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Abstract

Let φ be an analytic self-map of the unit disk D := {z : |z| < 1}. The composition

operator Cφ defined by Cφ(f) = f ◦ φ is a bounded linear operator on the Hardy space

H2(D). It is well-known that if Cφ is compact on H2(D) then ‖φn‖H2(D) → 0 as n→∞.

But the converse doesn’t necessarily hold. We discuss the decay rate of ‖φn‖H2(D) in the

case when φ maps the unit disk to a domain whose boundary touches the unit circle

exactly at one point. We also investigate inheritance of closed-rangeness property of Cφ

from a Banach space of analytic functions on D to a weighted subspace.
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1 Introduction

The Hardy Space H2(D)

Let us denote the unit disk by D := {z : |z| < 1} and let T := ∂D = {z : |z| = 1} be the unit

circle. Let H(D) denote the space of all analytic functions on D. The Hardy space H2(D)

consists of functions in H(D) whose power series coefficients are square-summable, i.e.

H2(D) :=

{
f(z) =

∞∑
n=0

anz
n ∈ H(D) :

∞∑
n=0

|an|2 <∞

}
.

The norm of f ∈ H2(D) is defined to be ‖f‖H2(D) =

(
∞∑
n=0

|an|2
) 1

2

. This definition of

norm gives a vector space isomorphism between H2(D) and l2, the Hilbert space of square

summable complex sequences. H2(D) can also be related to the space L2(T), another

Hilbert space of functions. Under this correspondence,

H2(D) :=

{
f ∈ H(D) : sup

0<r<1

∫
T
|f(rζ)|2dm(ζ) <∞

}

where m denotes normalized Lebesgue measure on T. The norm of any f ∈ H2(D) is

defined to be

‖f‖2
H2(D) = sup

0<r<1

∫
T
|f(rζ)|2dm(ζ) = lim

r→1−

1

2π

∫ π

−π
|f(reit)|2dt.

Also the inner product between two functions f and g on H2(D) is defined as:

〈f, g〉 := lim
r→1−

1

2π

∫ 1

0

f(reit)g(reit)dt.

and the connection between H2(D) and a closed subspace of L2(T) was shown very clearly

in the following Fatou’s Radial Limit Theorem.
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Theorem 1 (Fatou’s Radial Limit Theorem[44]). Suppose f(z) =
∞∑
n=0

anz
n belongs to

H2(D), and f ∗ is a function in L2(T) with Fourier series
∞∑
n=0

ane
int. Then

lim
r→1−

f(reit) = f ∗(eit)

for almost every eit ∈ T, and ‖f‖2
H2(D) = ‖f ∗‖2

L2(T).

A detailed discussion and proof of this theorem is available in [44, 42].

Composition Operators on H2(D)

Let φ be an analytic self-map of D. Define the composition operator Cφ on H2(D) by

Cφ(f) = f ◦ φ

for f ∈ H2(D). The following Littlewood’s Subordination Principle shows that Cφ maps H2

into H2 and does so boundedly, i.e. Cφ takes bounded subset of H2(D) to bounded subset

of H2(D).

Theorem 2 (Littlewood’s Subordination Principle [44]). Let φ be an analytic self-map of

D with φ(0) = 0. Then for each f ∈ H2(D), Cφ(f) ∈ H2(D) and ‖Cφ(f)‖ ≤ ‖f‖.

Though Littlewood’s subordination principle only proves the case when φ fixes the

origin, the general case, where φ can be any analytic self-map of D, can be proven by

showing the composition operator Cσa induced by the conformal automorphism σa := a−z
1−az ,

for a ∈ D, is bounded on H2(D).

Theorem 3 (Littlewood’s Theorem [44]). Let φ : D→ D be an analytic function. Then Cφ

is bounded on H2(D) , and

‖Cφ‖H2(D) ≤

√
1 + |φ(0)|
1− |φ(0)|

.
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A proof of this theorem can also be found in [44]. Please see [53, 15, 34, 55, 35, 48] to

learn more about boundedness of composition operators in other Banach spaces of analytic

functions.
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2 Preliminaries

In this section we provide some background concepts related to the study of composition

operators.

Angular Derivative

For ζ ∈ T and α > 1, the region

Γ(ζ, α) = {z ∈ D : |z − ζ| < α(1− |z|)}

is called non-tangential approach region at ζ. This cone shaped region is asymptotic to a

sector with vertex at ζ and angle less than π and is symmetric about the radius at ζ. A

function f is said to have a non-tangential limit L at ζ if lim
z→ζ

f(z) = L in each

non-tangential approach region Γ(ζ, α), denoted as ∠ lim
z→ζ

f(z) = L. An analytic self-map φ

of D has an angular derivative at ζ ∈ T if for some η ∈ T, the following limit

∠ lim
z→ζ

η − φ(z)

ζ − z

exists (finitely). We denote the angular derivative of φ at ζ as φ
′
(ζ) whenever the above

limit exists [44, 15].

One very important result concerning the existence of angular derivative is the

Julia-Carathéodory theorem.

Theorem 4 (Julia-Carathéodory Theorem [44]). Let φ : D→ D be an analytic function

and ζ ∈ T. Then the following statements are equivalent:

1. lim infz→ζ
1−|φ(z)|

1−|z| = δ <∞,

2. ∠ lim
z→ζ

η−φ(z)
ζ−z exists for some η ∈ T,
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3. ∠ lim
z→ζ

φ
′
(z) exists, and ∠ lim

z→ζ
φ(z) = η ∈ T.

Moreover:

• δ > 0 in (1),

• the boundary points η in (2) and (3) are the same, and

• the limit of the difference quotient in (2) coincides with that of the derivative in (3),

with both equal to ζηδ.

For a beautiful proof of this classical theorem please refer to [44]. Before stating

another major theorem on the existence of angular derivative we need to introduce the

concept of angular derivative in the upper half-plane =z > 0 setting. This discussion is

taken from [50]. Let ∆ be a simply connected domain on the w = ξ + iη plane, bounded by

a Jordan curve C, which passes through w = 0 and touches the real axis at w = 0 and its

inner normal at w = 0 coincides with the positive imaginary axis. We map ∆ conformally

on the upper half plane =z > 0 of z = x+ iy plane by w = w(z), w(0) = 0.

If ∠ lim
z→0

w(z)
z

= ∠ lim
z→0

w
′
(z) = γ exists, then γ is called the angular derivative of w(z) at

z = 0. Here is a niceness condition on the behavior of C.

Theorem 5 (Warschawski’s Theorem [50]). Let ∆ be a simply connected domain on the

w = ξ + iη-plane, bounded by a Jordan curve C, which passes through w = 0 and touches

the real axis at w = 0 and its inner normal at w = 0 coincides with the positive imaginary

axis.

We assume that in a neighborhood of w = 0, C lies between two curves H an H̃, each

of which lies symmetric to the imaginary axis and whose part on the right of the imaginary

axis as follows:

H : η = h(ξ), H̃ : η = −h(ξ) (0 ≤ ξ ≤ 1) and h(0) = 0,where h(t) ≥ 0 is a continuous

increasing function of t.
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If we map ∆ conformally on the upper half-plane =z > 0 of the z-plane by w = w(z),

w(0) = 0, then

lim
z→0

w(z)

z
= γ

exists uniformly, if z → 0 from the inside of any fixed nontangential approach region whose

vertex is at z = 0 if and only if ∫ 1

0

h(t)

t2
dt

is finite.

Warschawski’s theorem gives a necessary and sufficient condition for the existence of

the angular derivative. For a proof of necessity and sufficiency of the above condition

please refer to Theorem IX.10 in [50].

J.H.Shapiro [44] restated Warschawski’s theorem for the case when the map φ from D

to the simply connected domain ∆ is univalent and touches T at exactly one point.

Corollary 6 ([44]). Suppose ∆ is a Jordan domain in D whose boundary curve in a

neighborhood of 1 is a curve of the form

1− r = h(|t|)

where h : [0, 1]→ [0, 1] is a continuous, increasing, function with h(0) = 0. Let φ be a

univalent map of D onto ∆, with φ(1) = 1. Then φ has an angular derivative at 1 if and

only if ∫ 1

0

h(t)

t2
dt

is finite.

6



Compact Operator and Approximation Numbers

Before we explore compactness of composition operators, let us first refresh our memory

with the definition of a compact operator: a linear operator T on a Hilbert space S is said

to be compact if it maps every bounded set into a relatively compact one (one whose

closure in S is compact). It is a known fact that on an infinite dimensional Hilbert space, if

a bounded operator has finite dimensional range then it is also compact. It can also be

argued that on an infinite dimensional Hilbert space compact operators can be

approximated in operator norm by such finite rank operators and every compact operator

arise in this way. The following theorem restates this as a property of compact operators

on an infinite dimensional Hilbert space, whose proof can be found in [44].

Theorem 7 (Finite Rank Approximation Property). Suppose T is a bounded linear

operator on a Hilbert space S. Then T is compact if and only if there is a sequence {Rn} of

finite rank bounded operators such that ‖T −Rn‖ → 0, as n→∞.

Let us denote the distance in operator norm between T and the set of bounded

operators on S with rank ≤ n as an(T ). From the above theorem it is clear that T is

compact if and only if an(T )→ 0, as n→∞. We call these an(T )’s approximation

numbers. Later we will discuss some recent results relating the decay rate of these

approximation numbers and compact composition operators.

Schatten Class Operators

This section is taken largely from K. Zhu’s book [53]. Let H be any Hilbert space and T be

any continuous linear operator on H. As a consequence of the Riesz representation

theorem there exists an unique continuous linear operator T ∗ such that

〈Tx, y〉 = 〈x, T ∗y〉 ∀x, y ∈ S
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and ‖T‖ = ‖T ∗‖. Now we say that a continuous linear operator T on H is self-adjoint if

T ∗ = T . It can easily be seen that T is self-adjoint when and only when the inner product

〈Tx, x〉 is real for all x ∈ S. If 〈Tx, x〉 is non-negative then we call T a positive operator.

For example, for any operator T on H, T ∗T is positive and hence self-adjoint.

Any continuous (bounded) linear operator T on H can be decomposed as

T = UP

where P is the positive operator (T ∗T )
1
2 and U is a partial isometry defined as ‖Ux‖ = ‖x‖

for all x in the closure of the range of (T ∗T )
1
2 . This decomposition of T is called polar

decomposition.

The Spectral theorem for compact self-adjoint operators states : if T is any self-adjoint

compact operator on H, then there exists a sequence of nonzero real numbers {λn}, either

finitely many or {λn} tends to 0 and an orthonormal sequence {en} in the closure of the

range of T such that

Tx =
∞∑
n=1

λn〈x, en〉en

for all x ∈ H. These {λn} are eigenvalues of T and {en} are corresponding eigenvectors. If

in addition T is positive then these {λn} are also positive for each n.

So in the case T is only compact but not necessarily self-adjoint we consider the

positive operator (T ∗T )
1
2 . Then by the Spectral theorem we have the following

decomposition of (T ∗T )
1
2 :

(T ∗T )
1
2x =

∞∑
n=1

λn〈x, en〉en

where {λn} are eigenvalues of (T ∗T )
1
2 and {en} are corresponding eigenvectors. From the

polar decomposition of T if we take Uen = σn for each n then {σn} is also an orthonormal

8



sequence in H. Now we have the following decomposition of T :

Tx =
∞∑
n=1

λn〈x, en〉σn ∀x ∈ H.

Indeed, any compact operator on a Hilbert space can be decomposed in this form. The

non-negative real values {λn} are called nth singular values of T .

For 0 < p <∞, the Schatten p-class, Sp(H)), consists of compact operators T for

which the sequence of singular values {λn} belongs to lp. It is equivalent as saying T is in

Sp(H) when the sequence of approximation numbers {an(T )} of T is in lp, which implies∑∞
n=0 a

p
n(T ) <∞. There are several characterizations of Schatten class operators. We

mention a couple of these characterizations for future use.

Theorem 8 ([53]). Suppose T is a compact operator on a Hilbert space H. Then the

following are true:

1. For p ≥ 1, T is in Sp(H) if and only if for all orthonormal sequences {en} in S,

∞∑
n=1

|〈Ten, en〉|p <∞.

2. For p ≥ 2, T is in Sp(H) if and only if for all orthonormal sequences {en} in S,

∞∑
n=1

‖Ten‖p <∞.

Nevanlinna Counting Function

The Nevanlinna Counting Function is a heavily used tool in characterizing properties of

composition operators. For an analytic self-map of D and w ∈ φ(D)\{φ(0)}, the

Nevanlinna Counting Function for φ is defined as:
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Nφ(w) :=
∑

z∈φ−1(w)

log
1

|z|
,

counting multiplicities of the zeros of φ(z) = w.

Also it should be noted that Nφ(w) = 0 whenever w /∈ φ(D)\{φ(0)} to make sure it is

defined on the whole disk D.

Induced Measure

Let φ be an analytic self-map of D. Then the radial and nontangential limits of φ exist

almost everywhere [m] on T. We denote the boundary limit function as φ∗. Define the

induced measure of φ on the Borel subsets E of D as

µφ(E) = m({ζ ∈ T : φ∗(ζ) ∈ E}).

C. Sundberg [47] provided some useful results involving induced measure and answered a

more than a decade old question posed by W. Rudin.

Harmonic Measure

The concept of harmonic measure plays an important role in our work. Though harmonic

measure is discussed in several books, this section is largely taken from [19]. Let ∆ be a

domain in the extended complex plane in which the Dirichlet problem is solvable, i.e. given

a continuous function f(ζ) on the boundary ∂∆, we can find an unique function u(z),

harmonic in ∆ and continuous on ∆ such that u(ζ) = f(ζ) for all ζ ∈ ∂∆. It is shown in

[19] that we can associate a harmonic function Hf(z), the solution to the Dirichlet problem

in ∆ with the boundary function f(ζ). If z ∈ ∆ fixed , then there is a linear mapping

Hz : C(∂∆)→ R

10



where C(∂∆) denotes the space of all continuous real valued functions on ∂∆, defined by

Hz(f) = Hf(z).

Additionally if we take f to be non-negative then by the Maximum Principle, Hz(f) is

a positive, linear functional on C(∂∆). By the Riesz Representation Theorem [42] there

exists a unique (probability) measure µz defined on ∂∆ such that

Hf(z) =

∫
∂∆

f(ζ)dµz(ζ).

Definition. Suppose ∆ is any domain. Let E be a Borel set on the boundary ∂∆ of ∆.

The harmonic measure of E with respect to ∆ is defined as:

ω(z, E,∆) :=

∫
E

dµz(ζ) = µz(E).

An important feature of harmonic measure is conformal invariance: If φ is a conformal

map from D to some domain ∆ with its boundary consits of finitely connected Jordan arcs

and in addition, φ is also continuous and injective on T then, for any Borel set E ⊂ T,

ω(z, E,D) = ω(φ(z), φ(E),∆); see [19]. It is well-known that if φ is a conformal map from

the unit disk D onto a Jordan domain ∆ then φ has a continuous extension to D and the

extension map is an one-to-one correspondence between D and ∆. See Theorem 3.1 in [20]

or Theorem IX.2 in [50]. Using this fact it can be shown that :

Proposition 9. Suppose φ is a univalent map from D onto a Jordan domain ∆ which is

bounded by a rectifiable curve. Let φ(0) = α and ω(α, .,∆) be the harmonic measure on ∂∆

at α. Then

dω = |ψ′ |dξ

where ψ = φ−1, dξ denotes the arclength measure on ∂∆ and ψ
′

is defined as
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non-tangential or angular limit.

This is a known result in harmonic measure theory and for a proof of this proposition,

please refer to [50, 20, 14, 22]

General Hardy spaces Hp(D)

For 1 ≤ p <∞, the general Hardy spaces Hp(D), are defined as follows:

Hp(D) =

{
f ∈ H(D) : sup

0<r<1

∫
T
|f(rζ)|pdm(ζ) <∞

}
.

These are all Banach spaces under the norm ‖f‖pHp = sup0<r<1

∫
T|f(rζ)|pdm(ζ). The

Banach space H∞(D) is called the space of bounded analytic functions on D and it is

defined as:

H∞(D) =

{
f ∈ H(D) : sup

z∈D
|f(z)| <∞

}
.

Weighted Bergman Spaces Ap
α

For α > −1, let λα denote the finite measure defined on D by

dλα(z) = (1− |z|2)αdA(z).

where A denotes normalized Lebesgue area measure on D.

For 0 < p <∞ the weighted Bergman spaces Ap
α are defined by

Ap
α =

{
f ∈ H(D) :

∫
D
|f |pdλα <∞

}
.

For p ≥ 1, the weighted Bergman spaces Ap
α are Banach spaces under the norm

‖f‖pApα =
∫
D|f |

pdλα. When p = 2, A2
α are Hilbert spaces.
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Weighted Dirichlet Spaces D2
α

The weighted Dirichlet spaces D2
α, α > −1, is the collection of analytic functions of D such

that f
′

is in A2
α. D2

α is a Hilbert space in the following norm:

‖f‖2
D2
α

= |f(0)|2 +

∫
D
|f ′ |2dλα

for f ∈ D2
α. For α = 0, D2

0 is called the classical Dirichlet space. Also for α = 1, D2
1 is the

Hardy space H2(D).

Carleson Measure

Carleson measure plays a crucial role in the composition operator theory. For eiθ0 ∈ T and

h > 0, a Carleson window or square is a square-shaped region near the boundary of unit

disk D defined as:

Sh(e
iθ0) = {reiθ : 1− h ≤ r < 1, |θ − θ0| ≤ h}.

A positive Borel measure µ is called a Carleson measure if and only if there exists a

constant K > 0 such that µ(Sh(e
iθ0)) ≤ Kh for all eiθ ∈ T and h > 0. µ is called a compact

or vanishing Carleson measure if

lim
h→0

µ(Sh(e
iθ0))

h
= 0

uniformly for eiθ0 ∈ T [53].

For the weighted Bergman spaces Ap
α, a positive Borel measure on D is an α−Carleson

measure if and only if there exists a constant K > 0 such that µ(Sh(e
iθ0)) ≤ Khα+2 for all

eiθ ∈ T and h > 0. A compact or vanishing Carleson measure on these spaces is defined in

the same way we defined it earlier. The definition of Carleson measure would not be

complete without the famous theorem of L. Carleson:
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Theorem 10 ([53]). For 1 ≤ p <∞, a positive Borel measure µ on D is a Carleson

measure if and only if there exists a constant K > 0 such that

∫
D
|f |pdµ ≤ K‖f‖pHp(D)

for each f ∈ Hp(D), where Hp(D) are the general Hardy spaces.

This characterization of Carleson measure can also be rephrased in the setting of

weighted Bergman spaces Ap
α. More information on Carleson measure can be found in [53].

Bloch Space

An analytic function f on D belongs to the Bloch space B if

‖f‖B] = sup
z∈D

(1− |z|2)|f ′(z)| <∞.

The norm ‖f‖B = |f(0)|+ ‖f‖B] makes B a Banach space. One very important feature of

B is its Möbius invariance. In particular, if f ∈ B and σa(=
a−z
1−az , a ∈ D) is a Möbius

transformation of D then f ◦ σa ∈ B. One can easily verify that

‖f ◦ σa‖B] = ‖f‖B] .

It is known that bounded analytic functions on D are in B. Associated to Bloch space

there is little Bloch space B0, consists of analytic functions of D for which

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

B0 is also Möbius invariant and a closed subspace of B. In fact, B0 is the closure of

polynomials in B. For a detailed discussion on Bloch spaces and the above results please

refer to [53]. It should also be noted that bounded analytic functions are not properly
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contained in B0. So one may ask which bounded analytic functions are in B0. Detailed

information on the history of this question and answers can be found in the article [8] by

C. J. Bishop.

Besov Space

For 1 < p <∞, the Besov space Bp is the space of analytic functions f on D such that

‖f‖p
B]p

=

∫
D
|f ′(z)|p(1− |z|2)p−2dA(z) <∞.

The norm ‖f‖pBp = |f(0)|+ ‖f‖p
B]p

makes Bp a Banach space. It can be easily shown that

each Bp is a Möbius invariant Banach space. Note that for p = 2, the space B2 is the

classical Dirichlet space D2
0 discussed earlier. Another interesting fact is, for

1 < p < q <∞, Bp ⊂ Bq ⊂ B.

For 1 < p <∞ and α > −1, the Besov type spaces Bp,α are defined as:

Bp,α =

{
f ∈ H(D) :

∫
D
|f ′(z)|pdλα <∞

}

which are Banach spaces under the norm: ‖f‖pBp,α = |f(0)|p +
∫
D|f
′(z)|pdλα. More

information on Besov space and Besov type spaces can be found in [53, 48, 49].

S2(D)

The space S2(D) is another Banach space of analytic functions on D, defined as follows:

S2(D) := {f ∈ H(D) : f ′ ∈ H2(D)}.

The norm on this space is given by: ‖f‖2
S2(D) = |f(0)|2 + 1

2π

∫ 2π

0
|f ′(eit)|2dt.

15



BMOA

An analytic function f on D is in BMOA if

‖f‖BMOA] = sup
a∈D
‖f ◦ σa(z)− f(a)‖H2(D) <∞.

The norm on BMOA can be defined by ‖f‖BMOA = |f(0)|+ ‖f‖BMOA] . BMOA also a

Möbius invariant Banach space. An interesting containment relation is:

Bp ⊂ BMOA ⊂ B.

Some good references on BMOA (including Bloch space and Besov space) are

[53, 48, 10, 38].

Determining Functions

Determining functions and Nevanlinna counting functions discussed earlier are similar in

nature. Determining functions were introduced in [55]. For α > −1 and φ an analytic

self-map of D, define

τφ,α+2(w) =

∑
j(1− |zj(w)|)α+2

(1− |w|)α+2

where w ∈ φ(D) , {zj(w)} is the set of all preimages of w, counting multiplicities, and

τφ,α+2(w) = 0 when w /∈ φ(D). τφ,α+2(w) is called the determining functions for the

composition operator Cφ on Dα+2. Note that the numerator in the above expression looks

very similar to a generalized version of the Nevanlinna counting function we discussed

earlier.
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Absolutely Monotonic Functions

A function f(x) is absolutely monotonic in the interval a ≤ x ≤ b if it is continuous on [a, b]

and all of its derivatives of all orders are non-negative on (a, b) (see [51]). For example,

f(x) = c, where c is any non-negative constant, is an absolutely monotonic function on R.

Another class of examples are functions which can be represented as powers series of the

form, f(x) =
∑∞

k=0 akx
k, where 0 ≤ x ≤ 1 and ak ≥ 0. Also sum, product and composition

of absolutely monotonic functions are absolutely monotonic; see Theorem 2a in [51].

Absolutely monotonic functions are necessarily analytic. The following theorem points

out the analyticity of absolutely monotonic functions.

Theorem 11 ([51]). If f(x) is absolutely monotonic in a ≤ x < b, then it can be extended

analytically into the complex plane, and the function f(z) will be analytic in the circle

|z − a| < b− a.

To learn more about absolutely monotonic functions please see chapter 4 of [51].

Closed-Range Operators on Banach Spaces

Closed-range operators are the ones whose range is a closed subspace of the image space.

To characterize closed-range operators on any Banach space, first we need to introduce the

concept of bounded below operators. This discussion here is taken largely from [1].

An operator T : X→ Y between two Banach spaces is said to be bounded below if there

exists a constant ε > 0 such that

‖Tx‖ ≥ ε‖x‖

for each x ∈ X.

This following theorem completely characterizes bounded below operators on Banach

spaces.
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Theorem 12. A continuous operator T : X→ Y between Banach spaces is bounded below

if and only if T is injective and has closed-range.

The theorem above is a consequence of open mapping theorem and its proof can be

found in [1]. The above characterization can also be interpreted as: for any bounded

operator T : X→ Y between two Banach spaces, there exists a constant ε > 0 such that for

each y ∈ range(T ) there exists some x ∈ X satisfying y = Tx and ‖x‖ ≤ ε‖y‖ if and only if

T has closed range. For detailed discussion on closed-range operators including this section

please refer to [16, 1].
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3 History on the Compactness of Composition Operators

The study of Composition Operators is a delightful subject which has its origin in 1960s in

the works of such mathematicians as E. Nordgren[37] and H. J. Schwartz[41]. They have

been studied extensively on several Banach spaces of analytic functions on different types

of simply connected domains in the complex plane. We already know, from the

Littlewood’s theorem, that every composition operator on H2(D) is bounded. So now it is

natural to be curious about the compactness of composition operator. The following result

is first of its kind and can be proven in a straightforward way. For a proof refer to [44].

Theorem 13 ([44]). Suppose φ is an analytic self -map of D. If ‖φ‖∞ < 1 then Cφ is a

compact operator on H2(D).

So it tells us if the image of the unit disk D under the map φ is merely relatively

compact then Cφ is compact on H2(D). Shapiro and Taylor[45, 44] improved the first

compactness theorem by showing that if
∑∞

n=0‖φn‖2 <∞ then Cφ is compact on H2(D).

Theorem 14 (Hilbert-Schmidt Theorem for composition operators [44]). Suppose φ is an

analytic self -map of D. If
∫
T

1
1−|φ(ζ)|2dm(ζ) <∞ then Cφ is a compact operator on H2(D).

Composition operators which satisfy the above condition in Theorem 14 are called

Hilbert-Schmidt operators. Shapiro and Taylor also gave an example of a new class of maps

which induce Hilbert-Schmidt composition operators.

Theorem 15 ([44]). Suppose φ is an analytic self -map of D. If φ(D) is contained in a

polygon inscribed in T, then Cφ is Hilbert-Schmidt on H2(D).

The operator-theoretic definition of compactness for Hilbert space operators involves

the concept of weak convergence: A sequence {sn} in a Hilbert space S is said to converge

weakly to s ∈ S if 〈sn, u〉 → 〈s, u〉, as n→∞, for every u ∈ S. A compact operator T on a

Hilbert space S takes a weakly convergent sequence {sn} into a norm convergent sequence.

Here is a version of this statement in the case of composition operators.
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Theorem 16 ([34]). Suppose φ is an analytic self-map of D. Then a necessary and

sufficient condition for Cφ to be a compact operator on H2(D) is the following: for each

sequence {fn} bounded in H2(D) and uniformly convergent to 0 on compact subsets of D,

the sequence {Cφ(fn)} also converges to 0 in the H2(D) metric.

With the help of the Theorem 16 it has been shown that the composition operator Cφ

can fail to be compact if φ(eit) approaches boundary T too quickly, even if it happens at

only one point. For example, let 0 < λ < 1 and φ(z) = λz + (1− λ). Then Cφ is not

compact on H2(D) [44]. So it seems reasonable that if a self-map of the unit disk induces a

non-compact composition operator, then any map whose values approach the boundary T

faster should also induce a non-compact operator. This intuition gives rise to another

compactness theorem.

Theorem 17 (Comparison Principle [44]). Suppose φ and ψ are analytic self-maps of D,

with φ univalent and ψ(D) ⊂ φ(D). If Cφ is a compact operator on H2(D) , then so is Cψ.

Theorem 17 gives birth to an important corollary which characterizes a class of

non-compact composition operators.

Corollary 18 ([44]). Suppose φ is an univalent analytic self -map of D, and that the image

of the unit disk under the map φ contains a disk that is tangent to T. Then Cφ is not

compact.

A necessary and sufficient condition for compactness of Cφ when φ is univalent, was

proved by B. MacCluer and J. Shapiro [34].

Theorem 19 (Univalent Compactness Theorem[44]). Suppose φ is an univalent analytic

self -map of D. Then Cφ is compact on H2(D) if and only if

lim
|z|→1−

1− |φ(z)|
1− |z|

=∞.
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Now with the help of the Julia-Carathéodory theorem the above theorem can be

restated as follows:

Corollary 20 ([44]). Suppose φ is an univalent analytic self -map of D. Then Cφ is

compact on H2(D) if and only if φ has no angular derivative at any point of T.

Please note that that the univalence criteria of φ is necessary only for the reverse

direction in Corollary 20. Now if the univalent analytic self-map φ satisfies all the

conditions in Warschawski’s theorem on angular derivative then Cφ is compact if and only

if
∫ 1

0
h(t)
t2
dt diverges.

So far we have a necessary and sufficient condition for compactness of composition

operator in the case when the inducing map φ is univalent. But what happens in the case

of arbitrary analytic self-map φ ? The following result is due to B. D. MacCluer [32].

Corollary 21 ([15]). Suppose φ is an analytic self -map of D. Then Cφ is compact on

H2(D) if and only if

lim
h→0

µφ(Sh(e
iθ))

h
= 0

where µφ is the induced measure of φ and Sh(e
iθ0) = {reiθ : 1− h ≤ r < 1, |θ− θ0| ≤ h}.

It is shown in [53] that the above condition is satisfied only when

lim
|p|→1−

∫
D

1− |p|2

|1− pξ|2
dµφ(ξ) = 0

which is equivalent to the following condition:

lim
|p|→1−

∫
T

1− |p|2

|1− pφ(ζ)|2
dm(ζ) = 0. (♠)

Shapiro [43] also gave a necessary and sufficient condition for compactness of

composition operators in the case when the inducing map φ is any analytic self-map of D

by computing the essential norm of the composition operator, where essential norm of a
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composition operator is defined to be its distance in the operator norm from the space of

compact operators on H2(D).

Theorem 22 ([43]). Suppose φ is an analytic self-map of D. Let ‖Cφ‖e denote the

essential norm of Cφ. Then

‖Cφ‖2
e = lim sup

|w|→1−

Nφ(w)

log 1
|w|
.

In particular, Cφ is compact on H2(D) if and only if lim
|w|→1−

Nφ(w)

log 1
|w|

= 0.

J. A. Cima and A. L. Matheson [12] observed the connection between essential norm of

a composition operator and condition (♠), which can be stated as an identity as follows:

Theorem 23. Suppose φ is an analytic self-map of D. Let ‖Cφ‖e denote the essential

norm of Cφ. Then

‖Cφ‖2
e = lim sup

|p|→1−

∫
T

1− |p|2

|1− pφ(ζ)|2
dm(ζ).

J. R. Akeroyd [2] gave a direct function-theoretic proof of the above identity.

In 1988, D. Sarason asked, “do there exist compact composition operators which do not

belong to any of the Schatten p-classes ? ” C. Cowen and T. Carroll [11] gave an

affirmative answer to this question by constructing an explicit analytic self-map of the unit

disk which induces a compact composition operator on H2(D) but does not belong to any

of the Schatten p-classes, Sp(H
2(D)) for 0 < p <∞. They used the following Luecking

Criterion [31] to verify the membership of the compact composition operator in the

Schatten p-classes, Sp(H
2(D)) for 0 < p <∞.

Theorem 24 ([31]). For 0 < p <∞, Cφ ∈ Sp(H2(D)) if and only if
Nφ(w)

log 1
|w|
∈ L p

2 (dλ) where

dλ = dA
(1−|z|)2 is a measure defined on D.

Several other examples were given, respectively, in [54, 23, 25] and all of these examples

rely on Luecking Criterion as stated in Theorem 24.
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By the Finite Rank Approximation property of compact operators, Cφ is compact on

H2(D) if and only if the approximation numbers an(Cφ) goes to 0 as n→∞. D. Li, H.

Queffélec and L. Rodŕıguez-Piazza [29] estimated the decay rates of approximation numbers

of compact composition operators on H2(D) for different types of analytic self-maps of the

unit disk D. They were able to estimate the lower and upper bounds for the approximation

numbers in the case where φ(D) is contained in a polygon and in the case where the image

φ(D) is a cusp. Their main results are summarized in the following theorem:

Theorem 25 ([29]). Suppose φ is an analytic self-map of D.

1. If the image φ(D) is contained in a polygon with vertices on T. Then, there exist

positive constants α, β (depending only on φ) such that

an(Cφ) ≤ αe−β
√
n.

2. If φ is a cusp map, then there exist positive constants α1, α2 such that

e−
α1n
logn . an(Cφ) . e−

α2n
logn .

One major limitation of the Theorem 25 is that it does not tell us much about the

approximation numbers in case when φ(D) touches T “smoothly” exactly at one point.

Also it fails to provide a precise estimate on the approximation numbers in the case when

φ(D) falls in between the two extreme cases, smooth tangency at exactly one point on T

and the cusp maps. Queffélec and Seip[40] gave precise estimates for both of the above

mentioned cases. They showed that a composition operator with any slow rate of decay of

approximation numbers can be constructed. For simplification a new class of functions are

defined.

Definition ([40]). Let φ be an analytic self-map of D of the form φ = eu−iũ, where u is real
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valued, belongs to C(T) , satisfies u(z) = u(z), and is smooth everywhere but not

necessarily at z = 1 and ũ is the harmonic conjugate of u. An even function U(t) := u(eit)

belongs to class U if it is increasing on [0, π], U(0) = 0 and the integral function

hU(t) :=

∫ π

t

U(x)

x2
dx→∞ when t→ 0+.

First, Queffélec and Seip considered two extreme cases : one when the integral function

hU(t) grows very slowly, implying there is a smooth tangency at 1 and another one when

U(t)→ 0 very slowly at t = 0, implying there is a sharp cusp at 1. The following theorem

covers both of these cases entirely.

Theorem 26 ([40]). Suppose that U belongs to U .

1. If tU ′(t)
U(t)
≤ 1 + c

|log t| and U(t)
thU (t)

≤ C
|log t| log|log t| for c > 1, C > 0, and sufficiently small

t > 0, then

an(Cφ) =
eO(1)√
hU(e−

√
n)

as n→∞.

2. Suppose U(t) = eηU (|log t|) whenever 0 < t ≤ 1 and U(t) ≤ 1
e
. Let ωU(x) = ηU( x

ωU (x)
)

for x ≥ 0 such that ηU(x) ≥ 1. If
η
′
U (x)

ηU (x)
= o( 1

x
) as x→∞, then

an(Cφ) = e
− (π

2

2 +o(1))n

ωU (n) as n→∞.

Second, they considered maps that fall between the above mentioned two extreme cases

including the maps that have a corner at a boundary point. These maps lie in the interface

of two types of maps discussed earlier.

Theorem 27 ([40]). Let φ(z) be the holomorphic self-maps of D of the form

φ(z) := 1
1+(1−z)α where 0 < α < 1. Then

e−π(1−α)
√

2n
α � an(Cφ)� e−π(1−α)

√
n
2α .
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Here, by f(n)� g(n), we mean f(n) ≤ c · g(n) for all n.

Recall that if
∑∞

n=0‖φn‖2
H2(D) converges then Cφ is compact on H2(D). It is also

evident from the Theorem 16 that if Cφ is compact on H2(D) then ‖φn‖H2(D) decreases to

0, as n→∞. J.R. Akeroyd [2] showed a new way of constructing self-maps of D, univalent

or otherwise, for which Cφ is compact on H2(D), such that ‖φn‖H2(D) decreases to 0 at an

arbitrarily slow rate, as n→∞.

Theorem 28 ([2]). Let {sn}∞n=1 be a sequence of real numbers in the interval (0, 1) such

that lim
n→∞

sn = 0. Then there exists a holomorphic self-map φ of D, where Cφ is compact on

H2(D), such that ‖φn‖H2(D) ≥ sn for all n. Furthermore, φ can be univalent.

Akeroyd’s proof, for the non-univalent case, relies heavily on a famous result of C. J.

Bishop [9], which can be stated as follows:

Theorem 29 ([9]). Suppose φ is a holomorphic self-map of the unit disk such that

φ(0) = 0 and µφ is the induced measure of φ. Then
∫
T φ

nφ
m
dt = 0 whenever n 6= m if and

only if µφ(E) = µφ(eitE) for every measurable set E, supported in D, satisfying

∫
D

log
1

|z|
dµφ(z) <∞.

Moreover, given any measure µ satisfying above conditions there exists φ with the above

mentioned characteristics such that µ = µφ.

With the help of Theorem 29, Akeroyd showed that there exists a non-univalent

analytic self-map φ of D with φ(0) = 0 which induces a measure µφ with the above

mentioned characteristics in terms of normalized Lebesgue measure on the union of circles

of the form {|z| = rk : lim
k→∞

rk = 1}.

For the univalent case, he used harmonic measure to construct a simply connected

region ∆ of D with multiple radial slits removed so that, if φ is a conformal mapping from

25



D to ∆ with φ(0) = 0, then φ has no angular derivative at any point of T and

ω({z : r < |z| < 1}) tends to 0 at an arbitrarily slow rate as r → 1−. For detailed

discussion on the proof of Theorem 28 see [2].

So far we have concentrated on compactness of composition operators on the Hardy

space H2(D). A curious mind would naturally ask what happens to compactness of

composition operators in other spaces of analytic functions. B. D. MacCluer and J. Shapiro

[34] gave a necessary and sufficient condition for compactness of composition operators on

the (weighted) Bergman spaces.

Theorem 30 ([34]). Suppose 0 < p <∞ and α > −1. Let φ be an analytic self-map of D.

Then Cφ is compact on Ap
α if and only if φ has no angular derivative at any point in T.

Please note that the angular derivative criterion alone is not sufficient in the Hardy

space H2(D), where an additional condition of φ being univalent (or boundedly valent) is

necessary in order to guarantee compactness [refer to section 3]. B. D. MacCluer and J.

Shapiro also gave another complete characterization of compact composition operators on

Ap
α in terms of Carleson measure. Please see section 2 for a definition of Carleson measure.

Theorem 31 ([34]). Suppose 0 < p <∞ and α > −1. Let φ be an analytic self-map of D.

Then Cφ is compact on Ap
α if and only if λαφ

−1 is a compact α-Carleson measure.

As a corollary a similar necessary and sufficient condition was obtained in the case of

the weighted Dirichlet spaces. For a discussion on Dirichlet spaces, see section 2.

Corollary 32 ([34]). Suppose α > −1 and φ be an analytic self-map of D such that

φ ∈ D2
α. Also define a measure να on D as

dνα(z) = |φ′(z)|2dλα(z).

Then Cφ is compact on D2
α if and only if ναφ

−1 is a compact α-Carleson measure.
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It should also be noted that the angular derivative criterion is not sufficient enough to

guarantee compactness in the weighted Dirichlet space setting. An additional condition, as

in the case of the Hardy space H2(D), is required to guarantee compactness of composition

operators on D2
α. The following theorem is the “main” theorem in this context, as

indicated by MacCluer and Shapiro [34].

Theorem 33 ([34]). Suppose α > −1. Let φ be an analytic self-map of D. If Cφ is

compact on Dβ then φ does not have any angular derivative at any point of ∂D. If φ does

not have any angular derivative at any point of ∂D and if in addition Cφ is bounded on Dγ

for some −1 < γ < β, then Cφ is compact on Dβ.

The additional condition that Cφ is bounded on D2
β for some −1 < β < α is only

necessary for the converse direction of the above statement. The reason behind this, as

argued by MacCluer and Shapiro, is that if Cφ bounded on D2
β the it is also bounded on

D2
α for −1 < β < α.

In 1995, K. Madigan and A. Matheson formulated the following necessary and

sufficient condition for compactness of composition operators in the Bloch spaces.

Theorem 34 ([35]). Let φ be an analytic self-map of D. Then,

• Cφ is compact on B0 if and only if

lim
|z|→1

1− |z|2

1− |φ(z)|2
|φ′(z)| = 0.

• Cφ is compact on B if and only if for every ε > 0, there exists r, 0 < r < 1, such that

1− |z|2

1− |φ(z)|2
|φ′(z)| < ε

whenever |φ(z)| > r.
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The authors [35] remarked that if the angular derivative of φ exists at any point of T

then Cφ is not compact on Bloch spaces. They presented several example scenarios where

Cφ is non-compact or compact in the context of little Bloch Space B0. In particular, if φ is

an univalent self-analytic map of D and the image of φ touches T at exactly one point, but

is not a cusp at that point, then Cφ is non-compact on B0; on the other hand, if the image

of φ is a nontangential cusp at that point then Cφ is compact on B0.

Shortly after, in 1996, M. Tjani [48] proved several new and interesting results about

compactness of composition operators in Besov spaces and Bloch space. One of these

results is about a complete characterization of compact composition operators on these

spaces.

Theorem 35 ([48]). Let φ be an analytic self-map of D and X = Bp(1 < p <∞), BMOA,

or B. Then Cφ : X → B is compact if and only if

lim
|a|→1
‖Cφσa‖B = 0

where σa(z) = a−z
1−az is the basic disk automorphism for a ∈ D.

In addition to the previous theorem, Tjani also gave Carleson measure type

characterization of compact composition operators on the Besov spaces Bp (1 < p <∞)

and Bloch space B and a necessary and sufficient condition for compactness of Cφ on Bp

when Cφ is bounded on smaller Besov space Bq, 1 < p ≤ q <∞. For detailed discussion

and proofs of these results see [48].

Later in 1999, P. S. Bourdon, J. A. Cima, and A. L. Matheson [10] came up with a

necessary and sufficient condition for compactness of composition operators on BMOA in

terms of Carleson measure, which can be stated as follows: Cφ is compact on BMOA if and

only if for every ε > 0 there is an r, 0 < r < 1, such that
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∫
S(I)

χr(1− |z|2)|f ′(φ(z))|2|φ′(z)|2dA(z) ≤ ε|I|

for each arc I ⊂ T and each f ∈ BMOA with ‖f‖ ≤ 1, where S(I) is the Carleson

square at I and χr is the characteristic function on {z ∈ D : |φ(z)| > r}.

W. Smith, in [46], provided an improved condition, as compared to the complicated

nature of the previous condition, to characterize compact composition operators on

BMOA. Smith’s characterization of compact composition operators on BMOA uses the

classical Nevanlinna counting function of φ.

Theorem 36 ([46]). Let φ be an analytic self-map of D. Then Cφ is compact on BMOA if

and only if

lim
|φ(a)|→1

sup
0<|w|<1

|w|2Nσφ(a)◦φ◦σa(w) = 0

and for all 0 < R < 1

lim
t→1

sup
{a:|φ(a)|≤R}

m(σa(E(φ, t))) = 0

where σa(z) = a−z
1−az is the basic disk automorphism for a ∈ D and

E(φ, t) = {eiθ : |φ(eiθ)| > t}, 0 < t < 1.

Another complete characterization of compactness in the Dirichlet spaces was given by

N. Zorboska [55] in terms of determining functions for composition operators. Determining

functions are discussed in section 2.

Theorem 37 ([55]). Suppose α > −1. Let φ be an analytic self-map of D. Then Cφ is

compact on D2
α+2 if and only if there exists δ, 0 < δ < 1, such that

lim
a→∂D

1

A(D(a, δ))

∫
D(a,δ)

τφ, α+2(w)dA(w) = 0

where D(a, δ) =

{
z ∈ D : | a− z

1− az
| < δ

}
is called pseudohyperbolic disk and τφ, α+2 is the
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determining function for Cφ on D2
α+2.

A lot of important work have been done on compactness of composition operators on

different spaces of analytic functions. For example, D. Li, H. Queffélec, L.

Rodriguez-Piazza [28] computed the decay rate of approximation numbers of compact

composition operators acting on the weighted Bergman spaces discussed earlier; recently K.

Seip and H. Queffélec [39] discussed the approximation numbers of composition operators

on the H2 space of the Dirichlet series; shortly after that, P. Lefévre, D. Li, H. Queffélec, L.

Rodriguez-Piazza [27] studied the decay rate of approximation numbers of composition

operators on the Dirichlet spaces. For more information on recent compactness results of

composition operators acting on different types of Banach spaces of analytic functions

please refer to [18, 36, 26, 17, 7, 52]. We would also recommend [15] for some interesting

information on composition operators on Banach spaces of analytic functions.
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4 Estimates for the Decay Rate of ‖φn‖H2(D)

We already know that if Cφ is compact on H2(D) then ‖φn‖H2(D) decreases to 0, as n→∞.

But the converse of the last statement doesn’t necessarily hold since there exists φ for

which ‖φn‖H2(D) → 0, yet Cφ is not compact on H2(D). The following serves as a simple

counter-example to the converse.

Example: Suppose φ is an analytic self-map of D given by φ(z) = z+1
2

. Then

‖φn‖H2(D) =
1

4
√
πn

.

By definition,

‖φn‖2
H2(D) =

∫
T

∣∣∣∣1 + ζ

2

∣∣∣∣2ndm(ζ)

=
1

22n

∫
T
|1 + ζ|2ndm(ζ)

=
1

22n

∫
T
(1 + ζ)n(1 + ζ)ndm(ζ)

=
1

22n

∫
T
(2 + ζ + ζ)ndm(ζ)

=
1

22n
· 1

2π

∫ 2π

0

(2 + 2 cos θ)ndθ

=
1

22n
· 2n

2π

∫ 2π

0

(1 + cos θ)ndθ

=
1

22n
· 2n

2π

∫ 2π

0

(2 cos2 θ

2
)ndθ

=
1

22n
· 22n

2π

∫ 2π

0

(cos2 θ

2
)ndθ

=
1

2π

∫ 2π

0

(cos2 θ

2
)ndθ

=
1

2π
· 2π

22n

(
2n

n

)
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where the last equality is an well-known identity. Now by Stirling’s formula,

‖φn‖2
H2(D) =

1

2π
· 2π

22n

(
2n

n

)
=

1

22n

(2n)!

(n!)2

∼

√
4πn

(
2n

e

)2n

22n(2πn)
(n
e

)2n

=
1√
πn

.

H. J. Schwartz observed that the map φ(z) = 1+z
2

induces a non-compact composition

operator on H2(D) [45]. Now let us consider the map Ψ(z) = z
2

which induces a compact

composition operator on H2(D) [44, 45]. A straightforward computation shows that

‖Ψn‖H2(D) ' 1√
n
, which goes to 0 much faster compared to ‖φn‖H2(D) where φ(z) = 1+z

2
.

H. Wulan, D. Zheng, K. Zhu [52] gave a proof for the converse direction in the Bloch

space and BMOA settings. They showed that convergence of Bloch or BMOA (semi-)norm

of {φn} to 0 is necessary and sufficient for Cφ to be compact on these spaces.

Theorem 38 ([52]). Let X= BMOA or B and φ be an analytic self-map of D. Then Cφ is

compact on X if and only if ‖φn‖X] → 0, as n→∞.

O. El-Fallah, K. Kellay, M. Shabankhah, H. Youssfi [18] proved the same in the

classical Dirichlet space D2
0 setting. Next we compute the decay rate of ‖φn‖H2(D) for the

Schatten class composition operators.

Proposition 39. Let φ be an analytic self-map of D and p ≥ 2. If Cφ belongs to any of the

Schatten p-classes, Sp(H
2(D)), then

‖φn‖H2(D) = o(
1
p
√
n

).
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Proof. First of all, since Cφ is in Sp(H
2(D)) it is compact. So the weak convergence

theorem implies ‖φn‖H2(D) → 0 as n→∞. Theorem 8 implies that for Schatten p-class

composition operators
∞∑
n=1

‖φn‖pH2(D) converges. Now since
∞∑
n=1

‖φn‖pH2(D) is a series of

positive, monotonic decreasing terms, lim
n→∞

n · ‖φn‖pH2(D) = 0 (see [24]). Thus for

Cφ ∈ Sp(H2(D)), where p ≥ 2,

‖φn‖H2(D) = o(
1
p
√
n

).

�

J. R. Akeroyd showed that we can construct analytic self-map of D such that the

composition operator Cφ is compact on H2(D) yet ‖φn‖H2(D) converges to 0 in an arbitrarily

slow rate, see [2]. But the image of φ ( may be univalent), in his construction, touches the

unit circle T at multiple points. We study the decay rate of ‖φn‖H2(D) for the composition

operator Cφ on the Hardy space of unit disk H2(D), where Cφ is defined by Cφ = f ◦ φ and

φ is an univalent analytic map of unit disk D onto itself. We want to identify as precisely

as possible the rate of decay for the ‖φn‖H2(D) when φ(D) touches the unit circle T at just

one point. For simplicity we consider φ which maps the unit disk D to a Jordan domain ∆

whose boundary ∂∆ has an equation 1− r = h(t), where h : [0, 1]→ [0, 1] is a continuous,

increasing, convex function with h(0) = 0 and 0 ≤ h(t) ≤M · t, for some constant M > 0.

The functions h that satisfy these conditions will be said to belong to the class H .

We begin our work with a few lemmas and observations concerning the behavior of

functions in class H .

Lemma 40. Suppose that h belongs to H . Then

(1− h(t))k ≥ 1− kh(t)

on [0, 1] for any large k.
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Proof. Let

ρ(t) = (1− h(t))k − (1− kh(t))

Notice that ρ(0) = 0, so it suffices to show that ρ
′
(t) is positive on (0, 1).

ρ
′
(t) = k(1− h(t))k−1(−h′(t)) + kh

′
(t) = kh

′
(t)[1− (1− h(t))k−1]

Since h is increasing and convex, h
′
(t) > 0 on (0, 1). Also from the definition of h,

1− (1− h(t))k−1 is positive on (0, 1]. Thus ρ
′
(t) is positive on (0, 1). �

Observation: Choose tk, 0 < tk < 1, such that h(tk) = 1
2k

.

Since h(t) is increasing on [0, 1], h(t) ≤ 1
2k

on [0, tk]. So then

1− kh(t) ≥ 1

2

and it is clear that (1− h(t))k ≤ 1 on [0, 1]. From which we have

1− kh(t)

(1− h(t))k
≥ 1

2

on [0, tk], for any k. We call {tk}∞k=1 the cutoff sequence for h(t).

The following lemma is an important feature of the functions that belong to class H

and also a key tool that will help us prove our main results concerning composition

operators.

Lemma 41. Suppose that h belongs to H .Then there exists an ε > 0 such that

∫ tk
0

(1− h(t))kdt∫ 1

0
(1− h(t))kdt

≥ ε

for large k, where {tk}∞k=1 is the cutoff sequence for h(t).
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Proof. First of all, for large k > 0, choose the same 0 < tk < 1 such that h(tk) = 1
2k

as in

the discussion above. Now

∫ 1

0

(1− h(t))kdt :=

∫ tk

0

(1− h(t))kdt+

∫ 1

tk

(1− h(t))kdt (1)

:= I + II. (2)

Notice that the first integral (I) in the above expression is boundedly equivalent to tk,

that is,
∫ tk

0
(1− h(t))kdt � tk. To see that,

tk ≥
∫ tk

0

(1− h(t))kdt

≥ (1− h(tk))
k · tk

= (1− 1

2k
)k · tk

∼ 1√
e
· tk.

Now choose a subinterval of [tk, 1], with a partition tk = tk
(1) < tk

(2) < · · · < tk
(j) ,

where j ≤ b4 log(k)e such that

h(t
(1)
k ) =

1

2k

h(t
(2)
k ) =

2

2k
...

h(t
(j)
k ) =

j

2k
.

Then,

h(t
(j)
k )− h(t

(j−1)
k ) =

1

2k
(3)

for all j.
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By Mean Value Theorem , there exists a point sjk between t
(j−1)
k and t

(j)
k such that

h(t
(j)
k )− h(t

(j−1)
k ) = h

′
(s

(j)
k ) · (t(j)k − t

(j−1)
k ). (4)

Let s
(j−1)
k ∈ (t

(j−2)
k , t

(j−1)
k ). Then combining (3) and (4) and by applying Mean Value

Theorem again we have,

h
′
(s

(j)
k ) · (t(j)k − t

(j−1)
k ) = h

′
(s

(j−1)
k ) · (t(j−1)

k − t(j−2)
k ).

Now from the definition of h(t) we know that h′(t) is increasing and never zero on

(0, 1). So,

h
′
(s

(j)
k ) ≥ h

′
(s

(j−1)
k )

which implies

t
(j)
k − t

(j−1)
k ≤ t

(j−1)
k − t(j−2)

k (5)

for any j ≤ b4 log(k)e for any large k.

Now if we integrate (1− h(t))k on the subinterval [t
(1)
k , t

(4 log(k))
k ] for any large k then by

(5) above, we have
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∫ t
(4 log(k))
k

t
(1)
k

(1− h(t))kdt ∼
4 log(k)∑
j=1

(t
(j+1)
k − t(j)k )(1− h(t

(j)
k ))k

≤ t
(1)
k

4 log(k)∑
j=1

(1− h(t
(j)
k ))k


= t

(1)
k

4 log(k)∑
j=1

(1− j

2k
)k

.
The sum on the right hand side of above inequality converges uniformly and equals to

some constant L > 0 because (1− j
2k

)k ∼ 1

e
j
2

unformly for all j > 0 growing upto b4 log(k)e

for any large k. In other words, (1− j
2k

)k nearly equals the value 1

e
j
2

for all j ≤ blog(k)e no

matter how large k gets. The following claim explains this in more detail.

Claim: e
j
2 (1− j

2k
)k → 1 uniformly on 1 ≤ j ≤ b4 log(k)e as k →∞ .

Proof of claim: First of all note that the sequence e
j
2 (1− j

2k
)k approaches to 1 uniformly for

all 1 ≤ j ≤ b4 log(k)e as k →∞ if and only if the sequence log(e
j
2 (1− j

2k
)k) approaches 0

uniformly on 1 ≤ j ≤ b4 log(k)e as k →∞. So it suffices to show that log(e
j
2 (1− j

2k
)k)→ 0

uniformly on 1 ≤ j ≤ b4 log(k)e as k →∞.

For 1 ≤ j ≤ b4 log(k)e, let m = 2k
j

. Then

log(e
j
2 (1− j

2k
)k) =

j

2
+ k · log(1− j

2k
)

=
j

2
+m · j

2
· log(1− 1

m
)

=
j

2
· (1 +m log(1− 1

m
)).

Now since 1 ≤ j ≤ b4 log(k)e, 0 . 1
m
< 1 from which by the logarithmic
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inequalities/identities, we have

1

m
< − log(1− 1

m
)

= log(
1

1− 1
m

)

= log(
m

m− 1
)

= log(
(m− 1) + 1

m− 1
)

= log(1 +
1

m− 1
)

.
1

m− 1
since log(1 + x) ∼ x as x→ 0

from which it follows,

0 < − log(e
j
2 (1− j

2k
)k) .

j

2(m− 1)
.

Now if k is very large , then m also is very large. So as k →∞,

j

2(m− 1)
=

j

2
· m

m− 1
· 1

m

=
j

2
· m

m− 1
· j

2k

=
m

m− 1
· j

2

4k

≤ 1

1− 1
m

· 4(log(k))2

k

approaches 0 .

Now |log(e
j
2 (1− j

2k
)k)− 0| < ε ⇐⇒ 4(log(k))2

k
< ε ⇐⇒ 4

k
< ε ⇐⇒ k > 4

ε
.

Choose K(ε) = 4
ε
. Thus for every ε > 0, there exists K(ε), independent of j, such that

k ≥ K(ε) implies

|log(e
j
2 (1− j

2k
)k)− 0| < ε

on 1 ≤ j ≤ b4 log(k)e.
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From the above discussion we have,

∫ t
(4 log(k))
k

t
(1)
k

(1− h(t))kdt ≤ t
(1)
k · L (6)

/ L∗ ·
∫ tk

0

(1− h(t))kdt (7)

where L∗ > 0 is some constant.

(7) implies that the integral of (1− h(t))k on [t
(1)
k , t

(4 log(k))
k ] is a constant multiple of the

integral of (1− h(t))k on [0, tk]. Now since k is very large and (1− h(t))k is a decreasing

function on [0, 1] then by the above claim ,

∫ 1

t
(4 log k)
k

(1− h(t))kdt ≤ (1− 4 log(k)

2k
)k ∼ 1

k2
on [t

(4 log k)
k , 1]

which is very negligible compared to the integral
∫ t(4 log(k))

k

0
(1− h(t))kdt due to the

hypothesis h(t) ≤M · t on [0, 1] which implies tk ≥ M
2k

and 1
k2

converges to 0 faster than 1
k

as k →∞. So we can conclude that

∫ 1

0

(1− h(t))kdt ∼
∫ t

(4 log(k))
k

0

(1− h(t))kdt

Set ε = 1
1+L∗

. Thus by (2),

∫ tk
0

(1− h(t))kdt∫ 1

0
(1− h(t))kdt

≥ ε.

�

We discussed in section 3 for a compact composition operator Cφ induced by a self-map

φ of D, the H2-norm of {φn} decreases to zero as n→∞. The following proposition tells

us that for a compact composition operator, induced by a univalent self-map of D whose
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image touches the boundary T at exactly one point, the H2-norm of {φn} decreases to zero

faster than the sequence {
√
tn} as n→∞.

Proposition 42. Suppose ∆ is a Jordan domain in D bounded by a smooth boundary

curve C which has an equation 1− r = h(t), where h belongs to H . Let φ be a univalent

map of D onto ∆, which fixes 1. If Cφ is compact then

‖φn‖H2(D) = o(
√
tn)

where {tn}∞n=1 is the cutoff sequence for h(t).

Proof. It is given that boundary curve C is smooth; hence rectifiable. Now suppose α ∈ ∆

and let ω(α, .,∆) be harmonic measure on ∂∆ at α. It is clear from Proposition 9 that

dω = |ψ′ |dξ; where ψ = φ−1 and ψ′ exists in terms of non-tangential limit and dξ is the

arc-length.

Now Choose an r where 0 < r < 1. Then from the above discussion,

‖φn‖2
H2(D) =

1

2π

∫
T
|φ(ζ)|2n|dζ|

=
1

2π

∫
∂∆

|ξ|2n|ψ′(ξ)||dξ|
(

=

∫
∂∆

|ξ|2ndω(ξ)

)
=

1

2π

[∫
∂∆∩|ξ|≤r

|ξ|2n|ψ′(ξ)||dξ|+
∫
∂∆∩|ξ|>r

|ξ|2n|ψ′(ξ)||dξ|
]
.

Since h(t) ≤M · t for some positive M and by the Lemma 41 above the first term in

the above inequality, as n→∞, as we choose r close enough to 1, tends to 0 faster than tn.

That is , for all ε > 0 there exists an N such that
∫
∂∆∩|ξ|≤r|ξ|

2n|ψ′(ξ)||dξ| ≤ πε · tn whenever

n ≥ N .

Also since Cφ is compact, as r is close enough to 1, |ψ′(ξ)| gets smaller. That is for

every ε > 0 there exists an N ′ such that
∫
∂∆∩|ξ|>r|ξ|

2n|ψ′(ξ)||dξ| ≤ πε
2
·
∫
∂∆∩|ξ|>r|ξ|

2n|dξ|

whenever n ≥ N ′.
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From the above discussion and by lemma 41,

‖φn‖2
H2(D) ≤

ε

2
· tn +

ε

4

∫
∂∆∩|ξ|>r

|ξ|2n|dξ|

≤ ε

2
· tn +

ε

4

∫
∂∆

|ξ|2n|dξ|

∼ ε

2
· tn +

ε

4

∫ 1

0

(1− h(t))2ndt

≤ ε

2
· tn +

ε

4

∫ tn

0

(1− h(t))2ndt

≤ ε

2
· tn +

ε

2

∫ tn

0

(1− 2nh(t))dt

=
ε

2
· tn +

ε

2
(tn − 2n

∫ t2n

0

h(t)dt)

≤ ε

2
· tn +

ε

2
(tn − 2n · h(0) · tn)

=
ε

2
· tn +

ε

2
· tn

= ε · tn.

From which it follows that

‖φn‖H2(D) = o(
√
tn).

�

Remarks:

• It was noted in [35] and [10] that the map φ(z) = 1−
√

1− z which maps D to a

tear-drop shaped region in D induces a non-compact composition operator on the

little Bloch space B0 and BMOA. But Cφ is compact on H2(D). K. Madigan and A.

Matheson [35] also proved : if φ is univalent and the image of φ touches T at exactly

one point and doest not have a cusp at that point then Cφ is not compact on B0. But

we know from Theorem 15 that Cφ on H2(D) is Hilbert-Schmidt in the case when the

image of φ has a cusp at the touching point. Now by Proposition 39 the decay rate of
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‖φn‖H2(D) in the Hilbert-Schmidt operator case (when p = 2) is much faster than 1√
n
.

• In [18] El-Fallah et.al. noticed that if ‖φn‖H2(D) = o( 1√
n
) then Cφ is compact on

H2(D). In light of proposition 42 above taking h(t) = t
log( 1

t
)

gives us

‖φn‖H2(D) = o(
√

log(n)
n

) and we know that Cφ is compact in this case.

• Also if we assume Cφ is compact and ‖φn‖H2(D) = o( 1√
n
) with the same hypothesis as

in Proposition 42 then Cφ is Hilbert-Schmidt on H2(D). To see that notice Cφ is

compact in this case. So by Proposition 42, since tn is unique up to a constant

multiple, tn = 1
n
. Now since h(tn) = 1

2n
and h(t) is an increasing, injective function,

h(t) = t
2
. So the image of φ is contained in a polygon which implies Cφ is

Hilbert-Schmidt.

It should also be noted that this result is not true in general for any analytic self-map

of D with ‖φn‖H2(D) = o( 1√
n
). For example, if we choose ‖φn‖H2(D) = 1√

n logn
, then

lim
n→∞

1√
n logn
1√
n

= 0, but
∞∑
n=1

‖φn‖2
H2(D) =

∞∑
n=1

1

n log n
diverges. Thus Cφ is not

Hilbert-Schmidt in this case. Theorem 28 guarantees the existence of such an analytic

self-map φ of D which may not be univalent and φ(D) touches T at multiple points.

The above estimate for the decay rate of ‖φn‖H(D) in the case of compact composition

operator induced by a univalent analytic self-map φ of D with φ(1) = 1 gets better as we

choose φ whose image approaches the boundary T smoothly or “faster” as opposed to

sharply or “slower”, yet induces a compact composition operator. Our next proposition

gives us a precise estimate on the decay rate of ‖φn‖H2(D) in the case when the inducing

map φ maps D onto a domain ∆ whose boundary touches T very smoothly and as a

consequence induces a non-compact composition operator.
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Proposition 43. Suppose ∆ is a Jordan domain in D bounded by a smooth boundary

curve C, represented by the equation 1− r = h(t), where h belongs to H . Let φ be a

univalent map of D onto ∆, which fixes 1. Then Cφ is not compact on H2(D) if and only if

‖φn‖2
H2(D) � tn

where {tn}∞n=1is the cutoff sequence for h(t).

Proof. (⇐=) If ‖φn‖2
H2(D) � tn then ‖φn‖H2(D) 6= o(

√
tn). Thus by Lemma 42, Cφ is not

compact on H2(D).

(=⇒) As in the proof of previous proposition, it is given that boundary curve C is

rectifiable. Now let α ∈ ∆ and ω(α, .,∆) be the harmonic measure on ∂∆ at α. It is clear

from Proposition 9 that dω = |ψ′|dξ; where ψ = φ−1 and ψ′ exists in terms of

non-tangential limit and dξ is the arc-length.

Since Cφ is not compact, by univalent compactness theorem in Section 3, φ does have

finite angular derivative at some point on T, which implies ψ
′ 6= 0. Also since the boundary

curve C is smooth, φ
′

has a continuous extension on D. Thus on ∂∆, C1 < |ψ
′| < C2 for

some positive constants C1 and C2, which is equivalent as saying dω � dξ on ∂∆. So we

have,

‖φn‖2
H2(D) =

1

2π

∫
T
|φ(ζ)|2n|dζ|

=
1

2π

∫
∂∆

|ξ|2n|ψ′(ξ)||dξ|
(

=

∫
∂∆

|ξ|2ndω(ξ)

)
�

∫
∂∆

|ξ|2n|dξ|

∼
∫ 1

0

(1− h(t))2ndt

≤ const.

∫ tn

0

(1− h(t))2ndt

� tn.
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Remark 1. If we Let ∆ be a Jordan domain on the w-plane, bounded by a rectifiable

Jordan curve C represented by w = w(ξ) (0 ≤ ξ ≤ l), where l is the length of C and ξ the

arc length of C. Also that C has a tangent at every point, which varies continuously and

w
′
(ξ) satisfies the following Hölder’s condition:

|w′(ξ1)− w′(ξ2)| ≤ K|ξ1 − ξ2|λ (0 < λ < 1)

where K is some constant, then by Kellogg’s theorem [50], dω � dξ. So this particular

scenario resembles the “smooth” criterion mentioned in Proposition 43 and the result holds.

The following theorem is our main result. It gives a necessary and sufficient condition

for the compactness of the composition operator Cφ in the case when the the image of the

inducing map φ touches T at exactly one point.

Theorem 44. Suppose ∆ is a Jordan domain in D bounded by a smooth boundary curve

C, represented by the equation 1− r = h(t), where h belongs to H . Let φ be a univalent

map of D onto ∆, which fixes 1. Then Cφ is compact on H2(D) if and only if

∞∑
n=1

1

n

[
1

‖φn+1‖2
H2(D)

− 1

‖φn‖2
H2(D)

]

diverges.

Proof. (⇐=) Assume that
∞∑
n=1

1

n

[
1

‖φn+1‖2
H2(D)

− 1

‖φn‖2
H2(D)

]
diverges. Also for the sake of

contradiction assume that Cφ is not compact on H2(D).

Since Cφ is not compact , by Warschawski’s Theorem
∫ 1

0
h(t)
t2
dt converges. Now we

know that h(t) is a continuous, increasing function on [0, 1] and h(tn) = 1
2n

and tn+1 < tn.

So h(t) ≤ 1
2n

on [0, tn] and h(tn+1) < h(tn), which implies∫ 1

0
h(t)
t2
dt =

∞∑
n=1

∫ tn

tn+1

h(t)

t2
dt �

∞∑
n=1

1

2n

∫ tn

tn+1

dt

t2
converges.
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Now from Proposition 43 above ‖φn‖2
H2(D) � tn. Then,

∞∑
n=1

1

2n

∫ tn

tn+1

dt

t2
=

∞∑
n=1

1

2n

[
1

tn+1

− 1

tn

]
<∞

�
∞∑
n=1

1

n

[
1

‖φn+1‖2
H2(D)

− 1

‖φn‖2
H2(D)

]
<∞

which contradicts our assumption.

(=⇒) Suppose Cφ is compact. Let ‖φn‖2
H2(D) = sn for all n. Since Cφ is compact

‖φn‖2
H2(D) → 0, which implies sn+1 < sn for all n. Now by proposition 42,

‖φn‖2
H2(D) = sn = o(tn). Define a piecewise linear function g(s) such that g(sn) = 1

2n
for all

n. Since h(t) is convex, g(s) ≥ h(t) for all s, t in [0, 1]. Now since g(s) ≥ h(t) for all s, t in

[0, 1],
∫ 1

0
g(s)
s2
ds ≥

∫ 1

0
h(t)
t2
dt.

Since Cφ is compact, by Warschawski’s theorem ,
∫ 1

0
h(t)
t2
dt diverges, which implies∫ 1

0
g(s)
s2
ds diverges. From which and with the same argument as in the previous case, we

conclude

∫ 1

0

g(s)

s2
ds =

∞∑
n=1

∫ sn

sn+1

g(s)

s2
ds

�
∞∑
n=1

1

2n

∫ sn

sn+1

ds

s2

=
∞∑
n=1

1

2n

[
1

sn+1

− 1

sn

]

diverges.

Thus Cφ is compact if and only if
∞∑
n=1

1

n

[
1

‖φn+1‖2
H2(D)

− 1

‖φn‖2
H2(D)

]
diverges. �

An easy and simple example of Theorem 44 can be given by considering the analytic

self-map of D, discussed earlier, given by φ(z) = z+1
2

whose image touches T at exactly one
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point and does so smoothly. Notice that, the series

∞∑
n=1

1

n

[
1

‖φn+1‖2
H2(D)

− 1

‖φn‖2
H2(D)

]
=
∞∑
n=1

√
π

n

[√
n+ 1−

√
n
]

converges by the Comparison Test. Thus the composition operator Cφ, in this case, is not

compact on H2(D) .
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5 Closed-Range Composition Operators

We know, from section 2, what it means for an operator on any Banach space to be

closed-range. In the context of composition operators, we have the following

characterization which is just the Banach-space version of Proposition 3.30 in [15].

Theorem 45. A bounded (and one-to-one) composition operator Cφ on any Banach space

B of analytic functions on D has closed-range if and only if there exists an ε > 0 so that

‖Cφ(f)‖B ≥ ε‖f‖B

for all f in B.

In 1974, J. A. Cima, J. Thomson and W. Wogen [13] obtained a necessary and

sufficient condition for closed-rangeness of composition operators on H2(D). Their

condition focuses on the boundary behavior of the analytic self-map φ of D.

Theorem 46 ([13]). Let φ be a nonconstant analytic self-map of D. Then Cφ has

closed-range if and only if
dµφ
dm

is essentially bounded away from zero, where µφ is the

induced measure on D as defined in section 2.

Cima, Thomson and Wogen also posed the problem of obtaining a necessary and

sufficient condition for closed-rangeness of composition operators in terms of the range of

the inducing analytic self-map φ on D rather than T. Approximately twenty years later, N.

Zorboska [56] gave a complete characterization of closed-range composition operators on

H2(D) in terms of the properties of the range of the inducing analytic self-map φ on D

instead of T.

Theorem 47 ([56]). Let φ be an analytic self-map of D. Then Cφ has closed-range if and
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only if there exists a c > 0 such that the set

Gφ
c = {z : τφ(z) =

Nφ(z)

log 1
|z|

> c}

satisfies the following condition:

There exists a constant δ > 0 such that

(?) A(Gφ
c ∩D(ξ, r)) > δ · A(D ∩D(ξ, r))

for all ξ in T and r > 0, where D(ξ, r) is the disk with centered at ξ with radius r.

Here Nφ(z) is the Nevanlinna counting function of φ as defined in section 2.

The condition (?) is called reverse Carleson condition, and was invented by D.

Luecking [30] in order to answer questions related to the closed-rangeness of Toeplitz

operators. It tells us about the behavior of the set Gφ
c at the boundary. In particular,

Luecking was able to show the following interesting connection:

Luecking’s Theorem ([30]). Let G be a measurable subset of D and p > 0. Then there is

a constant K > 0 such that for all f ∈ Ap
0, the Bergman spaces,

∫
D
|f |pdA ≤ K

∫
G

|f |pdA

if and only if there exists a constant δ > 0 such that

A(G ∩D(ξ, r)) > δ · A(D ∩D(ξ, r))

for all ξ in T and r > 0, where D(ξ, r) is the disk with centered at ξ with radius r.

Zorboska also proved similar results in the context of weighted Bergman spaces A2
α, for

α > −1. But Zorboska’s results make use of Nevanlinna counting function which is a
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complex tool to deal with. J. R. Akeroyd and P. G. Ghatage [4] provided an improved

necessary and sufficient condition for closed-rangeness of Cφ for the classical Bergman

space A2
0, which does not involve Nevanlinna counting function. They considered images of

sets of the form Ωε(φ) = {z ∈ D : 1−|z|2
1−|φ(z)|2 ≥ ε > 0}, denoted Gε(φ) = φ(Ωε) and applied

Luecking’s reverse Carleson condition on these sets. The following is a restatement of their

result:

Theorem 48 ([4]). Let φ be a nontrivial analytic self-map of D. Then Cφ closed-range on

A2
0 if and only if there exist ε > 0, and δ > 0, and 0 < s < 1 such that Gε satisfies the

following condition:

A(Gε ∩Ds(z)) ≥ δ · A(Ds(z))

for all z ∈ D, where Ds(z) = {w ∈ D : | z−w
1−wz | < s}, is called the pseudo-hyperbolic disk of

radius r and centered at z.

With the help of Theorem 48 Akeroyd and Ghatage were able to show that if φ is an

univalent analytic self-map of D then Cφ is closed-range on A2
0 if and only if φ is a

conformal automorphism of D. Other characterizations of closed-range composition

operators on A2
0 was given by Akeroyd, Ghatage and Tjani [6].

Similar results like Theorem 48, in the context of weighted Bergman spaces, are

provided in [3]. P. Ghatage, D. Zhang, and N. Zorboska [21] worked on closed-range

composition operators on the Bloch space. Later more results in the context of Bloch space

were provided in [5]. Recently, M. Tjani [49] has studied the closed-range composition

operators on Besov type spaces.

Akeroyd, Ghatage and Tjani [5, 6] also noticed an interesting implication: if Cφ is

closed-range on A2
0 then it is also closed-range on B, the Bloch space. A counterexample

disproving the converse of this statement can also be found in [5]. Another implication like

this was also noticed by N. Zorboska: if Cφ is closed-range on the Bergman space A2
α then
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it is also closed-range on H2(D); see Corollary 4.2 in [56]. Tjani [49] also showed that for

p > 2, if Cφ is closed-range on Besov spaces Bp,p−1 then it is also closed-range on the Hardy

space H2(D). However, all of these implications are results of complete characterization of

closed-rangeness of Cφ on these spaces. In the next section we study this pattern from a

different perspective.
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6 Inheritance of Closed-Rangeness Property

So from the discussion in the preceding section one may naturally ask, does

closed-rangeness of a composition operator on a larger Banach space always imply

closed-rangeness on a smaller Banach subspace. In other words, if S and B are two

Banach spaces of analytic functions on D such that S ⊆ B and if Cφ is closed-range on B,

then does it follow that Cφ is also closed-range on S? To answer this question we need a

tool called absolutely monotonic radial weight functions.

Absolutely Monotonic Radial Weight

A Borel measurable function w : D→ [0,∞) is called a radial weight on D if w(z) = w(|z|),

∀z ∈ D. In section 2, we discussed what it means for any real-valued function to be

absolutely monotonic on an interval. If w(z) is some radial weight on D and w(z) = g(|z|)

on [0, 1), where g(x) is an absolutely monotonic function on [0, 1) then we say w(z) is an

absolutely monotonic radial weight on D. In particular, by Theorem 11, w(z) is the

analytic extension of g(x) on D. Some common examples of absolutely monotonic radial

weights are: for z ∈ D, log( 1
1−|z|2 ), 1

1−|z|2 etc. Following are some important observations

regarding absolutely monotonic radial weights.

Observation 1: Let w(z) := g(|z|) be an absolutely monotonic radial weight on D where g

is defined on [0, 1) as g(x) = log( 1
1−x). For 1 ≤ p <∞, if we define wp(z) on D as

wp(z) := g(|z|p), then w and wp are boundedly equivalent on D. Notice that, for 0 ≤ x < 1,

g(xp) ≤ g(x) for all p. Also, g(x) = g(xp) + log(1−xp
1−x ). Now we know that lim

x→1−

1−xp
1−x = p;

from which we have lim
x→1−

log(1−xp
1−x ) = log(p).

Observation 2: As in the previous observation, if we consider weight w(z) := g(|z|) of the

form where g(x) = 1
(1−x)α

, α > 0, then since lim
x→1−

(1−xp
1−x )α = pα, w and wp are boundedly

equivalent on D.

Observation 3: If we consider rapidly increasing weights of the form w(z) := g(|z|), where
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g(x) = e
1

(1−x)α , 0 < α ≤ 1, then we can guarantee that there exists an absolutely monotonic

radial weight which is boundedly equivalent to w on D. To verify this claim, consider the

linear function vp(x) = 1
p
x+ (1− 1

p
) which is clearly an absolutely monotonic function from

[0, 1) into itself. So the composition l(x) = g ◦ vp(x) is also absolutely monotonic on [0, 1).

Now, for 0 ≤ x < 1, x
1
p < vp(x); from which we have l(xp) ≥ g(x) for x ∈ [0, 1). Also,

l(xp)

g(x)
= e

pα

(1−xp)α − e
1

(1−x)α = e
pα−( 1−x

p

1−x )α

(1−xp)α

By the Mean Value Theorem, for x ∈ (0, 1), there exists c ∈ (x, 1), depending only on p,

such that, pcp−1 = 1−xp
1−x ; which implies,

l(xp)

g(x)
= e

pα−(pcp−1)α

(1−xp)α

= e
pα(1−cα(p−1))

(1−xp)α

≤ ep
α

Before we discuss our main results and their proofs, we would like to state our

assumption throughout the rest of this section that Cσa is bounded on both spaces B and

S, where σa(z) := a−z
1−az , for all a ∈ D, are the disk automorphisms.

Theorem 49. Let B and S be two Banach spaces of analytic functions on D, where

S ⊆ B, defined as follows:

B = {f ∈ H(D) : ‖f‖pB =

∫
D
|f |pdµ <∞}

S = {f ∈ H(D) : ‖f‖pS =

∫
D
|f |pwpdµ <∞}

for 1 ≤ p <∞, where wp(z) := w(|z|p) is an absolutely monotonic radial weight on D and µ

is some positive Borel measure defined on D. Let φ be an analytic self-map of D and Cφ

52



maps B into B and S into S. If Cφ is bounded on S and closed-range on B then Cφ is

also closed-range on S.

Proof. By our earlier assumption, Cσa is bounded on both spaces B and S, where, for all

a ∈ D, σa(z) := a−z
1−az . An important consequence of this assumption is that Cσa is now

closed-range on both B and S since the inverse of σa is itself under function composition.

So we only consider the case when φ(0) = 0.

Since wp(z) is absolutely monotonic radial weight on D it can be written as

wp(z) := g(|z|p), where g is a real analytic function on [0, 1) whose power series

representation contains non-negative coefficients. In particular, g(x) =
∑∞

n=0 anx
n, where

an ≥ 0 for all n.

It is given that Cφ is closed-range on B. So, by definition, there exists an ε > 0 such

that, for 1 ≤ p <∞,

‖Cφ(f)‖pB ≥ ε‖f‖pB

whenever f ∈ B.

Now, by the Schwarz’s lemma, for 1 ≤ p <∞ and f ∈ S,

‖Cφ(f)‖pS = ‖(f ◦ φ)(z)‖pS

=

∫
D
|(f ◦ φ)(z)|pwp(z)dµ(z)

=
∞∑
n=0

an

∫
D
|(f ◦ φ)(z)|p|z|npdµ(z)

≥
∞∑
n=0

an

∫
D
|(f ◦ φ)(z)|p|φ(z)|npdµ(z)

=
∞∑
n=0

an‖(f ◦ φ)(z) · φ(z)n‖pB

=
∞∑
n=0

an‖Cφ(f(z) · zn)‖pB
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≥ ε

∞∑
n=0

an‖f(z) · zn‖pB

= ε

∞∑
n=0

an

∫
D
|f(z)|p|z|npdµ(z)

= ε

∫
D
|f(z)|pwp(z)dµ(z)

= ε‖f‖pS

which implies Cφ is bounded below on S. Thus, by Theorem 45, Cφ is closed-range on

S. �

It should be noted that Theorem 49 can be applied to any pair of Banach spaces of

analytic functions which possess integral norms as mentioned above. Also the measure µ

here is not restrictive at all except it is just a positive, Borel measure on D. The

importance of the weight w(z) being radial shall be discussed later. Indeed, a large number

of well-known Banach spaces of analytic functions on D discussed in various literatures do

possess integral norms similar to the one defined above and are endowed with some kind of

radial weights. For example, consider the weighted Bergman spaces Ap
α (α > −1,

1 ≤ p <∞); Cφ is always bounded on these spaces (see [34]). Now if we consider the

absolutely monotonic weight wp(z) := 1
(1−|z|p)β−α

, then by Theorem 49, for −1 < α < β, if

Cφ is closed-range on Ap
β then it is also closed-range on Ap

α. But there are Banach spaces of

analytic functions on D which have integral norms defined in terms of the derivative of the

functions in the spaces instead of the function itself; for example, weighted Dirichlet spaces

Dα (α > −1) or Besov type spaces. The proof above doesn’t work in this case. We would

need a modified approach to resolve this issue.

Theorem 50. Let B and S be two Banach spaces of analytic functions on D, where
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S ⊆ B, defined as follows:

B = {f ∈ H(D) : ‖f‖pB = |f(0)|p +

∫
D
|f ′|pdµ <∞}

S = {f ∈ H(D) : ‖f‖pS = |f(0)|p +

∫
D
|f ′|pwpdµ <∞}

for 1 ≤ p <∞, where wp(z) := w(|z|p) is an absolutely monotonic radial weight on D and µ

is some positive Borel measure defined on D. Let φ be an analytic self-map of D and Cφ

maps B into B and S into S. If Cφ is bounded on S and closed-range on B then Cφ is

also closed-range on S.

Proof. By our assumption, Cσa is bounded on both spaces B and S, where, for all a ∈ D,

σa(z) := a−z
1−az . An important consequence of this assumption is that Cσa is now

closed-range on both B and S since the inverse of σa is itself under function composition.

So we only consider the case when φ(0) = 0.

Since wp(z) is absolutely monotonic radial weight on D it can be written as

wp(z) := g(|z|p), where g is a real analytic function on [0, 1) whose power series

representation contains non-negative coefficients. In particular, g(x) =
∑∞

n=0 anx
n, where

an ≥ 0 for all n.

Now let f0 = f − f(0). Since Cφ is linear and one-to-one, Cφ(f0) = Cφ(f)− f(0), from

which we have : ‖Cφ(f0)‖pS = ‖Cφ(f)‖pS + |f(0)|p. Let S0 = {f ∈ S : f(0) = 0}. Now if Cφ

is closed-range on S0 then by Theorem 45, there exists a δ > 0 such that

‖Cφ(f)‖S0 ≥ δ‖f‖S0 for all f ∈ S0. It is now implied that if Cφ is closed-range on S0 then

it is also closed-range on S and the same δ > 0 does work in this case. So it suffices to

show that Cφ is closed-range on S0.

It is given that Cφ is closed-range on B. So, by Theorem 45, there exists an ε > 0 such

that, for 1 ≤ p <∞,

‖Cφ(f)‖pB ≥ ε‖f‖pB
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whenever f ∈ B. Suppose n is some positive integer and z ∈ D. Let the sequence

fn(z) =
∫ 1

0
f ′(tz)(tz)nzdt be the analytic primitive of f ′(z)zn and fn(0) = 0. Now,by the

Schwarz’s lemma, for 1 ≤ p <∞ and f ∈ S0,

‖Cφ(f)‖pS = ‖(f ◦ φ)(z)‖pS

=

∫
D
|(f ◦ φ)′(z)|pwp(z)dµ(z)

=
∞∑
n=0

an

∫
D
|(f ◦ φ)′(z)|p|z|npdµ(z)

=
∞∑
n=0

an

∫
D
|f ′(φ(z))φ′(z)|p|z|npdµ(z)

≥
∞∑
n=0

an

∫
D
|f ′(φ(z))φ′(z)|p|φ(z)|npdµ(z)

=
∞∑
n=0

an

∫
D
|(fn ◦ φ)′(z)|pdµ(z)

=
∞∑
n=0

an‖Cφ(fn)‖pB

≥ ε
∞∑
n=0

an‖fn‖pB

= ε
∞∑
n=0

an

∫
D
|f ′(z)|p|z|npdµ(z)

= ε

∫
D
|f ′(z)|pwp(z)dµ(z)

= ε‖f‖pS

which implies Cφ is bounded below on S0. Thus, by Theorem 45, Cφ is closed-range on

S0. �

As an example, consider the Besov type spaces discussed in section 2. Suppose Cφ is

bounded on Besov type spaces Bp,α and Bp,β, where −1 < α < β. If we consider similar

weights w2(z) := 1
(1−|z|2)β−α

, as before, then if Cφ is closed-range on Bp,β, then Cφ is

closed-range on Bp,α.
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Remarks:

• It should be noted that in Theorem 49, we can also consider a sequence of absolutely

monotonic radial weights such as wp,k(z) = gk(|z|p) , where {gk} is a sequence of

absolutely monotonic functions on [0, 1). In that case, S is defined as:

S := {f ∈ H(D) : ‖f‖pS = lim
k→∞

∫
D|f |

pwp,kdµ <∞}. The result still holds in this

setting. To see this, let f ∈ S; then following the same proof as in Theorem 49 we get

‖Cφ(f)‖pS = lim
k→∞

∫
D
|(f ◦ φ)(z)|pwp,k(z)dµ(z)

≥ lim
k→∞

∞∑
n=0

ak,n

∫
D
|(f ◦ φ)(z)|p|φ(z)|npdµ(z)

= lim
k→∞

∞∑
n=0

ak,n‖Cφ(f(z) · zn)‖pB

≥ ε lim
k→∞

∞∑
n=0

ak,n‖f(z) · zn‖pB

= ε lim
k→∞

∞∑
n=0

ak,n

∫
D
|f(z)|p|z|npdµ(z)

= ε lim
k→∞

∫
D
|f(z)|pwp,k(z)dµ(z)

= ε‖f‖pS

• Here’s an example for the sequence case: for 1 ≤ p <∞, if Cφ is closed-range on Ap
0,

then it is also closed-range on Hp(D). To see this, note that the sequence

dνk := (pk + 1)rpkrdr is weak-* convergent on [0,1] to dδ{1}, the unit point mass at 1.

Thus we have:

‖f‖pHp(D) = lim
r→1−

1

2π

∫ 2π

0

|f(reiθ)|pdθ

= lim
k→∞

∫ 1

0

1

2π

∫ 2π

0

|f(reiθ)|pdθ(pk + 1)rpkrdr

= lim
k→∞

∫
D
|f(z)|pwp,k(z)dA(z)
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where wp,k(z) := pk+1
2
|z|pk. Now since wp,k is an absolutely monotnic radial weight for

each k and Cφ is always bounded on Ap
0 and Hp(D), by the above remark

closed-rangeness on Ap
0 implies closed-rangeness on Hp(D).

• A similar argument, directly following the proof of Theorem 50, can also be provided

to show that the results in Theorem 50 also hold in the case when S is defined as:

S = {f ∈ H(D) : ‖f‖pS = lim
k→∞
|f(0)|p +

∫
D|f
′|pwp,kdµ <∞}, where wp,k is again a

sequence of absolutely monotonic radial weights as defined before. Using the similar

argument, as in the previous remark, it can be shown: if Cφ is bounded on D2
0 and

S2(D) and closed-range on D2
0, then Cφ is closed-range on S2(D). For boundedness

criterion for Cφ on S2(D), see [33].

The following example shows that our two assumptions: Cσa is bounded on both spaces

B and S, for all the disk automorphisms σa := a−z
1−az , and the weight w(z) is radial play a

crucial role in the theorems above and cannot be dropped.

Example: Define a measure µ on D by dµ(z) = w(z)dA(z), where w(z) is defined on D as

follows:

w(z) =


1√

1−|z|2
z ∈ W := {z = x+ iy ∈ D : x, y > 0}

1 elsewhere

Obviously, w is not radial. Let B := A1
0 and S := {f ∈ H(D) : ‖f‖S =

∫
D|f |wdA <∞}.

For z ∈ D, consider the region Γz := {ζ : |z − ζ| < 1− |z|}. If f ∈ S, then

|f(z)| ≤ 1

π(1− |z|)2

∫
Γz

|f |dA

≤ 1

π(1− |z|)2
‖f‖S

So point evaluations are continuous linear functionals on S, which implies that S is a

Banach space of analytic functions on D. Also it is clear that S ⊆ B. Now let φ be the
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following Möbius transformation from D to itself:

φ(z) =
i
2

+ z

1− i
2
z

Note that φ(W ) ⊆ W and W ⊆ φ−1(W ). Let ψ = φ−1. Now, φ(0) = i
2

and 1−|φ(0)|
1+|φ(0)| = 1

3
;

from which we have: 1
3
≤ |ψ′| ≤ 3. By the Schwarz-Pick lemma,

|ψ′(ζ)| = 1− |ψ(ζ)|2

1− |ζ|2

for all ζ ∈ D. From the definition of w(z), we get

w(ψ(ζ))

w(ζ)
=

√
1− |ζ|2

1− |ψ(ζ)|2
=

1√
|ψ′(ζ)|

≤
√

3 < 2

for all ζ ∈ D.

Claim: Cφ is bounded on B and S. It is closed-range on B, but not on S.

Proof. It is well-established that Cφ is bounded on B. Indeed, it is bounded on any

weighted Bergman spaces Ap
α, where 1 ≤ p <∞ and α > −1; see Proposition 3.4 in [34].

From the discussion above, for f ∈ S,

‖Cφ(f)‖S =

∫
D
|f(φ(z))|w(z)dA(z)

=

∫
D
|f(ζ)|w(ψ(ζ))|ψ′(ζ)|2dA(ζ)

≤ 18

∫
D
|f |wdA

= 18‖f‖S

which establishes that Cφ is bounded above on S. It is also well-known fact that Cφ is

closed-range on B; see [4] in this context. To see that Cφ is not closed-range on S,
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consider the following sequence of functions in S,

fk(z) :=
ck

[(1 + sk)− z]
3
2

where sk > 0 for all k, decreases to 0 as k →∞ and ck = 1

‖[(1+sk)−z]
3
2 ‖S

. Now, by our

definition of µ, f(z) = 1

(1−z)
3
2

does not belong to L1(dµ); from which, ck → 0, as k →∞.

So fk converges to 0 uniformly on {z ∈ D : |1− z| ≥ δ}, where δ > 0; whence, {fk ◦ φ}k

converges to 0 uniformly on W . Also, since f(z) ∈ L1(dA),
∫
D|fk|dA converges to 0, as

k →∞. We have,

‖Cφ(fk)‖S =

∫
D
|fk(φ(z))|w(z)dA(z)

=

∫
W

|fk(φ(z))|w(z)dA(z) +

∫
D\W
|fk(φ(z))|dA(z)

≤
∫
W

|fk(φ(z))|w(z)dA(z) +

∫
D
|fk(φ(z))|dA(z)

=

∫
W

|fk(φ(z))|w(z)dA(z) +

∫
D
|fk(ζ)||ψ′(ζ)|2dA(ζ)

≤
∫
W

|fk(φ(z))|w(z)dA(z) + 9

∫
D
|fk|dA

converges to 0, as k →∞. But, by construction, ‖fk‖S = 1, for all k. Thus Cφ is not

bounded below on S. So it is not closed-range on S. Furthermore, due to this, Cψ is not

bounded(above) on S which violates our first assumption that Cσa is bounded on S for

any disk automorphism σa.

�
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Operators. Journal d’Analyse Mathématique, Volume 125, Issue 1 , pp 371-399 (2015).

[41] Schwartz, H.J.: Composition Operators on Hp. Thesis, University of Toledo, Toledo,
Ohio, (1969).

[42] Rudin, W.: Real And Complex Analysis. Second Edition, McGraw-Hill Series in
Higher Mathematics (1974).

63



[43] Shapiro, J.H.: The Essential Norm of a Composition Operator. Annals of
Mathematics, 125, 375-404 (1987)

[44] Shapiro, J. H.: Composition Operators and Classical Function Theory.
Springer-Verlag, New York (1993).

[45] Shapiro, J.H., Taylor, P.D.: Compact, Nuclear, and Hilbert-Schmidt Composition
Operators on H2. Indiana University Mathematics Journal, Vol. 23, No.6 (1973).

[46] Smith, W.: Compactness of Composition Operators on BMOA. Proceedings of the
American Mathematical Society, Volume 127, Number 9, Pages 2715-2725 (1999).

[47] Sundberg, C.: Measures Induced by Analytic Functions and A Problem of Walter
Rudin. Journal of The American Mathematical Society, Vol. 16, No. 1, 69-90 (2002).

[48] Tjani, M.: Compact Composition Operators on Some Möbius Invariant Banach
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