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Abstract 

 

 The primordial Earth which hosted the first forms of life was an environment free of oxygen. 

Early organisms utilized metabolisms dependent upon anaerobic conditions and incorporated systems 

to which oxygen is deleterious. As the content of oxygen in Earth’s atmosphere increased, anaerobic 

organisms had to acquire methods to sense and combat oxygen and reactive oxygen species. Several 

mechanisms were advantageous to such anaerobic organisms which correlated transcriptional processes 

with the redox state of the cell so that energy may be conserved and oxygen stress recovery genes 

activated during periods of oxidative stress. Iron sulfur (Fe-S) cluster cofactors incorporated within RNA 

polymerase (RNAP) may sense oxygen to globally regulate transcription. Methanosarcina acetivorans, a 

methanogenic archaeon, offers an opportunity to study an RNAP with two Fe-S clusters within an 

organism of a phylogenetically and metabolically diverse group. An in vitro transcription system for M. 

acetivorans could be used to investigate the effects Fe-S cluster integrity on RNAP activity, which would 

require the components involved in promoter-specific transcription: RNAP, TATA-binding protein (TBP), 

and transcription factor B (TFB). This work describes the purification of M. acetivorans TBP and TFB for 

the development of such a system. M. acetivorans also possesses the methanogen-specific redox-

sensitive transcriptional regulator MsvR. This work provides evidence of a physiologically-relevant 

reducing partner for MsvR. As of yet, M. acetivorans MsvR has only been observed to bind to its own 

gene. This work investigates the other potential gene targets for MsvR.  
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Chapter One: Introduction 

 

 The purpose of this work is to investigate the mechanisms which sense oxygen and reactive 

oxygen species in a strictly anaerobic methane-producing archaeon, Methanosarcina acetivorans. The 

first objective is to investigate the role of oxygen-labile iron-sulfur clusters in the RNA polymerase of M. 

acetivorans by the development of an in vitro promoter-dependent transcription system with 

components from the organism. TATA-binding protein and transcription factor B were purified for this 

purpose. The second objective is it investigate thioredoxin as a physiologically-relevant reducing partner 

to the methanogen-specific regulatory protein MsvR and to identify potential gene targets for M. 

acetivorans MsvR. 

 

Dismantling the conception of life as divided strictly into two monophyletic categories of 

prokaryotes (then thought to be solely composed of bacteria) and eukaryotes, Archaea was recognized 

as a domain of life in 1977 [1]. Today, life on Earth is organized into three domains- Archaea, Bacteria, 

and Eukarya. The phylogenetic and taxonomic decoupling of Archaea from Bacteria proved to be a 

major step in understanding the arrangement and evolution of life on Earth as more insight was gained 

on this third domain. 

The discovery of the third domain required an interesting paradigm shift of then-current 

biology. There had hitherto been two types of cells: prokaryotes and eukaryotes. Classically, this 

separation was delineated as a distinction between ‘simple’ prokaryotic cells and more ‘complex’ 

eukaryotic cells. Furthermore, an evolutionary lineage was implicit in this model of life by which the 

prokaryotic cells had given rise to the eukaryotic cells. Before the advent of molecular sequencing, 

phylogenetic relations were determined by morphological comparisons, which yielded dubious results- 

particularly with regards to prokaryotes. The fine-tuning of sequencing analyses eventually produced 
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what is regarded as the most reliable method of phylogenetic characterization- comparative sequencing 

of ribosomal RNA (rRNA) components [2]. The rRNA molecule is universal (all cells engage in translation), 

ancient, and obdurate (it has changed slowly with time [3, 4]), making it a prime candidate for 

determining evolutionary lineages. Comparisons of the molecular sequences of ribosomal RNA genes 

(corroborated by comparisons of many other genes) have elucidated the paraphyletic nature of the 

prokaryotic urkingdom [5] and enhanced our overall understanding of the tree of life.  

From these data, it has been determined that members of the domain Archaea share a more 

recent common ancestor with members of the domain Eukarya than with members of the domain 

Bacteria (Fig. 1.1). In such a manner, the conception of prokaryotes as a monophyletic group was 

refuted. Indeed, as morphologically similar archaea and bacteria may appear, members of Archaea 

exhibit aspects similar to Bacteria as well as Eukarya (Table 1.1), with notable unique features. 

 The similarities between bacteria and archaea are morphological and, largely, superficial. The 

demarcation of prokaryotic life was originally proposed by Edouard Chatton in the early 19th century. 

Although the eukaryote-prokaryote dichotomy isn’t necessarily reflective of the evolutionary relations 

among life [5], important commonalities can be found between archaea and bacteria. Structurally, 

prokaryotes are defined by their organizational simplicity- a lack of membrane-bound organelles and, 

thus, the presence of all water-soluble cellular components within the one cytosolic volume. Archaeal 

and bacterial cells are generally of comparable size and shape. Both bacteria and archaea reproduce 

exclusively through asexual reproduction and commonly engage in horizontal gene transfer (an activity 

also performed by eukaryotes but with far less frequency) [6]. Unlike with eukaryotes, horizontal gene 

transfer in bacteria and archaea is a dominant evolutionary force [7]. Archaea and Bacteria each boast 

an expansive selection of extremophilic organisms and an appropriately broad range of metabolic 

diversity, relative to the tame species found in Eukarya. Prokaryotes share some common features in 

terms of genome architecture and size. Genome sizes cover a similar range for the two domains, 
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between just under 500 kilobase pairs (kbp) and just over 13 Mbp, which is narrow and small when 

compared to the range of eukaryotic genome sizes [8]. The smallest genome discovered thus far belongs 

to the archaeon Nanoarchaeum equitans and is just greater than 490 kbp [9]. Introns, nucleotide 

sequences within genes which are excised to produce the final mature RNA molecule of a given gene, 

are prevalent in eukaryotes yet occur rarely within bacteria and archaea. Compared to eukaryotes, 

prokaryotes have compact and efficient genomes with relatively few intergenic regions of non-coding 

DNA [10]. Operons, clusters of genes under the control of a single promoter element, are common in 

archaea and bacteria and allow for the coordinated regulation and production of genes which are often 

related in function. The prokaryotic grouping, despite being founded on their ‘simple’ nature relative to 

eukaryotes, reflects some important characteristics shared between archaea and bacteria. 

The archaeal systems of information processing are of a chimeric nature- transcription and 

translation in Archaea are composed of aspects of machinery and processes from Bacteria and Eukarya. 

Following, the archaeal system of transcription will be explored. Transcription, the initial step in gene 

expression, is the production of RNA from DNA and is performed by RNA polymerase (RNAP). 

Eukaryotes have at least three RNA polymerase systems (fourth and fifth RNAPs can be found in plants), 

each responsible for the transcription of non-overlapping subsets of genes [11]. Of these eukaryotic 

RNAPs, the second system (RNAP II) shares the greatest similarity to archaeal RNAP, and thus will be the 

focus of discussion concerning the comparison of archaeal and eukaryotic transcription within this work. 

Though a core of catalytic subunits is conserved across all three domains, eukaryotic RNAP II and 

archaeal RNAP are alike in terms of structure and subunit composition, and both vary greatly from 

bacterial RNAP [12]. Comparisons of RNAPs across the three domains will be revisited later in this work. 

RNAP works in conjunction with other transcriptional proteins to initiate promoter-driven transcription. 

In bacteria, RNAP is chaperoned to a promoter site by one of a variety of sigma factor proteins (Fig. 1.2, 

left panel). The transcription of a subset of genes is controlled by a particular sigma factor and that 
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sigma factor is the only protein required to assist RNAP with transcription initiation for that subset of 

genes. Archaea and eukaryotes employ a suite of general transcription factor proteins for any and all 

genes which prepare a promoter site prior to the binding of RNAP (Fig. 1.2, center and right panels). The 

binding cascade of general transcription factor proteins is similar for archaea and eukaryotes but varies 

in the number of proteins involved. While eukaryotic initiation requires at least six transcription factor 

proteins [13, 14], only two transcription factor proteins are required for initiation in Archaea [15, 16]. 

The similarities between the machinery and processes of archaeal and eukaryotic transcription initiation 

suggest a common origin. Furthermore, the complex process of eukaryotic transcription initiation can be 

better understood through the study of the relatively simple, yet analogous, archaeal transcription 

initiation system.   

Several elements of the archaeal gene promoter region are analogous to those found in the 

promoter regions of eukaryal genes (Fig. 1.3). The TATA-box motif is a T/A-rich site located ~25 base 

pairs from the initiator element which loosely resembles the Pribnow box of bacterial promoters [17, 

18]. TATA-binding protein (TBP) in both archaea and eukaryotes binds to the eight base pairs of the 

TATA-box in the minor groove of the DNA as the initial component of the preinitiation complex (PIC), 

partially unwinding and bending the DNA towards the major groove [19]. A β-recognition element (BRE) 

is located ~35 base pairs upstream of the initiation site and serves to bind transcription factor B (TFB in 

archaea, TFIIB in eukaryotes) [20, 21]. The addition of TFB to the TBP-promoter complex ensures the 

correct orientation of the complete PIC for RNAP to begin transcription [22].  

Despite the homology between the general transcription factor proteins of archaea and 

eukaryotes, a vast majority of archaeal transcription-associated proteins have homology with similarly 

functioning proteins in bacteria [23]. Most of the proteins involved in transcription regulate specific 

genes or specific sets of genes; while Archaea and Eukarya have homologous general transcription 

proteins, the regulatory transcriptional proteins in Archaea often have bacterial homologues. Bacterial 
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and archaeal transcriptional regulatory proteins often share similar helix-turn-helix (HTH) DNA-binding 

domains which were likely distributed among Archaea and Bacteria through horizontal gene transfer 

events [24].  Many activators and repressors identified in archaea thus far have homologues in bacteria 

[25], and are similar both in terms of sequence and mechanism [26]. This interaction of bacterial-

homologous regulatory factors with eukaryal basic transcription machinery represents a chimeric 

transcription system within the Archaea. 

Several unique features set Archaea apart from the other two domains. A salient distinguishing 

feature is the composition of the archaeal cell membrane. While bacteria and eukaryotes have lipids 

based on ester linkages, archaea have lipids based on ether linkages. The lipids of archaea also feature 

isoprenoid hydrocarbon chains as opposed to fatty acid chains and a different stereoisomeric 

configuration, representing a vast departure from the membrane lipids of Bacteria and Eukarya [27]. 

These lipids require different reactants and different enzymes for their production, necessitating a 

unique lipid metabolism in Archaea [28]. 

The domain Archaea is host to organisms inhabiting a broad range of environments and 

exhibiting a suitably broad range of metabolic strategies. Early on, a presumed prerequisite of archaeal 

ecology was that of extreme habitats [29], and thus a lack of diversity was expected from Archaea. 

However, the discovery of several members of the phylum Crenarchaeota as mesophilic has confuted 

that misconception [30]. For example, members of the order Methanomicrobiales have been found as 

plankton in North American coastal waters, a temperate and oxic environment [31].  

Archaea are of major importance to biogeochemical cycling on planet Earth [32]. In the nitrogen 

cycle, archaea perform several key steps including nitrogen fixation, nitrate respiration, nitrate 

assimilation, and denitrification. Importantly, these processes are carried out by archaea in 

environments such as highly saline water and hot springs, where other organisms are unlikely to occur in 

high abundance to perform these processes [33]. N2 fixation is performed by archaea from three classes- 
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Methanobacteria, Methanococci, and Methanomicrobia- in a broad range of habitats including deep-sea 

hydrothermal vents [34]. Archaea of the phylum Thaumarchaeota are ubiquitous in soil and marine 

environments and carry out ammonia-oxidation [35, 36]. Only a few cultivated archaea, including 

Pyrobaculum aerophilum and Ferroglobus placidus, perform denitrifying processes [37, 38]. Archaea are 

involved in the production and oxidation of sulfidic compounds within the sulfur cycle [39].  The use of 

sulfur as an electron acceptor during methane oxidation to produce disulfide (HS2
-) is a newly discovered 

process within the sulfur cycle which is thus known to be performed exclusively by archaea [40]. 

Archaea play an integral role in the cycling of carbon, uniquely performing several processes 

which are necessary for the cycle to function. Archaea from the phyla Crenarchaeota, Thaumarchaeota, 

and Euryarchaeota participate in carbon fixation, assimilating oxidized inorganic carbon compounds 

such as CO2 to form simple organics by reduction [41]. Models estimate that archaea of 

Thaumarchaeota may provide nearly 1% of the production of oceanic reduced carbon [42]. 

Thaumarchaeota may even be the main local producers of reduced carbon in mesopelagic and 

bathypelagic ocean zones [43], areas of the ocean which may host archaea as the dominant microbial 

biomass [44]. Oxidation of methane (an important greenhouse gas which is discussed further below) is 

performed by members of Methanomicrobia, which may consume a majority of biogenic oceanic 

methane before its release to the atmosphere [45]. 

By and large, methanogenesis is the most impactful aspect of archaeal participation in global 

biogeochemical cycling. Methane is a greenhouse gas with a global warming potential 3.7 times that of 

CO2 [46] and which is produced by industrial processes, serpentinization, and microbial metabolism 

(with the majority of the Earth’s methane production originating from microbes, namely archaea). 

Methane-producing archaea (methanogens) are responsible for ~69% of the production of atmospheric 

methane (CH4). Methanogens are a phylogenetically diverse group of archaea from the kingdom 

Euryarchaeota. Methanogen metabolism can produce methane from a variety of sources: CO2 and H2, 
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formate, methanol, methylamines, and/or acetate [47]. Globally, approximately 1 billion tons of 

methane are formed annually from microbial methanogenesis [48]. Methanogens reside in a wide 

variety of habitats: freshwater sediments, swamps, paddy fields, landfills, hydrothermal vents, and the 

digestive tracts of many animals. They are generally found in anoxic environments with low 

concentrations of sulfate, nitrate, Mn(IV), or Fe(III), as organisms utilizing those electron acceptors 

metabolically will outcompete the methanogens [49]. Five orders of methanogens have thus far been 

identified: Methanobacteriales, Methanococcales, Methanomicrobiales, Methanopyrales, and 

Methanosarcinales. Many methanogens can make use of multiple substrates for methanogenesis, but 

there has not yet been a methanogen observed which can use all methanogenic substrates. The most 

recently branched order is Methanosarcinales; methanogens from this order exhibit a broad substrate 

spectrum [49]. 

Methanogenesis is the biological production of methane and is a primitive metabolic pathway, 

likely predating the Great Oxidation Event [50]. H2 concentrations in the early Earth atmosphere were 

likely very high [51], making the utilization of H2 as a metabolic substrate highly likely. Indeed, 

hydrogenases have proven to predate the last universal common ancestor (LUCA) organism [52]. 

Furthermore, many enzymes involved in methanogenic metabolism incorporate iron-sulfur (Fe-S) cluster 

cofactors and are thus O2-labile [53]. For example, heterodisulfide reductase (HDR) is the enzyme 

responsible for the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the two constituent 

methanogenic thiol coenzymes, coenzyme B and coenzyme M, a crucial step in the methanogenesis 

pathway; HDR incorporates a [4Fe-4S] cluster to perform this reduction [54].  

 Iron-sulfur clusters are ubiquitous throughout life as enzyme cofactors and are likely of ancient 

origins. The clusters incorporate inorganic iron and sulfur often using cysteine residues as ligands (Fig. 

1.4), though arginine, aspartate, and histidine have been observed to also serve as ligands to coordinate 

clusters [55]. Fe-S clusters are often found as components in electron-transport proteins due to the 
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capacity of the clusters for robust delocalization of electron density over both Fe and S atoms [56]. Yet 

Fe-S clusters are versatile and serve a variety of roles as enzyme prosthetic groups: electron transfer, 

substrate binding and activation, structural, regulatory, disulfide reduction, or sulfur donation. A varying 

number of iron and sulfur atoms may be incorporated into Fe-S cluster groups (e.g. [2Fe-2S] clusters, 

[4Fe-4S] clusters, [8Fe-8S] clusters). Proteins from the ferredoxin family utilize [2Fe-2S] clusters, [3Fe-4S] 

clusters, or [4Fe-4S] clusters to transfer electrons in metabolic redox reactions in myriad organisms [57]. 

Nitrogenase, an enzyme involved in the fixation of atmospheric nitrogen (N2), performs coupled 

electron/proton transfer and incorporates Fe-S clusters [58]. An Fe-S cluster is a component of the 

active site of acetyl-coenzyme A synthetase, involved in the citric acid cycle of aerobic respiration [59]. A 

number of polyferredoxins have been found which exhibit multiple Fe-S clusters in tandem, likely for the 

storage of electrons or iron atoms [60]. Endonuclease III, a DNA repair enzyme, uses [4Fe-4S] clusters in 

a purely structural role whereby the cluster stabilizes a binding motif for interaction with DNA [61]. 

Biotin synthase catalyzes the conversion of dethiobiotin to biotin by donating sulfur from its [2Fe-2S] 

cluster [55]. The [4Fe-4S] cluster of heterodisulfide reductase is involved in the reduction of thiols in 

methanogenic metabolic processes [54]. 

 Fe-S clusters play a variety of roles in the processes of life. In fact, the clusters may have been a 

major component in the emergence of life from abiotic conditions. Many variations of biological Fe-S 

clusters are capable of assembling spontaneously when local abundances of iron and sulfur are 

sufficient [62]. Many Fe-S cluster containing enzymes catalyze redox reactions involving H2, CO, and N2, 

all of which were likely to have been major components in the atmosphere of early Earth [63]. Iron and 

sulfur have been postulated to have been involved in the original catalytic processes resulting in 

abiogenesis. Primitive methanogenesis, which heavily involves Fe-S clusters, is a common candidate for 

very early metabolism [50, 64]. It has been demonstrated that inorganic iron and sulfur can be involved 

in C-C bond formation under primordial conditions [65]. In the very least, iron and sulfur may have 
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served as the first energy sources for primordial life [66]. The ubiquity and functional versatility of Fe-S 

clusters make them prime candidates as integral components of biological processes from the very 

beginning. 

 Yet Fe-S clusters are not well-suited for the high oxygen content of the Earth’s atmosphere. Fe-S 

clusters are oxygen-labile and exposure to oxygen can cause the collapse and loss of clusters from an 

enzyme [53]. However, Fe-S clusters are far more amenable to anaerobic conditions; primordial Earth 

would have been a largely anaerobic environment before oxygenation of the atmosphere by 

photosynthetic organisms [67]. Thus, it has been postulated that the iron-sulfur clusters which were 

involved in primordial enzymes were preferentially replaced among aerobes as they evolved. We find 

many more Fe-S cluster-containing enzymes among extant anaerobes than extant aerobes, often due to 

the heavy involvement of such enzymes in anaerobic metabolisms, such as methanogenesis. In modern 

methanogens, many Fe-S cluster-incorporating enzymes necessary for methanogenesis are oxygen 

sensitive and exposure to oxygen can effect a loss of energy conservation and of methane production 

[53]. The abundance of Fe-S clusters in an organism is strongly inversely correlated with the oxygen 

tolerance of that organism [68]. 

 The Great Oxidation Event, then, posed a problem for metabolisms incorporating Fe-S clusters. 

Cyanobacteria began releasing diatomic oxygen into Earth’s atmosphere as a byproduct of 

photosynthesis approximately 2.7 billion years ago. This production of O2 eventually led to the 

significant oxygenation of the Earth’s atmosphere approximately 2.3 billion years ago [69]. This allowed 

for the proliferation of metabolisms exploiting the now-abundant O2, yet also posed a problem for 

organisms still engaging in anaerobic metabolisms. Atmospheric oxygen caused widespread 

precipitation of iron from biologically-available environmental sources by oxidation to its ferric form, 

making soluble iron a limited resource in many environments. Furthermore, O2 is effective at taking 

possession of electrons from reduced enzymes, which both attenuates metabolic activity performed by 
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those enzymes and produces reactive oxygen species- e.g. superoxide (O2
-) and hydrogen peroxide 

(H2O2), which can further damage proteins. These reactive oxygen species (ROS) can damage Fe-S cluster 

enzymes by the oxidation of the clusters, often causing cluster collapse and the inactivation of the 

enzyme [70, 71]. Likewise, hydrogen peroxide can oxidize the thiol groups of neighboring cysteine 

residues to disulfide bonds, disrupting protein structures [72]. ROS are also deleterious to DNA, causing 

mutations and DNA-protein crosslinks [73]. Anaerobic organisms often have metabolisms which rely 

upon highly reduced substrates and enzymes with surface-exposed Fe-S clusters [67], which makes them 

vulnerable to oxygen exposure and particularly at a disadvantage in conditions following the Great 

Oxidation Event. Understandably, the Event caused a mass extinction of anaerobic organisms. The 

remaining anaerobic organisms required methods to sense and manage exposure to oxygen to prevent 

damage and loss of energy conservation. 

 Several methods have developed to provide control and management of ROS. Cellular redox 

buffers such as ascorbate, glutathione, alkaloids, carotenoids, and flavonoids serve as antioxidants 

within cells to maintain redox state during oxygen exposure [74]. Most organisms have enzymes which 

perform the detoxification of ROS- e.g. peroxides, superoxide dismutases, catalase. A variety of 

regulatory systems are used to sense oxygen exposure and coordinate a response. A number of redox-

sensitive transcriptional regulator proteins have been discovered, often incorporating Fe-S clusters or 

thiol groups as sensing mechanisms. FNR (fumarate and nitrate reduction), a protein found in 

Escherichia coli, uses a [4Fe-4S] cluster to control the transcription of genes involved in the adaptation 

of cells to growth in O2-deprived conditions [75]. Under reduced conditions with limited O2, the 

presence of a stable [4Fe-4S] allows for dimerization of FNR molecules; FNR dimers exhibit site-specific 

DNA binding to effect the up-regulation of targeted genes. The first redox-responsive archaeal 

transcriptional regulator, SurR, was discovered in Pyrococcus furiosus [76]. SurR effects a metabolic shift 

to the production of H2S when elemental sulfur is present whereby oxidation of two specific SurR 
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cysteine residues form a disulfide bridge, inhibiting sequence-specific DNA binding by SurR. The loss of 

SurR binding inhibits genes involved in H2 production and derepresses genes involved in elemental sulfur 

metabolism. OxyR exerts regulatory control over an E. coli operon which contains genes encoding for 

OxyR, catalase, alkyl hydroperoxide reductase, and glutathione reductase- each a component in 

oxidative stress recovery. OxyR up-regulates this operon when it is activated, which is achieved by the 

formation of a disulfide bond between two cysteine residues due to oxidation by H2O2 [77]; In such a 

manner, the presence of H2O2 is sensed by the state of the cysteine residues which then signals 

production of the oxygen response enzymes. In Methanothermobacter thermautotrophicus, a similar 

system involves MsvR as a redox-sensitive transcriptional regulatory protein which controls an operon of 

genes involved in the detoxification of ROS [78]. Such regulatory mechanisms are used to up-regulate 

genes involved in recovery during times of oxidative stress. 

The correlation of cellular redox state with transcription would be advantageous to an anaerobic 

organism. While regulatory proteins can accomplish this in a specific manner, some RNA polymerases 

may be capable of redox-informed global transcription regulation. It would be advantageous for an 

anaerobic biological system to correlate energy-intensive processes, such as transcription, with the 

redox state of a cell so as to conserve energy during times of oxidative stress. RNAP, as mentioned 

previously, is the multi-subunit protein complex responsible for the synthesis of RNA from a DNA 

template and is essential to cells in all three domains of life. Five universally-conserved core components 

of RNAP (α2ββ’ω) compose bacterial RNAP; eukaryotic and archaeal RNAPs are considerably more 

complex and contain these universally-conserved components as well as additional subunits (Table 1.2). 

Archaeal and eukaryal RNAPs are similar in subunit composition; eukaryotic RNAP II consists of 12 

subunits and archaeal RNAPs consist of 12-13 subunits depending on phyla. Subunit D of Sulfolobus 

solfataricus RNAP has been observed to incorporate an Fe-S cluster (Fig. 1.4) [79]. This was the first 

instance of an Fe-S cluster involved in an RNAP, and the exact role of the cluster has yet to be 
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determined. Subunit D of S. solfataricus contains three domains. The Rpb3 subunit of eukaryal RNAP II, 

the AC40 subunits of eukaryal RNAPs I & III, and the α subunit of bacterial RNAP are homologous to 

archaeal RNAP subunit D (RpoD). Domains 1 and 2 are conserved among RNAPs in all of life, but domain 

3 is not found in bacteria [80]. Domain 1 is integral to the dimerization of subunit D with subunit L 

(RpoL), the first step in the assembly of RNAP [81]. The D-L heterodimer serves as an assembly platform 

upon which the rest of RNAP is constructed. Domain 2 of subunit D serves to interact with other RNAP 

subunits during assembly as well as general transcription factor proteins during transcription processes. 

Domain 3 is capable of hosting up to two [4Fe-4S] cluster binding motifs and can be found in members 

of Archaea and Eukarya. Domain 3 resembles a similar Fe-S cluster binding domain in ferredoxin [82]. S. 

solfataricus RpoD domain 3 contains an [4Fe-4S] cluster binding motif yet structural investigations 

revealed a [3Fe-4S] cluster coordinated with three cysteine residues (C183, C203, and C209), and with a 

fourth cysteine (C206) likely to serve as another ligand to the cluster in vivo [79]. Phylogenetic analyses 

revealed that there are two potential [4Fe-4S] cluster binding motifs to be found in RpoD/Rpb3/AC40 

domain 3 of RNAPs [83]; the subunits can be categorized into six different groups based upon 

architectural aspects of domain 3 such as the number of complete or partial cluster binding motifs (Fig. 

1.5). The analogous subunits of some eukaryotic RNAPs have been observed to contain the same cluster 

binding motif as that found in S. solfataricus [79]. Only anaerobic archaea have been observed to exhibit 

RpoD with both cluster binding motifs. The RpoD/Rpb3/AC40 of members of the same phylum can be 

placed into different groups based on their domain 3 architecture [83]. The function of [4Fe-4S] clusters 

within RNAP and their scattered phylogenetic presence remain a mystery. Perhaps the clusters offer the 

ability to correlate global gene expression with the redox state of the cell. The oxygen-labile clusters 

may function to sense oxygen, and their presence or absence within RNAP may regulate global 

transcriptional processes (Fig 1.6). 
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Methanogens offer an opportunity to explore RpoD subunits of diverse domain 3 architecture 

within a single group of organisms, the metabolism of which is heavily reliant upon Fe-S cluster enzymes 

[84]. It may be advantageous for organisms to which Fe-S clusters are essential for RNAP to possess Fe-S 

clusters- the clusters may offer a mechanism to coordinate metabolism with gene expression. However, 

not all methanogens exhibit RNAPs predicted to bind [4Fe-4S] clusters. The RpoDs of genome-

sequenced methanogens have been analyzed: members of Methanosarcinales and Methnomicrobiales 

encode RpoD with two cluster motifs, members of Methanobacteriales encode RpoD with one or two 

cluster motifs, the member of Methanopyrales encodes an RpoD without cluster motifs, and members 

of Methanobacteriales encode RpoD entirely lacking domain 3 [83]. The architectural diversity of RpoD 

in methanogens may be attributed to metabolic and ecological differences between the different 

organisms. Thus, methanogens offer a unique opportunity to investigate the correlation between RpoD 

cluster configuration and metabolism/environment. 

Methanosarcina acetivorans is a methanogen of the order Methanosarcinales, the most recently 

branched order of the methanogen. Only Methanosarcina species have demonstrated the ability to 

engage in all three known pathways of methanogenesis. M. acetivorans RpoD is capable of binding two 

[4Fe-4S] clusters; cluster #1 is coordinated by cysteines C205, C208, C211, and C183; cluster #2 is 

coordinated by cysteines C173, C176, C179, and C215 [83]. M. acetivorans is one of a few archaea which 

has a robust genetic system [85]; this system can be used to manipulate the cluster binding motifs to 

investigate the effects of different cluster configurations on RNAP activity and assembly. The organism 

has a well-investigated metabolism reliant upon Fe-S cluster enzymes and can grow on a variety of 

substrates, including acetate [86, 87]. This allows for the investigation of the effects of cluster 

manipulation on metabolism. The diverse & well-documented metabolism, the robust genetic system, 

and the presence of a full complement of clusters make M. acetivorans the ideal candidate to study the 

relationship between Fe-S clusters and RNAP activity and assembly. 
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It had previously been postulated that the collapse of the RpoD [4Fe-4S] clusters by oxygen may 

preclude the de novo assembly of RNAP by preventing the heterodimerization of RpoD with RpoL [79]. It 

has been determined, however, that absence of the clusters in M. acetivorans does not, in fact, prevent 

formation of the D-L heterodimer nor prevent the assembly of all subunits into RNAP [83]. This suggests 

that rather than affecting RNAP assembly, the clusters serve a regulatory role and their oxygen-lability 

may affect RNAP conformation in such a way as to regulate global transcriptional processes in some 

manner. An in vitro transcription system would allow for the investigation of the effects of [4Fe-4S] 

cluster integrity upon RNAP activity. 

Other methods of redox-sensitive transcriptional regulation can be investigated in M. 

acetivorans. MsvR is a transcriptional regulatory protein found in the majority of methanogens. 

Methanothermobacter thermautotrophicus MsvR (MtMsvR) regulates its own promoter and an operon 

encoding genes involved in oxygen stress recovery [78], including F420H2 oxidase, a methanogenic 

protein demonstrated to reduce O2 to H2O [88]. Under reducing conditions, MtMsvR represses this 

operon by abrogating the promoter site to prevent the binding of general transcription factors. 

Oxidation of MtMsvR by H2O2 yields different DNA binding behavior. This is consistent with MtMsvR 

being a redox-sensitive transcriptional regulator. M. acetivorans also contains an MsvR (MaMsvR), yet 

MaMsvR has thus far only been observed to bind its own promoter under reducing conditions [89]. 

Incubation of MaMsvR will prevent DNA binding; this is achieved by the oxidation of key cysteine groups 

whereupon the conformation of MaMsvR changes, yielding a cessation of DNA binding. If MaMsvR truly 

functions as a redox-sensitive transcriptional regulator, a physiological reducing partner would be 

required for cells to restore MaMsvR DNA binding upon the relief of oxidative stress. A potential partner 

may be M. acetivorans thioredoxin 7, which is capable of reducing protein disulfide bonds [90]. MaMsvR 

may be an important redox-sensitive transcriptional regulator in M. acetivorans, yet its reducing partner 

and the genes which it regulates are unknown.  
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 The anaerobic origins of life have left an indelible mark upon many of life’s processes. In many 

organisms, transcription is regulated by mechanisms which sense the presence of oxygen and ROS. The 

presence of Fe-S clusters in RNA polymerase may be serving toward that end by globally regulating 

transcription in correlation with the redox state of the cell. MsvR is a transcriptional regulator which 

may modify transcription based on redox state in a more specific manner. The investigation of the 

interaction between redox-sensitive transcriptional components and their coordinated response to 

oxygen contamination in anaerobic organisms will further our knowledge concerning the evolution of 

life’s information processing systems. 

It is the goal of the work detailed herein to further the construction of an in vitro transcription 

system for M. acetivorans and to investigate the reducing partner of and the genes targeted by 

MaMsvR. The presence or absence of Fe-S clusters may affect transcription on the global level by 

modifying the activity of RNAP at certain or all promoter sites. The establishment of an in vitro 

transcription system will allow for the investigation of the effects of cluster constitution on the activity 

of RNAP. The purification of M. acetivorans TATA-binding protein and transcription factor B is the first 

step towards constructing such a system. MaMsvR may serve an important role in the regulation of 

oxygen stress recovery mechanisms in M. acetivorans, as has been demonstrated by MsvR of other 

methanogens. However, little is known about this regulatory system. The investigation of an M. 

acetivorans thioredoxin as a reducing partner to MaMsvR is explored. Additionally, the potential of 

other MaMsvR target genes is assessed.  
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Table 1.1. Overview of general aspects of Archaea analogous to the other domains. 

Process in Archaea Analogous domain 

Morphology Bacteria 

Metabolism Bacteria 

Genome architecture Bacteria 

Transcriptional machinery 

Promoter site architecture 

Eukarya 

Eukarya 

Transcriptional regulation Bacteria 

Translation Bacteria/Eukarya 
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Table 1.2. Conservation of archaeal RNAP subunits across the domains. Five core subunits are 

conserved across all three domains. Other archaeal RNAP subunits are conserved in eukaryal RNAP but 

not bacterial RNAP. 

Subunit of Archaeal RNAP Analogue in Eukaryal RNAP Analogue in Bacterial RNAP 

A 

B 

D 

E 

F 

H 

Rpb1 

Rpb2 

Rpb3 

Rpb7 

Rpb4 

Rpb5 

β’ 

β 

αI 

- 

- 

- 

K Rpb6 ω 

L Rpb11 αII 

N Rpb10 - 

P Rpb12 - 
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Figure 1.1. The tree of life with respect to the three domains. The tree of life as constructed by 16S 

rRNA sequencing. The domain Archaea shares a more recent common ancestor with the domain 

Eukarya than with the domain Bacteria. This precludes the original categorization of Archaea and 

Bacteria as one monophyletic group of prokaryotes. LUCA (last universal common ancestor) is the most 

recent community of organisms from which all extant live has evolved.  
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Figure 1.2. Models of transcription initiation for the three domains. Left panel- bacterial transcription 

initiation. A sigma factor specific to a subset of genes including the particular gene undergoing 

transcription will bind to RNAP forming the RNAP holoenzyme; the holoenzyme will then bind to the 

Pribnow box consensus sequence ~10 base pairs from the initiation site and transcription may 

commence. Center panel- archaeal transcription initiation. Two general transcription factors, TATA-

binding protein (TBP) and transcription factor b (TFB) prepare the promoter site for the arrival of RNAP. 

Right panel- eukaryotic transcription initiation for the RNAP II system. A larger cast of general 

transcription factors prepare the promoter site for the arrival of RNAP II. Figure adapted from [25]. 
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Figure 1.3. Eukaryal/archaeal gene promoter region. The TATA box and β-recognition element (BRE) are 

located upstream of the initiation site in both eukaryotes and archaea. TATA-binding protein (TBP) binds 

to the TATA box and transcription factor B (TFB) to the BRE to prepare the promoter region for RNAP 

binding to begin transcription at the initiator element. Figure adapted from [91]. 
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Figure 1.4. Structure of an [4Fe-4S] cluster. Iron-sulfur clusters of [4Fe-4S] type are organized in a cubic 

structure with an iron or sulfur located at each corner. Each iron is generally coordinated with four 

sulfur atoms, three of which are the inorganic sulfurs of the cluster, the fourth often being a component 

of the cysteine residue ligand of the protein to which the cluster is associated. 
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Figure 1.5. Schemata illustrating the diversity of RNAP subunit D domain 3 architecture. Archaeal 

RNAPs can be grouped by the architecture of their third subunit D (RpoD) domains and the number of 

whole or partial [4Fe-4S] cluster binding motifs for cluster #1 (cysteine residues in black) and cluster #2 

(cysteine residues in grey). Domain 1 of RpoD is represented as blue, domain 2 as red, and domain 3 as 

yellow. Sulfolobus solfataricus RpoD contains a single cluster binding motif, referred to as cluster #1, and 

is thus a member of group 2. Methanosarcina acetivorans RpoD contains binding motifs for both 

clusters, being a member of group 1. Some eukaryal Rpb3/AC40 have been observed to contain binding 

motifs for cluster #1. Figure adapted from [83].  
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Figure 1.6. Proposed model for Fe-S cluster integration in RNA polymerase. 1- Subunit D (RpoD). 2- D-L 

heterodimer. 3- D-L heterodimer with Fe-S clusters incorporated. 4- Full RNAP holoenzyme. 5- D-L 

heterodimer without Fe-S clusters, potentially altering the conformation of the complex. 6- RNAP 

without Fe-S clusters. The full RNAP holoenzyme and RNAP lacking Fe-S clusters likely effect different 

transcriptional states. A lack of Fe-S clusters in RNAP may alter the transcriptional activity of the cell by 

reducing transcription globally to conserve energy.  
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Chapter Two: Toward the development of an in vitro transcription 

system in Methanosarcina acetivorans 

 

Introduction 

Transcription, the initial step in gene expression, is performed in all organisms by the enzyme 

RNA polymerase (RNAP). The initiation of transcription is achieved differently in the three domains of 

life (Fig 1.2). In Bacteria, RNAP must first form a holoenzyme complex with one of a group of specificity 

proteins known as sigma factors before binding to a promoter sequence and subsequent initiation of 

transcription [92]. Bacterial RNAP is composed of five core subunits (α2ββω), with the relevant sigma 

factor binding reversibly as a sixth subunit to complete the complex and form the RNAP holoenzyme 

[93]. Individual sigma factors endow recognition of a particular promoter site consensus sequence, 

effectively regulating transcription by determining the set of genes to which a particular RNAP 

holoenzyme will have affinity [94]. In Escherichia coli, for example, σ70 is the predominant sigma factor 

which controls the transcription of genes involved in essential processes [95, 96], but six other sigma 

factors are also present and are largely involved in the control of genes which confer adaptation of the 

cells to different environmental conditions [97]. Sigma factors interact with the β and β’ subunits to bind 

to RNAP [98]. Formation of the RNAP holoenzyme reveals DNA binding regions on the complexed sigma 

factor. These revealed regions interact with a targeted promoter site at consensus sequence regions 

centered at -35 and -10 relative to the transcriptional start site, forming a closed promoter complex 

[99]. A conformational change in RNAP following the binding to DNA melts the DNA strand in a region 

extending from -10 to the transcriptional start site, forming the open promoter complex [100]. 

Transcription begins and, when the nascent RNA transcript is elongated to 8-10 nucleotides, sigma 

factor is released or partially released as RNAP proceeds with transcription [101]. Bacteria utilizes a 

specificity protein system wherein transcription initiation is directed to distinct classes of promoters by 
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sigma factors which confer affinity for their respective RNAP holoenzymes to certain consensus 

sequences. 

Archaea and Eukarya, however, have an altogether different system of transcription initiation. 

Like Bacteria, Archaea have a single RNAP, whereas eukaryotes have at least three RNAP systems 

(fourth and fifth RNAPs can be found in plants), each responsible for the transcription of non-

overlapping subsets of genes [11]; RNAPs in Archaea and Eukarya are alike in terms of structure and 

subunit composition [12]. Transcription in both Archaea and Eukarya follow similar procedures in 

initiation: a suite of general transcription factor proteins prepare a promoter site for the reception of 

RNAP before transcription commences. The binding cascade of general transcription factor proteins is 

similar for archaea and eukaryotes but varies in the number of proteins involved. While eukaryotic 

initiation requires at least six transcription factor proteins [13, 14], only two transcription factor 

proteins, TATA-binding protein and transcription factor B are required for initiation in Archaea [15, 16].  

TATA-binding protein (TBP) recognizes an A- and T-rich element ~25 nucleotides upstream from 

the transcriptional start site known as the TATA-box [17]. TATA-binding protein is necessary for 

transcription in archaea and is the most general transcription factor in eukaryotes- whereas some 

eukaryal transcription factor proteins are specific to their respective RNAP, TBP is required by each 

eukaryotic RNAP for transcription [102]. TBP is highly conserved and, in eukaryotes, a TBP from one 

organism can be interchangeable with TBP from another with organisms as diverse as mammals and 

yeast [15]. Eukaryotes and archaea share near-perfect conservation of the amino acids engaged in 

contact with DNA [103].  TBP has a saddle-shaped structure endowed by its two symmetrical 

subdomains [104]. The groove of the saddle serves as the interface with DNA, interacting with the ~8 

base pair TATA-box in the minor groove of the DNA. Two pairs of phenylalanine residues contact the 

DNA in between the first and last nucleotide pairs of the TATA-box, widening the groove [105]. Upon 

binding, archaeal TBP bends the DNA strands at the TATA-box ~65o [106]. 
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In Archaea, TBP prepares the promoter site for binding with transcription factor B (TFB). A 

purine-rich β-recognition element (BRE) is located ~35 base pairs upstream of the transcriptional start 

site and serves as the binding site for TFB upon the TBP-DNA complex to complete the preinitiation 

complex (PIC) [20, 21]. TFB binds to the TBP-DNA complex on the side of the DNA opposite TBP and 

contacts both the DNA and the c-terminal half of TBP [25]. It has been shown that the BRE is necessary 

for the correct orientation of the PIC- TFB is capable of binding to the TBP-DNA complex in the opposite 

direction when a BRE is absent from the promoter [22]. It is the c-terminal domain of TFB which 

recognizes and binds to the BRE and thus ensures the correct orientation. The n-terminal domain of TFB 

forms a zinc-ribbon structure which assists in recruiting RNAP to the promoter site [107]. In Archaea, the 

addition of TFB to the TBP-DNA complex completes the PIC and prepares the promoter for reception of 

RNAP. In eukaryotes, transcription initiation follows a similar cascade involving the addition of 

transcription factor proteins to the promoter site, but the eukaryal PIC incorporates at least six different 

proteins [108]. After construction of the PIC, the recruitment of RNAP to the promoter will directly 

proceed initiation of transcription. 

Archaea and Eukarya possess RNAPs which are alike in terms of structure and subunit 

composition [12]. Notably, subunit RpoD of archaeal RNAP and the homologous Rpb3 subunit of 

eukaryal RNAP II have been observed to incorporate [4Fe-4S] cluster binding motifs in several 

organisms. The purpose the Fe-S clusters in RNAP is as yet unclear. Potentially, the clusters may allow 

for RNAP to correlate the cellular redox state of the cell, as detected by the clusters and their integrity, 

to the transcriptional activity of the cell, as affected by conformational changes precipitated by the 

lability of the clusters. To investigate the effects of [4Fe-4S] clusters on RNAP activity, an in vitro 

transcription system must be constructed. The methanogen Methanosarcina acetivorans will be used as 

a model organism for its possession of dual RNAP [4Fe-4S] clusters and its position within methanogens, 
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a group of organisms of diverse environments and possessing of RNAPs with various combinations of 

whole and partial [4Fe-4S] cluster binding motifs. 

A promoter-specific in vitro transcription system requires the cellular components necessary for 

promoter-driven transcription. For Archaea, this necessitates the purification of viable TBP, TFB, and 

RNAP. Promoter-specific in vitro transcription systems have been composed for several archaea: 

Methanothermus fervidus [109], Pyrococcus furiosus [110], Sulfolobus shibatae [111], Methanosarcina 

mazeii [112], etc. Such a system has not yet been developed for M. acetivorans. The M. acetivorans 

genome encodes three TBPs; MaTBP1 has been demonstrated to be essential [113], and will thus be the 

MaTBP used for in vitro transcription. 

The work described herein details the purification of M. acetivorans TBP1 & TFB. His-tagged 

recombinant MaTBP1 & MaTFB were each cloned into E. coli and purified via affinity chromatography. 

MaTFB was expressed as inclusion bodies, necessitating the denaturing and subsequent renaturing of 

the protein. Electrophoretic mobility shift assays were performed with MaTBP1 and MaTFB in an 

attempt to assess DNA-binding functionality of the proteins. The purification of MaTBP1 and MaTFB is 

the first step towards a M. acetivorans promoter-specific in vitro transcription system. 

   

Materials & Methods 

Cloning. PCR was used to amplify tbp1 and tfb from M. acetivorans C2A genomic DNA. The forward 

primer for the amplification of tbp1, NdeTbpF (Integrated DNA Technologies), contained the sequence 

for an NdeI restriction site (5’-GGT GGT CAT ATG AGC GAA TCT AGC ATT AAA ATT G-3’); the reverse 

primer for tbp1, XhoTbpR, contained an XhoI restriction site (5’-GGT GGT CTC GAG TTA TAA AAG TCC 

CAT GTT ATC AAG CTG C-3’); the forward primer for the amplification of tfb, NdeTfbF, contained the 

sequence for an NdeI restriction site (5’-GGT GGT CAT ATG GTA GAA GTC GAA AGA GTT CGC TAT-3’); the 

reverse primer for tfb, XhoTfbR (Integrated DNA Technologies), contained an XhoI restriction site (5’-
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GGT GGT CTC GAG TTA GAG GAT AAT CTC TAT ATC CAG TTC-3’). PCR was executed using Phusion High-

Fidelity DNA Polymerase (New England BioLabs) with the following parameters: initial step at 98 oC for 2 

minutes; 30 cycles of: denaturing at 98 oC for 10 second, annealing at 62 oC for 10 seconds, elongation at 

72 oC for 15 seconds; final extension at 72 oC for 5 minutes. The PCR products were digested with NdeI 

and XhoI restriction enzymes (New England BioLabs). The digested products were ligated with similarly-

digested pET28a plasmid (Novagen) using T4 DNA Ligase (New England BioLabs), producing plasmids 

pMaTBP1 (with tbp1) and pMaTFB (with tfb). The ligation mixtures were transformed separately into 

Escherichia coli strain DH5α and colonies containing the plasmid were selected for on LB agar plates 

containing kanamycin (kan). Plasmids were screened for the presence of insert by restriction digests, 

verified by sequencing, and transferred to E. coli strain Rosetta DE3 for expression. 

Expression. MaTBP1 and MaTFB were over-expressed from E. coli Rosetta DE3 cells in LB broth 

supplemented with kan and chloramphenicol (chlor). A number of conditions were attempted to 

optimize MaTBP1 and MaTFB expression (see Results and Discussion section); following are the 

conditions used for purifications. Cultures were incubated at 37 oC, shaking at 240 rpm. Protein 

expression was induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) when the cultures 

reached an OD600 of ~0.6. Expression of MaTBP1 proceeded for four hours shaking at 240 rpm at room 

temperature. Expression of MaTFB proceeded for 16 hours shaking at 240 rpm at 16 oC. Cells were 

harvested by centrifugation at 17 500 x g for 10 min at 4 oC and frozen. 

MaTBP1 affinity chromatography. MaTBP1 cells were thawed with a few crystals of benzamadine 

hydrochloride and DNAse I and were resuspended with 3 ml per g of cells in buffer A (50 mM HNa2PO4, 

pH 8, 300 mM NaCl). The cells were lysed by three passages through a French pressure cell at over 110 

MPa. The lysate was centrifuged at 35 000 x g for 30 minutes at 4 oC. The supernatant was filtered 

through a 0.45 µm cellulose acetate syringe filter. Filtered lysate was applied to a pre-equilibrated 1-ml 

Ni-resin column (Genscript). The column was washed with 5 column volumes (CV) of buffer A and 5 CV 
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of buffer A containing 10 mM imidazole. The protein was eluted from the column with 2 CV of buffer A 

containing 250 mM imidazole. The Ni-eluate was applied to a pre-equilibrated 1-ml heparin column (GE 

Healthcare) on a low pressure chromatography system (Biologic) at a flow rate of 0.5 ml per minute. The 

column was then washed with 30 CV of buffer B (10 mM H2NaPO4, pH 7) followed by 30 CV of buffer B 

with a gradient from 0 to 2 M NaCl. Fractions (1 ml) were collected throughout this entire procedure. 

Fractions containing MaTBP1 were buffer exchanged into buffer C (50 mM Tris, pH 7.2, 150 mM NaCl, 

10% glycerol), concentrated using a Vivacell concentrator (Sigma), and frozen for storage. 

MaTFB affinity chromatography. MaTFB cells were thawed with a few crystals of benzamadine 

hydrochloride and DNAse I and were resuspended with 3 ml per g of cells in buffer A (50 mM HNa2PO4, 

pH 8, 300 mM NaCl). The cells were lysed by three passages through a French pressure cell at over 110 

MPa. The lysate was centrifuged at 35 000 x g for 30 minutes at 4 oC. The supernatant was removed and 

the pellet resuspended in buffer D (6 M guanidine hydrochloride (GuHCl), pH 7.4, 127 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 10 μM ZnCl, 10 μM MgCl2, 5% glycerol). The insoluble lysate was 

incubated at room temperature in buffer D for one hour. During incubation, the mixture was sonicated 

for two minutes at twenty minute intervals. The insoluble lysate was applied to a pre-equilibrated 1-ml 

Ni-resin column (Genscript). The column was washed with 5 column volumes (CV) of buffer D and 5 CV 

of buffer D containing 10 mM imidazole. The protein was eluted from the column with 2 CV of buffer D 

containing 250 mM imidazole.  

Renaturation of MaTFB by stirred cell concentration. MaTFB Ni-eluate (~2 ml) was placed in a stir cell 

concentrator. A series of dilutions to 50 ml and subsequent concentrations to 5 ml using a stirred cell 

concentrator (Millipore) was performed; dilutions were performed in the following order by adding the 

following buffers to the sample at a rate of one drop every two seconds: buffer E (4 M GuHCl, pH 7.4, 

127 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 10 μM ZnCl, 10 μM MgCl2, 5% glycerol), 

buffer F (2 M GuHCl, pH 7.4, 127 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 10 μM ZnCl, 
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10 μM MgCl2, 5% glycerol), buffer G (1 M GuHCl, pH 7.4, 127 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 

1.8 mM KH2PO4, 10 μM ZnCl, 10 μM MgCl2, 5% glycerol), buffer H (pH 7.4, 127 mM NaCl, 2.7 mM KCl, 10 

mM Na2HPO4, 1.8 mM KH2PO4, 10 μM ZnCl, 10 μM MgCl2, 5% glycerol), and buffer H again. Precipitated 

proteins were removed during dilution steps pro re nata. The sample was buffer exchanged into buffer J 

(50 mM Tris, pH 7.2, 150 mM NaCl, 10 μL ZnCl, 10 μL MgCl2, 10% glycerol), concentrated using a Vivacell 

concentrator, and frozen for storage. 

Renaturation of MaTFB by dialysis. MaTFB Ni-resin eluate was loaded into a 3-ml capacity, 3,500 

MWCO Slide-A-Lyzer Dialysis Cassette (Thermo) and placed in 200 ml of buffer E and stirred for 2 hours 

at 10 oC. The cassette containing the sample was transferred to 200 ml of buffer F and stirred for 2 hours 

at 10 oC. The cassette containing the sample was transferred to 200 ml of buffer K (1.5 M GuHCl, pH 7.4, 

127 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 10 μM ZnCl, 10 μM MgCl2, 5% glycerol) 

and stirred for 2 hours at 10 oC. The cassette containing the sample was transferred to 200 ml of buffer 

G and stirred for 2 hours at 10 oC. The cassette containing the sample was transferred to 200 ml of 

buffer H and was incubated overnight while stirring at 10 oC. Protein was buffer exchanged into buffer J, 

concentrated using a Vivacell concentrator, and frozen for storage. 

Electrophoretic Mobility Shift Assays. Procedure adapted from [112]. Complimentary 50-bp 

oligonucleotides (Integrated DNA technologies) of PmcrB, PdnaK, PmsvRa, and Pcontrol were annealed to 

generate DNA probes (see appendix for oligonucleotide sequences). DNA-binding reactions were 

prepared by incubating 5 μL of each protein (TBP alone or TBP and TFB), 5 μL 1 μM DNA probe, and 35-

40 μL of DNA binding reaction master mix (20 mM Tris pH 8, 15 mM MgCl2, 120 mM KCl, 12.5 μg/ml 

heparin, 5 mM DTT, 10% glycerol) for 20 min at 37oC. Binding reactions were loaded onto a pre-run 6% 

polyacrylamide gel in 0.5X TBE buffer and electrophoresed for 75 min at 75 V at 10 oC. Gels were stained 

using SYBR Gold (Life Technologies) and visualized using a Gel-Doc XR+ system (Bio-Rad Technologies). 
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Analytical methods. Protein concentrations were determined by the method of Bradford [114] using 

bovine serum albumin as a standard. Gene sequencing was performed by the University of Arkansas 

Division of Agriculture DNA Resource Center (Fayetteville, AR) using T7seq (5’-TAA TAC GAC TCA CTA 

TAG G-3’), a T7 universal sequencing primer, and T7term (5’-GCT AGT TAT TGC TCA GCG G-3’), a 

universal sequencing primer for the T7 terminator. Mass spectrometry of purified proteins was 

performed at the University of Arkansas Statewide Mass Spectrometry facility (Fayetteville, AR). SDS-

PAGE were performed by standard procedures. 

 

Results & Discussion 

Expression and purification of MaTBP1. The insertion of tbp1 into a pET28a plasmid fused with an N-

terminal six-histidine tag (His-tag) under the control of a T7 promoter (producing pMaTBP1) was verified 

by DNA sequencing. Induction studies were performed to optimize the expression of pMaTBP1 in 

Rosetta DE3 E. coli. Cells were grown at room temperature, shaking at 240 rpm, with 1-ml samples 

collected at time points of 2 hours after induction, 4 hours after induction, and 16 hours after induction. 

Time point samples were lysed by sonication, centrifuged to separate soluble and insoluble components, 

and analyzed by SDS-PAGE. It was determined that 4 hours of expression yielded sufficient MaTBP1 in 

the soluble form for purification. Ni-resin chromatography was performed, due to the affinity of the His-

tag on MaTBP1, but did not yield sufficient purity (Fig. 2.2A, Lane 9). Thus, heparin affinity 

chromatography was included in the purification process, as DNA-binding proteins often have an affinity 

to heparin due to its similarity to DNA in terms of structure and charge [115]. Though MaTBP1 was 

found in very early fractions exiting the column (Fig 2.1) and likely did not bind strongly to the heparin, 

the protein was pure after exiting the column (Fig. 2.2B, Lane 6). Interestingly, it exited the column in 

two waves- in fraction 2 and in fraction 3- potentially representing two different species of MaTBP1 with 

different conformational structures. The identity of MaTBP1 was confirmed by mass spectrometry. 
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MaTBP1 found in heparin fraction 2 was stored at a concentration of 0.35 mg/ml (15 μM); an amount of 

~0.7 mg was obtained. MaTBP1 found in heparin fraction 3 was stored at a concentration of 0.25 mg/ml 

(11 μM); an amount of ~0.5 mg was obtained. 

Expression and purification of MaTFB. The insertion of tfb into a pET28a plasmid fused with an N-

terminal six-histidine tag (His-tag) under the control of a T7 promoter (producing pMaTFB) was verified 

by DNA sequencing. Induction studies were performed to optimize the expression of pMaTFB in Rosetta 

DE3 cells. Cells were grown, shaking at 240 rpm, with 1-ml samples collected at time points of 2 hours 

after induction, 4 hours after induction, and 16 hours after induction under a number of different 

conditions, varying the temperature and amount of IPTG used for induction (Table 2.1).  MaTFB was 

predominantly expressed in the insoluble form under all conditions attempted. With little success using 

the Rosetta DE3 expression strain, pMaTFB was transformed into Tuner E. coli (Novagen) cells and 

further induction studies were performed. Tuner cells possess a lac permease mutation which allows for 

a more uniform distribution of IPTG among the cells of a culture to better control induction with respect 

to IPTG concentration. Induction studies did not yield any conditions which produced an appreciable 

amount of MaTFB in the soluble form (Table 2.1), likely MaTFB was expressed in inclusion bodies under 

all conditions. The presence of MaTFB in the insoluble cell lysate fraction was confirmed by mass 

spectrometry. Ultimately, due to the inability to express soluble MaTFB, it was decided to attempt 

renaturation of the protein in an effort to obtain viable MaTFB. This would require resuspending the 

inclusion bodies in denaturant and attenuating the concentration of denaturant in solution slowly to 

refold the proteins. Thus, insoluble cell lysate was resuspended in a denaturant during a 1 hour 

incubation with frequent sonication to break up the lysate pellet. Denaturation was first attempted in an 

8 M urea solution, yet MaTFB would not bind to the Ni-resin column under these conditions. 

Resuspension of insoluble cell lysate in a 6 M GuHCl solution did allow for protein binding to the Ni-resin 

column. On-column refolding was attempted by the washing of protein-bound Ni-resin column with 
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buffers of gradually decreasing concentrations of GuHCl. Protein would not elute from column after 

renaturing washes. Off-column refolding was then attempted. Protein was eluted from Ni-resin column 

using a 6 M GuHCl buffer with 250 mM imidazole (see Materials and Methods). Typically, ~7 mg of 

protein would be present in the Ni-eluate and MaTFB generally composed ~75 % of the total protein 

content (Fig. 2.3, Lane 5). Thus, ~5.25 g of MaTFB would be present in a typical Ni-eluate before 

renaturation. Renaturation was first achieved by the dilution and subsequent concentration of Ni-eluate 

with buffers of gradually decreasing concentrations of GuHCl in a stirred cell concentrator. As the 

concentration of denaturant was reduced, proteins precipitated out of solution and were removed by 

centrifugation. These proteins included both the contaminating proteins and a majority of the MaTFB. 

After denaturant had been completely removed, some MaTFB remained in solution (Fig. 2.3, Lane 6) 

and was stored at a concentration of 62 μg/ml (1.6 μM); an amount of ~50 µg was obtained. Stirred cell 

concentrator refolding was successful once, yet subsequent attempts resulted in all MaTFB crashing out 

of solution with the other proteins during reduction of the denaturant. As an alternative, dialysis yielded 

a successful renaturation and isolation of MaTFB (data not shown); MaTFB was stored at a 

concentration of 0.19 mg/ml (4.9 μM), an amount of ~50 µg was obtained. Both stirred cell 

concentration and dialysis are methods which have proven fastidious. Each have yielded a purification 

but once from a number of attempts, and each recovered only ~1 % of MaTFB present in the Ni-eluate.  

Functional analysis of purified proteins. In an attempt to assess the functionality of the recombinant 

proteins, electrophoretic mobility shift assays were performed. The promoters of mcrB [116], msvR [78], 

and dnaK [112] were chosen due to their capacity as strong promoters and their characterization in the 

literature; DNA probes of the promoter regions from these genes encompassing the BRE and TATA-box 

sites were constructed. A control lacking any consensus BRE or TATA-box was chosen from the coding 

DNA within msvR. These DNA probes were incubated with MaTBP1 and with MaTBP1 and MaTFB in 

attempts to observe protein-DNA complexes. No complexes were observed. Binding conditions and 
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electrophoresis conditions were manipulated for voltage (120 V, 100 V, 75 V, 50 V), temperature (room 

temperature and 10oC), and duration (at the various voltages, the proteins were run the entire length of 

the gel, half length, and quarter length), yet no complexing was observed. As a control to assess EMSA 

conditions, MaMsvR EMSA trials were conducted (see chapter three). MaMsvR-DNA complexing was 

observed, confirming correct EMSA conditions for MsvR. Dishearteningly, the lack of complexing for 

MaTBP1 and MaTFB may be due to a lack of functionality of one or both of the proteins. Though, 

because MaTFB requires MaTBP1 to bind DNA, a dysfunctional MaTBP1 would preclude successful 

complexing of MaTFB with the DNA in any fashion. Thus, even if EMSA conditions were correct, such a 

negative result may not necessarily indicate dysfunctionality in MaTFB. More hopefully, EMSA 

conditions may not yet have been found which were favorable to the complexing of MaTBP1 and MaTFB 

with the probes or, more likely, conditions may have been such that the complexes formed were 

unstable such that none or a negligible amount of the complexes survived the entire run of 

electrophoresis. Thus, functionality of the purified proteins was either negative or inconclusive. A more 

conclusive measure of protein functionality may be determined from promoter-specific in vitro 

transcription assays with the proteins. 

Conclusion. MaTBP1 and MaTFB were produced and purified, yet functional analysis of the proteins was 

elusive or negative. MaTBP1 and MaTFB were purified with the express purpose of use in an in vitro 

transcription assay with RNAP. A run-off transcription assay would incorporate a linearized plasmid upon 

which restriction digestion had incised a gene with a strong promoter. Incubation of this linearized 

plasmid with MaRNAP, MaTBP1, and MaTFB should yield a preinitiation complex upon the promoter. 

The addition of nucleotides with sufficient incubation time would allow for transcription to initiate and 

proceed. Gel electrophoresis would then reveal the presence of transcripts of the correct size 

predetermined by the incised gene if promoter-driven transcription had been performed. In such a way, 

MaTBP1 and MaTFB could be used in an in vitro transcription assay. An example promoter-driven in 
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vitro transcription assay protocol from Thomsen et al., 2001 [112] requires 4.9 pmol of TBP and 1.2 pmol 

of TFB for transcription assay reaction mixtures. MaTBP1 and MaTFB purified in this work are both 

stored at concentrations which would be sufficient for such an assay. This system could then be used to 

investigate the function of [4Fe-4S] clusters on MaRNAP activity by attempting transcription under 

oxidizing and reducing conditions. A complete in vitro transcription system would also be capable of 

looking at other aspects of transcription. For instance, the function of MaMsvR as a redox-sensitive 

transcriptional regulator could be further investigated by observing the different effects of oxidized 

MaMsvR and reduced MaMsvR on the transcriptional activity of msvR and of other potential MaMsvR 

target genes.  
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Table 2.1. Overview of MaTFB induction study conditions. Induction studies were performed with 

Rosetta DE3 and Tuner cells. Incubation temperatures attempted were 16 oC and room temperature (25 
oC). Concentrations of IPTG for induction attempted were 0.1 mM IPTG and 0.5 mM IPTG. An “x” 

indicates that the specific induction conditions yielded no appreciable soluble MaTFB. 

 16 oC 16 oC 25 oC 25 oC 

 0.1 mM IPTG 0.5 mM IPTG 0.1 mM IPTG 0.5 mM IPTG 

Rosetta DE3 x x x x 

Tuner x x x x 
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Figure 2.1. Chromatogram of MaTBP1 heparin purification. The Abs280 (blue) and conductivity (red) of  

liquid exiting the LP are illustrated in the chromatogram. UV absorbance peaks indicate protein leaving 

the column as two distinct species. Inset- chromatogram blown up and SDS-PAGE of fractions 2 and 3 

from heparin purification alongside Ni-eluate. Dashed box indicates the portion of the graph depicted in 

the inset image. 
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Figure 2.2. SDS-PAGE of MaTBP1 purification. A- SDS-PAGE of the steps from MaTBP1 Ni-resin 

chromatography. B- SDS-PAGE of select samples from entire MaTBP1 purification procedure. The band 

representative of MaTBP1 is indicated by a yellow arrow. 
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Figure 2.3. SDS-PAGE of MaTFB purification. SDS-PAGE of select samples from entire MaTFB purification 

procedure involving renaturation by stirred cell concentrator. Cells were lysed and soluble/insoluble 

components were separated by centrifugation (lanes 2 & 3). Insoluble components were resolubilized in 

GuHCl and purified by Ni-resin affinity chromatography (lanes 4 & 5). The concentration of GuHCl in Ni-

eluate was slowly decreased through dilution and subsequent concentration using a stirred cell 

concentrator. During attenuation of denaturant, contaminating proteins precipitated and were removed 

from solution, leaving pure MaTFB (lane 6). The band representative of MaTFB is indicated by an orange 

arrow.  
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Chapter Three: The Methanosarcina acetivorans thioredoxin system activates DNA binding 

of the redox-sensitive transcriptional regulator MsvR 

 

Introduction 

Methanogenic metabolism involves a number of Fe-S cluster enzymes which are vulnerable to 

oxygen [68]. Exposure to oxygen can be fatal to the activity of many methanogenesis enzymes, resulting 

in a dramatic reduction of energy conservation. Oxygen will not only precipitate the collapse of Fe-S 

clusters and the deactivation of affected proteins, but will produce reactive oxygen species (ROS), such 

as superoxide (O2
-) and hydrogen peroxide (H2O2). ROS are deleterious to many cellular structures. For 

instance, hydrogen peroxide can oxidize the thiol groups of neighboring cysteine residues, producing 

disulfide bonds and disrupting protein structure [117]. These damaging processes can result in a loss of 

metabolic activity and eventually lead to cell death, requiring mechanisms to decrease the production of 

ROS, actively remove ROS, and repair damaged proteins [67]. While many methanogens are capable of 

surviving oxygen exposure, cellular activity and energy conservation are attenuated during times of 

oxidative stress. Among the more aerotolerant methanogens are members of the order 

Methanosarcinales [118, 119]. The genomes of sequenced Methanosarcinales species encode a large 

number of putative antioxidant and repair proteins [120]. Mechanisms used by Methanosarcina sp. to 

sense and respond to oxidative stress, however, are not fully understood. 

 The formation of disulfides in proteins can be used to determine the redox state of a cell in an 

attempt to monitor the presence of deleterious ROS. Transcriptional regulators, such as OxyR in 

Eschericihia coli and other bacteria, use the formation of disulfide bonds to monitor the presence of 

H2O2 [121]. OxyR possesses cysteine residues with redox-sensing thiols; these thiols are oxidized in the 

presence of H2O2, forming disulfides and modifying the conformation of OxyR. This activation of OxyR 

increases the expression of H2O2 scavengers, Fe-S cluster repair enzymes, and thiol redox buffer 
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systems- oxidative stress recovery measures which combat the presence of the ROS. When the presence 

of H2O2 has been reduced to acceptable levels, the inactivation of OxyR is accomplished by the reduction 

of its redox-sensitive thiols by glutaredoxin 1, with reductant supplied by glutathione/glutathione 

reductase and NADPH [122]. Similar transcriptional regulators monitoring H2O2 levels have been 

identified in eukaryotes [123]. A redox-sensing transcriptional regulator (MsvR) has recently been 

discovered in methanogens. Methanothermobacter thermautotrophicus MsvR (MtMsvR) regulates the 

expression of F420H2 oxidase (FpaA) and itself by redox-sensitive binding to the promoter region of fpaA 

and msvR [78]. Under reducing conditions, MtMsvR serves as a negative regulator to repress expression 

of fpaA and msvR. Oxidation of MsvR results in the induction of fpaA and msvR.  

Similarly, MsvR from Methanosarcina acetivorans (MaMsvR), was shown to bind to its own 

promoter (PmsvR) only under reducing conditions [89]. The C-terminal V4R effector domain of MaMsvR 

contains cysteine residues with thiol groups which, when reduced to disulfide(s), have been shown to 

abrogate the binding of MaMsvR to the PmsvR promoter region. The cysteines within the V4R domain 

(C206, C225, C232, and C240) are postulated to function in redox-sensing, whereby thiol-disulfide 

exchange causes conformation changes which alter the ability of MaMsvR to bind an inverted repeat 

sequence motif (TTCGN7-9CGAA) upstream of PmsvR [89]; several genes of the M. acetivorans genome 

host promoter sites located near similar MaMsvR binding motifs, indicating them as candidate genes for 

which MaMsvR may serve as a redox-sensitive transcriptional regulator. Using the disulfide-reducing 

agent dithiothreitol (DTT), MaMsvR disulfide can be reduced and MaMsvR binding of PmsvR can be 

restored in vitro. However, the physiological reducing system used to restore MaMsvR binding once 

oxygen/ROS have been removed is yet unknown. The majority of organisms accomplish disulfide 

reduction using thioredoxin and/or glutaredoxin systems [124]. 

 A functional glutaredoxin system is unlikely to be present in methanogens, as they lack 

glutathione [125, 126]. However, disulfide reduction in methanogens may be mediated by thioredoxin 
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systems. Thioredoxins are small (~12 kDa) proteins which possess a CXXC active site motif necessary for 

disulfide oxidoreductase activity [124]. In the thioredoxin system, thioredoxin (trx) receives reducing 

equivalents from thioredoxin reductase (TrxR) with NADPH as the electron donor. Recent evidence 

indicates the majority of methanogens contain thioredoxins [90, 127]. Seven putative Trx homologs 

(MaTrx1-7) and a single TrxR homolog (MaTrxR) are found in M. acetivorans. Recent evidence revealed 

that M. acetivorans contains at least three functional Trxs (MaTrx2, MaTrx6, and Matrx7) and a 

complete NADPH-dependent thioredoxin system comprised of MaTrxR and MaTrx7 [90].  

 In the following research, it is shown that the M. acetivorans NADPH-dependent thioredoxin 

system can reduce disulfides in oxidized MaMsvR and restore PmsvR-binding activity, indicating that the 

thioredoxin system is the physiological MaMsvR disulfide reducing system. Potential gene MaMsvR 

binding sites are tested for their redox-sensitive binding with MaMsvR. 

 

Materials & Methods 

Protein purification and manipulation. Recombinant MaTrxR and MaTrx7 were expressed in E. coli and 

purified to homogeneity as previously described [90] by the Karr lab. Strep-tagged MaMsvR was 

expressed in E. coli and purified to homogeneity as previously described [89] by Addison McCarver. 

H2O2-oxidized MaMsvR (MaMsvRox) was prepared by incubation of MaMsvR with 100-fold molar excess 

of H2O2 in buffer A (20 mM Tris pH 8, 15 mM MgCl2, 120 mM KCl, 12.5 μg/ml heparin, 10% glycerol) for 

30 minutes. Residual H2O2 was removed by buffer exchange into buffer A using a NAP5 column (GE 

Healthcare). DTT-reduced samples of MaMsvR were prepared by incubating 100 μM MaMsvRox in buffer 

A containing 10 mM DTT for 20 min at room temperature. Residual DTT was removed using a NAP5 

column. The ability of the thioredoxin system to reduce MsMsvRox was assayed by incubation of 10 μM 

MaMsvRox with 1 mM NADPH, 0.5 μMMaTrxR, and 2.5 μM MaTrx7 for 1 hour at 37oC in buffer A. Protein 



43 
 

concentrations were determined by both the Bradford assay and using fluorescence by Qubit protein 

assay following the manufacturer’s instructions (Invitrogen). 

Electrophoretic Mobility Shift Assay (EMSA). Complimentary 50-bp oligonucleotides (Integrated DNA 

technologies) were annealed to generate the PmsvR DNA probe for use with MaTrx in EMSAs [89] (see 

appendix for oligonucleotide sequences). DNA-binding reactions were prepared by incubating 100 nM 

PmsvR with 8 μM MsvR in buffer A for 20 min at 37oC. Binding reactions were loaded onto a pre-run 6% 

polyacrylamide gel in 0.5X TBE buffer and electrophoresed for 75 min at 75 V at 10oC. Gels were stained 

using SYBR Gold (Life Technologies) and visualized using a Gel-Doc XR+ system (Bio-Rad Technologies). 

Separately, other promoter regions were assayed. Complimentary 50-bp oligonucleotides (Integrated 

DNA Technologies) were annealed to generate P0502, P0829, P2139, P2689, P3322, and P4164 probes (see 

appendix for oligonucleotide sequences). Probes were used in EMSAs as described. 

Quantitation of thiols in MaMsvR. Aliquots of MaMsvR-containing samples used in EMSAs were 

analyzed for total thiol content using DTNB [128]. MaMsvR was denatured and thiols quantified by the 

addition of 10 μL of MaMsvR-containing sample to 90 μL of 6M guanidine-HCl in 100 mM KPO4, pH 7.8 

containing 175 μM DTNB. Samples were incubated anaerobically for 15 min at room temperature and 

the absorbance at 412 nm was recorded. The number of thiols per MaMsvR monomer was calculated 

based on the concentration of TNB using ε412=13,700 M-1 cm-1 [128]. All samples were analyzed in 

triplicate. The background amount of thiols contributed by the denatured thioredoxin system was 

determined in samples containing NADPH, MaTrxR, and MaTrx7, but without MaMsvR. 

 

Results & Discussion 

MaMsvR contains ten cysteine residues, with two located in the DNA-binding domain, four in 

the V4R domain, and the remaining four located in the linker domain [89]. The cysteines within the V4R 

domain (C206, C225, C232, and C240) are postulated to function in redox-sensing, whereby thiol-
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disulfide exchange causes conformation changes which alter the ability of MaMsvR to bind an inverted 

repeat sequence motif (TTCGN7-9CGAA) upstream of PmsvR. Three of the residues (C206, C232, and C240) 

are conserved in all MsvR homologs [78]. Wild-type MaMsvR does not bind to PmsvR whereas a MaMsvR 

C206A variant does, indicating that C206 is critical for the redox-sensitive binding of MaMsvR to PmsvR 

[89]. While previous results have revealed that C225 was not involved in redox-sensing, C232 and C240 

appear to impact MsvR binding to PmsvR, yet their precise role is uncles. Thus, C206 is likely, and 

C232/C240 are possibly, involved in thiol-disulfide formation which serves to control DNA-binding by 

MaMsvR.   

 EMSA and thiol quantitation experiments were used to examine the role of thiol-disulfide 

exchange in controlling DNA binding by MaMsvR. First, MaMsvR was incubated with 100-fold molar 

excess of H2O2 to generate H2O2-oxidized MaMsvR (MaMsvRox). Quantitation of the thiol content of 

MaMsvRox under denaturing conditions revealed that four of the cysteines were not oxidized by H2O2 

(Table 3.1), indicating some cysteines are inaccessible to H2O2, and likely to not participate in redox-

sensing. Importantly, MaMsvRox was incapable of binding to the PmsvR region as revealed by the lack of 

shift when examined by EMSA (Fig. 3.1, lane 2). This result indicates that oxidation of the thiols of six 

cysteine residues is sufficient to inactivate MaMsvR DNA binding. The subsequent treatment of 

MaMsvRox with DTT resulted in detection of approximately nine thiols (Table 3.1), consistent with the 

total number of cysteines present in MaMsvR. Moreover, incubation of MaMsvRox with DTT restored 

binding to PmsvR (Fig. 3.1, lane 3). This result is consistent with H2O2 causing the oxidation of six thiols to 

disulfides, which causes reversible inactivation MaMsvR binding to PmsvR. The remaining four thiols are 

likely buried within the folded protein and are inaccessible to H2O2 or DTT, and therefore do not 

participate in thiol-disulfide exchange. 

 Similar experiments were performed to determine if the M. acetivorans thioredoxin system 

could also activate DNA-binding of MaMsvRox. Incubation of MaMsvRox with NADPH, MaTrxR, and 
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MaTrx7 (complete thioredoxin system) activated binding of MaMsvRox to PmsvR (Fig. 3.1, lane 6). The 

thioredoxin system alone did not cause a shift of PmsvR in the EMSA (Fig. 3.1, lane 4) and NADPH/MaTrxR 

in the absence of MaTrx7 also failed to activate binding of MaMsvRox to PmsvR (Fig. 3.1, lane 5). 

Moreover, incubation of MaMsvRox with the complete thioredoxin system also resulted in the detection 

of ten thiols (Table 3.1), consistent with all the H2O2-generated disulfides in MaMsvR being surface 

exposed and accessible to reduction by MaTrx7. Taken together these results demonstrate that the M. 

acetivorans NADPH-dependent thioredoxin system can activate PmsvR binding in oxidized MaMsvR and 

that MaTrx7 is required for the reduction of disulfides in oxidized MaMsvR.  The reduction of MaMsvR 

by MaTrx7 is the first evidence of thioredoxin playing a role in the regulation of the activity of a 

transcription regulator in a methanogen. The activation of MaMsvR DNA binding by MaTrx7 also 

integrates PmsvR regulation by MsvR into the physiology of M. acetivorans, which supports the future use 

of PmsvR in engineering oxidant-responsive gene expression strains. For example, it has previously been 

demonstrated that increased expression of catalase protects M. acetivorans from H2O2 [129]. 

 Additional promoters containing the inverted repeat sequence (TTCGN7-9CGAA) MaMsvR 

binding site motif were incubated with DTT-reduced MsvR to determine their potential as genes 

regulated by MaMsvR. Six genes were selected from the potential MaMsvR binding sites within the M. 

acetivorans genome [89]. Each of the selected genes encoded for hypothetical/predicted proteins: 

MA0502, MA0829, MA2139, MA2689, MA3322, and MA4164. MA0502, MA2139, and MA4164 were 

selected because they had been observed to be up-regulated during catalase challenge assays in 

unpublished microarray experiments with M. acetivorans. MA0829, MA2689, and MA3322 were 

selected because their sequences identify with an S-layer protein, an ATP-binding multidrug ABC 

transporter, and a flavoprotein oxygenase, respectively. Of the gene promoters investigated, only P3322 

indicated any interaction with MaMsvR. Naked P3322 vanished upon incubation of the probe with 

MaMsvRred (Fig 3.2). However, a shift indicative of P3322-MaMsvR complexing was not observed. This 



46 
 

may have been due to weak stability of the P3322-MaMsvR complex under experimental binding 

conditions. Nevertheless, msvR is the only gene yet proven to be transcriptionally regulated by MaMsvR; 

these results indicate that MA3322 has promise as another gene for which MaMsvR serves as a redox-

sensitive transcriptional regulator, which is interesting as its sequence identifies with a class of proteins 

which reduce oxygen [130]. The regulation of MA3322 could be further investigated with a promoter-

specific in vitro transcription system for M. acetivorans. 

Based upon results from previous studies and the results of this study, the following model is 

proposed for the regulation of the PmsvR binding activity of MaMsvR by thiol-disulfide exchange involving 

the thioredoxin system (Fig. 3.3). Oxidation of critical MaMsvR cysteines to disulfides occurs during 

exposure of M. acetivorans to H2O2 and other oxidants. Based on previous studies, C206 plays a crucial 

role, likely in the formation of intermolecular disulfide between MaMsvR monomers [89]. However, 

under the conditions tested here, at least six cysteines are involved in H2O2-induced disulfide formation, 

which may generate three intra-molecular, six inter-molecular, or some combination of intra/inter-

molecular disulfides. Disulfide formation likely effects a conformational change in MaMsvR, preventing 

binding to PmsvR. The deactivation of MaMsvR allows for RNAP to bind to the promoter site and 

transcription to proceed. Removal of oxidant and/or an influx of electron donor would allow for the 

reduction of MaMsvR disulfides by MaTrx7, with reducing equivalents supplied by MaTrxR and NADPH. 

The in vitro results presented here demonstrate that MaTrx7 can specifically reduce disulfides in 

MaMsvR, but we cannot rule out that the additional MaTrxs or other proteins also participate in the in 

vivo reduction of disulfides in MaMsvR and may do so under different conditions. However, the target 

specificity and the redox partner(s) of the other MaTrxs is currently unknown [90]. These data link the 

regulation of MaMsvR to the redox status of M. acetivorans and the availability of reducing equivalents 

(ex. NADPH). The results also reveal that methanogens have oxidant sensing systems which are 

integrated into metabolism in a manner similar to systems identified in bacteria and eukaryotes.  
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Conclusions 

 The reduction of disulfides was required for the restoration of MaMsvR DNA binding and was 

achieved using the M. acetivorans NADPH-dependent thioredoxin system. This is the first evidence of 

thioredoxin playing a role in the regulation of the activity of a transcriptional regulator in a methanogen 

and integrates regulation of genes by MsvR into the physiology of M. acetivorans. MaMsvR was 

demonstrated to interact with the promoter region of MA3322, indicating that MA3322 is a likely target 

for MaMsvR regulation. MA3322 encodes a putative flavoprotein oxidase which, if functional, would 

involve MaMsvR in the oxidative stress response of M. acetivorans. Thus, MaMsvR is likely a functioning 

component of M. acetivorans physiology and may be a participant in the oxidative stress response of the 

organism. 
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Table 3.1. Quantitation of MaMsvR thiols. 

Samplea Thiols 

MaMsvRox 4.0 ± 0.6 

MaMsvRox + DTT 9.0 ± 1.5 

MaMsvRox + NADPH/MaTrxR 4.8 ± 0.1 

MaMsvRox + NADPH/MaTrxR/MaTrx7 9.9 ± 1.0 

asamples were processed and thiols quantified using DTNB as described in the Materials and Methods 
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Figure 3.1. Activation of MaMsvR PmsvR binding by the M. acetivorans thioredoxin system. EMSA 

performed with PmsvR and the addition of the indicated components as described in materials and 

methods.  
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Figure 3.2. Potential binding of P3322 with MaMsvRred. EMSA performed with PmsvR and P3322. PmsvR 

exhibits a full shift when incubated with MaMsvRred; naked P3322 vanishes when incubated with 

MaMsvRred, yet no shift is visible.  
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Figure 3.3. Proposed model of MaMsvR activation by the NADPH-dependent MaTrxR-MaTrx7 

thioredoxin system in M. acetivorans. H2O2 causes the oxidation of thiols (SH) to disulfides which 

inactivates MaMsvR DNA binding, allowing transcription by RNAP. MaTrx7 receives reducing equivalents 

from NADPH/MaTrxR to reduce the disulfides to thiols and restore MaMsvR DNA binding.  
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Chapter Four: Conclusions 

 

 Methanogenesis is a metabolic pathway which was likely to have developed very early in the 

history of life. It is heavily reliant upon enzymes which incorporate iron-sulfur clusters and thus is easily 

disrupted by aerobic conditions. The metabolic pathways of primordial organisms, including 

methanogenesis, developed in an anoxic environment. Their likely reliance upon components to which 

oxygen was poisonous posed difficulties when the atmosphere of Earth was oxygenated. Under the 

aerobic conditions following the Great Oxygenation Event, such organisms required mechanisms to 

detect and combat oxygen and reactive oxygen species. Methanosarcina acetivorans is an extant 

archaeon engaging in methanogenesis. Two methods of redox-sensitive transcriptional regulation were 

investigated in M. acetivorans. RNA polymerase in M. acetivorans incorporates two Fe-S clusters, 

potentially for the correlation of transcriptional processes with the metabolic state of the cell: if oxygen 

attenuates methanogenic processes by destroying the Fe-S clusters of metabolic enzymes, the collapse 

of similar Fe-S clusters in RNAP will effect a different transcriptional state to conserve energy during 

metabolic stress. TATA-binding protein and transcription factor B were purified with the intent to 

develop an in vitro promoter-dependent transcription system to investigate the effects of Fe-S cluster 

integrity on RNAP activity. Redox-sensitive transcriptional regulation in M. acetivorans can be achieved 

in a more specific manner by the regulatory protein MsvR. The M. acetivorans NADPH-dependent 

thioredoxin system is capable of reducing MaMsvR disulfides to restore DNA binding. MaMsvR interacts 

with the promoter regions of its own gene as well as MA3322, a gene encoding a putative flavoprotein 

oxidase. These results indicate that MaMsvR is a functioning component of M. acetivorans physiology 

and is a likely participant in the oxidative stress response of the organism.  
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 These mechanisms of redox-sensitive transcriptional regulation in M. acetivorans are examples 

of the adaptations which ancient organisms adopted in the transition to an aerobic world. Iron-sulfur 

clusters and redox-sensitive thiol groups, constructs which make metabolic enzymes vulnerable to 

oxygen and reactive oxygen species, have been incorporated into enzymes involved in transcription so 

as to couple transcriptional processes with cellular redox state. This evolutionary trajectory is integral to 

the history of life on planet Earth and may be informative if examining the evolution of life systems on 

other worlds.  
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Appendix 

Oligonucleotide sequences for EMSA probes 

Probe name Oligo name Oligonucleotide sequence 

PmcrB  RSEMSAmcrB1 5’-TAT CGG AGA ACA CAA AAG ATT TAA GTA CCT TCT AAA CGA ATG AGA TTT CA-3’ 

PmcrB   RSEMSAmcrB2 5’-AGA AAT CTC ATT CGT TTA GAA GGT ACT TAA ATC TTT TGT GTT CTC CGA TA-3’ 

PdnaK  RESMSAdnaK1 5’-ATC TGG CTG GAA ATT AAA CTT TAA TTA ATC TAT AAC TAC AAT TTA CAA AC-3’ 

PdnaK  RESMSAdnaK2 5’-GTT TGT AAA TTG TAG TTA TAG ATT AAT TAA AGT TTA ATT TCCAGC CAG AT-3’ 

PmsvRa  RESMSAmsvR1 5’-GTA GTC ACG CGA ACG TTT TAT ATA TTC AAA ACG CAA CTT ATC TAA AGA TA-3’ 

PmsvRa  RESMSAmsvR2 5’-TAT CTT TAG ATA AGT TGC GTT TTG AAT ATA TAA AAC GTT CGC GTG ACT AC-3’ 

Pcontrol  RESMSAControl1 5’-GAG GGA CTG AAG GGT CAT GTA CCC GAC GAG AGA GTC CTC GGA AAA GAC CT-3’ 

Pcontrol  RESMSAControl2 5’-AGG TCT TTT CCG AGG ACT CTC TCG TCG GGT ACA TGA CCC TTC AGT CCC TC-3’ 

PmsvR  Pmsvr1  5’-TAT TTC AAA CAT GAT TAT TCG TAG TCA CGC GAA CGT TTT ATA TAT TCA AA-3’ 

PmsvR  Pmsvr2  5’-TTT GAA TAT ATA AAA CGT TCG CGT GAC TAC GAA TAA TCA TGT TTG AAA TA-3’ 

P0502  ma0502_a 5’-TAG AGT TTA AAA GTA CTT TTC GGG TTA CTC GAA TTT CAT AAA ATA TGC CC-3’ 

P0502  ma0502_b 5’-GGG CAT ATT TTA TGA AAT TCG AGT AAC CCG AAA AGT ACT TTT AAA CTC TA-3’ 

P0829  ma0829_a 5’-GAG GGA ATG AAA TCC TCT TCG GCA ATA GAC GAA AAT GGA CAA GTC TGA TT-3’ 

P0829  ma0829_b 5’-AAT CAG ACT TGT CCA TTT TCG TCT ATT GCC GAA GAG GAT TTC ATT CCC TC-3’ 

P2139  ma2139_a 5’-TTC TTT ATG AGT CTT CCT TTC GGC ACT TAC GAA CCG AGT CTG GGC TTT AC -3’ 

P2139  ma2139_b 5’-GTA AAG CCC AGA CTC GGT TCG TAA GTG CCG AAA GGA AGA CTC ATA AAG AA-3’ 

P2689  ma2689_a 5’-AAA AAC AGG AAG TAA GAA TTC GAA GAA GCC GAA ACC GAA AAA AAG CCG AT-3’ 

P2689  ma2689_b 5’-ATG GGC TTT TTT TCG GTT TCG GCT TCT TCG AAT TCT TAC TTC CTG TTT TT-3’ 

P3322  ma3322_a 5’-CAT CTT AAG TTC AAA GGT TTC GAG GTG AAC GAA TGA AAT TAA AAC CAA GC-3’ 

P3322  ma3322_b 5’-GCT TGG TTT TAA TTT CAT TCG TTC ACC TCG AAA CCT TTG AAC TTA AGA TG-3’ 

P4164  ma4164_a 5’-ACC TAT CAA TGT TCT CTT TTC GCA CCG CAC GAAGAC AGG ACC GGC CTG GT-3’ 

P4164  ma4164_b 5’-ACC AGG CCG GTC CTG TCT TCG TGC GGT GCG AAA AGA GAA CAT TGA TAG GT-3’ 
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