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ABSTRACT 
 

Pd and its alloys are alternatives of Pt as promising catalysts and electrocatalysts for 

many reactions. Size controlled synthesis of nanoparticles remains a major research subject, 

since smaller size particles show better catalytic performance. In this work, we developed a 

modified chemical wet method to prepare Pd and Pd-Cu nanostructures with uniform small size. 

Different sizes and shapes of Pd nanostructures were successfully synthesized by using the two 

reducing agents (i.e., L-ascorbyl-6-palmitate or phenylphosphinic acid). The reducing agents 

play a role to control the final morphologies and sizes of particles. The use of L-ascorbyl-6-

palmitate favors to form irregular branch shapes or rods; in contrast, the use of phenylphosphinic 

acid tends to form spherical nanoparticles. Furthermore, phenylphosphinic acid can assist with 

size control of Pd particles. Co-reducing Pd and Cu precursors can obtain Pd-Cu nanostructures 

with different sizes and shapes. The growth mechanism is followed the deposition of Cu on Pd 

seeds which are reduced prior to Cu. Similar to pure Pd synthesis, phenylphosphinic acid 

reduced the precursors to form small uniform spherical particles compared to L-ascorbyl-6-

palmitate. It was also found that the composition could also be tuned by using different reducing 

agents. The catalytic activity of Pd and Pd-Cu nanostructures for ethanol oxidation reaction 

(EOR) has been tested in basic solution for alkaline fuel cell applications. The specific areas of 

these Pd and Pd-Cu are much higher than those reported previously. It was found that both Pd 

and Pd-Cu nanostructures exhibited enhanced catalytic activities and to some extent resisted CO-

like intermediates poisoning. Most catalysts had enhanced current densities after 500 cycle scan, 

indicating enhanced stability of those catalysts. 	
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1. Introduction 

1.1 Noble Metal Nanostructures 

1.1.1 Pure Noble Metal Nanostructure Catalysts 

 Owing to their unique and excellent properties, noble metals nanostructures are widely 

applied in energy conversion and storage,1-5 catalysis,9 and gas detection.10,11 Particularly, noble 

metals like Pt and Pd and their alloys exhibit high performance and promising applications in 

catalysis and electrocatalysis. For example, Nørskov et al. first developed a method by using 

density functional theory to study free-energy landscape of oxygen reduction on Pt (111).13 They 

also calculated bond energies of oxygen and hydroxyl group on other metals, and by combining 

these results they constructed a volcano curve, indicating that Pt is the best catalyst for oxygen 

reduction reaction compared to palladium,14 iridium,15 ruthenium,16 and silver17. In addition, 

these metals have also been used for anodic reactions in fuel cells such as alcohol oxidation.18-20 

On the other hand, metal nanoparticles can also be catalysts for organic reactions such as 

hydrosilylation reactions, oxidation, C-C coupling reaction, and hydrogenation.21 For example, 

Ag nanoparticles catalyzed coupling of alcohols was reported by Shimizu and his co-workers.22 

On the other hand, among these noble metals, Pd is well known as a good type of material to 

store hydrogen. Campesi et al. successfully improved hydrogen adsorption through nanosize 

palladium structure on porous carbon.23 Because of various applications and prominent 

performance as catalysts, metal nanostructures, especially noble metals, have been intensively 

studied in the past decades.  
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1.1.2 Bimetallic Nanoparticles 

 Even though pure noble metals display excellent performances on catalysis, the limited 

abundance and high cost of these metals motivate scientists to search for new catalysts or seek 

for new ways to reduce the cost. Applying 

bimetallic nanoalloys as substitutes for pure noble 

metals is a practical strategy to reduce use of noble 

metals while maintaining performance. Bimetallic 

nanoalloys are the metals consisting of two metal 

elements at nanoscale. The structures of bimetallic 

nanoalloys are divided into four main types: core-

shell segregated nanoalloys, subcluster segregated 

nanoalloys, mixed A-B nanoalloys, and multishell 

nanoalloys, the structures of which are shown in 

Figure 1-1. These mixing patterns, to some degree, 

determine morphologies of nanoalloys. Furthermore, 

Ferrando et al. pointed out the factors influencing 

mixing patterns in nanoalloys,6 including relative 

bond strength between the two metal elements, 

surface energies of the bulk metals, relative atomic 

sizes, charge transfer, bonds strength between 

surfactant and surface atoms, and other specific electronic/magnetic effects.  

Figure 1-1. Schematic representation of some 
possible mixing patterns: (a) core-shell, (b) 
subcluster segregated, (c) mixed, (d) three 
shell. The pictures show cross sections of the 
clusters.6 (Reproduced by permission from ref 
6. Copyright © 2008, American Chemical 
Society.) 
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1.1.3 Synthesis of Metal Nanostructures 

1.1.3.1 Synthetic Strategies  

Since the first study about metal particles was reported by Michael Faraday in 1857,24 

researchers have applied many synthetic methods to obtain metal particles.  The typical synthetic 

strategies for bottom-up solution synthesis are mainly the following four methods: a) chemical 

reduction, b) thermal decomposition of some metal precursors, c) electrochemical synthesis, and 

d) sonochemical synthesis.25 For bimetallic nanoalloys, chemical reduction is furthermore 

classified into these three approaches: (i) co-reduction, (ii) reduction of bimetallic complex, and 

(iii) successive reduction including template/seed synthesis, which is to form second metal on the 

pre-formed nanostructures.25  

(a) Chemical reduction: For examples, strong aqueous reducing agents, such as NaBH4, 

were applied to form metal nanostructures in the presence of surfactants acting to protecting 

ligands to stabilize nanostructures. Monodesperse nanostructures of these noble metals (eg. Au, 

Ag, Pt ,and Pd) have been well studied.12 Due to well-known stability and biocompatibility of Au, 

the synthetic methods of its nanostructures have been well studied. For instance, Li et al. 

modified polyol process to develop high-yield synthesis of single-crystalline gold octahedral.26 

In the synthetic process, the reducing agent NaBH4, was mixed in the solution of polyethylene 

glycol (M.W.=600) containing polyvinylpyrrolidone (PVP), and then the aqueous AuCl3 solution 

was added in the mixture and was maintained for 24 h for crystallization. Han et al. prepared 

controlled size and morphology Au particles with a reactive templated method.27 In the process 

of chemical reduction, the effect of trace amount of some inorganic salt on morphology has been 

noticed.28 Xiong et al. also studied the function of PVP in the chemical reduction process to form 

the morphologies of noble metal particles (Ag, Au, Pt, and Pd).29 They believed that hydroxyl 
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group of PVP could reduce the metal salts slowly enough, resulting in kinetically controlled 

growth.  

 Noble metal particles can be also prepared in organic solvents such as 

dimethylformamide (DMF). Those solvents have a multifunctional role in the process of 

formation of metal nanoparticles. Those molecules are weak reducing agents which donate 

electrons to metal precursors. Except such small molecules as DMF, other long-chain primary 

alkyl amines, such as oleylamine, octadecylamine or hexadecylamine are frequent to apply in 

nanoparticle synthesis. Those long-chain amines not only serve as solvents but can also adsorb 

on the surfaces of nanostructures to passivate the particles as stabilized ligands. For instance, 

Lacroix et al. used H2PtCl4 as a precursor to yield unprecedented shapes of Pt nanoparticles in 

oleylamine.30 Pazos-Pe ŕez et al. reported a simplified procedure to generate ultrathin gold single 

crystal nanowires, in the process of formation of nanowires oleylamine plays a role of shape-

directing agent.31  

Bimetallic nanoalloys can be synthesized by co-reduction. In co-reduction process, the 

precursors of different metals are reduced by reducing agents, but due to different activity of 

metals, the one that has higher redox potential forms a core for the other one to deposit.6 

Reduction of bimetallic complex is a sub-category of chemical reduction. Such reduction is 

similar to co-reduction process, but the precursors in this one are complexes containing two 

metal species. For example, silver (I) bis (oxalato) palladate (II) was used as a precursor to form 

Ag-Pd colloid by photoreduction.32 On the other hand, successive reduction is useful for some 

specific morphologies such as core-shell structures. The three-layers Au-Pd nanoparticles were 

produced through successive reduction of the monometallic elements.33 Rodr ́ıguez-Gonza ́lez et 
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al. in their report, synthesized multishell bimetallic AuAg nanoparticles by successive reduction 

of AgNO3 and HAuCl4 in the presence of ligands.34 

(b) Thermal decomposition of metal precursors: Thermal decomposition of appropriate 

precursors is a common way to obtain some metal particles, especially in organic synthetic 

phases, in which synthetic temperature can even reach above 300  ℃ depending on choice of 

organic solvents. For example, 

thermal decomposition of Pd-TOP 

(trioctaphosphine) can be used to 

obtain Pd particles with uniform 

sizes from 3.5-7 nm at 300 ℃.35 At 

such high temperature, some active 

metals particles can be also 

synthesized. Kim et al. 

decomposed Fe- (II)-stearate 

complex in oleic acid at 380 ℃ to 

form hollow nanoframes of 

uniform 21 nm.36 This method, 

however, has an disadvantage: at 

relatively low temperature the 

precursors could not decompose, 

but at high temperature such as 400 

℃ the organic ligands, such as oleic acid, would completely decompose resulting in aggregation 

of particles. For those metals which are not strong oxidizers as Au, Pt or Pd, another commonly-

Figure 1-2. Reaction pathways that lead to fcc metal 
nanocrystals having different shapes. The green, 
orange, and purple colors represent the {100}, {111}, 
and {110} facets, respectively. Twin planes are 
delineated in the drawing with red lines. The parameter 
R is defined as the ratio between the growth rates along 
the <100> and <111>directions,12 (Reproduced by 
permission from ref 12. Copyright © 2009 WILEY-VCH 
Verlag GmbH & Co.KGaA, Weinheim.) 
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used method to prepare those metal particles is to thermolysis of zero-valence metal complex, 

such as metal carbonyl. The usage of Fe(CO)5 could lower the synthetic temperature below 300 

℃.37 Gao et al. prepared Co nanoparticles by thermal decomposition of Co2(CO)8 passivated by 

triphenylphosphine and oleic acid.38 The nuclei of Co particles formed at 220 ℃ very rapidly 

with releasing CO gas, and then the reaction was kept at 185 ℃ for 20 min to crystallize. Such 

method is also used to prepare bimetallic nanoalloys. Su et al. successfully thermally-

decomposed Fe(CO)5 and Pt(acac)2 to synthesize FePt nanoalloys.39 

(c) Electrochemical synthesis: electrochemical synthesis is the synthesis using an 

electrochemical cell, in which chemical reactions are induced by the added voltages. In 

comparison with chemical wet methods, electrochemical synthesis to some degree may generate 

“surface clean” structures. Guo et al. developed low cost electrochemical route to produce 

diameter-controlled hierarchical flowerlike gold microstructures without surfatants.40 Apart from 

this advantage, electrochemical synthesis can generate high-index faceted nanostructures, which 

are thought to have high catalytic activity. A square-wave potential method was applied to obtain 

high-index faceted Pt nanocrystals.41 Periodic oxygen adsorption and desorption is critical to 

shape Pt nanocrysal surfaces.  

(d) Sonochemical synthesis: sonochemical synthesis is a way to utilize high power 

ultrasound to induce chemical reactions.25 With the assistance of ultrasound, some reactions can 

occur easily at low temperature.  Iron nanoparticles were produced by sonochemical synthesis.42 

Compared to chemical reduction,37 high power ultrasound could decompose Fe(CO)5 at 

surprisingly low at 20 ℃. In addition, the mixture of NaAuCl4 �2H2O, PdCl2�2NaCl�3H2O, and 

sodium dodecyl sulfate was sonicated for Au-Pd bimetallic nanoparticles.43  
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1.1.3.2 Shape Control of Metal Particles 

 Morphology is a key factor influencing the properties of nanostructures. Xia and his co-

worker wrote a comprehensive review paper to summarize the shape-controlled synthesis of 

metal nanocrystals.12 Metal nanostructures have been synthesized in various shapes including 

sphere, cube, cuboctahedron, octahedron, 

tetrahedron, icosahedron, rod or wire etc. 

The nucleation is the very beginning stage 

of crystal growth for the formation of either 

bulk or nanomaterials. At this stage, metal 

precursor compounds are decomposed or 

reduced to zero valence atoms, and these 

atoms assemble together to form the initial 

nuclei. As a nucleus grows past the critical 

size, the cluster will form a well-defined 

structure as a seed. The further evolution 

from seeds forms the final shapes of 

nanostructures. The reaction pathways 

leading to different shapes of face-centered 

cubic metals are shown in Figure 1-2.12  

1.1.3.2 Routes to Shape Controlled 

Bimetallic Nanostructures 

The formation of shaped controlled nanostructures involves nucleation and crystal growth. 

Gu et al. in their review paper summarized four routes to obtain shape controlled bimetallic 

Figure 1-3. Four routes towards shape-
controlled bimetallic NCs: (a) continuous 
growth, (b) crystallites coalescence, (c) 
seeded growth and (d) galvanic replacement 
reaction. Blue, red and yellow parts stand for 
mono-metal and orange parts stand for 
alloy.8 (Reproduced by permission from ref 
8. Copyright © 2012, Royal Society of 
Chemistry.) 
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nanocatalysts.8 Figure 1-3 shows the four routes towards shape-controlled bimetallic 

nanocrystals. The first two routes proceed in one-pot method, in which two different metal 

precursors mix together at the beginning of the synthesis. In both of these two routes, the small 

bimetallic nuclei or seeds form first in the reaction. In the first route, metal precursors, however, 

are continuously reduced and added to the nuclei, and the nuclei grow bigger and form uniform 

shapes, in Figure 1-3a. The second route displays a different behavior, in which the nuclei 

directly aggregate together and regrow to one-dimensional or dendritic structures. In the latter 

two routes, before reduction of second metal precursors, the primary metal seeds already exit in 

the reactive system which is known as seeded growth. The seeded growth route shown in Figure 

1-3c, the second metal precursor is reduced by solvents or added reducing agents. The reduced 

metal deposits on the seed, resulting in a core-shell structure. In some cases, due to diffusion of 

atoms, this route may lead to mixed bimetallic nanocrystals.9 In a galvanic replacement process 

shown in Figure 1-3d, the second metal will partially take place of the atoms in the seeds, which 

means that dissolution of seed atoms and deposition of second metal atoms occur simultaneously. 

In this route, it is easy to obtain concave or hollow structures. Based on the features of these four 

routes, the first two routes are known as co-reduction strategies; the latter two are considered as 

successive reductions.  

1.2 Catalytic Applications 

1.2.1 Background of Fuel Cells  

Generally speaking, fuel cells are the device to convert chemical energy to electric work 

with less pollution and high energy conversion efficiency. Fuel cells are known for at least 150 

years, and they have already been applied in many fields. For example, in 1960’s fuel cells were 

used in NASA’s space missions, such as the Apollo Program. There are various types of fuel 
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cells; however, the basic structure of fuel cells comprises anode electrodes where fuels are 

oxidized, cathode electrodes where pure oxygen or oxygen in air is reduced to form water, and 

electrolytes which allow charges to move from one electrode to the other one. Fuel cells can be 

classified in term of electrodes, types of fuels, operating temperatures, membranes etc., such as 

alkaline fuel cell (AFC), proton exchange membrane fuel cell (PEMFC), direct methanol fuel 

cell (DMFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), and solid 

oxide fuel cell (SOFC) shown in Figure 1-4.7 Even though hydrogen has a very high specific 

energy density ~ 142 MJ/kg, the 

storage of and generation of 

hydrogen in a large scale is a 

challenge. In comparison to 

hydrongen,	
   common organic fuels 

are good options. Following 

hydrogen, methanol is another 

promising candidate fuel in fuel 

cells. The fuel cell with direct use 

of methanol is called direct 

methanol fuel cell (DMFC). 

Typical environment where DMFC 

is acidic, although in alkaline environments kinetics can be faster, carbonate will form in basic 

solution.7 The widely-used catalysts for DMFC are noble metals, namely Pt or Pt based catalysts. 

The process of methanol oxidation on the surface of Pt contains adsorption of methanol on the 

surface, insertion oxygen in the molecule to form intermediates, such as CO, then further 

Figure 1-4. Schematic representations showing the 
versatile nature of fuel cells.7 (Reproduced by 
permission from ref 7. Copyright © 2014, American 
Chemical Society) 
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oxidization of the intermediates to generate final product CO2, and then desorption of CO2. As is 

well known, CO can tightly bond to Pt atoms so that it can occupy the active sites of catalysts. 

This consequently leads to the loss of activity of catalyst, which is called catalyst poisoning. 

Compared to methanol, ethanol can cause less catalysts poisoning, and have higher specific 

energy density. The summary of the global oxidation mechanism of ethanol in an acidic 

environment can be described as follow:44  

 

CH3CH2OH → [CH3CH2OH]ad → C1ad, C2ad → CO2 (total oxidation)                      (1) 

 

CH3CH2OH → [CH3CH2OH]ad → CH3CHO→ CH3COOH (partial oxidation)        (2) 

 

C1ad and C2ad represent two distinct oxidation pathways where the adsorbed intermediates are 

one or two carbons molecules, respectively. In addition, the investigation from Wang et al. tested 

a few alcohols for fuel cells, and they commented that ethanol was promising alternative of 

methanol as fuel.45 They analyzed the electrooxidation products on mass spectrum and pointed 

that the increasing water/ethanol ratio could contribute to formation of CO2.  

One of the key parts of fuel cells is the material of electrodes. Pt and Pt based catalysts 

are still extensively used in acidic solution as anodic catalysts for ethanol oxidation;46-48 

however, due to easily poisoned by CO-like intermediates, Pt species catalysts have relatively 

low performance. The application of Pd and Pd-based catalysts can to some degree avoid the 

disadvantages of Pt-based catalysts, especially in alkaline solution.49 Recently, Pd and Pd-based 

nanostructures have been widely studied for EOR as anodic catalysts. Wang et al. reported Pd 

supported by multiwall carbon nanotubes displayed high efficiency on EOR with the highest 



11 
	
  

peak current density of 1.23 A/mg Pd.50 Compared to pure Pd catalysts, Pd-based bimetallic 

catalysts have better catalytic activity, like PdAu,51 PdAg,52 Pd-Cu53,54 etc. Among those 

bimetallic catalysts, Pd-Cu seems a potential alternative for pure noble metal catalysts, due to its 

relatively low cost. Mukherjee et al. found that after alloying Cu, Pd-Cu showed higher current 

density and better resistance against CO-like intermediate poisoning as EOR catalysts.53 	
  

1.2.2 CO2 Electrochemical Reduction 

Due to burning fossil fuels, more and more greenhouse gases are released into 

atmosphere, which results in serious climate change. Among those greenhouse gases, CO2 makes 

big contribution to global warming. Therefore, based the goal to keep the balance of CO2 in air 

and relief the human’s high demand of energy, converting CO2 to some fuel molecules is 

practical and critical. Currently, conversion of CO2 can be achieved through chemical, 

electrocatalytic, and photocatalytic methods. Owing to its advantages such as controllable 

process by temperature and electrode potential, electrochemical reduction of CO2 to low carbon 

fuel molecules attracts much research attention.55 The different pathways of electrochemical 

reduction of CO2 can result in different products. The major products are CO, methane, 

methanol, ethanol, formic acid, oxalic acid etc. The mechanism and kinetics study reveals that 

oxalate formation via the self-coupling of carbon dioxide radicals (CO!!∗), formate formation via 

protonation of CO!!∗ and CO formation via oxygen-carbon coupling of CO!!∗; therefore, the key 

step of reduction CO2 is to form CO!!∗.
56 However, as a result of the very negative redox 

potential of formation of CO!!∗~ -1.9 V, CO2 reduction has high barrier requiring more negative 

potential to generate final products. Some transition metals oxides have been applied for CO2 

reduction as electrodes. Brandi et al. used mixed metallic oxides including RuO2, TiO2, MoO2, 

Co3O4, and Rh2O3 to achieve low overpotentials of reduction of CO2.57 In addition, metal 
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complexes are also widely applied for CO2 reduction, Cr(III)–TPPCl,58 fac-(5,50-

bisphenylethynyl-2,20-bipyridyl)Re(CO)3Cl,59 CoIITPP or CoTPP-py-NHCO58 etc. Another 

type of material for CO2 reduction is a pure metal, such as Cu and Pd. The exploration of CO2 

reduction on Cu electrodes was reported in 1985-1986.60 A current efficiency for methane was 

reported as high as 65% on Cu electrodes even at 0 ℃.61 Cu and its oxide Cu2O showed excellent 

performance on CO2 reduction. Recently, Li et al. found that Cu particles synthesized by 

reducing Cu2O could reduce CO2 at exceptionally low overpotentials.62 Ohkawa et al. carried out 

CO2 reduction exploration on Pd electrodes.63-65 In their work, the current efficiency was 

increased by adding Cu to Pd electrodes. The enhancement of catalytic performance was thought 

the participation of adsorbed hydrogen. In Kolbe and its co-workers work, they pointed that 

conversion of CO2 to CO occurred  -1 V vs SHE (standard hydrogen electrode).66 Hoshi et al. 

demonstrated that Pd (111) surface showed the higher activity than Pd (100) surface, which was 

in contrast to other Pt group metals, like Pt, Ir.67 However, the main challenges of CO2 reduction 

are still high activation energy and large overpotentials, and thus low energy efficiency.  

1.3 Objectives 

As is discussed, Pt is widely applied as catalyst in many areas, but the low resistance 

against CO-like intermediate poisoning and high cost motivate scientists to search the alternative 

of Pt. The activity and oxygen bond energy of Pd is close to Pt, so it is believed that Pd is a 

promising material to replace the Pt to some degree. Further studies about anodic reactions on 

metal electrodes revealed that Pd-based catalysts exhibited higher activity than Pt on EOR in 

alkaline environment. After literature review about CO2 reduction, we have identified that Pd-Cu 

might be a good catalyst for CO2 reduction due to high adsorption of hydrogen on Pd surface. 
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This work aims to develop synthetic strategy to obtain Pd and Pd-Cu nanostructures. To 

this end, we employed phenylphosphinic acid and L-ascorbyl-6-palmitate as reducing agents to 

obtain Pd and Pd-Cu nanostructures. Through combining different Cu precursors (CuCl2 or 

Cu(acac)2) with reducing agents, the size and morphology of the resulting nanocrystals could be 

tuned. We further characterized the catalytic activity of these nanostructures for both EOR. For 

EOR, we found that the catalysts had very large specific active areas, indicating that they may be 

high efficient catalysts for EOR.  
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2. Synthesis and Characterization of Palladium and Palladium-Copper Alloyed 

Nanostructures 

2.1 Introduction 

Pd is a very important element in many applications such as hydrogen storage1 and the 

use as catalysts for reactions.2,3 Among them, Pd and its alloys are particularly attractive for the 

use as electrocatalysts in fuel cell applications. Due to its similarity to Pt in both atomic size and 

crystal structure, Pd is a potential alternative to Pt as a fuel cell electrocatalyst at reduced cost.4 

More importantly, Pd, unlike Pt, is able to resist CO poisoning to some degree, which shows 

better performance than Pt in formic acid oxidation.5,6  

In the past decade, more and more attention has been paid to controlling sizes and shape 

of Pd-containing nanoparticles to tailor their catalytic properties.7 Many chemical routes have 

been developed to obtain Pd nanostructures via either chemical reduction or thermal 

decomposition of Pd precursors.  Most methods were performed in aqueous solution. The size 

and shape are controlled by a number of factors such as choices of precursors, reducing power of 

reductants, and additives to the reaction systems. Xia and his co-workers did a series of study on 

controllable synthesis of Pd nanostructures. Based on their work, the crystallinity of seeds and 

the growth rates of the nanocrystals to some degree determine the final shapes of nanoparticles.8 

At the initial stage, the Pd seeds formed in two different pathways, namely thermodynamically 

controlled and kinetically controlled pathways. In thermodynamically controlled pathway, 

shapes of seeds are primarily determined by the minimum surface energy. Since the surface 

energies of different facets of a Pd seed increase in the order of {111}< {100}< {110},8 seeds 

tend to form the shapes of single-crystal, single-twinned, or multiple-twinned structure to 
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minimize the total surface energy. At a very slow reduction rate, the process is controlled by 

kinetics rather than thermodynamics, resulting in the formation of plate-like seeds with staking 

faults. The total surface energy of such seeds in kinetically controlled pathway is larger than 

those controlled by thermodynamics. Additionally, capping ligands and additive ions can affect 

the growth rates on different facets to control the final shapes of the nanostructures. With the 

assistance of water-soluble surfactants/polymer (e.g. PVP) and some ions (e.g. citrate，Br- or Cl-

), shapes and sizes of nanostructures can be controlled very well. For example, PVP prefers to 

passivate {100} rather than {110} of Pd seeds as well as Ag, leading to slow growth rate to form 

nanocubes.8 Similar to PVP, halide species such as Br- can also strongly bond to the facets {100} 

of Pd nanocrystals during the growth, which leads to formation of nanocubes.7 The presence of 

Br- ions favors to control sizes of Pd nanocubes,3 due to retardation of reduction kinetics by 

formation complexes with Pd2+.7 In addition to Br-, I- has also been reported to favor in the 

formation of nanocubes.9 In contrast to PVP and Br-, citrate ions preferably adsorb on {111} 

facets of Pd nanostructures, resulting in the formation of octahedrons and icosahedrons.8 Xiong 

et al. in the presence of bromide ions, by adjusting amounts of ethylene glycol (EG) in the 

mixture grew Pd nanocubes to nanorods and nanobars, the formation mechanism of which was 

attributed to oxidative etching on specific facets of nanocubes. More recently, more complex 

polyhedra have been demonstrated by seeded growth method using seeds with simple shapes 

enclosed by low index facets such as cubes or spheres.10 Such polyhedra were partially enclosed 

by high index facets and showed better performance for formic acid oxidation reaction. Though a 

lot of research attention has been paid on control of morphology of metal particles, exploration 

of synthesizing small and uniform sizes nanostructures has inspired much research interest, due 

to high catalytic activities of small nanostructures. Jin et al. found out that Pd nanocubes/bars of 
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6 nm had the lowest maximum CO conversion temperature at 160 ℃, compared to those Pd 

nanocubes/bars of 10 and 18 nm.3 This might be caused by the size dependence of turnover 

frequencies (TOF) that reflected the intrinsic activity of the surface. Based on Gao et al’s 

research results, catalytic activities of Pd nanoparticles on electrolytic CO2 reduction also 

exhibited the size dependence from 2.4 to 10.3 nm.11 Their results showed that Pd of 3.7 nm had 

the highest CO faradaic efficiency and TOF than the ones of other sizes.  

Compared to aqueous synthesis, organic phase synthesis has more choices of reducing 

agents and ligands, as well as a wide range of reaction temperature from below 0 ℃ to even 

above 300 ℃. For example, Zheng’s group reported to synthesize Pd concave structure in benzyl 

alcohol.12 Based on their results, the percentage of (110) facet has a relationship with 

electrocatalytic activity on formic acid oxidation reaction. Strong coupled Pd 

tetrahedron/tungsten oxide nanosheet hybrid has also been reported to be synthesized by thermal 

decomposition of Pd salts and W(CO)6 in the mixture of dimethylformamide and ethanol, 

recently.13 This structure exhibited high electrochemical activity and long stability on oxygen 

reduction reaction due to the change of Pd electronic structure by strongly coupling with 

tungsten oxide. 

To reduce the overall cost of catalysts, attentions have been paid to search for new 

materials such as alloys to replace pure noble metals. Incorporation of 3-d transition metals such 

as Cu, Ni, Co, and Fe to form alloys with noble metals, the electronic states of noble metals shift 

from the original values, and this leads to changes of catalytic behaviors, in some cases, the 

enhancement of electrochemical activity and CO tolerance in alcohol electro-oxidation 

reactions.14,15 Therefore, research has focused on synthesis of Pd-M and Pt-M nanoalloys (M = 

Cu, Ni, Co, and Fe).1,16-19  
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Among most Pd-M alloy nanostructures, co-reducing Pd and M is a practical method.20-22 

Because of the different reactivity between M and Pd, Pd is usually reduced to form seeds first, 

and then when the temperature increase high enough, the more active metal can be reduced.23 

Additionally, by increasing the concentrations of reducing agent--formanilide, a series of 

morphologies of Pd-Cu nanostructures, such as cubes, truncated cubes, cuboctahedra, could be 

obtained by co-reduced Pd(acac)2 and Cu(acac)2.24 Increasing concentrations of reductant was 

conductive to the growth of Cu and Pd along <111> direction. Interconnected, three-dimensional 

Pd-Cu nanowire networks has been reported by using a one-step colloidal method, in which 

Pd(acac)2 and CuSO4·5H2O were co-reduced by ethylene glycol at 200 ℃ in the presence of 

poly(vinylpyrrolidone) (PVP).25 In a similar synthetic system without PVP, Hu et al. applied 

solventhermal method to obtain additive-free spherical hollow palladium-copper supported on 

multiwalled carbon nanotubes.26 On the other hand, galvanic process has been used by injecting 

Pd precursor into Cu particle solution to form hollow structures.27 To obtain monodisperse PdM 

nanoalloys, Ho and its coworkers developed a facile route, in which metal acetylacetonate, 

M(acac)2 (M= Cu or Co) and Pd(acac)2 were co-reduced by t-butylamine in oleylamine and 1-

octadecene (ODE).28 The average size of the Pd-Cu particles is as small as 3.5 nm.  

The organic phase synthesis has advantages to prepare uniform, ultrafine nanoparticles 

which are potentially more active in catalytic reactions due to the high surface to volume ratio. In 

this work, we develop a new one-pot, co-reduction method to synthesize Pd and Pd-Cu 

nanoparticles. By using different reducing agents, we obtained Pd and Pd-Cu nanostructures with 

different morphologies and sizes at relatively low synthetic temperatures. Compared to samples 

synthesized by L-ascorbyl-6-palmitate, the ones synthesized by phenylphosphinic acid displayed 
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smaller and uniform sizes. We also found that the reducing agents function to determine the ratio 

of Cu/Pd in the nanoalloys. 

2.2. Experimental Details 

2.2.1 Chemicals and Materials 

Pd 2,4-pentanedionate (Pd(acac)2), copper 2,4-pentanedionate (Cu(acac)2, 98%), copper 

chloride (CuCl2, anhydrous)，L-ascorbyl-6-palmitate (99%), dibenzyl ether and hexadecylamine 

(HDA) were purchased from Alfa Aesar Company. Phenylphosphinic acid was purcheasd from 

Sigma Aldrich. High purity reagents HCl (99.999%,) and HNO3 (99.999%,) for ICP-MS were 

purchased from Alfa Aesar Company. All chemicals were used as received without further 

purification. 

2.2.2 Instrumentation 

TEM images were acquired by a JEOL 100 CX electron microscope at 100 kV acceleration 

voltages. The samples for TEM were deposited on Cu grids and dried in the air. A Rigaku MiniFlex 

X-ray diffractometer with Cu 𝐾𝛼 radiation (𝜆 = 1.541  Å) was applied to obtain PXRD patterns of 

samples. The elemental concentration of the samples was obtained by Thermo Scientific iCAP Q 

inductively coupled plasma mass spectrometer. The samples were prepared by dissolving in aqua 

regia composed of HCl (99.999%,) and HNO3 (99.999%,) with volume ratio 3/1 and then diluting 

with 2% HNO3 matrix. 

2.2.3 Synthesis of Pd Nanostructures 

Pd nanostructures were synthesized by reducing Pd precursors in the organic phase using 

L-ascorbyl-6-palmitate or phenylphosphinic acid as reducing agents listed in Table 2-1. In a 

typical synthetic method, 5 mL benzyl ether was used to dissolve Pd(acac)2 (25 mg or 0.082 

mM), HDA (0.4 g), and certain amounts of reducing agents (shown in Table 2-1) in a 50 mL 
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three-neck round bottom flask equipped with a magnetic stir bar. After degasing the reaction 

mixture for ~20 min at room temperature, the reaction was heated up to 120 ℃. The color of the 

reaction solution changed to yellow when temperature was below around 60℃, to colorless from 

and orange. When the temperature reached close to 100 ℃, the clear orange solution turned 

opaque black, indicating the formation of Pd seeds. The mixture was maintained at 120 ℃ for 

another 20 minutes. The product was initially precipitated by centrifugation with a mixture of 

toluene and methanol (v/v 1:1) at 6,000 rpm. The precipitate was then purified by a mixture of 

toluene and methanol (v/v 1:2). The final product was dispersed in toluene. 

2.2.4 Synthesis of Palladium-Copper Nanostructures 

Pd-Cu alloyed nanostructures were synthesized by co-reducing the Pd and Cu precursors 

in the organic phases using reducing agents L-ascorbyl-6-palmitate or phenylphosphinic acid as 

reducing agents listed in Table 2-1. In a typical synthetic method, 5 mL dibenzyl ether was used 

to dissolve Pd(acac)2 (25 mg or 0.082 mM) and HDA (0.4 g) in a 50 mL three-neck round 

bottom flask equipped with a magnetic stir bar.  Copper precursors, CuCl2 (40 mg or 0.297 mM), 

or Cu(acac)2 (79 mg or 0.299 mM),and reducing agents (shown in Table 2-1) were then added to 

the flask. After degasing the reaction mixture for ~20 min at room temperature, the reaction was 

heated up to 120 ℃.  The color of the reaction solution changed rapidly from yellow, to colorless 

and orange with temperature increasing from 50 ℃ to about 85 ℃. When the temperature 

reached close to 100 ℃, the clear orange solution turned opaque black, indicating the formation 

of Pd seeds. The temperature was then raised to 180℃ and kept for another 20 min to further 

reduce the Cu precursor. The product was initially precipitated by centrifugation.  Briefly, when 

the temperature reduced to 130 ℃, the reaction solution was removed from the flask and 

distributed into two 15 mL centrifuge tubes filled with 12 mL mixture of toluene and methanol 
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(v/v 1:1), and then centrifuged at 6,000 rpm for 4 mins. Samples were then redispersed in 7.5 mL 

mixture of toluene and methanol (v/v 1:2), and centrifuged at 6,000 rpm for 4 mins. 2-1 is the 

summary of the synthesis of Pd and Pd-Cu nanostructures, in which precursors, solvents and 

reducing agents are listed. 

Table 2-1. Summary of experimental parameters for synthesis of Pd and Pd-Cu nanostructures  

Sample 
name Pd precursor Copper 

precursor Ligands Solvent Reducing 
agent 

Pd-Cu(A) Pd(acac)2 CuCl2 HDA benzyl ether 0.18 g L-asorbic-
6-palmitate 

Pd(A) Pd(acac)2 - HDA benzyl ether 0.18 g L-asorbic-
6-palmitate 

Pd-Cu(B) Pd(acac)2 CuCl2 HDA benzyl ether 
0.062 g 

phenylphosphinic 
acid 

Pd(B) Pd(acac)2 - HDA benzyl ether 
0.062 g 

phenylphosphinic 
acid 

Pd-Cu(C) Pd(acac)2 Cu(acac)2 HDA benzyl ether 0.18 g L-asorbic-
6-palmitate 

Pd-Cu(D) Pd(acac)2 Cu(acac)2 HDA benzyl ether 
0.062 g 

phenylphosphinic 
acid 

 

2.3 Results and Discussion  

The commonly-used strategy for synthesis of Pd particles is to reduce Pd precursors, such 

as PdCl2, Na2PdCl4, and Pd(acac)2.
3,23,29,30 Because Pd precursors are usually strong oxidizers, Pd 

particles can form using amine as reducing agent at relatively low temperatures such as 160 ℃.23 

Another common method is to reduce Pd precursors with reducing agents, such as 1,2-

hexadecanediol.18 The strategy to synthesize Pd-Cu nanoalloy is usually a two-step method 

shown in Figure 2-5. In the first step, Pd precursors are reduced to small particles, and then when 
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the temperature was increased to 180 ℃, copper complex is reduced, during the process of which 

copper is assumed to incorporate into Pd lattices.  

In this study, we chose phenylphosphinic acid and L-ascorbyl-6-palmitate, the structures 

of which are displayed below in Figure 2-1, to serve as reducing agents. Compared to traditional 

reducing agents such 1,2-hexadecanediol or amines, these two oily strong reducing agents may 

form Pd seeds at around 100 ℃. Synthesis at such a low temperature is believed to be helpful to 

control sizes of nanoparticles. 

  

Figure 2-1. Structures of reducing agents, L-ascorbyl-6-palmitate and phenylphosphinic acid. 

2.3.1 Pd Nanostructures 

 

Figure 2-2. TEM images of Pd nanostructures synthesized using different reducing agents: (a) L-
ascorbyl-6-palmitate, and (b) phenylphosphinic acid. 
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Pd nanostructures were synthesized by reducing Pd precursors in the organic phase using 

L-ascorbyl-6-palmitate or phenylphosphinic acid as reducing agents. Figure 2-2 shows the TEM 

images of Pd nanostructures synthesized by the two reducing agents. The particles synthesized 

by phenylphosphinic acid appeared to be spherical shape with an average size of 4.15 nm (Figure 

2-2b). In contrast to phenylphosphinic acid, the reaction used L-ascorbyl-6-palmitate as reducing 

agent tends to form irregular branched structures with branch size of 10.52 nm (Figure 2-2a). In 

addition, the sizes of the Pd nanostructures synthesized by phenylphosphinic acid are smaller 

than those synthesized by L-ascorbyl-6-palmitate. 

 

 

 
Figure 2-3. TEM images of Pd seeds taken from the aliquot samples in the synthesis using 
different reducing agents: (a) L-ascorbyl-6-palmitate, (b) phenylphosphinic acid. 
 

To better understand the growth process, aliquot samples were taken from each reaction 

when the temperature reached 120 oC and the Pd seeds formed. The morphologies of Pd seeds 
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synthesized under different conditions are displayed in TEM images of Figure 2-3. The average 

size of the Pd seeds synthesized by L-ascorbyl-6- palmitate is 9.88 nm, much larger than those 

synthesized by phenylphosphinic acid (an average size of 2.13 nm). This result is in agreed with 

observation of Pd particles in Figure 2-1, suggesting that the size and shape of the Pd 

nanoparticles could be tuned by changing the reducing agents. The observation of size difference 

could be attributed to the reducing power of agents. According to the previous report,31 the 

structure of phenylphosphinic acid has two tautomers, forms A and B, in equilibrium, as shown 

in Figure 2-4. Due to the existence of the lone pair electrons, Form B could serve as a coordinate 

ligand to Pd ions, thereby slowing down the reduction kinetics of the Pd precursors. In contrast 

to phenylphosphinic acid, structure of L-ascorbyl-6-palmitate molecules might not coordinate 

with Pd ions, therefore the reaction performed in fast kinetics.  

 

Figure 2-4. Equilibrium between two forms of phenylphosphinic acid tautomers. 

 
2.3.2 Pd-Cu Nanostructures 

Pd-Cu nanostructures were synthesized by co-reducing Pd and Cu precursors in the 

organic phase using L-ascorbyl-6-palmitate or phenylphosphinic acid as reducing agents. To 

better understand, the effects of reducing agents and precursor reactivity on the formation of 

bimetallic nanostructures were investigated as illustrated in Figure 2-5. Four samples were 

synthesized accordingly by using two reducing agents and two Cu precursors. In this case, 

Pd(acac)2 was used as the Pd precursor in all the reactions. HDA served as a surface ligand of the 

nanoparticles while L-ascorbyl-6-palmitate and phenylphosphinic acid were the reducing agents.  
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Figure 2-5. Schematic illustration of Pd-Cu nanostructure synthesis 

Compared to Pd precursors, Cu precursors have lower standard redox potentials; therefore the 

reduction temperature for Cu is expected to be higher than that for Pd.   According to the previous 

report,23 Cu precursors (e.g., CuCl2 and Cu(acac)2)can be reduced at ~180 ℃ or above using 

amines as reducing agents. Figure 2-6 illustrates the process of the co-reduction. Due to the 

difference in the redox potential, Pd is anticipated to form at the early stage of the reaction at 

~100 oC before Cu precursor is reduced at higher temperature. A Pd@Cu core-shell structure is 

expected to form initially and turn into Pd-Cu alloy through diffusion at high temperature.  

 

Figure 2-6. Schematic illustration of the Pd-Cu alloyed nanostructure formation. 

 Figure 2-7 displays the TEM images of Pu-Cu particles. The average sizes of 

nanoparticles are 22.6 nm 4.51 nm, 5.86 nm, and 3.27 nm for samples Pd-Cu(A), Pd-Cu(B), Pd-

Cu(C), and Pd-Cu(D), respectively. Compared to the others, the reaction used CuCl2 as 
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precursors yielded nanoparticles with large average size. This observation could be attributed to 

the low redox potential of CuCl, leading to a lower rate of Cu formation. The slower reduction 

kinetics results in less seeds and thus larger particles during the growth process. 32 This result 

was in agreement with the previous reports in the aqueous synthetic environment.33 Similar to 

that of Pd, reduction used phenylphosphinic acid generated smaller particles as compared to that 

used L-ascorbyl-6-palmitate.  
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Figure 2-7.  TEM images of Pd-Cu nanostructures synthesized under different conditions 
corresponding to the samples: (a) Pd-Cu(A); (b)Pd-Cu(B); (c) Pd-Cu(C); and (d) Pd-Cu(D). (e-
h) histograms of particle size distribution of corresponding samples in (a-d).  
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Figure 2-8. PXRD patterns of Pd-Cu nanostructures at a scan rate 0.02°/min from 10° to 90° 
with Cu 𝐾𝛼 radiation (𝜆 = 1.541  Å): (a) Pd-Cu(A); (b) Pd-Cu(B); (c) Pd-Cu(C); and (d) Pd-Cu 
(D). 

 

The crystal structures of Pd-Cu nanostructures were investigated by XRD (Figure 2-8). 

The XRD patterns of the samples have a major peak at 40 ~50° which could be assigned to the 

(111) plane of face-centered cubic structure. The width of the peak becomes broader as the size 

of sample decreases. The size of the particles can be estimated by the Scherrer formula. 

                                                                                                                                                        𝐿 = !"
! !"#!

                                                 （2-1） 
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where λ is the X-ray wavelength in nanometer (nm), β is full width at half maximum (FWHM) of 

the diffraction peak, K is a constant related to crystallite shape, normally assumed as 0.9.34 From 

equation (2-1), the size of particle (L) is inversely proportional to the FWHM of the peak. By 

comparing the FWHM of the peak, the sizes of the particles decreased in the order of Pd-Cu(A) > 

Pd-Cu(C) > Pd-Cu(B) > Pd-Cu(D).  This trend agrees with the size distribution results obtained 

from the TEM images.  

Theoretically, the d-spacing of a crystal structure can be determined by the Bragg’s law 

based on the XRD results and equation (2-2).  

                                                                                                                                                                    𝑑 = !
! !"#!

            （2-2） 

where 𝜆 is wavelength of incident light and theta is scattering angle. Since Pd-Cu is cubic crystal 

structure, d can also be expressed by equation (2-3). 

                                                                                                                                                                𝑑 =    !
!!!!!!!!

            （2-3） 

where a is lattice constant, and h,k,l are Miller indices of a specific crystal plane. The lattice 

constant of a sample can then be derived from d values and their corresponding crystal planes. 

Based on equations (2-2) and (2-3), the d values and lattice constant a of the samples are 

calculated and listed in Table 2-2. The lattice constant of the alloyed nanoparticles is located 

between those of Pd and Cu. Using the Vegard's law, the composition can be calculated 

assuming linear mixing.18  

                                                                                                                                          𝑎!"#$ = 𝑥𝑎!" + (1− 𝑥)𝑎!"                                 （2-4） 

where 𝑎!"#$,  𝑎!", and   𝑎!" are the lattice constants of Pd-Cu alloy, Cu, and Pd, respectively. 

The percentage of Pd (x) in each alloyed sample can be derived and the results were listed in 

Table 2-3. The composition was also examined by elemental analysis using ICP-MS and the 
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results were listed in Table 2-4. The discrepancy could be attributed to the simple assumption 

made in the Vegard’s law without consideration several physical factors such as relative atomic 

sizes of the elements, relative volume per valence electron in crystal of pure elements, Brillouin-

zone effects.35 Therefore, ICP-MS measurement provides more accurate results for the 

composition of the samples.  

Table 2-2 d-spacing and lattice constants calculated from the peak assigned to (111) plane of the 
face-centered cubic structure in PXRD pattern for each sample. 
 

 2𝜃 of Peak (°) d value (nm) a value (nm) 

Pd-Cu(A) 41.96 0.2154 0.3730 

Pd-Cu(B) 41.6 0.2168 0.3756 

Pd-Cu(C) 42.66 0.2116 0.3666 

Pd-Cu(D) 40.75 0.2212 0.3831 

 

Table 2-3 Percentage of Pd and Cu for each sample calculated by the Vegards’ Law. 

 2𝜃 of Peak (°) a value (nm) 
Pd % 

(𝑎!"=0.389 nm) 

Cu % 

(𝑎!"=0.360 nm) 

Pd-Cu(A) 41.9 0.3158 44.6% 55.4% 

Pd-Cu(B) 41.6 0.3756 53.5% 46.5% 

Pd-Cu(C) 42.7 0.3666 22.7% 77.3% 

Pd-Cu(D) 40.8 0.3831 79.4% 20.6% 
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Table 2-4. Percentage of Pd and Cu for each sample measured by ICP-MS. 

 Pd Atom% Cu Atom% 

Pd-Cu(A) 38% 62% 

Pd-Cu(B) 38.4% 61.6  % 

Pd-Cu(C) 22% 78% 

Pd-Cu(D) 26.4% 73.6% 

 

2.4 Conclusion 

Different sizes and shapes of Pd nanostructures were successfully synthesized by using 

the two reducing agents (i.e., L-ascorbyl-6-palmitate or phenylphosphinic acid). Pd 

nanostructures synthesized by L-ascorbyl-6-palmitate trended to exhibit irregular branch shapes 

or rod like shapes in large sizes. In contrast, phenylphosphinic acid favored to form spherical and 

uniform sizes Pd nanostructures. The average sizes of Pd nanostructures synthesized by L-

ascorbyl-6-palmitate were larger than those by phenylphosphinic acid. To better understand the 

effect of reducing agents on sizes of particles, we did investigate the Pd seeds before they grew 

up to nanocrystals. The size statistics of Pd seeds further demonstrated phenylphosphinic acid 

could control the size of Pd nanoparticles. However, the detailed mechanism is still unclear.  

Different sizes and shapes of Pd-Cu nanostructures were successfully synthesized by 

using the two reducing agents (i.e., L-ascorbyl-6-palmitate or phenylphosphinic acid) and two 

Cu precursors (i.e. CuCl2 and Cu(acac)2). Based on our result, the process of Pd-Cu formation is 

thought to follow a two-step reaction. The Pd precursor was initially reduced to form Pd seed, 

followed by the growth of Pd-Cu final nanostructures.  While phenylphosphinic acid is a suitable 

reducing agent to form small and uniform spherical nanoparticles, L-ascorbyl-6-palmitate tends 
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to form particles with irregular morphology. Furthermore, we also found that the reducing agents 

play important roles to control the composition of alloys. The ICP-MS results showed that at a 

fixed Pd/Cu ratio phenylphosphinic acid favored to increase the percentage of Cu in Pd-Cu 

system. By manipulating the reducing agents, different nanostructures can be obtained and 

further investigation of mechanisms is required to understand the crystal growth. 
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3. Electrocatalytic Activities of Pd and Pd-Cu Nanostructures for Ethanol Oxidation 

Reaction  

3.1 Introduction 

Improving the efficiency of fuel oxidation has attracted considerable attention for direct 

alcohol fuel cell applications. Compared to methanol and formic acid, ethanol has several 

advantages such as low toxicity to human, production by fermentation of raw biomass, and high 

energy density (8.0 kWh/kg) compared to that of methanol (6.1 kW/kg).1 Most studies focus on 

ethanol oxidation reaction (EOR) in acidic environment due to widespread use of proton 

exchange membranes (PEMs) in the commercial fuel cells. Platinum is the most widely used 

catalytic electrode material. However, because of high cost and low efficiency, scientists are 

seeking for substitutes of Pt as electrocatalysts for EOR. Palladium-based materials are one of 

the substitutes of platinum that have been explored.2-7 Most studies on Pd-based electrocatalysts 

for EOR were performed in alkaline media.8 Unlike methanol, the oxidation of ethanol involves 

cleavage of C-C bond which requires much higher onset potentials to activate the reaction. A few 

studies have revealed the mechanism of EOR in alkaline solution using Pd electrocatalysts. For 

example, the mechanism was proposed to have multiple steps as shown in equation (3-1) to (3-4) 

in a cyclic voltammetry study.9 It was found that removal of the intermediate (i.e. adsorbed acyl 

group) by adsorbed hydroxyl group on Pd surface was the rate determining step as shown in 

equation (3-3). The proposed mechanism indicated that the catalytic rate could be accelerated by 

increasing concentration of OH- which was confirmed by performing the EOR in different 

concentrations of KOH solution.9  

Pd + CH3CH2OH ↔ Pd−(CH3CH2OH)ads,       (3-1) 

Pd − (CH3CH2OH)ads + 3OH− → Pd − (OCCH3)ads + 3H2O + 3e−,   (3-2) 
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Pd − (CH3CO)ads + Pd − OH−
ads
!.!.!

Pd − CH3COOH + Pd,    (3-3) 

Pd − CH3COOH + OH−→Pd + CH3COO- + H2O.     (3-4) 

Based on DFT calculation, others proposed that the oxidation process involved acetaldehyde 

formation in the first step and then further oxidation led to the formation of acetate with no 

evidence of C-C cleavage, as shown in equations (3-5) – (3-7).10 

CH3CH2OH + OH- →CH3CHOH + H2O       (3-5) 

CH3CHOH →·CH3CHOH + e        (3-6) 

· CH3CHOH →CH3CHO + ·H        (3-7) 

Similar to the bifunctional mechanism for methanol oxidation,11 coupling Pd with non-

noble metals can enhance catalytic activities and stabilities, as well as reduce the cost in fuel cell 

applications. Pd-based nanostructures have then been studied electrocatalysts for EOR.12-18 For 

example, the Pd-Cu nanocapsules on graphene exhibited electrocatalytic activity 3-fold higher 

than the commercial Pd/C catalyst.19 The anodic and cathodic current densities of PdCuPb/C for 

EOR were 105.3 and 38.8 mA/cm2, respectively, which were higher than those of commercial 

Pd/C.14 More oxygenate species generated on PdCuPb/C surface led to the removal of CO-like 

poisonous intermediates. In addition, the specific peak current density of 1782 mA/mgPd was 

achieved for Pd-Cu catalysts for EOR compared to that of 1060 mA/mgPd for commercial Pd/C 

in 0.5 KOH solution.1 These improvements may benefit from the bifunctional effect which 

hydroxyl groups strongly attach to the Cu sites while ethanol molecules tightly adsorb on Pd 

sites, and the mechanism was shown follow in equations (3-8)-(3-13).20 

Pd + CH3CH2OH ↔ Pd−(CH3CH2OH)ads,       (3-8) 

Pd − (CH3CH2OH)ads + 3OH− → Pd − (OCCH3)ads + 3H2O + 3e−,   (3-9) 

Pd − (CH3CO)ads + M − OHads
−!.!.!Pd − CH3COOH + M (M=Pd/Cu),  (3-10) 
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Pd − CH3COOH + OH−→Pd + CH3COO- + H2O.     (3-11) 

PdCO + Cu(OH)2 = Pd + Cu + 2H+ + CO!!!       (3-12)  

PdHCO + Cu(OH)2 = Pd + CO!!!  + Cu + 3H+ + e     (3-13) 

In this work, we examined the Pd and Pd-Cu nanostructures that were prepared followed 

the methods in Chapter 2. The structure-property relationship was revealed by comparing the 

results.   

3.2 Experimental Details 

3.2.1 Chemicals and Materials 

Sodium hydroxide and acetic acid was purchased from Alfa Aesar company. Ethanol 

were purchased from Koptec. 5% Nafion solution was purchased from Sigma Aldrich. The 

support carbon black was Vulcan XC 72R. All chemicals were used as received without further 

purification. 

3.2.2 Preparation of Carbon Supported Electrocatalysts. 

The nanoparticles were deposited on carbon and treated by acid to remove surfactants 

using the modified procedures according to the previous reports.4 The as-synthesized Pd or Pd-

Cu samples were mixed with equal mass amount carbon support in 15 mL toluene/acetone v/v 

1:1 and sonicated for 1 h. The carbon supported catalysts were separated by centrifuging at 6,000 

rpm for 4 min. The precipitates were washed with acetone twice. They were then mixed with 15 

mL acetic acid and kept at 65 ℃ overnight. The catalysts were separated by centrifugation and 

purified twice with water. Finally, the carbon support catalysts were dispersed in water. 

3.2.3 Preparation of Working Electrodes  

The glassy carbon electrodes with a diameter of 3 mm were polished with 0.05 𝜇𝑚 

alumina liquid, and sonicated with deionized water. Each sample in water was mixed with 0.05 



42 
	
  

wt% Nafion in water/ethanol v/v 1:1 to form 1 mg/mL catalyst suspension. Then 10 𝜇𝐿 of this 

solution was dropcasted on the electrode and dried in air. 

3.2.4 Assessment of Electrochemical Catalytic Activities 

All electrochemical performances were employed on a CHI 760D electrochemical 

workstation with a three-electrode system. A three-electrode system comprises a working 

electrode modified with samples, an Ag/AgCl in 1 M KCl reference electrode, and a platinum 

wire counter electrode. All potentials are converted to reversible hydrogen electrode (RHE), by 

the equation. E(RHE) = E(Ag/AgCl) + 0.059pH+0.234. The electrolytes were the mixture of 0.1 

M NaOH solution or 0.1 M NaOH + 1 M ethanol solution, and all solutions were saturated with 

highly pure nitrogen for 20 min. In cyclic voltammetry (CV) measurement, the potential range 

was scanned from 0 to 1.4 V vs RHE. Electrochemical active surfaces were determined by the 

CV method in 0.1 NaOH solutions at a scan rate of 50 mV/s. EOR tests were performed in 0.1 

NaOH + 1 M ethanol solutions at the chosen scan rates. The stability tests results were recorded 

by CV measurement within the range of 0 to 1.4 V at 50 mV/s in 0.1 NaOH + 1 M ethanol 

solution after 500 cycles. The first cycle data was obtained until the CV curve is stabilized 

(typically after 5 scans). The i-t curves were measured by chronoamperometry (CA) method at a 

constant potential of 0.8 V vs RHE in 0.1 NaOH + 1 M Ethanol solutions for 1600s. 

3.3 Results and Discussion  

3.3.1 Determination of Electrochemical Active Surface Areas   

Electrochemical active surface (ECSA) is a very important index to evaluate the catalytic 

sites of the catalysts. The ECSA can be obtained with CV scanned from 0 to 1.4 V vs RHE. For 

Pt, the typical method to determine ECSA is to calculate the area of hydrogen 

adsorption/desorption based on the underpotential deposition (UPD) of hydrogen.21 This method 
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is not applicable for Pd because of the interference of hydrogen absorption in Pd.22-24 Surface 

oxide reduction, UPD of Cu, and CO stripping are the three commonly used methods to 

determine the ECSA of Pd.21,25,26 In the study, we use the reduction charge of surface Pd(OH)2 or 

Pd-O to determine ECSA of Pd.27 The CV curves were obtained by sweeping from 0 to 1.4 V vs 

RHE in 0.1 M NaOH. From CV curves of Pd (Figure 3-1), the region from 0 - 0.37 V is 

attributed to hydrogen adsorption/desorption. The onset current occurring from ~0.91 V indicates 

adsorption of hydroxyl group with the loss of two electrons. The adsorbed hydroxyl group 

further decomposes to Pd-O and H2O. The mechanism is described in equations (3-14)-(3-16).9 

Pd + OH− ↔ Pd−OHads +e−        (3-14) 

Pd−OHads + OH− ↔ Pd−O + H2O + e−      (3-15) 

Pd−OHads + Pd−OHads ↔ Pd−O + H2O.      (3-16) 

In the cathodic sweep, the peak located in the range from 0.6 V ~ 0.7 V was well-defined, 

suggesting the reduction of Pd(OH)2 or Pd-O to Pd with the gain of two electrons, as shown in 

equation (3-17).9  

Pd−O + H2O + 2e−↔ Pd + 2OH−.       (3-17) 

The peak shifts between the two samples is possibly due to the difference of size and shape. The 

associated charges (Qo) of the peak can be used to derive the ECSA based on the equation (3-18) 

and (3-19).  

                   𝑄! = 2𝑒𝑁!Γ!𝐴                  (3-18) 

            𝐴𝑐𝑡𝑖𝑣𝑒  𝑆𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑄𝑂
𝑞𝑂
𝑠           (3-19) 

where NA is Avogadro constant, and Γ! is the surface concentration of atomic oxygen, which is 

equal to the density of Pd atom on the surface (NPd).26 The charge density for the formation of a 

fully covered Pd(OH)2 layer (𝑞!! ) was chosen based on the value reported for typical single-
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crystal Pd surface 43027  𝜇𝐶/𝑐𝑚!. The value of Qo can be calculated by integrating the oxygen 

desorption peak in alkaline solution. The ECSAs are listed in Table 3-1.  

 

Figure 3-1. CV curves of Pd samples in 0.1 NaOH solution swept from 0 to 1.4 V RHE at a scan 
rate of 50 mV/s: (a) Pd(A)/C; (b) Pd(B)/C. 
 

Different from the pure Pd samples, the existence of Cu in the alloys shifts the onset 

oxidation currents appeared at more negative (~ 0.7 V) in Figure 3-2. The alloys typically have 

smaller overpotentials for Pd oxidation than the pure Pd, which might be due to the presence of 

Cu on the surface. The mechanism of Pd-O formation for Pd-Cu alloys is described in equations 

(3-20)-(3-23).20 

Pd + OH− ↔ Pd−OHads +e−        (3-20) 

Pd−OHads + Cu ↔ Cu-OH + Pd      (3-21) 

Pd−OHads + OH− ↔ Pd−O + H2O + e−      (3-22) 

Pd−OHads + Pd−OHads ↔ Pd−O + H2O.      (3-23) 

It is worth noting that the peak of Pd(OH)2 reduction generally appears around 0.6 – 0.7 

V (vs RHE); however, the slight difference of peak position among samples likely depends on 

the compositions of alloys.  
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Figure 3-2. CV curves of Pd-Cu/C samples scaned from 0 to 1.4 V vs RHE in 0.1 NaOH solution 
at 50 mV/s: (a) Pd-Cu(A)/C; (b) is Pd-Cu(B)/C; (c) is Pd-Cu(C)/C; (d) is Pd-Cu(D)/C. 

 
More interestingly, the samples synthesized by the same reducing agent showed similar 

peak position of Pd-O reduction (Figure 3-3).  For example, Pd(A)/C, Pd-Cu(A)/C, and Pd-

Cu(B)/C synthesized by using L-ascorbyl-6-palmitate as the reducing agent had PdO reduction 

peaks at ~0.65 V vs RHE. In contrast, Pd(B)/C, Pd-Cu(C)/C, and Pd-Cu(D)/C synthesized by 

using phenylphosphinic acid as the reducing agent had lower Pd-O reduction potentials at ~0.610 

V.  
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Figure 3-3. Effects of reducing agents on peak position of Pd-O reduction in ethanol oxidation 
peaks. Solid black triangles represent the samples synthesized by L-ascorbyl-6-palmitate as the 
reducing agent; solid red triangles represent the samples synthesized by using phenylphosphinic 
acid as the reducing agent. 

 
To compare the catalytic properties of catalysts, the ECSA and specific electrochemical 

surface areas (ESA) which are the ECSA normalized by mass of Pd are listed in Table 3-1. 

According to previous report, the ESA of Pd based electrode are usually under 100 m2/gPd.28 In 

our case, the Pd samples had the ESA on the order of 103 while the ESA of Pd-Cu samples were 

on the order of 104 in Figure 3-4. This large ESA might be the results of the ultrafine particles 

compared to those in the previous reports; however, we cannot rule out the possibility that the 

adsorbed oxygen was more than a monolayer in our case because it is lacking a consistent 

method to determine the upper potential limit27 for Pd in alkaline solution.   
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Table 3-1 Summary of electrochemically active surface areas (ECSA) and specific 
electrochemical surface areas (ESA) of Pd and Pd-Cu nanostrucutures. 
 

Sample Pd(A)/C Pd(B)/C Pd-Cu(A)/C Pd-Cu(B)/C Pd-Cu(C)/C Pd-Cu(D)/C 

Pd-O peak V 0.702  0.617  0.678  0.674  0.613  0.603 

ECSA cm2 0.043 0.471 0.206 0.184 1.128 0.619 

ESA m2/gPd 2151.90 4927.25 2210.92 7611.21 18229.82 15185.43 
 

 

Figure 3-4. Comparison of specific ESA for Pd and Pd-Cu nanostrucutres . 

3.3.2 Catalytic Performance of Pd and Pd-Cu Nanostructures on EOR 

The electrochemical activities of the Pd and Pd-Cu catalysts were characterized by the 

CV method in basic solution with ethanol (0.1 M NaOH + 1 M ethanol). Because of the 

uncertainty of ECSAs of Pd samples, the current were normalized with the mass of Pd loading 

for comparison. The loading mass of Pd(A)/C, Pd(B)/C,  Pd-Cu(A)/C; Pd-Cu(B)/C; Pd-Cu(C)/C; 
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and Pd-Cu(D)/C are 0.199 𝜇𝑔, 0.955 𝜇𝑔, 0.935 𝜇, 0.241 𝜇𝑔, 0.619 𝜇𝑔 and 0.408  𝜇𝑔, respectively. 

Figure 3-5 represents the CV curves of pure Pd sameples, Pd(A)/C and Pd(B)/C, in 0.1 NaOH 

with 1 M ethanol. The peak at region between 0.8 V and 0.9 V were assigned to the oxidation of 

ethanol. The peak at ~0.6 V as appeared in the cathodic sweep were typically interpreted as one 

of the two processes: 1) the removal of the oxidation intermediates;1 and 2) the oxidation of fresh 

ethanol diffused to the surface of the electrode.29 We speculated that the latter, oxidation of 

ethanol, is attributed to this peak at ~0.6 V appeared in the cathodic sweep because the surface of 

the electrode should be cleaned after the potential reaches 1.4 V vs RHE, suggested that the CO-

like intermediates have been oxidized in anodic scan. The peak appeared sharp, indicating that 

there was probably only one species being oxidized.28 Pd(A)/C catalyst exhibited lower 

overpotential (0.797 V) for EOR in the anodic sweep compared to Pd(B)/C (0.852 V). In 

contrast, Pd(B)/C showed better resistance against CO poisoning, which was estimated by the 

value of Jf/Jb listed in Table 3-2 (0.866 for Pd(B)/C versus 0.313 for Pd(A)/C). The larger the 

value of Jf/Jb, the better the resistance against CO poisoning is.  

 

Figure 3-5. Cyclic voltammograms curves of Pd samples in 0.1 NaOH+1 M ethanol from 0 to 
1.4 V RHE at a scan of 50 mV/s: (a) Pd(A)/C and (b) Pd(B)/C.  
 



49 
	
  

In order to test the tolerance to CO poisoning, i-t measurements have been run in 0.1 

NaOH + 1 M ethanol at 0.8 V vs RHE for duration of 1600s (Figure 3-6). The initial currents 

decreased rapidly to achieve a pseudosteady state.28 Since COad gradually occupied the active 

sites of surfaces of Pd samples, the currents decayed gradually. Compared to Pd(B)/C, particles 

of Pd(A)/C have larger sizes resulting in less active Pd exposing to the solution; therefore, the 

slope of its current density decrease of steady current was larger than that of Pd(B)/C. Pd(B)/C 

also exhibited higher current density than Pd(A)/C. 

 
Figure 3-6. i-t curves for Pd(A)/C and Pd(B)/C in 0.1 NaOH + 1 M ethanol at 0.8 V vs RHE. The 
black curve is for Pd(A)/C and the red curve is for Pd(B)/C. 
 

Catalytic activities of EOR of Pd-Cu nanostructures have been characterized using the 

same conditions as that for pure Pd nanoparticles, in 0.1 NaOH + 1 M ethanol at a scan rate of 50 

mV/s (Figure 3-7). To compare the resistance against CO, the values of Jf/Jb are listed in Table 3-

2. Compared to pure Pd samples, Pd-Cu alloys had lower overpotentials and displayed the 

resistance against CO to some degree due to the introduction of Cu atoms which could change 

the energy level of d band of Pd.30  
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Figure 3-7. CV curves of Pd-Cu/C samples from 0 to 1.4 V RHE in 0.1 NaOH+1 M ethanol at a 
scan rate of 50 mV/s: (a) Pd-Cu(A)/C; (b) Pd-Cu(B)/C; (c) Pd-Cu(C)/C; and (d) Pd-Cu(D)/C. 
The curves are normalized by the mass of Pd in each sample. 
   
Table 3-2. Comparison of electrochemical activities of Pd-Cu/C with Pd/C for EOR in 0.1 M 
NaOH with 1 M Ethanol. 
 

Sample Ep(f) (V) Jp(f) (mA) Ep(b) (V) Jp(b) (mA) Jp(f)/ Jp(b) 

Pd(A)/C 0.794 1.883 0.685 6.016 0.313 

Pd(B)/C 0.855 1.223 0.670 1.413 0.866 

Pd-Cu(A)/C 0.788  0.660  0.675 1.930 0.342 

Pd-Cu(B)/C 0.709  0.433 0.652 0.828 0.523 

Pd-Cu(C)/C 0.776 0.269 0.602 0.320 0.841 

Pd-Cu(D)/C 0.740 0.200 0.573 0.142 1.408 
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To understand better the catalytic behaviors of samples for EOR, we compare CV curves 

at different scan rates from 10 mV/s to 100 mV/s (Figure 3-8). As we know, in CV, the peak 

current densities of samples increased with the increased scan rates. The values of Jf/Jb are listed 

in table 3-3. With the increased scan rates, the values of Jf/Jb also increased. At the high potential, 

Pd has been oxidized to PdO, which blocks adsorption of ethanol on Pd surfaces.29 Additionally, 

in the cathodic scan, reducing PdO generate opposite currents to oxidizing ethanol leads to the 

decrease ethanol oxidation peak. At a high scan rate, more Pd can be oxidized quickly. 

Therefore, that the anodic peak current densities increase faster than cathodic peak current 

densities resulting in increase of Jf/Jb, which is against the previous report result.31  

Table 3-3. Summary of values of Jf/Jb obtained from the CV curves at different scan rates. 
 
Scan rate Pd(A) Pd(B) Pd-Cu(A) Pd-Cu(B) Pd-Cu(C) Pd-Cu(D) 

10 mV/s 0.0967 0.322 0.149 0.169 0.478 1.68 

30 mV/s 0.19 0.711 0.247 0.361 0.61 1.25 

50 mV/s 0.309 0.883 0.349 0.519 0.832 1.42 

80 mV/s 0.5 1.056 0.454 0.731 1.041 2.068 

100 mV/s 0.501 1.165 0.533 0.838 1.327 2.36 
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Figure 3-8. CV curves of Pd and Pd-Cu samples in 0.1 NaOH+1 M ethanol from 0 to 1.4 V RHE 
at different scan rates, 10 mV/s, 30 mV/s, 50 mV/s, 80 mV/s, and 100 mV/s: (a) Pd(A)/C, (b) Pd 
(B)/C, (c) Pd-Cu(A)/C; (d) Pd-Cu(B)/C; (e) Pd-Cu(C)/C; and (f) Pd-Cu(D)/C. The curves are 
normalized by mass of Pd in each sample. 

 

The i-t measurement was performed under the same conditions to test the CO tolerance 

for each catalyst, as shown in Figure 3-9. The EOR on the surfaces of catalysts involves the 
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adsorption, dehydrogenation and removal of CO-like species.14 Due to the strong ability to bond 

with metals, CO-like intermediates can accumulate and occupy the active sites on the surfaces of 

catalysts. This can result in the very quick decrease of the current densities at the initial stage and 

reach a steady state. Pd-Cu(B)/C, Pd-Cu(C)/C, and Pd-Cu(D)/C containing smaller particles are 

more active to resist CO-like intermediates indicating by the slower decrease of current densities 

than Pd-Cu(A)/C containing larger particles. This result suggested that smaller particles have 

more active sites for EOR.   

 

Figure 3-9. i-t curves for Pd-Cu samples in 0.1 NaOH + 1 M ethanol at 0.8 V vs RHE: Pd-
Cu(A)/C (black); Pd-Cu(B)/C (red); Pd-Cu(C)/C (green); Pd-Cu(D)/C (blue). 
 
 

The stability of catalysts was assessed by CV sweeps from 0 – 1.4 V vs RHE at a scan 

rate of 50 mV/s in 0.1 M NaOH + 1 M ethanol. The CV curves were measured before and after 

500 cycles scan. The differences of current densities and positions of oxidation peaks can be 
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compared (Figure 3-10). In previous reports,32,33 Pd dissolution was observed in the accelerated 

stability test; therefore, it is expected that the current densities decease due to the loss of active 

Pd during the catalytic processes.34 Based on our results, Pd-Cu(D)/C showed the decrease of 

current density which is in agreement with reported results,16,34 while others showed an increase 

of current densities. In addition, oxidation peak for all samples shifted to more positive 

potentials. The increase of current density could be explained as the removal of the surface 

ligands and partial dissolution of Pd containing inactive atoms. In other words, duration test with 

hundreds of CV sweeps generated more active sites available for EOR, thereby increasing the 

current density of the oxidation. It is worth noting that initial Pd(B)/C and Pd-Cu(C)/C showed to 

some degree CO resistance, but after 500 cycling the Jb became lager than Jf, suggesting the 

decreased ability of the resistance to CO.  
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Figure 3-10. Stability tests of Pd and Pd-Cu catalysts for EOR in 0.1 NaOH + 1 M ethanol from 
0 to 1.4 V RHE at a scan rate of 50 mV/s: (a) Pd(A)/C, (b) Pd(B)/C, (c) Pd-Cu(A)/C; (d) Pd-
Cu(B)/C; (e) Pd-Cu(C)/C; and (f) Pd-Cu(D)/C. 
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3.4 Conclusion 

Pd and Pd-Cu nanostructures synthesized by different reducing agents have been tested 

on the electrocatalytic performances for EOR.  The ECSA was determined by integrating the 

PdO peak. The results show Pd and Pd-Cu nanostructures have very large ECSAs. In EOR tests, 

Pd and Pd-Cu nanostructures show high peak specific current densities (~ 400 mA/mgPd), which 

are close to some Pt based catalysts.35 Meanwhile, it was found that values of Jf/Jb of samples 

could grow with increase of scan rates.  In i-t tests, smaller sizes samples show stronger tolerance 

to CO, since their much larger surface areas and catalytically more active sites. For duration test, 

except Pd-Cu(D)/C, all the other samples showed unusual increase of current density, which 

indicates their high stability as EOR catalysts. Further understanding of reaction mechanism is 

needed in future experiments. 
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4. Conclusion  

  Different sizes and shapes of Pd and Pd-Cu nanostructures were successfully synthesized 

by using the two reducing agents (i.e., L-ascorbyl-6-palmitate and phenylphosphinic acid) 

through chemical reduction reaction. The process of formation of Pd and Pd-Cu is thought to be 

two steps reaction. In the first step, the Pd precursor form Pd seed; in second step, the seeds grow 

to final Pd or Pd-Cu structures. Pd nanostructures synthesized by L-ascorbyl-6-palmitate trended 

to exhibit irregular branch shapes or rod like shapes in large sizes. In contrast, phenylphosphinic 

acid favored to form spherical and uniform sizes Pd nanostructures. Pd particles synthesized by 

phenylphosphinic acid had smaller average size of 4.15 nm compared to those reduced by L-

ascorbyl-6-palmitate with average size of 10.52 nm. The Pd-Cu samples displayed similar 

tendency as pure Pd nanostructures by using these two reducing agents in the syntheses. By 

comparing results from different Cu precursors (e.g. Cu(acac)2 and CuCl2), it was found that 

particles reduced from CuCl2 have larger sizes than those reduced from Cu(acac)2  because Cl- 

increases redox potential of Cu resulting in slow reduction of Cu. Furthermore, the reducing 

agents play important roles to control composition of alloys. The ICP-MS results showed that at 

a fixed Pd/Cu ratio phenylphosphinic acid favored to increase the percentage of Cu in Pd-Cu 

system. Further characterization by XPS and HR-TEM can be employed in order to understand 

the growth mechanism. 

These Pd and Pd-Cu nanostructures have further been tested for application as catalysts 

for EOR in fuel cells. The ECSAs of Pd and Pd-Cu nanostructures were estimated by oxygen 

adsorption and desertions on Pd. Compared to pervious catalysts, those catalysts displayed 

extremely large ECSAs, especially the sample Pd-Cu(C)/C with 18229.82 m2/g Pd. The results of 

EOR tests showed that these catalysts had high specific current densities. Meanwhile, Pd-Cu 
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catalysts showed to some certain extent resistance against CO-like intermediates by examining 

Jf/Jb. The resistance showed a relationship with the sizes of Pd particles. The smaller particles 

exhibited better ability against CO-like intermediates. Most samples showed high stabilities even 

after 500 cycles scan. 
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