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Abstract 

 

A new material of highly-phosphorus doped silicon for device applications was 

characterized and analyzed for new material properties. Devices such as NMOS transistors and 

other CMOS compatible devices may benefit from new materials that reduce external resistances 

and increase drive currents. 

Material characterization requires numerous techniques and technologies to determine 

electrical, optical, and physical characteristics. For this work, Hall measurement, X-ray 

Diffraction, Raman Spectroscopy, Photoluminescence Characterization, and Spectroscopic 

Ellipsometry were used to better understand this new material. The results may lead to new models 

for silicon phosphorus alloys. 
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1. Introduction 

 Area of Research 

The progression of science and technology continues at a record pace. Many technology 

modalities driving the record pace are communications, healthcare, military and extraterrestrial 

research.  Each of these depend on the current electronic technology that had its beginning in the 

middle 20th century with the invention of the transistor, the foundational device made from 

semiconductors. 

Semiconductors are the materials that give the transistor its properties. Electronics 

depend on three primary types of materials. First, conductors allow the free flow of electricity 

and are normally made from metals such as aluminum, copper, gold, or tin to name a few. 

Second, insulators restrict the flow of electricity and are made from materials such as plastics, 

glass, ceramics or rubber. Third, semiconductors are materials that fall in between conductors 

and insulators. Although not a perfect conductor or insulator, this special property makes 

electronic technology possible. 

The innovations that followed the invention of the transistor required a decade of 

research and improvements before a substantial growth rate was observed.  Improvements in 

materials and processes along with cost reductions were the key factors driving growth. These 

improvements enabled the invention of the integrated circuit, a device that incorporates 

transistors and other electronic components in one package.  

Integrated circuits were innovative, but the real innovation came by increasing the 

number of components on the integrated circuit. By the middle 1960’s, Gordon Moore observed 

that the number of components on an integrated circuit would double approximately every two 

years. This observation continued with such accuracy that industry leaders and experts across the 
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globe began using the observation to plan future research directions. This observation became 

known as “Moore’s Law”.  

Moore’s Law consistently followed the growth trend for more than forty years as 

innovation continued to drive down the size of components. Although each decade experts would 

predict an end to the observation due to technology limits within ten years, breakthroughs always 

occurred. Now, a physical limit is approaching that cannot be overcome. Features within the 

integrated circuit are approaching sizes near the wavelength of the electron itself, the 

fundamental particle that gives all electronics the ability to perform the designed function. Prior 

to this limit, quantum effects such as electron tunneling will likely disable the technology. The 

trend as it relates to feature size is shown in Figure 1.1. 

Figure 1:1: Moore's Law [1] 
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Complementary Metal Oxide Semiconductors (CMOS) is the dominant technology used 

to construct integrated circuits. Innovations in this technology have made possible the feature 

size reductions that enable increased number of transistors on the integrated circuit. The feature 

size is characterized by the minimum line width of the lateral dimension in the integrated circuit.  

The current CMOS technology requires greater than 100 process steps for the 

construction of particular integrated circuits.  Many aspects of integrated circuit technology are 

being researched to continue improvements of doubling of information speed that previously had 

occurred about every two years through process and material enhancements such as new 

materials to improve carrier mobility. Silicon Germanium materials [2] were introduced into 

CMOS technology for the improvement of carrier mobility and other device enhancements. New 

materials of highly phosphorus doped silicon are being considered for similar uses. [2] It has 

been shown that phosphorus concentrations above 3 x 1020 cm-3are needed to induce strain for 

mobility enhancements. [3] Moreover, as CMOS technology approaches the 22 nm process node, 

the “series resistance component for nMOS would be higher than the channel on resistance and 

hence becomes the performance limiter”. [3] 

Creating new materials for CMOS technology presents new challenges not yet overcome. 

To understand some of these challenges, a solid understanding of the foundational material, 

silicon, is required.  

Silicon is the second most plentiful element in the earth’s crust which is clearly one of the 

driving factors in the proliferation of electronic technology. Because of this, it is the most 

researched and refined element for all electronics. Once purified and refined to its crystalline 

state for CMOS technology, silicon takes on the diamond lattice crystalline form. An example is 

shown in Figure 1.2. 
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The lattice constant, shown as ao, for silicon in the diamond lattice crystalline form is 

0.5431 nanometers (nm). This lattice is characterized by four covalently bonded atoms within the 

unit cell with each atom spaced  
√�
�  ao apart. There are four atoms that are completely inside the 

unit cell. There are eight atoms at each corner of the unit cell that are each shared with seven 

other cells thereby making these eight atoms count as one atom. There are six face-centered 

atoms that are each shared with one other cell and thereby counting as three atoms within the 

cell. This makes the total number of atoms in one unit cell equal to eight atoms.  

The cell volume for any crystal lattice is (ao)�. For silicon, this equates to 1.6 x 10-22 cm3. 

The density of silicon atoms is (atoms per unit cell) / (cell volume) which equates to 5 x 1022 

atoms/cm3. The solid solubility limit of phosphorus in silicon using traditional growth methods is 

1.7 x 1021/cm3 as indicated in Figure 1.3. This limit equates to 3.4 atomic percent (a.t. %) 

incorporation as shown in the relation in Equation 1.1.  

Figure 1:2: Silicon Crystal Lattice [5] 
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Atomic % = (Number of Atoms of Element) / (Density of atoms) * 100       

= (1.7 x 1021) / (5 x 1022) * 100 = 3.4%             (Equation 1.1) 

 

Phase segregation would normally occur beyond this limit and would make for a useless 

material in electronic technology. It has been shown that phosphorus can be added in 

concentrations up to 12 a.t. % using specialized techniques. [4] Moreover, high concentrations 

can increase tensile strain for improved carrier mobility and reduce resistivity. 

ASM America generated Si:P epitaxial films using the ASM EpsilonTM 300 mm chemical vapor 

deposition system. The films were deposited on silicon (100) substrates with traditional 

precursors of SiCl2H2 – Dichlorosilane (DCS) for silicon and PH3-Phosphine for the phosphorus 

dopant at temperatures between 600 and 700°C and process pressures between 1.33 and 101 

kPa.[6] The films deposited ranged in compositions of phosphorus from one to twelve atomic 

percent. Samples acquired from ASM America for this work were produced using similar 

processes, precursors, and techniques. 

Figure 1:3: Solid Solubility Limits [7] 
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 Research Goals 

The search for new materials that benefit CMOS technology and propel the so-called 

“Moore’s Law” is an area of much research. The use of silicon phosphide alloys takes advantage 

of current materials in industry which make them more likely to be incorporated into current 

technology streams. It has been widely known that increasing dopants in semiconductors can 

reduce resistivity, a benefit that may be significant, as scaling of devices will lead to a greater 

need for reduced contact resistances and a reduction in current density. Increasing dopants 

beyond the standard solid solubility limit, though, has previously had little success as poor 

material quality prevails.  

The highly-phosphorus doped crystalline silicon films currently being produced in 

research facilities raise several questions of importance. The assessment of material quality may 

determine the viability of such materials. In the assessment of material quality, a basic 

understanding of the molecular structure would seem to be of great importance. Is this material 

SiP, SiP2, or some other molecular structure? Are the high phosphorus concentration films high-

quality crystalline films or are there substantial precipitates?  What are the electrical and optical 

properties of this material? These questions define the research goals of this work. 

 

 

 

 

 



 

7 

2. Literature Review 

Material characterization has been an important part of electronic technology from the 

early days of the transistor invention. Those directly involved with the invention also had an 

influence on many areas of material research that continue to drive new technologies today. 

Particularly, the effects of mechanical strain on semiconductor crystals were first experimentally 

shown by C. Smith in 1954 in his paper titled “Piezo resistance effect in germanium and silicon”. 

[8] Smith detailed the effects uniaxial tensile strain has on resistance through either charge 

mobility or charge carrier concentration changes. Strain engineering continues to be useful in 

current CMOS technology. It has been shown that mobility enhancements by strain engineering 

have played an important role in the reduction of external resistances below the 45 nm 

technology node will become paramount. [9] Simple discoveries such as piezo resistance can 

continue to push technology forward for decades. 

The material characterization of electronic materials requires more expertise to identify 

effects of strain engineering as structure sizes in complementary metal oxide semiconductor 

(CMOS) technology continue to reduce. Characterization technology is utilized at every step of 

semiconductor research and development, and future technology progression will depend upon 

it. One of the greatest challenges to future technology is the quality of electrical contacts. This is 

a factor in every area of electronic manufacturing areas such as CMOS and power driven 

technologies like photovoltaic cells. [10]  

The applications previously mentioned require innovations to move forward the current 

technology. The foundational CMOS technology has many obstacles for continued increased 

speed as has been predicted by Moore’s Law. Driving down feature sizes present many 

complications. Two of the greatest of these are the increased resistivity that occurs in the 
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contacts made and the parasitic resistance that occurs in the source and drain of CMOS devices. 

Cross sections of CMOS devices are shown in Figures 2.1 and 2.2. 

 

Figure 2:1: n-MOS Transistor 

Figure 2:2: CMOS Transistor Technology 
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The contact resistance of CMOS devices is given in units of Ω•cm2. This unit identifies 

the influence the area of the contact has on the resistance. As the area is reduced, the contact 

resistance will increase. As feature sizes continue to reduce in CMOS technology, the contact 

resistance will become an even greater parameter of concern. 

The primary method of reducing contact resistance in CMOS technology has been to increase 

doping density. As the doping density is increased, more free carriers are produced which reduce 

resistance. The increase of free carriers occurs only to a certain level. This level presents another 

obstacle to reducing contact resistance. For phosphorus, the concentration profile and the carrier 

concentration result of doping are shown in Figure 2.3. The result shown indicates a carrier 

saturation density of nc ≈ 2.68 x 1020 cm-3. With this limit, there is a limit as to how much 

phosphorus doping can be achieved with current technology. 

 

 

Figure 2:3: Phosphorus/Carrier Concentration Profile [10] 
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 One method of material growth that has seen an increase in use for high-volume 

manufacturing is low-pressure chemical vapor deposition (LPCVD). This method uses precursor 

gases flown into a low-pressure chamber that leads to the material being deposited on substrates. 

This method can be used for deposition of doped materials using precursors such as silane and 

phosphine. An example of an LPCVD chamber is shown in Figure 2.4. 

 

 

 

 

 

 

Figure 2:4: LPCVD Chamber [11] 
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3. Experimental Design 

 Experimental Design Introduction 

The experimental plan was devised to explore many optical and electrical characteristics 

of the phosphorous doped silicon material. There were thirty-one samples acquired from ASM 

America, Inc. that ranged in phosphorus concentrations from 0.23% to 10.35%. These samples 

were received in quarter-sections of 8 inch wafers.  

The first characterization to be considered was Hall measurement to acquire the 

resistivity, carrier density, and Hall mobility. The second characterization used was X-Ray 

diffraction analysis (XRD). The primary technique used for XRD was the coupled scan, two 

theta omega. Following the XRD characterization, the electrochemical capacitance-voltage 

profiling was investigated. It was discovered that this characterization was primarily used on 

samples greater in thickness than 500 nm. 

Raman Spectroscopy characterizations were the next tool used to investigate the material 

qualities of the samples. Spectroscopic ellipsometry characterizations followed to determine 

some of the optical properties of the samples. Photoluminescence characterization of the samples 

followed next and finally, the samples were used to simulate and fabricate and characterize a 

device. 

The characterizations in the experimental design were an attempt to learn as many 

physical properties of the samples as possible to better understand and possibly suggest new 

applications for such materials. The samples are a thin layer of highly phosphorus doped silicon 

on a p-type substrate. Together, these two form a p-n junction with emitter depths ranging from 

12 nm to more than 200 nm. This p-n junction could be used to construct a device and 



 

12 

characterize it to discover even more about this new material. For this work, it was decided to 

simulate, fabricate, and characterize a solar cell using the samples. 

The first step in the experimental design was to label the samples in a format that 

simplified the tracking of data and experiments. The lowest phosphorus concentration sample 

was labeled P1 followed by the next higher concentration sample labeled with P2. This was 

continued for all samples to the final, P31. The preliminary plan was to select seven samples 

from across the concentration spectrum. The initial samples selected are listed in Table 2. 

 

Table 1: Initial Wafers Selected 

Wafer Number % Phosphorous Concentration 

P10 1.96 

P20 5.83 

P21 6.13 

P22 6.34 

P26 7.01 

P27 7.20 

P31 10.35 

 

The next step for the experimental design was to prepare the samples for 

characterizations. The large quarter-sections required cleaving sample sizes to two centimeters 

by two centimeters. It was decided to identify the cleaved samples by the location on the original 

quarter-section in the event that uniformity across the wafer was to be considered. This 



 

13 

requirement was met by the following labeling format of the quarter-section wafer as shown in 

Figure 3.1. 

 

 

The labeling of the samples would then be identified along with the sections shown in 

Figure 3.1, e.g. P1A11. Some characterizations, such as photoluminescence, required sample 

sizes of five millimeter by five millimeter. In this case, the two centimeter by two centimeter 

sample was cleaved to the proper size without further distinction in labeling.  

 Hall Measurement Characterization 

The Hall measurement is made possible by the Lorentz force. The Lorentz force is the 

force a moving charge experiences in the presence of a magnetic field. This force is given by the 

Equation 3.1. 

 Florentz = -q·v x B,     (Equation 3.1) 

Figure 3:1: Sample Label 
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In this equation, q is the moving charge, v is the velocity of the charge and B is the 

magnetic field. The vector cross product makes the force on the charge perpendicular to the 

charge’s velocity and to the magnetic field that the charge is moving through. Applying this 

concept to the flow of current through a semiconductor, the Lorentz force will cause the flow of 

current through the semiconductor to build up excess negative charges of electrons on one side 

of the semiconductor. Similarly, hole flow in the opposite direction will cause excess positive 

charges to accumulate on the opposite side of the semiconductor due to the Lorentz force. This 

buildup of charges will produce a net potential difference and is called the Hall voltage, VH. The 

concept of the Hall voltage measurement is shown in Figure 3.2. 

 

 

The magnitude of the Hall voltage is given by Equation 3.2.  

|V| = I * B / (q * ns)    (Equation 3.2)  

In Equation 3.2, I is the current, B is the magnetic field, q is the elementary charge, and ns 

is the sheet density. The polarity of the Hall voltage can determine the material type, n or p. For 

the configuration shown in Figure 3.3, if the Hall voltage V24 is negative for a current I12 injected 

into contact 1, the semiconductor is n-type. If the Hall voltage is positive, the semiconductor is p-

type. 

V
H

 

B 

I 

I 

Semiconductor 

Figure 3:2: Hall Voltage Measurement Concept 
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The sheet density of the carriers which is defined as the number of electrons multiplied 

by the thickness of the layer. If the layer thickness d is known, the bulk density n can be 

calculated using Equation 3.2. 

 

  n = ns / d                    (Equation 3.3) 

The Hall voltage can be used to solve for the sheet density by the following relation given 

in Equation 3.3. 

ns = I * B / (q * |V|)       (Equation 3.4) 

Using the van der Pauw technique, the sheet resistance Rs can easily be found in a 

uniform sample. The technique applies to any particular shape as long as there are no non-

conducting sections or holes and is a thin-plate with four contacts equally spread out on the 

perimeter of the sample. The diameter of the contacts, d, must be significantly small compared to 

the distance between the contacts, D. The error produced by the size of the contact is on the order 

of d/D. A schematic of the van der Pauw configuration is shown in Figure 3.4. 

Using the configurations in Figure 3.4, the characteristic resistances Ra and Rb can be 

calculated using the relations shown in Equations 3.5 and 3.6. The current is applied into contact 

one and out of contact two while the voltage V43 is measured to solve for Ra. The current is 
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Figure 3:3: Hall Voltage Measurement 
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applied into two and out of contact three while the voltage V14 is measured to solve for Rb. The 

characteristic resistances are used to solve numerically for the sheet resistance, Rs, through the 

van der Pauw equation, Equation 3.7. 

e^(-π * Ra / Rs) + e^(-π * Rb / Rs) = 1                           (Equation 3.7) 

The Hall voltage along with the sheet resistance can be used to calculate the Hall 

mobility, µ, by the relation shown in Equation 3.8. 

µ = |V| / (Rs * I * B)      (Equation 3.8) 

In summary, the Hall measurement provides electrical characterizations that give specific 

parameters that define semiconductor material. The primary parameters acquired are sheet 

resistivity, sheet density, Hall mobility, and material type. 

The resistivity and Hall measurement results must be verified for internal consistency to 

ensure ohmic contact and sample uniformity. For the Hall measurement system located in the 

Bio-photonics lab at the Engineering Research Center, the operational procedure provides for 

Ra = V43 / I23        (Equation 3.5) 
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4 Rb = V14 / I23       (Equation 3.6) 

Figure 3:4: van der Pauw Configuration 
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verification of results. Recommendations for sample sizes between 1 cm2 and 2.5 cm2 ensure 

optimal measurement geometries.  

The magnet controller is switched on along with the water cooling system to allow 

twenty minutes for stabilization before measurements are completed. Contact preparation is the 

single most important step in all of the Hall measurement procedures. For this system, the 

sample is required to be cleaned in a three minute acetone bath followed immediately by a three 

minute methanol bath. Once the sample is dry, indium contacts are applied to each of the four 

corners of the sample using a soldering iron, preferably in a triangular shape as shown in Figure 

3.5. 

 

The technique for applying the indium to the sample is crucial. While applying the 

indium to the sample, a circular motion with the soldering tip insures temperature uniformity and 

assists in degassing of the liquid indium. The contact should be as small as possible as the 

measurement error is increased by a factor of c/L. It is critical that the indium does not go 

beyond the sample edge as shorting to the substrate can occur and will give erroneous errors in 

the measurement results. Additionally, the solder tip should not come in contact with the sample 

directly as damage could occur to the sample. 

SAMPLE 
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Figure 3:5: Contact Preparation 
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The properly prepared sample can be checked for internal consistency by verifying ohmic 

contact quality and sample uniformity. An ohmmeter is used to measure the diagonal contacts, 

R13 and R24. The results must be R13 = R24 within 5%. If the results are outside this limit, no 

further measurements should be done until the sample problem is resolved. Once an acceptable 

resistance measurement is acquired, the maximum allowable test current, I, can be determined by 

the relation in Equation 3.9. 

I < (200R)-0.5                                     (Equation 3.9) 

This limit is to ensure heating does not occur due to higher currents. For the previously 

mentioned system, the maximum current produced is 2 mA and, therefore, any samples lower 

than 1300 Ω will not exceed the maximum allowable current. 

The sample is ready for placement in the Hall measurement system. The first step in the 

measurement is a routine that adds a layer to the verification of internal consistency. The 

connectivity test runs as many iterations as determined by the user. The minimum recommended 

number of iterations is five. The High/Low resistivity selection is set to Low for all samples with 

resistance lower than 1 MΩ. The test current range selected is preferred to be as close to the 

maximum allowable current for the sample. Once the connectivity test completes, four graphs 

indicate the linearity of the measurement at each of the four contacts. If all four graphs display a 

linear curve, then the measurement should continue to the resistivity measurement. 

The resistivity routine requires the same setup as was selected for the connectivity routine 

with the addition of a field to enter the film thickness. Once this completes with linear graphs, 

the final routine, Hall measurement, is selected. For this routine, a few additional steps are 

required. The meter for the measurement of the magnetic field is zeroed. The magnet controller 

is switched to a field using a positive current and is set to twenty amperes. The field is measured 
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and entered into the system in units of kGauss. The routine steps through the number of user 

selected iterations for the field with positive current and then pauses, allowing the user to switch 

the controller to a negative field. This routine completes with linear graphs for result verification. 

 X-ray Diffraction Characterization 

The characterization of materials using X-ray diffraction is made possible by Bragg’s 

Law. This law applies to a periodic array such that occurs in a crystal lattice.  This law defines 

the angles that are produced from scattering of electromagnetic waves that are incident on the 

crystal lattice. The parallel planes of the periodic array with spacing dhkl will produce 

constructive interference from the incident beam when the angle θ satisfies Bragg’s law shown 

in Equation 3.6. This geometry is shown in Figure 3.6.  

For a fixed wavelength λ, a family of planes will produce a diffraction peak at a specific 

angle ϴ as determined by the spacing dhkl. Moreover, the diffraction vector Diff, the vector that 

bisects the angle between the incident and diffracted beam, and the plane normal  [hkl], the 

direction perpendicular to the plane of atoms, must be parallel. Bragg’s law is shown 

mathematically in Equation 3.10. 

2���	
 � �                (Equation 3.10) 

From Figure 3.6, the lower wave travels 2dsinϴ farther than the upper wave. When this 

distance equals an integer multiple, m, of the wavelength, λ, Bragg’s law is satisfied.  

X-ray diffraction scans normally measure the scattered X-ray intensity as a function of 

the two-theta angle, omega, or both. A scan that measures X-ray intensity as a function of the 

two-theta angle without changing omega is called a detector scan. In this configuration, the 

detector moves varying the two-theta angle only. A scan that measures the X-ray intensity as a 

function of ω is called a rocking curve. In this configuration, the two-theta angle is kept constant 
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while ω is varied, or “rocking” the sample. This type of scan is used primarily to study defects 

within the crystal lattice. These defects include dislocation density, mosaic spread, curvature, 

mis-orientation, and inhomogeneity.  

A scan that measures the X-ray intensity as a function of both two-theta and omega is 

called a coupled scan. For this scan, the X-ray Tube and detector move in such a way keeping the 

two-theta angle twice omega. The coupled scan is used to measure the Bragg diffraction angle. 

Furthermore, the coupled scan is used to determine lattice mismatch, relaxation, ternary 

composition, thickness, and super-lattice period. The geometry of each of these scans is 

demonstrated from the configuration shown in Figure 3.7.   

Figure 3:6: Bragg's Law 
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 The coupled scan can provide the dhkl spacing for the Bragg peak. This will identify 

changes in the lattice spacing in one direction only but will be an indicator of composition and 

strain-relaxation changes. For materials of high crystal quality, the coupled scan will reveal 

interference fringes. Interference fringes are observed in the scattering pattern because of the 

different optical paths caused by the interface at the layer. From the interference fringes, the 

thickness can be estimated based on Equation 3.11. 

t = (n1 – n2)λ / 2(sin ω1 – sin ω2)     (Equation 3.11) 

Interference fringes are shown in the coupled scan in Figure 3.8.     

Figure 3:7: X-ray Diffraction Configuration 
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 Electrochemical Capacitance-Voltage Profiling 

Electrochemical Capacitance-Voltage (EC-V) profiling is a method primarily used to 

identify carrier concentrations with depth in a semiconductor material. This particular technique 

employs a method of creating a depletion region that enables capacitance measurements. The 

depletion region can be created using a Schottky contact. This contact is created by a metal-

semiconductor interface that produces a barrier potential. This barrier potential creates a 

separation of charges much like that of a capacitor composed of two parallel plates. The 

capacitance measurements of this Schottky contact allow the EC-V method to extract dopant 

profile information.  

The depth profiling occurs through a process where the semiconductor is electrolytically 

etched followed by a capacitance measurement. The sample being measured is placed in an 

electrochemical cell that contains an electrolyte and a sealing ring makes contact with the 

Figure 3:8: Interference Fringes 
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semiconductor. The area within the sealing ring is the contact area. A schematic description is 

shown in Figure 3.9. The depletion region is created within the contact area when a potential is 

applied to the semiconductor and the platinum electrode with a reference to the saturated calomel 

electrode.  

The carriers are attracted or repelled in the depletion region based on the charge of the 

ions in the solution next to the interface, and the polarity of the bias applied to the 

semiconductor. The depleted region then, is created on p-type semiconductors by positive ions in 

the solution that repel the holes, the majority carriers for p-type semiconductors. The depleted 

region is created on the n-type semiconductors by negative ions in the solution that repel the 

electrons. Therefore, for n-type semiconductors, the semiconductor must be biased positive 

thereby attracting the negative ions. Moreover, for p-type semiconductors, the semiconductor 

must be biased negative and thereby attracting the positive ions. These configurations enable the 

measurement of the capacitance and the depletion width. 

The width and the capacitance of the depletion region are determined by the relations 

shown in Equation 3.12 and 3.13. 

                          Wd = [2(Φ - V) εo εs σ / (q N)] 1/2              (Equation 3.12) 

           C = A / 2 [q N εo εs σ / (Φ - V)] 1/2                       (Equation 3.13) 

For these equations, Wd  is the depletion width, Φ is the contact potential or built-in 

voltage, V is the applied voltage, ϵ˳ is the permittivity of free space, ϵs is relative permittivity of 

the semiconductor, q is the electron charge, N is the carrier concentration, C is capacitance, and 

A is the area of the depletion region. It can be shown that there is a linear relationship between 

the applied voltage V and 1 / C2. This relationship enables the carrier concentration N to be 

determined using the relation in Equation 3.14. 
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1 / C2 = 2(Φ - V) / (q N εo εs σ A2)                              (Equation 3.14)           

From this relation, the carrier density at the depletion layer edge is given by Equation 

3.15. 

N = 1 / (q εo εs σ A2) x C3 / (dC/dV)                       (Equation 3.15) 

Equation 3.15 only requires the measurement of the area A, the capacitance C, and the 

change in capacitance with respect to the voltage, dC/dV to determine the charge carriers, N. 

Once the charge carriers are determined, the depth profile can be evaluated. 

The depth profiling occurs through the process of dissolving the semiconductor 

electrolytically. As the semiconductor is dissolved, a further separation of charge occurs. The 

dissolving process is dependent on the presence of holes and, therefore, p-type semiconductors 

require only the forward biasing of the electrolyte-semiconductor junction. The process of 

Figure 3:9: Electrochemical C-V Measurement System [12] 
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dissolving the n-type semiconductor requires the sample to be illuminated with a particular 

wavelength of light that will stimulate the electrons in the valence band to the conduction band 

and create the needed holes. The reverse biasing then attracts the holes to the surface. The 

specific requirement for the wavelength of light, λ, is given in Equation 3.16. 

        λ ≤ hc / Eg                                    (Equation 3.16) 

The final parameter to be considered is the etch depth, Wr. For most semiconductors, this 

parameter is determined by Faraday’s law of electrolysis. This law is used to derive the etch 

depth as shown in Equation 3.17. 

 Wr = M / (z F ρ A) � I dt                (Equation 3.17) 

In Equation 3.17, M is the molecular weight of the semiconductor, z is the valency 

number of ions, F is the Faraday constant, ρ is the semiconductor density, A is the area of the 

contact, and � I dt is the total charge with I being the dissolution current. From the relation 

above, it may be obvious what impact the measurement of the area may have on the result, but 

for clarity, the contact area measurement is extremely impactful to the accuracy of the carrier 

concentration and etch depth results. As previously mentioned, this process is applicable to most 

semiconductors, but for silicon, Faraday’s law of electrolysis does not hold true in the general 

sense. To overcome this, a modified technique must be used. 

The etching of silicon is required to be done using a process known as pulse anodization. 

An electrolyte solution in contact with the silicon has a current driven through it to oxidize a 

small layer of the silicon. The oxide is then removed in a subsequent etching step to remove the 

silicon material. For the highly-phosphorus doped silicon samples, further adjustments to the 

technique may be required. 
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 Raman Spectroscopy Characterization 

Raman spectroscopy characterization is a technique used to investigate the properties of 

semiconductor materials. For semiconductor materials, the layer thickness can be estimated up to 

several hundred nanometers, the crystallinity and composition of the material can be estimated, 

and whether the material is under compressive or tensile strain. These properties can be 

determined because of a particular type of scattering that occurs. 

Light incident on a semiconductor surface is reflected, transmitted, absorbed or scattered. 

Two types of scattering are Rayleigh scattering and Raman scattering. Rayleigh scattering is the 

elastic scattering of visible light or other forms of electromagnetic radiation that occurs when the 

total kinetic energy is conserved, and, therefore, no energy is lost to the process. Raman 

scattering is inelastic scattering as the total kinetic energy is not conserved, and energy is lost to 

the process as vibrations in the form of either heat or sound. The resultant wavelength of the 

scattered light is therefore shifted up or down. 

A monochromatic light source of a known wavelength incident on a semiconductor will 

produce Raman scattering. The Raman scattering can then be characterized based on the light 

source wavelength and the vibrational states of the semiconductor. The vibrational states are 

dependent on temperature and the chemical bonds of the semiconductor. They can be understood 

as diatomic vibrations, but the complete analogy must include the interaction of a large 

collection of atoms to properly characterize the vibrational states. From these vibrational states, 

Raman bands have been produced that indicate specific chemical bonds and vibrational energies. 

From these bands, a determination of the previously mentioned properties can be determined. 

[13] 
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The Raman spectroscopy used for this work consisted of five main components. The first 

main component was the excitation source. For this system, two different wavelength lasers were 

available for sample excitation, green at 532 nm and red at 633 nm. The second main 

components consisted of the sample illumination and light collection optics. The third 

component was the wavelength selector which consists of a filter or a spectrophotometer. The 

fourth was the detector which could be a photodiode, charged coupled device (CCD), or a 

photomultiplier tube (PMT). The fifth main component was the computer for display and 

analysis of the Raman data. A schematic diagram is shown in Figure 3.10.  

The spectrometer used in this setup was a Horbia model iHR 550. The specifications for 

this spectrometer are shown in Table 2. 

Table 2: Horbia iHR 550 Spectrometer Specifications 

Focal Length:  550 mm Spectral Range:  150 to 1500 nm 

Aperture:  f/6.4 Flat Field Size: 30 mm x 12 mm 

Grating Size:  76 mm2 Resolution:  0.025 nm 

Magnification:  1.1 Repeatability:  +/- 0.075 nm 

Spectral Dispersion: 1.34 nm/mm Stray Light:  1x10-5 

Scan Speed: 160 nm/second Step Size:  0.002 nm 
  

 

The grating selection was selected based on the desired resolution. A selection of 1800 

provides high resolution and a narrow shift range. A selection of 600 provides a lower resolution 

and a wide shift range. The center wavelength is calculated using the relation shown in Equation 

3.18. 

7

(Raman shift)

1

1 10
cent

laser

λ
λ υ −=

−∆ ×                                          (Equation 3.18) 

This relation takes into account the wavelength of the laser used. For this work, the 532 

nm green laser was used. For crystallized silicon, the center wavelength using this laser is 547 
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nm. Once this wavelength was determined, it was entered into the spectrometer program. The 

room lights were turned off at this point to eliminate any artifacts from this light, and the Run 

button was selected. The display was adjusted to match the correct center wavelength due to 

inherent inaccuracies in the setup and then the focus was adjusted to obtain the maximum 

intensity of the Raman shift peak.  

The peak intensity of the Raman shift peak was in some cases low. This situation 

required the voltage on the laser controller to be increased while observing the power meter. This 

was accomplished by several ancillary steps. The power meter detector was installed in the light 

path, and the meter’s power was turned on. The light was then blocked in front of the detector 

while the meter was zeroed. The block was then removed, and the voltage was adjusted slowly 

ensuring that five volts was not exceeded. For silicon samples, the power was adjusted to 

Figure 3:10: Schematic Diagram of Raman Spectroscope [14] 
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approximately 0.03 Watts. Once this was set, the detector was removed from the light path and 

the focus was once again adjusted. 

 Photoluminescence Characterization 

Photoluminescence (PL) characterization is an optical characterization tool for 

understanding the electronic structure of materials. Some of the properties that can be examined 

are impurity and defect levels, inherent recombination mechanisms, and material bandgap. This 

tool was an obvious choice of methods to study the Si:P samples used for this work and to 

complete a direct comparison of these samples with a standard silicon crystalline sample.  

Photoluminescence occurs when an excitation source such as a laser provides photon 

excitation for hole carrier injection that may lead to radiative recombination. The emission 

spectrum can indicate the electronic bandgap of the material. The sensitivity of PL 

characterization can indicate levels of impurities that can impact material quality. The quality of 

the PL signal is directly related to recombination rates and can be determined by the PL peak 

intensity and broadening of the PL signal. For this work, the plan was to compare the PL of a 

standard crystalline silicon sample to the Si:P samples. The PL used was a setup created in the 

lab. The laser was set to operate at a wavelength of 532 nm with a spot size of 100 µm diameter 

with the chopper operating at a frequency of 377 Hz. The configuration of the PL system is 

shown in Figure 3.11. 

 Spectroscopic Ellipsometry Characterization 

Ellipsometry utilizes polarized light to determine material characteristics such as lattice 

constant, film strain, crystallinity, film thickness, and composition. Material microstructure, 

surfaces, and thin films can be evaluated with ellipsometry with accuracy relative to the 

wavelength and the sensitivity inherent in the measurement of the relative phase change of the 
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reflected light that is polarized. Furthermore, ellipsometry does not require the absolute intensity 

of the reflected light to be measured thereby eliminating the need for special reference samples 

that are typically required for intensity reflectance measurements. 

Ellipsometry has been used for the determination of numerous material properties such as 

alloy ratio, crystallinity, optical anisotropy and various process variables such as growth and etch 

rates. The more common use has been for the measurement of optical constants and thin film 

thicknesses. These common uses were the primary focus in this work for use in characterizing 

highly-phosphorus doped silicon samples. 

The ellipsometry system used for this work was the VASE Ellipsometer made by the J.A. 

Woollam Company [15]. VASE stands for variable angle spectroscopic ellipsometry, and the 

variable angle is the versatile strength of this system.  Other systems employ a fixed angle as 

well as a fixed wavelength that limits the amount of information acquired in one scan. This may 

have some benefit in cases where a single wavelength of light is the primary area of concern. For 

Figure 3:11: PL Configuration 
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broader evaluations to determine such things as thin film thicknesses and the complex refractive 

index and the dielectric function tensor, a broad band light source is employed for a greater 

wavelength range. This leads to a spectral range of samples determined with greater accuracy.  

This tool is capable of measuring the psi (Ψ) and delta (∆) parameters in the spectral 

range of 300 to 2500 nm. This range was expected to be sufficient for the samples in this work as 

they are assumed to be similar to bulk silicon as silicon is the primary element of the material. 

The wavelength of interest for silicon is typically in the range of 1100 nm. 

This introduction of ellipsometry makes a number of assumptions about the reader’s 

knowledge of electromagnetic radiation and specifically, polarized light. Polarized light is at the 

core of what enables ellipsometry and, therefore, a more rigorous understanding of polarized 

light will bring a more detailed understanding of the results of ellipsometry measurements. The 

first step of this rigorous understanding is to review the electromagnetic plane wave that is 

defined by Maxwell’s equations for electromagnetic fields. 

Maxwell’s equations that apply to a non-conducting and non-dispersive medium must 

apply to any propagating light beam. The equations are shown in the following form in 

Equations 3.19 through 3.22. 

    ∇ • Ε = 0                       (Equation 3.19) 

    ∇ • Β = 0        (Equation 3.20) 

∇ x Ε + 
�
�  �Ḇ

��  = 0                               (Equation 3.21) 

∇ x Β - 
µ�
�

�Ḛ
��  = 0                        (Equation 3.22) 

For these equations, E is the electric field, B is the magnetic field, c is the speed of light, 

µ is the permeability, and ϵ is the dielectric function.  
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Equations 3.19 through 3.22 are the basis of the wave equation that is shown in Equation 

3.23. 

��Ε - 
�

��
��Ḛ
���  = 0                   (Equation 3.23) 

Equation 3.23 is the wave equation with the optical impedance v defined in equation 

3.24. 

 v = 
�

��µ        (Equation 3.24) 

The electric field wave equation has a specific solution that is defined as the 

electromagnetic plane wave. This plane wave can then be shown mathematically in Equation 

3.25. 

 Ε(r,t) = Εo ���� π ñ
!  ž• ȓ

 ��$�
      (Equation 3.25) 

The electromagnetic plane wave consists of the variables ž for the unit vector along the 

wave propagation direction, λ is the wavelength of light, ñ is the complex index of refraction, n-

ik, ω is the angular frequency of the wave, and Εo is the constant specifying the amplitude and 

polarization state of the wave. The electric field, the magnetic field, and the direction of 

propagation are perpendicular to one another. Because of this relationship, typically the electric 

field and the direction of propagation are used to define the plane wave.  

The defined plane wave can have many states as it propagates through space. The state is 

defined as the polarization state. The determining factor as to how the direction of the 

electromagnetic plane wave propagates is the complex index of refraction. A graphical 

representation of the electromagnetic plane wave is shown in Figure 3.12. 
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The complex index of refraction in the electromagnetic plane wave expression can cause 

the amplitude of the wave to decrease exponentially if the imaginary part (extinction coefficient) 

is non-zero. This effect is shown more clearly in the expression of Equation 3.26. 

 Ε ∝ �%�π & '
!                 (Equation 3.26) 

For the relation in Equation 3.21, k is the extinction coefficient, λ is the wavelength, and z 

is the distance of propagation. This relation shows as the plane wave propagates in the z 

direction, the amplitude E will reduce. When the reduction of the amplitude becomes 1/e of the 

initial amplitude at a propagation length of Lp, this becomes known as the penetration length and 

is given by the relation in Equation 3.27. 

Lp  = 
(

� π )                 (Equation 3.27) 

In the relation in Equation 3.27, it is noteworthy to emphasize the impact the extinction 

coefficient, k, has on the depth of penetration of the plane wave. For materials that have a large 

extinction coefficient, the plane wave may likely not penetrate the layer and would give an 

invalid result in the measurement. This is particularly important when measuring metal films 

greater than 50 nm in thicknesses as the maximum is 100 nm. [17] 

 Device Simulation 

Solar cell simulation is primarily associated with crystalline silicon solar cells as this is 

the majority of solar cells that are currently fabricated. These cells are basic p-n junctions yet 

their modeling cannot easily be accomplished due to the optical coupling. This complexity does 

not allow for description by analytical methods and, therefore, has to be dealt with by a more 

rigorous physically-based process. 
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Solar cell simulation can be divided into two specific areas for simulation, fabrication 

process simulation and device simulation. Fabrication process simulation can include many 

features and capabilities. Some basic capabilities include deposition, diffusion, implantation, 

oxidation, etching, and epitaxial growth. Silvaco [18] provides a process simulator called 

ATHENA with these basic capabilities and more. This physically-based process simulator can be 

used to predict what type of structures will be created based on sequences of semiconductor 

processes.  

Device simulation of solar cells was first accomplished using analytical formulas that 

mimic empirical data with accuracy and simplicity. Empirical methods such as this could provide 

close approximations but were not able to provide predictive behavior or any real insight into the 

Figure 3:12: Electromagnetic Plane Wave [16] 
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device being simulated. A more robust and predictive method of device simulation requires a 

physically-based device simulator.  

A simulator based on a more robust and predictive method can effectively produce the 

electrical characteristics of devices based on the physical structures and the relevant bias 

conditions. Silvaco provides a device simulator that is based on physical models. This simulator 

is Atlas. Atlas can provide modeling of many physically-based electrical parameters such as DC, 

AC small-signal, and time-dependency. Additionally, optoelectronic interactions with general 

ray tracing can be accomplished. Many more features and capabilities are possible with one 

primary caveat. Such physically-based models require that all physics involved in the simulation 

must be accounted for and included in the simulator. Furthermore, numerical techniques are 

required to solve the equations that describe the physical model. 

The first solar cell example used both fabrication process simulation and device 

simulation to give a basic understanding of the simulation software.  A mesh was defined within 

ATHENA that gives the needed numerical resolution to provide for correct simulation at all 

boundaries. The code defined a process for p-type boron doping of the (100) oriented substrate to 

1014 cm-3. A layer of oxide is grown to 50 nm followed by an implantation of phosphorus using 

a dose of 1x1015 cm-2 at an energy of 30keV. This implantation is followed by a drive-in step at 

900°C for 10 minutes. These steps form the p-n junction of the solar cell and are followed by 

contact formation.  Once the contacts are formed, the electrodes are created to enable 

characterizations.  

Characterization begins with the starting of Atlas to get the short-circuit current and the 

open circuit voltage. The first step is to set the material constants for both the contacts and the 
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substrate. This is followed by the setting of the light beam to the solar spectrum. This setting 

allows for the proper short-circuit current and the open-circuit voltage to be calculated.  

Following this characterization, Atlas is set to run spectral response of the device. 

Following the initial settings, the light beam is set for a monochromatic light for the spectral 

analysis. The spectral analysis produces the internal and external quantum efficiencies 

(IQE/EQE) and plots the available photocurrent. This photocurrent accounts for absorption in the 

semiconductor regions only. To determine the overall absorption, the EQE must be solved for as 

shown in Equation 3.28.  

  EQE =  
*+,-./

*0-12�/�122/,� ∗ 45�6789�6	    (Equation 3.28) 

Following the spectral analysis, the I-V characterizations are completed. Again, this 

began with starting Atlas and running the same initial device settings. This allowed for the 

calculation of I-V characteristic. The code was set to also calculate the short-circuit current 

density, maximum power, and the fill factor associated with this device. Errors occurred at this 

point of the code that was later attributed to conflicts with the Windows operating system. This 

code can be run in a UNIX environment without error or change to the code. This is a common 

occurrence with the ATHENA and Atlas programs of Silvaco, Inc.   

The second solar cell simulation did not include device fabrication requiring process 

functions and therefore did not require the use of ATHENA as was the case for the first solar cell 

example. This example utilized the function of ‘auto meshing’ to create the device with the 

proper numerical resolution for correct simulation at the boundaries. The substrate was n type 

and doped to a uniform concentration of 1x1014 cm-3. The device was crystalline silicon 

bounded top and bottom by Tin-doped Indium Oxide (ITO) electrodes. 
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The device was defined as a a-N diode. The material parameters were modified from the 

default parameters to describe a crystalline material. The changes made included the following 

parameters:  Mun= 20cm2/V•s, Mup= 1.5cm2/V•s , Nc300=2.5x1020 cm-3, Nv300=2.5x1020 

cm-3, Eg300=1.9eV. The complex index of refraction for the ITO electrodes was given by the 

data from the Sopra database. Additionally, the recombination models implemented were 

Shockley-Read-Hall and Auger recombination. The optical source was specified from above 

with normal incidence using a transfer matrix model for optical characteristics. The beam was set 

to AM1.5. With these parameters set, the characterizations were able to be completed.  

The first build and characterization was considered a solar cell without defects. 

Following the first build, identical script was run with the addition of code that introduced 

defects into the solar cell. The defects were defined by many different parameters. These 

parameters describe the density of states (DOS) for these defects. The total DOS is modeled in 

Atlas with four DOS bands. There are two tail bands that consist of a donor-like valence band 

and an acceptor-like conduction band and are modeled with an exponential tail distribution. Two 

deep level bands consist of one acceptor-like band and one donor-like band and are modeled 

with a Gaussian distribution.  

The first defined parameters describe an exponential tail distribution by the valence and 

conduction band edge intercept densities. The parameters were defined as NTA=1x1021cm-3/eV 

and NTD=1x1021cm-3/eV. The characteristic decay energy is defined by the parameters WTA 

and WTD. For this example, these parameters were set to WTA=0.033eV and WTD=0.049eV.  

For a Gaussian distribution of the DOS, the parameters NGA and NGD define the total density 

of states, WGA and WGD define the characteristic decay energy, and EGA and EGD define the 

peak energy distribution.  
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These parameters were set to NGA=1.5x1015 cm-3, NGD=1.5x1015cm-3, 

WGA=0.15eV, and WGD=0.15eV. The remaining parameters, SIGTAE through SIGGDH, are 

related to the electron and hole cross-section and the equivalent donor states. The parameters 

impact the probability of occupation of a trap level at energy E in the steady-state case. These 

parameters were set to SIGTAE=1x10-17 cm2, SIGTAH = 1x10-15 cm2, SIGTDE=1x10-15 

cm2, SIGTDH=1x10-17 cm2, SIGGAE=2x10-16 cm2, SIGGAH=2x10-15 cm2, 

SIGGDE=2x10-15 cm2, and SIGGDH=2x10-16 cm2.  

 Device Fabrication 

The basis of the silicon solar cell is the p-n junction. The p-n junction provides the 

needed mechanism for the separation of charges for a solar cell to develop an electrical potential 

that can provide a flow of electricity. Before this flow of electricity can occur, electrical contacts 

must be devised in some fashion that does not significantly reduce the developed potential while 

at the same time provides a good connection to an external circuit. Here in lies one of the 

greatest challenges to improving solar cell efficiency.  

The plan for this work was to take a sample and construct a solar cell by fabricating 

contacts onto the sample. For a basic crystalline silicon solar cell, a top grid is designed such that 

the minimum amount of metal is used to collect the charges and provide a path for current flow 

while minimizing the area coverage to reduce the shadowing effect. Generally, the backside is 

not subject to light penetration and therefore shading is not a problem for this particular design. 

For this reason, the back contact may cover the entire back surface.   

Initially, a simple top grid and back contact for the p-n junction was constructed using an 

application of indium for good contact adhesion. This plan required little resources and was easy 



 

39 

to fabricate. The characterization results were determined as outlined in the following section, 

Device Characterization. 

 Device Characterization 

Solar cell characterization consists of a wide range of measurements depending on the 

particular physical properties of interest. Mechanical, electrical, and optical properties can 

impact the operation of the solar cell and, therefore, numerous measurements are used to 

evaluate these properties. For the purpose of the work of characterizing highly-phosphorus doped 

silicon samples, the electrical and optical properties were of greatest interest. Solar cell 

efficiency is the core characterization tool for solar cells and is highly dependent on the electrical 

and optical characteristics. 

Solar cell efficiency is the ratio of the electrical energy output to the energy input from 

the sun. The efficiency, η, is determined by the following relation shown in Equation 3.29. 

η = 
:-;/2<1�=+>

?-@+2 A,/2BC∗D2/+                                         (Equation 3.29) 

In Equation 3.29, E6F�7GH9�4I  is the power output of the solar cell at the maximum 

power point in Watts, J6K47 L	�7MN is the incident solar energy on the solar cell in Watts per 

meter squared, and O7�4 is the area of the solar cell exposed to the solar energy in meters 

squared.  

The plan for this work was to measure the efficiency of the solar cell fabricated from the 

highly-phosphorus doped silicon sample and compare it to a similarly constructed crystalline 

solar cell.  
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4. Results and Discussion 

 Hall Measurement Results 

Hall measurement was the first choice for characterization to determine the number of 

active charge carriers. Hall measurement was presented as a rather simple tool to utilize and 

understand the results. The initial training on this led to dismal first results. The initial Hall 

measurement results were not consistent from sample to sample. After further consultation with 

other Hall system users, some adjustments were made in the method of contact formation and the 

sweep current used during sample measurements.  

Additional training and a properly operating system and meter led to improved results. It 

became apparent from the training and more measurements that contact formation was the 

limiting factor for optimal results. Contact formation was practiced on many types of materials 

such as aluminum, glass, and silicon substrates. The contact preparation of the Si:P samples was 

found to provide the most reliable contact. This was likely due to the high phosphorus content 

that tended to provide a metal-like surface for the contact to adhere as low resistivity materials 

such as the Si:P samples tended to be wetted more easily by the melted indium that was used for 

contact formation.  

The process of contact formation was difficult, and many techniques were attempted to 

provide the best contact. A technique was found that produced a low profile contact that could 

not be removed without some form of etching. This technique was the final step in producing 

reliable results and a process that could provide a Hall measurement of a sample in less than 

thirty minutes. 

Phosphorus is a donor in silicon. Because of this, it is expected that the resistivity would 

decrease monotonically with an increase in phosphorus concentration. For this reason, each 
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characteristic measured or calculated from the Hall measurement was plotted against atomic 

percent concentration determined by ASM Company. The resistivity and carrier concentration 

plotted with phosphorus concentration are shown in Figure 4.1. 

 

The expected result of resistivity and carrier concentration versus phosphorus 

concentration was a decrease in resistivity as the carrier concentration increased. This 

expectation was based on the relation that as active charge carriers are increased, the increased 

free electrons should decrease resistivity. From Figure 4.1, this expectation resulted with samples 

that contained two to seven atomic percent of phosphorus. A shift up in resistivity occurred near 

seven percent phosphorus and then another trend of decreasing resistivity with increasing 

phosphorus concentration occurred above seven percent phosphorus concentration. There may be 

several possibilities that explain this result.  

 

 

Figure 4:1: Resistivity and Carriers vs P Concentration 
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One possibility that would explain an increase in resistivity with an increase in charge 

carriers is a change in material quality. If material defects were increased, such as precipitates 

formed, resistivity would increase due to a reduction in charge carriers that result from defects.  

Another explanation may be related to sample thickness. As sample thickness is reduced, 

the four point probe could penetrate the sample and enter the bulk region, which would allow test 

current to flow directly through the substrate. For the Hall system measurements, the formation 

of the contact by soldering could also penetrate the sample for thinner samples. This explanation 

came from experience with multiple measurements where probe pressure was varied and a 

resistivity change was noted. This particular effect was avoided in later measurements by 

selecting samples with thicknesses closer to 100 nm. 

Another consideration was the resistivity of the substrate. For a low resistivity substrate, 

a shunt resistance may dominate the resistivity measurements. The substrate resistivity measured 

15.34 Ω•cm. The film resistivity ranged from 0.2 to 0.7 mΩ•cm. This was a difference of four 

orders of magnitude, a range that would indicate the substrate would not measurably impact the 

film measurements. Further consideration of the Hall measurement results is shown by plotting 

the mobility result versus atomic percent concentration of phosphorus. This result is shown in 

Figure 4.2.  

The mobility plot follows a similar trend to that of resistivity which is to be expected.  As 

phosphorus concentration increases, ionized impurities increase which decrease mobility. As 

previous plots have shown, the mobility plot also shows a shift in the trend near seven percent 

phosphorus concentration. Again, this would likely be attributed to an increase in material 

defects. 
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The idea that sample thickness was a relevant factor seemed significant after many Hall 

measurements and resistivity measurements were made. In an attempt to better understand a 

possible relation to sample thickness, the sample thickness was plotted against atomic 

phosphorus concentration and is shown in Figure 4.3. 

Figure 4:2: Mobility vs P Concentration 

Figure 4:3: Film Thickness vs P Concentration 
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Figure 4.3 indicates a similar behavior to the plot of mobility versus phosphorus 

concentration. Furthermore, the result appears to be a reciprocal likeness to the plot of charge 

carriers versus phosphorus concentration. It may be difficult to explain this behavior, but it does 

tend to give some credibility to the idea that the film thickness is an influencing factor. 

The Hall measurement results from the seven samples were thought to be missing 

additional trends due to the spacing and quantity of samples selected. For this reason, more 

samples were selected that might add to possible trends. In selecting these samples, sample 

thicknesses close to 100 nm and above were preferred as it was believed that below 100 nm, 

measurement error increases dramatically.  

A possible link to film thickness and the depletion region widths lead to some 

calculations of the depletion regions. A hypothesis was made that for thin samples such as 12 

nm, the depletion regions created at the p-n junction and the surface and contacts may dominate 

by reducing the charge carriers in the film. If the n region of the layer region was within the same 

order of magnitude as the film thickness, this might have an effect of reducing the charge carriers 

within the film. 

The depletion widths were calculated for the n+ films to assess the impact the depletion 

region has on the total charge carriers for the films. Because the films are n+, the donor atoms, 

Nd, are much greater than the acceptor atoms, Na, and the relations in Equation 4.1 and Equation 

4.2 applies. 

Nd >> Na     (Equation 4.1) 

Wp ≈ Wd ≈ U��(W�XW2)
YZ+     (Equation 4.2) 

When the relation in Equation 4.1 is valid, the relation in Equation 4.2 applies. Equation 

4.2 defines the width of the p region and the depletion region where [ is the permittivity of 
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silicon, �\ is the contact potential, �7 is the applied voltage, and ] is the charge of the electron. 

The contact potential is given in Equation 4.3 where ^ is the Boltzmann constant, T is the 

temperature in Kelvin, and 	� is the intrinsic concentration of silicon. 

�\ =  
)_

Y[abcdedf
gh� i]                (Equation 4.3) 

For the above relations, the width of the n region, Wn, is calculated using the relation in 

Equation 4.4. 

                                                               Wn = Wd Z+
(Z+XZ.)      (Equation 4.4) 

The results from the calculations are shown in Table 3. The n region of the layer is four 

orders of magnitude smaller than the layer and, therefore, would not likely have a noticeable 

effect on the charge carriers in the layer. This hypothesis was an attempt to establish a reason for 

the change in resistivity for samples of the same concentration but different layer thicknesses. 

Once this process of evaluating the effect of the depletion layers was completed, the additional 

Hall measurement results were tabulated and shown in Table 4.  

Two sample results shown in Table 4 are highlighted for an emphasis of the samples with 

the highest carrier concentrations. Additionally, the substrate of sample P24A15 was also 

measured with the result shown in Table 4. 

These results were compared to the atomic percent concentration of phosphorus in an 

effort to determine a trend that may explain the effect of increasing the concentration of 

phosphorus. The carrier concentration comparison is shown in Figure 4.4. 

The results of expanding the sample space as shown in Figure 4.4 indicate an increasing 

carrier concentration as the phosphorus concentration is increased as previously expected along 

with a shift in the trend. The sample space included all of the previous samples along with 
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additional samples that were near or above 100 nm. The results of carrier concentration are 

shown in Figure 4.4. The results are highlighted with trend lines for clarity as shown in Figure 

4.5. 

Table 3: Depletion Region Width Calculation Results 

Table 4: Hall Measurement Results 
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The carrier concentration had an increasing trend from 0.99 to 6.85%, then an abrupt shift 

downward, and then another shift upward. The previously described shift in the trend is near 7% 

phosphorus concentration. 

The next parameter that was compared with phosphorus concentration was Hall mobility. 

The results are shown in Figure 4.6. The Hall mobility comparison with phosphorus 

concentration shown in Figure 4.6 indicates a downward trend for samples between 0.99 and 

7.01% with an abrupt shift at 7.01 and 7.26% followed by another downward trend. The 

indicated trend is highlighted with trend lines in Figure 4.7. 

The previous concerns with measurements were related to the film thickness and its 

impact on the measurement results. These concerns were addressed in later measurements with 

the calculation of the sheet density. The sheet density result is not dependent on the film 

thickness, and therefore it was thought that a trend may be evident from this parameter. The 

result of the sheet density comparison with the phosphorous concentration added no additional 

trends that have not clearly been described. 

 X-Ray Diffraction Results 

The initial consideration for the X-ray Diffraction (XRD) measurements was setting the 

scan to detect a peak that would be related to the presence of phosphorus. During training on the 

XRD, multiple attempts led to little result. The decision was made to remove as much filtering as 

possible, such as kα and kβ, to identify peaks. The result of the highest phosphorus doped sample 

is shown in Figure 4.8. 

The measurement for the XRD was set to scan the two theta omega angle from 68 

degrees to 83 degrees. The silicon peak is 69.1264 degrees and is the highest peak in Figure 4.8.  
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Figure 4:4: Carrier Concentration vs P Concentration 

Figure 4:5: Carrier Concentration vs P Concentration with Trend 
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Figure 4:6: Hall Mobility vs P Concentration 

Figure 4:7: Hall Mobility vs P Concentration with Trend 
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Some of the remaining peaks were believed to be of various process characteristics with 

one being a possible result of the phosphorus content. A detailed description of the peaks is 

shown in Figure 4.9.  

The k α and kβ peaks shown in Figure 4.9 were initially assumed to be caused by the 
filtering that was disabled for the scans. From an article on silicon phosphorus alloys that utilized 

first principles, [19] a two theta omega peak was expected to occur between 74 and 76 degrees. 

Further research without a definitive answer to the meaning of the peaks between 75 and 76 

degrees motivated the scanning of intrinsic silicon using the same scan protocol that was used to 

produce the result in Figure 4.9. The purpose of this scan was to compare any characteristic 

peaks with those shown in Figure 4.9. 

The result of comparing an intrinsic silicon sample with the silicon phosphorus sample 

was quite unexpected. The result of this scan proved to be directional in how the research on the 

samples continued. The result of this scan along with the scan of the silicon phosphorus sample 

is shown in Figure 4.10. 

Figure 4:8: XRD of Sample P31A11 
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The XRD two-theta omega scan result shown in Figure 4.10 clearly identified the peaks 

near 75 degrees as characteristic of silicon, not the presence of phosphorus as initially suspected. 

It was believed that these peaks were an artifact being produced from the high intensity of the 

Figure 4:9: XRD results with Peak Description 

Figure 4:10: Comparison of XRD scans P31A11 and Intrinsic Silicon 



 

52 

unfiltered scans. This result influenced the decision to look at other characterization tools for 

more understanding of this material.  

The experience of work related to germanium tin alloy growth led to a greater 

understanding of XRD, its use in analyzing materials, and better techniques for discovering the 

details of the crystal structure of materials. Because of this experience, the samples were later 

scanned once more using the two theta omega scan. The outcome of this scan produced a more 

meaningful result and is shown in Figure 4.11.  

The results shown in Figure 4.11 provided a substantial amount of information which will 

be detailed. The first and likely the most applicable comment is the XRD two theta omega scan, 

the coupled scan, is a relatively simple technique, once learned, that can quickly and easily 

estimate elemental content, film thickness, strain, and crystal quality.  

Figure 4:11: XRD Two Theta Omega Scan of Samples P10, P20, P21, P24, and P31 
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The silicon substrate peak is clearly shown as the sharpest peak for all samples at 

69.1264°. These characteristics tend to describe a high-quality thick crystalline material. The 

larger, mid-intensity peaks are the Si:P film peaks.  

These peaks have various intensities and peak widths that give some indication of crystal 

quality, film thickness, and percent of phosphorus content. The peaks below the mid-level peaks 

that show cyclic behavior are the interference fringe peaks. The fringe peaks indicate high-

quality epitaxial films.  

The application of Vegard’s law can be used as an estimate of film thickness, and strain 

can be determined. The result in Figure 4.11 indicates an increase in phosphorus concentration as 

the two theta omega angle is increased. The results of this characterization are used to calculate 

the lattice constant and are shown in Figure 4.12. 

Figure 4:12 Lattice Constant vs. % P Concentration 



 

54 

 Electrochemical Capacitive-Voltage Profiling Results 

The electrochemical capacitive-voltage profiling was completed on one sample, number 

P24A13. The results are shown in Figure 4.13. 

Figure 4.13 shows the carrier concentration in the top 33 nm layer is approximately 

4.3x1020/cm3. At this depth, the carrier concentration drops distinctively to approximately 

5x1018/cm3. There is another distinctive reduction in carrier concentration at 190 nm. The carrier 

concentration is near the estimated bulk of 1015 to 1016/cm3 at approximately 3.1x1016/cm3. The 

results of EC-V profile are compared to other data in Table 5.  

The carrier concentration result from the Hall Effect measurement for sample P24A13 is 

9.23x1020/cm3. The carrier concentration result from the EC-V profiling of 4.3x1020/cm3 

indicates a deviation of 73% from the Hall Measurement carrier concentration result. The 

Figure 4:13: Sample P24A13 E-CV Profile 
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thickness result from the EC-V profile indicates a deviation of 125% from the thickness 

determined from ASM America.  

There are a number of factors in the EC-V measurement that may have an impact on the 

carrier concentration results obtained. The Nanometrics system being used required a small 

sealing ring for the sample which increases the error due to the contact area measurement. As the 

size of the sealing ring is reduced, the percent of error is increased.  

The results of the EC-V profiling did not agree with any other characterization that had 

been completed on the samples. As the results could not be explained, no further samples were 

characterized using EC-V profiling. 

Table 5 Characterization Result Comparison 

Characterization Type Carrier Concentration Sample Thickness 

P24A13 Hall Measurement 9.23x1020/cm3 Not Available 

P24A11 EC-V Profiling 4.3x1020/cm3 33 nm 

P24 ASM America Result Not Available 143.86 nm 

Percent Difference 73% 125% 

 

 Raman Spectroscopy Results 

The Raman characterization was completed on multiple samples multiple times. Initially, 

the results of the silicon phosphorus samples revealed nothing different from a scan of intrinsic 

silicon. It was believed that the resolution of the Raman system in the Bio-photonics lab was not 

adequate for detecting small differences in material properties. This assumption led to seeking 

Raman characterization in the Optoelectronics Laboratory. Multiple attempts were made at the 
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Optoelectronics Laboratory lab without any remarkable result. This result is shown in Figure 

4.14.  

Figure 4.14 is a comparison of the samples with an intrinsic silicon sample. The peak 

positions, intensities, and widths do not reveal any substantial differences. This result initially led 

to a belief that Raman characterization would not reveal anything remarkable. This led to a 

research focus away from Raman characterization and on to other material characterization 

methods. The previous results were modified to zoom in on the data near the Raman shift peak 

for intrinsic silicon. The result is shown in Figure 4.15. 

Figure 4.15 reveals an additional peak for samples P18A13, 5.1% P, and P21A11, 6.13% 

P, near the Raman peak for intrinsic, unstressed, silicon. This additional peak could be attributed 

to silicon phosphorus bonds. A reduced Raman shift value would indicate lower energy bonds. It 

has been shown that the Si-P bond is slightly weaker than the Si-Si bond. [20] From the Raman 

result, a bond is formed at a slightly lower energy than the Si-Si bond which would indicate a Si-

P bond. The peaks shown near 520 cm-1 were evaluated for changes in full width half maximum 

(FWHM) to infer any possible effects, as shown in Figure 4.16. The deviation shown is 

attributed to crystal quality. 

 Photoluminescence Characterization Results 

The photoluminescence (PL) characterization results are shown in the following three 

figures. The first result, shown in Figure 4.17, is the PL intensity versus the wavelength of seven 

samples and an intrinsic silicon sample for a reference. The first remarkable characteristic was 

the peak intensity for sample P10A11. This peak was the highest of all samples. This sample was 

the only one that exceeded the intensity of intrinsic silicon. Initially, when this result was 

achieved, there was a concern that possibly the sample labeling was incorrect as it did not seem  
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Figure 4:14: Raman Characterization for Intrinsic Silicon and samples 
P4, P10, P18, P21, P26, P27 and P31 

Figure 4:15: Raman Spectroscopy (Zoomed View) 
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to make sense except that possibly the P10A11 crystal quality exceeded that of the intrinsic 

silicon sample. It is not clear how it is possible for such an alloy to have a higher crystal quality 

than intrinsic crystalline silicon. This result was repeated several times.  

The form of the curves in Figure 4.17 were of interest as the asymmetry would typically 

indicate anisotropy. The fact that this also occurs for the intrinsic silicon sample may indicate 

some inherent measurement effect. Generally, other than intensity, the curves appear to follow 

the same trend. One tool to better visualize peak positions and widths, the curves can be 

normalized to remove effects caused by different signal intensities. The result of normalizing the 

data from Figure 4.17 is shown in Figure 4.18. 

 

Figure 4:16: FWHM of Raman Shift 
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Figure 4:17: PL Intensity vs Wavelength 

Figure 4:18: Normalized PL Intensity vs Wavelength 
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The result of normalizing the data shows that the curves are practically superimposed on 

top of each other. The shapes are identical and the peak positions are very nearly the same. From 

Figure 4.18, the intrinsic silicon peak is shifted by possibly only a few nanometers. This result 

would likely be unremarkable. To further understand this peak shift, the same data was 

normalized and plotted as a function of photon energy. The result of this normalization is shown 

in Figure 4.19. 

The result of Figure 4.19 further emphasizes the minimal difference in peak position. The 

peak shift displayed is on the order of 0.005 to 0.01 eV.  It was later discovered the PL system 

has a resolution of 0.2 nm, which is approximately 0.3 meV. Because of this, the peak energy of 

each sample was plotted with percent phosphorus concentration and is shown in Figure 4.20. 

 Spectroscopic Ellipsometry Results 

The previous characterizations results were a determining factor in the decision on how 

to proceed with the ellipsometry characterizations. Although the learning process for completing 

a spectroscopic ellipsometry scan and the operational process was relatively simple, producing a 

useable result through data fitting is a complicated process to learn and then a time consuming 

process to complete the data fitting.  Because of this, much consideration was made as to which 

samples would be measured using this characterization tool. Specifically, information from Hall 

measurement, X-ray diffraction, and Raman characterizations were used to decide which 

samples would be scanned with spectroscopic ellipsometry. 

The results of Hall measurement shows a significant change in the trend of resistivity and 

carrier concentration as the atomic percent concentration of phosphorus is increased from 5.83% 

to 6.34% which are samples P20 and P22, respectively. Because of this, it was believed that the 

most useful information would come from samples on either side of this range.  
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Figure 4:19: Normalized PL Intensity vs Energy 

Figure 4:20: Trend Shift in Energy Transition 
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The X-ray diffraction result identified film thickness of samples. The film thickness 

proved to be an important factor with several characterization tools. As has been previously 

mentioned, the thinner samples, below 50 nm, proved to be difficult in providing remarkable 

results, and in some cases, repeatable results. For this reason, samples close to 100 nm and above 

were preferred.  

The Raman results initially provided little indication of material characteristics that were 

not unlike intrinsic silicon. With a closer look, samples P18 and P20 revealed an additional peak 

that is certainly remarkable. For this reason, P18 was selected for spectroscopic ellipsometry. 

And finally, P24 was selected for its film thickness and a well-defined two theta omega peak. 

The data acquisition of the P18 and P24 samples was completed multiple times in the process of 

determining optimal scan conditions. The final obstacle to optimal scans was due to the double-

sided polished samples. Because of the backside being polished, interference was occurring in 

the data due to the reflectance of the light from the back surface. Due to limited time, the 

samples were not able to be sandblasted to remove the shiny surface. The modeling software 

provided a filter for this reflectance the reduced this effect. 

The acquired data was modeled within the Variable Angle Spectroscopic Ellipsometry 

(VASE) system to obtain the optical constants using a Kramers-Kronig consistent generalized 

oscillator layer. The ultraviolet (UV) light absorption related to electronic transition was 

modeled with a Cody-Lorentz oscillator and two Gaussian oscillators. A third Gaussian oscillator 

was attempted, but the result was not remarkable and therefore not included. The near infrared 

(NIR) absorption caused by free carrier absorption was modeled using a Lorentz oscillator. An 

additional layer was added to the model that improved the fitting process. This layer represents 

surface oxides, surface roughness, or both. [21] 
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The significance of the results can be understood by comparing them with a crystalline 

silicon sample as shown in Figure 4.21 and Figure 4.22. The abrupt changes or tapering of the 

curves to a point are called the critical points caused by high crystallinity material. The bandgap 

of crystalline silicon is approximately 1.12 eV, which is near 1000 nm wavelength. Below the 

bandgap, crystalline silicon is transparent as indicated by an extinction coefficient of k equal to 

zero. [21] The first ellipsometry result shown in Figure 4.23 is for sample P18A13. This result 

gives a spectroscopic view of the index of refraction, n, of this sample. 

The comparison of the c-Silicon and the P18A13 sample indicate some specific areas that 

deviate from each other. In Figure 4.23, it can be seen that similar curvature continues as the 

wavelength is increased until just beyond 600 nm. The crystalline silicon sample curve continues 

a decay that began around 400 nm to an n value of approximately 3.4. Sample P18A13 does not 

follow a decay path beginning at 600 nm and then continues to an n value below 3.0. The fact 

Figure 4:21: c-Silicon Index of Refraction 

Critical Points 
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that the absorption increases as the wavelength increases indicates a Drude like absorption that is 

due to free carriers. Additionally, the broadening of the index of refraction curve of P18A13 is 

likely due to UV light absorption indicating the presence of nanocrystalline. [21] 

The spectroscopic ellipsometry result for P24A13 sample is shown in Figure 4.24. 

Initially, the results look quite similar to the results for sample P18A13. After further 

consideration, there appears to be a reduction in the broadness of the index of refraction for 

P24A13 which would indicate less nanocrystalline material. 

The two sample results have been considered at length, and a general comment may be 

beneficial in understanding what might be relevant. The selected samples may be on either side 

of a phosphorus concentration range where some phase segregation occurred. 

Figure 4:22: c-Silicon Extinction Coefficient 

Critical Points 
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 Device Simulation Results 

The Silvaco software has been shown to be an effective physically-based simulator. The 

limit for simulation is knowing the physical characteristics that may not always be available, 

particularly with new materials. The plan for this project was to acquire some physical 

characteristics of the new highly-phosphorus doped silicon and incorporate these characteristics 

into a solar cell simulation. 

The ellipsometry scan and data fitting provided the n and k values for the Si:P material, 

sample P18. The plot for the n and k values are shown in Figure 4.23 and for comparison, a plot 

of the n and k values for crystalline silicon are shown in Figure 4.21 and Figure 4.22, 

respectively. 

The n and k values were copied into to a text file and named SiP_real for the n data and 

SiP_imaginary for the k data. These two text files were included in the Si:P solar cell simulation. 

Figure 4:23: Optical Constants for Sample P18A13 

Broadening due 
to UV Absorption 

 

Departure from c-Silicon 
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The Si:P solar cell simulation did not include device fabrication requiring process functions and 

therefore did not require the use of ATHENA as was the case for the first solar cell example. 

This example utilized the function of ‘auto meshing’ to create the device with the proper 

numerical resolution for correct simulation at the boundaries. The substrate was p-type and 

doped to a uniform concentration of 1x1014 cm-3. The device was silicon bounded top and bottom 

by Tin-doped Indium Oxide (ITO) electrodes.  

The device was defined as a P-i-N diode. The material parameters were modified from 

the default parameters to describe a crystalline silicon material with optical properties of highly-

phosphorus doped silicon. The changes made included the following parameters:  Mun= 

20cm2/V·s , Mup= 1.5cm2/V·s , Nc300=2.5x1020 cm-3, Nv300=2.5x1020 cm-3, Eg300=0.9eV. The 

complex index of refraction for the ITO electrodes was given by the data from the Sopra 

database. Additionally, the recombination models implemented were Shockley-Read-Hall and 

Figure 4:24: Optical Constants for P24A13 
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Auger recombination. The optical source was specified from above with normal incidence using 

the transfer matrix method to model the optical propagation. The beam was set to AM1.5. With 

these parameters set, the characterizations were able to be completed. The first output plot is 

shown in Figure 4.25. 

The I-V curve did not show any noticeable difference with the Si:P n and k values. 

Further attempts to modify the n and k values to evaluate any changes associated resulted in 

errors within Atlas. An attempt was made to incorporate external quantum efficiency 

measurements. This attempt produced code that failed to complete and therefore no results were 

produced. 

The Si:P solar cell simulation code included a section that simulated a silicon solar cell 

with multiple device properties. This was used in the code to provide a comparison with the Si:P 

Figure 4:25: Si:P Solar Cell I-V Characteristic 
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solar cell. To simulate this cell, the following values were set to override the default crystalline 

silicon values: The mobility values were modified to μn = 20 cm2/V·s and μp = 1.5 cm2/V·s, the 

charge carrier densities were modified to Nc300 = 2.5x1020 cm-3 and Nv300 = 2.5x1020 cm-3, and 

finally, the bandgap energy was set to Eg300 = 1.9 eV. The comparison with the Si:P solar cell 

was not remarkable due the lack of noticeable difference when the Si:P n and k optical constants 

were incorporated as previously mentioned. The crystalline silicon simulation code enabled the 

ability to modify material characteristics such as mobility, charge carrier densities, and the 

bandgap. 

The modification of the previously mentioned characteristics produced some noticeable 

results in the I-V characteristic.  In Figures 4.26, 4.27, and 4.28, a change in the I-V curves with 

a change in bandgap energy is indicated. It should be noted that the labels for the plots were not 

modified due to code structure under the Window OS environment. The plot associated with the 

change in bandgap energy is label ‘without defects’. 

 Device Fabrication and Characterization Results 

Solar cell fabrication began with a simple application of a top-grid front contact and a 

square rear contact, both made of indium. The application of indium was done be heating the 

indium and sample near 170 °C. A cross section diagram is shown in Figure 4.29. 

The process was a bit crude but initially seemed to be a simple solution for contacts, as 

the technique was successfully used to create contacts for Hall measurement characterization. 

Once the contacts were formed, the first I-V characterization completed was Dark I-V. The 

results are shown in Figure 4.30. 

The results in Figure 4.30 were extraordinarily contorted from what was expected. A dark 

I-V curve of a solar cell is simply the diode curve produced by electrical stimulation. What is  
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Figure 4:26: I-V curve for Eg = 1.7 eV 

Figure 4:27: I-V Curve for Eg = 1.2 eV 
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shown in Figure 4.30 has more similarity to a resistor than a diode. The first obvious assumption 

is a large amount of leakage current likely due to poor contact formation. For a comparison, a 

reference solar cell was measured, and the dark I-V is shown in Figure 4.31. 

Figure 4:28: I-V Curve for Eg = 1.5 eV 

Figure 4:29: Solar Cell Cross Section 
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Figure 4:30: P24A12 Solar Cell Dark I-V 

Figure 4:31: Reference Solar Cell Dark I-V 
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 Crystal Structure 

The characterization results demonstrate trends that may relate to various material 

models. The model must begin with crystalline silicon as this is the primary element. Crystalline 

silicon is formed in the diamond lattice configuration. To understand this configuration, a 

slightly simpler configuration, face-centered cubic (FCC), can be easily visualized and 

demonstrates the tight binding of atoms.  

The FCC structure is the tightest crystal structure with an atomic packing fraction of 

74%. The FCC crystal structure gives a perspective of how the unit cell will change the crystal 

structure of silicon. To achieve the diamond lattice of silicon from the FCC structure, four 

additional atoms are added to the unit cell in a tetrahedral configuration. The first pair are added 

in a plane that bisects the leftmost atom and the rightmost atom from top to bottom. The position 

of the left atom of the pair is centered between the top leftmost atom and the top center atom and 

down at an angle of 35.26°. The right atom of the pair is centered between the rightmost atom 

and the center atom and down 35.26°. This pair positioning is shown in Figure 4.32. 

The second pair of atoms follow the same positioning as the first pair except on a plane 

rotated 90° from the first plane and bisecting the front most atom and rear most atom from top to 

bottom. The pair of atoms is positioned in a similar fashion except from the bottom of the unit 

cell. The front atom of the pair is positioned between the bottom front most atom and the bottom 

center atom and up 35.26°. The second atom of the pair is positioned between the bottom rear 

most atom and the bottom center atom and up 35.26°.  

The positioning of the two pairs of atoms will change the size of the unit cell 

significantly. The atomic packing fraction of 74% of the FCC lattice will reduce to 

approximately 34% for the diamond cubic lattice structure resulting in a larger unit cell. The 
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larger unit cell may be easily imagined as the atoms are squeezed into position as described 

above.  

The final result of the diamond cubic lattice of crystalline silicon with a top view 

orientation is shown in Figure 4.33. The top view orientation enables a clear view of the two pair 

of atoms added to the FCC configuration and it is easily seen how the pairs lie in the planes with 

the alignment of the corner atoms as described above. In this view, the spacing between atoms is 

not to scale for the clarity of geometrical perspective. 

The side view of crystalline silicon may now be more easily viewed with the proper 

geometrical perspective. An important realization of the crystalline silicon unit cell is the fact 

that the two pairs of atoms previously described are the only atoms fully contained within the 

unit cell. When calculating the atomic packing fraction, APF, the number of atoms contained in 

the unit cell must be known as shown in the relation for the atomic packing fraction in Equation 

below. 

 

Figure 4:32: FCC Lattice with 4 Atoms Added 
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APF = 
Z+�-=0∗W+�-=0

W�/@@          (Equation 4.5) 

From Equation 4.5, Natoms is the number of atoms contained in the unit cell. Vatoms is the 

volume of the atom, which is the volume of a sphere, (4/3) π r3, where r is the radius. Vcell is the 

volume of the cell, which is the lattice constant cubed, a3. For FCC crystal, the number of atoms 

is 4, and the lattice constant is 2√2 r. For silicon, the number of atoms is eight. This is 

determined by the four fully contained, the six on each face that are half contained, and the eight 

on the corners that are one-eight contained. The lattice constant is (8√3/3) r. The side view of the 

crystalline silicon lattice is shown in Figure 4.34. 

The importance of recognizing the crystal structure of crystalline silicon is that any 

changes made to the crystal begin from this configuration. The results of Hall measurements, X-

Figure 4:33: Top View Diamond Crystal Lattice 
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ray diffraction characterization, Raman spectroscopy and spectroscopic ellipsometry are 

dependent on the crystal structure. With this understood, the next step is to understand what 

occurs when crystalline silicon is doped with phosphorus.  

The process of doping the crystal with phosphorus is the replacement of at least one 

silicon atom in the crystal lattice with a phosphorus atom. Prior to the replacement of the silicon 

atom, the silicon atom has four valence electrons that are satisfied with each of the four covalent 

bonds. When the replacement occurs, the phosphorus atom with five valence electrons satisfies 

the same four covalent bonds, and the fifth electron is released as a free electron. This free 

electron makes the crystalline silicon n-type assuming no other change has occurred. Moreover, 

as the phosphorus is next to silicon in the periodic table of elements, it is easily known that the 

phosphorus atom is only about twenty percent smaller in size as the silicon atom. Because of 

this, the crystal lattice will have a small influence on its size. This configuration is demonstrated 

Figure 4:34: Side View of c-Si Lattice 
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with the replacement of one silicon atom in the bottom pair previously mentioned. The 

configuration is shown in Figure 4.35. 

The configuration in Figure 4.35 is the replacement of one whole atom in a crystal lattice 

that contains eight atoms. If all unit cells within a material had this configuration, this would be a 

phosphorus concentration of 1/8 or 12.5%. In traditional growth methods, solid solubility limits 

the phosphorus concentration to 3.4%. To push the phosphorus concentration levels higher, non-

traditional methods would have to be implemented.  

 The previous description of the crystal lattice configuration doped with phosphorus is a 

tetravalent configuration with the phosphorus at the center of the tetrahedral. This configuration 

is electrically activated with the release of a free electron, a process of phosphorus not naturally 

occurring. A more naturally occurring configuration of phosphorus is the trivalent bond that 

occurs with phosphine, PH3. For a similar bond configuration to occur in the silicon crystal, a 

Figure 4:35: c-Silicon Lattice with One Phosphorus Atom 
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pseudocubic lattice may form. It has been shown through first-principle calculations that a 

pseudocubic configuration will form the compound Si3P4. [19] This configuration is shown in 

Figure 4.36. In this configuration, each of the interior atoms is a phosphorus atom. Additionally, 

two face-centered atoms are removed as shown. 

The Si3P4 may form at multiple stages due to several characteristics. The electronic 

configuration of this molecule would have each silicon valence electron satisfied in a covalent 

bond and three of the phosphorous valence electrons satisfied in covalent bonds with silicon 

atoms and the remaining pair of valence electrons satisfied as a lone pair. This configuration 

would leave no free electrons and, therefore, no doping effect. 

One model for the growth of the samples may include the formation of the Si3P4 

molecule that precipitate from the diamond crystal form of crystalline silicon at the shift in 

trends that was noted in the Hall measurements. This would explain a decrease in charge carriers 

Figure 4:36: Pseudocubic Si3P4 Lattice [19] 
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as the phosphorus concentration was increased. Moreover, the spectroscopic ellipsometry results 

may also be explained by Si3P4 nanocrystalline being formed which added to the broadening of 

the peaks of the index of refraction. 
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5. Summary 

The optical and electrical characteristics of highly-phosphorous doped silicon films were 

investigated while gaining many new skills and knowledge of semiconductor characterization 

technology. This new material approached new limits of low resistivity while maintaining a high 

level of crystallinity.  

Characterization technology encompasses many tools and techniques. For this work, Hall 

measurement, X-ray diffraction, electrochemical capacitive-voltage profiling, Raman 

spectroscopy, photoluminescence characterization, and spectroscopic ellipsometry were the 

primary methods of characterizing phosphorus doped samples. A model was described that may 

explain the behavior of the new material and may lead to future research. 

In addition to characterizing and analyzing the samples, a device constructed from the 

samples was simulated, fabricated, and characterized. The solar cell device was compared to 

similar material solar cells for a general comparison to reveal any new effect caused by the 

highly-phosphorous doped samples. 
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Appendix A: Description of Research for Popular Publication 

The need for new materials to sustain the technology revolution is at an all-time high. 

New materials for the foundational CMOS technology have been developed that may aid in 

continuing the revolution as predicted by Moore’s law, an observation that has proven to be a 

predictor of an increase in the number of transistors in integrated circuits about every two years. 

Heavily phosphorus-doped silicon films have been produced by the ASM America Company 

claiming a phosphorus content beyond the solid solubility limit and resistivity levels below 0.3 

mΩ-cm.   

The claims of the heavily phosphorus-doped silicon films require many characterization 

techniques for confirmation and discovery of new properties of the material. Dr. Hameed 

Naseem, a professor in Electrical Engineering at the University of Arkansas, and master student 

Larry Cousar set out to characterize and analyze the new material of heavily phosphorus-doped 

silicon. In this work, Hall measurement, X-ray diffraction, Raman spectroscopy, 

photoluminescence, and spectroscopic ellipsometry characterization techniques were utilized for 

the discovery of electrical, optical, and material properties of the new material. 

Hall measurement was utilized for identification of carrier concentration, resistivity, Hall 

mobility, and material n or p type. Results revealed carrier concentrations as high as 1.35 x 1021 

cm-3 and resistivity as low as 0.23 mΩ-cm. Hall results were plotted versus phosphorus 

concentration and what resulted was far from expected. A dramatic shift in the carrier 

concentration trend as phosphorus increased was seen between six and seven percent. 

Photoluminescence characterization revealed a similar shift in trend as seen in Hall 

measurement. Resolutions below 0.2 nm allowed for comparison of photoluminescence peaks 
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with respect to phosphorus concentration and a trend shift unexpected between six and seven 

percent.  

Raman spectroscopy revealed, in samples with film thickness greater than 90 nm, Raman 

peaks indicative of possible silicon phosphorus bonds. Such Raman peaks are possible due to 

high content and crystallinity of some type of silicon phosphorus material.  

Spectroscopic ellipsometry revealed possible nanocrystalline material as explained by 

increased UV absorption. Nanocrystalline material may explain trend shifts seen in carrier 

concentrations in Hall measurement and energy shift in photoluminescence characterizations. 

The result of Hall measurements with trends is shown in App. A Figure 1. 

 
 

 
 
 

App. A Figure 1: Carrier Concentration vs. Phosphorus Concentration 
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Appendix B: Executive Summary of Newly Created Intellectual Property 

The following item of new intellectual property items were created in the course of this research 

project. 

1. The fabrication of a solar cell with a heavily-phosphorus doped silicon emitter on 

silicon substrate. 
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Appendix C: Potential Patent and Commercialization Aspects of listed Intellectual  

Property Items  

There are no potential patent and commercialization aspects of the listed intellectual property 

item. 

C.1 Patentability of Intellectual Property (Could Each Item be Patented) 

 There is no patentability of intellectual property in this research. 

C.2 Commercialization Prospects (Should Each Item Be Patented) 

There is no commercialization prospect in this research. 

C.3 Possible Prior Disclosure of IP 

There is no possible prior disclosure of IP in this research. 
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Appendix D: Broader Impact of Research 

 

D.1 Applicability of Research Methods to Other Problems 

Material growth and characterization is a standard process used in the electronic industry 

to move technology forward. This work used many characterization tools to identify physical, 

electrical and optical characteristics of the silicon phosphorus alloy. In addition to the 

characterization tools, a device was simulated, fabricated, and characterized to possibly expand 

the understanding of the new material. This method of research expands the standard process of 

research on electronic materials by seeking to fabricate a device that has applicability to current 

technology needs. The implementation of such methods may propel other areas of research to a 

more efficient method for problem solving. 

 

D.2 Impact of Research Results on U.S. and Global Society 

The new model described in this research may lead to the adoption of materials in CMOS 

technology that are less expensive and overcome barriers to CMOS feature size reduction. 

Additionally, the model may drive changes in material growth processes that may lead to new 

materials and devices for an even greater impact on technology. 

 

D.3 Impact of Research Results on the Environment 

The materials and processes used in this work are well researched materials with less 

impact on the environment than other exotic materials such as group III-V and other materials 

such as cadmium telluride. 
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Appendix E: Microsoft Project for MS MicroEP Degree Plan 

 
 
 



 

88 

 



 

89 

Appendix F: Identification of All Software Used in Research and Thesis Generation 

 
Computer #1: 

Model Number: x86-64Full_14S 

Serial Number: Dell 1707FP 

Location: ENRC 

Owner: Department of Electrical Engineering 

Software #1:  

Name: Microsoft Office 2013 

Purchased by: Department of Electrical Engineering 

Computer #2:   

Model Number: Laptop-Satellite A205-S5000 

Serial Number: 58247671K 

Location: Mobile 

Owner: Larry Cousar 

Software #1:  

Name: Microsoft Office 2013 

            Purchased by: UA Department of Electrical Engineering 

Software #2: 

 Name: Origin Pro 9.1 Student Version 

 Purchased by: Larry Cousar  

Software #3: 

 Name: X’pert View XRD viewer  

 Purchased by: Larry Cousar  
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Appendix G: All Publications Published, Submitted and Planned 

There are no publications published for this thesis. 
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Appendix H: Silvaco Atlas Device Simulation Code 

The code for the Si:P Solar Cell is shown in Table 6 below. 

 

Table 6: Si:P Solar Cell Simulation Code 

# Simulation of Si:P Solar Cell 

# Si:P Solar Cell 

go atlas  

# Start mesh.  The AUTO parameter indicates that we will 

# not specify y mesh lines directly but they will be inferred 

# from the region specifications. 

mesh auto 

x.mesh loc=0.0 spacing=0.2 

x.mesh loc=1.0 spacing=0.2 

# This device will contain only 1 region of silicon 

# bounded on top and bottom by ITO electrodes. 

region material=Silicon 

elec num=1 name=anode   y.max=0.05            material=ITO 

elec num=2 name=cathode y.min=0.30 y.max=0.35 material=ITO 

# Here we define a P-i-N diode.  

doping uniform conc=1e14 n.type 

doping gaus peak=0.05 char=0.01 conc=1e18 p.type dir=y 

doping gaus peak=0.30 char=0.01 conc=1e18 n.type dir=y 

# Here we override some of the default silicon parameter with 
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Table 6: Si:P Solar Cell Simulation Code (continued) 

# parameters that describe Si:P material. 

material mat=Silicon mun=20 mup=1.5 

material mat=Silicon nc300=2.5e20 nv300=2.5e20 

material mat=Silicon eg300=1.9 

# Here we override some of the default silicon parameter with 

# parameters that describe SiP material. 

material mat=Silicon imag.index=SiP_imaginary  real.index=SiP_real 

#material mat=Silicon taun=1e-6 taup=1e-6 

# Here we indicate that the default complex index of refraction for 

# ITO will use the data from the Sopra database 

material mat=ITO sopra=Ito2.nk 

#tonyplot 

# We include recombination models 

models srh auger   

# Here we specify the optical source.  In this case 

# we illuminate the device from above using normal 

# incidence (angle=90 default).  We also indicate 

# that we will use the transfer matrix method to 

# model the optical propogation. 

beam num=1 x.o=0.5 y.o=-2.0 AM1.5 verbose tr.matrix 

# Turn on the sun. 

solve b1=1.0 
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Table 6: Si:P Solar Cell Simulation Code (continued) 

# We collect the IV characteristic to a file 

log outf=solarex02_0.log 

solve vanode=0.0 name=anode vstep=0.025 vfinal=1.2 

# We perform extraction of useful figures of merit 

extract init infile="solarex02_0.log" 

extract name="Jsc" y.val from curve(v."anode", i."anode") where x.val=0.0 

extract name="Voc" x.val from curve(v."anode", i."anode") where y.val=0.0 

extract name="P" curve(v."anode", (v."anode" * i."cathode")) outf="solarex02_3.log"  

extract name="Pm" min(curve(v."anode", (v."anode" * i."anode")))  

extract name="Vm" x.val from curve(v."anode", (v."anode"*i."anode") ) \where y.val=$"Pm" 

extract name="Im" $"Pm"/$"Vm" 

extract name="FF" $"Pm"/($"Jsc"*$"Voc") 

extract name="Eff_Si:P" 1e8*$Pm/0.1 

#tonyplot 

# Silicon 

go atlas  

# Start mesh.  The AUTO parameter indicates that we will 

# not specify y mesh lines directly but they will be inferred 

# from the region specifications. 

mesh auto 

x.mesh loc=0.0 spacing=0.2 

x.mesh loc=1.0 spacing=0.2 
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Table 6: Si:P Solar Cell Simulation Code (continued) 

# This device will contain only 1 region of crystalline silicon 

# bounded on top and bottom by ITO electrodes. 

region material=Silicon 

elec num=1 name=anode   y.max=0.05 material=ITO 

elec num=2 name=cathode y.min=0.30 y.max=0.35 material=ITO 

# Here we define a P-i-N diode. 

doping uniform conc=1e14 n.type 

doping gaus peak=0.05 char=0.01 conc=1e18 p.type dir=y 

doping gaus peak=0.30 char=0.01 conc=1e18 n.type dir=y 

# Here we override some of the default silicon parameter with 

# parameters that describe silicon phosphide material. 

material mat=Silicon mun=20 mup=1.5 nc300=2.5e20 nv300=2.5e20 eg300=1.9 

# Here we indicate that the default complex index of refraction for 

# ITO will use the data from the Sopra database 

material mat=ITO sopra=Ito2.nk 

# In this case we define defect states in the bandgap as would 

# exist in silicon materials. 

defects nta=1.e21 ntd=1.e21 wta=0.033 wtd=0.049 \ 

# We include recombination models 

models srh auger   

# Here we specify the optical source.  In this case 

# we illuminate the device from above using normal 
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Table 6: Si:P Solar Cell Simulation Code (continued) 

# incidence (angle=90 default).  We also indicate 

# that we will use the transfer matrix method to 

# model the optical propogation. 

beam num=1 x.o=0.5 y.o=-2.0 AM1.5 verbose tr.matrix 

# Turn on the sun. 

solve b1=1.0 

# We collect the IV characteristic to a file 

log outf=solarex02_1.log 

solve vanode=0.0 name=anode vstep=0.025 vfinal=1.2 

# We perform extraction of useful figures of merit 

extract init infile="solarex02_1.log" 

extract name="Jsc" y.val from curve(v."anode", i."cathode") where x.val=0.0 

extract name="Voc" x.val from curve(v."anode", i."cathode") where y.val=0.0 

extract name="P" curve(v."anode", (v."anode" * i."cathode")) outf="solarex02_4.log"  

extract name="Pm" max(curve(v."anode", (v."anode" * i."cathode")))  

extract name="Vm" x.val from curve(v."anode", (v."anode"*i."cathode") ) \ 

extract name="Im" $"Pm"/$"Vm" 

extract name="FF" $"Pm"/($"Jsc"*$"Voc") 

 

extract name="Eff" 1e8*$Pm/0.1 

####tonyplot 

# Plot a comparison of the results with and without defects 



 

96 

Table 6: Si:P Solar Cell Simulation Code (continued) 

tonyplot -overlay solarex02_0.log solarex02_1.log -set solarex02_0.set 

# Plot the defect states. 

tonyplot solarex02_2.log -set solarex02_1.set\ 

# Plot the power curves. 

tonyplot -overlay solarex02_3.log solarex02_4.log 

quit 
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