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Abstract 

Within the population of aging individuals exists a subset of competitive seniors or masters 

athletes (MA).  As masters-level competition increases in popularity, MA must find methods to 

enhance individual athletic performance.  Beta-alanine (BA) is an amino acid used to enhance 

physical capability based on ability increase intramuscular carnosine concentrations.  Older 

adults and females have naturally lower carnosine levels compared to age- and gender-matched 

counterparts and may experience enhanced benefits from BA supplementation.  Purpose:  

Therefore, the purpose of this investigation was to examine the longitudinal effects of BA 

supplementation on isometric handgrip strength (HG), time to exhaustion (TTE), total work 

completed (TWC), and lower-body isokinetic torque (ISO) in female MA.  Methods: Twenty-

two female MA (age = 53.3 ± 1.0) participated in this double-blind design.  Subjects were 

randomly assigned to BA (n = 11; 800mg BA + 8 g dextrose) or placebo (PLA; n = 11; 8 g 

dextrose) groups and supplemented 4 times/day over 28 days. HG, TTE, TWC, and ISO were 

assessed at baseline and each week throughout the intervention.  Blood lactate was measured at 

baseline, immediate post, and 20-minutes after recovery from TTE.  Results: No initial 

significant differences existed between groups for any variable (p > .05).  By the 28th day, TTE 

(23% vs 1% change) and TWC (21% vs 2% change) significantly increased in BA compared to 

PLA (p < .05).  Lactate clearance rate also significantly increased with BA having 24% greater 

reductions from peak values after the 20-minute recovery.  For ISO, work done during the final 

third (24.0% vs -16.8% change) and average peak torque (5.4% vs 2.9% change) significantly 

increased in BA compared to PLA (p < .05).  When comparing HG and body composition, no 

significant differences existed at any time point between the two groups (p > .05).  No 

differences existed for any variable during intermittent time points.  CONCLUSION: Four-



weeks of BA supplementation increased exercise performance and lactate clearance in female 

MA potentially due to increases in intramuscular carnosine concentrations. Future research 

should evaluate mechanistic properties influencing these factors as carnosine concentrations can 

only be evaluated via muscle biopsy analysis or proton magnetic resonance spectroscopy. 
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Introduction 

The number of aging individuals worldwide is increasing exponentially.  By 2030, it is 

estimated that 20% of the United States population will consist of individuals 65 years or older 

(Administration on Aging, 2011), reaching 65.7 million seniors (United States Census Bureau, 

2008).  For older adults, maintaining a physically active lifestyle has been associated with an 

increased quality of life and ability to perform activities of daily living (Drewnowski & Evans, 

2001; McAuley et al., 2006; Rejeski & Mihalko, 2001).  Although there is no amount of physical 

activity that can reverse the aging process, maintaining a consistent exercise regimen can 

attenuate levels of physical decline and risk of chronic disease.  However, certain populations of 

aging adults have alternative physical goals and are not simply content with maintaining general 

physical health. 

Within the increasing population of aging individuals lies a similarly increasing subset of 

competitive seniors or masters athletes (MA).  MA can begin as early as 35 years of age; 

however, age ranges defining masters athlete categories are sport specific and age cutoffs vary 

significantly.  Governing bodies of each sport typically set the age of MA participation based 

upon ages that elite performances are accomplished.  Regardless of sport or age, elite MA 

convene every 4 years to compete in individual and team events at the World Masters Games 

(WMG). The WMG began in Toronto, Canada in 1975 with 1,427 competitors representing 32 

countries (World Masters Athletics, 2014).  The first United States Senior Games (USSG) was 

held in St. Louis, Missouri in 1987 and hosted 2,500 athletes.  Since its inauguration, the 

competitive population of the USSG has risen to over 13,000 in 2013 (National Senior Games 

Association, 2013). More importantly to MA than the effects of continued training on general 

health, is the ability to maintain and even increase physical performance. 



 
 

2 

As masters-level competition continues to increase in popularity, athletes constantly 

attempt to find methods to enhance individual athletic performance.  The understanding and 

development of legal and safe supplemental aids to augment physical ability can provide a 

competitive edge for elite masters-level competitors.  Currently, the body of literature evaluating 

the general use of supplements in MA populations is limited (Kavanagh & Shephard, 1977; 

Striegel, Simon, Wurster, Niess, & Ulrich, 2005) and evidence that evaluates the effect of 

individual supplement use on performance is non-existent.  Certain ergogenic aids have been 

evaluated in untrained, older populations including protein supplementation (Chale et al., 2013; 

Paddon-Jones, 2013), creatine-monohydrate supplementation (Candow et al., 2014; Moon, 

Heywood, Rutherford, & Cobbold, 2013), and beta-alanine (BA) supplementation (del Favero et 

al., 2012; McCormack et al., 2013; Stout et al., 2008).  Although these ergogenic aids increases 

physical performance in untrained older individuals, it is unknown if the same effects exist in 

MA. 

Research has indicated positive benefits with the individual supplementation of BA as a 

method to enhance anaerobic physical ability. The individual effects of BA (del Favero et al., 

2012; McCormack et al., 2013; Stout et al., 2008) have been evaluated in untrained older adults; 

however, no data exist in male or female MA populations.  Understanding how these ergogenic 

aids effect performance in masters-level competitors may create a new opportunity for these 

athletes to continue their sporting careers and perhaps reach new levels in their respective events. 
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Purpose of the study 

 Exogenous supplementation of BA effect exercise performance in trained, younger 

populations; however, these claims remain unsupported when evaluating BA in MA populations.  

Therefore, the purpose of this study was to examine the longitudinal effects of BA 

supplementation on isometric handgrip strength (HG), time to exhaustion (TTE), total work 

completed (TWC), and lower-body isokinetic torque (ISO) in female MA cyclists. 

Research Hypotheses   

H1: Longitudinal supplementation of BA will increase time to exhaustion during high intensity  

cycling when compared to a placebo. 

H2: Longitudinal supplementation of BA will decrease time to exhaustion along with maximal 

and recovery lactate levels when compared to a placebo. 

H3: Longitudinal supplementation of BA will increase lower-body isokinetic torque when 

compared to a placebo. 

H4: Longitudinal supplementation of BA will increase isometric grip strength when compared to 

a placebo. 

Limitations 

1. Results from these studies can only be generalized to females. 

2. Results from these studies can only be generalized to cycling performance. 
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3. Results from this study can only be generalized to supplementation of BA in female MA 

and do not imply increased effects from longitudinal supplementation in males. 
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Definition of Terms 

1. Anaerobic exercise – muscle movement that does not require oxygen and primarily 

utilizes carbohydrates to produce energy from adenosine triphosphate (ATP) 

2. Beta-Alanine – non-essential amino acid typically obtained in the diet via high-protein 

foods (beef, chicken, pork, and fish) and produced in the confines of the liver (Smith et 

al., 2009) 

3. Carnosine – cytoplasmic dipeptide found in high concentrations in the skeletal muscle of 

both vertebrates and non-vertebrates, as well as in the central nervous system (Sale, 

Saunders, & Harris, 2010) 

4. Dual Energy X-ray Absorptiometry (DXA) – radiation-based equipment used to measure 

the three principle components of soft tissue mass, lean mass, and total body bone 

mineral density (Svendsen, Haarbo, Hassager, & Christiansen, 1993) 

5. Ergogenic aid – any external influences determined to enhance exercise performance 

6. Masters athletes – individuals that continue participation in competitive sport-based 

events past the age records traditionally set for that particular event 

7. Older adult – individual over the age of 65 years 

8. Paresthesia – transient flushing and/or tingling sensations on the skin (Decombaz, 

Beaumont, Vuichoud, Bouisset, & Stellingwerff, 2012) 

9. Physical fatigue – decline in ability of a muscle to generate force 

10. Power – rate at which mechanical work is performed; product of force and velocity 

(Noffal & Lynn, 2012) 
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Significance of the Study 

As our population grows older, there has been an exponential increase in participation in 

masters athletics and with concurrent increases in level of competition.  Use of legal, 

supplemental, ergogenic aids are slowly increasing in older athletes and understanding these 

effects on sport performance could influence methods in which these athletes approach both 

training and competition.  BA supplementation is used in a number of populations including 

younger athletes and older adults.  BA is the precursor to the intramuscular pH buffer carnosine 

and compared to males, carnosine levels are lower in females.  Carnosine levels also naturally 

decrease with age.  Taken together, the use of BA may have an increased effect in female 

populations and the ability to enhance exercise performance with exogenous supplementation 

may be further augmented in older females.  Longitudinally, BA significantly increases 

performance in trained and untrained younger individuals, but whether these effects are present 

in MA are unknown.  It cannot be ascertained if longitudinal supplementation of BA will have 

the same effects in MA as they do untrained older populations; therefore, further study of the 

dosing and longitudinal effects of ergogenic aids in female and MA populations is warranted. 
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Review of the Literature 

Introduction 

 Throughout the aging process, certain individuals desire to remain active and continue 

participation in competitive sporting events.  While the aging process itself cannot be stopped, it 

may be possible to allow these athletes to remain competitive at higher levels for extended 

periods of time. Many reports support the use of ergogenic aids as a technique to increase 

athletic ability.  Implementing these aids in older athletes could potentially diminish the rate of 

natural decline in physical ability, ultimately increasing athletic durability.  For this review of 

literature, methodology development, and discussion of results, a search of Medline (PubMed), 

ProQuest International, and Google Scholar was conducted using the keywords: older adult, 

masters athlete, beta-alanine, sport, performance, and all related derivatives.  When adequate and 

related literature was identified, follow-up searches were completed to further examine research 

design and methodology.  This review included randomized control studies that assessed the 

following components: a) general aging, b) MA, c) BA, d) the influence of supplemental aids on 

physical performance in older adults.  All articles were published in peer-reviewed journals and 

when necessary, textbooks were referenced to explain and clarify general concepts.  No 

restriction was placed on the year or language in which the article was originally published.  A 

total of 782 article titles were found and reviewed.  Of those, 169 full-length articles were 

collected and utilized.  The review of literature was divided into the following major sections: 1) 

older adults and 2) ergogenic aids.  Each section was further subdivided as necessary. 
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Older Adults 

  Physiology of aging.  The number of aging individuals worldwide is increasing 

exponentially.  By 2030, the number of Americans 65 years and older will nearly double to 72 

million individuals, accounting for nearly 20% of the United States population (Center for 

Chronic Disease Prevention and Health Promotion, 2013). Throughout this process, individuals 

develop functional limitations and physical ability begins to diminish even in the absence of 

discernible disease (Masoro, 1995).  However, even among the healthiest of aging individuals, 

onset of disease can and usually becomes an inherent issue.   

Early increased presence of age-related disorders is defined as “un-successful aging” 

(Aviv, Levy, & Mangel, 2003).  Chronic diseases such as obesity, cardiovascular disease, type 2 

diabetes, and even certain types of cancer become more prevalent with increasing age 

(Bouchard, Blair, & Haskell, 2012; Lakatta & Levy, 2003; Singh & Antoinette, 2004).  Estimates 

indicate 79% of older adults develop at least one chronic disease after 70 years of age (Chodosh 

et al., 2005).  Similarly, older adults experience the highest levels of musculoskeletal conditions, 

including, but not limited to sarcopenia, osteoporosis, and arthritis (Ostchega, Harris, Hirsch, 

Parsons, & Kington, 2000; Paterson & Stathokostas, 2002; Shephard, 1997).  Development of 

these conditions can predispose individuals to greater fall risk and ultimately diminished levels 

of independence (Arnold, Busch, Schachter, Harrison, & Olszynski, 2005; Carter et al., 2001; 

Henderson, White, & Eisman, 1998). 

Two physical factors affected with increased aging include skeletal muscle function 

(Buchner & De Lateur, 1991) and aerobic capacity (Fitzgerald, Tanaka, Tran, & Seals, 1997).    

When evaluating longitudinal isokinetic strength in the knee extensors and flexors, declines 

occurred at 14% and 16% per decade, respectively (Hughes et al., 2001).  Decreases in strength 
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predict all-cause mortality in older adults (Metter, Talbot, Schrager, & Conwit, 2002).  Over a 

44-year longitudinal study, individuals with the highest levels of strength demonstrated a 2.5 

times greater chance of becoming a centurion (Rantanen et al., 2012).  For both men and women, 

decreases in leg strength directly relate (r = .79) to decreases in muscle mass (Reed, Pearlmutter, 

Yochum, Meredith, & Mooradian, 1991).  As a result, older adults with decreased levels of 

skeletal muscle mass have increased risk for sarcopenia and ultimately physical impairment and 

disability (Janssen, Heymsfield, & Ross, 2002).  Other data suggest muscle mass declines at a 

lesser rate than strength, indicating amount of general muscle mass is not the issue, but that the 

quality of the remaining muscle seems to wane (Goodpaster et al., 2006).  Regardless of the 

quantity or quality of muscle available, muscular strength and specifically grip strength has been 

associated with increased longevity and quality of life.  Longitudinal data (44 year follow-up) 

from 2,239 individuals exhibit grip strength among other variables in relation to maintenance of 

physical health (Rantanen et al., 2012).  Among measures taken, grip strength was most 

significantly related to individuals maintaining independent lifestyles (Rantanen et al., 2012). 

When evaluating aerobic capacity, declines are documented at rates of 15%-20% per 

decade in individuals greater than 70 years of age (Fleg et al., 2005; Trappe, Costill, Vukovich, 

Jones, & Melham, 1996).  As older adults experience reductions in maximal aerobic capacity, 

this indicates submaximal intensity exercise will requires a higher percentage of maximal 

capacity when compared to younger counterparts (Chodzko-Zajko, Proctor, & Singh, 2009).  

These decreases also relate to increased levels of all-cause mortality (Blair et al., 1996; Keteyian 

et al., 2008; Myers et al., 2002).  With reference to maximal aerobic capacity, each increase in 

metabolic equivalent of task (MET) indicates individuals establish a 12% greater rate of survival 
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(Myers et al., 2002).  The most survival benefits associated with aerobic capacity are observed at 

a maximal capacity greater than five METs (Kokkinos et al., 2010).   

When referring to factors such as development of chronic disease, decreased 

musculoskeletal function, and diminished aerobic capacity, physical activity helps maintain 

levels of physical health (Bouchard et al., 2012).  Consistent physical activity can increase both 

life quality and expectancy through reduction of chronic disease development. Aerobic and 

resistance training increase aerobic capacity and muscle strength by 20%-30% in older adults 

(Huang, Shi, Davis-Brezette, & Osness, 2005; Lemmer et al., 2000).  Regardless of age, physical 

activity has the same effects on mechanistic properties and training adaptations.  The ability to 

maintain control of blood pressure, oxygen delivery, and heat dissipation (at moderate intensity) 

remains functional in healthy older individuals from both acute and chronic perspectives (Seals, 

Taylor, Ng, & Esler, 1994).  For older adults, maintaining a physically active lifestyle is also 

associated with an increased quality of life and ability to perform activities of daily living 

(Drewnowski & Evans, 2001; McAuley et al., 2006; Rejeski & Mihalko, 2001).  Although no 

amount of physical activity can reverse the aging process, prolonged exercise can attenuate 

levels of physical decline and risk of chronic disease.  Adults over 65 years of age can gain 

extensive health benefits from regular physical activity with the benefits continuing throughout 

the lifespan.  Certain populations of aging adults, however, are not simply content with 

maintaining general physical health. 

  Masters athletes (MA).  As the aging process continues, many individuals, termed MA, 

have a desire to continue to participate in sport-based competition.  The inauguration of the 

WMG began in Toronto, Canada in 1975 representing 32 countries and expanded to 93 countries 

during the 2011 games (World Masters Athletics, 2014).  Similar to growth on the international 
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stage, the United States Senior Games has increased from the inaugural 2,500 athletes to over 

13,000 in 2013 (National Senior Games Association, 2013).  Defining MA is a difficult task.  

MA can begin at 35 years of age and older; however, based on each individual sport, age cutoffs 

vary significantly.  Governing bodies of each sport typically set the age of MA participation 

based upon ages that elite performances are accomplished.  Sports such as swimming begin 

masters level competition at the age of 20 because world records are set at such young ages.  In 

contrast, sports such as sailing and curling begin masters competition at age 55.   

Compared to sedentary counterparts, MA perform more physical activity, spend more 

time training, and have better indicators of health (Rittweger, di Prampero, Maffulli, & Narici, 

2009).  Originally, changes in physical function and development of functional limitations were 

associated with the natural aging process. Comparing MA to sedentary age-matched populations 

has determined that many of the aging related effects are more associated with sedentary 

behavior and disuse (Coggan et al., 1990; Kasch, 1988; Tanaka & Seals, 2008; Wilmore, 1991).  

While these effects are not entirely preventable, many of these changes attenuate in MA 

competitors (Babcock, Paterson, Cunningham, & Dickinson, 1994).  More importantly to MA 

than the effects of aging is the ability to maintain and even increase physical performance.   

MA compete in a variety of sports similar to general Olympians.  As of the 2013 games, 

sports included a variety of individual (archery, badminton, bowling, golf, horseshoes, 

pickleball, racquetball, road races, shuffleboard, table tennis, tennis, track and field) and team 

(basketball, softball, volleyball) events (National Senior Games Association, 2013).  Sports 

range in physical demand and can include power, strength, aerobic, and anaerobic requirements.  

Even with intensive training performance variables decline longitudinally, but certain 

performance variables are more difficult to maintain (Ransdell, Vener, & Huberty, 2009; Trappe 
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et al., 1996). 

Muscular strength performance.  As previously described, muscular strength decreases 

throughout the aging process (Bassey et al., 1992; Fiatarone et al., 1994; Rantanen et al., 2012) 

and this declination in strength seems to be resultant of quantity and/or quality of muscle 

available (Frontera, Hughes, Lutz, & Evans, 1991).  For example, when comparing two groups 

of aging adults (age 45-54 and age 65-78) both muscle mass and muscle strength were 

significantly lower in the older age group, indicating potential issues with quality and quantity of 

muscle available.  Although absolute strength was significantly different between genders, 

differences disappeared when strength was expressed relatively to body weight.   

For trained athletes, muscular strength declines initially then maintained from ages 60-89 

with consistent training (Pollock et al., 1997).  Baker and Tang (2010) evaluated record 

performances for masters sporting events comparing results from endurance and strength-based 

events.  While performance in all sports declined with age, the fastest decrement was observed 

with weightlifting activities (Baker & Tang, 2010).  The greatest discrepancies were documented 

in strength-based events, independent of gender.  Relative performances for women during 

endurance and strength events were 85% and 52%, respectively compared to male counterparts 

(Baker & Tang, 2010).  Comparing age-related declines between traditional weightlifting and 

powerlifting events revealed both genders significantly decreased for weightlifting- (curvilinear) 

and power- (linear) based events (Anton, Spirduso, & Tanaka, 2004).  Declines in weightlifting 

performance were significantly greater than powerlifting events.  Also interesting is the 

magnitude of decline for weightlifting was greater in women, but differences in decline between 

genders disappeared when evaluating powerlifting performance (Anton et al., 2004).  Evaluation 

of MA competing in throwing events further supports the notion that strength declines with age 
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(Ojanen, Rauhala, & Hakkinen, 2007).  Competitors were divided into four groups based on age 

(40, 50, 60, and 75 years) and 28 untrained men of equal ages were used as controls.  Upper- and 

lower-body maximal strength and muscle size was significantly decreased among each group 

with advancing age, however when compared to their age-matched controls the MA were 

significantly higher in each circumstance.  These results indicate that even though maximal 

strength declines throughout the aging process, it can be maintained at a higher level than 

untrained individuals with appropriate training methods.  Furthermore, while absolute strength 

tends to attenuate throughout the lifespan, the associated effects of fatigue are similar in MA 

when compared to younger trained athletes (Louis, Hausswirth, Bieuzen, & Brisswalter, 2009).  

While MA exhibited lower maximal voluntary contractions of the knee extensors, there were no 

differences in fatigue levels after exhaustive bouts of lower-body exercise.  Ultimately, strength 

appears to decline at faster rates than power and is harder to maintain independent of gender; 

however, this appears independent to changes in fatigue.     

Regardless of event, the most exponential declines in athletic performance occur around 

the age of 75 years (Wright & Perricelli, 2008).  Currently, these aforementioned reductions in 

athletic performance are inevitable, but proper conditioning and training can attenuate declines 

compared to untrained individuals.  The most significant factors affecting the ability to maintain 

longitudinal physical performance are related to decreases in not only training volume, but 

intensity as well (Hawkins, Marcell, Jaque, & Wiswell, 2001; Hawkins & Wiswell, 2003; 

Wiswell et al., 2000; Young, Medic, Weir, & Starkes, 2008).  Moving forward, it is imperative to 

evaluate the effects of specific training techniques including exercise selection, intensity, 

duration of training sessions, frequency of training, and sport nutrition.  All of these components 
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will become important in allowing MA to continue to compete and perform at elite levels 

throughout the aging process.  

Aerobic performance.  Although aerobic performance naturally declines with advancing 

age, the ability to reach higher levels of maximal performance has increased.  During the 

inauguration of the Olympic games in 1896, record times of aerobic events such as the 1,500m 

(4:33.2) and marathon (2:54.5) have since been matched or surpassed not just by elite younger 

athletes, but individuals well past what are considered prime performance ages (Tanaka & Seals, 

2008).  The 1,500m record has been surpassed by a 60 year-old individual (4:27.7) and the 

marathon by a 73 year-old individual (2:54.5).  These records indicate that MA currently perform 

at higher levels than previous competitively active counterparts.   

Ransdell et al. (2009) examined cross-sectional performance records from cycling, 

swimming, and running events for athletes ranging from 35 to >90 years of age.  Performance in 

the 5,000m declined slightly (1% - 14%) from the ages of 35 to 45, but by 85 years, performance 

declined 98% in men and 157% in women.  Similar declines were noticed in the 10,000m (males 

= 100%, females = 195%) and marathon events (males = 172%, females = 294%).  Although 

physical decreases are visible in all competitions with age, the declines are more augmented in 

longer duration events.  Analysis of gender differences indicated that the decrease in 

performance is more dramatic among female competitors.  In all three previously reported events 

(5,000m, 10,000m, marathon), the greatest performance declines between genders were 

documented in the highest age group (≥ 85 years).  When analyzing swimming performance, 

general declines were similar, but discrepancy between genders was reversed.  The longest 

swimming event (1,500m swim) indicated that females 90 years and later declined 129% while 
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men had a greater decrease (149%).  Highest performance declines in the oldest age groups 

indicate physical ability becomes progressively harder to maintain with increasing age. 

Performance decrements are unavoidable, and gender appears to play a significant role in 

rate of decline.  After 55 years of age, female performance declines at a faster level, specifically 

in running events.  This accelerated decline in female performance levels has been supported by 

previous research (Ransdell & Wells, 1998; Spirduso, Francis, & MacRae, 2005; Tanaka & 

Seals, 2003), but there is no physiological evidence to mechanistically explain why this occurs.  

One plausible explanation is that many women currently competing at a masters level are pre-

Title IX and may not have had the same exposure to proper training techniques, nutritional 

information, facility usage, and equipment availability at high school and collegiate levels 

(Priest, 2003).  Regardless of the reason for gender differences in aerobic decline, both genders 

approach or exceed 100% around 85 years of age.  This is in concert with previous findings 

where similar levels of decline were documented in older athletes by age 80 (Ransdell & Wells, 

1998).  While it is necessary to document the rate of performance declination in MA, 

understanding the mechanisms by which these declines are attributed is necessary to 

longitudinally maintain physical ability. 

Maximal oxygen consumption (VO2max) is proposed as the most significant indicator of 

running performance in MA runners (Wiswell et al., 2000).  Masters runners (n = 168) were 

measured for VO2max, lactate threshold, and fat free mass using a longitudinal design.  Declines 

in VO2max, and fat free mass were significantly correlated to performance declines in both men 

and women, but VO2max alone indicated a stronger direct relationship to age-related changes in 

running performance (Wiswell et al., 2000).  These longitudinal declines mirror previous data in 

non-competitive older adults indicating performance diminishes 1% per year with similar 
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declines in VO2max (Spirduso et al., 2005).  Conversely, VO2max has been suggested to decline for 

MA at 0.5% per year from 40-59 with declines increasing to 2.4% per year after age 60 

(Hawkins et al., 2001).  Some of the factors contributing to these decreases in VO2
max include 

increased body fat and decreased lean mass (Korhonen, Mero, & Suominen, 2003), decreased 

myocardial contractility and cardiac output (Reaburn & Dascombe, 2008), and decreased 

maximal heart rate (Hawkins et al., 2001).  Maximal heart rate declines at a rate of 0.5 beats per 

year from age 40-49 and 1.0-1.6 beats per year from 50-70 years of age.  Longitudinal data 

indicate male MA maintaining consistent training regimens over a 20-year period decline in 

aerobic capacity 5%-7% per decade and have 50% less decline in maximal heart rate compared 

to non-athletes (Kasch et al., 1995; Pollock et al., 1997; Trappe et al., 1996).  In trained females 

(n = 49, ages 35 to 70), cross-sectional analysis suggested although VO2max decreases with 

increasing age, regular training may prevent age-related decreases in maximal heart rate (Wells, 

Boorman, & Riggs, 1992).  Trained female runners also exhibited increased cardiorespiratory 

fitness compared to untrained women.  Ultimately, the combination of reduced contractility and 

maximal heart rate along with the natural increases in body fat are the most significant factors 

related to decreased aerobic capacity. 

Anaerobic (sprint and power) performance.  Comparable to aerobic records, original 

sprint world records set at the inaugural Olympic Games by young Olympians have since been 

surpassed by masters level competitors.  The initial 100m sprint (12.0 s), 200m sprint (22.2 s), 

and 400m sprint (54.2 s) records have been exceeded by individuals of 61 years (11.7 s), 46 

years (22.1 s), and 63 years (53.9 s), respectively.  However, while performance continues to 

increase in the athletic populations, individual anaerobic capacity also experiences a magnitude 

of age-related longitudinal decline.  Perhaps most important to anaerobic activity is speed.  A 
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variety of physical (muscle size, muscle strength, reaction time) and biomechanical (stride 

frequency and length, and ground contact time) factors account for the ability to produce speed 

(Korhonen et al., 2009).  When comparing younger and older Finnish runners for sprint speed, 

athletes declined in stride length by 4% per decade with an increased ground contact time 

(Korhonen et al., 2009).  However, speed alone is not the only factor important for maintaining 

an athlete’s anaerobic capabilities.  

 One of the primary issues in maintaining sprint speed lies in an athlete’s ability to 

generate power.  Power and speed are related and regression modelling has used speed to 

significantly predict power production (Glenn, Vincenzo, Gray, & Binns, 2014; Hawley, 

Williams, Vickovic, & Handcock, 1992; Neptune, McGowan, & Fiandt, 2009).  This decrease in 

power has also been suggested to be independent of both gender and athletic event.  When 

comparing cross-sectional data from males (n = 295) and females (n = 200) competing at varied 

running distances at the World Masters Games, declines in power were similar regardless of 

gender (0.51 and 0.59 decreased watts/kg/year for males and females, respectively) or event 

(Michaelis et al., 2008).  Interestingly, when evaluating physical declines in power, a linear 

relationship exists similar to declines in aerobic-based performance (Rittweger et al., 2009).  

Although absolute power was significantly different between cycling and running sprint events, 

the relative decline from age 40 to 65 has been documented as 25.3% and 25.4%, respectively 

(Martin, Farrar, Wagner, & Spirduso, 2000; Rittweger et al., 2009).  When comparing peak 

anaerobic power between groups of MA and trained younger athletes using standing vertical 

jump performance on a force platform, MA competitors generated 50% less absolute and relative 

power compared to their younger counterparts (Grassi, Cerretelli, Narici, & Marconi, 1991).  
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These data are in concert with previous research indicating similar reductions in power by the 7th 

decade of life (Runge, Rittweger, Russo, Schiessl, & Felsenberg, 2004). 

 Declines in anaerobic capacity are similar to endurance-based declines in MA.  As with 

most other physical characteristics, these declines are not preventable, but can be attenuated with 

proper training and maintenance of training intensity.  Anaerobic performance maintenance and 

improvement in the MA requires the same commitment to training required from younger 

athletes, however some modifications may be required.  

Ergogenic Aids 

  The largest determinant of success in athletes of all ages is performance, which can be 

increased through a number of factors including training, hydration status, diet, and 

supplementation.  When focusing on supplemental ergogenic aids, their use as a method to 

enhance performance is well documented (Coleman, 1998; Eichner, 1997; Silver, 2001; Tokish, 

Kocher, & Hawkins, 2004).  From 2005-2009, the use of ergogenic aids in children, adolescents, 

and young adults has increased 10-fold (Center for Behavioral Health Statistics and Quality, 

Substance Abuse and Mental Health Services Administration, 2011).  A survey completed with 

college athletes reported 89% of university competitors were utilizing at least one type of 

nutritional aid (Froiland, Koszewski, Hingst, & Kopecky, 2004) and recent reports have 

suggested that supplement use begins as young as 11 years of age (O'Dea, 2003).  Data 

evaluating supplement use are recorded in younger athletes (Calfee & Fadale, 2006; Krowchuk 

et al., 1989; Metzl, Small, Levine, & Gershel, 2001), with minimal data available providing an 

insight to ergogenic effects in masters-level competitors.  
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 Indications of supplementation in MA are recorded as early as 1977 (Kavanagh & 

Shephard, 1977).  Various MA at the 1977 World Masters Games reported use of vitamins C, B, 

and E, along with wheat germ oil.  The majority of supplementation was documented in long-

distance running events; however, these particular supplements are not traditionally utilized for 

performance enhancement.  Recent data by Striegel et al., (2005) provide a more in-depth insight 

to the level of ergogenic aids in competitive MA.  Evaluation of 554 competitors at the 2004 

World Masters Athletic Championship Indoors revealed supplement use in 60.5% of all athletes 

(n = 230 and n = 105 for males and females, respectively).  Vitamins (35.4%), minerals (29.9%), 

exogenous protein intake (10.6%), carbohydrates (8.8%), and creatine-monohydrate (6.5%) were 

most popular among athletes (Striegel et al., 2005).  Unfortunately, comparisons of ergogenic 

aids to competition performance were not analyzed in this study.  To date, the use of 

supplemental ergogenic aids on performance benefits in older adults, and specifically MA, is 

unclear.  As of this current report, BA is legal for competition under World Anti-Doping Agency 

regulations (World Anti-Doping Agency, 2013).  Based on this, more data are needed in order to 

determine the ergogenic effects of BA on performance in MA as it could prove useful when 

preparing for competition. 

Beta-alanine.  BA supplementation has empirical support for younger individuals as an 

ergogenic aid for increasing physical performance.  It is a non-essential amino acid typically 

obtained in the diet via high-protein foods (beef, chicken, pork, and fish) and produced in the 

confines of the liver (Smith et al., 2009).  Supplementation of BA is gaining ground as an 

exercise supplement based on research indicating its effectiveness during anaerobic performance 

(Derave et al., 2007; Hill et al., 2007).  BA functions as the precursor to the cytoplasmic 

dipeptide carnosine (β-alanyhistidine), which is located in muscle tissue (Culbertson, Kreider, 
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Greenwood, & Cooke, 2010).  After acute supplementation, BA reaches peak plasma 

concentrations between 30-40 minutes post-consumption with the half-life of disappearance at 

25 minutes (Harris et al., 2006). 

  In human muscle, homeostatic carnosine content typically measures 20-30 mmol∙kg-1 of 

dry weight and intra-individual variations are only 9-15% over a three-month timeline (Baguet et 

al., 2009).  Carnosine is dependent upon the presence of the hydrolyzing enzyme carnosinase 

which breaks down carnosine into its constituent amino acids (BA and l-histadine) allowing 

them to transport to other tissues (Asatoor, Bandoh, Lant, Milne, & Navab, 1970; Perry, Hansen, 

Tischler, Bunting, & Berry, 1967).  In vivo, human muscle does not contain carnosinase and 

requires a specific ratio (2:1:1) of Na+, Cl-, and beta-amino acids for active transport into the 

tissue (Miyamoto, Nakamura, Hoshi, Ganapathy, & Leibach, 1990).  Resynthesis of carnosine in 

muscle is limited by very low intramuscular concentrations of BA as l-histadine is available in 

much larger quantities.  As a result, supplementing with exogenous BA should ultimately 

enhance muscle carnosine concentrations. 

When evaluating carnosine levels it is important to understand intramuscular differences 

based on training state and individual fiber type.  Trained muscle responds more effectively to 

BA supplementation (Bex et al., 2014) and fiber-type has been established as one of the most 

important determinants of muscle carnosine levels.  When compared to slow-twitch fibers, fast-

twitch fibers have 30-100% higher levels of carnosine based on single fiber analysis (Harris, 

Dunnett, & Greenhaff, 1998; Hill et al., 2007; Kendrick et al., 2009).  This relationship has been 

further elucidated in younger, elite aerobic and anaerobic athletes who traditionally have higher 

levels of slow-twitch and fast-twitch fibers, respectively.  Results indicated sprinters had 

significantly higher carnosine levels compared to marathon runners (Parkhouse, McKenzie, 
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Hochachka, & Ovalle, 1985).  Higher numbers of type-II fibers represent an increased ability to 

elicit power (Widrick, Trappe, Costill, & Fitts, 1996) and using BA supplementation to augment 

intramuscular carnosine levels increases power-based performance (Donovan, Ballam, Morton, 

& Close, 2012; Hoffman et al., 2014). In older adults, fiber type changes with increasing age.  As 

slow-twitch fibers are mostly unchanged, these age-related changes are primarily related to both 

decreases in size (Lexell, 1995) and number (Lexell, Henriksson-Larsen, Winblad, & Sjostrom, 

1983) of type-II fibers.  As type-II fibers are the primary sites of carnosine availability, losses of 

these particular fibers indicate age-associated losses in intramuscular carnosine availability 

(Stuerenburg & Kunze, 1999; Tallon, Harris, Maffulli, & Tarnopolsky, 2007).   

Carnosine and exercise.  During exercise, lactic acid is metabolized for energy and the 

hydrogen ion (H+) byproducts left behind serve to alter muscular pH and attenuate exercise 

performance (Westerblad, Bruton, & Katz, 2010).  The body utilizes carnosine during moderate- 

to high-intensity exercise to buffer these increased levels of H+ in an effort to maintain 

homeostatic intramuscular pH.  Due to an acid disassociation constant (pKa = 6.83) and high 

concentrations, carnosine is suggested to be a more effective buffer than bicarbonate (pKa = 

10.30) as a buffer (Eudy et al., 2013).  Although l-histidine is also a precursor to carnosine 

synthesis, it is readily available in vivo and BA becomes the rate-limiting factor associated with 

carnosine production (Bakardjiev & Bauer, 1994; Bauer, Hallermayer, Salnikow, Kleinkauf, & 

Hamprecht, 1982; Dunnett & Harris, 1999).  It has also been suggested that in vivo 

concentrations of carnosine are directly correlated (r = .97) to BA availability (Dunnett & Harris, 

1999) suggesting that increasing levels of BA will directly increase carnosine concentrations.  

Increasing the body’s carnosine levels will cause an increased buffering capacity of H+, resulting 

in delayed fatigue and increased power output (Kern & Robinson, 2011) along with minimizing 
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feelings of perceived exertion (Gross et al., 2014; Hoffman et al., 2008).  Therefore, increasing 

carnosine levels via supplementation of exogenous BA would serve to augment physical 

performance.  

However, simply increasing intramuscular carnosine concentrations via supplementation 

of BA will not increase performance for all physical measures and exercise durations.  A meta-

analysis of 15 studies spanning 57 exercise measures concluded that exercise lasting: <60 s was 

unaffected by exogenous beta-alanine supplementation, 60-240 seconds was most effective, and 

>240 seconds was not as effective as the 60-240 second range, but still significant (Hobson, 

Saunders, Ball, Harris, & Sale, 2012).  However, care must be taken when considering exercise 

measures >240 seconds in duration as long-term aerobic performance (≥ 60 minutes) does not 

seem to be affected even with 200% increases in intramuscular carnosine (Chung, Baguet, Bex, 

Bishop, & Derave, 2014).  These data indicate that for BA to have the greatest effects on 

exercise performance the exercise measures must total a minimum of 60 seconds of high-

intensity exercise, but longer lasting aerobic exercise bouts may be unaffected. 

Special populations.  Levels of intra-muscular carnosine vary amongst specific 

populations and therefore certain individuals may benefit further from exogenous intake of BA 

supplementation.  When evaluating carnosine levels between gender, animal models have 

documented the ratio as 3.5/1.0 for males and females, respectively (Penafiel, Ruzafa, Monserrat, 

& Cremades, 2004) and to a similar extent, this ratio exists in humans with age-matched females 

having naturally lower levels of carnosine compared to males (Everaert et al., 2011).  Baseline 

carnosine concentrations of the quadriceps femoris are 21% higher in healthy, young males 

compared to age-matched females (Mannion, Jakeman, Dunnett, Harris, & Willan, 1992); 

however, females experience greater relative increases in intramuscular carnosine from BA 
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supplementation compared to males (Stegen et al., 2014).  Research evaluating the efficacy of 

BA supplementation in female populations is controversial.  When supplementing female 

populations with BA it delayed onset of neuromuscular fatigue (12.6%) during submaximal 

cycling trials and increased time to exhaustion (2.5%) during maximal cycle ergometry 

performance (Stout, Cramer, Mielke et al., 2006).  Females have also improved rating of 

perceived exertion supplementing with BA compared to a placebo (Smith, Stout, Kendall, 

Fukuda, & Cramer, 2012).  However, in contrast to high intensity measures, when supplementing 

BA there were no significant effects for increasing maximal oxygen consumption compared to a 

placebo group (Smith et al., 2012; Walter, Smith, Kendall, Stout, & Cramer, 2010).  This 

indicates that BA improves high intensity exercise parameters, but not aerobic capacity in 

women. 

Although data assessing carnosine concentrations are available in older men, no data are 

currently available in older female populations concerning exercise performance.  Because 

decreased levels in carnosine concentrations are documented in both females and older adult 

populations, this indicates a potential for increased effect on exercise performance from 

supplementation of exogenous BA in older, trained female populations.  

As earlier reported, carnosine concentrations decrease with age and these decreases are 

present within both animal and human models.  In rodents, a number of studies have documented 

a decreased carnosine content of 35-50% with increasing age (Derave, Jones, Hespel, & Harris, 

2008; Johnson & Hammer, 1992; Stuerenburg & Kunze, 1999).  In humans, longitudinal data are 

unavailable, but cross-sectional evidence mirrors animal models as elderly individuals have 33-

60% lower levels of carnosine compared to younger populations (Stuerenburg & Kunze, 1999; 

Tallon et al., 2007).  When examining subjects aged 9-83 years (n = 263), significant declines in 
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carnosine concentration were observed with increasing age (Baguet, Everaert, Achten, Thomis, 

& Derave, 2012).  These data are in concert with the work of Everaert et al. (2011) indicating 

significant declines in carnosine concentrations by 47 years when compared to younger 

populations matched for physical activity.  The ability to increase carnosine levels in the aging 

population could have a significant impact of the ability to maintain physical ability in trained 

and untrained older populations. 

The cause of carnosine declines is potentially associated with decreases in 

androgens/estrogens, the decline in fiber number of slow twitch and fast twitch fibers, and the 

decline in size of type II fibers (Boldyrev, Aldini, & Derave, 2013).  The role of BA’s effects on 

carnosine concentrations and exercise performance have been reviewed in multiple 

investigations with reference to younger athletes (Artioli, Gualano, Smith, Stout, & Lancha, 

2010; Hobson et al., 2012; Sale et al., 2010; Wilson, Wilson, Zourdos, Smith, & Stout, 2010), 

but research focused on trained older adult populations is limited.  This is important as older 

adults have decreased levels of carnosine compared to younger populations and as a result, may 

experience increased benefits from BA supplementation (Everaert et al., 2011).   

Recent studies using untrained older adults with regard to BA supplementation 

demonstrate significant effects for increasing physical ability.  Stout et al. (2008) suggested 

supplementation improved intramuscular pH, therefore delaying the onset of neuromuscular 

fatigue.  Similar results were proposed by del Favero et al. (2012), that supplementation in 

healthy individuals aged 60-80 years was effective for increasing carnosine concentrations and 

subsequent exercise capacity.  When evaluating physical ability, BA increased physical working 

capacity, muscle function, and muscle quality (McCormack et al., 2013); however, other 

parameters of functional fitness (sit-to-stand, grip strength) were not increased from exogenous 
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supplementation.  These particular tasks are less than 30 s in duration and therefore, outside the 

60-240 s range suggested for maximum effects (Hobson et al., 2012).  Although BA has effects 

on increasing physical performance in untrained older adult populations, data evaluating 

effectiveness in trained older populations are unsubstantiated.  

 Levels of intra-muscular carnosine content have also been evaluated in reference to 

dietary restrictions.  Meat and fish are extremely high in carnosines’ rate limiting factor BA 

(Smith et al., 2009), and restrictions in dietary intakes of these foods may cause deficiencies in 

BA concentrations.  Males ingesting higher and lower levels of dietary BA (via animal protein) 

exhibited no differences in carnosine concentrations (Everaert et al., 2011), but when adding 

exogenous BA, individuals were able to increase muscle carnosine concentrations past 

homeostatic conditions (Baguet et al., 2009; Derave et al., 2007; Kendrick et al., 2009).  

Although no differences in carnosine concentrations exist for individuals consuming different 

levels of animal protein, long-term (> 8 years) vegetarianism has an inverse effect on muscle 

carnosine in the soleus and gastrocnemius (17% and 26% lower, respectively) compared to 

omnivores (Everaert et al., 2011).  Taken together, this implies that it takes very low doses 

and/or exogenous supplementation of BA intake to influence carnosine concentrations past 

naturally occurring levels. 

  Beta-alanine dosage.  Safe and uniform dosages of BA are not universally established, 

but recommendations have been developed based on empirical findings.  Data suggest that as the 

dose of BA increases there is a correspondent decrease in the longitudinal time needed to 

continue supplementation (Stellingwerff, Decombaz, Harris, & Boesch, 2012).  Protocols have 

been developed using doses that range from 1.6 – 6.4g per day (Stellingwerff et al., 2012).  

Increased levels of acute supplementation (> 800mg) have been documented to cause paresthesia 
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(sensation of tingling or pricking on the skin) lasting anywhere from 60-90 minutes (Harris et al., 

2006).  Although reported as uncomfortable, these effects are temporary and harmless.  For 

longitudinal designs, this has been circumvented by administering multiple 800mg doses (up to 8 

times per day) throughout the day (Kendrick et al., 2008; Kendrick et al., 2009).   

  The connection between BA dosage and performance increases remains unclear.  Meta-

analysis of BA supplementation protocols found no relationship (p = .34) between dosage 

amount and performance differences between BA and placebo groups (Hobson et al., 2012).  The 

smallest differences in effect size between BA and placebo groups were associated with the 

largest supplemental doses (Kendrick et al., 2008; Sweeney, Wright, Glenn Brice, & Doberstein, 

2010).  With respect to supplementation, discrepancies in performance benefits attribute to 

differences in subject sizes, exercise tests, and measures employed (Hobson et al., 2012).  

Further research warrants evaluation of similar measures and sample sizes with varying levels of 

BA dosing. 

Conclusion 

As competition continues to increase in masters athletics, so does the need for advanced 

training and nutritional protocols.  Research has indicated a positive benefit to the 

supplementation of BA as a method to enhance exercise performance.  Currently, no data are 

available in MA populations based on BA supplementation.  Understanding how this ergogenic 

aid effects performance in masters level competitors may create a new opportunity for these 

athletes to continue their sporting careers and perhaps reach new levels in their respective events. 
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Methodology 

Introduction 

Throughout the aging process, physical ability attenuates.  These effects are commonly 

evaluated during activities of daily living, but for the portion of the older population that 

continues participation in competitive sports, the ability to maintain athletic performance 

becomes equally important.  Nutritional supplementation is advocated as a method of increasing 

physical performance, but evidence supporting their use in MA is inconclusive.  One specific 

supplement that has attracted attention for the benefits in older adults is BA.  Currently, there 

have been no published data evaluating the effect of these supplements on physical performance 

in MA.  Therefore, the purpose of this study was to examine the longitudinal effects of BA 

supplementation on HG, TTE, TWC, and ISO in female MA cyclists. 

Subjects 

  Based on previous literature, 22 subjects (11 per group; Table 1) participated in this 

investigation (Stout, Cramer, Zoeller et al., 2006).  However, based on an expected 20% attrition 

rate, 30 females were recruited.  MA were classified as competitive masters cyclists based on 

requirements set forth by USA Cycling and World Masters Cycling.  These requirements 

necessitated that MA a) were at an age ≥ 30 years, b) not be classified as an elite cyclist or 

competed in an elite event based on Union Cycliste Internationale (UCI) standards, and c) not 

have been a team member of a registered team disciplined by the UCI.  For the purposes of this 

study, MA must also have had at least 2 years competitive cycling experience and cycle a 

minimum of 3 days per week (Halson et al., 2002).  Carnosine levels significantly decrease by 47 

years (Everaert et al., 2011) and therefore that was used as the age cutoff.  Females were utilized 

because they have naturally lower levels of intramuscular carnosine concentrations compared to 



 
 

28 

males (Everaert et al., 2011) and may further benefit from exogenous BA supplementation.  

Participants were recruited via email, fliers, and visits to local cycling clubs and organizations.  

Each participant read and signed an informed consent approved by the University’s Institutional 

Review Board prior to participation. 

Table 1.  

Initial subject demographic data 

 PLA BA p-value 

Age (years) 52.6 ± 1.20  54.0 ± 1.50 0.46 

Height (cm) 162.33 ± 2.50 163.00 ± 2.08 0.84 

Mass (kg) 68.70 ± 5.64 64.01 ± 2.82 0.47 

Body Fat (%) 32.97 ± 2.70 28.05 ± 3.88 0.31 

Time cycling (years) 5.86 ± 2.20 7.20 ± 2.12 0.67 

Distance cycled/week (km) 135.18 ± 7.88 144.76 ± 15.03 0.58 

Fast Twitch Fibers (%) 33.20 ± 3.20 41.50 ± 2.70 0.06 

Slow Twitch Fibers (%) 66.80 ± 3.20 58.50 ± 2.70 0.06 

Note. All data are expressed as mean ± se. BA = beta-alanine, PLA = Placebo. 

Significance level was set at α < 0.05. 

Experimental Design 

  This double blind, randomized study consisted of a 28-day supplement intervention using 

BA as the experimental group and dextrose as the placebo group (PLA).  Each participant 

reported to the Human Performance Lab on the University of Arkansas campus for all trials.  

Participants completed baseline testing on two separate days.  Day one consisted of signing an 

informed consent and completion of a health history questionnaire to ensure all participants met 

inclusion criteria.  Height and mass measurements were assessed using a stadiometer and weight 

beam eye-level scale, respectively (Detecto, Webb City, MO).  Body fat, lean mass analysis 

(dual-energy x-ray absorptiometry; DXA), and determination of aerobic capacity (VO2peak) were 

also assessed on the initial visit.  Day two consisted of handgrip strength (HG), time to 

exhaustion evaluation (TTE) at 120% of the participant’s initial VO2peak values, and dominant leg 
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ISO, in respective order.  During the supplementation period, participants ingested the assigned 

supplementation (PLA = 8g dextrose; BA = 800mg + 8g dextrose) 4 times/day throughout the 

28-day period.  HG, TTE, and ISO were reconducted at the 7-, 14-, 21-, and 28-week intervals 

before reassessment of VO2peak and DXA on the final trial.  Testing protocols were completed in 

the same order for all participants and at least 24 hours were allotted between the VO2peak session 

and HG, TTE, and ISO session at the baseline and 28th day. 

Controls 

  To ensure changes during each supplementation trial were not based on training or 

detraining effects, participants maintained the same training intensity throughout the study and 

completed weekly exercise logs at the baseline, 7th, and 21th day.  Exercise logs were evaluated 

between groups to ensure results were not based on increases in training intensity.  Food logs 

were distributed to all participants at baseline, 7th, and 21th day to be completed on two non-

consecutive weekdays and one weekend day (Smith et al., 2009).  To account for dietary 

consumption on testing days, participants fasted 3-hours prior to each trial (Stout, Cramer, 

Zoeller et al., 2006).  All participants had never ingested exogenous, supplementary BA and 

were instructed to refrain from vigorous exercise, alcohol, and caffeine 24-hours preceding each 

trial.  Subjects replicated the same attire for all trials and wore clothes/shoes in which they 

normally cycled.   

Supplementation Protocol 

  After the familiarization trial, subjects were randomly assigned to either the PLA or BA 

groups.  The BA provided for this investigation was third party lab tested for supplement purity 

and authenticity (Powder City, York, PA).  To maintain a double-blind design, a separate 
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investigator completed subject supplement assignments.  Conditions included PLA (8 g dextrose 

per day) or BA (800mg BA + 8 g dextrose per day).  Individual doses of 800 mg were used to 

circumvent the potential onset of paresthesia occurring (Kendrick et al., 2008; Kendrick et al., 

2009), which would ultimately remove the double-blind design.  Participants were instructed to 

consume supplement doses in 16 ounces of water (Stout, Cramer, Mielke et al., 2006). 

Aerobic Capacity Testing Protocol (VO2peak) 

  At the initial and final testing trials, all participants performed a graded exercise test 

(GXT) on a Velotron Dynafit Pro Ergometer electronically braked cycle ergometer (Racer Mate, 

Seattle, WA) to determine VO2peak.  Prior to testing, seat and handlebar preferences were 

established for each individual comfort and were recorded to be used for all future testing 

sessions.  Subjects warmed-up at 50 W for 5 minutes at a self-selected cadence.  Upon 

completion of the warm-up, the resistance increased 25 W in 2-minute intervals until the 

participant could no longer maintain 60 revolutions per minute (RPM).  VO2peak was measured 

using breath-by-breath analysis and analyzed via open-circuit spirometry (PARVO Medics, 

Sandy, UT).  The highest 15 second VO2peak value recorded was used as the maximal 

measurement provided it met at least two of the following criteria: a) a plateau in heart rate or 

heart rate is within 10% of the age predicted maximum, b) a plateau in VO2peak (an increase of no 

more than 150 ml∙min-1), and/or c) the subjects RER value reached > 1.15 (Smith et al., 2009).  

Test retest reliability (ICC = .98) and coefficient of variation (5.18%) for this protocol have been 

previously demonstrated (Smith et al., 2009). 

Handgrip Testing (HG) 

 HG testing determined overall strength (Lauretani et al., 2003; Rantanen, Era, 

Kauppinen, & Heikkinen, 1994).  All HG measurements were administered by a trained 
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technician and measured in kg using a handheld dynamometer (Creative Health Products, Ann 

Arbor, MI).  All measurements were performed on the dominant hand with the subject standing, 

arm down at the side, wrist in neutral position, and interphalangeal joint of the index finger 

maintained at 90°.  Participants maximally squeezed the handle for 5 seconds as standard 

encouragement was provided.  The test was repeated three times on the dominant hand with 60 s 

rest between trials.  The greatest of the three trials was used as the final strength measurement.  

High test-retest reliability (ICC = .95) for the HG strength test has been previously recorded 

(Bohannon & Schaubert, 2005). 

Time to Exhaustion Protocol (TTE) and Total Work Completed (TWC) 

 Prior to TTE testing, the predetermined seat height and handlebar settings were adjusted 

for each participant.  After completing the same warm-up as used for the GXT, subjects 

completed a TTE at 120% of their previously recorded VO2peak (Simmonds, Minahan, & 

Sabapathy, 2010; Weber & Schneider, 2001).  TTE was defined as the time (s) participants could 

maintain intensity above 40 RPM pedaling cadence (Astorino, Robergs, Ghiasvand, Marks, & 

Burns, 2000; Vivodtzev et al., 2011).  Reliability and coefficient of variation for TTE protocol 

have been reported as ICC = .71 and 3.8%, respectively (Smith et al., 2009).  Lactate 

measurements were taken from the fingertip (Tobias et al., 2013) at rest, immediately after TTE 

cessation, and after a 20-minute seated recovery period and analyzed immediately (Accutrend 

Lactate Monitor, Indianapolis, IN).  TWC was calculated by multiplying time (s) during the TTE 

test and the power output (W), divided by 1,000 to get the final product in kilojoules. 
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Isokinetic Lower-body Torque Assessment (ISO) 

 The Biodex system III Isokinetic Dynamometer (Biodex Medical, Inc., Shirley, NY) 

measured ISO using a 50-repetition protocol with 240º eccentric/180º concentric movement 

parameters.  Participants sat upright with the dynamometer axis of rotation aligned with the axis 

of rotation of the dominant knee. Secured belts stabilized the trunk, pelvic girdle, and thigh to the 

Biodex chair to prevent additional body movement. The chair and dynamometer settings were 

recorded to ensure positioning for all testing remained the same between trials. Before testing, 

the dominant limb was weighed by the isokinetic dynamometer so that it could be added and 

subtracted from torque values when working against and with gravity, respectively.  Subjects 

fully extended and flexed the knee and to work maximally during the 50-repetition testing 

period. To ensure maximal effort was given during the evaluation, strong verbal encouragement 

was provided throughout the testing sessions (Andreacci et al., 2002).  Calibration of the 

dynamometer was performed according to manufacturer specifications. 

 Blinding Efficacy and Side Effects 

  Upon completion of the supplementation intervention, subjects were asked which 

supplement they believed they had consumed.  Subjects were also asked if they experienced any 

side effects throughout the course of the study related to the supplement ingested. 

Statistical Analyses 

  SAS version 9.4 (Cary, IN.) was used to analyze all data.  To assess the effects of 

supplementation on performance and physiological variables between groups, investigators 

utilized separate one-way within, one-way between repeated measures ANOVAs (group [BA vs. 

PLA] x time [baseline, 7th, 14th, 21st, 28th day]) for each variable measured.  For statistically 
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significant F-scores, simple main effects were analyzed with one-way factorial ANOVAs for 

each time point.  An alpha level of p < .05 defined significance.  Fisher’s exact test evaluated 

subject ability to determine supplement ingestion throughout the study.  When appropriate, effect 

size (η2) was calculated based on the recommendations by Cohen (Cohen, 1988).  All data are 

reported as mean ± se.   
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Results 

Controls 

 There were no initial significant differences between groups for demographic variables or 

aerobic capacity (table 2).  When examining dietary logs between BA and PLA, no significant 

differences were observed for overall total kilocalorie intake or individual macronutrient 

breakdowns (carbohydrate, fat, protein) within or between groups at any time point (table 3). 

Table 2.  

Aerobic capacity between groups 

 Pre 
p-

value 
Post 

p-

value 

 BA PLA  BA PLA  

Vo2peak 

(l/min) 
2.28 ± 0.65 2.31 ± 0.49 .90 2.45 ± .45 2.28 ± .47 .41 

       

Vo2peak 

(ml/kg/min) 
39.13 ± 8.46 36.51 ± 8.27 .47 39.82 ± 8.88 36.15 ± 7.84 .32 

       

Note. All data are expressed as mean ± se.  BA = beta-alanine, PLA = placebo.  No 

significant differences were observed over time between or within groups from the initial 

to post-testing trials. Reported p-values indicate between group analyses.  Significance 

level was set at α < 0.05. 
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Table 3.  

Dietary intake values for supplementation groups  

PRE BA PLA 

Total Kilocalories 1802.10 ± 153.18 2189.71 ± 143.94 

Carbohydrates 182.82 ± 18.63 249.30 ± 20.59 

Fats 69.38 ± 6.68 79.96 ± 7.41 

Protein 90.15 ± 8.02 96.96 ± 8.17 

MID   

Total Kilocalories 1752.11 ± 104.01 1889.01 ± 160.51 

Carbohydrates 175.70 ± 17.23 224.19 ± 28.10 

Fats 75.41 ± 6.85 66.78 ± 7.23 

Protein 87.96 ± 7.64 85.59 ± 5.54 

POST   

Total Kilocalories 1770.83 ± 165.68 1897.91 ± 186.04 

Carbohydrates 187.20 ± 17.76 227.81 ± 27.08 

Fats 69.08 ± 7.20 68.66 ± 9.36 

Protein 100.31 ± 8.60 88.52 ± 8.18 

Note. All data are expressed as mean ± se.  BA = beta-

alanine, PLA = Placebo, PRE = pre-testing, MID = 14th day, 

POST = 28th day.  No differences were observed for dietary 

intake between groups or over time.  Significance level was 

set at α < 0.05. 

 

Performance Variables 

 Time to exhaustion (TTE).  No initial significant differences existed between groups at 

the pre-testing time point [F(1,22) = 2.301, p = .15].  Repeated measures ANOVA revealed a 

significant interaction between groups throughout the 28-day intervention (p = .002).  Follow-up 

univariate analysis indicated that by the 28th day, BA significantly [F(1,22) = 5.706, p = .03] 

increased TTE (23%) compared to PLA (1%); however, no differences were observed for any of 

the intermittent time points (Figure 1a). 

 Total work completed (TWC). Similar results were observed for TWC via repeated 

measures ANOVA (p = .001) in reference to performance increases (Figure 1b).  No initial 

significant differences were observed between groups [F(1,22) = .217, p = .65] and BA did not 
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elicit increases during the intermittent time points.  However, at the 28th day, TWC significantly 

increased [F(1,22) = 5.649, p = 0.28] for BA compared to the PLA (21% vs. 2%, respectively). 

 
Figure 1a. Time to exhaustion and b. Total work completed between beta-alanine (BA) and 

placebo (PLA) groups after 4 weeks of supplementation. *Indicates significant differences 

between BA and PLA (p < .05). 

 

 

 Isokinetic lower-body exercise (ISO). There were no initial significant differences 

between groups for all flexion and extension variables measured during ISO (Table 4, all p > 

.05).  Repeated measures ANOVA revealed that there was a significant group by time interaction 

during the flexion component for total work completed during the final third of exercise (p = 

.008) and the extension component for average peak torque generated throughout the test (p = 

.012).  When comparing BA and PLA, at the 28th day, average peak torque (F = 7.398, p = .014; 

8.1% vs 1.4% change, respectively) and total work completed during the final third of exercise 

[F(1,22) = 5.942, p = .024; 24.0% vs -16.8% change, respectively] significantly increased 

(Figure 2a, b, respectively).  No differences existed for any variable during the intermittent time 

points (all p > .05). 
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Table 4.  

Performance during the lower-body isokinetic strength evaluation 

 Flexion Extension 

 BA PLA BA PLA 

Pre      
Peak Torque (N·m) 35.3 ± 3.0 34.8 ± 2.2 68.2 ± 2.8 69.2 ± 5.4 

Time to Peak Torque (m/s) 476.7 ± 47.3 342.7 ± 71.0 302.0 ± 7.2 259.1 ± 23.2 

Work/Body Weight (%) 18.1 ± 2.8 18.9 ± 2.2 49.9 ± 2.2 50.5 ± 3.6 

Total Work Completed (J) 1043.7 ± 201.9 1196.3 ± 142.0 3451.7 ± 114.6 3459.4 ± 288.8 

Work During the first 3rd (J) 436.3 ± 96.8 503.2 ± 68.5 1384.5 ± 70.2 1466.4 ± 130.6  

Fatigue (%) 32.4 ± 6.9 39.4 ± 5.9 35.1 ± 2.9 42.6 ± 2.4 

Average Power (W) 34.3 ± 6.7 39.0 ± 4.9 100.1 ± 3.7 97.9 ± 7.6 

Day 7     

Peak Torque (N·m) 38.6 ± 3.2 38.9 ± 4.2 70.9 ± 3.4 73.0 ± 6.0 

Time to Peak Torque (m/s) 488.0 ± 43.5 426.4 ± 50.1 289.1 ± 11.7 279.1 ± 27.7 

Work/Body Weight (%) 20.3 ± 2.5 20.8 ± 1.9 51.6 ± 2.8 49.2 ± 2.8 

Total Work Completed (J) 1205.0 ± 195.6 1292.7 ± 148.4 3471.0 ± 159.3 3430.5 ± 260.8 

Work During the first 3rd (J) 522.2 ± 100.0 589.2 ± 76.2 1457.3 ± 81.0 1511.4 ± 124.5 

Fatigue (%) 37.3 ± 5.2 49.2 ± 5.0 40.2 ± 2.0 47.2 ± 1.6 

Average Power (W) 41.1 ± 7.0 43.0 ± 5.1 101.4 ± 5.0 99.5 ± 7.4 

Day 14     

Peak Torque (N·m) 37.2 ± 3.4 36.5 ± 2.6 74.9 ± 3.8 78.8 ± 5.3 

Time to Peak Torque (m/s) 420.0 ± 45.4 409.0 ± 63.9 281.0 ± 21.5 280.0 ± 18.2 

Work/Body Weight (%) 19.8 ± 2.5 21.2 ± 1.6 48.5 ± 3.2 54.5 ± 3.3 

Total Work Completed (J) 1207.2 ± 163.2 1288.3 ± 119.3 3492.0 ± 179.9 3600.7 ± 291.3 

Work During the first 3rd (J) 537.4 ± 88.8 429.7 ± 582.6 1453.8 ± 90.2 1596.4 ± 129.5 

Fatigue (%) 38.5 ± 6.3 50.8 ± 3.3 39.5 ± 1.8 47.8 ± 1.1 

Average Power (W) 42.1 ± 6.2 43.5 ± 4.2 104.4 ± 5.1 104.8 ± 8.0 

Day 21     

Peak Torque (N·m) 33.2 ± 1.9 40.0 ± 3.3 71.2 ± 2.0 72.7 ± 5.4 

Time to Peak Torque (m/s) 483.8 ± 40.5 342.0 ± 57.6 288.9 ± 13.7 275.9 ± 21.0 

Work/Body Weight (%) 19.7 ± 1.6 22.8 ± 2.5 50.4 ± 1.9 50.8 ± 2.8 

Total Work Completed (J) 1084.6 ± 106.7 1131.1 ± 171.2 3381.1 ± 86.8 3510.0 ± 272.0 

Work During the first 3rd (J) 467.2 ± 48.2 530.1 ± 78.8 1419.9 ± 26.4 1497.6 ± 123.0 

Fatigue (%) 38.0 ± 7.3 52.3 ± 4.2 40.9 ± 1.8 47.0 ± 1.9 

Average Power (W) 37.2 ± 4.6 42.1 ± 4.9 100.7 ± 4.0 96.9 ± 6.6 

Day 28     

Peak Torque (N·m) 40.0 ± 3.1 36.4 ± 1.7 74.9 ± 3.0 75.0 ± 5.0 

Time to Peak Torque (m/s) 415.0 ± 71.0 336.0 ± 50.1 270.9 ± 16.6 268.0 ± 18.4 

Work/Body Weight (%) 21.6 ± 1.7 21.5 ± 1.73 51.3 ± 1.9 52.6 ± 3.2 

Total Work Completed (J) 1218.8 ± 150.9 1222.8 ± 108.5 3378.6 ± 108.3 3379.7 ± 224.3 

Work During the first 3rd (J) 493.3 ± 78.4 563.6 ± 51.6 1456.5 ± 61.7 1525.6 ± 113.1 

Fatigue (%) 22.3 ± 15.9 51.3 ± 4.8 43.8 ± 1.9 49.4 ± 1.7 

Average Power (W) 42.7 ± 5.8 40.7 ± 3.8 102.6 ± 3.8 98.9 ± 5.9 

Note. All data are expressed as mean ± se.  BA = beta-alanine, PLA = Placebo, PRE = pre-testing.  

All measurements were taken from the subject’s dominant limb.  No differences were observed 

between or within groups at any time point (all p > .05). 
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Figure 2a. Average peak torque and b. total work completed during the final third of exercise 

between beta-alanine (BA) and placebo (PLA) groups after 28 days of supplementation. 

*Indicates significant differences between BA and PLA (p < .05).



Handgrip strength.  Handgrip strength was not affected by supplementation (Table 5).  Repeated measures ANOVA indicated there 

were no group by time interactions throughout the course of the 28-day intervention [F(4,80) = 0.62, p = .65]. 

Table 5.  

Handgrip strength between groups through the 4-week supplementation intervention 

 Pre Day 7 Day 14 Day 21 Day 28 

 BA PLA BA PLA BA PLA BA PLA BA PLA 

Average 

Grip (kg) 
27.8 ± 1.1 28.6 ± 1.8 27.6 ± 1.3 28.6 ± 1.6 28.0 ± 1.3 28.5 ± 1.9 27.6 ± 1.1 27.8 ± 1.7 27.4 ± 1.3 28.3 ± 1.6 

           

Maximal 

Grip (kg) 
29.1 ± 1.2 29.8 ± 1.8 28.9 ± 1.2 29.7 ± 1.7 29.3 ± 1.1 29.5 ± 1.9 28.5 ± 1.1 28.7 ± 1.6 28.4 ± 1.2 29.1 ± 1.7 

Note. All data are expressed as mean ± se.  BA = beta-alanine, PLA = Placebo, PRE = pre-testing.  No differences existed between or within 

groups at any time point (all p > .05).  Significance level was set at α < .05. 
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Physiological Variables 

 Lactate.  No significant differences existed between groups for blood lactate levels at the 

rest, immediate post, or 20-minute rest intervals at pretesting (all p > .05).  Repeated measures 

ANOVA revealed lactate measures taken at rest (p = .96) and immediately after completion of 

the TTE test (p = .13) were not significantly different between BA and PLA over the course of 

the intervention.  However a significant group by time interaction (p = .01) was observed 

between groups for lactate levels after the 20-minute rest interval (Figure 3).  Univariate analyses 

indicated that lactate was significantly lower [F(1,22) = 4.700, p = .04] for BA when compared 

to PLA (24%) by the 28th day, although there was a trend for significance by the 21st day 

[F(1,22) = 4.115, p = .056].  Effect sizes for the 21st and 28th day were η2 = .19 and η2 = .17, 

respectively. 

 
Figure 3. Lactate rates 20 minutes after completion of time to exhaustion evaluation between 

beta-alanine (BA) and placebo (PLA) groups after 28 days of supplementation.  By the 21st day, 

as trend for significance was observed between groups (p = .056). *Indicates significant 

differences between BA and PLA (p < .05).  
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Body Composition 

 Body composition (regional and total) was not affected by supplementation (Table 6).  

Repeated measures ANOVA indicated there were no group by time interactions throughout the 

course of the intervention (all p > .05). 

Table 6.  

Body composition between groups after supplement intervention 

 PLA BA 

 Pre Post Pre Post 

L Arm BF (%) 30.76 ± 3.29 31.52 ± 3.62 24.38 ± 4.11 24.05 ± 3.65 

L Leg BF (%) 36.87 ± 2.45 37.06 ± 2.74 32.15 ± 3.74 31.08 ± 3.30 

L Trunk BF (%) 32.56 ± 2.94 33.23 ± 3.35 27.29 ± 4.25 25.75 ± 3.74 

L Total BF (%) 33.00 ± 2.70 33.44 ± 3.05 27.96 ± 3.86 26.77 ± 3.40 

R Arm BF (%) 30.78 ± 3.29 31.49 ± 3.62 24.33 ± 4.10 24.05 ± 3.64 

R Leg BF (%) 36.90 ± 2.45 37.06 ± 2.74 32.17 ± 3.74 31.12 ± 3.30 

R Trunk BF (%) 32.85 ± 2.98 33.25 ± 3.35 27.32 ± 4.25 25.77 ± 3.73 

R Total BF (%) 32.97 ± 2.70 33.53 ± 3.05 28.12 ± 3.88 26.79 ± 3.38 

Arms Total BF (%) 30.77 ± 3.28 31.51 ± 3.61 24.35 ± 4.11 24.05 ± 3.64 

Legs Total BF (%) 36.88 ± 2.45 37.05 ± 2.75 32.15 ± 3.73 31.11 ± 3.30 

Trunk Total BF (%) 32.57 ± 2.93 33.24 ± 3.35 27.30 ± 4.25 25.76 ± 3.73 

Android BF (%) 36.43 ± 3.69 36.37 ± 3.95 28.74 ± 4.71 27.70 ± 4.46 

Gynoid BF (%) 41.65 ± 2.13 41.29 ± 2.51 36.10 ± 3.67 35.95 ± 3.20 

Total BF (%) 32.97 ± 2.70 33.48 ± 3.05 28.05 ± 3.88 26.78 ± 3.39 

Note. All data are expressed as mean ± se.  BA = beta-alanine, PLA = placebo, L = 

Left, R = Right, BF = Body Fat.  No significant differences were observed over 

time between or within groups from the initial to post-testing trials.  Significance 

level was set at α < .05. 

 

Blinding Efficacy and Side Effects 

 Fisher’s exact test indicated the subjects were unable to accurately assess which 

supplement they had consumed based on a 2 (supplement guess) x 2 (accuracy) analysis (p = 

.31).  Accurate guesses for the BA, and PLA groups were recorded as 23% and 32%, 

respectively.  Only one subject reported feelings of paresthesia throughout the course of the 

intervention.  All analyses were conducted without and with the subject experiencing side effects 
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during the trials.  No changes were detected for any analysis and as a result, the subject was 

included in the final statistical models.  One subject was forced to drop out due to repeated 

headaches, which she believed was related to the supplement she was ingesting.  At the 

completion of the study, it was established that she was in the PLA group and her data has not 

been included in the final analyses. 
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Discussion 

The purpose of this study was to examine the longitudinal effects of BA supplementation 

on HG, TTE, TWC, and ISO in female MA cyclists.  These are the first data evaluating the 

ergogenic effects of BA on performance measures in MA, much less in females.  The use of BA 

to increase intramuscular carnosine plays an important role during exercise (Sale et al., 2010) 

and as there is an increased reliance on buffering systems during high-intensity exercise, 

carnosine becomes an integral component for improving performance (Hobson et al., 2012).  

Baseline levels of intra-muscular carnosine vary amongst specific populations indicating certain 

individuals may experience enhanced effects from exogenous BA supplementation.  When 

comparing intramuscular carnosine levels between males and females, a 3.5:1.0 ratio is observed 

respectively between genders (Everaert et al., 2011).  Females also require lower levels of BA 

supplementation to obtain similar relative increases in carnosine compared to males (Stegen et 

al., 2014).  In women, BA increases TTE (Stout, Cramer, Mielke et al., 2006) and decreases 

feelings of perceived exertion (Smith et al., 2012).  These data, taken together with the fact that 

carnosine loading is further augmented in trained muscles (Bex et al., 2014), indicates trained 

females may be more sensitive to BA supplementation in reference to increasing intramuscular 

carnosine concentrations. 

Time to Exhaustion (TTE) and Total Work Completed (TWC) 

Results from this investigation support this concept as female MA significantly increased 

TTE and TWC during cycling after 4 weeks of BA supplementation compared to controls.  

Previous literature has evaluated the effects of BA supplementation on cycling performance (Hill 

et al., 2007; Smith et al., 2009).  Initial work concluded that exogenous ingestion of BA 

increased total work completed 13% after 4 weeks of supplementation with an additional 3% 
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increase after a total of 10 weeks (Hill et al., 2007).  These performance increases were 

suggested to be the result of increased carnosine concentrations at each time point (59% and 

80%, respectively).  Smith et al. (2009) further evaluated the use of BA to increase cycling 

performance with similar findings.  Vo2peak, TTE, and TWC all significantly increased after 

longitudinal supplementation, potentially due to the increased buffering capacity from increased 

carnosine concentrations.  However, it is important to note that the results from Hill (2006) and 

Smith (2009) were collected only in males and it cannot be generalized that females respond 

similarly to BA supplementation.   

Cycling performance data involving younger females have suggested similar results as 

compared to males.  After 28 days of BA supplementation, significant increases were observed 

for working capacity at the onset of fatigue (14%), ventilatory threshold (13%), and TTE (3%) 

when compared to subjects supplementing with a placebo (Stout, Cramer, Mielke et al., 2006).  

Although the dipeptide was not measured directly, these results were suggested to be the result of 

increased carnosine concentrations ultimately resulting in an enhanced buffering capacity.  

Results from the present investigation also observed significant increases in TTE and TWC; 

however, these are the first data to evaluate these performance benefits in MA.  The female MA 

participating in this study significantly increased TTE (23%) and TWC (21%) when compared to 

age-matched controls.  These increases are markedly higher compared to previous literature and 

may be an indication that older females present an ideal population for benefits from longitudinal 

supplementation.  However, it must be noted that this study utilized a TTE evaluation at 120% of 

the subject’s Vo2peak while earlier studies used either the time exercised during a GXT (Stout, 

Cramer, Mielke et al., 2006) or an intensity of 110% Vo2peak (Smith et al., 2009).  Therefore, it 

cannot be ascertained whether these elevated increases from BA supplementation are a direct 
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reflection of the population tested or if the type of evaluation also had an effect on performance 

outcomes.  Future research needs to be conducted in female MA to determine overall efficacy of 

BA supplementation for athletic improvements in comparison to younger females or age-

matched males. 

Isokinetic Strength Evaluation (ISO) 

Previous literature has evaluated the effects of ergogenic aids such as creatine-

monohydrate (Gilliam, Hohzorn, Martin, & Trimble, 2000) or amino acids (Williams, van den 

Oord, Sharma, & Jones, 2001) as methods to increase isokinetic exercise performance although 

no significant improvements occurred in performance variables.  BA has also been previously 

examined as an aid to increase isokinetic strength with similar non-significant results (Kendrick 

et al., 2008); however, these data were collected in younger, untrained males.  In the current 

investigation, similar to cycling performance variables, female MA experienced significant 

increases in lower-body isokinetic exercise performance.  After the 28-day supplementation 

intervention, subjects consuming BA increased average peak torque (8%) and total work 

completed during the final third of exercise (24%) compared to age-matched controls consuming 

PLA. 

Average peak torque is the overall average of the peak torque measurements from each 

repetition performed throughout the isokinetic testing protocol.  Cyclists consuming BA were 

able to maintain a higher peak torque for each repetition compared to PLA.  Cyclists are 

constantly pedaling throughout competition and this pedaling intensity increases near the race’s 

end (Andez-Garcia, Perez-Landaluce, Rodriguez-Alonso, & Terrados, 2000).  The ability to 

generate increased peak torque during not only an individual repetition, but throughout multiple 
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pedaling repetitions leading to the finish could potentially lead to an increase in performance 

times.  Work completed during the final third of exercise also significantly increased after 4 

weeks of BA supplementation, indicating female MA were able to produce more work during the 

latter component of ISO.  Similar to average peak torque, this is also important for cyclists as 

they near the end of a race and are attempting to hold or advance in finishing position.  The 

ability to produce more work towards the end of a race may also potentially allow competitors to 

increase performance times due to increased sprinting ability.   

When examining exercise performance, increases in TTE and TWC are directly in line 

with previous literature indicating BA supplementation increases performance during high-

intensity exercise (Hobson et al., 2012); however, the increases in isokinetic exercise indices are 

unique to the current investigation.  Regardless of exercise assessment, increases in performance 

are most likely due to an increased buffering capacity directly related to elevated carnosine 

concentrations (Sale et al., 2010).  BA supplementation directly increases intramuscular 

carnosine (Dunnett & Harris, 1999), which ultimately increases the ability to remove byproducts 

(H+) of lactate metabolism (Culbertson et al., 2010).  Although carnosine was not directly 

measured in this investigation, it can be theorized that increases in the dipeptide from exogenous 

BA consumption was responsible for the increases in cycling and isokinetic exercise capacity.  

However, based on initial gender decreases and natural age-related declines (Everaert et al., 

2011), female MA represent a population that may be more sensitive to increases in 

intramuscular carnosine based on BA supplementation.  As a result, it is important future 

investigations evaluate these how these increases compare to younger female and age-matched 

male counterparts. 
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Isometric Handgrip Strength (HG) 

Although indices of cycling and isokinetic strength performance improved via 

longitudinal BA supplementation, there were no significant effects on grip strength among 

female MA.  It has been proposed that increases in intramuscular carnosine can have beneficial 

physiological effects on exercise outside of increased buffering capacity (Hobson et al., 2012).  

One of these effects is an increase in Ca+ sensitivity of the muscle fibers potentially leading to 

greater force of contraction (Dutka & Lamb, 2004).  However, this did not relate to increases in 

handgrip strength at any time point during the intervention.  This may have been because the 

evaluation was not long enough to illicit the onset of fatigue and future investigations should 

employ longer-duration isometric evaluations (60-240 s) when examining this component of BA 

supplementation. 

Lactate Accumulation and Clearance 

Although BA supplementation increased various indices related to exercise performance, 

this was independent from changes in peak lactate accumulation immediately after completion of 

TTE.  Previous literature evaluating peak lactate accumulation are equivocal.  Although 

numerous studies indicate BA has no effect on peak lactate accumulation (Baguet, Koppo, 

Pottier, & Derave, 2010; Kern & Robinson, 2011; Van Thienen et al., 2009), other investigations 

have proposed otherwise (Ghiasvand et al., 2012; Tobias et al., 2013).  However, regardless of 

peak lactate accumulation, it is important to note these investigations did not measure the effects 

on lactate clearance during recovery.   

When investigating lactate clearance, studies involving BA supplementation have 

measured blood lactate 5-minutes after completion of high-intensity exercise (Sale et al., 2011; 
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Tobias et al., 2013). Although Sale et al. (2011) observed no significant differences in lactate 

clearance when compared to subjects consuming PLA, Tobias et al. (2013) determined that BA 

supplementation resulted in reduced levels of lactate clearance after 28 days of supplementation.  

As it can take an hour or more to return blood lactate to baseline levels (Karlsson, 1971), a five-

minute measure may not be appropriate to determine the efficacy of BA on post-exercise lactate 

clearance.  In the current study, blood lactate was 24% lower in BA 20 minutes after completion 

of TTE compared to PLA.  From a practical point of view, these findings translate into attractive 

implications for athletes during competitive races or events.  During sanctioned competition, 

cyclists reach higher levels of exertion during elevated climbs or intermittent sprints when 

pulling a team.  Throughout a longer-duration event (i.e. century rides), cyclists may be forced to 

endure multiple high-intensity bouts which go beyond steady-state exercise (Andez-Garcia et al., 

2000; Rodriguez-Marroyo, Garcia-Lopez, Juneau, & Villa, 2009) leading to elevated lactate 

accumulation (Gladden, 2004; Wasserman, Beaver, & Whipp, 1986).  As increased carnosine 

levels lead to increased buffering capacity, this may constitute an improved lactate clearance 

after the athlete returns to a steady-state pace, ultimately leading to improved performance times. 

Limitations 

 The results of this study are based on the premise that performance increases are directly 

related to increases in intramuscular carnosine concentrations; however, carnosine was not 

directly measured in this investigation.  Several recent studies have indicated significant 

increases in carnosine concentrations based on at least 28 days of BA supplementation (Hill et 

al., 2007; Kendrick et al., 2009) and this study utilized dosing strategies previously reported to 

be sufficient for these increases to occur (Hobson et al., 2012).  This indicates these increases in 

performance are related to elevated intramuscular carnosine levels; however, this cannot be 
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confirmed based on this investigation.  Other limitations included the inability to directly control 

dietary intake and exercise activity.  Although subjects reported maintenance of regular training 

programs and no differences existed between groups for total kilocalorie or macronutrient 

intakes throughout the study, this is reliant on subject honesty and accurate recordings.  
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Conclusion 

 In this investigation, the first data are presented evaluating the effects of BA on exercise 

performance in female MA.  Four weeks of supplemental BA increased cycling TTE and TWC 

along with increased rate of lactate clearance after recovery.  During ISO, average peak torque 

and work completed during the final third of exercise were also increased from exogenous BA 

consumption when compared to age-matched controls consuming PLA.  These results have 

practical applications for cyclists near the end of competition when finishing time and the ability 

to maintain high-intensity exercise are critical for resultant performance times and ultimately 

race placement.   

It is hypothesized that these performance increases are a direct result of increased 

intramuscular carnosine concentrations; however, as carnosine was not directly measured in this 

study this cannot be confirmed.  Older females have naturally lower levels of carnosine 

concentrations compared to age- or gender-matched counterparts and taken together with the fact 

that trained muscle is more sensitive to carnosine increases, this indicates female MA may 

experience elevated increases from BA supplementation.  In order to determine the efficacy of 

BA supplementation in female MA, future research should investigate the direct effects of BA 

supplementation on intramuscular carnosine concentrations. 
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INFORMED CONSENT 

Title:  The Longitudinal Effects of Beta-Alanine Supplementation on Isometric Strength, 

Time to Exhaustion, and Lower-Body Isometric Torque in Female Masters Athlete Cyclists 

 

Investigator(s): Jordan M. Glenn & Michelle Gray      Ro Windwalker, CIP 

              University of Arkansas              IRB Coordinator 

                College of Education and Health Professions Office of Research Compliance 

    Dept. of Health, Physical Education, and Recreation     210 Administration Bldg. 

              155 Stadium Drive-HPER 321Q                        University of Arkansas 

   479-575-6638                Fayetteville, AR 72701 

                                              479-575-2208 

                                   irb@uark.edu  

 Description:  The purpose of this study is to evaluate the ability of beta-alanine to increase 

performance during handgrip, timed cycling, and lower-body power tests.  This study involves a 

4-week supplementation period in which you will receive either beta-alanine or a placebo to 

consume with 16oz of water each day for the 4-week period.  In total you will be asked to come 

to the Human Performance Lab 7 times.  The first two sessions will include 1) an explanation of 

the study, VO2peak test, body composition assessment and 2) baseline testing for handgrip, 

cycling performance, and lower-body power.  Each week you will be asked to return to the lab to 

repeat handgrip, cycling performance, and lower-body power testing.  The last week you will be 

reassessed for VO2peak and body composition. 

You will be masked as to which supplement you are consuming each trial until the conclusion of 

the study.  During each cycling performance trial, lactate will be taken via finger stick at 3 

different time points.  Heart rate will be taken via heart rate monitor and perceived exertion 

measures will also be taken via the OMNI exercise scale throughout each cycle test.  On the first 

and last testing days, you will receive a dual-energy x-ray absorptiometry (DXA) scan for your 

participation.   

Risks and Benefits: The risks associated with participation in this study are those involved in 

traditional exercise.  Risks associated with exercise include, but are not limited to, muscle or 

joint injury, changes in blood pressure, and increased heart rate.  Risk will be minimized by 

having trained personnel present during all testing and familiarization sessions.  During the DXA 

scan you will be exposed to a small amount of ionizing radiation.  The amount received during a 

DXA test is about the same as four (4) days of normal background radiation in Northwest 

Arkansas.  If you have an intact uterus and ovaries and there is a chance you may be pregnant 

(unprotected intercourse within the last 60 days), you may not participate in this testing at this 

time.  Radiation may be harmful to a fetus. There is also a potential side effect of tingling in the 

extremities associated with beta-alanine ingestion, however this does not always occur and does 

not occur in all individuals.  There are no potential gastrointestinal side effects that may occur as 

result of supplement ingestion.  Benefits include two free DXA scans and two free VO2peak tests 

offered to all participants during the last testing session along with understanding if there is an 

mailto:irb@uark.edu
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effect of beta-alanine on exercise performance in female masters athletes which could help with 

future training and competitions.   

 Voluntary Participation: Testing will take place on seven separate days for about 60 minutes 

each session. Permission for you to engage in the testing and exercise protocol is voluntary.  You 

are free to deny or withdraw from testing at any time if you so desire.  The IRB Coordinator can 

be contacted at irb@uark.edu if participants have any questions about the research or their rights 

as a participant.  

Confidentiality: All data collected that can be associated with a subject/respondent must remain 

confidential.  Describe the methods to be used to ensure the confidentiality of data obtained. All 

participants will be assigned a code number. The code number will be used for all analyses. All 

information collected will be kept confidential to the extent allowed by law and University 

policy. Only those directly involved in the research project will have access to the data. 

Right to Withdraw: You are free to refuse to participate and to withdraw at any time.  Your 

decision to withdraw will bring no penalty to you. 

Informed Consent: I, ____________________________________________, have read the 

description of this program, including the purpose of the program, the procedures to be used, the 

potential risks and side effects, the confidentiality, as well as the option to withdraw from the 

program at any time.  The investigator has explained each of these items to me.  The investigator 

has answered all of my questions regarding the program, and I understand what is involved.  My 

signature below indicates that I freely agree to participate in this study and that I have received a 

copy of this agreement from the investigator. 

I understand that participation in all activities related to this project is voluntary on behalf of all 

participants. I acknowledge and agree that the University of Arkansas does not provide insurance 

for any of its activities and shall not be liable for any injuries that occur at any time during 

participation. 

 

Participant:_____________________________________________________

 Date:___________________ 

Witness:_______________________________________________________

 Date:___________________  

mailto:irb@uark.edu


 
 

71 

Appendix C 

Health History Questionnaire 
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Today’s Date: ____________                                    Date of Birth                   

 

What is your current age?                           Number of miles cycled/week__________                 

 

Number of hours cycled/week___________             Number of years training_______________         

 

How often do you participate in organized competition?  ___________________________________ 

Most recent date in which you competed________________________________________________ 

Are you a vegan and/or vegetarian?  ______________ 

Have you ever had any of the following conditions?  Check yes or no. If yes, explain. 

Heart Disease      Yes   No   

Heart Attack      Yes   No 

Angina (Chest Pain)     Yes  No 

Peripheral Artery Disease    Yes  No  

Stroke       Yes  No  

High Cholesterol (>220)    Yes   No  

High Blood Pressure (>140/90)    Yes   No 

Diabetes      Yes   No 

Rheumatic Fever     Yes   No  

Aneurysm      Yes   No  

Joint Replacement     Yes   No – *If yes, specify which joints  

Have you ever had any of the following conditions?  Check yes or no. If yes, explain. 

Severe Illness (in the last year)    Yes   No 

Operations (in the last year)    Yes   No 

Broken bone/fracture (in the last year)    Yes   No 

Additional information 

Have you experienced any of these symptoms?  Check yes or no.   If yes, explain. 

Pain and/or discomfort in the chest, neck, jaw, or arms  Yes   No 

Shortness of breath at rest or with mild exertion   Yes    No 

Dizziness        Yes    No 

Ankle edema (swelling)      Yes    No 

Rapid or irregular beating heart      Yes    No 

Leg pain, cramping, or tightness during exercise    Yes    No 

Heart murmur        Yes    No 

Fatigue or shortness of breath during the day    Yes    No 

Do you smoke?                               Yes     No    Quit   
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Please attach a list of all medication (prescription or over-the-counter) you are currently taking or use 

the form below.  

Medication           Reason Prescribed      When do you take this medication?  

      (check all that apply) 

                 Morning    Mid-Day    Evening    Bedtime 

                Morning    Mid-Day    Evening    Bedtime 

                Morning    Mid-Day    Evening    Bedtime 

                 Morning    Mid-Day    Evening    Bedtime 

                Morning    Mid-Day    Evening    Bedtime 

                Morning    Mid-Day    Evening    Bedtime 

                 Morning    Mid-Day    Evening    Bedtime 

Please list all supplements (NOT medications, ex. vitamins, minerals, protein, caffeine, etc.) you are 

currently taking in the form below.  

 

Supplement           Reason for taking      When do you take this supplement?  

      (check all that apply) 

           ______      Morning    Mid-Day    Evening    

Bedtime 

          ______       Morning    Mid-Day    Evening    

Bedtime 

          ______       Morning    Mid-Day    Evening    

Bedtime 

           ______       Morning    Mid-Day    Evening    

Bedtime 

          ______       Morning    Mid-Day    Evening    

Bedtime 

          ______       Morning    Mid-Day    Evening    

Bedtime 
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Appendix D 

VO2 Peak Data Collection Sheet 
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VO2 Max Test 

Subject #:        Researchers:   

Date: 
   

Age Predict Max HR:   

BM: 
   

Seat Ht: 
 

  

Height: 
   

Time at start:   

Age:       Time at end:   

Time Resistance (W) RPM HR  RPE RER VO2  

Warm-up 50           

0:00 75           

1:00 75           

2:00 100           

3:00 100           

4:00 125           

5:00 125           

6:00 150           

7:00 150           

8:00 175           

9:00 175           

10:00 200           

11:00 200           

12:00 225           

13:00 225           

14:00 250           

15:00 250           

16:00 275           

17:00 275           

18:00 300           
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Appendix E 

Time to Exhaustion Data Collection Sheet 
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Time to Exhaustion Data Sheet 

Subject #:        Researchers:   

Date: 
   

110% VO2peak (W):   

BM: 
   

Seat Ht: 
 

  

Height: 
   

Time at start:   

Age:       Time at end:   

       Time Resistance (W) RPM HR  RPE Lactate 

   

    

  

 Rest           

 Warm-up 50         

 Start             

1:00             

2:00             

3:00             

4:00             

5:00             

6:00             

7:00             

8:00           
 

9:00           
 

10:00           
 

Post            

R 5:00            

R 10:00           

 
R 15:00           

 
R 20:00           
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Appendix F 

Subject Weekly Training Log 

 



Dates:

Name:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Type of Exercise:

Duration:

Intensity:

Details:

Training Log

7
9
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Appendix G 

3-day Subject Diet Log and Instructions 
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DIETARY FOOD RECORD INSTRUCTIONS 

 

 

 ALL foods and beverages (INCLUDING WATER) that are consumed should be recorded. 

 

 Be very specific in your description of the type, the preparation method, and the amount of 

each food/beverage you consume. 

 

 Use the label on foods to help you determine portion sizes.   

 

 Save labels from packages and return them with your food record forms (this will greatly 

assist and enhance our analysis of your true nutrient intake).   

 

 Use nutrient descriptors (e.g., low-fat, fat-free, light, reduced calorie, etc.) and brand names 

(e.g., Kraft, Nabisco, Planters, etc.) to describe foods.  

 

 Record food/beverage consumption after each meal/snack instead of waiting until the end of 

the day. 
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MEATS/CHEESES 

 

Description: Include description of the type, cut, and preparation method.  

 

Portion Sizes:  

List cooked (not raw) amounts of meats.   

Determine amounts by weighing when possible.   

Three ounces of cooked meat is equivalent to approximately a deck of cards or the palm 

of your hand.   

 

*Listed below are examples of how to document foods 

 

3oz. Skinless, boneless, chicken breast-roasted 

3oz. Ground beef round-fried 

3oz. Deli turkey breast slices 

3oz. Atlantic cod-baked 

3oz. Sirloin steak-grilled 

  1/2 cup cubed beef stew meat 

  1 slice ham, 3" x 4" x 1/4" 

  1 oz colby cheese 

  1 piece cheddar cheese, 3" x 2" x 1" 
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STARCH/BREAD  

(CEREALS, BREADS, PASTAS, RICES, BEANS) 

 

Description: Include a complete description of the starch/bread including preparation method 

and brand name if applicable.   

Portion Sizes:  

List cooked (not raw) amounts of starch/bread products. 

Generally, a measuring cup will suffice for cereals, rices, pastas, and beans. 

 

  ½ cup brown rice (Uncle Bens) 

  2 slices rye bread-toasted 

  2 cups spaghetti noodles-boiled 

  1½ cups dry cereal (Cheerios) 

  1 cup oatmeal (Quaker Oats)-microwaved 

  8 animal crackers 

  Blueberry muffin, small 

  ½ cup canned baked beans 

  1 corn tortilla, 6" across 

  



 
 

84 

FRUITS/VEGETABLES 

 

Description: Include description of fruit/vegetable and whether it was fresh, frozen, or canned. 

  Include preparation method (e.g., steamed, fried, etc.) 

 

Portion Sizes:  

For whole pieces of fruit or vegetables, you may use small, medium, or large. 

 For many fruits/vegetables, cups may be used also.  

 

  1 medium Granny Smith apple 

  ½ of a large tomato-fresh 

  5 small strawberries-fresh 

  ½ cup canned pineapple-canned in water 

  1 cup frozen peas-steamed 

  ¾ cup frozen mixed vegetables 

  3 spears steamed broccoli 

  2 medium raw carrots 

 

 

COMBINATION DISHES 

 

For standard mixed dishes, it is generally acceptable to list the type of dish without trying to list 

the ingredients separately.  If the food is modified (e.g., low-fat), indicate this and try to describe 

how the food was modified.  Provide enough detail to explain the composition of the dish.  For 

tossed salad, list the individual ingredients paying careful attention to salad dressings and other 

caloric-dense toppings (bacon bits, cheese, ham, chopped egg, etc.).   

 

  1 cup bean chili w/o meat 

3 slices thin crust large cheese pizza with pepperoni-frozen 
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  ½ cup potato salad 

  1 cup tuna casserole 

  1 cup macaroni and cheese (Kraft) 

  1 slice angel food cake 

  2 cups tossed salad 

   2 cups lettuce greens 

   3 slices cucumber 

   3 slices tomato 

   1 T shredded cheddar cheese 

   1 T shredded carrots 

   2 T fat-free Italian dressing 
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BEVERAGES/FLUIDS 

 

Description: Include ALL BEVERAGES INCLUDING WATER complete description of the 

beverage  

 

Portion Sizes: Use fluid ounces, liters, cups, or tablespoons. 

  6 oz regular coffee, brewed 

  12 oz Diet Pepsi 

  1 cup 2% milk 

  16 oz unsweetened iced tea 

  4 oz red table wine 

  6 oz orange juice (from concentrate) 

  2 T light olive oil 

 

 

MISCELLANEOUS 

 

Remember to list all condiments and additions to foods and beverages, such as cream, sugar, 

butter, jelly, lemon, salad dressing, artificial sweeteners, catsup, etc.  

 

  3 T low-fat french salad dressing 

  2 tsp black raspberry jam 

  1 packet Sweet'n Low 

  1 T cream (half and half) 

  2 tsp margarine spread (Country Crock) 

  3 T fat-free ranch salad dressing (Kraft) 
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Appendix H 

Beta-alanine certificate of authenticity provided by third party lab testing evaluation  
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