individual nanotubes can be integrated into large-scale circuits and used in commercial 

applications. 

CNTs, as synthesized, contain impurities that include amorphous carbon and catalyst.  

Also, as synthesized, their structure dictates a high degree of hydrophobicity, making them 

virtually insoluble in aqueous media. In order to purify the fabricated CNTs, different acid 

refluxing methods have been used. Also, different hydrophilic functions can be used to 

functionalize the produced CNTs and subsequently overcome the hydrophobicity issue of CNTs. 
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1.6.2. Purification and functionalization of carbon nanotubes 

Proceeding to be used as an agent to make the cells permeable, CNTs should be soluble 

and purified in a physiological environment. There are several methods used to purify CNTs. A 

widely used method relies on sonication in a mixture of sulfuric and nitric acid which removes 

catalyst impurities [38]. In addition, a variety of materials have been tested as modifiers to keep 

CNTs in solution.  They include ionic materials that can form a salt bridge, proteins, surfactants, 

and natural materials that include gum. Adding these modifiers may lead to an increase in the 

size and diameter of CNTs which may not be desired because these additives could reduce the 

functionality of CNTs. On the other hand, functionalization of CNTs with hydrophilic functions 

can be more applicable. Coincidentally, as the mixture is treated in this manner, the solubility of 

the tubes in water increases due to introduction of –COOH at defects in the CNT.  Other 

materials can be chemically or physically added to the CNTs to improve both solubility and 

biocompatibility. 

Covalent Functionalization   

Covalent modification is preferred when it is desired for the chemical moiety to be 

strongly associated with the CNTs. The covalent binding depends on the linking of molecules 

which are chemically reactive onto their inert sp2 carbon structure. Covalent modification has 

been accomplished with the use of oligomers, biologicals (e.g. cholesterol), and long chain 

organics (e.g. PEG)[39].  Acid oxidation introduces defects on the side and end of the CNT. 

These cause decoration of tips and sidewalls of the CNTs with oxygenated functionalities such as 

carboxylic, carbonyl, and hydroxyl groups. Modification via surface –COOH is very attractive 

because there is a plethora of chemical crosslinking agents that can use this feature [39].  These 

include carbodiimides, esters, and thionyl. Subsequently, they covalently attached to various 
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types of biomolecules. Other methods include treatment with hydrogen, fluorine, and azomethine 

[39]. 

Noncovalent Functionalization 

sp2 bonding is preserved in noncovalent functionalization in comparison with covalent 

functionalization. Therefore, it conserves the functional properties and original structure of 

CNTs more efficiently than covalent approaches. Uses of noncovalent techniques are vastly 

simpler in comparison to covalent methods, and include a combination of mixing, sonication, 

filtration, and centrifugation. Nonetheless, noncovalent bonds are susceptible environmental 

factors such as salt concentration and pH[40]. 

 

1.6.3. Toxicity of carbon nanotubes 

The first and most important requirement of every experiment is safety. Over past 

decades, many research groups have focused their research on side effects of CNTs. They have 

shown that CNTs may be toxic based on their type (SWCNT and MWCNT) and 

functionalization approaches. The results of scientific research and cell culture experiment 

showed that functionalized carbon nanotubes have no toxicity [40]. On the other hand, after 

inhalation into the lungs, unfunctionalized carbon nanotubes were depicted to be poisonous to 

mice [41]. Using carbon nanotubes for biomedical applications is currently a controversial issue 

for both the public and research communities. Clarification of the carbon nanotubes toxicity 

issue is very serious and urgent. It is proved that geometry and surface functionalization of 

carbon nanotubes may affect the level of their toxicity. It is reported that biocompatible surface 

coated carbon nanotubes that are well-functionalized are nontoxic in vitro to cells[41]. Also it is 
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reported that carbon nanotubes which have been functionalized did not show any toxicity in vivo 

in mice [41]. 

 

1.7. Scope of research 

In this research, the effect of shear and CNT exposure on bacterial cultures used to make 

recombinant DNA proteins was investigated. To explain more explicitly, the following points 

will be discussed: 

1. By increasing the amount of CNTs, the amount of release will increase. 

2. By increasing the agitation rate, more materials will be released to the medium. 

3. CNTs will damage the cell walls and cause the leakage of peripalsmic materials 

4. CNTs could damage the cytoplasm and may cause its material to leak out to the 

medium. 

5. It will be shown that CNTs can lyse the cells close to the lysozyme treatment. 
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Chapter 2. Materials and Methods 

 

In this chapter, all chemicals and materials that were used to accomplish the project, 

parameters that have been affect the procedure and finally assays will be discussed. 

 

2.1.  Materials 

 

2.1.1. Carbon nanotubes 

Carbon nanotubes used in this experiment were prepared in Dr. Jin-Woo Kim’s lab. They 

were purchased from Carbon Nanotechnologies Inc. (Houston, TX). Acid refluxing technique 

using 2.6 M nitric acid was used to purify the purchased CNTs, and then purified CNTs were 

reconstituted in 5 mM potassium phosphate buffer (pH of 8) which contained 0.2% sodium 

dodecylbenzenesulfonate (NaDBS). In order to remove nondispersed CNT aggregates, the CNT 

solutions were also centrifuged at 14000 G at 25 °C for 40 min. At the end, the supernatant 

contained CNTs that were well-dispersed, shortened, and oxidized at the tips. The average length 

(Table I) of shortened SWNT was 186 nm with a standard deviation of 47 nm and the average 

diameter of 1.7 nm with a standard deviation of 0.14 nm. The initial concentration of 1mg∙mL-1 

for the SWCNTs was used. Finally, the processed SWNTs were reconstituted in water[42]. 

 

Table I. Specifications of used carbon nanotubes in this research. 

Specification Value 

Type Single walled 

Average length 186 ± 47 nm 

Average diameter 1.7 ± 0.14 nm 

Purity 99.99% 
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2.1.2. Cells 

E. coli BL21 (DE3) bacteria containing a plasmid that expresses green fluorescent protein 

(GFP) and -lactamase were used in this experiment. Cells were grown in LB medium (5 g∙L-1 

yeast extract, 10 g∙L-1 NaCl, 10 g∙L-1 Bacto-trypton, and DI water and PH = 7.5) at 37 °C via fed 

batch fermentation and they contained approximately 50% saturated dissolved oxygen. 

 

2.2.  Design of experiment 

In order to investigate the use of CNTs that artificially cause a bacterium to release a 

protein, this experiment was designed. There were two assumptions for release of protein in this 

context. One was that CNTs might cause the periplasm materials and proteins to leak out to the 

medium. The second one was that CNTs may destroy the cell and mechanically cause not only 

the preplasmic but the cytoplasmic materials to leak to the medium. Tris base was used as a 

buffer in this experiment to prevent any unwanted increase or decrease of pH in the system.  

2g∙L-1 of recombinant Escherichia coli BL21 (DE3) bacteria was used to study the amount of 

protein released using a fluorometer. Single-walled carbon nanotubes functionalized with 

 –COOH function were used to enhance the release of protein. Hydrophilic tips of these 

functionalized CNTs could have caused mechanical rupture and consequently damaged the cell 

walls. Agitation rate of reactor and amount of CNTs were the effective parameters in this 

experiment. 

 

2.3.  Sample preparation 

Figure 5 is a schematic of the experimental setup. The reactor consisted of a motor, a 

motor controller, a glass flask, a metallic lid, a stirrer, a syringe, and a belt which transferred the 
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mechanical energy from the gearwheel of the motor to the stirrer. One gram of cell pellet was 

added to 500 ml of 25 mM Tris base with pH = 7.5 in the glass flask. After mixing for 20 

minutes at 200 rpm, different amount of SWCNTs were added to the flask. Samples were taken 

from the reactor using the installed syringe every 30 minutes for 2.5 hours and were stored in 

microtubes. The values of these parameters are listed in Table II. The samples were then 

centrifuged using Eppendorf minispin® plus machine (Figure 6) at relative centrifugal force (rcf) 

of 14000 for one minute for separation of proteins from dead cells. The effect of exposing 2 g∙L-1 

of E. coli BL21 (DE3) to SWCNTs and reactor agitation rate on protein release of cells by 

passage of time was then studied. 

 

 

Figure 5. Schematic of experimental setup. 
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Table II. Values of parameters used in this research based on design of experiment. 

Value 1 2 3 4 5 6 7 

Time (hours) 0 (As mixed) 0.5 1 1.5 2 2.5 - 

Amount of CNTs (µg∙L-1) 0 (Control) 200 400 800 1600 8000 32000 

Agitation Rate (rpm) 200 300 600 - - - - 

 

 

 

Figure 6. Eppendorf minispin® plus machine. 

 

 

Eight samples were prepared and the amount of CNTs and the agitation rate for each of 

the samples are listed in Table III. 

. 
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Table III. Specification of each prepared sample. 

Sample Number Agitation rate (rpm) Amount of CNTs (µg∙L-1) 

1 200 200 

2 200 400 

3 300 800 

4 600 800 

5 300 1600 

6 300 8000 

7 600 8000 

8 600 32000 

Control 300 0 

Lysozyme 300 0 

 

2.4.  Enzyme assay 

 

2.4.1. Fluorescence assay for GFP 

In order to determine the amount of released GFP, a fluorescence assay was performed. 

For this purpose, after centrifugation and decantation, 1 ml of sample was added to a micro 

cuvette. Then, using Shimadzu RF-Mini 150 Recording Fluorometer (Figure 7) at wavelength of 

509 nm, fluorescence assay was carried out.  
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Figure 7. Shimadzu RF-Mini 150 Recording Fluorometer. 

 

 

2.4.2. Optical absorbance assay for -lactamase  

Optical absorbance is a complementary assay to fluorescence. For this purpose, 0.1 M 

sodium phosphate with pH = 7 was used as a buffer and 0.5 g∙L-1 penicillin G was added to it. 

Then, 20 µl of sample was added to 2 ml in a quartz cuvette. Then, the quartz cuvette was placed 

in Beckman Coulter DU® 800 UV/Vis Spectrophotometer (Figure 8) to measure its optical 

absorbance at a wavelength of 240 nm at which Penicillin G absorbs. 

 

Figure 8. Beckman Coulter DU® 800 UV/Vis Spectrophotometer. 
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2.4.3. Protein gel electrophoresis 

There are different types of proteins in the medium that can be distinguished and sorted 

in many distinct ways. One of the common methods is to sort them based on their molecular 

weights. Thus, protein gel electrophoresis assay was performed. In order to run this assay, 990 µl 

of 25 mM Tris base with pH = 7.5 was used as a buffer and 10 µl of sample was added to it in a 

quartz cuvette. Then, the cuvette was placed in Beckman Coulter DU® 800 UV/Vis 

Spectrophotometer to measure its optical absorbance at a wavelength of 280 nm at which 

proteins absorb. Next, the samples were concentrated 100 times before performing the 

electrophoresis test. 24 ml of every Sample were stained using 6 ml of 6XUREA 

SDSPAGEDYE dye. Every sample was placed in boiling water for five minutes in order to 

denature its existing proteins. Lastly, the stained samples were added to the gel. The composition 

of the lower and stacking gel are listed in Table IV and Table V, respectively. 

Table IV. The composition of 10% SDS page lower gel. 

Content Volume (ml) 

8X lower buffer 0.65 

30% 0.8% Acrylamide 1.65 

75% Sucrose 0.65 

Deionized water 2 

5% ammonium persulfate 0.05 

TEMED 0.003 
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Table V. The composition of stacking gel. 

Content Volume (ml) 

4X lower buffer 0.625 

30% 0.8% Acrylamide 0.375 

Deionized water 1.5 

5% ammonium persulfate 0.0225 

TEMED 0.011 

 

 

In order to have a better idea about the molecular weights of the proteins, 3 µl of 

Precision Plus Protein ™ standard was added to the first and last lanes of the gel.  The gel was 

placed in the PowerPac™ BIO-RAD electrophoresis machine (Figure 9) and the container was 

filled with the SDS page buffer to conduct the electricity to the gel. The electricity causes the 

proteins to be sorted based on their molecular weights. In order to run the test efficiently, 120 

volts was applied to the prepared gel. After about 90 minutes, the proteins were sorted but they 

were invisible. In order to make them visible, they were developed using Comassie blue dilute 

acetic acid containing 20% methanol overnight. The prepared gel then was rinsed using 7.5% 

acetic acid containing 7.5% methanol twice for an hour and two hours, respectively, to wash any 
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remaining dye from the Comassie blue dilute acetic acid. It is important to note that the prepared 

gel is very sensitive so it was carried with the maximum care. 

 

 

Figure 9. PowerPac™ BIO RAD protein gel electrophoresis machine. 

 

2.4.4. Transmission Electron Microscopy (TEM) 

 

Transmission electron microscopy images were used to prove the claim that CNTs are 

able to enhance the permeability of the cells. For this purpose, a drop of each cell pellet was 

placed on a pink dental wax-nu-base plate wax using borosilicate glass disposable pipet. Using 

sterilized forceps, a 300 mesh carbon-coated copper grid was soaked in each drop to take the 
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sample and then it was placed on filter paper in a glass petri dish for 10 minutes to dry out. Then, 

grids were placed in a JEOL-1011 electron microscope to take TEM images of the samples.  
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Chapter 3. Results and Discussion 

 

In this chapter, fluorescence results will first be presented and discussed. The amount of 

release GFP could be determined using fluorescence assay. Second, in order to determine the 

amount of released protein to the medium, optical absorbance assay results for -lactamase will 

be discussed. At the end, the results of transparent electron microscopy as evidence for the 

ability of CNTs to enhance the permeability of the cells will be provided.    

 

3.1.  Fluorescence assay 

The first assay that was used in this research was fluorescence assay which is a pretty 

easy to measure, cost-saving, and routine test. Because the used cell pellets in this experiment 

contained GFP, fluorescence assay was carried out to measure the effect of different amount of 

CNTs and agitation rates on the amount of released proteins. The fluorescence values of samples 

are listed in Table VI. In this assay, 25 mM Tris (pH = 7.5) was used as a reference. In order to 

determine the related fluorescence of released GFP, fluorescence values of the same 

concentration of CNTs for all the samples were measured. According to the fluorescence value at 

wavelength of 509 nm, CNTs had no fluorescence at those concentrations which means that the 

fluorescence values were related only to the amount of released GFP.  

As listed in the table for sample 1, which contained 200 µg∙L-1 CNTs and was prepared at 

agitation rate of 200 rpm, the fluorescence values decreased in the first hour and then increased 

to reach to 128 after 2.5 hours. However, the fluorescence value after 2.5 hours was less than the 

initial value for the as-mixed sample. One of the reasons for this might be related to the amount 

of CNTs which was not quite high enough to make the cell walls permeable. 
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Although the amount of CNTs was increased for sample 2, the results of fluorescence for 

this sample were pretty similar to sample 1.  

Table VI. Fluorescence values for samples at wavelength of 509 nm. 

 Fluorescence 

Time(hour) Sample 1 Sample 2 Sample 3 Sample 4 

0 143 142 141 143 

0.5 112 135 160 138 

1 102 116 133 118 

1.5 114 122 127 138 

2 112 127 130 165 

2.5 128 126 128 150 

 

For sample 3, the fluorescence value increased within 30 minutes but decreased after that 

and reached 128 at 2.5 hours. According to the data in Table IV, the average fluorescence value 

for sample 3 was 137 which again supports the hypothesis that the average fluorescence value is 

a function of the amount of CNTs. The results for sample 3 were different from the results of 

sample 1 and 2 though. In sample 3, fluorescence values increased in 30 minutes and decreased 

after that while sample 1 and 2 fluorescence values decreased in the first hour and then increased 

again. 

The average fluorescence value for sample 4 which contained 800 µg CNT and was 

prepared at an agitation rate of 300 rpm was 142. Fluorescence values for sample 4 did not have 
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any pattern in changes, although the average fluorescence values again increased by increasing 

the amount of CNT. 

It is hard to draw a conclusion from the fluorescence assay data because they did not 

follow a pattern. After passage of time, the amount of released protein was expected to increase 

because the CNTs would have more chance to make the cell walls permeable, but the data did 

not support this assumption. Also, it is possible that the amount of GFP in the cell pellets was not 

high enough and may have caused inaccuracy in the fluorescence values. In summary, 

fluorescence assay was not a reliable test for measuring the amount of released proteins. 

 

3.2. Optical absorbance assay 

The second assay that was used in this research was optical absorbance assay which is an 

accurate assay to measure the released β-lactamase in medium. β-lactamases are enzymes that 

some bacteria produce to resist β-lactam antibiotics like penicillin. Thus, in order to measure the 

amount of released β-lactamase in medium, as mentioned in chapter 2, 20 µl of each prepared 

sample was added to 2 ml of penicillin G containing buffer. 

 

3.2.1. Optical absorbance of sample 1  

Figure 10 shows optical absorbance of sample 1 at different times. The wavelength of 

240 nm was chosen because at this wavelength penicillin G absorbs. According to Figure 10, at t 

= 0, the absorbance of penicillin G was high which means that at the beginning of this assay for 

sample 1, the amount of penicillin was at the highest level. After passage of time, the absorbance 

of penicillin G decreased which indicates that penicillin was used gradually to inhibit the existent  

β-lactamase in the medium. Consequently, after seven minutes, the absorbance of penicillin G 
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was at the lowest level. In this assay, the slope of each line indicates the concentration of  

β-lactamase in the medium. The slopes of different lines are listed in Table VII and the amount 

of release increased gradually with the passage of time. 

 

 

Figure 10. Optical absorbance of sample 1 at different times at a wavelength of 240 nm. 

 

 

In order to understand the effect of two parameters (amount of CNTs and agitation rate), 

a control sample was prepared without adding any CNTs to the medium. Also, another sample 

was prepared using lysozyme and ethylenediamene acetic acid (EDTA). Lysozyme is an enzyme 

which is able to damage the bacterial cells and has the highest efficiency among the damage 

methods. EDTA can detach the ions that are connected to the cells membrane and facilitate the 

lysis of the cells. 
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Table VII. Slopes of different lines for the sample 1. 

Time (hours) Slope 

As-mixed (0) -0.0074 

After 0.5 -0.0075 

After 1.0 -0.0076 

After 1.5 -0.0078 

After 2.0 -0.0079 

After 2.5 -0.0079 

 

 

The slopes of different lines for different samples are listed in Table VIII. In the control 

sample there were no CNTs and the slope of the lines pertained to the effect of agitation rate and 

may be natural -lactamase release. On the other hand, in the lysozyme sample, the slopes are 

related to maximum release of -lactamase in the medium. As listed in Table VIII, the slope 

values increased from sample 1 to sample 6 as the amount of additional CNTs and agitation rates 

increased. In order to understand the increased amounts of release, the percentages of release 

based on the lysozyme treatment for different samples at different times are listed in Table IX. 

. 
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Table VIII. Slopes of different lines for different samples. 

 Control Sample 

1 

Sample 

2 

Sample 

3 

Sample 

4 

Sample 

5 

Sample 

6 

Sample 

7 

Sample 

8 

Lysozyme 

as-mixed -0.0072 -0.0074 -0.0079 -0.0082 -0.0083 -0.0086 -0.0095 -0.0098 -0.0119 -0.0156 

0.5 -0.0072 -0.0075 -0.0080 -0.0084 -0.0084 -0.0086 -0.0095 -0.0099 -0.0123 -0.0156 

1 -0.0072 -0.0076 -0.0081 -0.0085 -0.0087 -0.0087 -0.0095 -0.0101 -0.0130 -0.0156 

1.5 -0.0074 -0.0078 -0.0082 -0.0086 -0.0089 -0.0088 -0.0096 -0.0102 -0.0136 -0.0156 

2 -0.0075 -0.0079 -0.0083 -0.0086 -0.0089 -0.0089 -0.0097 -0.0103 -0.0140 -0.0156 

 

 

Table IX. The percentages of release based on the lysozyme treatment. 

Sample 

No. 

Control Sample 

1 

Sample 

2 

Sample 

3 

Sample 

4 

Sample 

5 

Sample 

6 

Sample 

7 

Sample 

8 

Lysozyme 

Agitation 

rate 

- 200 

rpm 

200 

rpm 

300 

rpm 

600 

rpm 

300 

rpm 

300 

rpm 

600 

rpm 

600 

rpm 

- 

Amount 

of CNTs 

0 0.2 

mg∙L-1 

0.4 

mg∙L-1 

0.8 

mg∙L-1 

0.8 

mg∙L-1 

1.6 

mg∙L-1 

8 

mg∙L-1 

8 

mg∙L-1 

32 

mg∙L-1 

0 

as-mixed 46 47 50 52 53 55 61 63 76 100 

0.5 46 48 51 54 54 55 61 64 79 100 

1 46 49 52 54 55 56 61 65 83 100 

1.5 47 50 52 55 57 56 62 65 87 100 

2 48 50 53 55 57 57 62 66 90 100 
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According to Table IX and Figure 11, the minimum amount of release occurred in control 

sample means that the bacterial cells can secrete protein naturally around 46% of lysozyme 

treatment. The amounts of release almost remained unchanged for an hour, then increased to 

47%. Comparing the as-mixed sample with two hours-treated sample could give the clue that the 

amount of protein release in the control sample has been increased. Agitation rate may play an 

important role in this enhancement because the two hours-treated cells had more chance to leak-

out into the reactor than 30 minutes-treated cells. They also have been contacted more with the 

impeller and this may enhance the protein release within the last taken samples. 

 

Figure 11. The percentage of release based on the lysozyme treatment. 
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3.2.2. Samples with agitation rate of 200 rpm 

Sample 1 contained about 200 µg∙L-1 CNTs and it was prepared at an agitation rate of 

200 rpm. As listed in Table IX, the minimum amount of release in this sample, at 47%, was 

slightly more than the control which was 46%. CNTs may affect the relatively higher amount of 

release because in as-mixed sample 1, the only effective parameter for release was additive 

CNTs. For sample 2 through sample 8, agitation rate also was counted as the other parameter but 

due to relatively low agitation rate, it could not impressively increase the permeability of the 

cells. Also, the percentage of release based on lysozyme treatment was still low which means 

that a higher amount of CNTs should be added to the cells to make them leaky. 

In order to investigate the effect of higher amount of CNTs as an effective parameter for 

increasing the permeability of the cells, 400 µg∙L-1 CNTs were added to the medium for 

preparation of sample 2. Sample 2 was also prepared under the agitation rate of 200 rpm. 

Compared to sample 1, the amount of released protein for the as-mixed sample increased by 3% 

to 50% of maximum protein release. Hence, with the agitation rate of sample 1 and 2 being the 

same, the amount of additive CNTs increased the permeability of the cells. After 2 hours 

treatment, the released protein increased to 53%, 3% above the as-mixed sample 2. This increase 

was a factor of agitation rate and relatively higher amount of additive CNTs. By increasing the 

amount of CNTs and also by the passage of time, CNTs could mechanically damage the cell 

walls. They could rupture the cell walls using their hydrophilic functionalized ends allowing the 

cells to leak their proteins and enzymes out into the medium. Although the amount of released 

protein in sample 2 was higher than that of sample 1, it still needs to be closer to that of 

lysozyme treatment.  One way to get more released protein would be increasing the agitation rate 



 

34 

and/or the amount of CNTs. Thus, for the sample 3, the amount of CNTs and agitation rate has 

been increased to 800 µg∙L-1 and 300 rpm, respectively. 

 

3.2.3. Samples with agitation rate of 300 rpm 

The amount of additive CNTs and agitation rate were increased to 800 µg∙L-1 and 300 

rpm, respectively, to determine if it could enhance the amount of released protein. As listed in  

 

Table IX, released protein was 52% for the as-mixed sample. After two hours, the 

amount of release had increased by 3%. Although both agitation rate and amounts of CNTs 

added had increased, the amount of released proteins has not changed drastically.  

For sample 5 and 6, 1600 µg∙L-1 and 8000 µg∙L-1 CNTs were added to the reactor, and 

the as-mixed protein released by the cells was 55% and 61%, respectively. Furthermore, the 

amount of as-mixed release was 9% and 15% greater compared to the control sample, 

respectively. Since the applied agitation rates for samples 3, 5, and 6 were the same, it can be 

concluded that adding more CNTs to the medium was the main cause of increase in the 

permeability of the cells. Moreover, after two hours, the cells leaked proteins out into the 

medium up to 62% of lysozyme treatment. 

 

3.2.4.   Samples with agitation rate of 600 rpm 

In preparation of the next three samples, agitation rates were increased to 600 rpm. This 

increase could lead to higher protein release because functionalized CNTs could damage the cell 

walls more intensively and cause higher permeability of the cells compared to lower agitation 
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rates. Moreover, a higher amount of CNTs were added to these samples to further investigate the 

effect of CNTs on permeability of the cells. 

For sample 4, compared to sample 3, the amount of additive CNTs remained unchanged 

while the agitation rate was increased from 300 rpm to 600 rpm. As given in Table IX,  

the amount of released protein for the as-mixed sample increased by one percentage point 

to 53% of maximum protein release. After two hours elapsed time, the amount of release was 

57% which is two percentage points more than that of sample 3. 

In preparation of sample 7, the amount of 8000 µg∙L-1 CNTs were added to the medium, 

five times more than the amount added to sample 5. The percentage of protein release for sample 

7 as-mixed was 63%, 17 percentage points more than the protein release of the as-mixed control 

sample. Compared to sample 5, the amount of release for as-mixed samples have increased by 

eight percentage points. Also, after two hours elapsed time, the amount of release was 66% 

which is 18 percentage points and seven percentage points more than that of control sample and 

sample 5 for the same elapsed time, respectively.  

Up to this point, the results of experiments showed that agitation rate and additive CNTs 

could increase the protein release of the cells up to 66% of lysozyme treatment. In order to try to 

get the desired outcome of equivalency to lysozyme treatment, 32000 µg∙L-1 CNTs were added 

to the medium of sample, this was four times the amount added to sample 7. As given in Table 

IX, the amount of protein release drastically increased for this sample and was 76% as-mixed. 

This indicated that the permeability of the cells increased 30 percentage points more than that of 

control sample by adding 32000 µg∙L-1 CNTs. Also, compared with sample 7, sample 8 released 

13 percentage points more proteins into the medium due to the relatively higher amount of 

additive CNTs. Thirty minutes after the 600 rpm agitation, the amount of release increased to 
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79%. Suggesting that more CNTs had a chance to collide with cells and make them permeable. 

Also, due to high agitation rate, the collisions were very intensive and more proteins leaked out 

of the cells. After one hour, the number of collisions had increased, and more CNTs had 

mechanically ruptured the cell walls. The amount of release one hour after treatment of sample 8 

was 83% of lysozyme treatment. 1.5 and two hours after treatment, the level had increased to 

87% and 90%, respectively, which indicated that by increasing the time after agitation, CNTs 

would have more chance to collide with the cells. Due to the high agitation rate, the energy of 

collisions between CNTs and cell walls increased and could be a primary reason for the high 

amount of as-mixed release. The effect of 32000 µg∙L-1 CNTs on the high amount of release was 

also inevitable.  

As some of the released proteins in lysozyme treatment are cytoplasmic, it can be 

suggested that the relatively high level of release in sample 8 was because of the mechanical 

damage of cytoplasm membrane. Thus, some of the released proteins in sample 8 were 

cytoplasmic. On the other hand, most of the released proteins in sample 1 to sample 7 were 

periplasmic. A correlation between the amount of released periplasmic proteins, agitation rate, 

and the amount of additive CNTs, can be expressed as: 

𝑃 = 𝑘(𝐴)𝑎(𝐶)𝑐    Equation (1) 

Where 𝑃 is the amount of released periplasmic protein is, 𝑘 is constant, 𝐴 is agitation 

rate, 𝐶 is the amount of additive CNTs, and 𝑘 and 𝑐 are the exponents of agitation rate and the 

amount of additive CNTs, respectively. In order to find 𝑘, 𝑎, and 𝑐, least square analysis 

approach was used. In this approach, residuals can be defined as:  

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = ∑(𝑃𝐸𝑥𝑝 − 𝑃𝐶𝑎𝑙𝑐)
2   Equation (2) 
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Where 𝑃𝐸𝑥𝑝 and 𝑃𝐶𝑎𝑙𝑐 are the experimental and calculated amount of released periplasmic 

protein, respectively. In order to find the best correlation, the sum of residuals was minimized 

subject to 𝑘, 𝑎, 𝑐 > 0. By minimizing the residuals, the resultant equation, 𝑃 is defined as:  

𝑃 = 27(𝐴)0.045(𝐶)0.064    Equation (3) 

Where 𝑘 is 27, 𝑎 is 0.045, and 𝑐 is 0.064. As shown in Figure 12, the obtained percentage 

of release in experiment was approximately equal to the calculated one. 

 

 

Figure 12. The experimental percentage of release versus the calculated percentage of release. 
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3.3. Transmission electron microscopy of treated samples 

In order to visually examine the permeability enhancement of the cells, TEM images 

were used. The TEM image of E. coli cells before exposing to CNTs is shown in Figure 13. The 

cells were intact and the average width of bacteria was 1.1 µm and the thickness of periplasm 

layer was 50-200 nm.  

 

Figure 13. TEM image of E. coli cells before exposing to CNTs. 

 

As mentioned in Chapter 2, there are two assumptions for release of protein. The first one 

is that CNTs may cause the periplasm materials and proteins to be released into the medium. A 

TEM image of E. coli cells exposed to CNTs from sample 8 which had 32000 µg∙L-1 CNTs and 

was prepared with agitation rate of 600 rpm is shown in Figure 14. The bacterium is surrounded 

with many CNTs and they mechanically damaged the periplasm because they were 

functionalized with –COOH. This function made the CNTs surfaces hydrophilic in order to be 
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applicable in aqueous media and make the bacterium leaky. The average length of the CNTs was 

186 nm with a standard deviation of 47 nm. As the thickness of periplasm layer was 50-200 nm, 

the CNTs were able to do mechanical damage to the cells.  Because a high amount of CNTs were 

added to this sample, the chance of collision with bacteria had increased. Also, by applying high 

agitation rate, CNTs more intensively destroyed the periplasm by piercing and penetrating the 

layer. As a result, the periplasm materials and proteins leaked out to the medium and CNTs 

successfully made the cell permeable.  

 

Figure 14. TEM image of a bacterium after exposing to CNTs. The periplasm of this E. coli cell 

is destroyed. 

 

The second assumption is that CNTs may destroy the cell and, mechanically, cause not 

only the periplasmic but the cytoplasmic materials to leak to the medium. As shown in Figure 15, 

the cell was totally damaged by the CNTs. There is a possibility that CNTs first damaged the 

membrane then, by passage of time, and due to high agitation rate, came into the cytoplasm and 

destroyed the cell from inside. This could cause the cell to fall apart and the materials inside the 
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periplasm and cytoplasm to be released to the medium and finally, the cell to be killed by carbon 

nanotubes.  

 

Figure 15. TEM image of a CNT treated cell. E. coli cell has fallen apart after exposure to the 

CNTs. 

 

3.4. Gel electrophoresis of proteins 

In order to study the mixture of the proteins in the sample, protein gel electrophoresis 

technique was performed. As discussed before, there are different types of proteins in the 

medium that should be distinguished using protein gel electrophoresis approach. As shown in 

Figure 16, there are many proteins in the samples. Based on the results of the optical absorbance 

assay and the percentage of released β-lactamase of the samples, sample 5, 7, and 8 were chosen 

for this assay. The first and last lanes are allocated to the Precision Plus Protein ™ standard to 
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express the range of different proteins based on their molecular weights from 20 kD to 250 kD, 

as shown in the right side of the gel. Also, some proteins have molecular weight of less than 

20 kD which can be seen in the sample lanes. The proteins in the sample 5 lane was more 

detectable than the other lanes because sample 5 was two and four times more concentrated 

than sample 7 and 8, respectively.  

 

Figure 16. Proteins release into growth media in response to treatment with CNTs. The amount 

of CNTs and agitation rate during CNT exposure is shown above each lane. The bands express 

the presence of different types of proteins. 

 

β-lactamase protein has the molecular weight in the range of 25 kD – 37 kD. According 

to the sample lanes, there are three lines closed to the standard of 37 kD molecular weight for all 

the samples. These lines indicate the presence of the β-lactamase in the sample. The presence of 

β-lactamase in the samples is because of the released protein caused by mechanical rupture of the 
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Escherichia coli cells. As shown in Figure 16, although the sample 8 was less concentrated than 

the other two samples, the lines in the range of 25-37 kD were almost as thick as the sample 5 

and thicker than sample 7. This could be an indicator of more β-lactamase in sample 8 which was 

prepared under higher amount of CNTs and agitation rate than the others.  
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Chapter 4. Summary 

In this research, the use of carbon nanotubes (CNTs) as a treatment to increase the 

permeability of a bacterial cell wall was investigated. For this purpose, the structure of 

Escherichia coli and methods of enhancing outer membrane permeability was reviewed. Also the 

use of nanoparticles, as well as CNTs as lysis agents, was studied. CNTs and their structure, 

growth, functionalization, and toxicity properties were reviewed. For this research, recombinant 

Escherichia coli BL21 (DE3) containing Green Fluorescent Protein (GFP) plasmid and -

lactamase were exposed to CNTs under various levels of agitation for different times.  In order to 

determine the amount of released protein, fluorescence assay for GFP and optical absorbance for 

-lactamase activity were used. Also, Transmission Electron Microscopy (TEM) was used to 

visually examine the permeation of the cells. The results of optical absorbance for -lactamase 

activity indicated that, for agitation rate and CNT concentration evaluated, CNTs could lyse the 

cells up to 90% of maximum compared to lysozyme treatment. Based on TEM study, it is 

believed that this treatment damaged the cell walls to make E. coli permeable, causing periplasm, 

and in some cases cytoplasm, proteins and enzymes to leak into the medium.  Consequently, 

CNTs could be used as lysis agents when it is undesirable to add an additional enzyme 

(lysozyme) to cause the release of intracellular proteins. 
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Appendix A: Description of Research for Popular Publication 

 

Nanoparticles are small objects that are smaller than human hair and cover a range 

between 10-9-10-7 meter (1-100 nanometer). These particles exhibit some unique properties due 

to their small size. There are many types of nanoparticles such as nanoclusters, nanowires, and 

carbon nanotubes. Carbon nanotubes (CNTs) are nanoscale hollow cylinders of carbon with 

diameters in the range of 1-100 nanometer.  In this research, the use of carbon nanotubes (CNTs) 

as a lysis or rupture agent was examined. Escherichia coli is a model bacterium and due to its 

simple structure is widely used in the biology lab by researchers and scientists. Researchers for 

many years use the proteins and materials made by this organism in order to make products that 

include medicine. 

Carbon nanotubes (CNTs) have many impurities that might lower their efficiency. In 

order to make CNTs usable, their residual metal impurities must be washed. In laboratories acids 

or bases are used to wash out the impurities from carbon nanotubes. After completing the 

washing process, purified CNTs were prepared and most of the metal impurities removed from 

them. Another important process that needs to be done with CNTs is functionalization. CNTs, 

due to their small size, tend to aggregate and become as big as they can. The size of 

agglomeration may reduce their functionality. Also, they intrinsically tend to repel or fail to mix 

with water which makes them unuseful in aqueous media. Thus, in order to overcome this issue, 

they should be functionalized with these chemical compounds, which enable them to mix with 

water-containing solutions.  

In this research, carbon nanotubes functionalized with –COOH were used to release 

protein from the Escherichia coli bacteria. Also, in order to increase the chance of extracting 

proteins form the cells, CNTs should have more chance to have collision with cells. Thus, in this 
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research, the bacteria were exposed to CNTs under various levels of agitation in the reactor for 

different times and the amount of released protein was determined. It was found that treatment 

with CNTs and agitation rate contributed equally to damage which means that by increasing the 

amount of CNTs and agitation rate, more proteins were released in the culture fluid.  Also, it is 

suggested that this treatment damaged the cell walls to make E. coli permeable, causing proteins 

and materials to release into the medium.  Consequently, CNTs can be used as lysis agents to 

cause the release of intracellular materials. 
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Appendix B: Executive Summary of Newly Created Intellectual Property 

 

1. Using CNTs as lysis agent to release the protein from the bacteria under various level 

of agitation rate 

2. A mathematical relation was developed to describe the release of protein as a function 

of CNT concentration and agitation rate 

3. Based on the correlation, it was determined that for the geometry of a shake flask that 

the concentration of CNTs and the agitation rate contribute equally to lysis 
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Appendix C: Potential Patent and Commercialization Aspects of Listed Intellectual 

Property Items 

 

C.1 Patentability of Intellectual Property (Could Each Item be Patented) 

1. Carbon nanotubes cannot be patented as lysis agent, but could be used as trade secret. 

The problem associated with carbon nanotube is that according to the materials safety datasheet 

(MSDS), carbon nanotubes are nano-hazardous materials which can affect the human health. 

2. Modeling data about kinetic expression between the amount of the CNTs and agitation 

rate could be patented.  In truth, it is likely that someone could treat the kinetic expression as a 

trade secret which will be rendered moot with publication. 

 

C.2 Commercialization Prospects (Should Each Item Be Patented) 

There are no commercialization prospects for intellectual items 1. and 2. 

 

 C.3 Possible Prior Disclosure of IP 

The following items were discussed in a public forum. 

1. On Tuesday, November 24, 2015, public presentation was made to MicroEP students 

about using CNTs as a lysis agent. 

2. The thesis defense was held on Friday, December 4, 2015. This meeting was public 

and also about using CNTs as a lysis agent. 
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Appendix D: Broader Impact of Research 

 

D.1 Applicability of Research Methods to Other Problems 

Using carbon nanotubes may increase the cell wall permeability of a wide range of gram 

negative bacteria which have thicker outer membrane. In order to release more proteins from 

outer membrane of these types of bacteria, the length of CNTs should be diminished. Having 

smaller length could increase the chance of penetration to the cell membrane. Also, the diameter 

of the CNTs plays an important role in making mechanical rupture to the cell membrane. As the 

diameter of CNTs decreases, the chance of releasing proteins will be increased. Thus, using 

single-walled carbon nanotubes instead of multi-walled ones is a priority of researchers. This can 

increase the chance of releasing more proteins. For instance, notable groups of gram-negative 

bacteria including Salmonella, Shigella, and other Enterobacteriaceae, Pseudomonas, 

Moraxella, Helicobacter, Stenotrophomonas, Bdellovibrio, acetic acid bacteria, Legionella can 

be treated by CNTs.  

 

D.2 Impact of Research Results on U.S. and Global Society 

Using this method, more proteins can be extracted from the cells. This method might 

be helpful for scientists to take more proteins out of the cells in order to use for human 

healthcare.  

 

D.3 Impact of Research Results on the Environment 

One of the concerns of using nanoparticles and carbon nanotubes is recycling. It is 

important to keep the materials which have been used during research in the nano-waste bucket 

in order not to let them pollute the environment. In this research, all the materials contaminated 

with carbon nanotubes were discarded into the nano-waste bucket.    
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Appendix E: Microsoft Project for MS MicroEP Degree Plan 
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Appendix F: Identification of All Software Used in Research and Thesis Generation 

 

Computer #1: 

Model Number: Dell Studio 1458 

Serial Number: 00196-083-475-832 

Location: Personal laptop 

Owner: Abdollah Mosleh 

Software #1: 

Name: Microsoft Office 2010 

Purchased by: Abdollah Mosleh 

Software #2: 

Name: Microsoft Project 2010 

Purchased by: MSDN Academy Alliance through Engineering 

Software #3: 

Name: Write-N-Cite III 

Purchased by: Free download available from RefWorks.com, activated by uark student 

account 
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Appendix G: All Publications Published, Submitted and Planned 

 

The results have been accepted as presentation in AICHE 2016 conference which will be 

held in San Francisco in November, 2016. 
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