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Abstract 

 

     Oxygen and carbon isotopic compositions of fossilized vertebrate teeth and bone were 

analyzed to determine isotopic values of vertebrate faunal diet from the early Cretaceous Cedar 

Mountain Formation of Utah.  Results for δ18O of PO4 (δ
18Op) (Suarez et al., 2014) from the same 

data set have been compared to the δ18O of CO3 (δ
18Oc) portion of teeth and turtle shell to 

determine if diagenetic alteration of the isotopes has occurred by plotting the line of best fit 

equation that models the relationship between unaltered δ18OP and δ18OC of modern mammals 

from Iacumin et al., 1996. Results indicate slight diagenesis of some specimens has occurred.  

     Mean annual precipitation (MAP) estimates, using the equations from Kohn (2010) and 

Diefendorf et al., (2010), were determined for each sampled stratigraphic member using carbon 

isotopic values derived from vertebrate faunal diet estimations from bioapatite, based on the 

observation that δ
13

C of modern C3 plants increases with decreasing MAP (Kohn, 2010; and 

others). Values indicate a prolonged period of semi-arid to arid climate in the Ruby Ranch and 

Yellow Cat members of the CMF likely caused by a rain-shadow (Suarez et al., 2014) on the 

eastern, leeward side of the uplifting Sevier Fold and Thrust belt (SFTB). The upper 

Mussentuchit Member becomes much more humid as the Western Interior foreland basin, 

continues to subside, eventually becoming inundated by the Western Interior Seaway. 

     The basal Cretaceous CMF sits unconformably atop the Late Jurassic Morrison Formation, 

with a hiatus of ~20 Ma (Kirkland and Madsen, 2006). Chemostratigraphic curves of the basal 

Yellow Cat member (YCM) were constructed using δ
13

C of bulk organics of sediment, and δ
13

C 

and δ
18

O of inorganic carbonate of sediment in an attempt to correlate with the early Cretaceous 

chemostratigraphic record. Correlating positive and negative carbon isotope excursions (PCIEs 

and NCIEs) from the YCM to stratigraphically well-constrained marine sections lends evidence 



  

for an age determination of the basal CMF. Correlations indicate the YCM to be Barremian to 

Aptian (~130-120 Ma) in age and detect several distinct CIEs of this period, specifically the B5-

B8 excursions of the Barremian and the A1-C5 excursions of the Aptian.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Acknowledgments 

 

     Thank you to Celina Suarez for funding this study and supplying the vertebrate samples to 

make this paper possible. Thank you to Lyndsey Conaway and Erik Pollack for assisting in 

running of samples in the University of Arkansas Stable Isotopes Laboratory. Thank you to 

Marina Suarez, Jim Kirkland, and Aisha Al-Suwaidi for help with field work and data analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

Dedication 

 

     Dedicated to my parents, Frank and Joyce Williams; and friends and family I have lost: James 

Wetherington, Britton Redifer, Bob Hatzell, and Boyd Hatzell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

Table of Contents 

 

I.       Introduction…………………………………………………………………………....…….1 

II.     Geologic Setting and Background…………………………………………………….…….2 

A.    Stratigraphy and Paleontology………………………………………………………….…2 

B.     Tectonics and Climate…………………………………………………………….……….8 

C.     Stable Isotopes in Plants and Vertebrate Remains…………………………………….....12 

D.     The Carbon-Cycle and Stable Isotope Chemostratigraphy………………………………16 

III.    Previous Research………………………………………………………………………….20 

A.    Isotope Proxy Studies.……………………………………………………………………20 

B.     Chemostratigraphic Studies…….………………………………………………………...21 

IV.  Methods....…………………………………………………………………………………23 

A.     δ
13

C and δ
18

O of Vertebrate Remains ……………………………………………………23 

B.     Inorganic δ
13

C and δ
18

O Chemostratigraphy………………………………………..........25 

C      Bulk Organic δ
13

C Chemostratigraphy…………………………………………………...25 

V.     Results…………………………………………………………………………………...…26 

A.     δ
13

C and δ
18

O of Vertebrate Remains.…………………………….…………………...…26 

B.     δ
13

 C and δ
18

O Chemostratigraphy.……………………………………………...……….31 

VI.  Interpretations/Discussion/Implications…………………………………………………...35 

A.    δ
13

C and δ
18

O of Vertebrate Remains……………………………………………………35 

 B.    δ
13

 C and δ
18

O Chemostratigraphy……………………………………………………….39 

 C.    Problems Encountered…………………………………………………………………...40 

VII.   Conclusions………………………………………………………………………………..43 

A.    δ
13

C and δ
18

O of Vertebrate Remains……………………………………………………43 

B.    δ
13

 C and δ
18

O Chemostratigraphy……………………………………………………….44 

VIII. References………………………………………………………………………………....45 

VIIII. Appendix A………………………………………………………………………………..53 

 



  

List of Figures 

Figure 1. - Location and outcrop map……………………………………………………………3 

 

Figure 2. - Generalized stratigraphic column of CMF………………………………...…………3 

 

Figure 3. - Reconstructed cross-section of western North America…………………………...…9 

 

Figure 4. - Block diagrams of CMF paleoclimate and paleogeography.………………..………11 

 

Figure 5. - Histogram of δ
13

C values of modern C3 plants.……………………….……………12 

 

Figure 6. - Global carbon cycle diagram………………………………………………………..17 

 

Figure 7. - Correlation of Xiagou Formation section from M.B. Suarez et al., (2011)…………22 

 

Figure 8. - Correlation of Ruby Ranch member sections from Ludvigson et al., (2010a)…...…23 

 

Figure 9. - δ
18

OPO4 vs. δ
18

OCO3 of Yellow Cat Member vertebrate samples…………………….27 

 

Figure 10. - δ
18

OPO4 vs. δ
18

OCO3 of Ruby Ranch Member vertebrate samples………………….28 

 

Figure 11. - δ
18

OPO4 vs. δ
18

OCO3 of Mussentuchit Member vertebrate samples………………...28 

 

Figure 12. - MAP estimates using Kohn (2010)………………………………………………...30 

 

Figure 13. - MAP estimates using Diefendorf et al., (2010)…………………………………….31 

 

Figure 14. - Strat column and chemostratigraphic profile of LMDS.………….…..………..…..32 

 

Figure 15. - Carbonate δ
13

C and δ
18

O chemostratigraphic profiles from LMDS..……………...33 

 

Figure 16. - δ
13

C vs. δ
18

O of inorganic CaCO3 from LMDS……………………………………34 

 

Figure 17. - δ
13

C and δ
18

O of inorganic CaCO3 and δ
13

C of organic carbon……………………35 

 

Figure 18. - δ
18

OPO4 vs. δ
18

OCO3 of Yellow Cat Member, modified…………………………….36 

 

Figure 19. - δ
18

OPO4 vs. δ
18

OCO3 of Ruby Ranch Member, modified…………………………...37 

 

Figure 20. - δ
18

OPO4 vs. δ
18

OCO3 of Mussentuchit Member, modified…………………………..37 

 

Figure 21. - Global chemostratigraphic correlation of the LMDS.……………………………...39 

 

Figure 22. - Various decarbonation chemostratigrahic profiles…………………………………41 

 

Figure 23. - Cold vs. Hot Wt. % CaCO3 Lost…………………………….………………….….42 



1 
  

I.      Introduction 

     Utah has long been world famous for its dinosaur fossil record. The Late Jurassic Morrison 

Formation yields abundant fossil sites such as the Carnegie Quarry at Dinosaur National 

Monument and the Cleveland-Lloyd Dinosaur Quarry. The Kaiparowits Formation in Grand 

Staircase-Escalante National Monument preserves one of the most complete Late Cretaceous 

sections and dinosaur fossil records in the world (Kirkland et al., 1999). More recently, the 

richness of the Early Cretaceous dinosaur fossil record has been observed in the layers of the 

Cedar Mountain Formation (CMF). The CMF of east-central Utah offers a diverse assemblage of 

lower Cretaceous terrestrial vertebrate fauna and records a large time span of fluctuating climatic 

conditions (Kirkland et al., 1999). 

     The rising Sevier Mountains provided sediments to the CMF and likely influenced regional 

climate and precipitation patterns of the area (Suarez et al., 2014), as mountain ranges do today. 

Isotopic compositions of unaltered fossilized bioapatite from the CMF should preserve values 

that can be used to decipher past precipitation rates and isotopic compositions, paleoelevation, 

and paleoclimates, as other oxygen isotope analyses have done (e.g., Koch, 1998; Kohn and 

Cerling, 2002; Ufnar et al., 2004; Kohn and Dettman, 2007; Fricke et al., 2008, 2009; Suarez et 

al., 2009; Suarez et al., 2012, 2014).  One objective of this study is to observe the regional effects 

of mountain building on precipitation rates using terrestrial faunal remains. Vertebrate bioapatite 

samples were analyzed by Suarez et al., (2014) for δ
18

O of hydroxylapatite PO4, this study has 

analyzed the δ
18

O of hydroxylapatite CO3 from the same sample set in an effort to detect 

possible diagenetic alteration of δ
18

O. The δ
13

C of the CO3 portion of herbivorous vertebrate 

remains has been analyzed to estimate δ
13

C of diet (C3 plants) to infer mean annual 

paleoprecipitation (MAP) rates for each of the sampled depositional members, based on 
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calculations described by Kohn (2010) and Diefendorf et al., (2010) in an effort to observe how 

ongoing orogenesis affected the climate of the CMF depositional area through time.   

     The CMF was deposited at a time in Earth’s history that experienced significant global 

climate perturbations in the form of carbon isotope excursions (CIEs) and oceanic anoxic events 

(OAEs) with major extinctions likely arising from these disturbances (Ludvigson et al., 2010a). 

These global climatic disturbances are well documented in marine records and can be recognized 

and characterized within the terrestrial record (Grocke et al., 1999; Jenkyns, 2003; Ludvigson et 

al., 2010a). CIEs are indicated by the presence of temporally correlated stratigraphic sections 

from different parts of the world that display very similar δ
13

C chemostratigraphic trends 

(Saltzman and Thomas, 2012). Recognition of these spatially varying, distinct δ
13

C 

chemostratigraphic trends allows for recognition of a global CIE, of which several are 

documented throughout the Cretaceous Period.  Another aspect of this study is to 

chemostratigraphically correlate C-isotope curves of the basal CMF with C-isotope curves of 

well dated Cretaceous marine sections in an effort to generate a relative age date for the oldest 

Cretaceous rocks of Utah. 

          

II.      Geologic Setting and Background 

A.     Stratigraphy and Paleontology 

     The early Cretaceous Cedar Mountain Formation outcrops (Fig. 1.) in east-central Utah, north 

of Moab and Arches National Park, in the San Rafael Swell, and the Uinta basin of north-east 

Utah (not a focus area of this study).  First designated by Stokes (1949), the CMF was described 

as a drab mudstone between the Jurassic Morrison Formation and the middle Cretaceous Dakota 
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Formation (Fig. 2.), but since then the boundaries of the CMF have been expanded to include 

much of what was originally designated as upper Jurassic Morrison (Suarez et al., 2014). Based  

 

Figure 1. Outcrop map of CMF exposures in eastern Utah (Modified from Suarez et al., 2014). 

Foredeep, forebulge, and back bulge boundaries during Pavant thrust event depicted, with thrust 

boundary in northwest corner. 

 

on the distribution of distinct dinosaur faunas and their relationships to specific rock types, the 

CMF has been divided into 5 informally recognized depositional members. In ascending order, 

they are the Buckhorn Conglomerate, the Yellow Cat Member (YCM), the Poison Strip 

Sandstone (PSS), the Ruby Ranch Member (RRM), and the Mussentuchit Member (MM). 

 

Figure 2. Generalized stratigraphic column of Cedar Mountain Formation with lithologic 

descriptions and geologic timescale (Modified from Suarez et al., 2014). 
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    The basal members of the CMF are the Buckhorn Conglomerate and Yellow Cat Member. 

These units unconformably overlie the Jurassic Morrison Formation. The Buckhorn was 

deposited by a northeast flowing high energy fluvial system draining the Sevier Mountains to the 

west and Mongollan Highlands to the south (Ludvigson et al., 2010).  The Buckhorn type section 

is located near Buckhorn Reservoir on the northeast side of the San Rafael Swell. It is composed 

largely of pebble to cobble-sized chert conglomerate and reaches thicknesses of 25m (Kirkland 

and Madsen, 2007). Chert clasts were sourced and weathered from Paleozoic rocks exposed from 

early SFTB activity, evident in marine fossils preserved within these gravels (Currie, 2002; 

DeCelles and Coogan, 2006; Kirkland and Madsen, 2007). The Buckhorn is exposed mostly on 

the western side of the CMF outcrop belt, mainly in the San Rafael Swell, and is roughly 

equivalent to the YCM and PSS in some places (Suarez et. al, 2014). Few vertebrate specimens 

have been recovered from the Buckhorn, but an ankylosaur (armored dinosaur) discovery lends 

evidence for an early Cretaceous age due to their abundance in the Cretaceous and rarity in the 

Jurassic (Carpenter and Kirkland, 1998; Kirkland, 2005a).   

     Where the Buckhorn Conglomerate is absent, the Yellow Cat Member sits atop the Morrison 

Formation. The YCM was first described as drab mudstones occurring between the Buckhorn 

Conglomerate or Morrison Formation and the PSS. A calcrete (carbonate-rich paleosol) that 

overlies and pedogenically alters the Buckhorn conglomerate and/or Morrison Formation was 

proposed by Aubrey (1998) and Greenhalgh (2006) to represent a large unconformity between 

the Jurassic and Cretaceous was used as marker for the lower contact of the YCM. But recently, 

new discoveries of Cretaceous age dinosaurs below this calcrete have suggested that the 

underlying sediments are some of the earliest Cretaceous deposits, moving the J/K boundary to a 
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position lower in the section (Kirkland and Madsen, 2007). This calcrete layer has been used to 

divide the YCM into upper and lower units (Suarez et al., 2014).  

     The lower Yellow Cat Member consists of drab grayish green to red pebbly siltstones and 

mudstones containing abundant silicified roots, tree stumps, iron-oxide nodules, and silcretes, 

which have been interpreted as mature soil horizons (Kirkland and Madsen, 2007). Based on 

U/Pb zircon dates from an upper Morrison Formation bentonite (Kowallis et al., 2007) and a 

detrital-zircon date (Britt et al., 2007) from the base of the upper Yellow Cat, the deposition of 

the lower YCM is constrained to between ~149 to ~124 Ma, but likely has a maximum age of ~ 

136 Ma based on a newly acquired detrital-zircon date from the base of the lower YCM. The 

lower YCM preserves semi-aquatic taxa such as crocodilians, and terrestrial dinosaurs: basal 

macronaran sauropods, ankylosaurs, iguanodontids, allosaurids, and small theropods.  

     The upper Yellow Cat Member consists of poorly sorted pebbly siltstones, lacustrine 

limestones inter-bedded with red and green mudstones, abundant pedogenic carbonate, spring 

carbonate, and palustrine carbonate with inter-bedded small-channel sandstone bodies (Suarez et 

al., 2014). Relative abundance of pedogenic carbonate compared to the lower YCM suggests 

more arid conditions during upper YCM deposition (Suarez et al., 2014). A U/Pb date of 119 ± 

2.6 Ma from pedogenic carbonate from the base of the Poison Strip Sandstone (Ludvigson et al., 

2010), constrains the depositional age of the upper YCM from ~124 to ~119 Ma. Vertebrate 

fauna preserved in the upper YCM include turtles, crocodilians, hybodont sharks, lungfish, 

semionotid fish, and dinosaurs. Dinosaurs present in the upper YCM include Utahraptor 

ostrommaysorum, the largest known member of the family Dromaeosauridae, polacanthid 

ankylosaurs, and macronaran sauropods, likely belonging to the family Brachiosauridae.     
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      The Poison Strip sandstone overlies the YCM and is comprised of well cemented medium to 

coarse cross-bedded to planar-bedded sandstones of fluvial to lake-beach facies. The PSS 

reaches thicknesses up to 15 m in some places but typically is 4-5 m thick. Young (1960) 

referred to these resistant, cliff-forming sandstones as the middle Cedar Mountain Sandstone and 

made the observation that this unit was the most continuous marker bed in the CMF (Kirkland 

and Madsen, 2007). A basal age of 119 ± 2.6 Ma was obtained by Ludvigson et al. (2010a) for 

the PSS. Trace fossils (including some of the oldest bird tracks in North America), petrified logs 

and cycads are common in these sandstones (Dayvault and Hatch, 2005; Kirkland and Madsen, 

2007). Dinosaurs are less commonly preserved but overall resemble the upper Yellow Cat fauna 

(Kirkland and Madsen, 2007).  

     The Ruby Ranch Member lies atop the Poison Strip sandstone and is characterized by 

massive reddish and gray mudstones with large carbonate nodules deposited in xeric conditions 

and contains dolomitized lake deposits and paleosols (Kirkland and Madsen, 2007; Montgomery 

2014). The Ruby Ranch Member is prolific, existing everywhere the CMF is recognized and 

ranges in thickness from 9 m to 90 m (Kirkland and Madsen, 2007; and Garrison et al., 2007). 

Sediments resemble the Yellow Cat Member but contain many more carbonate nodules 

representing paleosols and ephemeral ponds formed under semi-arid conditions (Kirkland and 

Madsen, 2007).  Ludvigson et al. (2010) conducted a C-isotope chemostratigraphic study using 

pedogenic carbonate of the RRM and identified several distinct CIEs such as feature Ap7, 

described by Herrle et al. (2004), at the base of the member and feature Al1 in the upper RRM. 

This constrains depositional age of the RRM from the early-mid Aptian (~118 Ma) to the end of 

the Albian (~100 Ma). 
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     Dinosaur fauna present in this member are distinctly different from older CMF members 

(Kirkland and Madsen, 2007).  Armored ankylosaurs, large primitive ornithopods, and sauropods 

represented by slender toothed brachiosaurs, form the herbivorous taxa preserved within the 

Ruby Ranch Member (Kirkland and Madsen, 2007). Theropods include small dromaeosaurids 

similar to Deinonychus, a large undescribed carnosaurid, and the very large, high-spined 

Acrocanthosaurus (Kirkland and Madsen, 2007). Crocodilians and turtles are also present 

(Kirkland and Madsen, 2007).                                                                                                            

     The Mussentuchit Member is the youngest member of the CMF and is comprised of gray 

smectitic mudstones, lignitic mudstones, siltstones, shales and occasional fine-grained 

sandstones (Suarez et al., 2014).  The MM mainly outcrops on the western limb of the San 

Rafael Swell and sits unconformably atop the RRM, with the contact defined by a zone of chert 

and quartzite pebbles (Kirkland and Madsen, 2007). Carbonate nodules are less common than in 

the RRM and suggest a wetter climate as the MM was deposited proximal to the incursion of the 

Western Interior Seaway (WIS) into eastern Utah and western Colorado (Ludvigson et al., 2010). 

Volcanic ash layers have dated the Mussentuchit as early Cenomian with an age of 98.37 ± 0.07 

Ma (Cifelli et al., 1999).  

     More than 80 species of small vertebrates have been discovered in the MM, by wet sieving 

techniques and include fish, frogs, salamanders, turtles, lizards, crocodilians, birds, mammals, 

and the oldest North American snake (Kirkland and Madsen, 2007).  The MM also contains the 

only known assemblage of fossilized pollen within the CMF described by Tschudy et al., (1984). 

Dinosaur remains are also common, found mainly as teeth (Kirkland and Madsen, 2007). 

Herbivorous taxa include ankylosaurids, nodosaurids, ornithopods, pachycephalosaurs, primitive 

horned dinosaurs, and slender toothed brachiosaurs (Kirkland and Madsen, 2007). Carnivorous 



8 
  

dinosaurs are diverse and abundant and include North America’s earliest known tyrannosaurids, 

coelurosaurs, troodontids, and dromaeosaurine and velociraptorine dromaeosaurids (Kirkland 

and Madsen, 2007).    

   

B.     Tectonics and Climate 

     The CMF was deposited during the Early Cretaceous in the foredeep, forebulge, and 

backbulge areas of the Sevier Orogeny foreland basin or the Western Interior Basin (WIB). 

Initial thrust events began in the Late Jurassic as volcanic arcs and island terrains, associated 

with the Farralon plate, began accreting along the western margin of North America, causing 

crustal shortening in Nevada and western Utah (Fig. 3), ultimately leading to the formation of the 

Sevier Fold and Thrust Belt (SFTB) (Decelles and Coogan, 2006). Two periods of eastward 

propagating Sevier thrusting took place during the emplacement of the CMF.  The Canyon 

Range thrust occurred during the Aptian – Early Albian (145-110 Ma) and provided sediments to 

the Yellow Cat and lower Ruby Ranch Members of the CMF, which were deposited in the distal 

foredeep and proximal backbulge areas of the foreland basin (DeCelles and Coogan, 2006).  The 

Pavant thrust occurred during the Middle Albian – Cenomanian (110-86 Ma) and provided 

sediments to upper Ruby Ranch Member and the Mussentuchit Member (DeCelles and Coogan, 

2006). The upper RRM was deposited in the distal foredeep to forebulge, while the MM was 

deposited in the foredeep of the Pavant thrust. The Canyon Range thrust is estimated to have 

increased the regional elevation by ~1.6 km and by the end of the Pavant thrust elevation had 

increased by ~2.8 km in western Utah (DeCelles and Coogan, 2006).  

     By the Late Cretaceous, the SFTB formed a high relief mountain chain similar to the Andes 

Mountains with a high-elevation, low relief hinterland plateau (Currie, 2002; DeCelles and  
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Figure 3. Reconstructed cross-section of the Cordilleran orogenic belt of North America at the 

latitude of central Utah during the Late Cretaceous, with CMF depositional area depicted. 

Geology beneath the magmatic arc is after Ducea (2001). Figure modified from DeCelles and 

Coogan (2006). 

 

Coogan, 2006; Snell et al., 2013), deemed the “Nevadaplano”, analogous to the Antiplano of the 

central Andes Mountains (DeCelles and Coogan, 2006). Through Cretaceous time the WIB 

continued to subside and as the oceans transgressed, was inundated by the Cretaceous Interior 

Seaway depositing the overlying Dakota Sandstone and Mancos Shale Formations.  

     The exposures of the CMF we see today were caused by various tectonic events of western 

North America. The CMF is deposited within the Paradox basin, named for the underlying 

Pennsylvanian Paradox Formation which consists of thick sequences of the evaporites salt, 

anhydrite and gypsum. Salt diapirism occurred from mid-Pennsylvanian through Jurassic time 

and formed northwest trending bulges, or salt anticlines (Baars and Doelling, 1987). Associated 

synclines created accommodation space for subsequent deposits including the CMF.  

     The Laramide Orogeny began around 80 Ma as the formation of large reverse faults, east of 

the SFTB, created broad areas of uplift forming the Colorado Plateau and numerous basins 

within. Tertiary volcanics and intrusions also occurred in the area facilitating further uplift and 

forming the nearby peaks of the La Sal and Henry mountain ranges. In the exposed eroded limbs 
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and dissected cores of various anticlines, synclines, and monoclines, the CMF and associated 

formations are exposed. 

     The Cretaceous climate is characterized by an overall global warming trend reaching a 

thermal maximum in the Cenomanian-Turonian. A global increase in temperature is thought to 

have intensified the global hydrologic cycle producing increased rainfall and increased rainout 

intensity which may explain observances of isotopic depletion of meteoric waters along the 

eastern margin of the Western Interior basin (White et al., 2001). The global carbon cycle 

experienced numerous significant fluctuations throughout the Cretaceous indicated by the 

widespread deposition of organic-rich black shales attributed to global oceanic anoxic events 

(OAEs). Both global warming and global cooling trends have been observed in marine and near-

shore deposits of similar age to the CMF (Suarez et al., 2014). Decreases in δ
18

O of marine 

carbonates and δ
13

C of organic matter just before the occurrence of OAE1a (early Aptian, ~120 

Ma) suggest an increase of greenhouse gases and a period of global warming (Bellanca et al., 

2002). This climatic event, known as the Selli Event, is postulated to have been initiated by the 

“superplume” submarine eruption of the Ontong Java Plateau, the largest (volumetrically) large 

igneous province (LIP) in the world covering an area of ~2.0x10
6
 km

2
 and exceeding a volume 

of over 8.4x10
6
 km

3
 (Taylor, 2006). A large influx of CO2 from this volcanic event would likely 

have facilitated changes in atmospheric and oceanic conditions globally, increasing the effects of 

the mid-Cretaceous greenhouse climate leading to increased weathering and erosion and nutrient 

cycling (Tarduno et al., 1991).  

     Locally, the rise of the SFTB would have likely affected regional climate and paleohydrology. 

Eastward moving air masses transported by the paleo-westerlies would have encountered the 

SFTB (Poulsen et al., 2007) and undergone orographic lifting creating intense rainout on the 
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windward or western side of the range and likely producing isotopically depleted scant rainfall 

on the leeward or eastern side of the range, in which the CMF was deposited (Fig. 4). As  

 

Figure 4. Block diagrams of interpreted paleoclimatic and paleogeographic settings based on 

oxygen isotopic compositions derived by Suarez et al., (2014). A.) Lower Yellow Cat Member: 

Canyon Range Thrust initiated SFTB to the west of CMF depocenters, creating isotopic 

depletion of precipitation due to continental rainout and potential seasonal snowmelt. B.) Upper 

Yellow Cat Member: Sevier orogeny continues creating significant rainout on western side of 

range and develops a rain shadow over the leeward side. C.) Ruby Ranch Member: Canyon 

Range Thrust reaches maximum elevations causing increased rainshadow effect and slight 

enrichment of meteoric waters. D.) Mussentuchit Member: Pavant Thust is initiated, regional 

subsidence increases as the incursion of the Western Interior Seaway provides significantly 

enriched moisture to the region. FD = foredeep; FB = forebulge; BB = backbulge. Figure from 

Suarez et al., 2014, modified from Elliott et al., 2007.  

 

eastward propagating thrust sheets advanced into Utah the rain shadow affect would have 

intensified over the CMF depositional area, but as continual basin subsidence and incursion of 

the Western Interior Seaway occurred, orographic rain shadow effects would have been 

mitigated by the advance of marine moisture. The present study attempts to further distinguish 

global and local terrestrial climatic conditions occurring during CMF time. 
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C.   Stable Isotopes in Plants and Vertebrate Remains    

     Stable carbon isotope ratios of plants fluctuate in response to the type of photosynthetic 

pathways the plants utilize, i.e.: C3, C4, and CAM, and to the environmental conditions 

(O’Leary, 1998; Farquhar et al., 1989; O’Leary et al., 1992). C3 plants dominated Cretaceous 

ecosystems since C4 plants were not recognized until the Oligocene and not widely distributed 

until the Miocene (Cerling, 1999). C3 plants today are characterized by a large isotopic 

discrimination between organic material and atmospheric CO2, resulting in carbon isotope ratios 

ranging from ~-32 to -21‰ (Fig. 5) with an average value of ~-27‰ compared to ~-8‰ for  

 
 

Figure 5. Histogram of δ
13

C values of modern C3 plants. Average of -27.0‰ excludes analyses 

from understory of closed-canopy forests. Estimated global average composition is 

approximately -28.5‰. Figure from Kohn, 2010. 

 

modern atmospheric CO2 (Fricke et al., 2008, Kohn, 2010, and others). The range and variability 

of C3 plant isotopic compositions are due to differing isotopic discrimination for different taxa 

and to environmental sensitivity within specific taxa (Fricke et al., 2008) Variability of the 
13

C   

of atmospheric CO2 through time, from ~-8‰ to ~-5‰,  has likely produced a C3 plant isotopic 

range as much as 3‰ heavier. These fluctuations of atmospheric CO2 are due to changes in the 
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amount of volcanic CO2 emissions, changes in weathering rate, changes in primary productivity 

in the oceans, and changes in the amount of terrestrial decomposition (Grocke and others).  

     CO2 concentrations within a leaf cell are greatly influenced by the opening and closing of leaf 

stomata, which controls the flux of CO2 into a plant. When environmental conditions such as 

temperature, water availability, salinity, nutrient availability, light intensity are such that water 

needs to be conserved, stomata are more likely to remain closed (O’Leary, 1988; Farquhar et al., 

1989; Tieszen, 1991; O’Leary et al., 1992). Relative location of a plant may also influence 

carbon isotope ratios within the plant. For example, a plant located under a closed forest canopy 

is exposed to CO2 that exhibits a lower carbon isotope ratio than the open atmosphere due to 

plant respiration and decomposition on or near the forest floor (Fricke et al., 2008). Thus, plants 

living in a closed canopy area have lower carbon isotope ratios than plants of the same species 

living in open canopy settings (e.g. van der Merwe and Medina, 1991; Cerling et al., 2004). As 

carbon isotope ratios of atmospheric CO2 change over time, isotopic values of plant material also 

change in response and thus, can be used to monitor climatic conditions through time. 

     Stable oxygen isotope ratios of waters within streams, lakes, and leaves also vary significantly 

in response to environmental conditions such as temperature and humidity, and the hydrological 

‘history’ of air masses supplying precipitation to surface water reservoirs (Epstein and Mayeda, 

1953; Dansgaard, 1964; Rozanski et al., 1993). Present day oxygen isotope ratios of global 

precipitation range from ~0 to -30‰ (Dansgaard, 1964; Rozanski et al., 1993), and vary due to 

the preferential incorporation of 
18

O into condensate as water is precipitated and removed from 

cooling air masses. As a result, oxygen isotope ratios of precipitation generally decrease as air 

masses cool while rising over areas of higher elevation, move away from coastal areas, or move 

from tropical sources toward higher latitudes (Epstein and Mayeda, 1953; Dansgaard, 1964; 
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Rozanski et al., 1993; Gat, 1996). Thus, oxygen isotope ratios of precipitation for a given area 

are largely determined by regional temperatures and rainout patterns. 

     Oxygen isotope ratios of precipitation for an area may differ greatly from surface water 

reservoirs due to a variety of local hydrological processes (Fricke et al., 2008). As terrestrial 

vertebrates generally do not consume precipitation directly, it is important to discern these 

differences between surface water reservoirs to accurately assess oxygen isotope values 

preserved within vertebrate remains. Ponds and streams in humid areas may retain local 

precipitation isotope values with little modification, while large lakes and rivers, especially in 

arid regions, may undergo evaporation that enriches their oxygen isotope ratio due to the 

preferential incorporation of 
16

O into the vapor phase. Evaporation of leaf water can also shift 

oxygen isotope ratios to more 
18

O enriched values preserved in vertebrates to higher values 

relative to precipitation (Fricke et al., 2008). Reservoirs draining large areas and that retain water 

over long periods of time, such as lakes, soil and ground waters, and large rivers, undergo mixing 

of precipitation that has fallen at different temperatures, varying air mass conditions and different 

times (Fricke et al., 2008). This results in mixing of isotopic ratios which can make values of 

surface waters from a given area quite different from local precipitation isotopic values.         

     The isotopic record preserved in vertebrate teeth and bones are some of the few continental 

proxies for quantifying environmental or climatic parameters of the Mesozoic (Amiot et al., 

2007).  Terrestrial vertebrates record the isotopic characteristics of ancient landscapes by 

ingesting organic material and drinking water from surface water reservoirs and then forming 

bioapatite [Ca5(PO4, CO3)3(OH, CO3)], which is the main component of tooth enamel, dentine, 

and bone (Fricke et al., 2008). Carbon found in the carbonate component of bioapatite is related 

to ingested organic material, plants in the case herbivores and meat in the case carnivores. After 
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an herbivore consumes plant material, the carbon from that plant material is incorporated into a 

number of different phases including dissolved CO2 and HCO3 which are then ultimately 

incorporated into the animal’s bioapatite (Koch et al., 1994; Koch, 1998; Cerling and Harris, 

1999; Passey et al., 2005). Isotope fractionation of carbon from these processes results in a 

carbon isotope ratio of bioapatite carbon that is higher than that of ingested plant material. 

     Oxygen isotope ratios of vertebrate bioapatite are controlled primarily by ingested water and 

atmospheric oxygen which contribute to blood/metabolic water (Longinelli, 1984; Luz and 

Kolodny, 1985; Bryant and Froelich, 1995; Kohn, 1996; Kohn and Cerling, 2002). The isotopic 

ratio of atmospheric oxygen has remained relatively constant over time and space, ~23‰ (Kohn, 

1996), and likely does not influence variations in the oxygen isotope ratios of bioapatite of 

vertebrates (Fricke et al., 2008). The isotopic offset between ingested surface waters and both 

phosphate and carbonate portions of bioapatite is controlled by body temperature, which 

determines the isotopic fractionation between bioapatite and body water, and fractionations that 

occur during the formation of body water from ingested water (Fricke et al., 2008). Animals with 

known and constant body temperatures (i.e. homeothermic mammals and birds) can be used with 

consideration of these fractionations using physiological models that can account for fluxes of 

oxygen in and out of the body and the oxygen isotope fractionations associated with each 

metabolic process (Bryant and Froelich, 1995; Kohn, 1996). 

     Stable isotope ratios of dinosaur remains have not been used extensively to study 

environmental conditions of the Mesozoic due in part to the fact that isotopic relations or 

fractionations between ingested carbon and oxygen and tooth enamel carbon and oxygen have 

not been precisely determined (Fricke et al., 2008). More recently, studies including Fricke et al., 

(2008) and Tutken (2010) have generated estimated offsets of bioapatite carbonate, for certain 
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dinosaur taxa, specifically hadrosaurs and sauropods, and bulk organic matter isotope ratios of 

carbon by comparing isotope ratios of local dinosaur populations to co-existing bulk organic 

matter and observing a similar offset in multiple populations from different sites of the same 

representative dinosaur taxa. Specifically, Fricke et al., (2008) observed ~18‰ offset between 

δ
13

C of hadrosaur dinosaur remains and bulk sedimentary organic matter and Tutken (2010) 

observed a ~16‰ offset between δ
13

C of sauropod dinosaur remains and bulk sedimentary 

organic matter. These observed offsets were used in this study to estimate δ
13

C of herbivore diet 

for the Yellow Cat, Ruby Ranch and Mussentuchit Members, of which sauropod and hadrosaur 

specimens were sampled. 

      

D.   The Carbon-Cycle and Stable Isotope Chemostratigraphy 

       The potential for dating and correlating rocks using δ
13

C trends and excursions is based on 

the fact that their 
13

C/
12

C ratios have varied over time, mostly due to the partitioning of carbon 

between organic carbon and carbonate carbon reservoirs in the lithosphere (e.g., Shackleton and 

Hall, 1984; Berner, 1990; Kump and Arthur, 1999; Falkowski, 2003; Sundquist and Visser, 2004 

Saltzman and Thomas, 2012). The lithosphere is the largest carbon reservoir and can be divided 

into 3 separate reservoirs, sedimentary carbonate, sedimentary organic carbon, and the mantle. 

The ocean-atmosphere system plays a smaller but necessary and important role in global carbon 

cycling (Fig. 6).  

     Precipitation of carbonates involves little carbon isotope fractionation relative to dissolved 

inorganic carbon (DIC), and the δ
13

C of carbonate is relatively unaffected by temperature 

changes (~0.035‰/°C; Lynch-Stieglitz, 2003). This results in the δ
13

C or inorganically and 

biologically precipitated carbonate in the oceans being very close to that of the DIC in the oceans 

(Maslin and Swann, 2005). The oceanic DIC is the largest carbon reservoir in the recent ocean- 
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Figure 6. Global carbon cycle diagram showing carbon reservoirs and carbon isotopic 

compositions vs. VPDB. Volcanic emissions are representative of mantle δ
13

C of -5‰. Figure 

from Saltzman and Thomas (2012) after Dunkley-Jones et al., (2010). 

 

atmosphere system (Saltzman and Thomas, 2012) and is 50-60 times as large as the pre-

industrial atmospheric reservoir (Ravizza and Zachos, 2003; Sundquist and Visser, 2004; 

Sarmiento and Gruber, 2006; Houghton, 2007, Saltzman and Thomas, 2012). Greater than 90% 

of the carbon in the deep ocean is present as bicarbonate (HCO3-). Carbon in the atmosphere is 

present as carbon dioxide (CO2). Lithospheric carbon is contained in both organic matter and 

carbonate rock such as limestones and dolomites. Carbon cycling between the ocean and the 

atmosphere occurs on time scales of <1000 years, while exchanges between the lithosphere and 

ocean-atmospheric system is on longer time scales between 100,000-1,000,000 years (Berner, 

1990; Saltzman and Thomas, 2012). 

     The carbon isotopic composition of CO2 in the atmosphere was about -6.4‰ prior to 

anthropogenic fossil fuel combustion, and currently is -7.9‰ due to the influx of isotopically 

light fossil fuels (Francey et al., 1999; Saltzman and Thomas, 2012). The photosynthetic fixation 

of carbon using atmospheric CO2 involves a large negative fractionation, so that all organic 
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carbon compounds are strongly depleted in 
13

C relative to atmospheric CO2 (Maslin and Thomas, 

2003; Saltzman and Thomas, 2012). Thus, this results in land plants that use the C3 

photosynthetic pathway, have δ
13

C values ranging from ~-32‰ to ~-21‰, with a mean value of 

~-26‰. 

     The δ
13

C of whole-ocean DIC has not been constant over geologic time. Variations in δ
13

CDIC 

in the oceans over time scales of tens of thousands of years or less can be understood in terms of 

carbon redistribution between Earth’s surface reservoirs, the atmosphere, oceans, biosphere and 

superficial sediments (Sundquist and Visser, 2004; Saltzman and Thomas, 2012). Changes in 

size and rate of the exchange fluxes between Earth’s surface carbon reservoirs and the 

lithosphere result in variations in δ
13

CDIC over time scales of hundreds of thousands to millions 

of years (Berner, 1990; Kump and Arthur, 1999; Sundquist and Visser, 2004; Maslin and Swann, 

2005, Saltzman and Thomas, 2012). This mostly relates to storage in the lithosphere of varying 

amounts of carbon as organic carbon relative to the amount stored in carbonates (Saltzman and 

Thomas, 2012). The lithospheric organic carbon reservoir includes coal, oil and gas, but is 

mostly comprised of dispersed organic matter (Saltzman and Thomas, 2012). Presently, the out-

flux of carbon from the oceans into calcium carbonate is about 4 times as large as the out-flux of 

carbon into organic matter (Shackleton and Hall, 1984; Shackleton, 1987, Saltzman and Thomas, 

2012). If relatively more/less carbon is removed from the oceans in organic matter (relative to 

carbonate), the δ
13

CDIC in the whole ocean increases/decreases (Shackelton, 1987; Berner, 1990; 

Kump and Arthur, 1999; Hayes et al., 1999; Derry et al., 1992; Des Marais et al., 1992; Ravizza 

and Zachos, 2003; Sundquist and Visser, 2004; Maslin and Swann, 2005; Saltzman and Thomas, 

2012). When there is net oxidation of organic matter globally, the δ
13

CDIC in the whole ocean 
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decreases; when there is net deposition of organic matter globally, the δ
13

CDIC in the whole ocean 

increases (Saltzman and Thomas, 2012). 

     The δ
13

CDIC in the oceans is not only linked to the δ
13

C of atmospheric CO2 through exchange 

between the atmosphere and surface ocean, but also through circulation between surface and 

deep waters in the oceans: the “atmosphere is the slave of the ocean” because of its much smaller 

size (Sundquist and Visser, 2004; Maslin and Swann, 2005, Saltzman and Thomas, 2012). A 

change in the carbon isotope composition of the large oceanic DIC reservoir is thus reflected in 

the isotopic composition of other components of the carbon cycle within the time order of 

circulation of the deep ocean (~1,000 years), such as organic matter in marine and terrestrial 

sediments (Hayes et al., 1999), plant material (Robinson and Hesselbo, 2004), carbonate nodules 

in soils (Ekart et al., 1999; Ludvigson et al., 2010), and carbonate in herbivore teeth (Koch et al., 

1992). 

     Carbon Isotope Excursions, (CIEs) may be either positive or negative. Extremely negative 

CIEs (NCIEs) are likely linked to release of methane hydrates, which have an extremely light C-

isotope signature. Methane hydrates are common in young sedimentary packages and can be 

released by metamorphism, global warming of the oceans and atmosphere, and changes in sea-

floor spreading rates (Saltzman and Thomas, 2012). During CMF deposition (~125 Ma), the 

world’s largest Large Igneous Province (LIP) was erupted onto the Earth’s surface. The Ontong 

Java Plateau of the western Pacific Ocean likely formed over a 3 million year period around the 

Barremian-Aptian boundary (Tarduno, 1991). This greatly increased the abundance of CO2 in the 

atmosphere and oceans, likely producing a bloom of photosynthetic organisms and may 

correspond to PCIEs associated with early Cretaceous OAEs, specifically OAE 1a, or the “Selli 

Event”.  Positive CIEs are generally associated with higher rates of burial of organic carbon 
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which is more concentrated in the light carbon isotope (Saltzman and Thomas, 2012), leaving 

behind a heavier isotopic signature in the world’s oceans and atmosphere. CIEs have been 

associated with episodes of extinction and/or rapid evolutionary turnover resulting from an 

abrupt rise in temperature, caused by rapid influx of CO2 into the atmosphere leading to an 

accelerated hydrological cycle, increased continental weathering, enhanced nutrient discharge to 

oceans and lakes, intensified upwelling, increased organic productivity, and widespread ocean 

anoxia and acidification (Saltzman and Thomas, 2012). 

 

III.          Previous Research 

 

A.   Isotope Proxy Studies 

Recently, much work had been done to investigate the climatic conditions of the CMF. 

The δ
18

O of phosphate from the same suite of samples being used in this investigation, has been 

previously analyzed by Suarez et al., (2014) and was used to investigate the regional climatic 

effects of the formation of the “Nevadaplano” plateau during the Sevier Orogeny. Turtle, 

crocodile and dinosaur taxa were compared to coeval pedogenic carbonates to interpret changing 

water sources over time. The isotopic values generated from hydroxlapatite of herbivorous 

dinosaurs were used to calculate the δ
18

O values of dinosaur drinking water, using modifications 

of δ
18

OP - δ
18

Owater  relationships determined for herbivorous birds by Kohn (1996), and body 

temperature estimates of dinosaurs from Amiot et al., (2006) and Eagle et al., (2011). 
 

     Calcite, turtle, and crocodile isotope compositions imply similar isotopic compositions of 

water. When the meteoric values calculated from the semi-aquatic taxa of crocodiles and turtles 

are compared to the calculated drinking water of dinosaurs, the dinosaur ingested waters show a 

relative depletion by as much as 5-10‰, which Suarez suggests may be due to consumption of 
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water from rivers and streams sourced from higher elevations and snow melt derived from the 

Sevier Mountains. Calculated values of δ
18

Ow and inter-taxon comparisons suggested that 

sauropods and larger theropods consumed isotopically enriched water relative to small theropods 

and ornithischians. This is likely due to consumption of more enriched water sources, such as 

lakes for larger taxa, and more depleted water sources, such as streams and rivers, for smaller 

taxa. Suarez also concluded that a rainshadow progressively intensified from lower Yellow Cat 

to Ruby Ranch times (c. 135 to 110 Ma), and snow was likely present at least locally at proximal 

high elevations primarily from the upper Yellow Cat through Ruby Ranch Member time. 

 

B.   Chemostratigraphic Studies 

     Various isotope studies of early Cretaceous marine sections (Mengatti et al., 1998; Erba et al., 

1999; Bellanca et al., 2002) have been conducted. Relatively little work has been done to 

construct carbon isotope curves of terrestrial sections or using terrestrially derived organic 

matter. This is primarily due to the usually low organic carbon content of terrigenous sediments, 

the lack of age constraining index fossils, and the likely greater frequency of unconformities.  

     Grocke et al., (1999), constructed an organic carbon-isotope curve of the biostratigraphically 

well-constrained Aptian shallow-marine siliciclastic succession of the Isle of Wight in southern 

Britain, derived from the composition of fossil wood fragments. Results indicated that the 

δ
13

Cwood was primarily influenced by fluctuations in the isotopic composition of CO2 in the 

global ocean-atmosphere system, closely resembling compositions registered in the δ
13

C of 

marine carbonates elsewhere. CIEs were observable in the constructed curve and were correlated 

with excursions documented in Aptian age Tethyan carbonate platform deposits associated with 

OAE 1a. 
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     M. Suarez et al., (2013) sampled two Early Cretaceous lacustrine sections of the Xiagou 

Formation in the Changma Basin in Gansu Province, China and correlated them using carbon 

isotope compositions of bulk organic matter and carbonate based on a two-step increase in 

δ
13

Corg of about 12.5‰. These two sections were correlated with global isotopic variations C3-

C7 observed in marine sections, dating these lacustrine sections as early Aptian, and displaying a 

terrestrial manifestation of the CIEs associated with OAE 1a (Fig. 7).  

 
 

Figure 7. Correlation of Xiagou Formation section, Gansu Province, northwest China from M.B. 

Suarez et al., (2011) to Cismon section, Italy, from Mengatti et al., (1998). Both chemo-

stratigraphic curves show a negative excursion at C3 followed by a two-step positive excursion 

defined by C4, C5, and C6 which encompass the ‘Selli Equivalent’ associated with ocean anoxic 

event 1a (OAE 1a). Figure from M.B. Suarez et al., (2011). 

      

     Ludvigson et al. (2010) analyzed δ
13

C and δ
18

O of pedogenic carbonates from the CMF to 

compare with marine record carbon isotope excursions and characterize meteoric-phreatic water 

compositions.  They found that the terrestrial chemostratigraphy from two measured sections of 

the Ruby Ranch member closely correlated with the global marine carbon chemostratigraphic 
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record and were able to observe CIEs that were previously known from the global record 

established from marine deposits from the Vocontian Basin of SE France by Herrle et al. (2004). 

Specifically they correlated Aptian to Albian excursions Ap 7 through Al 12 (Fig. 8), providing a 

relative depositional age of the Ruby Ranch Member of 118-100 Ma.  

 
 

Figure 8. Global correlation of Ruby Ranch member sections of Utah with Vocontian Basin 

section of southeast France. Figure from Ludvigson et al., (2010a). 

 

 

IV.      Methods 

 

A.   δ
13

C and δ
18

O of Vertebrate Remains        

     Samples of CMF vertebrate tooth enamel, dentine and bone were provided by several 

museum collections: the Oklahoma Museum of Natural History (OMNH), the Utah Museum of 

Natural History (UMNH), the College of Eastern Utah Museum (CEUM), the Denver Museum 

of Nature and Science (DMNH), and Brigham Young University Museum of Vertebrate 
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Paleontology (BYUVP). Samples were drilled by hand using a dental drill, producing 1000-2500 

µg of powder. Cleaning and analysis of samples was done following Koch et al. (1997). Foreign 

organic material was removed from the samples by reacting 40 µL of 30% hydrogen peroxide 

(H2O2) per 1 mg of sample.  Samples were vortex stirred and allowed to react for 24 hours 

suspended in an ultrasonic bath that stirred for 15 minutes every hour.  After the timed reaction, 

H2O2 was decanted. Samples were then rinsed by adding 1ml of millipore water and centrifuged 

at 3000 RPM for 10 minutes and then decanted.  This was repeated at least 3 times and then 

samples were dried in an oven.  

     Diagenetic carbonate was removed by reacting the samples with 40 µL of 1M calcium 

acetate-acetic acid buffer solution per 1 mg of sample. Samples were vortex stirred and then 

suspended in an ultrasonic bath that sonicated for 15 minutes every hour for 12 hours.  Samples 

were centrifuged at 3000 RPM for 10 minutes and the calcium acetate-acetic acid buffer solution 

was then decanted.  Rinsing was performed by adding 1ml of millipore water and centrifuging at 

3000 RPM for 10 minutes and then decanted. This was repeated 3 times before drying samples 

for 24 hours in a vacuum oven.  ~1.0 mg of sample (depending on how much sample was left 

over from the cleaning process) was then weighed using a micro-balance scale, for mass 

spectrometry analysis and placed in 4.5 ml glass Exetainer vials with membrane lids. Samples 

were then flushed with helium and reacted with 105% H3PO4 (phosphoric acid) overnight to 

generate CO2 before being sampled with a Thermo Scientific Finnigan Gas Bench II attached to 

a Thermo Finnigan isotope ratio mass spectrometer (IRMS) at the University of Arkansas Stable 

Isotopes Laboratory (UASIL).  δ
13

C and δ
18

O were calculated from the IRMS results.  

Instrument stability and precision was monitored via analysis of NBS-19, UASIL 22 and UASIL 

23 to within 0.15‰. 



25 
  

  

B.   Inorganic δ
13

C and δ
18

O Chemostratigraphy 

      0.3 mg, from each non-decarbonated sediment sample, was placed in 4.5 ml glass Exetainer 

vials with membrane lids.  Samples were flushed and pressurized with helium gas. 5-6 drops of 

105% H3PO4 (phosphoric acid) were injected into each vial and then placed in a heating block at 

25°C to react with the sample overnight to generate CO2 gas which was then sampled with a 

Thermo Scientific Finnigan Gas Bench II attached to a Thermo Finnigan IRMS at UASIL for 

δ
13

C and δ
18

O.  Instrument stability and precision was monitored via analysis of NBS-19, UASIL 

22 and UASIL 23 to within 0.1‰ standard deviation. Sample δ
13

Ccarb and δ
18

Ocarb values were 

then graphed against stratigraphic position, generating carbon and oxygen isotope 

chemostratigraphic curves. 

 

C.      Bulk Organic δ
13

C Chemostratigraphy 

     Several grams of rock material from each of 66 samples taken at 0.25 m intervals were 

ground into a powder by use of mortar and pestle.  One to two grams of powdered sample were 

then weighed into 50ml centrifuge tubes and reacted with 30ml of 0.5M hydrochloric acid (HCl) 

at room temperature to remove inorganic carbonate.  The samples were reacted for 12 hours and 

vortex stirred every 3-4 hours.  Other HCl concentrations, temperatures, and reaction times were 

also used in separate successive de-carbonation reactions of selected samples to observe how 

results were affected by changes in methodology. These successive de-carbonation reactions 

used either 3M HCl at 60°C for 2 hours or 3M HCl at room temperature for 12 hours.  After the 

initial timed reaction, pH of the samples was tested to see if neutralization had occurred.  

Samples were then centrifuged at 3000 RPM for 15 minutes and decanted.  Another 10 ml of 

HCl were then added to each sample to see if any noticeable reaction would occur.  If a reaction 
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did occur, then another 20 ml of HCl were added and allowed to react for at least another hour at 

the appropriate temperature.  

      After completing the reaction, samples were again centrifuged at 3000 RPM for 15 minutes 

and decanted.  Samples were then rinsed by adding 40 ml of millipore filtered water, stirred via 

vortex shaker, centrifuged and decanted.  This rinsing was repeated at least 3 times and pH of the 

solution was measured after each rinse until the pH was that of the rinse millipore water (pH ~ 

7).  Samples were then dried in an oven for 12-24 hours.  After drying, samples were then re-

crushed by use of mortar and pestle and placed in vials with appropriate labels. 

     De-carbonated re-powdered samples were then weighed appropriately, between 3-18 mg 

based on estimates of total weight percent of organic carbon, using a micro balance scale for 

mass spectrometry analysis. Samples were wrapped in tin capsules which were then combusted 

in a Thermo Finnigan NC2500 Elemental Analyzer attached to a Thermo Finnigan Delta Plus 

IRMS at the UASIL to determine δ
13

C. Instrument stability and precision was monitored via 

analysis of UASIL lab standards Black Weeks 036 with an average value = -25.09‰ and σ = 

0.676, White River trout with an average value = -26.63‰ and σ = 0.118, and Corn maize with 

an average value = -11.32‰ and σ = 0.059, to within 0.8‰ of actual values.  Sample δ
13

C values 

were then graphed against stratigraphic position to generate a carbon isotope chemostratigraphic 

curve. 

 

V.     Results 

 

A.     δ
13

C and δ
18

O of Vertebrate Remains 

     δ
18

O of vertebrate apatite carbonate was compared to and graphed vs. δ
18

O of PO4 results 
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from samples analyzed by Suarez et al. (2014). Results were graphed in comparison to the 

equilibrium equation:  

δ
18

OPO4 = 0.98*(δ
18

OCO3) - 8.5    (1) 

derived by Iacumin et al., (1996), and were grouped by individual taxa for each depositional 

member (Fig. 9,10, and 11). Some sample values fall close to the line of best fit equation 

determined by Iacumin indicating the preservation of primary isotopic values, while other 

sample values lie away from this line, indicating that diagenetic alteration has likely occurred. 

Iacumin et al., (1996) suggests that values falling off the equilibrium line represent samples that 

have undergone diagenetic alteration to either the δ
18

OPO4 or, more likely, the δ
18

OCO3. 

  
Figure 9. δ

18
OPO4 vs. δ

18
OCO3 of Yellow Cat Member vertebrate samples, comparing results to 

equilibrium trend line of Iacumin et al., 1996, derived from unaltered enamel samples. 

 

     All YCM samples fall above the Iacumin et al. line and are all very tightly grouped. These 

samples all would fall on a trendline with a nearly identical slope as the Iacumin et al. line. 

Either a slight degree of near identical diagenesis has occurred for all these samples or  
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Figure 10. δ
18

OPO4 vs. δ
18

OCO3 of Ruby Ranch Member vertebrate samples, comparing results to 

equilibrium trend line of Iacumin et al., 1996, derived from unaltered enamel samples. 

 

 
 

Figure 11. δ
18

OPO4 vs. δ
18

OCO3 of Mussentuchit Member vertebrate samples, comparing results 

to equilibrium trend line of Iacumin et al., 1996, derived from unaltered enamel samples. 
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a difference in methodology from samples used by Iacumin et al. and the samples used in this 

study exists. Most RRM samples fall closely on both sides of the Iacumin equilibrium line and 

indicate preservation of primary isotopic signals. Two turtle samples fall a bit further away from 

the equilibrium line and have likely been diagentically altered. This is likely since the turtle 

samples consist of bone which has much more porosity that tooth enamel and is more easily 

altered after burial by exchange with diagenetic fluids. MM samples fall just above or on the 

equilibrium line of Iacumin et al., 1996. One outlying ornithischian sample has likely been 

diagenetically altered. 

     The δ
13

CCO3 of herbivores was used to estimate the δ
13

C of herbivore diet using the offsets 

calculated by Tutken et al., (2010) for sauropods and Fricke et al., (2008) for ornithopods. The 

estimated δ
13

C of herbivore diet was then used in conjunction with the mean annual precipitation 

equations derived by Kohn (2010) and Diefendorf et al., (2010) to estimate an averaged mean 

annual precipitation value for each depositional member of the CMF. The following equation, 

modified from Kohn (2010), was used to calculate MAP: 

log10MAP + 300 = (0.17*Δ) - 0.342 - (0.00219*Abs (latitude))    (2) 

, and  Δ = (δ13
Catmosphere - δ

13
Cplant) / [ 1 + (δ13

Cplant / 1000)]    (3) 

In order to improve the quality-of-fit for the logarithmic regression to the global dataset, Kohn 

(2010) adds 300 to MAP (see equation 2). This is because regressing the δ
13

C vs logMAP data 

unrealistically approaches negative infinity for log10MAP and positive infinite for d13C values at 

lower and lower MAP. Thus, adding 300 to log10MAP improves R
2
 values and eliminates 

unrealistic predicted δ
13

C values at low MAP.  This results in a negative MAP for heavier δ
13

C 

values measured in this study. Thus, we eliminated the +300 from the Kohn (2010) equation (see 

also Kohn, 2010, supplemental data #7). Paleo-latitude for the CMF is estimated at 34°N from 
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leaf physiognomy and mean annual temperature estimates from Spicer and Corfield (1992) and 

Wolfe and Upchurch, (1987). An estimate of paleoaltitude which is a factor in the Kohn (2010) 

equation was not considered because paleoelevation must be greater than ~3 km to greatly affect 

calculated MAP. δ13
Catmosphere was estimated to be -5.8‰ for the YCM and -6.0 for both the 

RRM and MM (Ekart et al., 1999). The estimated and averaged MAP value for the lower YCM 

is 768 mm/yr. The upper YCM had the lowest estimated MAP of all the CMF members at 85 

mm/yr. The MAP of the RRM was estimated to be 274 mm/yr., and the MM had the highest 

estimated MAP, as expected, of 883 mm/yr. (Fig. 12).  

 
Figure 12. MAP estimates derived from δ13

C of tooth enamel samples using the Kohn (2010) 

equation. 

 

     Diefendorf et al., (2010) used a slightly different equation to derive MAP: 

logMAP = (0.0802*Δ) +1.3726    (4) 

with Δ being equal to equation 3. Paleolatitude and estimated δ13
C were the same values used 

with the Kohn (2010) equation. The resulting MAP estimate for the lower YCM was 849 mm/yr. 

and the upper YCM was 448 mm/yr. MAP for the RRM was estimated to be 599 mm/yr., and the 

MM had a MAP value of 910 mm/yr. (Fig. 13). Results differed between the two equations but 

preserved the same pattern of a decrease of MAP from the lower to upper YCM, a slight increase 

in MAP relative to the upper YCM for the RRM and a large increase in MAP for the MM. 
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Figure 13. MAP estimates derived from δ13
C of tooth enamel samples using the Diefendorf et 

al., (2010) equation. 

 

 

B.    δ
13

 C and δ
18

O Chemostratigraphy 

     A chemostratigraphic curve was constructed from δ
13

C values of bulk organic carbon derived 

from paleosol and lacustrine deposits from the upper and lower Yellow Cat Member at a site 

known as Lake Madsen (LMDS) (Fig. 14).  The δ
13

C of bulk organic material ranged from -

22.72 ‰ to -26.76 ‰ with a mean value of -24.49 ‰ relative to VPDB. Values show an overall 

decrease for the lower half of the YCM and an overall increase for the upper half. Distinct 

negative trends, possible NCIEs, are observed at 4.5-5 m, 7.5-8.25 m and 10-10.75 m above the 

J/K contact. A -2‰ spike is observed at the base of the section. Values then increase by >2‰ 

and oscillate back and forth by ~1‰ from 0.75-4.25m. An increase of 1.5‰ occurs at 4.5m and 

records the maximum value of the curve at -22.72‰. A decrease of 2.5‰ occurs from 4.5-

5.25m. Values slowly increase by ~1‰ from 5.25-7.75m. At 8.25 m the minimum value of  

-26.76‰ is reached with a negative excursion of ~2.5‰ from 7.75-8.25 m. Values then increase 

by ~2‰ from 8.25-8.75m. An overall decrease of 1.25‰ occurs between 8.75-10.75 m. From 

10.75-14.75 m the curve oscillates back and forth but shows an overall increase of ~2.5‰. From 
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Figure 14. Stratigraphic column with lithologic descriptions of Lake Madsen Discovery Site 

(LMDS), Yellow Cat Member of the Cedar Mountain Formation, with chemostratigraphic 

profile of δ
13

C values obtained from this section. 

 

14.75-16.25 the curve again oscillates back and forth but shows an overall decrease of ~1.25‰.  

A three-point running average was created for comparison with other chemostratigraphic curves 

of similar age, as that is the practice employed in the comparison of C-isotope curves in an effort 

to reduce the effect of outlying values or “noise” on the overall appearance of the curves.  

     δ
13

C and δ
18

O values of inorganic carbonate were also used to construct additional 

chemostratigraphic curves (Fig. 15). Values for inorganic carbonate were only obtained for the 

upper 8.5 m of the LMDS section due to a lack of bulk carbonate in the lower half of the 

sampled section.  Starting at 7.75 m, a small negative trend is observed in both curves followed 

by a small positive trend from 8-8.75 m. Both curves then display a large negative trend from 9-

9.75 m of almost a 4‰ decrease for carbon and nearly 3‰ decrease for oxygen.  Values then 

increase for both curves from 9.75-10.25m, with an increase of 4‰ for carbon but only a 1.5‰ 
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Figure 15.  δ
13

C and δ
18

O chemostratigraphic curves of bulk sedimentary carbonate with 

lithologic stratigraphic column of LMDS. Note that below the calcrete layer there was not 

enough carbonate available in samples to derive isotopic values. 

 

increase for oxygen. Subsequently, the carbon values again decrease by 1.5-2‰ from 10.25-

10.75 m, while the oxygen values show a small decrease of ~0.5‰ from 10.25-10.5 m followed 

by a ~1‰ increase from 10.5-11 m, with a small increase, ~0.5‰, for carbon between 10.75-

11m. From 11-13.25m both isotope ratios show a strong coupling as they increase or decrease 

with a range of ~1.5-2‰. Negative spikes are observed in both curves at 11.25, 12.5, and  

13.25 m. Positive peaks are observed at 12.25 and 13 m. A negative peak is observed in the 

carbon isotope curve at 13.5 while the oxygen isotope curve increases. A strong positive peak is 

observed in both curves at 14 m. Both curves then decrease by ~1.5‰ from 14-15.25 m and 

increase by ~1‰ from 15.25-15.75 m. From 16-16.25 m carbon values show a small increase, 

while oxygen values show an equally small decrease. 
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Figure 16. Organic carbon δ
13

C chemostratigraphic profile compared alongside 

chemostratigraphic profiles of δ
18

O and δ
13

C from carbonate. Overall they show numerous 

similarities but do have some points of diverging values. 

 

     When the inorganic carbonate and organic carbon curves are compared to each other they 

have an overall similar appearance, suggesting that shifts observed in both curves are controlled 

by changes in global atmospheric isotope reservoirs and should be comparable to chemo-

stratigraphic profiles from other locations from the same time period (Fig. 16). 

     The isotope curves generated from carbonate show a covariance between the carbon and 

oxygen values and suggest a freshwater lake system (Fig. 17) (Leng et al., 2006). This isotopic 

observance coincides with lithological interpretations made for the upper YCM Lake Madsen 

section. 
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Figure 17. Figure from Leng et al., 2006, showing δ13C vs. δ18O of lakewaters. Plot of δ
13

C vs. 

δ
18

O of inorganic CaCO3 from upper YCM Lake Madsen site. This plot suggests a freshwater 

lake system with some possible groundwater interaction. 

 

   

VI.    Interpretations/Discussion/Implications 

 

A.     δ
13

C and δ
18

O of Vertebrate Remains 

     δ
18

OPO4 and δ
18

OCO3 comparisons show that most samples preserve primary isotopic 

compositions when plotted against the equilibrium line of Iacumin et al., 1996. However, some 

samples fall off this line, indicating that some diagenetic alteration has occurred, changing the 

isotopic composition of the original material. It should be noted however, that the data used to 

generate the equation by Iacumin et al., (1996) were generated using the bismuth phosphate 

method and analysis via fluorination of bismuth phosphate. This method is known to vary from 

the modern method of precipitation of silver phosphate and analysis via combustion in a TCEA 

by -1‰ (Chenery et al., 2010). Thus, the y-intercept of the Iacumin et al. (1996) equation should 

be increased by 1‰. When we do this, most values fall either on or much closer to the 
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equilibrium line, except for RRM samples which now mostly fall below the equilibrium line. 

(Fig. 18, 19, and 20).  

     The covariance of the data and proximity to the d18Oc-d18Op line of Iacumin et al. (1996) 

suggests that the δ18
OCO3 and δ13

CCO3 retain authigenic biologic signals. Additionally, Wang and 

Cerling (1994) created a mass balance model to recreate burial diagenesis to bone and tooth 

enamel to determine if carbon and oxygen are altered at the same instance and rate. Based on 

their data, they suggest that the oxygen component of the carbonate molecule is more likely to be 

altered than the carbon component. Thus, our data and previous research suggests that the 

δ13
CCO3 represents primary or near-primary isotopic compositions.  

 

Figure 18. δ
18

OPO4 vs. δ
18

OCO3 of Yellow Cat Member vertebrate samples, comparing results to 

modified equilibrium trend line (in red) of Iacumin et al., 1996. 
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Figure 19. δ
18

OPO4 vs. δ
18

OCO3 of Ruby Ranch Member vertebrate samples, comparing results to 

modified equilibrium trend line (in red) of Iacumin et al., 1996. 

 

 

Figure 20. δ
18

OPO4 vs. δ
18

OCO3 of MussentuchitMember vertebrate samples, comparing results to 

modified equilibrium trend line (in red) of Iacumin et al., 1996. 
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     δ
13

C values obtained from enamel of vertebrate specimens of the CMF allowed for estimation 

of isotopic compositions of diet or δ
13

Cplants which was then used in the computation of MAP 

values of depositional members. MAP of the CMF changed through time as the advance of the 

Sevier Fold and Thrust belt from the west and the Western Interior Seaway from the east 

encroached upon the depositional area of the CMF. Results show a marked decrease in MAP in 

the upper YCM, suggesting a more arid environment. This sharp decrease likely arises from 

activity of the Canyon Range thrust sheet within the SFTB.  

     From the upper YCM to the Ruby Ranch, MAP values show a slight increase, which is a bit 

puzzling. The presence of much more sedimentary carbonate than the upper YCM and 

dolimitized lake deposits found in the RRM suggest a more arid environment. More proximal 

thrusting associated with the Pavant Thrust during this time would also predict a more arid 

environment and a greater rain shadow effect than was present in the upper YCM. This may 

suggest that δ13
C values from vertebrate remains of the RRM used to generate the MAP estimate 

may be diagenetically altered or that indeed the rain shadow effect was somehow mitigated by 

increased regional subsidence or some other factor.  

     From the Ruby Ranch member to the Mussentuchit Member, MAP shows a large increase and 

the value is typical of a humid environment, showing that any rain shadow influence had been 

erased by coastal moisture inundation. The trends in the MAP calculations follow the 

interpretation of Suarez et al., (2014), which suggested by the shifts in δ18
OPO4 that a rain 

shadow initiated by the upper YCM-time, persisted through the RRM, and ceased by MM-time 

due to advancing moist air masses from the encroaching Western Interior Seaway.  
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B.    δ
13

 C and δ
18

O Chemostratigraphy 

     The Lake Madsen chemostratigraphic curves were compared to various early Cretaceous 

marine sections looking for similar patterns of CIEs. Correlations were made with the Tethyan 

carbonate platform Cismon Valley section of the Italian Alps (Erba et al., 1999) on the basis of 

comparing magnitudes of excursions and patterns of positive and negative trends away from the 

mean value. An upper age constraint of 119 Ma was used for the Lake Madsen section based on 

an absolute age date obtained by Ludvigson et al., 2010, which sampled a carbonate layer not 

present in the Lake Madsen section located just below the Poison Strip Sandstone Member. 

Correlation indicates a lower Aptian age for the upper YCM and an upper Barremian age for the 

lower YCM.  This is based on the identification of the B5-B8 excursions of the Barremian from 

1.0 m to 8.0 m and the A1-C5 excursions of the Aptian from 9.0 m to 16.25 m (Fig. 21).  The  

 

Figure 21.  Global chemostratigraphic correlation of the Lake Madsen discovery site section of 

Utah, and the Cismon Valley Tetyhan platform carbonate section of the Italian Alps. Lake 

Madsen section is hung from the 119 Ma U/Pb age date obtained by Ludvigson et al. (2010a). 

Correlation is based on patterns of peak values and amount of offset from mean value. 
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reason that the C4-C5 section is not correlated to the C6-C7 PCIEs is that the magnitude of the 

excursion is not great enough. Instead, it is assumed that depositional rate increased for the upper 

6.25 m as the depositional regime transitioned from a fluvial to lacustrine system. The large C6-

C7 PCIE is believed to occur in the Poison Strip Sandstone and has been documented at the base 

of curves derived by Ludvigson et al., 2010a (see Fig. 8). 

 

C.    Problems Encountered 

     Results for the upper YCM δ
13

C of bulk organics were poorly replicated. Values from initial 

and subsequent IRMS runs varied significantly (Fig. 22). This may have been caused by a 

number of factors. One possible explanation is that samples were not completely homogenized 

by crushing with a mortar and pestle, preserving inorganic carbonate when reacted with HCl. 

This may be the most likely explanation as the largest discrepancies were observed in samples 

that contained the largest weight percent of inorganic carbonate. Another explanation may be 

that the porcelain mortar and pestle may have contributed material skewing the isotopic ratios of 

resulting values. If this is the case, this can be avoided in future studies by using an agate mortar 

and pestle.  

     Changes of HCl molarity and temperature were made between the initial and subsequent runs 

in order to observe possible differences in results. The initial runs were cleaned of inorganic 

carbonate utilizing 0.5M HCl at room temperature while subsequent runs of the upper 4.75 

meters of the section used 3.0M HCl heated to 60°C. This was done to determine if other 

carbonate minerals could be present in the sediment samples that possess temperature dependent 

dissolution reactions with HCl, such as dolomite or siderite that may not have been removed with 

“cold” and weaker HCl. Initial sample weights were compared to sample weights after the 



41 
  

 
Figure 22. Various carbon-isotope chemostratigraphic profiles of upper 4.75 m of Lake Madsen 

section, derived from multiple IRMS runs of duplicate samples using hot or cold decarbonation 

methods. Shows variability in employing different acid concentrations and temperatures in 

decarbonation methods and variability in IRMS results of duplicate samples. 

 

decarbonation reactions for both 0.5M “cold” and 3.0M “hot” HCl concentrations to generate a 

weight percent of dissolved solids. Comparisons were made for weight percent CaCO3 dissolved 

in each sample at both temperatures and acid concentrations (Fig. 23). Weight percentages were 

almost identical for most samples except for the samples from the upper 1.75 meters of the 

section. These samples had dissolved weight percentages that varied by up to 15% and had no 

clear pattern of variability. Oddly, these samples were fairly consistent, although they varied 

somewhat, in IRMS run results while the samples that had consistent dissolved weight 

percentages were the ones that had more variable IRMS results. It is possible that human error 

could account for the differences in dissolved weight percentages, due to the action of pouring 
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Figure 23. Dissolved weight percents of CaCO3 removed for upper 4.75 meters of Lake Madsen 

section using both “cold” 0.5M and “hot” 3.0M HCl concentrations. Upper 1.75 meter samples 

vary but do not reflect variations in IRMS results. 

 

off the supernatant acid during decarbonation. This can lead to sediment and associated organics 

being inadvertently poured off as well. X-ray diffraction of sediment samples could be used to 

determine if other carbonate species may be present within some of the samples and if they could 

be affecting the decarbonation reaction.  

     And still another possibility, although unlikely, may be that the IRMS calibration was off 

during initial sampling. Subsequent sample runs were made in duplicate and produced results 

that varied by ~2‰ but preserved the overall chemostratigraphic curve, displaying the range and 

accuracy of the IRMS. Another possible issue in replicating results is the low percentage of total 

organic carbon present in the sampled section. Being that it is a fluvial to lacustrine regime, 

recycling of organic material is a possibility, as nearby rocks are eroded and the organic material 

from those rocks is redeposited. Preservation of the isotopic composition of organic material 

derived from CMF time could become skewed by even a small contamination of older recycled 

organic material that preserves a different isotopic composition or has even possibly undergone 
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greater hydrocarbon fixation. Detection of recycled organic material could be done by examining 

vitrinite reflectance derived Ro values for organic matter in the sediment and calculating 

appropriate Ro values for the CMF and its members based on burial depth curves. These results 

suggest caution should be taken such as carefully cleaning the mortar and pestels, homogenizing 

the sediments completely, and mixing samples prior to weighing into tin cups when analyzing 

low total organic content samples. Nonetheless, values produced from various analyses are 

within 2σ, preserving the overall trend. 

 

VII.    Conclusions 

 

A.    δ
13

C and δ
18

O of Vertebrate Remains 

     Most vertebrate samples have δ
18

O values of structural carbonate and structural phosphate 

that show similar trends observed by Iacumin et al., (1996) in modern vertebrate samples that 

possessed unaltered primary isotopic compositions falling on the equilibrium equation line, while 

some samples, namely RRM samples, have values that do not fall along the equilibrium line and 

likely have undergone some degree of diagenesis. Overall the observed diagenesis seems to be 

reasonably low and suggests the δ13
CCO3 from the samples can be used to accurately calculate 

MAP.  

     The estimated MAP values, derived from enamel δ13
C, show a sharp decrease from the lower 

YCM to the upper YCM. This was likely related to an active period of thrusting, specifically the 

Canyon Range thrust, occurring at the time of deposition of the upper YCM creating a greater 

rain shadow effect over the depositional area. MAP values increase slightly during the 

emplacement of the RRM, which is surprising, considering the ample amounts of carbonate 

nodules and dolomite present within the RRM compared to the upper YCM. MAP increases 
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greatly in the MM as incursion of the Western Interior Seaway brings coastal moisture closer to 

the depositional area of the CMF. 

     To further prove the existence of an orographic rain shadow, comparisons should be made 

with isotopic data of similar aged deposits on the windward side of the SFTB. Deposits on the 

windward side should have considerably lighter δ
13

C values preserved within the carbonate 

portion of vertebrate remains compared to those found in the CMF. δ18
O values of both 

carbonate and phosphate portions of tooth enamel should be considerably heavier with respect to 

values obtained from the CMF.  

 

B.   Chemostratigraphy 

     Carbon isotope chemostratigraphy can be a useful tool in determining relative age of 

continental strata. Correlations between marine reference sections and Lake Madsen indicate a 

terrestrial manifestation of CIEs associated with OAE1a of the Aptian stage of the early 

Cretaceous. This constrains the relative depositional age of the Yellow Cat Member to 125-120 

Ma or Barremian to Aptian. Despite these correlations, more work needs to be done to determine 

if these δ
13

C chemostratigraphic correlations are accurate.  Results were unable to be replicated 

for some bulk organic samples. Various explanations for this exist and need to be explored in 

greater detail. 

    Similar chemostratigrahic profiles are observed when comparing δ
13

C of organic carbon and 

δ
13

C and δ
18

O of carbonate. This suggests that the isotopic concentrations are being controlled by 

atmospheric concentrations and should reflect global observations, making comparisons to 

similar aged sections around the world viable. Carbonate δ
13

C and δ
18

O show covariance 

suggesting deposition within a freshwater lake which coincides with lithological interpretations 

made for the upper YCM Lake Madsen section.   
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Appendix A 

 

Table 1: Data compilation of Lake Madsen Discovery Site (LMDS) chemostratigraphic samples 

and analyses. 

 

Sample

Stratigraphic 

Height (m)

δ
13

Corganic vs. 

VPDB (Run #1 - 

0.5M HCl @ 

25°C)

δ
13

Corganic vs. 

VPDB (Run #2 - 

0.5M HCl @ 

25°C)

δ
13

Corganic vs. 

VPDB (Run #3 - 

3.0M HCl @ 

25°C)

δ
13

Corganic vs. 

VPDB (Run #4 - 

3.0M HCl @ 

60°C)

δ
13

Corganic vs. 

VPDB (Run #5 - 

3.0M HCl @ 

60°C)

δ
13

Corganic vs. 

VPDB (Run #6 - 

3.0M HCl @ 

60°C)

Total 

standard 

deviation of 

δ
13

Corganic

δ13CCO3 vs. 

VPDB

 Standard 

Deviation of 

δ
13

CCO3 

δ18OCO3 vs. 

VPDB

Standard 

Deviation 

of δ
18

OCO3

LMDS - contact 0.00 -24.34 NA NA NA NA NA 0.42 NA NA NA NA

LMDS - 0 0.25 -26.12 NA NA NA NA NA 0.41 NA NA NA NA

LMDS - 1 0.50 -23.98 NA NA NA NA NA 0.51 NA NA NA NA

LMDS - 2 0.75 -23.68 NA NA NA NA NA 0.54 NA NA NA NA

LMDS - 3 1.00 -24.07 NA NA NA NA NA 0.55 NA NA NA NA

LMDS - 4 1.25 -24.03 NA NA NA NA NA 0.55 NA NA NA NA

LMDS - 5 1.50 -24.45 NA NA NA NA NA 0.55 NA NA NA NA

LMDS - 6 1.75 -23.33 NA NA NA NA NA 0.53 NA NA NA NA

LMDS - 7 2.00 -23.81 NA NA NA NA NA 0.55 NA NA NA NA

LMDS - 8 2.25 -24.14 NA NA NA NA NA 0.54 NA NA NA NA

LMDS - 9 2.50 -23.56 NA NA NA NA NA 0.57 NA NA NA NA

LMDS - 10 2.75 -24.11 NA NA NA NA NA 0.57 NA NA NA NA

LMDS - 11 3.00 -24.01 NA NA NA NA NA 0.57 NA NA NA NA

LMDS - 12 3.25 -23.63 NA NA NA NA NA 0.56 NA NA NA NA

LMDS - 13 3.50 -23.92 NA NA NA NA NA 0.57 NA NA NA NA

LMDS - 14 3.75 -23.80 NA NA NA NA NA 0.55 NA NA NA NA

LMDS - 15 4.00 -23.98 NA NA NA NA NA 0.55 NA NA NA NA

LMDS - 16 4.25 -22.72 NA NA NA NA NA 0.55 NA NA NA NA

LMDS - 17 4.50 -23.72 NA NA NA NA NA 0.53 NA NA NA NA

LMDS - 18 4.75 -24.57 NA NA NA NA NA 0.52 NA NA NA NA

LMDS - 19 5.00 -24.88 NA NA NA NA NA 0.54 NA NA NA NA

LMDS - 20 5.25 -24.68 NA NA NA NA NA 0.56 NA NA NA NA

LMDS - 21 5.50 -24.80 NA NA NA NA NA 0.53 NA NA NA NA

LMDS - 22 5.75 -24.70 NA NA NA NA NA 0.56 NA NA NA NA

LMDS - 23 6.00 -24.83 NA NA NA NA NA 0.55 NA NA NA NA

LMDS - 24 6.25 -24.65 NA NA NA NA NA 0.53 NA NA NA NA

LMDS - 25 6.50 -24.39 NA NA NA NA NA 0.54 NA NA NA NA

LMDS - 26 6.75 -24.56 NA NA NA NA NA 0.53 NA NA NA NA

LMDS - 27 7.00 -24.50 NA NA NA NA NA 0.31 NA NA NA NA

LMDS - 28 7.25 -24.20 NA NA NA NA NA 0.36 NA NA NA NA

LMDS - 29 7.50 -24.15 NA NA NA NA NA 0.49 NA NA NA NA

LMDS - 30 7.75 -24.99 NA NA NA NA NA NA -5.59 0.05 -8.03 0.08

LMDS - 31 8.00 -26.76 NA NA NA NA NA NA -5.84 0.05 -8.38 0.13

LMDS - 32 8.25 -25.1 NA NA NA NA NA NA -4.42 0.09 -8.24 0.11

LMDS - 33 8.50 -24.74 NA NA NA NA NA NA -4.40 0.05 -7.90 0.09

LMDS - 34 8.75 -25.14 NA NA NA NA NA NA -4.45 0.04 -7.92 0.07

LMDS - 35 9.00 -24.98 NA NA NA NA NA NA -5.70 0.03 -8.95 0.11

LMDS - 36 9.25 -24.89 NA NA NA NA NA NA -6.68 0.06 -9.64 0.36

LMDS - 37 9.50 -24.95 NA NA NA NA NA NA -7.30 0.25 -10.02 0.50

LMDS - 38 9.75 -25.15 NA NA NA NA NA NA -7.46 0.39 -10.57 0.82

LMDS - 39 10.00 -25.18 NA NA NA NA NA NA -6.75 0.07 -9.10 0.11

LMDS - 40 10.25 -25.82 NA NA NA NA NA NA -3.75 0.05 -9.31 0.03

LMDS - 41 10.50 -25.99 NA NA NA NA NA NA -4.49 0.06 -8.87 0.11

LMDS - 42 10.75 -24.54 NA NA NA NA NA NA -5.67 0.02 -9.43 0.04

LMDS - 43 11.00 -25.25 NA NA NA NA NA NA -5.06 0.05 -8.29 0.07

LMDS - 44 11.25 -25.27 NA NA NA NA NA NA -6.03 0.10 -8.64 0.15

LMDS - 45 11.50 -24.25 -25.21 -24.52 -28.33 -28.15 -25.33 1.81 -5.65 0.07 -8.48 0.15

LMDS - 46 11.75 -22.33 -23.98 -23.70 -28.62 -28.02 -25.00 2.51 -5.44 0.02 -8.26 0.06

LMDS - 47 12.00 -22.37 -24.51 -23.84 -28.83 -28.08 -24.73 2.52 -5.20 0.06 -7.88 0.09

LMDS - 48 12.25 -22.35 -23.97 -22.47 -27.63 -27.25 -25.13 2.29 -5.26 0.04 -7.96 0.06

LMDS - 49 12.50 -27.17 -30.79 -24.20 -28.73 -27.85 -24.60 2.50 -6.24 0.11 -9.91 0.14

LMDS - 50 12.75 -21.43 -18.93 -23.32 -27.56 -26.56 -24.08 3.20 -4.74 0.05 -7.72 0.04

LMDS - 51 13.00 -28.49 -29.23 -23.59 -26.53 -25.93 -23.62 2.37 -4.79 0.13 -7.81 0.12

LMDS - 52 13.25 -25.1 -27.43 -24.13 -27.39 -26.59 -24.80 1.42 -6.07 0.09 -9.71 0.05

LMDS - 53 13.50 -27.83 -29.60 -22.57 -27.16 -26.07 -24.37 2.52 -5.25 0.04 -8.86 0.05

LMDS - 54 13.75 -27.01 -29.74 -22.19 -27.74 -27.14 -23.64 2.79 -6.24 0.09 -8.79 0.16

LMDS - 55 14.00 -26.03 -29.73 -24.18 -27.87 -26.98 -23.90 2.23 -5.33 0.13 -8.11 0.11

LMDS - 56 14.25 -27.8 -27.8 -23.88 -27.55 -27.55 -24.38 1.84 -4.44 0.08 -7.98 0.06

LMDS - 57 14.50 -26.24 -26.24 -23.11 -25.95 -25.95 -23.38 1.48 -5.94 0.08 -8.55 0.05

LMDS - 58 14.75 -25.61 -25.61 -24.07 -25.81 -25.81 -23.79 0.93 -6.20 0.22 -8.80 0.31

LMDS - 59 15.00 -24.52 -24.52 -24.09 -25.33 -25.33 -23.93 0.60 -6.06 0.07 -9.40 0.20

LMDS - 60 15.25 -26.73 -26.73 -24.13 -27.49 -27.49 -24.96 1.39 -5.97 0.18 -9.78 0.29

LMDS - 61 15.50 -25.33 -25.33 -23.89 -26.89 -26.89 -24.29 1.26 -4.86 0.09 -8.68 0.24

LMDS - 62 15.75 -27.4 -28.42 -23.69 -27.32 -26.84 -23.84 2.00 -4.56 NA -8.75 NA

LMDS - 63 16.00 -26.06 -29.05 -23.52 -28.33 -28.14 -24.84 2.20 -5.04 NA -8.63 NA

LMDS - 64 16.25 -25.31 -27.64 -23.54 -28.77 -28.36 -24.32 2.22 -4.64 NA -9.16 NA
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Table 2. Results for isotope analysis of vertebrate samples of the Cedar Mountain Formation. 

sample δ13C vs. VPDB stdev δ13C

δ18OCO3 vs. 

VSMOW stdev δ18OCO3

δ18OPO4 vs. 

VSMOW location member taxa

OMNH-32104-c6 -6.22 0.06 20.8 0.48 15.86 WS27(v868) Mussentuchit Hadrosaur 

OMNH-32104-c5 -6.11 0.08 23.08 0.09 17.23 WS27(v868) Mussentuchit Hadrosaur 

OMNH-26496-h1 -3.42 0.3 26.15 0.4 17.47 WS10(V695) Mussentuchit Ornithischia

OMNH-29990-ws9 -6.04 0.12 24.6 0.1 16.23 WS9 Mussentuchit Ornithischia

OMNH-26496-h2-b -2.87 0.06 22.7 0.09 16.94 WS10(V695) Mussentuchit Ornithischia

OMNH-26251-c2 -5.88 0.15 23.26 0.09 15.35 V239(sc1) Mussentuchit Hadrosaur

OMNH-61018-f1 -6.8 0.08 21.05 0.83 17.83 WS27(v868) Mussentuchit Lepisosteidea

OMNH-61018-h1 -6.86 0.12 21.06 0.07 16.32 WS27(v868) Mussentuchit Lepisosteidea

OMNH-29945-c2 -1.42 0.03 22.75 0.25 13.04 WS9 Mussentuchit Osteichtheyes 

OMNH-29945-c1 -3.49 0.09 23.34 0.08 14.70 WS9 Mussentuchit Osteichtheyes 

OMNH-29945-b1 -3.36 0.04 22.36 0.09 14.55 WS9 Mussentuchit Osteichtheyes 

OMNH-29945-b2 -2.86 0.05 22.2 0.08 14.23 WS9 Mussentuchit Osteichtheyes 

OMNH-28016-j -3.02 0.05 21.68 0.47 16.01 V794(WS13)
 Mussentuchit Osteichtheyes 

OMNH-28016-c-2 -4.44 0.13 20.33 0.46 13.30 WS13 Mussentuchit Osteichtheyes 

OMNH-25544-c3 -8.13 0.35 20.17 0.47 16.13 V235(WS4) Mussentuchit Crocodilia

OMNH-60901-a-6 -7.86 0.2 21.75 0.13 16.77 V868 (WS27) Mussentuchit Chelonia

CEUM-31948-11 -7.25 0.09 26.71 0.16 21.23 PR2 Ruby Ranch Brachiosaur

CEUM-31948-9 -7.15 0.04 26.58 0.17 21.02 PR2 Ruby Ranch Brachiosaur

DMNH-55492-c2 -7.02 0.11 27.08 0.45 15.61 PR2 Ruby Ranch Iguanodontid

CEUM-31232-4 -7.5 0.23 29.53 0.15 23.09 PR2 Ruby Ranch Acrocanthosaurus

CEUM-35842-6 -6.01 0.07 27.94 0.21 15.25 PR2 Ruby Ranch Acrocanthosaurus

CEUM-35798-4 -7.93 0.11 28.61 0.17 17.02 PR2 Ruby Ranch Crocodilia

No ID turtle-2 -6.92 0.06 22.69 0.24 14.29 PR2 Ruby Ranch Chelonia

CEUM-11736-g -5.89 0.12 26.41 0.33 15.61 PR3 Ruby Ranch Chelonia

CEUM-12843-4 -6.65 0.12 30.67 0.36 14.75 PR4 Ruby Ranch Naomichelys

CEUM-12843-6 -6.05 0.14 29.71 0.47 14.80 PR5 Ruby Ranch Naomichelys

BYUVP-18171-2 -6.41 0.27 26.89 0.53 22.86 DWDQ u-Yellow Cat Sauropod

BYUVP-18171-3 -6.11 0.20 27.57 0.49 22.62 DWDQ u-Yellow Cat Sauropod

BYUVP-18171-4 -6.52 0.26 27.06 0.36 22.01 DWDQ u-Yellow Cat Sauropod

BYUVP-18185-1 -4.73 0.09 23.02 0.36 17.26 DWDQ u-Yellow Cat Sauropod

BYUVP-18185-2 -4.39 0.18 22.94 0.16 16.75 DWDQ u-Yellow Cat Sauropod

BYUVP-18185-4 -4.21 0.16 22.93 0.35 17.15 DWDQ u-Yellow Cat Sauropod

DB-Brach3-3 -8.42 0.25 23.86 0.60 17.11 Doelling's Bowl l-Yellow Cat Brachiosaur

DB-Brach-32 -9.07 0.17 27.34 0.22 ? Doelling's Bowl l-Yellow Cat Brachiosaur

DB-Brach-31 -8.68 0.17 27.13 0.26 ? Doelling's Bowl l-Yellow Cat Brachiosaur

BYUVP-7510-2 -5.94 0.27 27.25 0.33 ? DWDQ u-Yellow Cat Utahraptor

BYUVP-7510-3 -5.64 0.14 27.26 0.21 ? DWDQ u-Yellow Cat Utahraptor

BYUVP-7510-4 -5.40 0.16 27.74 0.31 ? DWDQ u-Yellow Cat Utahraptor

BYUVP-18104-2 -6.33 0.27 21.30 0.27 16.80 DWDQ u-Yellow Cat Utahraptor

BYUVP-18104-3 -6.20 0.17 20.91 0.52 16.72 DWDQ u-Yellow Cat Utahraptor

BYUVP-18104-4 -6.11 0.22 22.51 0.18 18.26 DWDQ u-Yellow Cat Utahraptor

BYUVP-14452-1 -6.79 0.20 21.34 0.28 17.68 DWDQ u-Yellow Cat Utahraptor

BYUVP-14452-2 -6.67 0.09 21.48 0.15 17.67 DWDQ u-Yellow Cat Utahraptor

BYUVP-14452-3 -6.80 0.18 22.15 0.58 17.98 DWDQ u-Yellow Cat Utahraptor

BYUVP-18099-1 -6.22 0.41 21.18 0.39 17.77 DWDQ u-Yellow Cat Utahraptor

BYUVP-18099-2 -6.72 0.23 20.34 0.94 17.93 DWDQ u-Yellow Cat Utahraptor

BYUVP-18099-3 -6.40 0.24 22.59 0.33 18.97 DWDQ u-Yellow Cat Utahraptor

UMNH-VP-16867-1 -6.46 0.20 19.15 0.45 13.3 AS Yellow Cat Crocodilia

UMNH-VP-16867-2 -6.53 0.29 19.79 0.20 13.3 AS Yellow Cat Crocodilia

UMNH-VP-16867-3 -6.58 0.24 20.12 0.62 12.5 AS Yellow Cat Crocodilia

UMNH-VP-16867-4 -6.44 0.26 19.83 0.34 14.1 AS Yellow Cat Crocodilia

UMNH-VP-16867-5 -6.68 0.10 19.62 0.28 13.7 AS Yellow Cat Crocodilia

UMNH-VP-16867-6 -6.36 0.25 19.77 0.36 14.1 AS Yellow Cat Crocodilia

UMNH-VP-16867-7 -6.19 0.24 19.45 0.28 13.3 AS Yellow Cat Crocodilia

UMNH-VP-16867-8 -6.26 0.23 19.49 0.49 14.1 AS Yellow Cat Crocodilia

UMNH-VP-16867-9 -6.33 0.10 19.29 0.37 13 AS Yellow Cat Crocodilia

UMNH-VP-16867-10 -6.25 0.20 19.23 0.36 14 AS Yellow Cat Crocodilia

UMNH-VP-16867-11 -6.24 0.35 19.58 0.57 14.1 AS Yellow Cat Crocodilia

UMNH-VP-16867-12 -6.03 0.12 19.53 0.27 14.3 AS Yellow Cat Crocodilia

DB-Croc1-4 -7.12 0.12 24.78 0.26 18.59 Doelling's Bowl l-Yellow Cat Crocodilia

DB-Croc1-5 -7.38 0.29 24.56 0.28 18.78 Doelling's Bowl l-Yellow Cat Crocodilia
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