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ABSTRACT

A bridging ligand 5,5’-Bi- 1,10-phenanthroline, diphen, was prepared using

dichlorobis(triphenylphosphine)Ni(II), Ni(PPh3)2Cl2 as catalyst with a yield of 40%. Yellow

cubic crystals were able to obtain from the good purity product for single crystal analysis. The

torsion angle between the planes of the subunit phenanthrolines is about 66 degrees.

A dinuclear ruthenium (II) polypyridyl complex, (phen)2Ru(diphen)Ru(phen)2
4+, was

synthesized by using polymeric ruthenium carbonyl compound as the entry point, diphen as the

bridging ligand and 1,10-phenanthroline, phen, as the terminal legand. Brown needlelike crystals

were precipitated from acetonitrile that were not suitable for single crystal diffraction.

The photochemistry of the dimer was investigated in regards to the oxidation and reduction

of the ruthenium centers through a series of quenching reactions excited by visible light. The

analogous monomeric complexes Ru(bpy)3
2+ and  Ru(phen)3

2+ were used as comparisions. In the

photoinduced oxidation with peroxydisulfate, S2O8
2-, the dimer showed a higher Stern-Volmer

quenching constant kq than Ru(phen)3
2+. The dimer showed faster laser flash photolysis

transients than Ru(bpy)3
2+. In the photoinduced reduction with ascorbate, no significant

difference between the dimer and Ru(phen)3
2+.
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Chapter 1 Introduction

1.1 Introduction

In 1839 French physicist Edmond Becquerel showed that photoelectric conversion was

possible by generating a current with the first photovoltaic cell1.  The cell consisted of layer of

silver chloride placed in an acidic solution along with a platinum electrode. Modern photovoltaic

devices are based primarily on semiconductor electrodes.  These devices suffer from relatively

high costs and low light-to-electric energy conversion efficiency. Many alternative devices are

also being developed.  Dye sensitized solar cells offer some advantages over solid state devices.

They are potentially less expensive but suffer from poor stability among other things. In 1991,

Michael Grätzel and Brian O’Regande reported a low-cost dye solar cell (DSC) based on a layer

of the trimeric ruthenium complex, [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)2
2. The conversation

efficiency of the early cell was above 7 %.

Figure 1.1 is a schematic diagram of typical dye sensitized solar cell.  In these cells the

light is absorbed by the dye.  The excited dye molecule transfers an electron to the TiO2

semiconducting electrode.  This forms the negative side of the cell much like an ordinary battery.

The positive side involves the conversion of I3
- to 3I- by way of the returning flow of electrons.

The structure of two of the most popular ruthenium based dyes is illustrated in Figure 1.2.  The

use of ruthenium(II) complexes containing polypyridyl ligands is a common theme and will be

discussed in more detail shortly.
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Fig 1.1 Schematic of electron pathway in a DSC system3
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Fig.1.2 Structure of ruthenium based N-3 dye and thoicyanate-free dye
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1.2 Conversion of Solar Energy to Alternative Fuels

Photovoltaic conversion of light into energy is one of many ways to capture solar energy.4

From a purely energetics standpoint it should be possible to use an appropriate dye to convert

water into hydrogen and oxygen.5 The possibility is very appealing and many investigators have

examined this problem.  The ruthenium (II) complex containing three bipyridine ligands,

Ru(bpy)3
2+, was among the first dyes extensively examined in this context.6 Unfortunately,

despite a considerable effort the goal remains elusive.

One of the major stumbling blocks in the proposed application is the fact that the

conversion of water to O2 requires 4 electrons.  The ruthenium complex is only capable of

providing one electron for each photon absorbed.  Unfortunately, the energetics of the process

becomes unfavorable if the electrons can only be transfer one at a time because of the formation

of high energy intermediates.7 The conversion of water to hydrogen likewise requires 2

electrons. Several researchers have tried using platinum based catalysts8 to collect electrons and

convert water to hydrogen at the electrode surface.

1.3 Photophysical and Redox Properties of Ruthenium (II) Complexes

Ruthenium complexes have played a central role in a large variety of energy conversion

schemes and photosensitive devices because of the unique set of characteristics.4, 9 Ruthenium (II)

forms a variety of polypyridyl coordination complexes. These complexes were first discovered

almost 80 years ago.10 The simplest and most well-known complex of this family is

(bipyridine)3Ru(II) or Ru(bpy)3
2+, which has played a central role in the development of

photochemical applications due to its remarkably chemical stability and its unique photo-

physical properties11. These properties have been applied to a variety of applications, such as

artificial photosynthesis, photocatalytic production of hydrogen, dye-sensitized solar cells,
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photon-induced switches, oxygen sensors, pH sensors, and molecular machines and devices. The

Ru-ligand coordination is very strong. For example, Ru(bpy)3
2+ remains unreacted after refluxing

in concentrated HBr.  In addition, Ru(I), Ru(II) and Ru(III) complexes retain the bipyridyl

coordination sphere.12 This property is rare across the periodic table and critically important for

sustained catalytic activity and electrochemically reversible redox processes (the Ru1+/2+ and

Ru2+/3+ processes). These important electronic and photophysical properties are retained in

hundreds of structurally modified derivatives of the parent complex.  Such structural

modifications enable researchers to tune both the properties for specific applications

The absorption and emission spectrum of Ru(bpy)3
2+ is shown in Fig.1.3. The bands at 185

nm and 285 nm are assigned as ligand-centred π → π* transitions by comparison with the

spectrum of the protonated bipyridine ligand13. Similarly, the two weak shoulders at 323 nm and

345 nm also with the twin peaks at 238 nm and 250 nm are assigned to the metal centred d→d

transitions. The two intense bands at 240 nm and 450 nm which located in visible light range are

spin-allowed MLCT d→ π* transitions. Ru(bpy)3
2+ shows a broad orange-yellow emission in

solution at 293 K around 600 nm, and the rate of decay corresponds to an excited state lifetime

approximately 600  nsec in aqueous solution at room temperature in the absence of oxygen.14
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Fig.1.3 Absorption and emission spectrum for Ru(bpy)3
2+ in aqueous solution at room

temperature along with the assignments for the various bands.
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Fig. 1.4 Excited-state decay pathway for Ru(bpy)3
2+
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The excited state decays involve several processes (Fig 1.4). By irradiating Ru complexes,

for example [Ru(bpy)3]
2+, at the appropriate wavelength, a lowest photoexcited singlet metal-to-

ligand charge transfer state (1MLCT) is produced, 1[Ru(bpy)3]
2+* , which then undergoes

intersystem crossing (kisc) within 300 fs15, yielding a long-lived luminescent triplet excited state

(3MLCT), 3[Ru(bpy)3]
2+* (600 ns to a few µs). The intersystem crossing yield in the few system

examined in detail is approximately 100%.  This excited state exists long enough to transfer

energy to another molecule by energy transfer or electron transfer. 3[Ru(bpy)3]
2+* can also relax

to the ground state through a non-rediative decay (knr) by emission of heat, or  a radiative decay

(kr) by emission of light at about 600 nm, or thermal population of the nearby metal-centered d-d

state, dd[Ru(bpy)3]
2+. The d-d state rapidly decays back to the ground state and is the primary

decay path for the excited state in the absence of other reagents.16

Ru(bpy)3
2+ in ground state tends to show no redox reactions. Once in excited state,

however, Ru(bpy)3
2+* can behave as both a strong oxidant or a strong reductant. One-electron

transfer reactions result in the formation of ground state Ru(III) that is a strong oxidant ( +1.29 V

vs SCE in CH3CN) or the formation of ground state Ru(I) a very strong reductant (-1.33 V vs

SCE in CH3CN). The standard reduction potentials for the ground and excited state of

Ru(bpy)3
2+ are summarized in Figure 1.5.17
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Fig. 1.5 Photoredox cycles of Ru(bpy)3
2+
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1.4 Applications of Ruthenium (II) Complexes and Laser Flash Photolysis

The redox properties of the excited states ruthenium polypyridyl complexes have led

investigators to many applications. Of particular importance is the ability to monitor the rates of

the electron transfer reactions.18 For several decades this ability has dominated the fundamental

investigations of electron processes. Most notable was the verification of the basic tenants of

Marcus Theory and development of basic understanding of electron transfer in metalloproteins

and other systems in which the donor and acceptor are separated by significant distances.19

1.4.1 Laser Flash Photolysis

Laser flash photolysis has been used extensively to measure the rates of electron transfer

reactions involving ruthenium polypyridyl complexes.20 The technique is extremely well suited

for these investigations.  Laser flash photolysis allows for the measurement of reactions with

almost no limit of the time resolution. Femotosecond measurements are currently common

although most practical applications focus on reactions that occur in the microsecond or

millisecond time range.21 The technique is based on the creation of reactants by using a short

pulse of light. Typically, lasers have pulse widths in the nanosecond or picosecond range are able

to produce reactants on this time scale. The pulse width is generally much shorter than the half-

time of the chemical reaction. A simplified optical layout of the essential equipment is shown in

Figure 1.7.

Most flash photolysis system use absorbance measurements to monitor the reaction.

Transient absorbance changes are recorded on a fast digital oscilloscope (nsec sampling).

Ruthenium complexes have excited states that last long enough to produce a good yield of

product.  Excitation and monitoring can be done with visible light which is best for most systems.
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Fig 1.6 Essential optical layout of a laser flash photolysis setup
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1.4.2 Reactions Between Ruthenium(II) Complexes and Proteins (Ru(II)-Fe(III))

The process of aerobic cell respiration is a one of the most complicated and interested

processes because it actually consists of many individual electron transfer reactions. The final

step in respiration is called oxidative phosphorylation which takes place on the electron transport

chain of the inner membrane of the mitochondria.22

The electron transport chain is a series of proteins: complex I (or NADH dehyrogenase),

complex II (succinate reductase), complex III (or cytochrome bc1 complex)23 and complex IV (or

cytochrome c oxidase), as well as the final protein molecule known as ATP synthase.

Complex I is responsible for accepting the high energy electrons from NADH molecules

produced in glysolysis and the citric acid cycle to ubiquinone.  As the electrons move through

complex I, four proton ions are pumped out the matrix into the inner membrane. Complex II

converts succinate to fumarate and generates the FADH2 molecules without pumping any proton

ions. Ubiquinone is the electron carrier that shuttles these electrons from complex I and II onto

complex III. Then complex III catalyzes the transfer of electrons from ubiquinone to cytochrome

c.24 The movement of electrons stimulates the movement of proton ions out of the matrix and

into the inner membrane space of the mitochondria. Once the electrons end up on complex IV,

this is where the diatomic oxygen is reduced by the electrons to form water. This series of

reactions yields a proton gradient that is used by ATP synthase to generate ATP molecules.
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Fig 1.7 Structure of a mitochondrion

Fig 1.8 Mitochondrial electron transport chain
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During the process of this oxidation, cytochrome c is a relatively small water soluble

molecule travels through the matrix fluid plays a crucial role as a one-electron shuttle between

complex III and IV25. Cytochrome c contains a single iron atom held by four nitrogens of a

porphyrin ring, the nitrogen of histidine, and the sulfur atom of methionine. The iron atom is

center of the redox activity and cycles between Fe(II) and Fe(III) form to accept one electron

from Complex III and subsequently donate one electron to Complex IV.

Measurement of the rate constants for electron transfer within the oxidative

phosphorylation remained elusive until early 1900’s because of the speed of the reactions . Rapid

mixing techniques fell far short of the needed time resolution and flash-photolysis was not

directly possible redox reactions could not be initiated by irradiation of the proteins alone.  In

early 1990, use of laser flash photolysis became possible through photoexcitation of ruthenium

polypyridine complexes.26

In the early research, ruthenium complexes were covalently bound to cytochrome c27.

Ru(II)-Fe(III) in Scheme 1.1 represents ruthenium complexes and the iron center of cytochrome

c. Absorption of a short laser pulse leads to the formation of the Ru2+*  excited state, which

rapidly reduces the iron center to produce Ru(III)-Fe(II). The use of an external sacrificial

electron donor, D, prevents the thermal back reaction with the formation of Ru(II)-Fe(II). At this

point the reduced cytochrome c can react with a metalloprotein of interest (cytochrome c oxidase,

cytochrome peroxidase) after which the ruthenium components are reset to their original

oxidation states.

Subsequent research revealed that covalent bonding was not necessary for many of the

questions under investigation.  Electrostatic interactions with the ruthenium complexes with a
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metalloprotein of interest, when correctly designed, provided good yields of proteins in reactive

states.  For examples, this approach worked very well in studies of the internal electron transfer

reactions of multicentered metalloproteins such are Complex III and IV.  In these applications

the ruthenium complex essentially replaced cytochrome c as an electron donor or acceptor.

Extensive design efforts ultimately showed that weakly coupled dimeric ruthenium complexes

worked best.  For example, the complex [(bpy)2Ru-qpy-Ru(bpy)2]
4+, where qpy is quatrapyridine

was used extensively to examine the internal electron transfer reactions of cytochrome c

oxidase.28
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Scheme 1.1 Photoredox reaction of ruthenium in the presence of external quenchers
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1.4.3 Light-driven Oxidation of Water Catalyzed by Ruthenium (II) Complexes

Oxidation of water to release O2 is the terminal reaction of green plants, photosystem II

(PSII) (eq 1) .29 Oxidation of water is extremely energy-demanding and occurs

thermodynamically above pH ~ 5 with potentials, E0(O2/H2O2) = 0.27 V, E0(H2O2/H2O) = 1.36 V)

(eq 2) .30 There are very few suitable molecules that can oxidize water by absorbing the energy

from sunlight as it happens in the photosynthesis in green plants. However ruthenium (III)

complexes have this ability, for example Ru(bpy)3
3+. 31

2H2O = 4H+ + O2 + 4e- (1)

Ru(bpy)3
3+ + ½ H2O = Ru(bpy)3

2+ + H+ + ¼ O2 (2)

Ru(bpy)3
2+ absorbs visible light to form the MLCT excited state Ru(bpy)3

2+*. Then

Ru(bpy)3
2+* is oxidized by an appropriate oxidative quencher such as S2O8

2- to Ru(bpy)3
3+. By

accepting electrons from water, water is oxidized to O2 and Ru(bpy)3
3+ is reduced and returns

back to the initial state Ru(bpy)3
2+.

However, the evolution of O2 from water is difficult in this four-electron redox process and

Ru(bpy)3
3+ decomposes rapidly.  More research is need to develop more efficient and practical

photosensitizer for water oxidation that could meet the following requirements:  a high turnover

number which reflects high stability; a high turnover frequency which reflects high activity and a

low overpotential which means water oxidation can be driven by visible light32.
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Fig 1.9 Photocatalytic oxidation of water by Ru(bpy)3
2+.



27



28

1.4.4 Organic Synthesis Using Visible-light Triggered by Ru(bpy)3
2+

Sunlight is inexpensive and endlessly renewable. Photosynthesis in green plants serves as

natural ability to convert solar energy to chemical energy. This green chemistry has inspired the

development of photoredox catalysts for organic synthesis. However, most organic catalysts

absorb short wavelengths of light33, for example ultraviolet light which is reactive for

unsaturated bonds and some functional groups makes up asmall amount (~3%) of sunlight. By

utilizing the properties of ruthenium polypyridine complexes, strategies using combination of

[Ru(bpy)3]
2+ and visible light for preparative organic chemistry haverecently been developed.

Fig 1.10 Examples for organic photosensitizers absorb ultraviolet light

Benzophenone (BP) Anthraquinone (AQ) 5-Nitroacenaphthen (NAN)
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Scheme 1.2 Traditional method for reductive dehalogenation

Scheme 1.3 Photoredoxmethod for reductive dehalogenation

Scheme 1.4 Photoredox reduction of electron-deficient olefins
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Reductive dehalogenation is degradation of halogenated organic compounds by removal of

a halogen substituent and simultaneous addition of a hydrogen atom. An example of commonly

used traditional method is shown in Scheme 1.2 which involves trialkyltinhydride compound as

the catalyst34. However, trialkyltin is neurotoxic can cause impaired motor function35.

Subsequently a tin-free method using [Ru(bpy)3]
2+as a visible-light photosensitizer irradiated by

a 14 W fluorescent lamp under mild reaction conditions was developed (Scheme 1.3)36. This

simply reaction maintained good chemoselectivity and high yields of products.

[Ru(bpy)3]
1+ is a strong reductant can reduce some electron-deficient olefins. No reaction

between several olefins and 1-benzyl-1, 4-dihydronicotinamide (BANH) is observed in the dark

at room temperature. By adding catalytic quantities of [Ru(bpy)3]
2+ and under visible light, the

excited state Ru(bpy)3
2+* was formed and was reduced by accepting an electron from  BANH to

generate highly reducing Ru(bpy)3
1+. Ru(bpy)3

1+ reduced the carbon-carbon double bond to

single bond(Scheme 1.4) .37

Ru(bpy)3
2+ has been investigated for more than four decades.38 However, the utilizing of

Ru(bpy)3
2+ to trigger organic synthesis started in 2008.39 This is a new area in advanced organic

synthesis and catalysis but application examples are still limited.

1.5 Two and Four-electron Donors and Acceptors

In some of the examples above it is clear that development of catalysts capable of

delivering more than a single electron per photon would be beneficial.  Direct 2-photon

processes occur with low yields and only with an extremely high photon flux. Alternatively

dimeric complexes can be envisioned in which the metal centers are very weakly coupled.  In

this case the metal centers would behave independently and it should be possible to excite both
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centers with only modern levels of photon flux. In this case the probability of absorbing a second

photon would be the same as absorbing the first photon.

Several dimeric ruthenium complexes have recently been developed that fit the criteria of

weakly coupled metal centers.  One has been used extensively in the investigation of

metalloproteins and was mentioned above, [(bpy)2Ru-qpy-Ru(bpy)2]
4+.28 Another is closely

related and easier to prepare, [(phen)2Ru-diphen-Ru(phen)2]
4+. In both of these dimers the

bridging ligands are sterically constrained out of planarity and presumably the lack of planarity

leads to very weak coupling between the two ruthenium moieties. Extensive investigation of the

photophysical properties supports the weak coupling.  Perhaps the most compelling is the fact

that excited state lifetimes of the dimers are longer than the monomers indicating that the

ruthenium centers do not interact destructively.40

Given the above observations it appears that the dimers are well suited to an investigation

of possibility that both centers can be oxidized or reduced photochemically and thus be

converted into two electron donors or acceptors.  Following is a description of initial

investigations of quenching reactions design to yield two electron redox products.  In particular

the investigation will focus on the reactions of the excited state with S2O8
-2 and ascorbate.

Reactions of Ru(bpy)3
2+ and Ru(phen)3

2+with these reactants have been thoroughly investigated

by previous workers.  The quenching reaction with S2O8
2- proceeds with an irreversible quantum

yield of two strongly suggesting that the dimers will yield two electron oxidized products.

Likewise ascorbate, based on previous work should yield a two electron reduced product and

possibly hydrogen.
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Chapter 2 Experimental

2.1 Materials

2-Methoxyethanol was purchased from Acros Organics. Triphenylphosphine (PPh3), N,N-

dimethylformamide (DMF), ammonium hexafluorophosphate (NH4PF6), the zinc dust, and 5-

chloro-1,10-phenanthroline (Cl-phen) were all purchased from Alfa Aesar. Nickelous chloride

hexahydrate (NiCl2·6H2O) and potassium cyanide (KCN) were produced by J.T. Baker.

Trimethylamine N-oxide (Me3NO) was purchased from TCI. Ruthenium (III) chloride hydrate

(RuCl3·XH2O) and 1,10-phenanthroline (phen) were purchased from Oakwood Chemical.

Hydrochloric acid (HCl), diethyl ether, acetonitrile, methanol, and acetonitrile-d3 (CD3CN) were

produced by BDH. Formic acid (HCOOH) was produced by Mallinckrodt Chemicals. L-ascorbic

acid (Vitamin C) sodium salt, ammonium persulfate ((NH4)2S2O8), ferrocene (Fe(C5H5)2), and

tetrabutylammonium hexafluorophosphate (NBu4PF6) were purchased from Sigma-Aldrich.

Ammonium sulfate ((NH4)2SO4) was purchased from Macron Chemicals.

2.2 Instrumentation and General Procedures

Infrared (IR) spectra were recorded with a Shimadzu IRAffinity-1S FTIR Spectroscopy

equipped with a Quest ATR accessory with a diamond crystal puck. Samples were placed

directly the sample holder and the empty chamber was scanned as the background. Spectra were

collected in the range of 600 - 4000 cm-1 with 2 cm-1 resolution and 24 spectral scans averaged

by the LabSolutionsIR operational software and then converted to Excel spreadsheets.

1H-NMRwere recorded on a Bruker Avance 300 MHz Spectrometer.CD3CN was used as

solvent. NMR software TopSpin was used to analyze the spectra.
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All ultraviolet-visible (UV/vis) absorption spectra were obtained using a Hewlett Packard

8452A Diode Array Spectrometer in conventional 1.0 cm quartz cells.

Fluorescence spectra were obtained with a Quanta MasterTM 300 Plus from Photon

Technology International. The excitation wavelength was 450 nm and the emission spectra were

recorded over the range of 480-800 nm at room temperature.

CH Instruments Electrochemical workstation was used for cyclic voltammetry with a three

electrode system. The counter electrode was a platinum wire and the reference electrode was a

silver wire. The working electrode was a platinum disc with a 1 mm diameter. The supporting

electrolyte was 0.1 M NBu4PF6 in acetonitrile. Ferrocene was used as reference. All

measurements were carried out at a scan rate of 100 mV/s.

Full structural analysis of the diphen was performed by Collin McMillen, Managing

Director of the Molecular Structure Center in Clemson University by single crystal X-ray

diffraction using a Rigaku AFC8 diffractometer with a sealed tube used to generate graphite

monochromated Mo Kα (λ = 0.71073 Å) radiation. The diffractometer was equipped with a

Mercury CCD detector. The diphen crystal was mounted on a glass fiber using epoxy glue, and

data were collected at 100 K by omega scans over 480 diffraction images. Data processing was

performed using the Crystal Clear software package. The space groups were determined from the

systematic absences, and the structures were solved by direct methods and refined by least-

squares techniques using the SHELXTL software suite.

2.3 Photochemical Procedures

Kinetics of Quenching Back-Reactions. Solutions containing Ru(bpy)3
2+, Ru(phen)3

2+ or

dimer were excited with a PhaserR flash-lamp pumped dye laser with LD490 dye which
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provided a 500 nsecpulse of 480 nm light. The probe beam was provided by a 100 watt tungsten

lamp at right angle relative to the laser excitation. A shutter blocked the sample from irradiation

by the probe prior to laser excitation. The probe beam was passed through a Kratos Schoeffel

Instruments monochromator and the intensity monitored with a R446 photomultiplier. The signal

was passed through a unity gain summing amplifier to allow subtraction of the steady state

background signal.  The transient absorbance changes were monitored by a LeCroy Model 6054

digital oscilloscope.  The files were transferred to a PC for kinetic analysis.

In order to prevent possible changes in concentration due to the photoreaction, all the

solutions were prepared and stored under darkroom conditions the same day as the experiment.

However, no change of absorption was observed after storage of the solutions for a week

with/without saturated nitrogen, which indicates the high stability of the ruthenium solutions.

The ruthenium complexes concentrations employed in the quenching measurements varied from

22 to 60 µM, corresponding to an absorbance of 0.3-0.8 (ϵ 14000 M-1 cm-1). The oxidative

quenching measurements were performed with different concentrations of ammonium

peroxodisulfate ((NH4)2S2O8) under air saturated at room temperature. The reductive quenching

were performed with different concentrations of L-sodium ascorbic acid at pH =5 under nitrogen

at room temperature.
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2.4 Syntheses

2.4.1 5,5’-Bi-1,10-phenanthroline

NiCl2·6H2O (0.304 g, 2.34 mmol) and PPh3 (2.44 g, 9.30

mmol) were dissolved in 20 ml dry DMF in a 100 ml RBF and

stirred at 50 ⁰C under nitrogen for 1h. Unpurified zinc dust

(0.27 g, 4.41 mmol) was added to the resulting blue solution.

The solution was stirred at 50 ⁰C under nitrogen until it was

dark red. Cl-phen (0.496 g, 2.30 mmol) in 10 ml of DMF with nitrogen protection was added to

the dark red solution. The solution was stirred at 50⁰C under nitrogen overnight until it was dark

green. The resulting mixture was evaporated through the rotary evaporator to yield a dark green

solid. Then the dark green solid was boiled in 80 ml of water for 2h. The mixture was cooled to

room temperature and filtered. The yellow solution was precipitated with 10 ml of a saturated

aqueous NH4PF6 solution.  The precipitate was filtered by a medium porosity fritted funnel and

then were suspended in a solution of KCN (1.50 g, 23.0 mmol) in 40 ml of a methanol and H2O

(19:1, v:v) and refluxed for 4 h. The resulting brown solution was cooled completely and filtered.

The yellow solid was washed with H2O and ether, and then dried in a desiccators (Yield: 49%).

2.4.2 Crystallization of 5,5’-Bi-1,10-phenanthroline

Diphen was dissolved in a minimum volume of hot CH3CN in a RBF yielding a clear

yellow solution. The solution was slowly cooled down to room temperature and allowed to stand

undisturbed for 2 days. Yellow cubic crystals formed on the bottom.

N

N

N

N
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2.4.3 [(phen)2Ru(diphen)Ru(phen)]PF6

RuCl3·XH2O (2.02 g, 7.72 mmol) was dissolved

in a 100 ml 1:1 (v:v) solution of concentrated HCl and

HCOOH  and refluxed for 24 h under nitrogen. The

color of the solution changed from brown to yellow.

The yellow solid was isolated through evaporation on a

hotplate (Yield: 93%).

Diphen (0.462 g, 1.29 mmol) in 20 ml of hot 2-

methoxyethanol  was added to a solution of

[Ru(CO)2Cl2]n(1.47 g, 6.45 mmol) in 60 ml of hot 2-

methoxyethanol in a 100 ml RBF and the resulting

deep red solution was boiled for 7 min and cooled. The solution was filtered by a medium

porosity fritted funnel, and the orange solid was dried in a desiccators (Yield: 37%).

[(phen)2Ru(diphen)Ru(phen)2](PF6)4

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2 (0.200 g,

0.246 mmol), phen (0.426 g, 2.36 mmol), and

Me3NO (0.187 g, 2.49 mmol) were suspended in 70

mL of nitrogen purged 2-methoxyethanol and

refluxed for 2 h under nitrogen (dark brown).

Me3NO (0.05 g, 0.666 mmol) was added to the solution and continued refluxing for 1 h. The

resulting solution was evaporated through the rotary. Then the oily solid was dissolved in 100 ml
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of water. Then the solution was precipitated with 10 ml of a saturated aqueous NH4PF6 solution.

The precipitate was filtered by a medium porosity fritted funnel and then dried in a desiccator.

2.4.4 Crystallization of [(phen)2Ru(diphen)Ru(phen)](PF6)4

Dissolved dimer in a minimum volume of CH3CN in a RBF until formed a clear brown

solution. Set the RBF aside undisturbed to evaporate CH3CN. Brown needle-shaped crystals

were precipitated on the bottom.
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Chapter 3 Results

3.1 Synthesis and Basic Characterization of 5,5’-Bi-1,10-phenanthroline (diphen).

This investigation focused on photochemistry of [(phen)2Ru(diphen)Ru(phen)2](PF6)4and a

comparison to corresponding monomeric complexes [Ru(bpy)3]
2+ and [Ru(phen)3]

2+.  The nature

of the investigations required synthetic procedures that provided reasonable yields and most

importantly were free from contamination of the dimeric complex with [Ru(phen)3]
2+ or

[Ru(phen)2(diphen)]2+.  [Ru(bpy)3](PF6)2 and [Ru(phen)3](PF6)2 have been thoroughly

investigated and the synthesis of these complexes is well established.

The bridging ligand, diphen, was prepared using procedures previously reported41 and later

optimized by Puckett40. Briefly, diphen was prepared from 5-chloro-1,10-phenanthroline using a

dichlorobis(triphenylphosphine)Ni(II), Ni(PPh3)2Cl2 , catalyst.  Zinc metal is used to reduce

Ni(PPh3)2Cl2 in the present of triphenylphosphine in oxygen-free DMF to obtain a red-brown

slurry of Ni(PPh3)4the catalyst for the reaction. The work-up procedures described in the

previous chapter effectively eliminated triphenylphosphine from the product as indicated by

NMR. Typical yields range from 30-50%.
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Scheme 3.1 Showing the homocoupling reaction used in the preparation of diphen
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Diphen is readily soluble in polar organic solvents such as acetonitrile and was amenable to

analysis by proton NMR. The 1H-NMR of diphen in deuterated acetonitrile is shown in Figure

3.1.  Interpretation of the spectrum is complicated by the fact that there are basically two

chemically different phenanthroline moietiesthat are very similar.  Comparison of the spectrum

obtained with diphen to that of 1,10-phenanthroline shown in Figure 3.2 supports the presents of

two spectrally dissimilar rings.  The protons at the 4 and 7 positions are spectrally the most

dissimilar.  The close proximity of the rings of the adjacent phenanthroline shift the resonance of

the 4 proton to 7.9 ppm whereas the resonance for the 7 proton remains at 8.5 ppm similar to that

observed with the unsubstituted phenanthroline.  The remaining assignments were based on the

comparison to the spectrum 1,10-phenanthroline.The resonances centered at 9.15 ppm

correspond to the protons at the 9 and 2 positions.  Cross coupling in the COSEY spectrum of

diphen shown in Figure 3.2 indicates that the resonance at 9.2 ppm corresponds to the proton at

the 9 position (and the 9’ position). The COSEY spectrum indicates that the resonances for the

proton at the 3 position occurs at 7.5 ppm while the resonances for the proton at the 8 position

appears at 7.8 ppm, again similar to the unsubstituted phenanthroline
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Figure 3.11H NMR spectrum of diphen in CD3CN
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Figure 3.2 1H NMR spectrum of 1,10-phenanthroline in CD3CN
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Figure 3.3 1H-1H COSY spectrum of diphen in CD3CN
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3.2 Synthesis and Basic Characterization of [(phen)2Ru(diphen)Ru(phen)2](PF6)4

[(phen)2Ru(diphen)Ru(phen)2](PF6)4was synthesize using a method similar to that used to

prepare heteroleptic ruthenium polypyridyl complexes and later elaborated by Puckett40 for the

preparation of dimeric complexes.  The following reactions summarize the chemistry

RuCl3 + HCl + HCOOH                  [Ru(CO)2Cl2]n eq 3.2.1

[Ru(CO)2Cl2]n + n diphen 2-methoxythanol n (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 eq 3.2.2

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2 + 2 phen +2 Me3NO 2-methoxythanol

[(phen)2Ru(diphen)Ru(phen)2]Cl2 + 2Me3N + 2CO2 eq 3.2.3

[(phen)2Ru(diphen)Ru(phen)2]Cl2 + 2NH4PF6
2-methoxythanol

[(phen)2Ru(diphen)Ru(phen)2]PF6 + 2 NH4Cl                    eq 3.2.4

The reaction described by eq 3.2.1 was originally developed by Aguirre42 and has been

used extensively as an entry point into the preparation of ruthenium polypyridyl complexes43.

The diphen and phenanthroline were added stepwise in separate reactions. The final product was

recovered by precipitation as indicated by eq. 3.2.4.

[Ru(CO)2Cl2]n is a common starting material used to prepare ruthenium polypyridine

complexes. The synthesis is simple and proceeds in high yield of 90%. Although the structure of

this complex is not well characterized, it is reproducible and it has characteristic carbonyl

vibrational bands that are easily monitored by IR spectroscopy. The IR spectrum of

[Ru(CO)2Cl2]n shows three absorption bands at 2011 cm-1, 2063 cm-1and 2139 cm-1typical of

metal complexes containing multiple carbonyl groups.
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Reaction of [Ru(CO)2Cl2]n with diphen in 2-methoxyethanol results in the precipitation of a

product in a few minutes at elevated temperatures consistent with the formulation

[(CO)2Cl2Ru(diphen)Ru(CO)2Cl2]. The IR spectrum of the product reveals two absorption bands

at 1978 cm-1 and 2054 cm-1The number of bands and corresponding energies are typical of the

asymmetric and symmetric stretching bands found in monomeric metal complex containing two

carbonyl groups in the cis geometry.

[(CO)2Cl2Ru(diphen)Ru(CO)2Cl2] was used without further purification. Addition of

trimethylamine-N-oxide was used to convert the carbonyl groups to carbon dioxide which

allowed the incorporation of four equivalents of 1,10-phenanthroline to produce

[(phen)2Ru(diphen)Ru(phen)2](PF6)4. No absorption bands typical of metal carbonyls in the

region around 2000 cm-1were evident in the IR spectrum indicating the replacement of all of CO

groups during the reaction.
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Figure 3.4 Attenuated total reflectance IR spectrum of neat [Ru(CO)2Cl2]n

Figure 3.5 Attenuated total reflectance IR spectrum of neat

[(CO)2Cl2Ru(diphen)Ru(CO)2Cl2]
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Figure 3.6 Attenuated total reflectance IR spectrum of neat
[(phen)2Ru(diphen)Ru(phen)2](PF6)4

Figure 3.7 Attenuated total reflectance IR spectrum of neat 1,10-phenanthroline
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The 1H-NMR of dimer in deuterated acetonitrile is shown in Figure 3.8. Interpretation of

the spectrum is challenging in light of the fact that there are many similar abut not identical

heterocyclic rings. The spectrum shown in Figure 3.8 lacks the resolution to reveal the

dissimilarities. However, the general features are consistent with the target complex.

Comparison of the spectrum obtained with dimer to that of diphen clearly illustrates the structure

is highly symmetric. The resonances centered at 9.1 ppm correspond to the protons at the 9 and 2

positions. The protons at the 4 and 7positions are spectrally closer than it shows in diphen. The

protons at 5 and 6 positions are identical. The resonances for the 3 and 8 protons occur at 7.8

ppm, again similar to the unsubstituted phenanthroline. The peaks indicated with X are

impurities. Integration of the peaks is consistent with the target structure.

The UV-Visible absorption spectrum of the product and the corresponding monomer

[Ru(phen)3]
2+ are shown in Figures 3.9 and 3.10 respectively. Comparison of the two spectra

indicates that spectroscopically the two complexes are nearly identical showing a λmax value of

448nm.
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Figure 3.8 1H NMR spectrum of [(phen)2Ru(diphen)Ru(phen)2](PF6)4 in CD3CN
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Figure 3.9 UV-Vis spectrum of [(phen)2Ru(diphen)Ru(phen)2](PF6)4 in acetonitrile

Figure 3.10 UV-Vis spectrum of Ru(phen)3Cl2 in 0.2 M (NH4)2SO4
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3.3 Structure of 5,5’-Bi-1,10-Phenanthroline

Small golden cubic crystals of diphen were obtained by slow evaporation of an acetonitrile

solution. Full structure analysis of diphen crystals was performed by single crystal X-ray

diffraction.  Plots of the structure of diphen single molecule are shown in Figure 4.1. Selected

bond lengths and angles are reported in Table 3.1-3.3.

3.4 Electrochemical studies (CV)

E1/2 = (1.015 V + 0.973 V) = 0.994 V

The redox potential for [(phen)2Ru(diphen)Ru(phen)2](PF6)4 is 0.994 V vs Ag/AgCl, which

is similar with Ru(phen)3
2+ with a redox potential of 0.858V vs Ag/AgCl.

[(phen)2Ru(diphen)Ru(phen)2](PF6)4 exhibits three consecutive cathodic couples (ligand-

based reductions) at -0.343, -0.807, -1.095 V vs Ag/AgCl.
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Table 3.1 Sample and crystal data for diphen.
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Chemical formula C26H17N5

Formula weight 399.45 g/mol

Temperature 100(2) K

Wavelength 1.54178 Å

Crystal size 0.151 x 0.188 x 0.202 mm

Crystal system monoclinic

Space group C 1 2/c 1

Unit cell
dimensions

a = 16.7253(7) Å α = 90°

b = 11.2482(5) Å β = 120.6180(10)°

c = 11.5844(5) Å γ = 90°

Volume 1875.52(14) Å3

Z 4

Density (calculated) 1.415 g/cm3

Absorption
coefficient

0.685 mm-1

F(000) 832
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Table 3.2 Bond lengths (Å) for diphen.
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N1-C1 1.325(2) N1-C5 1.361(2)

N2-C10 1.321(2) N2-C6 1.357(2)

C12-C11 1.357(2) C12-C7 1.451(2)

C12-C12 1.494(3) C6-C7 1.412(2)

C6-C5 1.453(2) C4-C5 1.409(3)

C4-C3 1.412(2) C4-C11 1.435(2)

C3-C2 1.369(3) C3-H3 0.95

C11-H11 0.95 C7-C8 1.412(3)

C8-C9 1.371(3) C8-H8 0.95

C1-C2 1.403(3) C1-H1 0.95

C9-C10 1.405(3) C9-H9 0.95

C10-H10 0.95 C2-H2 0.95

C13A-C13A 1.67037(4) C13A-H13A 0.98

C13A-H13B 0.98 C13A-H13C 0.98

N14-C13A 1.11703(4) N13-C14 1.11719(3)

C14-C15 1.15875(5) C15-H15A 0.98

C15-H15B 0.98 C15-H15C 0.98
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Table 3.3 Bond angles (°) for diphen
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C1-N1-C5 117.25(16) C10-N2-C6 117.99(16)

C11-C12-C7 119.79(16) C11-C12-C12 120.56(13)

C7-C12-C12 119.65(13) N2-C6-C7 122.81(16)

N2-C6-C5 117.99(16) C7-C6-C5 119.20(16)

C5-C4-C3 117.89(17) C5-C4-C11 120.01(16)

C3-C4-C11 122.04(16) C2-C3-C4 118.68(17)

C2-C3-H3 120.7 C4-C3-H3 120.7

C12-C11-C4 121.51(16) C12-C11-H11 119.2

C4-C11-H11 119.2 C6-C7-C8 117.06(16)

C6-C7-C12 120.17(16) C8-C7-C12 122.77(17)

C9-C8-C7 120.02(18) C9-C8-H8 120.0

C7-C8-H8 120.0 N1-C5-C4 122.99(16)

N1-C5-C6 117.83(16) C4-C5-C6 119.16(16)

N1-C1-C2 123.78(17) N1-C1-H1 118.1

C2-C1-H1 118.1 C8-C9-C10 118.23(17)

C8-C9-H9 120.9 C10-C9-H9 120.9

N2-C10-C9 123.86(17) N2-C10-H10 118.1

C9-C10-H10 118.1 C3-C2-C1 119.39(17)

C3-C2-H2 120.3 C1-C2-H2 120.3

C13A-C13A-H13A 109.5 C13A-C13A-H13B 109.5

H13A-C13A-H13B 109.5 C13A-C13A-H13C 109.5

H13A-C13A-H13C 109.5 H13B-C13A-H13C 109.5

N13-C14-C15 168.7410(10) C14-C15-H15A 109.5

C14-C15-H15B 109.5 H15A-C15-H15B 109.5

C14-C15-H15C 109.5 H15A-C15-H15C 109.5

H15B-C15-H15C 109.5
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Figure 3.11 Cyclic Votammogram of [(phen)2Ru(diphen)Ru(phen)2](PF6)4in 0.1M
TBAPF6 in acetonitrile versus Ag/AgCl

Figure 3.12 Cyclic Voltammogram of [(phen)2Ru(diphen)Ru(phen)2](PF6)4 under nitrogen
in 0.1M TBAPF6 in acetonitrile.
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3.5 Oxidative Quenching of Ru(II) Dimer and Monomers by Peroxydisulfate

The quenching reactions of Ru(bpy)3
2+, Ru(phen)3

2+ and the dimer in aqueous solutions by

S2O8
2- were investigated using traditional Stern-Volmer techniques steady-state irradiation and

laser flash photolysis. The monomeric complexes have been previously investigated in detail and

were used for comparison. The focus of the laser experiments was twofold; monitor the rate of

the back-reaction and measure, by comparison, the quantum yield for the quenching reaction.

The steady-state irradiation experiments were also done to provide information about the

quantum yield for product formation.

In the fluorescence measurements, the ruthenium complexes concentrations are enough to

provide an absorbance of around 0.8, and the concentrations of S2O8
2- were varied from 0 to

3.0x10-4 mol L-1. When excitated with a wavelength of 450 nm, the ruthenium complexes have a

strong fluorescence emission peaked at 605 nm. The addition of S2O8
2- caused a gradual decrease

in the fluorescence intensity of ruthenium complexes and the emission had a red-shift for the

dimer and [Ru(phen)3]
2+. This suggested that the microenvironment around the dimer and

[Ru(phen)3]
2+was changed after the addition of S2O8

2-.

Stern-Volmer plots for S2O8
2- quenching of ruthenium complexes fluorescence are shown

in Figure 3.17. The possible quenching reactions were analyzed by the Stern-Volmer equation:

0

=1+kqτ0[Q]=1+Ksv[Q]

Where I0 and I are the steady-state fluorescence intensities in the absence and presence of

S2O8
2- quencher, respectively, kq the bimolecular quenching rate constant, τ0 the life time of

fluorescence in absence of S2O8
2-, Ksv the Stern-volmer quenching constant, and [Q] the
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concentration of S2O8
2-. Hence the above equation could be applied to determine kq by linear

regression of a plot of I0/I against. The result shows that the quenching constant (Figure 3.17 and

Table 3.1), kq, for the dimer is higher than [Ru(phen)3]
2+.

A representative absorption transient showing the formation of Ru(III) from ruthenium(II)

complexes are shown in Figure 3.17 and 3.18.  Absorbance changes ΔA = 0.0946 for dimer,

which is about two times as ΔA = 0.0474 for Ru(phen)3
2+. Absorbance changes ΔA are 0.1410

and 0.0988 for dimer and Ru(bpy)3
2+, respectively. The slow down curves showed in the

monomers Ru(phen)3
2+ and Ru(bpy)3

2+ show that the formation of Ru(III) is slower than form

dimer.

A 300 watt, 120 volt bulb “sunlamp” with no filtering was also used for photochemical

reactions. The photochemical reaction of the dimer and S2O8
2- was monitored via UV-vis

spectroscopy. The spectra can be seen in Figure 3.20. Figure 3.19 for Ru(phen)3
2+ is used as a

comparison. The peak at 448 nm, which is correlates to the Ru(II) concentration, decreases over

time. This is the expected result of a quench reaction where Ru(II)* is oxidized by S2O8
2- to

Ru(III). Absorbance changes ΔA at 30 s are 0.5837 and 0.05145 for dimer and Ru(phen)3
2+,

respectively. With the time consuming, the absorbance changes of Ru(phen)3
2+ become much

smaller, where as the dimer almost maintain the same, which means the dimer excited state is

more stable.

Oxidation reaction of the dimer was performed with fresh produced chlorine, and the

product was detected with UV-vis spectroscopy showed in Figure 3.21. Figure 3.22 for

Ru(bpy)3
2+ is used as a comparison. A new peak shows at 622 nm only for the dimer, which

means different product is being formed from Ru(bpy)3
2+.
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A representative absorption transient showing the rapid formation of Ru(I) and the

subsequent slow back reaction that returns the system to the initial state is shown in Figure 3.27.

Absorbance changes ΔA are 0.0231, 0.0289 and 0.0199 for Ru(bpy)3
2+, Ru(phen)3

2+ and dimer,

respectively.

Table 3.4 Stern-Volmer quenching constants for the ruthenium complexes with S2O8
2-

pH Ruthenium complexes τ0 (ns) Ksv (×103 M-1) kq (×109 M-1s-1)

4 [(phen)2Ru(diphen)Ru(phen)2]
2+ 1470 9.719 6.612

[Ru(phen)3]
2+ 1000 2.236 2.236

[Ru(bpy)3]
2+ 590 7.050 11.95
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Figure 3.13 Effect of [S2O8
2-] on the emission intensity of the dimer in 0.2 M (NH4)2SO4
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Figure 3.14 Effect of [S2O8
2-] on the emission intensity of Ru(phen)3

2+ in 0.2 M (NH4)2SO4
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Figure 3.15 Effect of [S2O8
2-] on the emission intensity of Ru(bpy)3

2+ in 0.2 M (NH4)2SO4.
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Figure 3.16 Plots of the relative emission intensities of Ru(bpy)3
2+, Ru(phen)3

2+ and the
dimer versus the [S2O8

2-] concentration.  The solid lines and the associated equations were
obtained using linear least squares and are the “best” fits.
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Figure 3.17 Comparison of transient absorbance change at 450 nm of a solution of dimer
and Ru(phen)3

2+ in 0.2 M (NH4)2SO4following a short laser pulse.

Figure 3.18 Comparison of transient absorbance change at 450 nm of a solution of dimer
and Ru(bpy)3

2+ in 0.2 M (NH4)2SO4following a short laser pulse.
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Figure 3.19 Changes in absorbance following steady state irradiation of Ru(phen)3
2+ in 0.2

M (NH4)2SO4 containing 0.5 mM S2O8
2-.

Figure 3.20 Changes in Absorbance following steady state irradiation of the dimer in 0.2 M
(NH4)2SO4 containing 0.5 mM S2O8

2-.
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Figure 3.21 UV-vis spectrum of the dimer oxidized by Cl2

Figure 3.22 UV-vis spectrum of the Ru(bpy)3
2+ oxidized by Cl2
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3.6 Reductive Quenching of Ru(II) Dimer and Monomers by Ascorbate

The quenching reactions of Ru(bpy)3
2+, Ru(phen)3

2+ and the dimer in aqueous solutions by

ascorbate were investigated using traditional Stern-Volmer techniques and laser flash photolysis.

The monomeric complexes have been previously investigated in detail and were used for

comparison.

In the fluorescence measurements with ascorbate, the ruthenium complexes concentrations

are enough to provide an absorbance of around 0.3, and the concentrations of ascorbate were

varied from 0 to 0.1 mol L-1. When excitated with a wavelength of 450 nm, the ruthenium

complexes have a strong fluorescence emission peaked at 605 nm. The addition of ascorbate

caused a gradual decrease in the fluorescence intensity of ruthenium complexes and the emission

had no shift.

Stern-Volmer plots for ascorbate quenching of ruthenium complexes fluorescence are

shown in Figure 3.26. The result shows that the quenching constant (Figure 3.26 and Table 3.5),

kq, for the dimer is comparable to the kq value for Ru(phen)3
2+. This indicates that the monomeric

complex and the dimeric complex behave similarly.



86

Table 3.5 Stern-Volmer quenching constants for the ruthenium complexes with ascorbate

pH Ruthenium complexes τ0 (ns) Ksv (×103 M-1) kq (×108 M-1s-1)

5 [(phen)2Ru(diphen)Ru(phen)2]
2+ 1470 0.492 3.347

[Ru(phen)3]
2+ 1000 0.324 3.324

[Ru(bpy)3]
2+ 590 0.021 0.356
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Figure 3.23 Effect of [ascorbate] on the emission intensity of the dimer in argon purged 0.2
M (NH4)2SO4
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Figure 3.24 Effect of ascorbate on the emission intensity of Ru(phen)3
2+ in argon purged

0.2 M (NH4)2SO4.
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Figure 3.25 Effect of ascorbate on the emission intensity of Ru(bpy)3
2+ in argon purged 0.2

M (NH4)2SO4.
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Figure 3.26 Plots of the relative emission intensities of Ru(bpy)3
2+, Ru(phen)3

2+ and the
dimer versus the ascorbate concentration.  The solid lines and the associated equations were
obtained using linear least squares and are the “best” fits.
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Figure 3.27 Representative absorption transient for ruthenium complexes with ascorbate
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Chapter 4 Conclusions

4.1 Synthesis of the Bridging Ligand

The bridging ligand was prepared using a method recently optimized by Puckett.

Additional optimization pointed out the critical nature of the oxygen sensitivity of the reaction

and led to a reliable procedure with an average yield of approximately 40%. In addition work-

up conditions were found that provided a product that was completely free from

triphenylphosphine which had been a problem in past work.  With a good source of product

available several attempts were made to obtain crystals suitable for single crystal diffraction.

Fortunately, the efforts proved successful and good quality crystals were sent for analysis.

4.2 Crystal structureof 5,5’-Bi-1,10-phenanthroline (diphen)

Bond lengths and bond angles for phen were chosen from a shallow-boat shape, all the six-

membered rings are exactly planar. Therefore, phen exhibits good symmetry with the identical in

above and bottom half.

In the two columns of Table 4.1 the bond lengths and bond angles are compared with the

phen literature values by Satoshi Nishigaki.44 The agreement is fairly good, except for the bonds

contain C12, whose lengths are somewhat larger than the phen. The bond length for C12-C12,

which linked two phen subunits, is 1.494(3) Å, longer than the average bond lengths for N-C

(1.326 Å) or C-C (1.372 Å)45 in the literature for phen-coordinated metal complexes. This

reflects that the bridging bond between two phen subunits is stretched and also caused the

neighbor rings slightly stretched.
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Table 4.1 Selected bond lengths (Å) and band angles (°) for diphen and phen

Bond lengths (Å) diphen phen

N1-C1 1.325(2) 1.317(7)

C1-C2 1.403(3) 1.402(11)

C3-C2 1.369(3) 1.352(11)

C4-C3 1.412(2) 1.410(9)

C4-C11 1.435(2) 1.427(10)

C12-C11 1.357(2) 1.330(12)

C12-C7 1.451(2) 1.426(12)

C7-C8 1.412(3) 1.414(11)

C8-C9 1.371(3) 1.348(13)

C9-C10 1.405(3) 1.394(12)

N2-C10 1.321(2) 1.312(8)

Band angles (°)

N1-C1-C2 123.78(17) 123.8(6)

C3-C2-C1 119.39(17) 118.9(6)

C2-C3-C4 118.68(17) 119.0(7)

C3-C4-C11 122.04(16) 124.2(7)

C12-C11-C4 121.51(16) 122.5(8)

C11-C12-C7 119.79(16) 120.9(6)

C8-C7-C12 122.77(17) 124.5(6)

C9-C8-C7 120.02(18) 122.2(7)

C8-C9-C10 118.23(17) 116.9(7)

N2-C10-C9 123.86(17) 125.1(8)
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Figure 4.1 Left: The model of the diphen single-crystal structure. Anions are omitted for clarity.

Atom color code: carbon, grey; nitrogen, blue. Right: The structure for phen

4.3 Synthesis of [(phen)2Ru-diphen-Ru(phen)2](PF6)4 complexes.

Synthesis of this dimer utilized a commonly used polymeric ruthenium carbonyl

compound as the entry point. This entry point was chosen because the polymeric material

readily reacts with one chelating ligand such are 1,10-phenanthroline under very mild conditions

with no further reaction.  Reaction with diphen yields a bridged dimer. Further reaction with

additional ligands requires the remaining carbonyl groups be removed with trimethylamine-N-

oxide.  The product was fully characterized as described earlier.  As expected the dimer shares

many common features with Ru(phen)3
2+.For example the maximum absorbance in the visible

region of the spectrum occurs are 446 nm with the dimer and at 448 with the monomer.

Emission maxima are identical at room temperature.

4.4 Quenching of [(phen)2Ru(diphen)Ru(phen)2]Cl 4 by Peroxydisulfate

The photoredox reactions of [(phen)2Ru(diphen)Ru(phen)2]Cl4 were studied through a

series of quenching reactions. The analogous monomeric complexes Ru(bpy)3
2+ and Ru(phen)3

2+
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were used as comparisons. In previous research, Fe3+ was used as an oxidative quencher in 0.5 M

H2SO4. Laser flash photolysis measurements under conditions where more than 50 % of

Ru(bpy)3
2+ was quenched to yield Ru(bpy)3

3+ consistently indicated the yield of oxidized

[(phen)2Ru(diphen)Ru(phen)2]
4+ was limited to less than 50 %. It appears at this time that

oxidation of one half of the dimer prevents the quenching reaction by the other half.

Quenching of Ru(bpy)3
2+ or Ru(phen)3

2+ by peroxydisulfate ion is known to proceed with

a quantum yield of 2. The standard reduction potential for the two electron reduction of

peroxydisulfate anion to the sulfate anion:

E0(S2O8
2-/2SO4

2-) = 1.94 V

The standard reduction potential for the reduction of S2O8
2- to SO4

- · occurs at a lower potential:

E0(S2O8
2-/SO4

- ·, SO4
2-) = 1.45 V

The sulfate radical anion generated from one-electron reduction of S2O8
2- is a stronger oxidant

with an oxidation potential of 2.44 V:

E0(SO4
- ·/SO4

2-) = 2.44 V

The reaction of excited state of Ru(bpy)3
2+ with S2O8

2- to produce Ru(III) species has been

investigated by Bolletta.46 The following photoinduced oxidation scheme appears to describe the

high yield

Ru(bpy)3
2+ hν Ru(bpy)3

2+* eq. 4.2.2

Ru(bpy)3
2+* + S2O8

2- kq Ru(bpy)3
3+ + SO4

- · + SO4
2- eq. 4.2.3

Ru(bpy)3
2+ + SO4

- · fast Ru(bpy)3
3+ + SO4

2- eq. 4.2.4
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A strong oxidizing intermediate, SO4
- ·, is produced during the reaction (eq 4.2.3) which

generates a second Ru(III)  (eq 4) through a thermal reaction. Previous reports show that the

initial photoinduced electron transfer occurs in a collision between excited Ru(bpy)3
2+* and

S2O8
2- in the Ru(bpy)3

2+ ̶ S2O8
2- system46-47.

Unlike the mononuclear ruthenium (II) complex, Ru(bpy)3
2+, the symmetric dimer contains

two reducing sites. These two sites are potentially capable of reducing S2O8
2- through a single

two-electron reaction, or sequence of two one-electron reactions. The reactions of interest in this

system are shown below.

Ru(II)-Ru(II) + S2O8
2- Ru(III)-Ru(III) + 2SO4

2- eq. 4.2.5

A Stern-Volmer investigation of the quenching reaction indicted that the dimer had a

higher Stern-Volmer quenching constant, kq, than Ru(phen)3
2+.  One possible explanation is

simply the difference in charge of the complexes.  Since the quencher has a negative charge it is

reasonable to assume that electrostatics will play a significant role in the quenching reaction.

The most interesting result that may have a bearing on the mechanism is the laser flash

photolysis transients.  Figure 3.18 shows a clear step function with the dimer.  On the other hand

the transient absorbance changes with Ru(bpy)3
2+ clearly show a biphasic reaction.  The first is

very fast and is probably the initial quenching reaction.  The second slower phase can be

interpreted as the diffusion of the sulfate radical ion to another reduced complex.  Since the

dimer has a second ruthenium in close proximity it is reasonable to assume that the diffusion to

the adjacent ruthenium center will be very fast and appear as a single step function.

Unfortunately, these observations were made during the data analysis and it was not possible to
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examine the reactions on a shorter time scale.  Figure 3.17, however does give a small indication

that a similar slow phase is present in Ru(phen)3
2+.

4.5 Quenching of [(phen)2Ru(diphen)Ru(phen)2]Cl 4 by Ascorbate

A Stern-Volmer investigation of the quenching reaction indicted that the dimer had a

similar Stern-Volmer quenching constant kq with Ru(phen)3
2+. In the laser flash photolysis

transients, there is no big difference between the absorbance changes of the dimer and

Ru(phen)3
2+. The possible explanation is ascorbate is different from S2O8

2-, one ascorbate

molecular only can donate one electron to ruthenium complexes. Here so after the half of the

dimer was reduced, the other half had no advantage to be reduced when compare with monomers.
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