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Abstract 

 

Since 1958, the concept of integrated circuit (IC) has achieved great technological 

developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than 

a million of compacted transistors.  

The majority of current ICs use silicon as a semiconductor material. According to 

Moore’s law, the number of transistors built-in on a microchip can be double every two 

years. However, silicon device manufacturing reaches its physical limits. To explain, there is 

a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects 

such as tunneling effect can not be controlled. Hence, there is an urgent need for a new 

platform material to replace Si. 

Graphene is considered a promising material with enormous potential applications in 

many electronic and optoelectronics devices due to its superior properties.  

There are several techniques to produce graphene films. Among these techniques, 

chemical vapor deposition (CVD) offers a very convenient method to fabricate films for large-

scale graphene films. Though CVD method is suitable for large area growth of graphene, the 

need for transferring a graphene film to silicon-based substrates is required. Furthermore, the 

graphene films thus achieved are, in fact, not single crystalline. Also, graphene fabrication 

utilizing Cu and Ni at high growth temperature contaminates the substrate that holds Si CMOS 

circuitry and CVD chamber as well. So, lowering the deposition temperature is another 

technological milestone for the successful adoption of graphene in integrated circuits fabrication.  

In this research, direct large-scale graphene film fabrication on silicon based platform 

(i.e. SiO2 and Si3N4) at low temperature was achieved. With a focus on low-temperature 

graphene growth, hot-filament chemical vapor deposition (HF-CVD) was utilized to synthesize 



 

 

 

graphene film using 200 nm thick nickel film. Raman spectroscopy was utilized to examine 

graphene formation on the bottom side of the Ni film and on the silicon-based substrate. Large- 

area bilayer graphene film was formed on silicon based platform. 

COMSOL Multiphysics was used to investigate the CVD graphene growth on Ni films. 

Factors affecting CVD graphene synthesis include carbon solubility in Ni, growth time, growth 

temperature, as well as Ni film thickness. COMSOL model uses transport of diluted species, heat 

transfer in Ni thin film as well as deformed geometry module. In this particular research, the 

number of simulated graphene layers on Ni film was compared with experimental data. Also, the 

effect of many CVD parameters on graphene film fabrication is stated. 

In conclusion, a novel method for direct large-scale graphene film fabrication on silicon 

based platform at low temperature was achieved using hot-filament chemical vapor deposition.  
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Chapter 1: Introduction and Motivation 

Introduction 

 

The nanoscience and nanotechnology field have been at the forefront of technology 

improvement over the last few decades due to its great potential applications [1]. The 

nanoscience and nanotechnology are interested in science and engineering at nanoscale [2]. 

Since 1958, the concept of integrated circuit (IC) has achieved great technological 

developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than 

a million of compacted transistors.  

The majority of current ICs use silicon as a semiconductor material. According to 

Moore’s law, the number of transistors built-in on a microchip can be double every two years as 

shown in Figure 1.1. However, silicon device manufacturing reaches its physical limits. To 

explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown 

quantum effects such as tunneling effect can not be controlled. Hence, there is an urgent need 

for a new platform material to replace Si. 

 

Figure 1.1[3]: Moore’s law diagram 
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Graphene, which exhibits extraordinary electrical properties, can take over to allow the 

semiconductor industry to continue its journey toward smaller and faster electronic devices. 

Graphene is one of the most recent carbon nanomaterials that have attracted widespread 

attention because of its superior properties and enormous potential for various applications [4].  

Graphene is the basis of all graphitic forms. To clarify, graphene can be wrapped up into 0D 

buckyball, rolled into 1D nanotube, and stacked into 3D graphite as illustrated in Figure 1.2 [5].  

 

Figure 1.2 [1, 5]: Graphene; mother of all graphitic forms. 
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Graphene properties  

 

1.1.1 Graphene lattice and band structure 

 

Graphene is a single atomic layer, first isolated in 2004, of sp
2
-bonded carbon atoms 

organized in a two dimensional hexagonal lattice structure as shown in Figure 1.2 [6]. The unit 

cell of graphene has two carbon atoms with carbon-carbon spacing,   equals 1.421 Å [7].  

As illustrated in Figure 1.3, the lattice unit vectors are expressed by Equation 1.1 as following 

[8]: 

a 1 a (
3

2
 , 
√3

2
) ,     a 2 a (

3

2
 , - 

√3

2
)                                                                                  Equation 1.1 

 

  

Figure 1.3: Hexagonal network of carbon – sp
2 

bonding. 

Each carbon atoms has six electrons; two electrons located in the innermost 1s
2
 state and 

four of them in the outer valence shell (i.e. 2s and 2p states) as displayed in Table 1.1. 
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Table 1.1: The electron configuration of carbon atom ground state.  

Element Shell 

Carbon Z K L 

 

C 

 

6 

1s 2s 2px 2py 2pz 

2 2 1 1  

 

In L shell, the sp
2 

hybridization between the s and both px and py orbitals forms covalent 

C-C bonds between carbon atoms, the strongest bounds in nature [9]. This bond is called σ bond 

and it is the one which forms honeycomb lattice structure in graphene material. Hence, sp
2 

hybrids have three electrons for σ bonding as illustrated in Figure 1.4. 

 

Figure 1.4: Bonds in Graphene 

 The pz orbital is hybridized to form the valence band (π) and conduction band (π*) 

perpendicular to the plane of graphene atomic layer as shown in figure 1.3 [10]. The valence 

band (π) and conduction band (π*) meet at Dirac points; K and K’ given by Equation 1.2 in the 

first Brillouin zone as shown in Figure 1.4 [11].  

K (
2π

3a
 , 

2π

3√3 a
),  K' (

2π

3a
 , -

2π

3√3 a
)                                                                                   Equation 1.2 
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Hence, graphene is considered a zero-gap semiconductor because graphene does not have band 

gap as illustrated in Figure 1.5 [12].  

 

Figure 1.5 [12]: The energy dispersion relation and density of states of the graphene in the 

vicinity of K and K' points. 

As displayed in the figure, In the vicinity of K and K' points, the low energy dispersion 

relations are linear and carriers behave as massless Dirac fermions with speed of light ~ 10
6
 m/s. 

Hence, carriers are described by Dirac equation; Equation 1.4 [13]. 

E  vF√kx
2 
+ ky

2
                                                                                                              Equation 1.3 

Where, 

ħ  h/2π: The reduced Plank’s constant  

k: The wave vector 

 vF: The Fermi velocity ~ 10
6
 m/s. 

1.1.2 Electronic properties 

 

The single-layer graphene is a semi-metal or zero-gap semiconductor, and has excellent 

electronic properties. Graphene’s charge carriers (electrons) propagate through the hexagonal 
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lattice structure as massless Dirac fermions with Fermi velocity (  ~ 10
6
 m/s) with remarkably 

high electron mobility [14].  

The measured electron mobility of graphene on SiO2  substrates at room temperature is 

40,000 cm
2
V

-1
s

-1
 [14].Table 1.2 displays charge carriers mobility in graphene comparing with 

charge carriers mobility in the other well-known semiconductors materials like Si, Ge, and GaAs 

[15,16].   

Table 1.2: Charge carriers mobility in graphene and in other well-known semiconductors 

materials 

Property Symbol Unit Si Ge GaAs Graphene / SiO2 

Mobility Electron μe cm
2
V

-1
s

-1
 1400 3900 8500 ~40,000 

Hole μh  471 1900 400 ~40,000 

 

In addition, graphene’s charge carriers travel over hundreds of nanometers at a speed of 

10
6
 m/s, (300 times slower than that of light,) without scattering. So, the massless carriers and 

little scattering in graphene exhibit strong and strange relativistic quantum effects at room 

temperature [17].  

1.1.3 Optical properties 

 

Graphene also has extraordinary and unique properties. The free standing single layer of 

graphene transmits 97.7% of light that passes through it [18]. The transmission coefficient is 

given by Equation 1.4: 

T 1-απ  97.7                                                                                                              Equation 1.4 

Where, 

T: The light transmission coefficient 

 α e2 4π     c⁄    1 137⁄  :  The fine structure constant.  

Hence, the free standing single layer of graphene absorbs approximately 2.3% of the 

incident white light that passes through it.  
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As shown in Figure 1.6, the light absorption is proportional to the number of graphene 

layers [19].  

 

Figure 1.6 [19]: White light absorption by graphene layers. 

In order to make graphene film visible for naked eye, graphene film is deposited on top 

of SiO2/Si wafers. The visibility of graphene depends on both thickness of SiO2 and light 

wavelength. The typical SiO2 thickness on the Si wafer that is normally used to make graphene 

film visible is 300 nm as depicted in Figure 1.7 [20]. 

 
Figure 1.7 [20]: Graphene film on 300 nm SiO2 imaged with white light. 

 

1.1.4 Mechanical properties 

 

Not only are graphene’s electronic and optical properties extraordinary but also graphene 

has incredible mechanical properties. Suspended single layer graphene (SLG) has a large 

Young’s modulus (1,100 GPa) and a breaking strength 42 N/m [21,22]. Graphene is stronger 

than steel and diamond [23]. Graphene is the strongest material ever known for two reasons. 

First, graphene is made of a single atomic layer of carbon atoms bonded together in a two 
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dimensional hexagonal lattice structure. Hence, the source of strength for graphene is due to very 

strong covalent bonds between atoms [24]. Second reason, 2D materials (e.g. graphene) have 

less defects comparing with bulk materials [25].  

Graphene is bendable and stretchable [26]. To explain, graphene film can be bent, twisted 

and pulled to a certain range without breaking. Moreover, graphene is the thinnest and lightest 

material known ~ 0.77 mg per square meter [27]. 

1.1.5 Thermal properties 

 

Furthermore, graphene also has extraordinary thermal properties. The intrinsic thermal 

conductivity of suspended single layer graphene (SLG) is dominated by phonons [28]. In fact, 

the intrinsic thermal conductivity of graphene is due to covalent sp
2
 bonding between carbon 

atoms. It has been measured to be nearly 5000 W/mK [29]. Hence, suspended single layer 

graphene (SLG) conducts heat 10 times better than copper.  

Table 1.3 shows a comparison between thermal conductivity values at room temperature 

of common materials used in semiconductors devices fabrication. It is clear from this table that 

the thermal conductivity value decreases with number of graphene layers. 

Table 1.3: Thermal conductivity values at Room temperature of common materials used in 

semiconductors devices fabrication [30,31]. 

Materials Room Temp Thermal Conductivity (W/mk) 

Suspended Single Layer Graphene 1500–5000 

Suspended Few Layer Graphene 1300–2800 

Graphite 200 - 2000 (Orientation Dependent) 

Carbon Nano-tubes (CNTs) 3000 - 3500  

Diamond 1000 - 2200  

Diamond-like Carbon (DLC) 0.1 - 10  

Silicon (Si) 145  

SiO2 1 - 13  

Copper 400  

Gold ~300  
 



 

9 

 

Motivation and objectives 

 

Graphene is one of the most recent carbon nanomaterials that have attracted widespread 

attention because of its superior properties. The exceptional and unique properties of graphene 

create huge trends for many advanced electronic and optoelectronics devices, such as flexible 

thin-film transistors, biosensors, ultra capacitance devices, solar cells, and other innovations.  

Graphene is a promising candidate to replace silicon material for monolithic device 

fabrication in next electronic device generations. 

Chemical vapor deposition (CVD) offers a very appropriate technique to fabricate films 

for large-scale monolithic fabrication of graphene films. However, there are still several 

problems and challenges associated with CVD graphene synthesis. Direct deposition of graphene 

film on desired substrates such as silicon-based substrates without the need for transferring the 

deposited film from transition metal (Cu, Ni, etc.) is a scientist’s concern nowadays. Therefore, 

one can avoid several problems related to graphene film transfer process such as chemical 

contamination, mechanical stresses, and potential graphene film damage. In addition, obtaining a 

large area single crystalline graphene layer, which is defect-free, is also researchers' hope. 

Hence, the single crystalline graphene layer could potentially provide carrier mobility in excess 

of 10
5 

cm
2
/V.s as well as the other optimum properties. Also, lowering the deposition 

temperature is another objective that scientists hope to achieve in order to be able to utilize 

graphene in integrated circuits and meet the industrial requirements for graphene-based devices 

production. 

In this study, we demonstrate large-scale graphene film deposition for monolithic device 

fabrication on different substrates; Si, SiO2, Si3N4, diamond like carbon (DLC) and diamond.  

Large-scale graphene film was deposited at the interface between a Ni film and those substrates 
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at low temperature using hot-filament chemical vapor deposition (HF-CVD). Then, the Ni film 

was removed utilizing scotch tape and ferric chloride leaving graphene at the interface between a 

Ni film and Si-based substrate as shown in Figure 1.8.  Hence, there is no more need for transfer 

process, which causes normally mechanical and/or chemical damage to the graphene film, of 

graphene from catalyst films. Also, graphene film was etched away using hydrogen atoms in 

order to selectively pattern the graphene film. 

 

Figure 1.8: Proposed graphene growth process. 

 

 

COMSOL Multiphysics software was used to simulate the process of graphene film 

growth using Ni thin film in order to be able to control the growth. 
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The research objectives of this project are: 

a) At low temperature, direct deposition of graphene at the interface between a Ni film and 

Si-based substrate utilizing hot filament CVD. 

b) Etching graphene film using atomic hydrogen  

c) Peeling Ni film off easily using scotch tape.  

d) Simulate graphene film growth mechanism using Ni film. 

Dissertation outline 

This dissertation consists of five chapters. The first chapter introduces graphene material. 

Then, graphene properties: graphene lattice and band structure, graphene electronic properties, 

graphene optical properties, graphene mechanical properties, and thermal properties are briefly 

explained. Chapter two is a literature review about graphene. In chapter three, the experiment al 

method that is used in thin film and graphene deposition are presented. In addition, COMSOL 

Multiphysics simulation for graphene growth mechanism using Ni film is explained.  Also, in 

this chapter, a brief description of analytical characterizations such as Raman spectroscopy, 

scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy, atomic force 

microscopy (AFM), and ellipsometry tools will be discussed. In chapter four, graphene film 

synthesis and simulation results are discussed. Finally, chapter five gives the conclusions of this 

study.  
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Chapter 2: Literature Review     

2.1. Graphene synthesis 

The novel properties of the graphene film, specifically monolayer of graphene, make 

graphene a promising material to utilize it for fabricating many novel electronic devices [32]. 

Obtaining a graphene film has been achieved using many techniques such as epitaxial 

growth using high temperature annealing of silicon carbide (SiC) and chemical vapor deposition 

(CVD).  

Silicon carbide is a well-known material utilized in high-power electronics production. Si 

atoms sublimation method is used in order to obtain graphitic layers on the silicon or carbon 

faces of a silicon carbide wafer [33]. The number of graphitic layers can be controlled in order to 

obtain single graphene layer that has crystallites size ~ hundreds of micrometers [34].  

Even though SiC method yields a very high quality of graphene film, this method has two 

disadvantages. The first disadvantage is the high cost of the SiC wafers. The second problem is 

the need for high temperature.   

 Currently, chemical vapor deposition is widely used to grow graphene films on different 

types of transition metals such as nickel and copper. Once the graphene film is formed on the 

surface of the transition metal, the graphene film is transferred to a desired film using multi-step 

process. 

However, there are still many obstacles in obtaining a high quality continuous large-area 

of a monolayer and multilayer graphene (Figure 2.1) that is directly formed on an arbitrary 

substrate [35][36].  

For instance, the capability of these techniques is limited in terms of scalability [21]. 

Also, the graphene film transfer operation causes a variety of structural defects and damages  
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(Figures 2.2) in the film and chemical contamination [37]. 

 

Figure 2.1[35]: Raman spectra of graphene film with 1, 2, 3, and 4 layers. 

 

Figure 2.2 [37]: Raman spectra for damaged graphene film. 

 

Raman spectroscopy is widely used to determine the number of graphene film. The 

number of graphene layers can be confirmed by I2D/IG as well as the symmetry and the lineshape 
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of the 2D-peak as clarified in Table 2.1 [38]. Also, the level of the defective and disordered 

structure of the graphene film can be extracted from the intensity ratio of the D to G peak (ID/IG). 

The quality of the graphene film is considered high if ID/IG intensity ratio less than 0.3. 

Table 2.1: Graphene characterization using Raman spectroscopy. 

I2D/IG Graphene layers 2-D peak 

2> Single layer Sharp 

~1 Bi-layer Broad 

~0.3 Three  layers Broad 

~0.2 Multi-layer Broad 

 

Graphene properties depend on fabrications methods. Table 2.2 displays the variation of 

each property based on production method.  

Table 2.2[36]: Properties of graphene obtained by different methods. 

Method Crystallite size 

(µm) 

Sample size 

(mm) 

Charge carrier mobility (at 

ambient temperature) 

(cm
2
V

-1
s

-1
) 

Applications 

Mechanical 

exfoliation 

1,000 1 2x10
5
 and10

6
 (at low 

temperature) 

Research 

Chemical 

exfoliation 

≤ 0.1 Infinite as a 

layer of 

overlapping 

flakes 

100 (for a layer of 

overlapping flakes) 

Coatings, 

paint/ink, 

composites, 

transparent 

conductive layers  

Chemical 

exfoliation via 

graphene oxide 

~100 Infinite as a 

layer of 

overlapping 

flakes 

1 (for a layer of 

overlapping flakes) 

Coatings, 

paint/ink, 

composites, 

transparent 

conductive layers  

CVD 1,000 ~1,000 10,000 Photonics, nano-

electronics, 

transparent 

conductive layers 

SiC 50 100 10,000 High-frequency 

transistors and 

other electronic 

devices 
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Currently, chemical vapor deposition (CVD) is considered a promising technique which 

provides a solution for the difficulties in obtaining a continuous monolayer and multilayer of 

large-area graphene. Also, the CVD technique meets the industrial requirements for graphene 

production [21]. 

In general, the graphene growth process using chemical vapor deposition (CVD) can be 

divided into four stages: a ramp-up stage, an annealing stage, a growth stage, and a cool down 

stage.  

Chemical vapor deposition is a chemical process that is used to deposit fully dense thin 

solid films on different types of substrates such as metals and ceramics. To clarify, these thin 

solid films result from the decomposition of gaseous precursor(s) when they chemically react 

with a heated substrate as illustrated in Figure 2.3. 

 

Figure 2.3: Graphene production using transition metals. 
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There are different forms of CVD processes including;   Atmospheric Pressure Chemical 

Vapor Deposition (APCVD), thermal CVD, hot filament  CVD, Plasma Enhanced Chemical 

Vapor Deposition (PECVD),   Low Pressure Chemical Vapor Deposition (LPCVD), Metal-

Organic Chemical Vapor Deposition (MOCVD), Laser Chemical Vapor Deposition (LCVD), 

Chemical Beam Epitaxy (CBE) [39]. 

Chemical vapor deposition systems come with different designs based on their form. 

However, there is a typical design (shown in Figure 2.4) that meets the minimum requirements 

for a chemical vapor deposition process [40]. 

 

Figure 2.4 [40]: The minimum requirements chemical vapor deposition system. 

2.2. Graphene CVD growth on transition metals 

Chemical vapor deposition using hydrocarbon precursors can be carried out on the 

surface of various transition metals in group VIII such as Ni, Cu, and Co as shown in Table 2.3. 
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To explain, when a precursor such as methane or acetylene flows over a heated transition metal, 

it breaks into different forms of carbon. These forms of carbon will be either deposited or 

dissolved in the transition metal [41].  

 Presently, CVD graphene synthesis is widely conducted utilizing two transition metal 

substrates; Ni and Cu as a catalyst in order to obtain a large area of high quality graphene [42,43 

,44 ,45].  

Table 2.3: Graphene obtained by different CVD parameters.  

Precursor Temperature Pressure Catalyst Type of CVD Ref. 

Hydrocarbons  Std. P Bi-metallic RF-CVD [46] 

Hydrocarbons 900-1000 °C Std. P c-sapphire, Co/SiO2 

and H2 (annealing) 

Epitaxial 

CVD 

[47] 

Methane   Ni and Cu in 

ammonia  

 [48] 

Ethylene   Bi-metallic RF-CVD [49] 

Methane and H2 850-1000 °C  Ni thin film CVD [50] 

Methane  Atm, Torr 

Vacuum 

Cu APCVD 

LPCVD 

UHVCVD 

[51] 

Methane and HOPG   Fe  [52] 

Methane 1000 °C  Co and MgO  

Argon flow 

 [53] 

Methane 700 °C  Fe PECVD [54] 

Methane 1400-1900 °C  6H SiC PECVD [55] 

      

 

Currently, chemical vapor deposition technique is considered a promising method for the 

synthesis of high quality graphene films utilizing various transition metals in group VIII such as 

Ni, Cu, and Co shown in Table 2.2. To explain, when a precursor such as methane or acetylene 

flow over a heated transition metal, it breaks into different forms of carbon. These forms of 

carbon will be either deposited or dissolved in the transition metal. These transition metals work 

as heterogeneous catalysts that enhance decomposition of the hydrocarbon materials such as 

methane (CH4), acetylene (C2H2), and ethylene (C2H4). To clarify, heterogeneous catalysts lower 



 

18 

 

the activation energy required to break chemical bonds [40], hence, lowering the activation 

energy leads to increased reaction rate. However, catalysts not only help in dehydrogenation of 

hydrocarbons but also produce high quality crystalline graphite on their surface [56]. In the 

graphene CVD synthesis process, hydrocarbon decomposition on the surface of the catalyst 

releases carbon atoms as explained by Equation 2.1. However, some in-between chemical 

reactions including other hydrocarbons could be involved. For instance, methane conversion to 

graphene over the catalyst surface, S, can be described by the overall reaction as shown on 

Figure 2.5 [57]: 

CH4 + Surface (catalyst) → graphene + 2H2(g)                                                            Equation 2.1 

 

 

 
 

Figure 2.5: Basic conducting principle for graphene CVD deposition 

 

Wafer-scale high-quality graphene film could only be achieved by controlling CVD 

parameters such as growth time, growth temperature, hydrocarbon pressure, cooling rate, and 
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hydrocarbon concentration [58]. In addition to these parameters, catalyst type plays a significant 

role in determining graphene growth mechanism, consequently defining the quality of the 

graphene film.  

To date, there are two proposed mechanisms that explain the graphene synthesis process 

[40]. The two mechanisms could widely be described as [56]: 

a) Graphene growth dissolution-precipitation: During the annealing period, the adsorbed 

carbon atoms diffuse into the bulk of the catalyst at high temperature. Then, the catalyst 

is cooled, whereby carbon atoms precipitate on the catalyst due to supersaturation.  

b) Graphene growth direct deposition:  Decomposed carbon atoms are deposited straight 

onto the catalyst surface. 

Worldwide, graphene CVD growth has been achieved despite the fact the growth 

mechanisms are not fully understood and clear [59]. So, further theoretical and experimental 

research is needed to better understand the underlying mechanisms in order to control the quality 

of the graphene film. 

2.3. Graphene transfer 

Transfer of the grown graphene film to dielectric substrate is required for most 

applications. However, the graphene transfer process is very important and critical just as is 

graphene growth. There are many methods that have been used to transfer the graphene film into 

an insulating substrate. The first method is mechanical exfoliation using scotch tape and highly 

oriented pyrolytic graphite (HOPG) shown on Figure 2.6.  

As illustrated in the figure, a highly oriented pyrolytic graphite crystal lattice consists of 

an ordered stacking of graphene sheets stacked in the sequence ABAB. Graphene sheets are 

slightly disoriented with respect to each other. Graphene sheet disorientation is characterized by 
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X-ray crystallography. The disorientation is determined based on the broadening of the (002) 

diffraction peak. 

 

Figure 2.6: Highly oriented pyrolytic graphite (HOPG) structure. 

 

Graphene film is peeled off from highly oriented pyrolytic graphite (HOPG) (depicted in 

Figure 2.7a surface utilizing scotch tape method as illustrated in Figure 2.7b. Graphene film 

obtained using the mechanical exfoliation method as of high quality properties and its crystal 

structure is reported to be excellent when comparing with graphene obtained by the other 

methods [60].  However, the sample size of the graphene obtained using this method is limited to 

a few micrometers.  
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Figure 2.7 [61]: a) Highly oriented pyrolytic graphite (HOPG) sample; b) the mechanical 

exfoliation method using scotch tape. 

 

The second method to transfer graphene films is conducted by utilizing poly(methyl 

methacrylate) (PMMA) or polydimethylsiloxane (PDMS) film. PMMA or PDMS is used to hold 

and transfer the graphene film as shown in Figure 2.8 [62, 63]. PMMA is deposited on the 

transition metal foil substrate that carries the graphene layer. Then, transition metal is etched 

away after PMMA is cured. Next, PMMA/graphene is transferred to desired substrate (e.g. 

SiO2/Si). Finally, PMMA is removed by acetone. However, this transfer method leads to some 

defects to the transferred film as shown in Figure 2.8c. Recently, this method has been modified 

by adding additional steps in order to improve the quality of the transferred graphene film as 

illustrated in Figure 2.8b.   
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Figure 2.8 [62]: Graphene transfer methods. a) The old process for transfer of graphene films 

using PMMA. b) The current modified process for transfer of graphene films using PMMA. c) 

The optical micrographs of graphene transferred on SiO2/Si wafers (285 nm thick SiO2 layer) 

using the modified transfer method. d) The optical micrographs of graphene transferred on 

SiO2/Si wafers (285 nm thick SiO2 layer) using the old transfer method.  e) A photo of a 4.5 × 

4.5 cm
2
 graphene on quartz substrate. 
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Another transfer method is called roll-to-roll method as illustrated in Figure 2.9. Bae and 

colleagues have successfully produced 30-inch graphene films grown by chemical vapor 

deposition onto flexible copper substrates [43]. 

 

Figure 2.9 [43]: The roll-based production of graphene films grown on a copper foil. 

The transfer of the graphene film to an insulating substrate is very essential for electronic 

applications in order to prevent electrical short when the electrical field flow through the 

graphene based device. However, transferring graphene film from metal substrates to an 

insulating or any desired substrate is very critical. To rephrase, the transfer of the graphene film 

will cause a lot of cracks and tears that create high electrical resistance and low optical 

transmittance in the film [62]. Also, the transfer process includes many wet chemical steps that 

can contaminate the graphene film [64]. Hence, in order to avoid a transfer process, depositing 

directly graphene film on dielectric substrates as shown in Figure 1.7. is proposed. 
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2.4. Graphene CVD growth on nickel (Ni) 

There are two growth processes that work together to form graphene on Ni surface; 

carbon deposition from hydrocarbon precursors and carbon segregation from the bulk [40].  

The graphene growth mechanisms primarily depend on the solubility and diffusivity of 

carbon in the transition metals as given in Equations 2.2 and 2.3, respectively [65,66]. The 

solubility of carbon atoms (S) in Ni is expressed by Equation 2.2: 

S S  exp(H kT)⁄  (atoms cm
−3

)                                                                                     Equation 2.2 

where,  

S  = 5.33 × 10
22

 atoms cm
−3

, an entropic pre-factor related to the density of sites where solute 

atoms sit. 

H= −0.42 eV, the heat of precipitation.  

K= Boltzmann's constant, 8.617 3324 ×10−5 eV K
−1 

Equation 2.2 is an empirical equation that was proposed by Lander et al. [66] to describe 

the solubility process of the decomposed carbon atoms in Ni in the range 700 °C to 1300 °C. 

Also, carbon diffusivity can be expressed by utilizing diffusion coefficient of carbon atoms (D) 

in Ni using Equation 2.3; 

 D D  exp( -E
D

kT)⁄  (cm
2
 s

−1
)                                                                                      Equation 2.3 

where, 

D = 2.48 cm
2
 s

−1
 , an entropic pre-factor.  

ED = 1.74 eV, the diffusion activation energy.  

K= Boltzmann's constant.  

Also, the graphene growth mechanisms depend on the CVD growth conditions such as 

the growth temperature, the growth time, gas flow, the pressure, the cooling rate, and grain size. 
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So, the graphene growth mechanisms determine the topology and the thickness of the graphene 

film.  

Depending on carbon solubility in the metal, the graphene grows on the metal substrate in 

two different ways [41]. In case of metals, which have relatively high carbon solubility (~1.3 

atom% at 1000 °C) such as Ni, the dissolved carbon atoms at elevated temperature (700-1000 

°C) precipitate from bulk to the metal surface upon cooling in order to form graphene. In 

contrast, carbon atoms grow on the surface of the metals that have relatively low carbon 

solubility such as Cu and Pt [67]. For instance, when a precursor such as methane (CH4) or 

acetylene (C2H2) flows over a heated transition metal, it breaks into different forms of carbon. 

One of the potential ways for methane (CH4) decomposition is CH3→CH2→CH→C which will 

be either deposited on or dissolved in the transition metal depends on carbon solubility in the 

metal [40]. Up to date, methane (CH4) is extensively used as precursor for graphene growth for 

two reasons; CH4 is stable at high temperature and has simple atomic structure.  

In this research, Ni will be utilized as a catalyst for two reasons. First, Ni has a relatively 

higher melting point (1453 °C) as compared to Cu (1083 °C). In other words, using Ni will 

prevent formation a lot of metal contamination on the process chamber walls. Also, Ni has a high 

oxidation resistance while Cu reacts rapidly with O2 producing copper oxide.  So, using Cu 

means another required step in the graphene synthesis in order to get rid of CuO from graphene / 

Cu sample.  

The CVD growth conditions which play significant role in obtaining large area, high 

quality graphene film have been investigated by many research groups. 

Liu’s group reported that the final thickness of the few layers of graphene is governed by 

three keys parameters; growth time, growth temperature, and sample cooling rate [68]. In their 
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experiment,  chemical vapor deposition growth of graphene on 500 nm thick Ni film deposited 

on SiO2/Si substrates  have been carried out under 200 torr of H2: 5% diluted CH4 in Ar = 500:50 

using  a hot-wall CVD system.  

Liu et al. reported that the three optimized graphene growth conditions are:  50 seconds 

for the growth time, 900 °C for the growth temperature, and 25 °C/s for the cooling rate. Also, 

they reported that single layer graphene regions of larger than 100 μm
2
 have covered more than 

50% of their 1 inch sample surface as shown in Figure 2.10. 

 
 

Figure 2.10 [68]: a) The optical digital image the wafer after graphene growths. b) Optical 

migrograph of the nickel surface after graphene growth. c) The Raman spectra corresponding to 

the three spots in b). d) XTEM of graphene on nickel with HRTEM shown in the inset. e) XTEM 

images of a single layer graphene region. f) XTEM image of a three layer graphene region are 

shown. 

 

Then, the transfer process of the synthesized graphene film has been performed by soaking the 

samples in HCl solution. Cross-sectional transmission electron microscope (XTEM) and Raman 
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spectroscopy connected with optical microscopy were used to characterize the obtained graphene 

films.  

Another group, Yu et al., synthesized a few layers of graphene on polished 

polycrystalline Ni foils with thickness of 0.5 mm [69].  First, the Ni foils were annealed in 

hydrogen for one hour and then exposed to a CH4: H2: Ar (0.15:1:2) environment at one atm for 

20 min at 1000 °C. After that, the Ni foils were cooled at different rates 20 °C/s, 10 °C/s, and 

0.1°C/s. Then, segregated graphene layers on Ni substrates were detached from Ni substrates 

using HNO3 solution. Transmission electron microscopy (TEM) and Raman spectroscopy were 

used to characterize the quality of the films and the numbers of graphene layers formed on Ni. 

 Yu et al. found that the resulting thickness of the graphene layers depended on the 

cooling rate. Graphene can not be obtained by an extremely slow cooling rate whereas extremely 

fast cooling rate resulted in graphite film formation on the Ni foil surface. Graphene film can be 

produced using medium cooling rate as shown in Figure 2.11. Their results showed that a few 

layers of graphene (typically 3-4 layers) were produced with a cooling rate of 10 °C/s [69]. Also, 

they found that a high dosage of H2 and smoother Ni substrates enhanced graphene film 

uniformity. In order to transfer the resulting graphene layers to an insulating substrate, they first 

coated the graphene/Ni foil with silicone rubber, and then covered it by a glass slide. After that, 

they etched the Ni using HNO3. 

Yoo et al. grew few-layer graphene films on Ni foils with thickness of 0.05 mm using an 

ethanol-CVD setup shown in Figure 2.12 [70].  

First, pretreatment for Ni foils surface was performed in order to etch the native surface 

oxide which may reduce carbon solubility during fabrication process. Etching the native surface 

oxide was carried out by hydrofluoric acid for 5 seconds. Then, the Ni foil, which is placed in the 
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CVD chamber, was exposed to ethanol vapor when the temperature reached 900 °C for 5 min at 

a pressure of ~ 3 kPa. Then rapid cooling was carried out under argon gas flow of 300 sccm.  

Scanning electron microscope (SEM), optical camera, and Raman spectroscopy have 

been used to study and characterize the synthesized graphene films. 

 

 

Figure 2.11 [69]: Raman spectroscopy of carbon film grown on the Ni foil surface at different 

cooling rate. 

 

Yoo et al. showed that one can use ethanol, which is safe and cheap, to obtain multi-layers 

graphene (Figure 2.13) instead of using CH4 gas, which is explosive and expensive [70].  
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Figure 2.12 [69]: Schematic diagram of ethanol-chemical vapor deposition (CVD) system. 

 

 

Figure 2.13 [70]: Graphene synthesis process via ethanol-CVD. 

 

The growth of graphene on Ni was demonstrated in an atmospheric pressure chemical 

vapor deposition (APCVD) by Nayfeh et al. First, 30 nm adhesion layer of chromium (Cr) was 

deposited on SiO2/Si. Then, 300 nm Ni was deposited on the chromium adhesion layer. Then, 

after putting the sample inside the APCVD furnace, a mixture of H2 and Ar was flowed into the 

furnace while it was being ramped-up to 1000 °C. The annealing process was carried out for 20 

min in order to remove Ni oxides and refine Ni microstructure. A small amount of CH4 was 

introduced in the growth stage for 10 min. Finally, the system cools down, while still pumping 

the methane [71].  
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Nayfeh et al. [71] obtained monolayer graphene across the sample. However, they 

noticed that multilayers were formed on the Ni grain boundaries because the carbon precipitation 

is easy to be formed at these locations.  

In order to synthesize a large area of high quality monolayer graphene directly on 

different types of transition metals, Yao et al. suggested an etching –aided chemical vapor 

deposition process as shown in Figure 2.14 [21]. Simply stated, after shutting down the carbon 

supply, an additional hydrogen etching process has been performed in order to remove the 

excessive dissolved carbon in the metal and prevent carbon precipitation on the metal surface 

during graphene growth time. 

 

Figure 2.14 [21]: Schematic of etching-aided atmospheric pressure CVD growth of monolayer 

graphene on metal substrates. 

 

In Yao et al.’s experiment, an annealing process at 1000 °C for 30 min was carried out 

for 100 μm metal foils such (Ni, Cu, Fe, and Co) under atmospheric pressure in the flowing of 

500 sccm H2 and 500 sccm Ar. Then, a carbon precursor ( hexane vapor for Cu and methane for 

Ni, Co, and Fe) mixed with 500 sccm hydrogen was introduced into the furnace  for 1 min in 

case of Cu, and 2 min in case of Ni, Co, and Fe. After finishing the carbon growth process, a 
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hydrogen etching was carried out at 1000°C for different periods of time (Cu: 1.5 min, Ni: 5min, 

Co: 5.5min, and Fe: 10min). Finally, the metal substrates were cooled down to room temperature 

under 500 sccm Ar with a cooling rate of 25°C/ min for Cu and 150°C/min for Ni, Co, and Fe to 

achieve one monolayer of graphene. 

Yao et al. found that the additional hydrogen etching technique could be a solution for the 

bothersome carbon precipitation. Also, this technique could be extended to include other metals 

such as Au, Pt, Ru, and Pd.  The additional hydrogen etching technique opens a new route for 

growth monolayer graphene on metal substrates that have high carbon solubility. For instance, 

varying hydrogen etching time enabled Yao et al to synthesize successfully monolayer graphene 

on Ni surface as shown in Figure 2.15.  

 

 

Figure 2.15 [21]: a) SEM image of single layer graphene grown on Ni surfaces b) Raman spectra 

of single layer graphene film grown on Ni at different locations. 

 

Wafer scale, high- quality graphene films as large as 3 in on Ni and Cu under ambient-

pressure has been synthesized by Lee et al as shown in Figure 2.16 [32]. Ni film of thickness 300 

nm was deposited on SiO2/Si. Then the substrate was loaded into a quartz tube furnace that was 
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ramped up to 1000°C under ambient pressure with flowing H2 and Ar. A mixture of gases was 

introduced (CH4:H2: Ar=250:325:1,000) for 5 min before the system was rapidly cooled down to 

room temperature. 

Lee et al. reported that high quality mono- or bi-layers of graphene are usually formed on 

Cu surface while multilayer is formed on Ni surface. Also, they claim that graphene film transfer 

does not change the quality of the graphene film [32]. 

 

 

Figure 2.16 [32]: Schematic illustration for synthesis, etching, and transfer of large-area 

graphene films.  

 

A research group from MIT used CVD in order to synthesize a large area of single- to 

few-layer of graphene films (~cm
2
) on arbitrary substrates [42].  The grain size of single- or 

bilayer is 20 um. In their experiment, a 500 nm Ni film on a SiO2/Si substrate was placed in a 
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CVD chamber. Then the system was ramped up for 10-20 minutes at 900-1000 °C under a 600 

sccm Ar and 500 sccm H2 flow. The CVD growth is performed for 5 to 10 minutes at 900 °C or 

1000 °C under a 5-25 sccm CH4 and 1500 sccm H2 flow in atmospheric conditions. 

The team reported that most of the obtained multilayer graphene was formed on the grain 

boundaries as shown in Figure 2.17b.   

 

 

Figure 2.17 [42]: Graphene films grown by CVD on Ni. a) AFM image of the surface of a Ni 

grain after annealing. b) AFM image of a graphene film on polycrystalline Ni film after CVD 

synthesis. c) Optical image of the grown film (blue) on a SiO2/Si substrate (yellow). d) Optical 

image of an edge of a graphene film deposited on a SiO2/Si substrate. e) AFM image of the 

region surrounded by the black square in figure d. f) Graphene film thickness measurements on 

the two positions indicated in figure e.  

 

Another group from the University of Southern California has reported results that match 

with the MIT group results in terms of a scalable method to synthesize single- and a few- layer 

graphene film on Ni film using CH4-based CVD and grain boundary effects [72]. In their 
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experiment, a 100 nm Ni film was deposited on a 4 inch Si/SiO2 wafer in order to use it as a 

substrate. The substrate was placed inside the tube as shown in Figure 2.18a. Then, the substrate 

was heated to 800 °C at a rate of 0.15 °C/min under 600 sccm of H2. The substrate was then 

annealed at 800 °C in a 10:1 Ar: H2 mixture. The deposition process was then performed for 8 

min using a flow rate of 100 sccm of methane gas. Finally, the system was cooled at a rate of 

0.15 °C/min. 

 

Figure 2.18 [72]: (a) Diagram of full-wafer scale deposition of graphene film on Ni film. (b) 

Nickel film evaporated on a 4 inch Si/SiO2 wafer. (c) AFM image of Ni film after the CVD 

growth of graphene film. 

 

Arco and his colleagues found that polycrystalline Ni domains were shaped due to 

heating and cooling effects Figure 2.18c [72].  

CVD growth of graphene over polycrystalline Ni has been carried out at atmospheric 

pressure. As a result, continuous graphene film over the entire nickel area has been achieved 

because the graphene formed bridges across nickel grain boundaries [42, 72]. 
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A study of comparison of graphene growth on single-crystalline and polycrystalline Ni by 

chemical vapor deposition showed monolayer/ bilayer graphene formation on single crystal Ni 

(111) due to the absence of grain boundaries.  Whereas, multilayer graphene (>3 layers) 

formation on polycrystalline Ni was due to the existence of grain boundaries which acted as 

nucleation sites for multilayer growth as illustrated in Figure 2.19 [73]. 

 

Figure 2.19 [73]: (a) graphene growth mechanism on Ni (111) film. b). graphene growth 

mechanism on polycrystalline Ni surface. (c) Optical image of a graphene/Ni (111) surface after 

the CVD process. (d) Optical image of a graphene/polycrystalline Ni surface after the CVD 

process.  

 

This study by Zhang et al, a single crystal Ni (111) substrate and a polycrystalline Ni film 

of  this 500 nm of Ni deposited on a SiO2/Si  wafer were loaded into a CVD chamber. Then, the 

CVD chamber was heated to 900 °C under 600 sccm H2. Next, the substrates were annealed for 

15 min under 900 °C at atmospheric pressure. Graphene films growth was conducted using 
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different methane concentrations; 0.5%, 0.65%, and higher than 12%. Then, the chamber was 

cooled to 500 °C at a rate of 16 °C /min.  

Zhang et al. showed that the area percentages of monolayer/ bilayer graphene were  

91.4% for the Ni (111) substrate and 72.8% for the polycrystalline Ni substrate, respectively, 

under comparable CVD conditions [73]. 

The correlation between the thickness variations of the graphene film with the grain size 

of the Ni film has been investigated by Thiele and his colleagues [74]. A 500 nm Ni was coated 

on SiO2/Si substrate. Next, the substrate was placed into a quartz tube and ramped up in a CVD 

furnace to 900–1100 °C. Then, the annealing process was conducted under 200 sccm for H2 and 

800 sccm for Ar atmosphere. After that, the flow rate of H2 was changed to 1300 sccm and Ar 

flow was shut down and at the same time 4 sccm CH4 was introduced for 5 min.  Samples were 

cooled to room temperature under H2 and Ar. 

Thiele and his colleagues reported that the minimization of the internal stress enhances 

grain growth with (111) orientation in the Ni film and increases the grain size. Also, SiO2 

substrate type, such as thermally grown SiO2, low stress PECVD-grown SiO2 and PECVD-

grown SiO2, affect the grain size [74].  

A study on the effect of the growth temperature, the gas mixing ratio C2H2/H2, and 

growth time on the CVD of acetylene/hydrogen, and quenching rate on the CVD of graphene 

was conducted by Chae et al. Their results showed that high temperature, high hydrogen 

concentration, and short growth time were important for making high quality few-layer graphene 

[75]. 

In a study reported by Chae et al., 0.5 mm Ni foil was first polished by chemical-

mechanical polishing (CMP). The substrate was then placed inside a rapid thermal chemical 
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vapor deposition (RTCVD) chamber and heated up to 1000 °C in 5 min. Then, the annealing 

process was carried out under 45 sccm of H2 for 30 min at 1000 °C. Then C2H2/H2 =2/45 were 

introduced for 5 min at 1000 °C. Finally, the chamber was cooled to 500 °C at a rate of 160 

°C/min. 

A similar study to the Chae et al. study showed that cooling rate and short growth time 

played a significant role in reducing graphene thickness to grow single and bilayer graphene 

films [26]. 

Pan et al. demonstrated a direct of growth of large-area of graphene on SiO2 substrate at 

temperatures ranging from 650 to 1000 °C using sputtered carbon and Ni film with rapid thermal 

processing as shown in Figure 2.20 [76]. The graphene film is achieved on SiO2 insulator 

substrate with the removal of Ni using HCL.  

 
Figure 2.20 [76]: Schematic diagram of the graphene growth process using sputtered carbon and 

Ni film. 
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Tour et al. showed direct deposition of large-area and homogeneous bilayer graphene on various 

insulating substrates (SiO2, h-BN, Si3N4, and Al2O3) at 1000 °C utilizing solid carbon sources as 

shown in Figure 2.21[77]. 

 

Figure 2.21: Schematic diagram of the graphene growth process using solid carbon sources. 

 

A group at Massachusetts Institute of Technology and University of Michigan 

demonstrated a direct graphene growth on SiO2 at ~900 °C using chemical vapor deposition 

method as presented in Figure 2.22 [78]. Graphene film deposition was followed by removal of 

the Ni film using an adhesive tape. The achieved patterned graphene film area was 1 cm  1 cm. 

 

Figure 2.22: Schematic diagram of removal of Ni film leaving the patterned graphene on SiO2. 
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Chapter 3: Experimental Methods 

3.1.  Introduction 

This chapter describes the techniques, materials, procedures, and characterization tools 

utilized in this research. In this study, nickel thin films were deposited on different materials 

such as silicon, silicon dioxide, silicon nitride, diamond, and diamond-like carbon (DLC) in 

order to use them as substrates to grow graphene. Prior to Ni deposition, the substrate materials 

were cleaned with wet chemical cleaning processes. Diamond-like carbon was grown on the 

silicon samples using plasma- enhanced ultra-high vacuum chemical vapor deposition (PE UHV-

CVD). Ni film was deposited on the samples using an e-beam evaporator at room temperature. 

After the Ni thin film deposition, the samples were annealed under hydrogen in the hot-filament 

chemical vapor deposition (HF-CVD) chamber. Then, graphene film was grown on Ni film 

through the surface catalytic pyrolysis of methane. The obtained graphene and diamond-like 

films were studied using different tools. Scanning Electron Microscopy (SEM) and Atomic force 

microscopy (AFM) were utilized in order to investigate the surface morphology of the graphene 

and diamond-like films. In addition, Energy Dispersive X-ray (EDX) spectroscopy was utilized 

to determine the constituent elements of the samples. Raman spectroscopy was used to 

characterize graphene and DLC material.  In this chapter, a brief description of these analytical 

tools will be discussed. 

3.2.  Si Samples preparation  

(100) oriented 5 inch silicon wafers were utilized to prepare the silicon substrate. The 

silicon wafers were cut into 1 inch x 1 inch silicon squares using a dicing saw shown in Figure 

3.1 in the assembly lab at Engineering Research Center (ENRC), University of Arkansas.  



 

40 

 

 

Figure 3.1 : Micro Automation Model 1100 dicing saw. 

 

3.3.  Sample cleaning 

Prior to any nano/microfabrication process, contaminants, such as foreign organic 

materials and metals, existing on the surface of the substrates must be removed due to their 

negative impact on the performance and high reliability of output nano/micro fabricated 

products. Thus, prior to graphene and DLC film growth, the samples were carried in a closed 

container to a class 100 clean room to do a wet chemical cleaning process. The substrates were 

ultrasonically cleaned with acetone. Then, the substrates were cleaned by methanol. Finally, the 

substrates were washed by deionized water and dried by N2 in order to remove any hydrofluoric 

acid traces. 
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3.4.  Silicon dioxide (SiO2) sample preparation 

A four-stack oxidation/diffusion furnace (Bruce BDF4) consists of four tubes was used; 

oxidation, boron diffusion, phosphorous diffusion, and hydrogen anneal tube as shown in Figure 

3.2. The thermal oxidation processes for cleaned silicon samples were performed in the oxidation 

tube. After that, the final thickness of the thermal silicon dioxide (SiO2) was approximately 

determined using a SiO2 color chart. The color (i.e. dark violet to red violet) indicated that the 

final thickness of SiO2 was approximately 100 nm. 

 

Figure 3.2: Four-stack oxidation/diffusion furnace consisting of a field oxidation, boron 

diffusion, phosphorous diffusion and hydrogen anneal (Bruce BDF4). 

 

3.5.  Silicon nitride (Si3N4 ) sample preparation 

Silicon nitride films were grown using Plasma Enhanced Chemical Vapor Deposition 

(PECVD) (Plasma Therm SLR730) shown in Figure 3.3 and in the University of Arkansas, High 

Density Electronics Center (HiDEC). The color of Si3N4 samples was light green. The color 

indicated that the thickness of the Si3N4 films was roughly 260 nm. 
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Figure 3.3: Plasma Enhanced Chemical Vapor Deposition (PECVD); Plasma Therm SLR730. 

 

3.6.  Ni for film deposition 

A 200 nm thick Ni film was grown on the cleaned samples. The nickel film was 

deposited by an e-beam evaporator on different substrates; Si, Si/SiO2, Si3N4, diamond like 

carbon, and diamond. As shown in Figure 3.4, the e-beam evaporator consisted mainly of an 

energy source, a deposition chamber, vacuum pump, permanent magnet, and a cooling system. 

Electron beam generated by thermionic emission using the electron gun was accelerated under 

high vacuum by a high voltage potential. The electron beam was directed and steered from the 

electron gun toward the material to be deposited using a magnetic field. The kinetic energy of the 

accelerated electrons was converted to thermal energy and used to melt the material such as gold 
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and copper that was to be deposited on a specific substrate. In order to achieve a uniform heating 

of the material, an additional electric field was used to sweep the electron beam over the material 

surface.  

 

Figure 3.4: The schematic diagram of the electron beam. 

 

3.7.  Chemical vapor deposition (CVD) process 

Chemical vapor deposition (CVD) is a chemical process used to deposit fully dense thin 

solid films on different types of substrates such as metals and ceramics. To clarify, these thin 



 

44 

 

solid films result from the decomposition of gaseous precursor(s) when they hit a heated 

substrate. Byproducts are produced and they are removed from the reaction chamber by a gas 

removal system. 

In semiconductor fabrication processes, CVD is widely used in various films deposition 

such as polycrystalline, amorphous, and epitaxial silicon, SiO2, silicon nitride, carbon nanotubes, 

diamond, diamond-like carbon, graphene.  

Currently, among graphene synthesis methods, chemical vapor deposition (CVD) is 

considered a promising technique that provides the solution for the difficulties in obtaining a 

continuous monolayer and multilayer of large-area of graphene. Also, the CVD technique 

overcomes scalability limitations in graphene production [21]. 

Chemical vapor deposition (CVD) apparatus consists mainly of four systems as shown in 

Figure 3.5: 

a) Delivery system: this system supplies precursors and carrier gases to a reaction chamber. 

The amount of required gas flow is delivered and regulated in standard cubic centimeter per 

minute unit (sccm) using valves and mass flow controllers. 

b) Reaction system: chamber within which reactions and deposition on substrate surfaces 

take place at different temperatures and pressures.  

c) Vacuum system: A system is used to remove undesirable byproducts from the reaction 

chamber.  

d) Energy source: energy source such as resistive heating, radiant heating, radio frequency 

heating, and laser used to provide the required energy for the reaction occurring in the 

reaction chamber. 
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Figure 3.5: Schematic diagram of a typical graphene CVD system. 

 

CVD processes can be classified into various types such as plasma-enhanced CVD 

(PECVD), atmospheric pressure CVD (APCVD), low-pressure CVD (LPCVD), microwave 

plasma-assisted CVD (MPCVD), hot filament CVD (HFCVD), and ultra-high vacuum CVD 

(UHVCVD).   

In this research, two types of CVD systems, a unique ultra-high vacuum chemical vapor 

deposition (UHV-CVD) and the hot-filament chemical vapor deposition (HFCVD), were utilized 

in thin film fabrication processes.  

3.8.  Diamond-like carbon synthesis 

 

Diamond like carbon (DLC) films were synthesized utilizing the PE CVD system 

depicted in Figure 3.6.  
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Figure 3.6: Photograph of the PE-CVD system at the ENRC, University of Arkansas. 

 

Plasma, the fourth state of matter, is an ionized medium consisting of electrons, ions, and 

neutral atoms. Plasma consists approximately of equal numbers of positive ions and electrons.  

Hence, plasmas are influenced by electric and magnetic fields. Plasmas can be classified into two 

types: 

a) Thermal plasma: In this type of plasma, particles (i.e. electrons, ions, and neutrals) are in 

thermodynamic equilibrium. Normally, flames, sparks, atmospheric arcs are utilized to produce 

thermal plasmas.  

b) Non-thermal plasmas: There is no thermodynamic equilibrium between electrons and the 

other particles (i.e. ions and neutrals). In general, electrons temperature is higher than the heavier 

particles temperature. Figure 3.7 illustrates the principle of the plasma enhanced CVD system. 
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Figure 3.7: Schematic diagram of plasma enhanced CVD system. 

 

Plasma sources can be categorized based on electric field excitation into two types:  

1. DC discharges; and, 

2. RF and microwave discharges. 

Radio frequency (RF) discharge method was used in the DLC film deposition process. 

Normally, RF discharges operate in frequency range 1-100MHz, with a typical frequency = 

13.56 MHz. In order to maximize the power transfer and minimize the reflected power, the 

power supply is connected with the reactor by an impedance matching network. The high 
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frequency electromagnetic energy is capacitively coupled or inductively coupled into the process 

chamber as shown in Figure 3.8 a and 3.8 b respectively. 

 
 

Figure 3.8: The high frequency electromagnetic energy is a) capacitively coupled or b) 

inductively coupled into the process chamber of the ultra-high vacuum chemical vapor 

deposition (UHV-CVD) system. 

 

The PE-CVD system shown in Figure 3.6 is a home-built CVD.  The home-built CVD 

was used in DLC films deposition. This system is considered unique for many reasons. The 

process chamber was cold wall, electro polished stainless steel chamber. The base pressure in the 

reaction chamber reached below 10
-10 

Torr using a turbo molecular pump and cryogenic pump.  

The cryogenic pump (<20°K) was utilized to remove water vapor and oxygen. The load lock 

chamber was pumped down 10
-8

 Torr prior to the growth process. The total internal volume of its 

reaction chamber was ~ 69.2 liters. Hence, this system had a capability to grow uniform thin 
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films on 4 inch wafers. Substrate heating temperature could reach up to 1000 °C. So, in situ, 

rapid thermal annealing could used in order to remove film defects without breaking vacuum. In 

this system, plasma provided the necessary energy for the chemical reaction of the precursors 

and allowed deposition at lower temperatures and at a very low pressure. 

 Methane (CH4) as a precursor and Ar as carrier gas were used in DLC synthesis at low 

pressure and room temperature. The influence of CH4/Ar flow rate ratio and the plasma power on 

the DLC growth was investigated. 

The prepared and cleaned Si samples were mounted into the substrate holder . The 

samples were then placed into the load lock chamber. Then, the load lock chamber was pumped 

down to 10
-3

 Torr using a mechanical pump. When the pressure in the load lock chamber reached 

to 10
-3

 Torr , a turbo pump connected to the load lock chamber was used to depressurize the load 

chamber to 10
-8

 Torr.  When the load chamber pressure reached 10
-8

 Torr,  the gate valve, which 

isolates the load lock chamber from the process chamber, was opened. Then, the Si samples were 

transferred into the process chamber of the chemical vapor deposition (CVD) system using the 

linear sample transfer arm. Then, the gate valve was closed. Next, in order to reach the ultimate 

pressure of 10
-10

 Torr inside the process chamber, a helium cooled cryogenic pump was utilized 

in addition to the turbo and mechanical pump. The pressure in the system was constantly 

monitored using pressure gauges. Being in the process chamber, the sample was picked up by 

sample holder/ heating assembly. The DLC growth was conducted at room temperature utilizing 

CH4 as a carbon atom source and Ar as carrier gas. Durng the DLC growth, RF plasma was 

generated under specific condition. MKS mass flow controllers and pneumatic valves, built in 

the system, were utilized to control precisely  the mass flow rate of  the precursor, methane. The 

outlet gases from the process chamber were  exhausted and treated by Edwards Gas Reactor 
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Column (GRC). At the end of the growth stage, plasma, methane, and Ar sources were shut 

down and  the process chamber was left to cool to room temperature. Then, the gate vlave was 

opened in order to transfer the samples to the load lock chamber. When the samples reached the 

load lock chamber, the gate valve was closed to isolate the process chamber. Next, the load 

chamber was vented with Ar. Finally, the samples were unloaded and kept in a closed container 

for charactrization.  

3.9.  Graphene synthesis 

A single-chamber CVD system (hot filament activated CVD) shown in Figure 3.9 was 

used for performing graphene films deposition.   

  

Figure 3.9: The single-chamber CVD system and its mean parts for graphene synthesis. 
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As illustrated in Figure 3.10, the basic set-up of the single-chamber CVD system consisted of: 

a) A single stainless steel chamber. 

b) A filament made out of tungsten, which is heated up to 2100 °C by a direct electrical 

current (dc) source around 16 A. 

c) A substrate heater up to 800 °C. 

d) A turbo molecular pump and a mechanical pump work together to pump the single-

chamber CVD system down to 10
-8

 Torr prior to growth. 

e) A delivery unit to deliver precursors and carrier gases to a process chamber. The amount 

of delivered gases such as hydrogen and methane is regulated by a number of valves and 

mass flow controllers. 

 

Figure 3.10: A schematic diagram of the hot filament CVD system. 
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Hot filament CVD (HF-CVD) method was originally developed by Matsumoto et al. in 

the early 1980s. The hot filament deposition process is the most and earliest method utilized for 

diamond growth under low pressures. This technique has been utilized extensively to deposit 

various silicon based and carbon based materials such as silicon thin films, silicon carbide films, 

carbon nanotubes, diamond like carbon films, and diamond.   

The decomposition of precursor gases such as methane and silane is occurred on a heated 

filament (e.g. tungsten) leading to deposition of a solid film on a desirable substrate. Heat 

released from the filament is given by Equation 3.1; 

Ptotal 2π.rfilament.lfilament. tungsten.σ.T
4                                                                             Equation 3.1 

Where, 

Ptotal: The total power. 

rfilament: The filament radius. 

lfilament: The filament length. 

 tungsten: The emissivity factor (generally frequency dependent). 

σ: The Stefan–Boltzmann constant. 

T: The temperature. 

The hot-filament CVD technique has a number of significant benefits over conventional 

film deposition methods. Hot-filament chemical vapor deposition produces a large area 

deposition at low temperature. Also, the HF-CVD offers a high gas-decomposition and high 

deposition rate. In addition, hot-filament chemical vapor deposition relatively cheap and easy to 

operate compared with conventional CVD methods. There are several variables that have 

significant impact on the quality of the deposited film using HF-CVD methods such as substrate 

temperature, filament temperature, total growth pressure, and gases flow rates.  



 

53 

 

3.9.1. Graphene synthesis on different substrate materials 

 

Hot-filament chemical vapor deposition (HF-CVD) shown in Figure 3.9 was used in 

order to grow graphene film on different substrate materials such as Si, SiO2, Si3N4, DLC, and 

diamond. Carbon precursor, methane, (CH4) and carrier gas, hydrogen (H2) mixture, with 

different growth time and growth pressure were utilized in graphene film synthesis.  

The graphene film growth process consisted of four steps as shown in Figure 3.11: ramp-

up, annealing, growth, and cool down.  

 

Figure3.11: The graphene film growth process at high temperature consisted of four steps. 

 

The chamber of the hot-filament system was vented and the chamber was opened to load 

the cleaned samples. Next, the chamber was closed and pumped down to 10
-3

 Torr  using a 

mechanical pump. When the pressure in the chamber reached to 10
-3

 Torr , a turbo pump  

connected to the chamber reduced the chamber pressure to 10
-8

 Torr. The pressure in the single 

chamber system was constantly monitored using pressure gauges. In the ramp-up step, the 
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process chamber was heated to the desired temperature (i.e. 700 °C) in Ar. Then, Ar source was 

closed while  H2 was introduced into the chamber. At the required temperature (i.e. 700 °C), the 

annealing stage (20 min- 30 min) was started.   

The growth step was then started by introducing the precursor gas, CH4 . The outlet 

product from the process chamber was exhausted and treated by a Gas Reactor Column (GRC). 

At the end of the growth step, methane and hydrogen flow sources were closed and an Ar source 

was simultaneously opened. Then, the process chamber was cooled to room temerature allowing 

carbon precipitates to form graphene on the top and bottom of the Ni surface. Finally, the sample 

was unloaded at room temperature and kept in labeled boxes for charactrization. 

3.9.2. Effect of growth temperature on graphene synthesis using 200 nm nickel film-coated  

SiO2/Si substrates 

In order to investigate the effect of growth temperature on graphene synthesis, the hot 

filament chemical vapor system was used to synthesize large-area graphene film on 200 nm 

nickel film-coated SiO2/Si substrates. The sample was loaded in the HF-CVD system. Then, the 

chamber was pumped down to 5.5x10
-9

 torr. Graphene films were synthesized at various 

substrate temperatures. Namely, the nickel substrates were heated to different temperature, 600, 

650, 700, and 750 °C and maintained for 10 min in H2 ambient at 0.5 torr. Next, H2 was 

introduced into the deposition chamber with a flow rate of 5 sccm for 20 min. Then, a 

hydrocarbon gas, CH4, with a flow rate of 10 sccm was introduced into the deposition chamber 

with a total pressure 1.5 torr. The process was held until the total growth pressure was stabilized. 

Then the power supply of hot filament was switched on for 10 min. After the deposition, the 

sample was cooled in Ar (150 sccm) to room temperature. The graphene films were deposited at 

a constant filament temperature of 2100 °C. 
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3.9.3. Effect of CH4/H2 ratio on graphene synthesis using 200 nm nickel film-coated 

SiO2/Si substrates 

200 nm nickel film-coated SiO2/Si substrates were used to study the effect of CH4/H2 

ratio on graphene synthesis. Graphene film was synthesized utilizing the HF-CVD system. The 

graphene films were fabricated using different CH4/H2 ratios; two, three, and five. The graphene 

film processes were performed under 1.5 torr at 700 °C for 10 min. 

3.9.4. Effect of growth pressure on graphene synthesis using 200 nm nickel film- 

coated/Si3N4 substrates 

In this study, the growth pressure effect on graphene synthesis on 200 nm nickel film-

coated/Si3N4 substrates was investigated. Graphene films were grown at 700 °C using CH4/ H2 

flow rate ratio of 15/5 sccm for 5 min with different pressure; 0.3, 0.5, and 1 torr. 

3.9.5. Effect of growth temperature on graphene synthesis using 200 nm nickel film- 

coated/Si3N4 substrates 

The effect of the temperature on graphene film grown on 200 nm nickel film-

coated/Si3N4 substrates was examined. Graphene films were fabricated at different temperatures; 

650, 700, and 720 °C. The other CVD parameters were kept constant. To explain, graphene films 

were grown at 1.8 torr using CH4/ H2 flow rate ratio 15/5 sccm for 5 min.  

3.9.6. Graphene etching by atomic hydrogen 

In order to etch graphene formed on the top surface on Ni films, many experiments were 

conducted using different recipes. Atomic hydrogen produced by hot filament CVD was used to 

etch graphene film grown on the top surface of Ni films. Five min was enough to completely 

etch graphene film at 500 °C with H2 flow rate equals 5 sccm.  
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Graphene film synthesis at the top surface of thin Ni film by applying different effects 

such as temperature, pressure, and CH4/ H2 flow rate ratios was examined. The next step was 

checking graphene film deposition at the interface between Ni thin film and Si-based material.  

3.10. Graphene direct deposition on Si-based substrate 

The Ni thin film was removed by ferric chloride (FeCl3) in order to examine graphene 

film formation at the interface between the Ni film and Si-based material. First, a 

photolithography process was used in order to pattern a frame to hold the graphene film that 

existed underneath the Ni film. Then, FeCl3 was applied to etch away the Ni film as illustrated in 

Figure 3.12.  

 

Figure 3.12: The process for removal of Ni thin film using Ferric chloride (FeCl3). 

 

Next, Raman spectroscopy was used to examine graphene formation under the removed 

Ni thin film. 
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3.11. Characterization Tools 

3.12.1. Atomic force microscope (AFM) 

In optical microscope or in scanning electron microscope, one can only see a 2D 

projection of a 3D system. So, there is no clear idea about the height of the feature, which is 

considered so important in nano-scale. However, atomic force scope (AFM) enables researchers 

to obtain a magnified 3D image with high resolution. Atomic force microscope (AFM) is 

considered one of the most important tools used to perform measurement of material properties 

such as topology, adhesion, stiffness, and friction of the studied material surface.   

Atomic force microscope works on the principle of interaction forces between molecules 

or particles or surfaces. In reality, the interaction forces between the surface of the studied 

sample and a sharp tip surface can be described by the Lennard-Jones model as illustrated in 

Figure 3.13 [79].  

 

Figure 3.13: The Lennard-Jones model. 
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The Lennard-Jones potential is given by Equation 3.2: 

V(r) 4 [(
σ

r
)
12

- (
σ

r
)
6

]                                                                                            Equation 3.2 

Where, 

 ( ) :  The potential energy between the two atoms or molecules. 

 :   The well depth; a measure of how strongly the two atoms attract each other. 

σ: The distance at which the potential energy between the two particles is zero. 

r: Separation distance between the centers of one atom to the center of the other atom. 

It is obvious from the equation that the potential energy equals zero for large separation 

distance, r > rο.  To explain both terms, attraction and repulsion force equals zero. For 

intermediate distance,  (
 

 
)
 

  (
 

 
)
  

. This means that attraction force dominates at that 

distance. However, to further decrease in the distance between the two objectives (i.e. small r) 

leads to a repulsive force which dominates. 

As shown in Figure 3.14, Atomic force microscope (AFM) consists mainly of: 

 A tip which is considered the most important hardware part of the Atomic force 

microscope. Actually, the tip is utilized to physically touch the studied surface. In fact, 

the obtained resolution of the examined feature depends on tip size and geometry. 

Normally, in contact operation mode, tips are made of silicon nitride while for tapping 

mode, tips are mostly made of silicon.     

 A cantilever used for mounting the tips. The length of the cantilever is roughly on the 

order of 100 to 200 um. A good cantilever has a low spring constant and the resonant 

frequency higher than instrument’s data acquisition rate.  
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 A photo detector which is utilized to track the deflection of the cantilever. It is a position 

sensitive diode which generates a voltage when light with certain wavelength shines on 

it. The generated voltage is a function of the position at which the light falls.  

 A laser source which reflects back from the shining area located on the backside of the 

cantilever 

 A piezoelectric scanner for mounting the cantilever and demonstrating the change of 

stress as a change of generated voltage.  

 A feedback control system is used to adjust and maintain the constant deflection. 

 

Figure 3.14: Schematic drawing of the Atomic Force Microscope (AFM). 

 

Atomic force microscope utilizes the raster scanning method to image the surface of the 

sample. AFM works based on the beam bounce method for detecting the deflection of the 
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cantilever. The operating principle of AFM can be classified to contact and tapping mode as 

depicted in Figure 3.15. In contact mode, the tip, which is mounted on the cantilever surface, is 

in touch with the sample surface. Normally, this operation mode is utilized for investigating hard 

surfaces.  For studying sticky and soft surfaces such as polymers, contact mode is preferred to 

image those surfaces.  

  

Figure 3.15: Atomic force scope (AFM) imaging modes:  a) contact mode b) tapping or non-

contact mode. 

 

3.12.2. Raman spectroscopy 

 

Raman spectroscopy is one of the most popular and powerful non-destructive technique 

utilized to identify and characterize the materials and their structural properties.  Raman 

phenomenon effect was discovered in 1928 by C.V. Raman. Raman effect is based on the fact 

that when a monochromatic light with frequency 𝝂  encounters a molecule, most of the light 

scatters  with the same frequency of the incident light due to elastic scattering (i.e. Rayleigh 

scattering). However, a very small portion of incident photons are inelastically scattered with 

energy lower or higher than the incident energy. This shift of energy (i.e. h 𝝂) is equal to the 

vibrational energy of molecules as illustrated in Figure 3.16. To explain, the shift energy; h𝝂 is 

related to the material properties.  
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At room temperature, most molecules are in the ground vibrational states. When the light 

interacts with these molecules, the molecules are excited and their energy jumps from the ground 

vibrational state to a virtual state for very short time. Then, the molecules relax by emitting light 

with lower energy (i.e. h 𝝂 - h𝝂) called Stokes shift. However, a few of the molecules are 

naturally excited in a vibrational excited state. So, these molecules gain energy when they 

interact with the incident photons. Hence, they are excited to a virtual energy level. Then, they 

relax to the ground state by radiating photons with higher energy (i.e. h 𝝂 + h𝝂) called anti-

Stokes shift.  

 

Figure 3.16: The different possibilities of light scattering. 
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As depicted in Figure 3.17, Raman spectrometer consists basically of many devices and 

tools such as: 

 A pulsed or continuous monochromatic light source with a wavelength in the UV, visible 

or near IR wavelengths is used as excitation source. Usually, this light source is powerful 

laser. 

 Laser line specific Rayleigh filters used to prevent Rayleigh scattering from entering the 

detector.  

 High quality optical set such as lenses, mirrors, or optical fibers utilized to direct and 

collect the light.  

 A dispersing device (grating or prism) coupled with a charge-coupled device CCD. 

 

 

Figure 3.17: Schematic diagram of the Raman and PL spectroscopy system.  
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3.12.3.  The scanning electron microscope (SEM) 

 

A Scanning Electron Microscope (SEM) was used to study morphology of the graphene 

films fabricated in this research. Scanning electron microscope was used to image the surface of 

studied sample by scanning the surface utilizing a high energy beam of electronics. As illustrated 

in Figure 3.18, a scanning electron microscope (SEM) consists in general of: 

 An electron gun: A v-shape tungsten wire, thermionic cathode is used to generate an 

electron beam by heating the tungsten wire utilizing electric current. 

 Anode: A hollow metallic disk utilized to accelerate the generated electrons called 

primary electrons downwards.  

 Electromagnetic lens: Used to focus the electron beam on the specimen surface. 

 Raster scan generator: Utilized to direct and raster the electron beam over the specimen 

surface. 

 Secondary electrons detector (SE): Utilized to detect and record the knocked out 

electrons, called secondary electrons, from the specimen surface. 

 Positively biased grid: Placed in front of the secondary electron detector in order to 

increase the number of detected secondary electrons. 

 Computer with a monitor: Used to compute the input signals and display them as 

magnified image. 

The electron beam produced by the electron gun is directed by electromagnetic lens 

and electromagnet deflection toward the sample surface. Once the focused electron beam of  

high-energy electros hits the sample surface, different types of signals are produced such as 

secondary electrons (SE), back-scattered electrons (BSE), light (cathode luminescence) (CL), 

and characteristic X-rays. 
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For each type of signal, there is a specific detector used in order to collect the signal then 

convert it to a 2D image. These signals give significant information about the sample such as 

topography, chemical composition, crystalline structure, and electronic structure.  

 

Figure 3.18: Lay-out of the scanning electron microscope. 
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Secondary electrons (SE) are considered the most valuable signal used to obtain an image 

of the specimen surface. Back-scattered electrons (BSE) technique is used to study an elements 

distribution and chemical homogeneity of the specimen. Light cathode luminescence (CL) is 

utilized to study and characterize structure defects and impurities in the sample.  

3.12.4.  Energy dispersive X-ray spectroscopy (EDX, EDS, or XEDS) 

Energy Dispersive X-ray analysis (EDX) is a non-destructive and in situ analytical 

technique utilized to detect and identify the composition of elements in the studied sample.  EDX 

systems can be connected with several characterization techniques such as Scanning Electron 

Microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), and Transmission 

Electron Microscopy (TEM). The impact of the primary electrons on the specimen produces x-

rays that carry information about the elements present on the sample. The obtained data from 

Energy Dispersive X-ray analysis is displayed as peaks corresponding to the elements existing in 

the sample being examined. 

Once the electron beam knocks electrons out of the examined material, holes are 

generated because the secondary electrons leave their positions in the electron shells they used to 

occupy. The atoms of the examined sample will be excited if the created holes are in the inner 

shells. So, electrons from outer shells will drop into the generated holes located in these inner 

shells resulting in energy in the form of X-rays as illustrated in Figure 3.19. Then, the produced 

X-ray can be measured by an energy-dispersive spectrometer.  

Since the X-rays released from the atoms sample are characteristic of the difference in 

energy between the two shells to the element of the parent atom, this helps researchers in 

identifying and determining the elemental composition of the specimen. 
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Figure 3.19: Operational principle of Energy dispersive X-ray spectroscopy (EDX). 

 

3.12.5.  Ellipsometry 

 

Ellipsometry is a non-destructive and non-contact measurement technique utilized to 

measure film thickness and optical constant. Also, ellipsometry could be used to characterize 

material properties related with a variation in optical response such composition, crystallinity, 

surface roughness, and doping concentration. An ellipsometry apparatus consists primarily of a 

light source, polarizer, polarization analyzer, and photodetector. The principle of operation of the 

ellipsometry depends on measuring the polarization change and the phase difference when light 

reflects or transmits from a material structure as shown in Figure 3.20.    
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Figure 3.20: Typical ellipsometry configuration, a linearly polarized light reflects from the 

sample surface and the polarization change is measured to determine the sample thickness. 

 

When a linearly polarized light reflects from the sample surface, it becomes elliptically 

polarized .The polarization change is measured and the film thickness film and optical properties 

are determined based on the given information such as input polarization, output polarization, 

refractive of index, incident angle, and reflected angle.   

3.13. COMSOL Simulation 

 

COMSOL Multiphysics software uses the Finite Element Method and computational 

meshing in solving various coupling physics and engineering problems [80]. 
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COMSOL Multiphysics was applied to explain the growth mechanism of graphene on Ni 

thin film. To clarify, COMSOL simulation was performed in order to describe and explain the 

graphene growth mechanism using Ni film. Figure 3.21 illustrates the main simulation steps 

conducted using COMSOL Multiphysics.  

 

Figure 3.21: The main steps of the model construction process utilizing COMSOL 

Multiphysics. 

 

In this work, both carbon dissolution and precipitation steps were simulated as illustrated 

in Figure 3.22. In addition, graphene film growth on Ni thin film at different condition such as 

growth time, growth temperature, carbon solubility, and Ni film thickness were investigated. 
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Figure 3.22.: Graphene CVD growth process using nickel film: a) carbon diffusion into the Ni 

film b) carbon precipitation on the Ni film surface. 

 

COMSOL Multiphysics software was utilized to model graphene growth on Ni at high 

temperatures. As illustrated in Figure 3.22, graphene synthesis was performed in two essential 

steps:  

A. Carbon diffusion in Ni film: 

In this research, carbon diffusion inside a Ni film was examined.  When CH4 hit the top 

surface of the 200 nm Ni thick heated to 1000 °C, CH4 decomposed catalytically and 

released carbon atoms. Then, the adsorbed carbon atoms diffused into the Ni film at the 

same temperature, 1000 °C. 

B. Carbon precipitation:  

During the cooling period, carbon atoms precipitation on Ni surface occurred due to 

supersaturation of the diluted carbon in Ni.  
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In this model, in order to simplify the graphene CVD synthesis method, the following 

assumptions were made: 

 There was no diffusion of carbon atoms via grain boundaries. 

 The bottom side of the nickel film was blocked. So, there was no diffusion thru this side. 

 During the annealing stage, carbon atoms were homogeneously and uniformly distributed 

in the Ni film. 

 During cooling period, precipitated carbon atoms segregated and distributed 

homogeneously on the surface of the Ni film. 

 In the dissolution process, there was no direct deposition for carbon atoms on the surface 

of the Ni film. 

 There was no carbide formation in the Ni film. 

In this model transport of diluted species, heat transfer in Ni thin film and deformed 

geometry module were utilized as shown in Figure 3.23. 

 

 

Figure 3.23: The COMSOL modules used in this study; transport of diluted species, heat transfer 

in Ni thin film and deformed geometry. 
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The geometry of the graphene synthesis model created in COMSOL is illustrated in Figure 3.24. 

 

 

Figure 3.24: Model schematic diagram of graphene growth using Ni thin film. 

 

Figure 3.25 shows the COMSOL mesh for the graphene synthesis model. The graphene synthesis 

model was extremely meshed. 

 

 

Figure 3.25: The graphene synthesis model; COMSOL mesh. 
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During the carbon dissolution and precipitation stage, carbon atoms were mainly 

transferred by diffusion process from the Ni film surface into its bulk. Hence, conservation of 

mass was used to described the carbon atoms transformation. The governing equation for carbon 

atoms transport is mathematically defined by Equation 3.3.  

 c

 t
 ∇.(D∇c)                                                                                                                    Equation 3.3 

 

Where c is the carbon atoms concentration and D is the carbon diffusion coefficient defined by 

Equation 2.3. 

The heat transfers within the Ni film by conduction. So, heat transfer in Ni film is 

mathematically expressed by Equation 3.4. 

ρCP
 T

 t
 ∇.(κ∇T)                                                                                                             Equation 3.4 

 

Where 

T: The temperature.  

CP : The specific heat capacity. 

 ρ : The mass density of the material. 

κ: The thermal conductivity 

 

In the dissolution period, the mass and heat transfer initial and boundary conditions for 

graphene synthesis model are illustrated in Figure 3.26. To clarify, as an initial condition, the 

concentration of carbon atoms in Ni film at t=0 was set as follows: 

     c (t 0) 0                                                                                                                   Equation 3.5 

Also, the temperature of the Ni film at t=0 was set as follows: 

   T (t 0)   T (t)   1000 °C                                                                                            Equation 3.6 
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Figure 3.26: The mass and heat transfer initial and boundary conditions for graphene synthesis 

model during the dissolution stage.  

 

The mass and heat boundary conditions during the dissolution time for this model are:  

 The carbon concentration at the top surface of the Ni film is equal the solubility of carbon at 

a temperature equals the initial temperature of the Ni film: 

 c S(Tintial Ni)                                                                                                          Equation 3.7 

 There is no carbon flux or heat at the bottom surface of the Ni film :  

-n.Ni 0                                                                                                                     Equation 3.8 

 There is a symmetry of carbon flux and heat  at the Ni film sides:  

     -n.Ni 0                                                                                                                      Equation 3.9 

 

Figure 3.27 displays the mass and heat transfer initial and boundary conditions for 

graphene synthesis model during the precipitation phase.  
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Figure 3.27: The mass and heat transfer initial and boundary conditions for graphene synthesis 

model during the precipitation period. 

 

The initial conditions in this model for the precipitation phase were set as: 

 The concentration of carbon atoms inside the Ni film at t=0 equals the carbon solid solubility 

limit in Ni at 1000 °C. 

    c (t 0) Carbon solid solubility limit (T 1000 °C)                                                Equation 3.10 

 The concentration of carbon atoms on the top surface of the Ni film at t=0 equals zero. 

    c (t 0) 0                                                                                                                 Equation 3.11 

 The temperature of the Ni film at t=0 equals T=1000 °C 

T (t 0)    1000 °C                                                                                                 Equation 3.12 

 The thickness of graphene film, d, on the top surface of the Ni film at t=o was zero. 

d(t 0) 0                                                                                                                Equation 3.13 

Also, the boundary conditions for mass and heat transfer in the graphene film synthesis model 

were defined as: 

 The temperature of the top surface equals the desirable temperature of the surface  
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T Tdesirable  (e.g. 750 °C)                                                                                       Equation 3.14 

 The bottom surface of the Ni film was isolated: 

    -n.(-k∇T)   0                                                                                                            Equation 3.15 

 There was a symmetry of the heat flux and mass at the Ni film sides:  

    -n.Ni 0                                                                                                                     Equation 3.16 

 There was no carbon flux at the bottom surface of the Ni film :  

-n.Ni 0                                                                                                                   Equation 3.17 
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Chapter 4: Results and Discussion  

4.1 Diamond-like carbon (DLC) synthesis on Si substrate  

Diamond-like carbon (DLC) films were synthesized utilizing Plasma Enhanced  

Chemical Vapor Deposition system (PE -CVD). The effect CH4/Ar flow rate ratio and plasma 

power on DLC fabrication were investigated using different recipes as illustrated in Table 4.1.  

Table 4.1: Experimental parameters for the DLC deposition.   

Recipe CH4/Ar flow 

rate ratio 

(sccm) 

Growth time 

(min) 

Power 

(watt) 

Growth 

Temperature 

(°C) 

Growth 

pressure (torr) 

1 55/45 60 77 R.T. 0.3 

2 90/10 60 77 R.T. 0.3 

3 33/67 60 77 R.T. 0.3 

4 10/90 60 77 R.T. 0.3 

5 90/10 60 30 R.T. 0.3 

6 50/50 60 30 R.T. 0.3 

 

DLC films were successfully deposited on 2’’x 2’’ silicon (100) polished substrate and 

glass at room temperature as shown in Figure 4.1 and Figure 4.2, respectively.   

  

Recipe1: DLC on Si  Recipe3: DLC on Si 

Figure 4.1: Diamond-like carbon (DLC) films deposited on Si at room temperature utilizing 

 PECVD. 
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Recipe 1 Recipe 2 Recipe 3 

   

Recipe 4 Recipe 5 Recipe 6 

Figure 4.2: Diamonds like carbon (DLC) films deposited on glass by different recipes at room 

temperature utilizing PECVD. 

 

The obtained DLC films were characterized by the micro-Raman spectroscopy utilizing 

an excitation wavelength of 532 nm. The Raman spectrum of DLC films consists typically of 

two broad peaks; G peak and D peak. The G peak, associated with the highly crystalline sp
2 

graphite, appears at ~ 1580 cm
-1

. The second peak; D peak, tetrahedral diamond form, is located 

at ~ 1350 cm
-1

.  
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The Raman spectrums of the obtained DLC films synthesized by different CH4/H2 ratios 

at power equals 77 watt are presented in Figure 4.3. The broadness of Raman peak shown in 

Figure 4.3 implies that the DLC carbon films had an amorphous structure. 

 

Figure 4.3: Raman spectra for DLC film deposited on Si substrate by different CH4/Ar ratios at 

77 watt. 
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As illustrated in Figure 4.4, the relation between G-peak position and CH4/Ar ratio 

indicates that the G-peak position shifted lower with increasing CH4/Ar ratio. This denotes a 

lower ratio of CH4/Ar resulted in more sp
3
 carbon bond.  Also, the red shift of the G-peak 

demonstrated that the DLC film was in tensile stress.  

 

Figure 4. 4: The relation between G-peak position and CH4/Ar ratio. 

 

Also, the effect the power of plasma on DLC film synthesis was studied.  DLC film 

fabrication was conducted using two values of the plasma power supply: 77 and 30 watt. 
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The Raman spectrums of the DLC films synthesized using 30 watt are shown in Figure 

4.5. It is obvious from the figure that no DLC film was formed on the Si substrate at 30 watt. 

 

 

Figure 4.5: Raman spectra for DLC film deposited on Si substrate by different CH4/Ar ratios at 

30 watt. 
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SEM was used to investigate the surface morphology of the DLC films. The SEM 

micrograph in Figure 4.6 does not show visible defects on the surface of the DLC film. 

 

Figure 4.6: SEM image of DLC film deposited on Si substrate.  
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In addition, EDX was used for elemental analysis. From EDX analysis, carbon and 

silicon were found in the synthesized DLC film as depicted in Figure 4.7. 

 

Figure 4.7: EDX image of DLC film deposited on Si substrate. 
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The surface roughness of the DLC films played a significant role in determining the 

adhesion force between the nickel film and the DLC film surface. To simplify, decreasing the 

roughness of the DLC films facilitated the removal of the nickel film from the surface of the 

DLC films. Therefore, Atomic Force Microscopy (AFM) was utilized to examine the DLC films 

surface.  

AFM showed that the average roughness (Ra) of DLC sample (1µ 1µ) was 0.265 nm 

and the root mean square roughness (Rq) was 0.337 nm as shown in Figure 4.8 and Figure 4.9 

.The average reported roughness is ~ 17 nm [41]. This means that the DLC films obtained in this 

research were ultra-smooth.  

 

Figure 4.8: AFM trace of DLC film deposited on Si substrate. 
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Figure 4.9: AFM image of DLC film deposited on Si substrate.  

4.2 Graphene synthesis on different substrate materials 

Graphene films were synthesized utilizing hot-filament chemical vapor deposition. Methane 

(CH4) and Hydrogen (H2) mixture with different growth time and growth pressure were used in 

graphene film synthesis.  

In this study, the capability of the hot-filament CVD in fabricating a uniform growth of 

graphene film growth on different substrate at low temperature was investigated. The same 

Raman spectroscopy (i.e. 532 nm) was utilized to investigate the synthesized graphene films that 

formed on different substrate materials. Table 4.2 illustrates the CVD parameters used in 

graphene films synthesis on different substrates.  

Table 4.2: Graphene CVD growth parameters. 

Substrate 

material 

CH4/H2 flow 

rate ratio 

(sccm) 

Growth 

temperature 

(°C) 

 

Growth 

pressure 

(torr) 

Growth time 

(min) 

Ni film 

thickness 

(nm) 

Si 15/5 700 1.5  15 200 

SiO2 15/5 700 1.5 10 200 

Si3N4 15/5 700 1 5 200 

Diamond 15/5 700 1.5 10 200 

DLC 15/5 700 1.5 10 200 
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The Raman spectra of the graphene films fabricated on different substrates – Si, Si3N4, 

diamond, and DLC – are illustrated in Figure 4.10 - Figure 4.13. 

 

Figure 4.10: Raman spectra for graphene films synthesized on Ni (200 nm) /Si. 

 

 

Figure 4.11: Raman spectra for graphene films synthesized on Ni (200 nm) /Si3N4. 
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Figure 4.12: Raman spectra for graphene films synthesized on Ni (200 nm) /diamond. 

 

 

Figure 4.13: Raman spectra for graphene films synthesized on Ni (200 nm) /DLC. 
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The Raman parameters for each graphene film are shown in Table 4.3.  Raman results 

show a few layers of graphene formed on 200 nm nickel film-coated different substrate (i.e. Si, 

SiO2, Si3N4, DLC, and diamond). 

 

Table 4.3: The Raman parameters for each graphene film deposited on Si, SiO2, Si3N4, DLC, 

and diamond. 

Substrate D-peak center 

(cm
-1

) 

G-peak center 

(cm
-1

) 

2D-peak Center 

(cm
-1

) 

ID/IG I2D/IG FWHM(2D-

peak) 

(cm
-1

) 

Si 1367.3 1597.8 2701.0 0.97 0.72 305 

Si3N4 1325.3 1562.0 2682.3 0.64 0.72 94.5 

DLC 1342.0 1585.2 2701.5 0.90 0.69 111.97                   

Diamond 1367.3 1602.2 2734.8 0.45 0.51 94.5 

 

It is obvious that graphene film formed on Si substrate had a max value of ID/IG, 0.97. 

This means that this graphene film had more defects than the other graphene films formed on 

SiO2, Si3N4, DLC, and diamond. Also, the value of I2D/IG for all the graphene falls within the 

range 0.333-1. So, these values demonstrate that approximately three layers of graphene were 

formed on those substrates as explained in section 2.1.  

4.3   Effect of the substrate temperature on graphene synthesis using 200 nm nickel film  

coated SiO2/Si substrates. 

The effect of substrate temperature on graphene film synthesis was investigated. 

Graphene film was synthesized at different substrate temperatures; 600, 650, 700, and 750 °C.  

The other CVD parameters were kept fixed; time (10 min), gas flow rates (CH4/H2:10:5 sccm), 

pressure (1.5 torr), and hot-filament temperature (2100 °C). Table 4.4 depicts the CVD 

parameters utilized in studying the effect of growth temperature on graphene synthesis. 
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Table 4.4: The CVD parameters utilized in studying the effect of growth temperature on 

graphene synthesis using 200 nm nickel film-coated SiO2/Si substrates. 

Substrate 

material 

CH4/ H2 flow 

rate ratio 

(sccm) 

Growth 

temperature 

(°C) 

Growth 

pressure 

(torr) 

Growth time 

(min) 

Ni film 

thickness 

(nm) 

 

 

SiO2 

 

10/5 600 1.5  10 200 

10/5 650 1.5 10 200 

10/5 700 1.5 10 200 

10/5 750 1.5 10 200 

10/5 700 1.5 10 200 

 

A scanning electron microscope (SEM) was used in order to do more investigation for the 

graphene film surface. SEM confirms graphene film formation on the top surface of the Ni film 

as shown in Figure 4.14.  

 

Figure 4.14: SEM image of graphene film formed on Ni film thickness of 200 nm. 

 

It is clear that graphene wrinkles were distributed and formed on the Ni surface. To 

clarify from SEM image, the dark structures represent the graphene areas whereas the bright 

features represent the wrinkles of the graphene film. 

Wrinkles 

Graphene 
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Carbon atoms diffusion in the grain boundaries is faster than the one takes place at the 

grains themselves. Consequently, more graphene layers are formed at grain boundaries.  

In order to confirm graphene film growth, Raman spectroscopy for the fabricated 

graphene films on Ni films at different substrate temperature were used as illustrated in Figure 

4.15.  

 

Figure 4.15: Raman spectra of graphene films grown on Ni/SiO2/Si substrate at different 

temperature. 

It is clear from the figure that a few layers of graphene were formed on the Ni surface at 

650, 700, and 750 °C. However, no Raman spectrum of graphene film was observed at a growth 

temperature of 600 °C as depicted in Figure 4.15. 
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In order to determine the number of graphene film, there are many ways. One of these 

methods is Raman spectroscopy. The number of graphene layers can be confirmed by I2D/IG as 

well as the symmetry and the lineshape of the 2D-peak [38]. The 2D-peak is considered the 

distinctive peak of graphene.  It is obvious from Raman spectra of the synthesized film on 

Ni/SiO2/Si substrate that a few layers of graphene film were formed on the top surface of the Ni 

film. 

The 2D-peak shifts to the left when the substrate temperature rises as shown in Figure 

4.16. To clarify, the 2D-peak position appears at 2704.3, 2687.9, and 2687.5 cm
-1

 for the 

graphene films grown at 650, 700, and 750 °C, respectively, as depicted in Figure 4.16. The red 

shift of 2D-peak demonstrated a decrease in the number of the graphene layers formed on the top 

surface of the Ni film when the substrate temperature was increased. 

 

 

Figure 4.16: 2D- peak center as a function of the substrate temperature. 
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In order to study the effect of temperature on the number of graphene layers formed on 

the Ni film surface, I2D/IG vs. substrate temperature was plotted (Figure 4.17). I2D/IG increased 

when the substrate temperature increased as shown in the figure. So, the number of graphene 

layers decreases with substrate temperature. The values of I2D/IG show that approximately three 

to four layers of graphene were formed on the Ni surface. 

 

Figure 4.17: The I2D/IG intensity ratio of the graphene films as a function of the substrate 

temperature. 
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The level of the defective and disordered structure of the graphene film can be extracted 

from the intensity ratio of the D to G peak; ID/IG. So, in order to investigate the effect of the 

substrate temperature on graphene film quality, the relationship between ID/IG and temperature is 

represented in Figure 4.18. 

 

Figure 4.18: The ID/IG intensity ratio of the graphene films as a function of the substrate 

temperature. 

 

It is obvious from Figure 4.18 that the ID/IG ratio decreases from 0.40 to 0.23 as the 

substrate temperature rises from 650 °C to 750 °C. The drop of the ID/IG values indicates an 

improvement in the quality of the graphene film as explained in section 2.1.  
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Tuinstra and Koenig’s equation [81] (Equation 4.1) was utilized to calculate the average 

size of sp
2 

domains (L ) of the obtained graphene films. 

L  (2.4 ×10
-10)   laser

4
 (

ID

IG
)

-1

                                                                                      Equation 4.1 

 

Where,  laser is the laser wavelength in nm.                      

 

Figure 4.19: The average grain size (Lα) of graphene film as a function of the substrate 

temperature. 

 

It is clear from Figure 4.19 that the calculated value of the average size of sp
2
 domains (Lα) 

increased from 48 nm to 82 nm when the substrate temperature was raised from 650 °C to 750 

°C. 
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4.4 Effect of CH4/H2 ratio on graphene synthesis using 200 nm nickel film-coated SiO2/Si 

substrates. 

The effect of CH4/H2 ratio on graphene films grown on 200 nm nickel film-coated 

SiO2/Si substrates was investigated using Raman spectroscopy as shown in Figure 4.20.  

 

Figure 4.20: Raman spectra of graphene films grown on Ni/SiO2/Si substrate at 

different CH4/H2 ratios. 

 

The graphene films were fabricated using different CH4/H2 ratios as illustrated in Table 4.5. 
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Table 4.5: the CVD parameters utilized in studying the effect of CH4/H2 ratios on graphene 

synthesis using 200 nm nickel film-coated SiO2/Si substrates. 

Substrate 

material 

CH4/ H2 flow 

rate ratio 

(sccm) 

Growth 

temperature 

(°C) 

Growth 

pressure 

(torr) 

Growth time 

(min) 

Ni film 

thickness 

(nm) 

 

SiO2 

 

10/5 700 1.5 10 200 

15/5 700 1.5 10 200 

10/2 700 1.5 10 200 

 

I2D/IG ratios were calculated to determine how many layers of graphene were grown on 

the top surface of the Ni film.  

 

Figure 4.21: The I2D/IG intensity ratio of the graphene films as a function of CH4/H2 ratio. 
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As illustrated in Figure 4.21, there was a decreasing trend in I2D/IG intensity ratio values 

when CH4/H2 ratio decreased. So, the obtained number of graphene layers formed on Ni/SiO2/Si 

decreased markedly. This decrease of the number of graphene film was due to the increase of 

hydrogen atoms that etched away carbon material. 

The quality of graphene film was investigated. The relationship between ID/IG and 

CH4/H2 ratio is shown in Figure 4.22.  

 

Figure 4.22: The ID/IG intensity ratio of the graphene films as a function of CH4/H2 ratio. 



 

97 

 

It is clear that there was a decreasing trend in the ID/IG intensity ratio when CH4/H2 ratio 

increased. The decrease of the ID/IG intensity ratio means a decreasing in graphene film defects. 

Hence, there was an improvement on graphene film quality when CH4/H2 ratio increased. The 

increase of hydrogen atoms helped etch away accumulated carbon materials formed at grain 

boundaries.   

Equation 4.1 was used to calculate the average size of sp
2
 domains (Lα) of graphene films 

grown on Ni/SiO2/Si substrate. This is plotted as a function of CH4/H2 ratio in Figure 4.23. The 

average grain size (nm) of graphene film had a rising trend when CH4/H2 ratio was increased. 

When CH4/H2 ratio was increased, more hydrogen was produced. So, hydrogen reduces the 

defects formed at Ni grain boundaries. As a result, decreasing the defects helps graphene grains 

reconnect.  

 

 

Figure 4.23: The average size of sp
2
 domains (Lα) as a function of the CH4/H2 ratio. 
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The relationship between 2D-peak center and CH4/H2 ratios for graphene films grown on 

Ni/SiO2/Si substrate is illustrated in Figure 4.24. When the CH4/H2 ratio increased, the 2D peak 

center shifted up. This implies that the number of graphene films grown on the Ni film increased 

as described in section 2.1.  

 

 

Figure 4.24: 2D-peak center as a function of the CH4/H2 ratio. 
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4.5 Effect of growth pressure on graphene synthesis using 200 nm nickel film-

coated/Si3N4 substrates.  

The effect of pressure on the synthesis of graphene formed on 200 nm nickel film-

coated/Si3N4 substrate was investigated. Raman spectroscopy results of graphene film on Ni 

grown at 700 °C with different pressures (0.3, 0.5, and 1torr) are depicted in Figure 4.25.  

 

Figure 4.25: Raman spectra of graphene films grown on Ni/ Si3N4/Si substrate at different values 

of total pressure.  
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The CVD parameters used to study the effect of the total pressure on graphene film are 

illustrated in table 4.6 

Table 4.6: The CVD parameters utilized in studying the effect of growth pressure on graphene 

synthesis using 200 nm nickel film-coated/Si3N4 substrates. 

Substrate 

material 

CH4/ H2 flow 

rate ratio 

(sccm) 

Growth 

temperature 

(°C) 

Growth 

pressure 

(torr) 

Growth time 

(min) 

Ni film 

thickness 

(nm) 

 

Si3N4 

15/5 700 0.3  5 200 

15/5 700 0.5 5 200 

15/5 700 1 5 200 

 

In order to study the total pressure effect on graphene films grown at 700 °C on Ni/ 

Si3N4/Si substrate, Raman spectroscopy was utilized. I2D/IG is plotted vs. pressure in Figure 4.26. 

 

Figure 4.26: The I2D/IG intensity ratio of the graphene films as a function of the total growth 

pressure. 
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From Figure 4.26 there was a general upward trend in I2D/IG ratios when the pressure 

increased. Hence, the number of graphene films decreased. The relationship between the total 

pressure and the ID/IG intensity ratio in the graphene films is shown in Figure 4.27. Since the 

ID/IG intensity ratio was decreased with pressure, this means that the defects of the graphene film 

deposited on Ni/ Si3N4/Si substrate also decreased when the total pressure was increased. 

 

 

Figure 4.27: The ID/IG intensity ratio of the graphene films as a function of the total growth 

pressure. 
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The average size of sp
2
 domains was calculated utilizing Equation 4.1 in order to 

investigate the relationship between sp
2
 domain size and the ID/IG intensity ratio as well as the 

total pressure. As shown in Figure 4.28, the average grain size of graphene film decreased as the 

ID/IG intensity ratio increased.  The average domain size of sp
2
 dropped from 38 nm to 16 nm 

when the ID/IG intensity ratio increased from 0.5 to 1.2. 

 

Figure 4.28: The relationship between the average grain size of graphene film (Lα) and The ID/IG 

intensity ratio of the graphene films. 
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Figure 4.29 illustrates the relationship between the average grain size of sp
2
 domains and 

the total pressure. It is clear from the figure that the average grain size of graphene film increased 

when the growth pressure increased.  

 

Figure 4.29: The average size of sp
2
 domains (Lα) as a function of the total growth pressure. 
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4.6 Effect of growth temperature on graphene synthesis using 200 nm nickel film 

 coated/Si3N4 substrates.  

In this study, the effect of growth temperature on graphene film grown on Ni/ Si3N4/Si 

substrates at different temperatures was investigated using Raman spectroscopy. Raman spectra 

for graphene films fabricated at different temperatures are shown in Figure 4.30. 

 

Figure 4.30: Raman spectra of graphene films grown on Ni/ Si3N4/Si substrate at different 

temperatures. 
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Graphene films were synthesized using different CVD parameters given in Table 4.7.   

Table 4.7: The CVD parameters utilized in studying the effect of growth temperature on 

graphene synthesis using 200 nm nickel film-coated/Si3N4 substrates. 

Substrate 

material 

CH4/ H2 flow 

rate ratio 

(sccm) 

Growth 

temperature 

(°C) 

Total 

pressure 

(torr) 

Growth time 

(min) 

Ni film 

thickness 

(nm) 

 

Si3N4 

15/5 650 1.8  5 200 

15/5 700 1.8 5 200 

15/5 720 1.8 5 200 

 

 

As shown in Figure 4.31, I2D/IG intensity ratio of the graphene films grown on Ni/ 

Si3N4/Si substrate increased with temperature. The number of graphene layers formed on the Ni/ 

Si3N4/Si substrate thus decreased when the growth temperature was increased. 

 

 

Figure 4.31: The I2D/IG intensity ratio of the graphene films grown on Ni/ Si3N4/Si substrate as a 

function of the growth temperature. 
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The ID/IG intensity ratio was used as an indicator to measure the quality of the graphene 

films. It is clear from the decrease in ID/IG that the quality of graphene film was improved as the 

growth temperature increased as depicted in Figure 4.32.  

 

Figure 4.32: The ID/IG intensity ratio of the graphene films grown on Ni/ Si3N4/Si substrate as a 

function of the growth temperature. 

 

 

The average calculated size of graphene film grains as a function of temperature is 

represented in Figure 4.33.  
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Figure 4.33: The average size of grain size (Lα) of the graphene films grown on Ni/ Si3N4/Si 

substrate as a function of the growth temperature. 

 

 

Besides the graphene film quality improvement, Figure 4.33 shows that the average size 

of sp
2 

domains (Lα) of the graphene films grown on Ni/ Si3N4/Si substrate increased as growth 

temperature increased. 
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Figure 4.34 illustrates the relationship between the centers of 2D-peak of the graphene 

films grown on Ni/ Si3N4/Si substrate and the growth temperature. It is observable from the 

figure that the 2D center of graphene films shifted to lower values as the growth temperature 

increased. This indicated that the number of graphene layers formed on Ni/ Si3N4/Si substrate 

decreased as the growth temperature increased. 

 

Figure 4.34: 2D-peak position the graphene films grown on Ni/ Si3N4/Si substrate as a function 

of the growth temperature. 
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4.7 Graphene etching by atomic hydrogen 

In order to investigate the influence of atomic hydrogen on the etching of graphene 

formed on Ni surface. Different recipes were used in order to etch away the graphene film 

formed in the top surface of Ni film. Table 4.8 shows CVD parameters used to etch away the top 

graphene film in a minimum time of five minutes. 

 

Table 4.8: Graphene etching CVD growth parameters using atomic hydrogen. 

H2 flow rate (sccm)  temperature 

(°C) 

 

pressure 

(torr) 

time 

(min) 

Ni film thickness 

(nm) 

5 500 0.5 5 200 

 

 Raman spectra for the surface of the Ni film before graphene deposition, after graphene 

deposition, and after graphene etching utilizing atomic hydrogen are shown in Figures 4.35, 4.36, 

4.37, respectively. 

 

Figure 4.35: Raman spectra of Ni film before graphene deposition. 
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Figure 4.36: Raman spectra of graphene films grown on the top surface of Ni/ Si3N4/Si substrate 

after graphene deposition (and before atomic hydrogen etching). 

 

Figure 4.37: Raman spectra of graphene films grown on the top surface of Ni/ Si3N4/Si substrate 

after atomic hydrogen etching. 
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It is clear from the Raman spectra in Figure 4.37 that atomic hydrogen successfully 

etched the graphene film formed on the top surface of the Ni film. 

The surface of the Ni film was imaged after graphene film etching by atomic hydrogen 

using scanning electron microscope (SEM) as illustrated in Figure 4.38. It is obvious from SEM 

image that atomic graphene film stacks up and agglomerate due to atomic hydrogen etching. 

 

 

Figure 4.38: SEM image of graphene films grown on the top surface of Ni/ Si3N4/Si substrate 

after atomic hydrogen etching. 
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In addition, energy dispersive X-ray spectroscopy (EDX) was utilized for the elemental 

analysis of the top surface of Ni film. The EDX image in Figure 4.39 confirms that the graphene 

film and part of the Ni film were etched by atomic hydrogen. 

 

 

Figure 4.39: EDX image of graphene films grown on the top surface of Ni/ Si3N4/Si substrate 

after atomic hydrogen etching. 
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4.8 Graphene Formation  at the interface between the Ni film and the Si-based    

substrates. 

 

Large-scale graphene films (1 inch   1 inch) were successfully grown at low temperature on 

the top surface of Ni thin films. The number of obtained graphene layers ranged from two to 

three as determined by the I2D/IG ratios of Raman peaks. Graphene films formed on the top 

surface of Ni films were etched away by hydrogen atoms to prepare Ni films for the next step – 

Ni removal.  Removal of Ni film was achieved by scotch tape and FeCl3 as described in section 

1.3. Raman spectroscopy was then utilized to check for graphene formation at the interface 

between the Ni film and the Si-based substrates. 

 

4.8.1 Graphene film formation on the backside of the Ni film deposited on Si2N3/Si and 

SiO2/Si substrate: 

 

During the graphene growth process, Ni films were annealed in Ar and H2 ambient to 

facilitate the delamination of the Ni films. The adhesion of Ni films with different substrates; Si, 

SiO2, Si3N4, DLC, and diamond were compared using scotch tape removal. The delamination of 

the Ni was easier for Ni films annealed in an Ar ambient compared with those annealed in a H2 

ambient.  Among the substrates, the Ni film was found to have extremely poor adhesion 

(physical or chemical) with Si3N4/Si substrate and SiO2/Si as shown in Figure 4.40 and Figure 

4.43, respectively.   

 

Figure 4.40: The photo of the backside of Peeled-off Ni film and Si3N4 substrate. 
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Graphene film formation on the backside of the Ni film deposited on SiO2/Si substrate 

was examined. After removal of the Ni film, the graphene film on the backside of peeled off Ni 

film was investigated using Raman spectroscopy. 

From the Raman spectra (Figure 4.41) of the graphene film formed on the backside of 

peeled off Ni film, it is clear that there was graphene formation, however, the peeling process 

caused a lot of damage to the graphene film as expected. Raman spectroscopy was also used to 

check graphene film formation on the Si3N4/Si substrate. There was no graphene film on 

Si3N4/Si substrate. 

 

Figure 4.41: Raman spectra of graphene films grown on the bottom surface of the nickel film 

grown on Si3N4/Si substrate at 1 torr and 700 °C. 
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Figure 4.42 is the Raman spectra for the graphene film deposited on the topside of the Ni 

film for the same sample. The figure shows less defects compared with the level of the of 

graphene film defects illustrated in Figure 4.41. 

 

 

Figure 4.42: Raman spectra of graphene films grown on the top surface of the nickel film grown 

on Si3N4/Si substrate at 1 torr and 700 °C. 
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  Also, graphene film formation on the backside of the Ni film deposited on SiO2/Si 

substrate was investigated after Ni film removal using scotch tape. Figure 4.43 shows the top 

surface and back surface of Ni film deposited on SiO2/Si substrate after removal of the Ni 

film using scotch tape. It may be seen in Figure 4.43 that the Ni film was not completely 

peeled off from the SiO2/Si substrate. Raman spectroscopy was utilized to examine graphene 

film formation on the SiO2 substrate and the bottom surface of the Ni film. 

 

Figure 4.43: The photo of the backside of Peeled-off Ni film and SiO2 substrate. 

 

As illustrated in Figure 4.44, no graphene film was formed on the SiO2 substrate. 

However, there was a growth of graphene film on the bottom surface of the Ni film. The 

peeling off process damaged the formed graphene film as indicated by the Raman spectra for 

the graphene film which had D+D’, and which represents two-phonon defects, at 2930 cm
-1

.  
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Figure 4.44: Raman spectra of graphene films grown on the bottom surface of the nickel film 

grown on SiO2/Si substrate. 

 

4.8.2 Graphene direct deposition on Si-based substrate 

 

Ni thin film was removed utilizing ferric chloride (FeCl3) in order to examine graphene 

film formation at the interface between the Ni film and Si-based material. Raman spectroscopy 

was used to ascertain whether graphene film existed under the removed Ni film. 
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Figure 4.45 shows Raman spectra for a sample where graphene film was grown on the 

top surface of the Ni film at 700 °C using CH4/ H2 flow rate ratio 10/5 sccm for 10 min with total 

pressure 1.5 torr.   

 

Figure 4.45: Raman spectra of graphene films grown on the top surface of the nickel film grown 

on SiO2/Si substrate. 

 

For the same sample shown in Figure 4.45, Raman spectroscopy was used to examine 

graphene formation after Ni etching using FeCl3. Raman spectroscopy shows there was a direct 

formation of a graphene film on the SiO2/Si substrate as shown in Figure 4.46. 
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Figure 4.46: Raman spectra for graphene film formed directly on SiO2 using CH4/ H2 flow rate 

ratio 10/5 sccm for 10 min. 

 

From the Raman spectrum (Figure 4.46) of the graphene film, the I2D/IG intensity ratio 

indicates that there were three to four layers of graphene and a lot of defects on the obtained 

graphene film. The increase in the number of graphene layers and the high level of defects was 

due to the length of growth time (10 min). Also, there was not enough H2 to inhibit the increase 

of the number of graphene layers and decrease the level the defects. 

In contrast, when the time of graphene growth and the amount of hydrogen were 

increased, the number of graphene layers and the level of the defects were clearly decreased as 

shown in Figure 4.47. 
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Figure 4.47: Raman spectra for graphene film formed directly on SiO2 using CH4/ H2 flow rate 

ratio 15/5 sccm for 1 min. 

 

Graphene film was deposited on the top surface of the Ni film at 750 °C using CH4/ H2 

flow rate ratio 15/5 sccm for 1 min with total pressure of 1.8 torr; two layers of graphene were 
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formed on the SiO2 substrate. Raman spectrum for the graphene film deposited on the top surface 

of the Ni film is shown in Figure 4.48 for this sample.   

 

Figure 4.48: Raman spectra for graphene formed on the top surface of the Ni film using CH4/ H2 

flow rate ratio 15/5 sccm for 1 min. 
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4.9 Simulated CVD graphene growth mechanism on nickel thin films 

4.9.1 Carbon atoms inward diffusion in Ni film (Dissolution Stage) 

The diffusion of Carbon atoms inside 200 nm thick Ni was simulated using COMSOL. 

The profile of carbon diffusion at 1000 °C into the Ni film at 0.05 sec is illustrated in Figure 

4.49. The figure demonstrates carbon atoms diffusion inside the Ni film in -y-direction only. 

 

Figure 4.49: Calculated carbon atoms diffusion field at 1000°C inside 200 nm thick nickel film 

using COMSOL. 
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In order to investigate the influence of graphene growth temperature on carbon diffusion 

into the Ni film, the diffusion of carbon atoms was simulated with different temperature as 

shown in Figure 4.50. The figure clarifies how long it takes for the carbon diffusion process at 

1000 °C to saturate 200 nm thick nickel film with carbon atoms. The Ni film reaches saturation 

in less than 0.05 second. The figure shows a faster diffusion of carbon atoms into the Ni film at 

higher growth temperatures. 

 

 

Figure 4.50: The influence of temperature on carbon atoms concentration at a point located on 

the bottom side of the Ni film during the carbon dissolution period. 
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Figure 4.51 shows that when the thickness of Ni film increases, the required time to reach 

the saturation level of carbon in the Ni film increases.  

 

 

Figure 4.51: The influence of the Ni film thickness upon carbon atoms saturation in Ni film.  

 

4.9.2 Carbon atoms outward diffusion in Ni film (Precipitation Stage) 

In Chapter two, it was explained that carbon atom segregation occurs due to 

supersaturation upon cooling. The segregation of carbon atoms on the Ni film top surface during 

the cooling stage of graphene growth was simulated.  
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One can notice from Figure 4.52 that the carbon concentration inside the Ni film dropped 

from 1.0 x10
21

 (atoms/cm
-3

) initially to 4.0 x10
20

 (atoms/cm
-3

) in less than 0.2 sec when the Ni 

film temperature fell from 1000 °C to 725 °C.  

 

Figure 4.22: The decreasing in carbon atoms concentration due to the outward carbon atoms 

diffusion driven by supersaturation at a point located on the bottom side of the Ni during 

precipitation time.  

 

Graphene layer formation on the top surface of the Ni film was simulated by a deforming 

mesh and diffusion transport model. It was initially assumed that the thickness of graphene film 
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on the top surface of the Ni film was zero. However, the thickness of graphene film increased by 

time due to the flux of carbon atoms in the y-direction through the interface between the Ni film 

domain and the nitrogen domain. So, in order to calculate the thickness of precipitated graphene 

film, the growth velocity in the +y-direction of the graphene film formed on the top surface of 

the Ni film was calculated using Equation 4.2. 

vy  
Carbon atoms flux

The density of graphene
 

j⃗m.n̂y

ρcarbon
                                                                         Equation 4.2 

Where 

vy: The velocity the first participated graphene layer on the top surface of the Ni film  

j⃗
m
.n̂y: Carbon atoms flux in +y-direction 

ρ
carbon

: The density of graphene; 2.267 g/cm
3
 

Then, the thickness of the precipitated graphene film on the top surface of the Ni film 

was calculated utilizing Equation 4.3. 

d  vy*t                                                                                                                           Equation 4.3 

Where 

d: The thickness of precipitated graphene film on the top surface of Ni film 

 t : Carbon atoms precipitation time 

Hence, the number of obtained graphene layers (N) was calculated using Equation 4.4. 

N 
d

 d
                                                                                                                             Equation 4.4 

Where 

N: The number of achieved graphene layers on the top surface of Ni film. 

 d: The thickness of single layer of graphene (0.335 nm) [35]. 
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So, the number of precipitated layers of graphene film formed on the top surface  of the 

Ni film could be calculated using Equations 4.2, 4.3, and 4.4.  

Figure 4.53 illustrates the final thickness of the graphene film formed on the top surface 

of the Ni film in less than 0.2 sec was 7 Å when the 200 nm thick Ni film temperature was 

dropped from 1000 °C to 725 °C. 

 

Figure 4.53: The thickness of the graphene film formed on the top surface of the Ni film when 

the Ni film temperature drops from 1000 °C to 725 °C. 
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When the 200 nm thick Ni film temperature was dropped from 900 °C to 725 °C,  the 

number of calculated graphene film layers formed on the top surface of the Ni film within 0.4 sec 

was 1.7 layers as shown on Figure 4.54. 

 

Figure 4.54: The number of the obtained graphene layers on Ni film surface after cooling from 

900 °C to 725 °C.  
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More details on the effect of cooling an 200 nm Ni film on the formation of graphene 

layers on the nickel surface were studied. The number of graphene layers formed on the Ni film 

top surface when the Ni film cooled from 1000 °C to different temperatures is illustrated in 

Figure 4.55. For example, it is clear from this figure that when the nickel film was cooled 

from1000 °C to 725 °C, the number of graphene layers formed on the top surface of the Ni film 

was ~2 layers. 

 

 

Figure 4.55: The number of the graphene layers grown on Ni film surface top surface after 

cooling from 1000 °C to different temperature. 
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4.9.3 Accuracy check 

The simulated results were compared with experimental results conducted by Baraton et 

al. [82]. In their experiment, the graphene layers were formed using a precipitation mechanism. 

To clarify, graphene layers were experimentally produced on 200 nm thick Ni film without any 

participation of a direct carbon deposition mechanism in graphene formation. Their experimental 

results showed that the number of graphene layers formed on the Ni film when the temperature 

was dropped from 900 °C to 725 °C was two layers while the simulated results obtained in this 

work utilizing COMSOL MULTI -PHYSICS software was 1.7 layers.   
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Chapter 5: Summary and Conclusions 

In this research, diamond-like carbon (DLC) films were deposited using plasma-

enhanced ultra-high vacuum chemical vapor deposition system (PE-UHV-CVD). The effect of 

CH4/Ar flow rate ratio and the plasma power on the DLC growth and quality was investigated. 

A low-temperature synthesis of a few layers of graphene film on different 200 nm nickel 

film-coated substrates (Si, SiO2, Si3N4, DLC, and diamond) using hot-filament chemical vapor 

deposition  (HF-CVD) was conducted. The effect of growth temperature, growth pressure, 

CH4/H2 ratios, and graphene synthesis using the various 200 nm nickel film-coated substrates 

were investigated. Also, graphene etching utilizing atomic hydrogen was studied. 

Ellipsometry was used to measure the thickness of SiO2, Si3N4 films fabricated on Si 

substrate. Atomic force microscopy was used to investigate DLC films created using plasma-

enhanced chemical vapor deposition system. AFM and SEM showed that ultra-smooth DLC 

films were formed on Si substrates.    

 In order to examine graphene films formed on 200 nm nickel film-coated Si, SiO2, Si3N4, 

DLC, and diamond /Si substrates, scanning electron microscope energy dispersive X-ray 

spectroscope, and Raman spectroscope were used . SEM and EDX illustrated uniform growth of 

graphene films with wrinkles on the top and bottom surface of Ni films deposited on Si, SiO2, 

Si3N4, DLC, and diamond /Si substrates. Raman spectroscopy was used to examine the quality 

and the number of graphene layers. I2D/IG values were used to determine the number of graphene 

layers formed on top and bottom surface of Ni film. Also, the intensity ratio ID/IG was used to 

determine graphene film quality. Moreover, the size of sp
2
 domains (Lα) of the fabricated 

graphene films was approximately calculated using Tuinstra and Koenig’s equation [77]. Raman 
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spectroscopy showed large-area uniform graphene films synthesized on both surfaces of Ni film 

top and bottom.  

CVD graphene growth on nickel thin films by the dissolution-precipitation mechanism 

was modeled using COMSOL MULTIPHYSICS software. Heat transfer, mass transfer, and 

deformed geometry models were employed to simulate inward and outward carbon diffusion in 

the Ni film as well as the number of achieved graphene layers. Simulation showed that cooling 

200 nm thick Ni film saturated with carbon atoms from 900 °C to 725 °C resulted in 

precipitating of 1.7 graphene layers on the Ni film surface. This simulated number of graphene 

layers was compared with experimental results. The COMSOL result matched well with 

experimental results, which gave two layers. 

Large-scale suspended graphene film was formed on Si-based materials at low 

temperature. This could be a breakthrough for future device fabrication enabling graphene to 

replace Si or be used as a complimentary material to Si. Also, graphene film was completely 

etched away using atomic hydrogen. This could be very useful to pattern and selectively shape 

graphene films. Annealing and cooling graphene film in Ar atmosphere facilitated removal of Ni 

film from Si-based materials.   

Graphene film can be obtained on Ni surfaces using the precipitation method. Moreover, 

one can use the Ni thin film as a sieve to control graphene film deposition at the bottom surface 

of the Ni film.   
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Appendix A: Description of Research for Popular Publication 

No more sand in your electronic devices 

Electronic devices are basically made of sand. To explain, sand is treated in order to 

extract silicon. The majority of current ICs use silicon as a semiconductor material. Since 1958, 

engineers kept shrinking circuitry size in order to get high performance and high speed devices. 

However, silicon device manufacturing reaches its physical limits. No more shrinking of the size 

of the electronic devices can be achieved due to the heat generated in the devices. Hence, there is 

an urgent need for a technical solution for this sophisticated problem. The best solution for this   

problem is a new platform material to replace Si. 

Graphene is a candidate material for future heat-free electronic devices. Graphene is a 

single atomic layer of carbon atoms organized in a two dimensional hexagonal lattice structure. 

Graphene is considered a promising material with enormous potential applications in many 

electronic and optoelectronics devices due to its superior properties. Electrons behave as a 

massless particle with high speed in graphene. Also, graphene is a flexible and transparent 

material. These amazing properties encourage researchers around the world to replace Si with 

graphene. However, a direct deposition of a high quality of graphene film on a desired substrate 

is still not achieved in terms of industry requirements. Current methods used to obtain graphene 

film on Si-based material require a multi-step transfer process. This transfer process does not 

match with electronic device manufacturing and degrades graphene properties as well.  

In this research a very simple method for a direct deposition of graphene on Si-based 

material was achieved. A thin Ni film was deposited on Si-based material. Methane was 

decomposed catalytically and released carbon atoms when it hit the top surface of Ni film. Then, 

the adsorbed carbon atoms diffused into the Ni film at the same temperature, 1000 °C, until they 
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reached the Si-based material. The thin Ni film was used as sieve to control graphene formation 

on the Si-based material.  This method can be used in electronic device industry enabling 

graphene to replace Si or be used as a complimentary material to Si. 
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Appendix B: Executive Summary of Newly Created Intellectual Property 

 

The objectives of this research were: 

a) Growing graphene film directly and selectively on a desired substrate at low temperature 

utilizing chemical vapor deposition (CVD) method. 

b) In situ graphene film etching using atomic hydrogen.  

c) Removing Ni film successfully using physical and chemical processes.  

d) Simulating graphene film growth mechanism in Ni film. 

The following list of new intellectual property items were created in the course of this 

research project and should be considered from both a patent and commercialization perspective.  

1. The method for growing a large-scale suspended graphene film on Si-based materials 

at low temperature.  

2. The process of etching away graphene film using atomic hydrogen. 

3. The method for using the Ni thin film as a sieve to control graphene film deposition at 

the bottom surface of the Ni film. 

4. The method for simulating CVD graphene growth on nickel thin films by the 

dissolution-precipitation mechanism using COMSOL MULTIPHYSICS software.   
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Appendix C: Potential Patent and Commercialization Aspects of listed Intellectual 

Property Items 

C.1 Patentability of Intellectual Property (Could Each Item be Patented) 

The three items listed were considered first from the perspective of whether or not the 

item could be patented. 

1. The method for growing a large-scale suspended graphene film on Si-based materials 

can be patented because graphene films were grown at low temperature.  

2. The process of etch away graphene film using atomic hydrogen can be patented. This 

process can be used to pattern the graphene film used in integrated circuit fabrication. 

3. The method for using the Ni thin film as a sieve to control graphene film deposition at 

the bottom surface of the Ni film can be patented. This process can be used to grow 

different types of 2D materials. 

C.2 Commercialization Prospects (Should Each Item Be Patented) 

The three items listed were then considered from the perspective of whether or not the 

item should be patented. 

1. The method for growing a large-scale suspended graphene film on Si-based materials 

should be patented. The graphene growing process is a low cost process and meets IC 

fabrication requirements. 

2. The process of etching away graphene film using atomic hydrogen should be 

patented. This may be considered as a new method to pattern a graphene film. 

3. The method for using the Ni thin film as a sieve to control graphene film deposition at 

the bottom surface of the Ni film should be patented. This process can be used to 

grow a large area of different types of 2D materials. 
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Appendix D: Broader Impact of Research 

D.1 Applicability of Research Methods to Other Problems 

In this research a novel method for direct large-scale graphene film formation on silicon 

based platform at low temperature was achieved using hot-filament chemical vapor deposition.  

Ni thin film was used as a sieve to control graphene film formation on Si-based substrates.  The 

same method could be utilized to grow 2D materials on Si-based substrates. The COMSOL 

model could be used to study the growth mechanism of 2D materials.  

D.2 Impact of Research Results on U.S. and Global Society 

Large-scale suspended graphene film was formed on Si-based materials at low 

temperature. This could be a breakthrough for future device fabrication enabling graphene to 

replace Si or be used as a complementary material to Si. Therefore, graphene, which exhibits 

extraordinary electrical properties, can allow the semiconductor industry to continue its journey 

toward smaller and faster electronic devices. 

D.3 Impact of Research Results on the Environment 

Since 1958, the concept of integrated circuit (IC) has achieved great technological 

developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than 

a million of compacted transistors.  However, shrinking circuitry generates an intense heat which 

is radiated in all directions. So, always there is a need to cool the electronic devices. This 

requires more burning of fossil fuels to produce electricity for powering the cooling units in the 

devices.  

 Replacing Si used in the majority of current ICs with graphene will help in reducing the 

heat generated in electronic devices.   
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Appendix E: Microsoft Project for MS MicroEP Degree Plan 
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Appendix F: Identification of All Software Used in Research and Dissertation Generation 

 

Computer #1: 

Model Number: Dell Dimension 8300 

Serial Number: R3615 W04 

Location: ENRC 3615 

Owner: Dr. Hameed Naseem 

Software #1:  

Name: Microsoft Office 2010 

Purchased by: UA Electric Engineering Dept. 

Software #2:  

Name: COMOSOL MULTIPHYSICS 

Purchased by: Microelectronics-Photonics Program 

Software #3:  

Name: Origin 9.1  

Purchased by: Dr. Shui-Qing Yu 

Computer #2: 

Model Number: CORSAIR 

Serial Number: 13118802 

Location: ENRC 2933 

Owner: Dr. Shui-Qing Yu 
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