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Abstract

Let ¢ be an analytic self-map of the unit disk D := {z : |z| < 1}. The composition
operator Cy defined by Cy(f) = f o ¢ is a bounded linear operator on the Hardy space
H?*(D). Tt is well-known that if Cy is compact on H?*(D) then ||¢"|| g2y — 0 as n — co.
But the converse doesn’t necessarily hold. We discuss the decay rate of ||¢"|| g2y in the
case when ¢ maps the unit disk to a domain whose boundary touches the unit circle
exactly at one point. We also investigate inheritance of closed-rangeness property of Cy

from a Banach space of analytic functions on D to a weighted subspace.
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1 Introduction

THE HARDY SPACE H?*(D)

Let us denote the unit disk by D := {2z : |z| < 1} and let T := 0D = {z : |z| = 1} be the unit
circle. Let H(DD) denote the space of all analytic functions on D. The Hardy space H?*(D)

consists of functions in H (D) whose power series coefficients are square-summable, i.e.

H*(D) { Zanz e H(D Z|an|2<oo}.

n=0

o0 2

The norm of f € H*(D) is defined to be || f|| g2y = Z|an|2 . This definition of

norm gives a vector space isomorphism between H?(D) and_l2, the Hilbert space of square
summable complex sequences. H?(ID) can also be related to the space L?(T), another

Hilbert space of functions. Under this correspondence,

1) = {1 euw): s [1760Pdmc) < oo}

o<r<1

where m denotes normalized Lebesgue measure on T. The norm of any f € H?(D) is

defined to be

£ = sup [ 1£GOPam(Q) = i o= [ 15(re) Pt
O<r<l JT r—

Also the inner product between two functions f and g on H?(D) is defined as:

(f,g9) := lim — f re®)g(reit)d

r—1- 2

and the connection between H?(DD) and a closed subspace of L*(T) was shown very clearly

in the following Fatou’s Radial Limit Theorem.



o0

Theorem 1 (Fatou’s Radial Limit Theorem[44]). Suppose f(z) = Zanz” belongs to

n=0

H?(D), and f* is a function in L*(T) with Fourier series Zanemt. Then

n=0

lim f(re™) = f*(e")

r—1—

for almost every et € T, and ||f||?{2(D) = ||f*||%2(']1').

A detailed discussion and proof of this theorem is available in [44, 42].

CoMPOSITION OPERATORS ON H?(D)

Let ¢ be an analytic self-map of D. Define the composition operator Cy on H?*(D) by

Co(f)=foo

for f € H*(D). The following Littlewood’s Subordination Principle shows that C, maps H?
into H? and does so boundedly, i.e. Cy4 takes bounded subset of H?*(D) to bounded subset

of H*(D).

Theorem 2 (Littlewood’s Subordination Principle [44]). Let ¢ be an analytic self-map of
D with ¢(0) = 0. Then for each f € H*(D),Cy(f) € H*(D) and ||C,(N)] < IIf]-

Though Littlewood’s subordination principle only proves the case when ¢ fixes the

origin, the general case, where ¢ can be any analytic self-map of D, can be proven by

showing the composition operator C,, induced by the conformal automorphism o, := =

for @ € D, is bounded on H?*(D).

Theorem 3 (Littlewood’s Theorem [44]). Let ¢ : D — D be an analytic function. Then C,

is bounded on H*(D) , and

HC¢HH2(D) < w

1—[o(0)]



A proof of this theorem can also be found in [44]. Please see [53, 15, 34, 55, 35, 48] to
learn more about boundedness of composition operators in other Banach spaces of analytic

functions.



2 Preliminaries

In this section we provide some background concepts related to the study of composition

operators.

ANGULAR DERIVATIVE

For ( € T and o > 1, the region
[(Ca)={zeD:|z=( <all-|z])}

is called non-tangential approach region at (. This cone shaped region is asymptotic to a
sector with vertex at ( and angle less than 7 and is symmetric about the radius at . A
function f is said to have a non-tangential limit L at ( if il_r)l} f(z) = L in each
non-tangential approach region I'((, «), denoted as £ ilﬁﬂé f(2) = L. An analytic self-map ¢

of D has an angular derivative at ( € T if for some n € T, the following limit

/1im 1902
z—( C —Z

exists (finitely). We denote the angular derivative of ¢ at ¢ as ¢ (¢) whenever the above
limit exists [44, 15].
One very important result concerning the existence of angular derivative is the

Julia-Carathéodory theorem.

Theorem 4 (Julia-Carathéodory Theorem [44]). Let ¢ : D — D be an analytic function

and ¢ € T. Then the following statements are equivalent:

1. lim inf,_, %ﬁ' =§ < o0,
2. Zlim %’S(z) exists for somen € T,
z—( z



3. Zlim ¢'(2) exists, and £lim ¢(z) =n € T.

z—( z—(

Moreover:
e 0>01n (1),
e the boundary points n in (2) and (3) are the same, and

e the limit of the difference quotient in (2) coincides with that of the derivative in (3),

with both equal to (nd.

For a beautiful proof of this classical theorem please refer to [44]. Before stating
another major theorem on the existence of angular derivative we need to introduce the
concept of angular derivative in the upper half-plane Sz > 0 setting. This discussion is
taken from [50]. Let A be a simply connected domain on the w = £ + in plane, bounded by
a Jordan curve C', which passes through w = 0 and touches the real axis at w = 0 and its
inner normal at w = 0 coincides with the positive imaginary axis. We map A conformally
on the upper half plane Sz > 0 of z = x + iy plane by w = w(z), w(0) = 0.

w(z)

If £ lirr(l) ===/ hH(l) w'(z) = 7 exists, then v is called the angular derivative of w(z) at
z2— z—

z = 0. Here is a niceness condition on the behavior of C.

Theorem 5 (Warschawski’s Theorem [50]). Let A be a simply connected domain on the
w = & + in-plane, bounded by a Jordan curve C', which passes through w = 0 and touches
the real azis at w = 0 and its inner normal at w = 0 coincides with the positive imaginary
azxis.

We assume that in a neighborhood of w = 0, C' lies between two curves H an H, each
of which lies symmetric to the imaginary azris and whose part on the right of the imaginary
axis as follows:

H:n=n"h&), H:n=—h() (0<€&<1) and h(0) = 0,where h(t) > 0 is a continuous

increasing function of t.



If we map A conformally on the upper half-plane Sz > 0 of the z-plane by w = w(z),
w(0) =0, then
lim ) _

z—0 ZzZ

exists uniformly, if z — 0 from the inside of any fized nontangential approach region whose

vertex is at z = 0 if and only if

18 finite.

Warschawski’s theorem gives a necessary and sufficient condition for the existence of
the angular derivative. For a proof of necessity and sufficiency of the above condition
please refer to Theorem IX.10 in [50].

J.H.Shapiro [44] restated Warschawski’s theorem for the case when the map ¢ from D

to the simply connected domain A is univalent and touches T at exactly one point.

Corollary 6 ([44]). Suppose A is a Jordan domain in D whose boundary curve in a

neighborhood of 1 is a curve of the form

L= = h(t))

where h : [0,1] — [0,1] is a continuous, increasing, function with h(0) = 0. Let ¢ be a

univalent map of D onto A, with ¢(1) = 1. Then ¢ has an angular derivative at 1 if and

only if

is finite.



CoMPACT OPERATOR AND APPROXIMATION NUMBERS

Before we explore compactness of composition operators, let us first refresh our memory
with the definition of a compact operator: a linear operator T on a Hilbert space S is said
to be compact if it maps every bounded set into a relatively compact one (one whose
closure in S is compact). It is a known fact that on an infinite dimensional Hilbert space, if
a bounded operator has finite dimensional range then it is also compact. It can also be
argued that on an infinite dimensional Hilbert space compact operators can be
approximated in operator norm by such finite rank operators and every compact operator
arise in this way. The following theorem restates this as a property of compact operators

on an infinite dimensional Hilbert space, whose proof can be found in [44].

Theorem 7 (Finite Rank Approximation Property). Suppose T is a bounded linear
operator on a Hilbert space S. Then T is compact if and only if there is a sequence {R,} of

finite rank bounded operators such that ||T' — R,|| — 0, as n — oo.

Let us denote the distance in operator norm between 7" and the set of bounded
operators on S with rank < n as a, (7). From the above theorem it is clear that T is
compact if and only if a,(7) — 0, as n — oo. We call these a,(T)’s approzimation
numbers. Later we will discuss some recent results relating the decay rate of these

approximation numbers and compact composition operators.

SCHATTEN CLASS OPERATORS

This section is taken largely from K. Zhu’s book [53]. Let H be any Hilbert space and T be
any continuous linear operator on H. As a consequence of the Riesz representation

theorem there exists an unique continuous linear operator 7™ such that

(T'z,y) = (x,T"y)  Vx,yeS



and [|T|| = ||T*||. Now we say that a continuous linear operator T on H is self-adjoint if
T* =T. It can easily be seen that T is self-adjoint when and only when the inner product
(T'z,x) is real for all x € S. If (T'z, x) is non-negative then we call T" a positive operator.
For example, for any operator 7" on H, T*T is positive and hence self-adjoint.

Any continuous (bounded) linear operator 7" on H can be decomposed as
T=UP

where P is the positive operator (T*T)2 and U is a partial isometry defined as |Uz|| = ||z||
for all z in the closure of the range of (T*T)%. This decomposition of T is called polar
decomposition.

The Spectral theorem for compact self-adjoint operators states : if 1" is any self-adjoint
compact operator on H, then there exists a sequence of nonzero real numbers {\,}, either
finitely many or {\,} tends to 0 and an orthonormal sequence {e,} in the closure of the

range of 7" such that

Tx = Z Az, en)en
n=1

for all z € H. These {\,} are eigenvalues of T" and {e, } are corresponding eigenvectors. If
in addition T is positive then these {\,} are also positive for each n.

So in the case T' is only compact but not necessarily self-adjoint we consider the

N

positive operator (7*7")2. Then by the Spectral theorem we have the following

N

decomposition of (T*T)

(T*T)%a: = Z A (T, en)en
n=1

where {\,} are eigenvalues of (T*T)2 and {e,} are corresponding eigenvectors. From the

polar decomposition of T" if we take Ue,, = o, for each n then {o,} is also an orthonormal



sequence in H. Now we have the following decomposition of T
Tx = Z Az, en)o, Vo e H.
n=1

Indeed, any compact operator on a Hilbert space can be decomposed in this form. The
non-negative real values {\,} are called nth singular values of T

For 0 < p < oo, the Schatten p-class, S,(H)), consists of compact operators 7" for
which the sequence of singular values {\,} belongs to [P. Tt is equivalent as saying T is in
S,(H) when the sequence of approximation numbers {a,(7")} of T is in [, which implies
Yo @l (T) < oo. There are several characterizations of Schatten class operators. We

mention a couple of these characterizations for future use.

Theorem 8 ([53]). Suppose T is a compact operator on a Hilbert space H. Then the

following are true:

1. Forp>1,T is in S,(H) if and only if for all orthonormal sequences {e,} in S,
> Ten, en)lP < oc.
n=1

2. Forp>2,T isin Sy(H) if and only if for all orthonormal sequences {e,} in S,

(o]
> I Ten|lP < oo
n=1

NEVANLINNA COUNTING FUNCTION

The Nevanlinna Counting Function is a heavily used tool in characterizing properties of
composition operators. For an analytic self-map of D and w € ¢(D)\{¢(0)}, the

Nevanlinna Counting Function for ¢ is defined as:



1
Ny(w) == Z log 5k
z€p~ 1 (w)
counting multiplicities of the zeros of ¢(2) = w.

Also it should be noted that Ny(w) = 0 whenever w ¢ ¢(D)\{¢(0)} to make sure it is
defined on the whole disk ID.

INDUCED MEASURE

Let ¢ be an analytic self-map of ID. Then the radial and nontangential limits of ¢ exist
almost everywhere [m] on T. We denote the boundary limit function as ¢*. Define the

induced measure of ¢ on the Borel subsets E of D as

pue(E) =m({¢ e T: ¢°(¢) € E}).

C. Sundberg [47] provided some useful results involving induced measure and answered a

more than a decade old question posed by W. Rudin.

HARMONIC MEASURE

The concept of harmonic measure plays an important role in our work. Though harmonic
measure is discussed in several books, this section is largely taken from [19]. Let A be a
domain in the extended complex plane in which the Dirichlet problem is solvable, i.e. given
a continuous function f(¢) on the boundary dA, we can find an unique function u(z),
harmonic in A and continuous on A such that u(¢) = f(¢) for all ¢ € AA. It is shown in
[19] that we can associate a harmonic function H f(z), the solution to the Dirichlet problem

in A with the boundary function f(¢). If z € A fixed , then there is a linear mapping
H,:C(0A) - R

10



where C'(0A) denotes the space of all continuous real valued functions on 0A, defined by

H.(f) = Hf(2).

Additionally if we take f to be non-negative then by the Maximum Principle, H,(f) is
a positive, linear functional on C(0A). By the Riesz Representation Theorem [42] there

exists a unique (probability) measure p, defined on OA such that

Hf(z) = » F(Q)dp=(C).

Definition. Suppose A is any domain. Let E be a Borel set on the boundary 0A of A.

The harmonic measure of E with respect to A is defined as:

w(2.B. ) 1= [ Q) = ()

An important feature of harmonic measure is conformal invariance: If ¢ is a conformal
map from D to some domain A with its boundary consits of finitely connected Jordan arcs
and in addition, ¢ is also continuous and injective on T then, for any Borel set £ C T,
w(z, E,D) = w(¢(2),p(E),A); see [19]. It is well-known that if ¢ is a conformal map from
the unit disk D onto a Jordan domain A then ¢ has a continuous extension to I and the
extension map is an one-to-one correspondence between D and A. See Theorem 3.1 in [20]

or Theorem IX.2 in [50]. Using this fact it can be shown that :

Proposition 9. Suppose ¢ is a univalent map from D onto a Jordan domain A which is
bounded by a rectifiable curve. Let ¢(0) = a and w(a, ., A) be the harmonic measure on OA

at . Then

dw = |¢'|d¢

where 1) = ¢~ d€ denotes the arclength measure on OA and ' is defined as

11



non-tangential or angular limit.

This is a known result in harmonic measure theory and for a proof of this proposition,

please refer to [50, 20, 14, 22]

GENERAL HARDY SPACEs H?(D)

For 1 < p < oo, the general Hardy spaces HP(ID), are defined as follows:

@)= {1 e 1) s (100 Panc) < oo

0<r<1
These are all Banach spaces under the norm || f[|%, = supg_,; [¢|f(r¢)[Pdm((). The
Banach space H>°(D) is called the space of bounded analytic functions on D and it is

defined as:
H*(D) = {f € H(D) : SLelg|f(z)| < oo}.

WEIGHTED BERGMAN SPACES AP

For a > —1, let )\, denote the finite measure defined on D by
dAa(2) = (1 — |2*)*dA(2).

where A denotes normalized Lebesgue area measure on .

For 0 < p < oo the weighted Bergman spaces AP are defined by

Ag:{fe% /|f|pd>\ <oo}

For p > 1, the weighted Bergman spaces A? are Banach spaces under the norm

1f1le = JplfIPdAa. When p = 2, A2 are Hilbert spaces.

12



WEIGHTED DIRICHLET SPACES D2

The weighted Dirichlet spaces D?, oz > —1, is the collection of analytic functions of I such

that f is in A2. D2 is a Hilbert space in the following norm:

22 — 2 /2d)\a
11, = FO) + / £

for f € D2. For a =0, D} is called the classical Dirichlet space. Also for o = 1, D? is the

Hardy space H?(D).

CARLESON MEASURE

Carleson measure plays a crucial role in the composition operator theory. For e € T and
h > 0, a Carleson window or square is a square-shaped region near the boundary of unit
disk D defined as:

Sp(e®) ={re® 1 —h<r<1,]0 — 6| <h}.

A positive Borel measure p is called a Carleson measure if and only if there exists a
constant K > 0 such that u(Sy,(e?°)) < Kh for all ¢ € T and h > 0. yu is called a compact

or vanishing Carleson measure if

plSe™)

lim
h—0
uniformly for ei® € T [53].

For the weighted Bergman spaces A? | a positive Borel measure on D is an a—Carleson
measure if and only if there exists a constant K > 0 such that u(Sy,(e?°)) < Kh**? for all
e’ € T and h > 0. A compact or vanishing Carleson measure on these spaces is defined in
the same way we defined it earlier. The definition of Carleson measure would not be

complete without the famous theorem of L. Carleson:

13



Theorem 10 ([53]). For 1 <p < oo, a positive Borel measure p on D is a Carleson

measure if and only if there exists a constant K > 0 such that

[ 1P < K1
D

for each f € HP(D), where HP(D) are the general Hardy spaces.

This characterization of Carleson measure can also be rephrased in the setting of

weighted Bergman spaces A?. More information on Carleson measure can be found in [53].

BLOCH SPACE

An analytic function f on D belongs to the Bloch space B if

1 flls = Sgg(l —12P)|f ()] < oo.

The norm || f||z = |f(0)| + || f|| sz makes B a Banach space. One very important feature of

B is its Mobius invariance. In particular, if f € B and o,(= {==,a € D) is a Mdbius

transformation of D then f oo, € B. One can easily verify that

1f o oalls: = [ fll5:-

It is known that bounded analytic functions on D are in B. Associated to Bloch space

there is little Bloch space By, consists of analytic functions of D for which

lim (1 - |2)|f (2)] =o.

|z]—1—

By is also Mobius invariant and a closed subspace of B. In fact, By is the closure of
polynomials in B. For a detailed discussion on Bloch spaces and the above results please

refer to [53]. It should also be noted that bounded analytic functions are not properly

14



contained in By. So one may ask which bounded analytic functions are in By. Detailed
information on the history of this question and answers can be found in the article [8] by

C. J. Bishop.

BESOvV SPACE

For 1 < p < oo, the Besov space B, is the space of analytic functions f on ID such that

11, = 17 P = [Py 2dAG) < .

The norm | f[[5 = [f(0)[ + HfHZg makes B, a Banach space. It can be easily shown that
each B, is a Mobius invariant Banach space. Note that for p = 2, the space B is the
classical Dirichlet space D32 discussed earlier. Another interesting fact is, for
l<p<g<oo, B,CB,CB.

For 1 < p < oo and a > —1, the Besov type spaces B, , are defined as:

B, —{fe?—[ /|f )P, <oo}

which are Banach spaces under the norm: || f[[; = [f(0)[” + [;]f'(2)[Pd)a. More

information on Besov space and Besov type spaces can be found in [53, 48, 49].

§*(D)

The space S?(D) is another Banach space of analytic functions on D, defined as follows:

S?(D) :={f € H(D) : f' € H*(D)}.

The norm on this space is given by: || f[|%:p) = [f(0)]* + 57 f | f'(e™)]2dt.

15



BMOA

An analytic function f on D is in BMOA if

|UNBMom==&£HfoaAZ)—JT®HH%m<i@l
ac

The norm on BMOA can be defined by || fllzamoa = |£(0)| + || fll amroas. BMOA also a

Mobius invariant Banach space. An interesting containment relation is:
B, C BMOA C B.

Some good references on BMOA (including Bloch space and Besov space) are

53, 48, 10, 38].

DETERMINING FUNCTIONS

Determining functions and Nevanlinna counting functions discussed earlier are similar in
nature. Determining functions were introduced in [55]. For & > —1 and ¢ an analytic
self-map of D, define

225 (1 = lz(w)))**

Tpat2(W) = (1 — |w|)o+2

where w € ¢(D) , {z;(w)} is the set of all preimages of w, counting multiplicities, and
Tpat2(w) = 0 when w ¢ ¢(D). 74 o42(w) is called the determining functions for the
composition operator Cy on D,yo. Note that the numerator in the above expression looks
very similar to a generalized version of the Nevanlinna counting function we discussed

earlier.

16



ABSOLUTELY MONOTONIC FUNCTIONS

A function f(x) is absolutely monotonic in the interval a < x < b if it is continuous on |[a, b]
and all of its derivatives of all orders are non-negative on (a,b) (see [51]). For example,
f(x) = ¢, where ¢ is any non-negative constant, is an absolutely monotonic function on R.
Another class of examples are functions which can be represented as powers series of the
form, f(z) = > "2, ara®, where 0 < z <1 and a; > 0. Also sum, product and composition
of absolutely monotonic functions are absolutely monotonic; see Theorem 2a in [51].
Absolutely monotonic functions are necessarily analytic. The following theorem points

out the analyticity of absolutely monotonic functions.

Theorem 11 ([51]). If f(x) is absolutely monotonic in a < x < b, then it can be extended

analytically into the complex plane, and the function f(z) will be analytic in the circle

|z —a| <b—a.

To learn more about absolutely monotonic functions please see chapter 4 of [51].

CLOSED-RANGE OPERATORS ON BANACH SPACES

Closed-range operators are the ones whose range is a closed subspace of the image space.
To characterize closed-range operators on any Banach space, first we need to introduce the
concept of bounded below operators. This discussion here is taken largely from [1].

An operator T : X — ) between two Banach spaces is said to be bounded below if there
exists a constant € > 0 such that

[Tz|| > ell=|

for each z € X.

This following theorem completely characterizes bounded below operators on Banach

spaces.

17



Theorem 12. A continuous operator T : X — ) between Banach spaces is bounded below

if and only of T is injective and has closed-range.

The theorem above is a consequence of open mapping theorem and its proof can be
found in [1]. The above characterization can also be interpreted as: for any bounded
operator T : X — 9) between two Banach spaces, there exists a constant € > 0 such that for
each y € range(7") there exists some = € X satisfying y = Tz and ||z|| < ¢||y|| if and only if
T has closed range. For detailed discussion on closed-range operators including this section

please refer to [16, 1].

18



3 History on the Compactness of Composition Operators

The study of Composition Operators is a delightful subject which has its origin in 1960s in
the works of such mathematicians as E. Nordgren[37] and H. J. Schwartz[41]. They have
been studied extensively on several Banach spaces of analytic functions on different types
of simply connected domains in the complex plane. We already know, from the
Littlewood’s theorem, that every composition operator on H?(ID) is bounded. So now it is
natural to be curious about the compactness of composition operator. The following result

is first of its kind and can be proven in a straightforward way. For a proof refer to [44].

Theorem 13 ([44]). Suppose ¢ is an analytic self -map of D. If ||}|loc < 1 then Cy is a

compact operator on H*(D).

So it tells us if the image of the unit disk D under the map ¢ is merely relatively
compact then Cy is compact on H?(D). Shapiro and Taylor[45, 44] improved the first

compactness theorem by showing that if Y >° ||¢"||* < co then Cj is compact on H*(D).

Theorem 14 (Hilbert-Schmidt Theorem for composition operators [44]). Suppose ¢ is an

analytic self -map of D. If [, de(o < 0o then Cy is a compact operator on H*(D).

Composition operators which satisfy the above condition in Theorem 14 are called
Hilbert-Schmidt operators. Shapiro and Taylor also gave an example of a new class of maps

which induce Hilbert-Schmidt composition operators.

Theorem 15 ([44]). Suppose ¢ is an analytic self -map of D. If (D) is contained in a

polygon inscribed in T, then Cy is Hilbert-Schmidt on H?*(D).

The operator-theoretic definition of compactness for Hilbert space operators involves
the concept of weak convergence: A sequence {s,} in a Hilbert space S is said to converge
weakly to s € S if (s,,u) — (s,u), as n — oo, for every u € S. A compact operator 7" on a
Hilbert space S takes a weakly convergent sequence {s,} into a norm convergent sequence.

Here is a version of this statement in the case of composition operators.
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Theorem 16 ([34]). Suppose ¢ is an analytic self-map of D. Then a necessary and
sufficient condition for Cy to be a compact operator on H?(D) is the following: for each
sequence { f,} bounded in H*(D) and uniformly convergent to 0 on compact subsets of D,

the sequence {Cy(f,)} also converges to 0 in the H*(D) metric.

With the help of the Theorem 16 it has been shown that the composition operator Cj
can fail to be compact if ¢(e) approaches boundary T too quickly, even if it happens at
only one point. For example, let 0 < A <1 and ¢(z) = Az + (1 — X). Then Cj is not
compact on H?(ID) [44]. So it seems reasonable that if a self-map of the unit disk induces a
non-compact composition operator, then any map whose values approach the boundary T
faster should also induce a non-compact operator. This intuition gives rise to another

compactness theorem.

Theorem 17 (Comparison Principle [44]). Suppose ¢ and 1) are analytic self-maps of D,

with ¢ univalent and (D) C ¢(D). If Cy is a compact operator on H*(D) , then so is Cl.

Theorem 17 gives birth to an important corollary which characterizes a class of

non-compact composition operators.

Corollary 18 ([44]). Suppose ¢ is an univalent analytic self -map of D, and that the image
of the unit disk under the map ¢ contains a disk that is tangent to T. Then Cy is not

compact.

A necessary and sufficient condition for compactness of C, when ¢ is univalent, was

proved by B. MacCluer and J. Shapiro [34].

Theorem 19 (Univalent Compactness Theorem[44]). Suppose ¢ is an univalent analytic

self -map of D. Then Cy is compact on H*(D) if and only if

O
EESEE
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Now with the help of the Julia-Carathéodory theorem the above theorem can be

restated as follows:

Corollary 20 ([44]). Suppose ¢ is an univalent analytic self -map of D. Then Cy is

compact on H*(D) if and only if ¢ has no angular derivative at any point of T.

Please note that that the univalence criteria of ¢ is necessary only for the reverse
direction in Corollary 20. Now if the univalent analytic self-map ¢ satisfies all the
conditions in Warschawski’s theorem on angular derivative then Cy is compact if and only
if f hY gt diverges.

So far we have a necessary and sufficient condition for compactness of composition
operator in the case when the inducing map ¢ is univalent. But what happens in the case

of arbitrary analytic self-map ¢ 7 The following result is due to B. D. MacCluer [32].

Corollary 21 ([15]). Suppose ¢ is an analytic self -map of D. Then Cy is compact on

H?(D) if and only if
RCACS)

h—0 h =0

where 1, is the induced measure of ¢ and Sy (e?) = {re? : 1 —h <r < 1,|0 — 6y < h}.

It is shown in [53] that the above condition is satisfied only when

. Ip|?
Aﬂ/usaz +(8) =0

which is equivalent to the following condition:

i [ — ‘p’ m(¢) =0, S

Shapiro [43] also gave a necessary and sufficient condition for compactness of
composition operators in the case when the inducing map ¢ is any analytic self-map of D

by computing the essential norm of the composition operator, where essential norm of a
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composition operator is defined to be its distance in the operator norm from the space of

compact operators on H*(D).

Theorem 22 ([43]). Suppose ¢ is an analytic self-map of D. Let |Cy||. denote the

essential norm of Cy. Then

N,
|Csl|? = lim sup ¢(l§)>
lw]—1- 108 1]
In particular, Cy is compact on H*(D) if and only ifl llim lNg&l) =0.
w|—1~ 18 Tw]

J. A. Cima and A. L. Matheson [12] observed the connection between essential norm of

a composition operator and condition (#), which can be stated as an identity as follows:

Theorem 23. Suppose ¢ is an analytic self-map of D. Let ||Cy|| denote the essential

norm of Cy. Then

C. 12 =i id _
el =t | gm0

J. R. Akeroyd [2] gave a direct function-theoretic proof of the above identity.

In 1988, D. Sarason asked, “do there exist compact composition operators which do not
belong to any of the Schatten p-classes 7 7 C. Cowen and T. Carroll [11] gave an
affirmative answer to this question by constructing an explicit analytic self-map of the unit
disk which induces a compact composition operator on H?(ID) but does not belong to any
of the Schatten p-classes, S,(H*(D)) for 0 < p < oco. They used the following Luecking
Criterion [31] to verify the membership of the compact composition operator in the

Schatten p-classes, S,(H?*(D)) for 0 < p < oco.

Theorem 24 ([31]). For 0 < p < oo, Cy € S,(H*(D)) if and only if&% € L2(d)\) where
Tl

d\ = ﬁ 1s a measure defined on D.

Several other examples were given, respectively, in [54, 23, 25] and all of these examples

rely on Luecking Criterion as stated in Theorem 24.
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By the Finite Rank Approximation property of compact operators, Cy is compact on
H?(D) if and only if the approximation numbers a,(Cy) goes to 0 as n — oo. D. Li, H.
Queffélec and L. Rodriguez-Piazza [29] estimated the decay rates of approximation numbers
of compact composition operators on H?(ID) for different types of analytic self-maps of the
unit disk ID. They were able to estimate the lower and upper bounds for the approximation
numbers in the case where ¢(DD) is contained in a polygon and in the case where the image

(D) is a cusp. Their main results are summarized in the following theorem:
Theorem 25 ([29]). Suppose ¢ is an analytic self-map of D.

1. If the image ¢(ID) is contained in a polygon with vertices on T. Then, there exist

positive constants «, 3 (depending only on ¢) such that

a,(Cy) < e PV,

2. If ¢ is a cusp map, then there exist positive constants vy, s such that

agn
logn |

e S an(Cy) S e
One major limitation of the Theorem 25 is that it does not tell us much about the
approximation numbers in case when ¢(ID) touches T “smoothly” exactly at one point.
Also it fails to provide a precise estimate on the approximation numbers in the case when
¢(D) falls in between the two extreme cases, smooth tangency at exactly one point on T
and the cusp maps. Queffélec and Seip[40] gave precise estimates for both of the above
mentioned cases. They showed that a composition operator with any slow rate of decay of

approximation numbers can be constructed. For simplification a new class of functions are

defined.

Definition ([40]). Let ¢ be an analytic self-map of D of the form ¢ = e“~™  where u is real
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valued, belongs to C(T) , satisfies u(z) = u(Z), and is smooth everywhere but not
necessarily at z =1 and U is the harmonic conjugate of u. An even function U(t) := u(e®)

belongs to class U if it is increasing on [0, 7], U(0) = 0 and the integral function

U
hy (t) = / éj)dx —o00  when t—0".
t

First, Queffélec and Seip considered two extreme cases : one when the integral function
hy (t) grows very slowly, implying there is a smooth tangency at 1 and another one when
U(t) — 0 very slowly at ¢ = 0, implying there is a sharp cusp at 1. The following theorem

covers both of these cases entirely.

Theorem 26 ([40]). Suppose that U belongs to U.

L If % tU’ ) <14 < and LY. < ¢ forc>1, C >0, and sufficiently small

[log t| thy(t) — |logt|logl|logt|
t> (), then
e
a,(Cy) = ———= as n — oo.
hU(G_\/ﬁ)

2. Suppose U(t) = e os!) whenever 0 <t <1 and U(t) < L. Let wy(z) = nu(=2=)

wy ()

for x >0 such that ny(x) > 1. If Zzgi o(2) as x — oo, then

2
T +o(1))n

a,(Cy) =€ wvm as n — oo.

Second, they considered maps that fall between the above mentioned two extreme cases
including the maps that have a corner at a boundary point. These maps lie in the interface

of two types of maps discussed earlier.

Theorem 27 ([40]). Let ¢(z) be the holomorphic self-maps of D of the form

o(z) = 1+(T where 0 < o < 1. Then

e~V a,(Cy) < G NVES
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Here, by f(n) < g(n), we mean f(n) < c-g(n) for all n.

Recall that if ZZO:OHWH?{Q(D) converges then Cy is compact on H?(D). It is also
evident from the Theorem 16 that if Cy, is compact on H?*(D) then ||¢"|| z2(ny decreases to
0, as n — oo. J.R. Akeroyd [2] showed a new way of constructing self-maps of I, univalent
or otherwise, for which Cy is compact on H?*(D), such that ||¢"|| g2y decreases to 0 at an

arbitrarily slow rate, as n — oc.

Theorem 28 ([2]). Let {s,}22, be a sequence of real numbers in the interval (0,1) such
that lim s, = 0. Then there exists a holomorphic self-map ¢ of D, where Cy is compact on

n—00

H?*(D), such that ||¢"||m2m) > sn for all n. Furthermore, ¢ can be univalent.

Akeroyd’s proof, for the non-univalent case, relies heavily on a famous result of C. J.

Bishop [9], which can be stated as follows:

Theorem 29 ([9]). Suppose ¢ is a holomorphic self-map of the unit disk such that
#(0) =0 and py is the induced measure of ¢. Then fT " dt = 0 whenever n £ m if and

only if uy(E) = pug(e*E) for every measurable set E, supported in D, satisfying

1
/log md/,%(z) < 00.

D

Moreover, given any measure p satisfying above conditions there exists ¢ with the above

mentioned characteristics such that j1 = ji,.

With the help of Theorem 29, Akeroyd showed that there exists a non-univalent
analytic self-map ¢ of D with ¢(0) = 0 which induces a measure p, with the above
mentioned characteristics in terms of normalized Lebesgue measure on the union of circles
of the form {|z| = ry : lim r, = 1}.

k—o0
For the univalent case, he used harmonic measure to construct a simply connected

region A of D with multiple radial slits removed so that, if ¢ is a conformal mapping from
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D to A with ¢(0) = 0, then ¢ has no angular derivative at any point of T and
w({z:r <|z| <1}) tends to 0 at an arbitrarily slow rate as » — 17. For detailed
discussion on the proof of Theorem 28 see [2].

So far we have concentrated on compactness of composition operators on the Hardy
space H(D). A curious mind would naturally ask what happens to compactness of
composition operators in other spaces of analytic functions. B. D. MacCluer and J. Shapiro
[34] gave a necessary and sufficient condition for compactness of composition operators on

the (weighted) Bergman spaces.

Theorem 30 ([34]). Suppose 0 < p < 0o and o > —1. Let ¢ be an analytic self-map of D.

Then Cy is compact on AP if and only if ¢ has no angular derivative at any point in T.

Please note that the angular derivative criterion alone is not sufficient in the Hardy
space H?(D), where an additional condition of ¢ being univalent (or boundedly valent) is
necessary in order to guarantee compactness [refer to section 3]. B. D. MacCluer and J.
Shapiro also gave another complete characterization of compact composition operators on

AP in terms of Carleson measure. Please see section 2 for a definition of Carleson measure.

Theorem 31 ([34]). Suppose 0 < p < 0o and o > —1. Let ¢ be an analytic self-map of D.

Then Cy is compact on AP if and only if Ao~ " is a compact a-Carleson measure.

As a corollary a similar necessary and sufficient condition was obtained in the case of

the weighted Dirichlet spaces. For a discussion on Dirichlet spaces, see section 2.

Corollary 32 ([34]). Suppose o > —1 and ¢ be an analytic self-map of D such that

¢ € D%. Also define a measure v, on' D as

dva(z) = |¢I(Z)|2d)‘a(z)'

Then Cy is compact on D2 if and only if vo¢~" is a compact a-Carleson measure.
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It should also be noted that the angular derivative criterion is not sufficient enough to
guarantee compactness in the weighted Dirichlet space setting. An additional condition, as
in the case of the Hardy space H?(ID), is required to guarantee compactness of composition
operators on D2. The following theorem is the “main” theorem in this context, as

indicated by MacCluer and Shapiro [34].

Theorem 33 ([34]). Suppose a > —1. Let ¢ be an analytic self-map of D. If Cy is
compact on Dg then ¢ does not have any angular derivative at any point of OD. If ¢ does
not have any angular derivative at any point of OD and if in addition Cy is bounded on D,

for some —1 < v < 3, then Cy is compact on Dg.
8 ® B8

The additional condition that C, is bounded on D% for some —1 < 8 < « is only
necessary for the converse direction of the above statement. The reason behind this, as
argued by MacCluer and Shapiro, is that if C, bounded on D% the it is also bounded on
D? for -1 < 8 < a.

In 1995, K. Madigan and A. Matheson formulated the following necessary and

sufficient condition for compactness of composition operators in the Bloch spaces.
Theorem 34 ([35]). Let ¢ be an analytic self-map of D. Then,

o Cy is compact on By if and only if

. 1-— ’2‘2 ’ .
S T=r

o Cy is compact on B if and only if for every e > 0, there exists v, 0 <r < 1, such that

11—z B
T jocp? <

whenever |p(z)| > .
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The authors [35] remarked that if the angular derivative of ¢ exists at any point of T
then Cy is not compact on Bloch spaces. They presented several example scenarios where
C, is non-compact or compact in the context of little Bloch Space By. In particular, if ¢ is
an univalent self-analytic map of D and the image of ¢ touches T at exactly one point, but
is not a cusp at that point, then Cy is non-compact on By; on the other hand, if the image
of ¢ is a nontangential cusp at that point then Cjy is compact on Bj.

Shortly after, in 1996, M. Tjani [48] proved several new and interesting results about
compactness of composition operators in Besov spaces and Bloch space. One of these
results is about a complete characterization of compact composition operators on these

spaces.

Theorem 35 ([48]). Let ¢ be an analytic self-map of D and X = B,(1 < p < 00), BMOA,

or B. Then Cy: X — B is compact if and only if

lim ||Cypoulls =0
la|]—1

a—=z

= 1s the basic disk automorphism for a € D.

where 0,(2) =

In addition to the previous theorem, Tjani also gave Carleson measure type
characterization of compact composition operators on the Besov spaces B, (1 < p < 00)
and Bloch space B and a necessary and sufficient condition for compactness of Cy on B,
when C is bounded on smaller Besov space B, 1 < p < ¢ < oo. For detailed discussion
and proofs of these results see [48].

Later in 1999, P. S. Bourdon, J. A. Cima, and A. L. Matheson [10] came up with a
necessary and sufficient condition for compactness of composition operators on BMOA in
terms of Carleson measure, which can be stated as follows: Cy is compact on BMOA if and

only if for every ¢ > 0 there is an r, 0 < r < 1, such that
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[, 3= RIS GG (A <

for each arc I C T and each f € BMOA with || f|| <1, where S(I) is the Carleson
square at I and x, is the characteristic function on {z € D : |¢(z)| > r}.

W. Smith, in [46], provided an improved condition, as compared to the complicated
nature of the previous condition, to characterize compact composition operators on
BMOA. Smith’s characterization of compact composition operators on BMOA uses the

classical Nevanlinna counting function of ¢.

Theorem 36 ([46]). Let ¢ be an analytic self-map of D. Then Cy is compact on BMOA if
and only if

lim  sup |w]*Ny, opor, (W) =0
|¢(a)|_>10<|w|<1| | T¢(a) ¢oo ( )

and for all0 < R < 1

lim  sup m(o.(E(¢,t))) =0
=1 fa:|g(a)| <R}

where 0,(2) = {== is the basic disk automorphism for a € D and

E(p,t) = {e? : |p(e?)] > t}, 0 <t < 1.

Another complete characterization of compactness in the Dirichlet spaces was given by
N. Zorboska [55] in terms of determining functions for composition operators. Determining

functions are discussed in section 2.

Theorem 37 ([55]). Suppose a > —1. Let ¢ be an analytic self-map of D. Then C, is

compact on D2, if and only if there exists 6, 0 < § < 1, such that

1
m —— Alw) =
a59D A(D(a, 0)) /Dw) 7o, at2(w)dA(w) =0

a

where D(a,é):{zED:|1 ©

—az

| < 5} is called pseudohyperbolic disk and Ty, 42 s the
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determining function for Cy on D3,

A lot of important work have been done on compactness of composition operators on
different spaces of analytic functions. For example, D. Li, H. Queffélec, L.
Rodriguez-Piazza [28] computed the decay rate of approximation numbers of compact
composition operators acting on the weighted Bergman spaces discussed earlier; recently K.
Seip and H. Queffélec [39] discussed the approximation numbers of composition operators
on the H? space of the Dirichlet series; shortly after that, P. Lefévre, D. Li, H. Queffélec, L.
Rodriguez-Piazza [27] studied the decay rate of approximation numbers of composition
operators on the Dirichlet spaces. For more information on recent compactness results of
composition operators acting on different types of Banach spaces of analytic functions
please refer to [18, 36, 26, 17, 7, 52]. We would also recommend [15] for some interesting

information on composition operators on Banach spaces of analytic functions.
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4 Estimates for the Decay Rate of |[¢"| 2

We already know that if Cy is compact on H?(ID) then ||¢" || g2y decreases to 0, as n — oo.
But the converse of the last statement doesn’t necessarily hold since there exists ¢ for
which [[¢"|| 2@y — 0, yet Cy is not compact on H*(D). The following serves as a simple

counter-example to the converse.

Example: Suppose ¢ is an analytic self-map of D given by ¢(z) = 25, Then

n 1
10" r2(m) = Yt
By definition,
. 1 +C 2n
6" ey = [ || dmic)
T
1
— o [ 11+ Pram(©
T
1 _
= o (1+0)"(1+¢)"dm(C)
T
1 —_
= 2%/(2+C+C)ndm(§)
T
1 1 2w
= — 2+ 2cosh)"db
5o 27T/0 (2 +2cosb)
1oon
— = 2 [ 1+ cos0)dd
5o 27T/o (1+ cosf)
1 2n [
= T_/ (ZCOS2Q)"d9
22n " 97 J, 2
I .
= 2%%0 (COS 5)(19
1 2m ) 4 .
= o) (cos 5) db

_127r2n
21 2\ p
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where the last equality is an well-known identity. Now by Stirling’s formula,

2 1 27 (2n
0" |2y = 37 9\ g

1 (2n)!

22 ()2

()

€
n 2n
() (=
1

v

H. J. Schwartz observed that the map ¢(z) = % induces a non-compact composition

operator on H*(ID) [45]. Now let us consider the map W(z) = £ which induces a compact

composition operator on H*(D) [44, 45]. A straightforward computation shows that

19" || r2(my \/Lﬁ, which goes to 0 much faster compared to ||¢"|| g2y where ¢(z) = 112

H. Wulan, D. Zheng, K. Zhu [52] gave a proof for the converse direction in the Bloch
space and BMOA settings. They showed that convergence of Bloch or BMOA (semi-)norm

of {¢"} to 0 is necessary and sufficient for Cy to be compact on these spaces.

Theorem 38 ([52]). Let X= BMOA or B and ¢ be an analytic self-map of D. Then Cy is

compact on X if and only if ||¢"||x: — 0, as n — oo.

O. El-Fallah, K. Kellay, M. Shabankhah, H. Youssfi [18] proved the same in the
classical Dirichlet space D§ setting. Next we compute the decay rate of ||¢"|| g2y for the

Schatten class composition operators.

Proposition 39. Let ¢ be an analytic self-map of D and p > 2. If Cy belongs to any of the
Schatten p-classes, S,(H*(D)), then

1

n

).

10" [ 2y = o

QI
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Proof. First of all, since Cy is in S,(H?*(ID)) it is compact. So the weak convergence
theorem implies ||¢"|| g2y — 0 as n — oo. Theorem 8 implies that for Schatten p-class

oo oo
composition operators ZHQS"H’;{Q () converges. Now since ZHQ&”HZI){Q(D) is a series of
n=1 n=1
positive, monotonic decreasing terms, lim n - ||¢"||% 2, = 0 (see [24]). Thus for
n—s00 H*(D)

Cy € S,(H*(D)), where p > 2,
1

gn

).

10" [ 2wy = o

&l

J. R. Akeroyd showed that we can construct analytic self-map of D such that the
composition operator Cy is compact on H?(D) yet ||¢"|| 2 converges to 0 in an arbitrarily
slow rate, see [2]. But the image of ¢ ( may be univalent), in his construction, touches the
unit circle T at multiple points. We study the decay rate of ||¢" || y2m) for the composition
operator Cy on the Hardy space of unit disk H?(D), where C} is defined by Cy = f o ¢ and
¢ is an univalent analytic map of unit disk D onto itself. We want to identify as precisely
as possible the rate of decay for the ||¢" | g2(p) when ¢(ID) touches the unit circle T at just
one point. For simplicity we consider ¢ which maps the unit disk D to a Jordan domain A
whose boundary A has an equation 1 — r = h(t), where h : [0, 1] — [0, 1] is a continuous,
increasing, convex function with ~(0) =0 and 0 < A(t) < M - ¢, for some constant M > 0.
The functions h that satisfy these conditions will be said to belong to the class 7.

We begin our work with a few lemmas and observations concerning the behavior of

functions in class J7Z.

Lemma 40. Suppose that h belongs to 7. Then

(1 — h(t))F > 1 — kh(t)

on [0,1] for any large k.
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Proof. Let

p(t) = (1= h(t)* — (1 — kh(t))
Notice that p(0) = 0, so it suffices to show that p () is positive on (0, 1).

!

p (1) =k(L—h(t) (=R (1) + kR (t) = Kh'(t)[L— (1 —h(t)"]

Since h is increasing and convex, h'() > 0 on (0,1). Also from the definition of h,

1 — (1 — h(t))*" is positive on (0,1]. Thus p'(t) is positive on (0, 1).

Observation: Choose t;, 0 < tj, < 1, such that h(t;) = 5.

Since h(t) is increasing on [0, 1], h(t) < 5= on [0,%]. So then

1 — kh(t) >

DN | —

and it is clear that (1 — h(¢))* <1 on [0,1]. From which we have

1 — kh(t)

A= h)F =

1
2
on [0, tx], for any k. We call {t;}22, the cutoff sequence for h(t).

The following lemma is an important feature of the functions that belong to class .77

and also a key tool that will help us prove our main results concerning composition

operators.

Lemma 41. Suppose that h belongs to €. Then there exists an € > 0 such that

JyE(L = h(t))kdt

TRy =

for large k, where {t;}2, is the cutoff sequence for h(t).
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Proof. First of all, for large k > 0, choose the same 0 < ¢, < 1 such that h(t;) = 2i

the discussion above. Now

/QLJMDWt::/%a—h@fﬁ+/ﬂ1—mwwﬁ

tg

= T+ 11

& as 11

Notice that the first integral (I) in the above expression is boundedly equivalent to ¢y,

that is, Ot’“(l — h(t))*dt < t;,. To see that,

ty,

v

/%ﬂ—h@fﬁ
> (1= h(tg)* -ty

1
= (1——)F-t
1 t
Je F

Now choose a subinterval of [t;, 1], with a partition t; = ;) <, < ...

where j < |4log(k)] such that

my, _ L
2y _ 2
ni?) = L.
Then,
h(t(j)) _ h(t(]_l)) _ i
for all j.
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By Mean Value Theorem , there exists a point si between t,(cj 1V and t,(j ) such that

/

A = ) = W) @ =), (4)

Let s,(cjfl) € (tgﬂ),tgfl)). Then combining (3) and (4) and by applying Mean Value

Theorem again we have,

T (G j i—1 1 (j-1 i—1 j—2
W (s () = ™) = 0 (s Y =),

Now from the definition of h(t) we know that A'(t) is increasing and never zero on

(0,1). So,

which implies

for any j < |4log(k)] for any large k.
Now if we integrate (1 — h(t))* on the subinterval [t,il), t,(flog(k))] for any large k then by

(5) above, we have
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(410 (k) 4log(k)

(A=h@)dr ~ 3 =)0 —ht))

£, j=1
[410g(k)
) .
< g > a—neh)
_]:1
[410g(k) j
(1) k
=t 1—=)"].
el 2L =g
_]:1

The sum on the right hand side of above inequality converges uniformly and equals to
some constant L > 0 because (1 — £)¥ ~ L unformly for all j > 0 growing upto |4log(k)]
e2
for any large k. In other words, (1 — 2 )* nearly equals the value - for all j < [log(k)] no
e2

matter how large k gets. The following claim explains this in more detail.

Claim: e%(l — £)¥ — 1 uniformly on 1 < j < |4log(k)] as k — oo .

Proof of claim: First of all note that the sequence e%(l — ;—k)k approaches to 1 uniformly for

all 1 < j < |4log(k)| as k — oo if and only if the sequence log(e%(l — £)¥) approaches 0

uniformly on 1 < j < [4log(k)] as k — oco. So it suffices to show that log(e2 (1 — £)*) — 0

uniformly on 1 < j < [4log(k)] as k — oc.

For 1 <j < |4log(k)]|, let m = 2j—k Then

Sa— Ly = Lkieg(i— 2
log(e2 (1 2k)> 2+k:log(1 2k;>
R T A A R
= 2—|—m 5 log(1 m)
' 1
- %-(1+m10g(1—ﬁ)).

Now since 1 < j < |4log(k)], 0 < == < 1 from which by the logarithmic

1
m
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inequalities/identities, we have

1
—log(1 — —
< —log( m)

)

1
m

= log(l_%
m
g ]_ _—
og(——7)
(m—1)+1

m—1

= log( )

1
= log(l+——
og(l + ——)

1

— since log(l4+xz)~2x as x—0
m —1

AN

from which it follows,

1 J \k J
] 1—Jdywy< I
0 < —loglex( Qk) )5 2(m —1)

Now if k is very large , then m also is very large. So as k — oo,

2(m —1) 2 m—1 m
j :

IN

approaches 0 .
Now |log(e2(1 — &)%) — 0] < e M<e = 1<e <= k>12
Choose K (€) = %. Thus for every € > 0, there exists K (€), independent of j, such that
k > K(e) implies
1 J \k
| 1— =) —-0| <
loa(eb (1 20 — 0] <

on 1 <j < [4log(k)].
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From the above discussion we have,

(41log(k))
ty 8

(1—h@)dt < ¢t L (6)

1)
t

QA
e~
*
o\
=
—
|
>
=
=
joH
Py
3

where L* > 0 is some constant.
(7) implies that the integral of (1 — h(t))* on [t,(cl), t,(f log(k))] is a constant multiple of the
integral of (1 — h(t))* on [0,z]. Now since k is very large and (1 — h(t))* is a decreasing

function on [0, 1] then by the above claim ,

1 410g(k> 1 4logk
/t<4logk>(1 —h)fdt < (1= =2 ~ om0,
k

(41log(k))

which is very negligible compared to the integral fot’“ (1 — h(t))*dt due to the

1

hypothesis h(t) < M -t on [0, 1] which implies ¢, > % and 2 converges to 0 faster than +

k k
as k — 0o. So we can conclude that
1 t§€4log(k))
/ (1= h(t))kdt N/ (1 h()dt
0 0
Set & = 7= Thus by (2),
tr k
1—
fol( h(t))"dt >
Jo (1= h(t))kdt
[ |

We discussed in section 3 for a compact composition operator Cy induced by a self-map
¢ of D, the H*norm of {¢"} decreases to zero as n — co. The following proposition tells

us that for a compact composition operator, induced by a univalent self-map of D whose
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image touches the boundary T at exactly one point, the H*norm of {¢"} decreases to zero

faster than the sequence {\/f,} as n — oo.

Proposition 42. Suppose A is a Jordan domain in D bounded by a smooth boundary
curve C which has an equation 1 —r = h(t), where h belongs to F€. Let ¢ be a univalent

map of D onto A, which fizes 1. If Cy is compact then

16" | z72(0) = 0(v/tn)

where {t,}>2 | is the cutoff sequence for h(t).

Proof. Tt is given that boundary curve C' is smooth; hence rectifiable. Now suppose oo € A
and let w(a, ., A) be harmonic measure on JA at a. It is clear from Proposition 9 that

dw = | |d¢; where ¢ = ¢~ and ¢’ exists in terms of non-tangential limit and d¢ is the
arc-length.

Now Choose an r where 0 < r < 1. Then from the above discussion,

1
6"y = 57 [10ORIC]

1 n / o n
— o [ ewone (= [ lena)
= i 2n| ./ i 1
— 2W[/mglqkl I¢(§>|Id§|+/m§>r|g| |¢(g)||dg|}

Since h(t) < M -t for some positive M and by the Lemma 41 above the first term in
the above inequality, as n — 0o, as we choose r close enough to 1, tends to 0 faster than t,,.
That is , for all € > 0 there exists an N such that faAﬁ\§|§r|§|2n|wl(£)||d§| < 7e - t,, whenever
n > N.

Also since Cy is compact, as r is close enough to 1, [¢'(£)| gets smaller. That is for
every € > 0 there exists an N’ such that faAm‘£|>T|f|2”|¢’(§)||d§| <5 faAm|§|>T|§|2”|d§|

whenever n > N'.
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From the above discussion and by lemma 41,

16" 572y

From which it follows that

Remarks:

IN
[NRINe

IN
[NRINe

IN
[NRNe

DO ™

DO |

[ NN e NN e N NoN e )

™

€
e § [ g
OAN[E|>r
€
ot S [ Jepniag
0A
€ 1
-tn+—/ (1 — h(t)*dt
4 0
e [
-tn+—/ (1 — h(t))*"dt
4 0
e [
~tn+—/ (1= 2nh(t))dt
2 Jo
€ ton
-tn+—(tn—2n/ h(t)dt)
2 0
-tn+§(tn—2n-h(0)-tn)
byt = -t
n 2 n
.

16" 1272 () = o(v/tn)-

e It was noted in [35] and [10] that the map ¢(z) =1 — /1 — z which maps D to a

tear-drop shaped region in D induces a non-compact composition operator on the

little Bloch space By and BMOA. But Cj is compact on H*(D). K. Madigan and A.

Matheson [35] also proved : if ¢ is univalent and the image of ¢ touches T at exactly

one point and doest not have a cusp at that point then Cy is not compact on B,. But

we know from Theorem 15 that Cy on H?*(D) is Hilbert-Schmidt in the case when the

image of ¢ has a cusp at the touching point. Now by Proposition 39 the decay rate of
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|#"™ | 2y in the Hilbert-Schmidt operator case (when p = 2) is much faster than \/iﬁ

e In [18] El-Fallah et.al. noticed that if ||¢" || g2y = 0(\%) then C, is compact on

H?(D). In light of proposition 42 above taking h(t) = gives us

log(%)

0™ | 2y = o(y/ =& log(" )y and we know that C,, is compact in this case.

e Also if we assume Cj is compact and ||¢"|| g2 (\%) with the same hypothesis as
in Proposition 42 then C} is Hilbert-Schmidt on H?*(D). To see that notice C is
compact in this case. So by Proposition 42, since t, is unique up to a constant
multiple, ¢, = % Now since h(t,) = % and h(t) is an increasing, injective function,
h(t) = % So the image of ¢ is contained in a polygon which implies Cy is
Hilbert-Schmidst.

It should also be noted that this result is not true in general for any analytic self-map

of D with ||¢"|| 2y = 0(\%) For example, if we choose ||¢"|| g2y = \/W , then

—~ 1
Tim nj;gn 0, but ZH¢"H 2D = Z  logn diverges. Thus Cy is not
Hilbert-Schmidt in thls case. Theorem 28 guarantees the existence of such an analytic

self-map ¢ of D which may not be univalent and ¢(ID) touches T at multiple points.

The above estimate for the decay rate of |[¢" || ;) in the case of compact composition
operator induced by a univalent analytic self-map ¢ of D with ¢(1) = 1 gets better as we
choose ¢ whose image approaches the boundary T smoothly or “faster” as opposed to
sharply or “slower”, yet induces a compact composition operator. Our next proposition
gives us a precise estimate on the decay rate of ||¢"|| g2y in the case when the inducing
map ¢ maps D onto a domain A whose boundary touches T very smoothly and as a

consequence induces a non-compact composition operator.
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Proposition 43. Suppose A is a Jordan domain in D bounded by a smooth boundary
curve C, represented by the equation 1 — r = h(t), where h belongs to F. Let ¢ be a

univalent map of D onto A, which fizes 1. Then Cy is not compact on H*(D) if and only if
16" 172y = tn

where {t,}>2  is the cutoff sequence for h(t).

Proof. (=) If [|¢" ||}z = tn then [|¢"|| 2wy # o(y/%,). Thus by Lemma 42, Cy is not
compact on H?*(D).

(=) As in the proof of previous proposition, it is given that boundary curve C'is
rectifiable. Now let @ € A and w(«, ., A) be the harmonic measure on 0A at «. It is clear
from Proposition 9 that dw = |¢'|d¢; where 1) = ¢~ and ¢’ exists in terms of
non-tangential limit and d¢ is the arc-length.

Since Cy is not compact, by univalent compactness theorem in Section 3, ¢ does have
finite angular derivative at some point on T, which implies 10" # 0. Also since the boundary
curve C' is smooth, ¢ has a continuous extension on D. Thus on A, Cy < [¢'| < Cy for
some positive constants C; and Cy, which is equivalent as saying dw =< d§ on OA. So we

have,

1
5wy = 5 [1OOFI]

— o [ eewenael (= [ gaste)

= / € de]
OA
1

~ /(1—h(t))2”dt
0

tn
const./ (1 — h(t))*"dt
0

to.

IN

)
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Remark 1. If we Let A be a Jordan domain on the w-plane, bounded by a rectifiable
Jordan curve C represented by w = w(§) (0 < & <), where [ is the length of C' and ¢ the
arc length of C. Also that C' has a tangent at every point, which varies continuously and

w'(€) satisfies the following Holder’s condition:

w'(&) —w' (&) <K& -&F (0<A<1)

where K is some constant, then by Kellogg’s theorem [50], dw =< d¢. So this particular

scenario resembles the “smooth” criterion mentioned in Proposition 43 and the result holds.

The following theorem is our main result. It gives a necessary and sufficient condition
for the compactness of the composition operator Cy in the case when the the image of the

inducing map ¢ touches T at exactly one point.

Theorem 44. Suppose A is a Jordan domain in D bounded by a smooth boundary curve
C, represented by the equation 1 —r = h(t), where h belongs to . Let ¢ be a univalent

map of D onto A, which fizes 1. Then Cy is compact on H*(D) if and only if

1
>, [qulu? o T

diverges.

— 1 1
Proof. (<=) Assume that Zﬁ [||¢ =y ~ T ||
n=1 H?(D) H?*(D)

contradiction assume that Cy is not compact on H*(D).

] diverges. Also for the sake of

Since Cy is not compact , by Warschawski’s Theorem fo ) g converges. Now we

t2

know that h(t) is a continuous, increasing function on [0,1] and h(t,) = 5 and t,41 < .

So h( ) < 5 on [0,¢ } and h(t n+1) < h(t,), which implies

tn tn d
dt Z / 1 dt Z o / —5 converges.
tnt
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Now from Proposition 43 above ||¢”||§{2(D) = t,,. Then,

1 [t dt =1 1
> t—zzzg—[ }<O°

n=1 tnt1 n=1 n+1 n
=3 | <o
2 ||¢n+1|| o 10

which contradicts our assumption.

(=) Suppose Cy is compact. Let ||¢"||§{2(D) = s, for all n. Since Cy is compact
H(;S”H%IQ(D) — 0, which implies s, 1 < s, for all n. Now by proposition 42,
Hgb"“%mm = 5, = 0(t,). Define a piecewise linear function g(s) such that g(s,) = 5~ for all
n. Since h(t) is convex, g(s) > h(t) for all s,t in [0,1]. Now since g(s) > h(t) for all s,¢ in
0,1], [ das > [ D g,

1 h(t)

Since Cy is compact, by Warschawski’s theorem |, fo --dt diverges, which implies

fol %ds diverges. From which and with the same argument as in the previous case, we

conclude
1 oo Sn
/ g(j)d _ / g(j)d
0 S n=1 Sn+1
= i 1 [ ds
—~2n ), 5
B i": 1 { 1 1]
vt 2n [ Sp+1 Sn
diverges.
1 1 1
Thus Cy is compact if and only if Z — AT — T diverges. [
g ¢ ||H2(JD)) ¢ ||H2(D)

An easy and simple example of Theorem 44 can be given by considering the analytic

self-map of D, discussed earlier, given by ¢(z) = £
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point and does so smoothly. Notice that, the series

;” 167 132y ||¢n||§{2®)] ; "

converges by the Comparison Test. Thus the composition operator Cy, in this case, is not

compact on H?(D) .
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5 Closed-Range Composition Operators

We know, from section 2, what it means for an operator on any Banach space to be
closed-range. In the context of composition operators, we have the following

characterization which is just the Banach-space version of Proposition 3.30 in [15].

Theorem 45. A bounded (and one-to-one) composition operator Cy on any Banach space

B of analytic functions on D has closed-range if and only if there exists an € > 0 so that

1Ce(F)ll = ell flls

for all f in *B.

In 1974, J. A. Cima, J. Thomson and W. Wogen [13] obtained a necessary and
sufficient condition for closed-rangeness of composition operators on H?(ID). Their

condition focuses on the boundary behavior of the analytic self-map ¢ of .

Theorem 46 ([13]). Let ¢ be a nonconstant analytic self-map of D. Then Cy has
closed-range if and only if Cg‘—m¢ is essentially bounded away from zero, where ji4 1s the

induced measure on D as defined in section 2.

Cima, Thomson and Wogen also posed the problem of obtaining a necessary and
sufficient condition for closed-rangeness of composition operators in terms of the range of
the inducing analytic self-map ¢ on D rather than T. Approximately twenty years later, N.
Zorboska [56] gave a complete characterization of closed-range composition operators on
H?(D) in terms of the properties of the range of the inducing analytic self-map ¢ on D

instead of T.

Theorem 47 ([56]). Let ¢ be an analytic self-map of D. Then C, has closed-range if and
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only if there exists a ¢ > 0 such that the set

N¢<Z) = C}
logﬁ

GY = {z: my(2) =

satisfies the following condition:

There exists a constant § > 0 such that
(x)  AGIND(Er)>d6- ADNDE,T))

for all £ in T and r > 0, where D(&, ) is the disk with centered at £ with radius r.
Here N,(z) is the Nevanlinna counting function of ¢ as defined in section 2.

The condition (x) is called reverse Carleson condition, and was invented by D.
Luecking [30] in order to answer questions related to the closed-rangeness of Toeplitz
operators. It tells us about the behavior of the set G¢ at the boundary. In particular,

Luecking was able to show the following interesting connection:

Luecking’s Theorem ([30]). Let G be a measurable subset of D and p > 0. Then there is

a constant K > 0 such that for all f € AL, the Bergman spaces,

[ipia< [ ipas

if and only if there exists a constant § > 0 such that
AGNDEr)>0- ADNDE,T))

for all € in'T and r > 0, where D(,r) is the disk with centered at & with radius .

Zorboska also proved similar results in the context of weighted Bergman spaces A2, for

a > —1. But Zorboska’s results make use of Nevanlinna counting function which is a
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complex tool to deal with. J. R. Akeroyd and P. G. Ghatage [4] provided an improved
necessary and sufficient condition for closed-rangeness of Cy for the classical Bergman
space A2, which does not involve Nevanlinna counting function. They considered images of
sets of the form Q.(¢) = {z € D: % > ¢ > 0}, denoted G.(¢) = ¢(2.) and applied

Luecking’s reverse Carleson condition on these sets. The following is a restatement of their

result:

Theorem 48 ([4]). Let ¢ be a nontrivial analytic self-map of D. Then Cy closed-range on
A2 if and only if there exist e >0, and § > 0, and 0 < s < 1 such that G. satisfies the
following condition:

for all z € D, where Ds(2) = {w € D : || < s}, is called the pseudo-hyperbolic disk of

radius r and centered at z.

With the help of Theorem 48 Akeroyd and Ghatage were able to show that if ¢ is an
univalent analytic self-map of D then Cj is closed-range on A if and only if ¢ is a
conformal automorphism of ). Other characterizations of closed-range composition
operators on AZ was given by Akeroyd, Ghatage and Tjani [6].

Similar results like Theorem 48, in the context of weighted Bergman spaces, are
provided in [3]. P. Ghatage, D. Zhang, and N. Zorboska [21] worked on closed-range
composition operators on the Bloch space. Later more results in the context of Bloch space
were provided in [5]. Recently, M. Tjani [49] has studied the closed-range composition
operators on Besov type spaces.

Akeroyd, Ghatage and Tjani [5, 6] also noticed an interesting implication: if Cy is
closed-range on A2 then it is also closed-range on B, the Bloch space. A counterexample
disproving the converse of this statement can also be found in [5]. Another implication like

this was also noticed by N. Zorboska: if Cy is closed-range on the Bergman space A2 then
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it is also closed-range on H?(D); see Corollary 4.2 in [56]. Tjani [49] also showed that for
p > 2, if Cy is closed-range on Besov spaces B, ;1 then it is also closed-range on the Hardy
space H*(ID). However, all of these implications are results of complete characterization of
closed-rangeness of Cy on these spaces. In the next section we study this pattern from a

different perspective.
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6 Inheritance of Closed-Rangeness Property

So from the discussion in the preceding section one may naturally ask, does
closed-rangeness of a composition operator on a larger Banach space always imply
closed-rangeness on a smaller Banach subspace. In other words, if & and B are two
Banach spaces of analytic functions on D such that & C ®B and if Cy is closed-range on B,
then does it follow that C is also closed-range on &7 To answer this question we need a

tool called absolutely monotonic radial weight functions.

ABSOLUTELY MONOTONIC RADIAL WEICHT

A Borel measurable function w : D — [0, 00) is called a radial weight on D if w(z) = w(|z]),
Vz € D. In section 2, we discussed what it means for any real-valued function to be
absolutely monotonic on an interval. If w(z) is some radial weight on D and w(z) = g(|z])
on [0,1), where g(z) is an absolutely monotonic function on [0, 1) then we say w(z) is an
absolutely monotonic radial weight on D. In particular, by Theorem 11, w(z) is the
analytic extension of g(x) on . Some common examples of absolutely monotonic radial
weights are: for z € D, log(rtp), ﬁ etc. Following are some important observations
regarding absolutely monotonic radial weights.

Observation 1: Let w(z) := g(]z|) be an absolutely monotonic radial weight on D where g
is defined on [0,1) as g(z) =log(:=). For 1 < p < oo, if we define w,(z) on D as

wy(2) == g(|2|P), then w and w, are boundedly equivalent on D. Notice that, for 0 < z < 1,

g(a?) < g(z) for all p. Also, g(z) = g(a?) + log(1=%"). Now we know that lim =2 = p;

- g—1- 177

from which we have lim log(*{=%") = log(p).
T—1"

Observation 2: As in the previous observation, if we consider weight w(z) := g(]z|) of the

1—xP
1—x

form where g(r) = =5, a > 0, then since lim (1=£2)* = p® w and w, are boundedly

(A=) x—1-
equivalent on .

Observation 3: If we consider rapidly increasing weights of the form w(z) := ¢(|z]), where
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1
g(x) = e (0 < a <1, then we can guarantee that there exists an absolutely monotonic

radial weight which is boundedly equivalent to w on ID. To verify this claim, consider the

linear function v,(z) = %x +(1— ]13) which is clearly an absolutely monotonic function from

[0, 1) into itself. So the composition I(z) = g o v,(z) is also absolutely monotonic on [0, 1).

Now, for 0 <z < 1, zr < vp(x); from which we have I(2P) > g(z) for x € [0,1). Also,

[(2P) o , P —(EE)e
= eT-P)® _ ¢(I-0% = ¢ (1-aP)7

g(x)

By the Mean Value Theorem, for x € (0, 1), there exists ¢ € (z,1), depending only on p,

— P . . .
1=2%. \hich implies,
xX

such that, pc?~! = =

l(:L‘p) pY—(pcP~H™
= (& (1—aP)e
g9(z)
p®(1—c*P=1))
= ¢ (-eP)@
< e

Before we discuss our main results and their proofs, we would like to state our

assumption throughout the rest of this section that C,, is bounded on both spaces 8 and

a

&, where 04(2) := {==, for all @ € D, are the disk automorphisms.

Theorem 49. Let B and & be two Banach spaces of analytic functions on D, where

S C B, defined as follows:

B = {fcHD): ||l = / fPdps < o0}
&= {feHD): |5 = / | FPuydp < 00}

for 1 <p < oo, where w,(z) = w(|z|?) is an absolutely monotonic radial weight on D and p

is some positive Borel measure defined on . Let ¢ be an analytic self-map of D and Cy
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maps B into B and & into &. If Cy is bounded on & and closed-range on B then Cy is

also closed-range on &.

Proof. By our earlier assumption, C,, is bounded on both spaces B and &, where, for all
a €D, 04(2) := {==. An important consequence of this assumption is that C,, is now
closed-range on both 8 and & since the inverse of o, is itself under function composition.
So we only consider the case when ¢(0) = 0.

Since wy(z) is absolutely monotonic radial weight on D it can be written as
wy(2) := ¢(|z|?), where g is a real analytic function on [0, 1) whose power series
representation contains non-negative coefficients. In particular, g(x) = ZZOZO a,x", where
a, > 0 for all n.

It is given that C} is closed-range on 8. So, by definition, there exists an € > 0 such
that, for 1 < p < oo,

1C(N)llss = el fII5

whenever f € ‘B.

Now, by the Schwarz’s lemma, for 1 <p < oo and f € G,

ICo(NIE = [1(Fod)=IL
- /| 0 6)(2)[Pup(2)du(2)

- Sa [1z e oEr1ran)
> an [1£ 0PI dn(2)

= Y anl(fod)(z)- é(2)"[I%

n=0

= > anllCy(f(2) - M)

v
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v

ey anllf(z) - 2"l%
n=0

= > a / PP du(z)

- . / ) Pwy(2)dp(z)
— I

which implies Cy is bounded below on &. Thus, by Theorem 45, C is closed-range on
G. [ |

It should be noted that Theorem 49 can be applied to any pair of Banach spaces of
analytic functions which possess integral norms as mentioned above. Also the measure u
here is not restrictive at all except it is just a positive, Borel measure on ID. The
importance of the weight w(z) being radial shall be discussed later. Indeed, a large number
of well-known Banach spaces of analytic functions on D discussed in various literatures do
possess integral norms similar to the one defined above and are endowed with some kind of
radial weights. For example, consider the weighted Bergman spaces AP (a > —1,

1 <p < 0); Cy is always bounded on these spaces (see [34]). Now if we consider the
absolutely monotonic weight w,(z) := W, then by Theorem 49, for —1 < a < 3, if
C, is closed-range on Ag then it is also closed-range on AP. But there are Banach spaces of
analytic functions on D which have integral norms defined in terms of the derivative of the
functions in the spaces instead of the function itself; for example, weighted Dirichlet spaces

D,, (a > —1) or Besov type spaces. The proof above doesn’t work in this case. We would

need a modified approach to resolve this issue.

Theorem 50. Let B and & be two Banach spaces of analytic functions on D, where
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S C B, defined as follows:

B = {f € HD): |flh = FOF + / | Pdu < oo}
& = {f € HD): |fI% = |/ O)F + / | Py < o0}

for 1 < p < oo, where wy(z) := w(|z|P) is an absolutely monotonic radial weight on D and u
is some positive Borel measure defined on ID. Let ¢ be an analytic self-map of D and Cy
maps ‘B into B and & into &. If Cy is bounded on & and closed-range on B then Cy is

also closed-range on S.

Proof. By our assumption, C,_ is bounded on both spaces ‘B and &, where, for all a € D,
04(2) = {==. An important consequence of this assumption is that C;, is now
closed-range on both 8 and & since the inverse of o, is itself under function composition.
So we only consider the case when ¢(0) = 0.

Since wy(2) is absolutely monotonic radial weight on D it can be written as
wy(2) == g(|2|P), where g is a real analytic function on [0, 1) whose power series
representation contains non-negative coefficients. In particular, g(x) = ZZO:O a,x", where
a, > 0 for all n.

Now let fo = f — f(0). Since C is linear and one-to-one, Cy(fy) = Cy(f) — £(0), from
which we have : [|Cy(fo)llg = [|Co(/II& + [f(0)P. Let &g = {f € &: f(0) =0}. Now if C
is closed-range on &( then by Theorem 45, there exists a ¢ > 0 such that
1Cs(f)lles = 6l flle, for all f € &p. It is now implied that if Cy is closed-range on &, then
it is also closed-range on & and the same § > 0 does work in this case. So it suffices to
show that C is closed-range on &.

It is given that Cy is closed-range on 8. So, by Theorem 45, there exists an € > 0 such

that, for 1 < p < oo,

1Cs (Nl = ll Fll5
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whenever f € 2B. Suppose n is some positive integer and z € ID. Let the sequence
fo (tz)(tz)"zdt be the analytic primitive of f’'(z)z" and f,(0) = 0. Now,by the

Schwarz’s lemma, for 1 < p < oo and f € &y,

ICoDIE = I o B
_ /\ 0 8) (2)Pwp(2)du(2)

- Zan JICEICIERe

- Zan / (626 (2) 7|21 dn(2)
PO duz)
- Zan / (a0 0 () Pdp(2)

= Z an||Co ()l

n=0

S
ey anllfullh
n=0

= > / ()P dp(2)

- . / () Prop(2)du(2)
= s

[V

Q

3
S S

\

v

which implies C} is bounded below on &,. Thus, by Theorem 45, Cy is closed-range on
So.

As an example, consider the Besov type spaces discussed in section 2. Suppose Cy is
bounded on Besov type spaces B, , and B, 3, where —1 < o < 3. If we consider similar
weights ws(z) := W, as before, then if Cy is closed-range on B, 3, then Cj is

closed-range on B, ,.
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Remarks:

e [t should be noted that in Theorem 49, we can also consider a sequence of absolutely
monotonic radial weights such as w,,x(z) = gx(|2|?) , where {gx} is a sequence of
absolutely monotonic functions on [0,1). In that case, & is defined as:
S:={feHD):|fl§= kh_}rgo Jol fIPwy kdp < oo}, The result still holds in this

setting. To see this, let f € G; then following the same proof as in Theorem 49 we get

IColNlE = Jim [ 10 ) Puyn(:)in:)

> Jim Y an [ 170 I u(:)

k—o00

k—o0

= lim Z&k,nHCqs(f(Z) : Zn)”%
n=0

Y

o0
“fim > acal 1)1k
n=

_ : p np
= cjim > o JUCEERTS

= e lim [ |F()Pwpa(2)du(z)
—oo Jp

= ¢llflls

e Here’s an example for the sequence case: for 1 < p < oo, if Cy is closed-range on Af,
then it is also closed-range on H?(ID). To see this, note that the sequence
dvy, := (pk + 1)rP*rdr is weak-* convergent on [0,1] to ddgy, the unit point mass at 1.

Thus we have:

2
1 = lim = / Fre®)Pde

1 1 2w )
= lim/ —/ | f(re®)[Pd(pk + 1)rPrdr
0 27 Jo

k—o00

= lim / () Pupa(2)dA(2)

k—o0

57



where wy, (%) 1= 1%|z|pk. Now since w,,, is an absolutely monotnic radial weight for
each k and Cy is always bounded on Af and H?(D), by the above remark

closed-rangeness on Aj implies closed-rangeness on H?(D).

e A similar argument, directly following the proof of Theorem 50, can also be provided
to show that the results in Theorem 50 also hold in the case when & is defined as:
& = {f € H(D) : |fI}s = I [ FO)F + fy| P, pdpe < 0, where w, ; is again
sequence of absolutely monotonic radial weights as defined before. Using the similar
argument, as in the previous remark, it can be shown: if C} is bounded on D? and
S%(D) and closed-range on D3, then C, is closed-range on S?(D). For boundedness

criterion for Cy on S?(D), see [33].

The following example shows that our two assumptions: C,, is bounded on both spaces

B and &, for all the disk automorphisms o, := == and the weight w(z) is radial play a

1—az’

crucial role in the theorems above and cannot be dropped.
Example: Define a measure p on D by du(z) = w(z)dA(z), where w(z) is defined on D as

follows:

L zeW:={z=x+iyeD:x,y>0}

w(z) =4V 1-l2?
1 elsewhere
Obviously, w is not radial. Let B := Aj and & := {f e H(D) : || flls = [, |flwdA < oo}.
For z € D, consider the region I', := {( : |z — (| <1 —|z|}. If f € G, then

1
T e

1
< WWHG

IN

£ (2)]

So point evaluations are continuous linear functionals on &, which implies that & is a

Banach space of analytic functions on ID. Also it is clear that & C 9B. Now let ¢ be the

o8



following M6bius transformation from D to itself:

~1 S| _ i 1=[o(0)] _ 1.
Note that ¢(W) C W and W C ¢~ (W). Let ¢» = ¢~'. Now, ¢(0) = 5 and 6] = 3

from which we have: # < |[¢/'| < 3. By the Schwarz-Pick lemma,

(0] = 2

for all ¢ € D. From the definition of w(z), we get
w©) _ (- 1 e
@) T\ T-ROE - vV

Claim: Cy is bounded on 8 and &. It is closed-range on B, but not on &.

for all ¢ € D.

Proof. Tt is well-established that Cy is bounded on 5. Indeed, it is bounded on any
weighted Bergman spaces A?, where 1 < p < oo and a > —1; see Proposition 3.4 in [34].

From the discussion above, for f € &,

1Co(Nlle = [ [F(¢(2)w(2)dA(2)
= [ (Ol (¢)PdA(C)

D

< 18/|fywdA
D

= 18| flle

which establishes that Cy is bounded above on &. It is also well-known fact that Cy is

closed-range on B; see [4] in this context. To see that Cy is not closed-range on &,

29



consider the following sequence of functions in G,

Ck
fr(z) =
[(1+ 5) — 2]
where s, > 0 for all £, decreases to 0 as k — oo and ¢, = m Now, by our
+5k &
definition of u, f(z) = ( = does not belong to L'(du); from which, ¢z — 0, as k — co.

l—z

So fi converges to 0 uniformly on {z € D : |1 — z| > ¢}, where § > 0; whence, {fx o ¢}
converges to 0 uniformly on W. Also, since f(z) € L'(dA), [;|fe|dA converges to 0, as

k — oo. We have,

1Cs(fe)lls = /lek(eﬁ(Z))\w(Z)dA(Z)

= [ 1R@EnEaAae + [ \W|fk<¢<z>>|dA<z>
< [ IR@EDEAE + [1A0E)IAE
S LGOI O Ry (TAGI RIS

/!fk )|w(z)dA(z +9/]fk]dA

IN

converges to 0, as k — co. But, by construction, || fi||e = 1, for all k. Thus Cj is not
bounded below on &. So it is not closed-range on &. Furthermore, due to this, Cy is not
bounded(above) on & which violates our first assumption that C,, is bounded on & for

any disk automorphism o,.
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