
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

5-2015 

Top-down Aluminum Induced Crystallization for Photovoltaics Top-down Aluminum Induced Crystallization for Photovoltaics 

Seth Daniel Shumate 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Electromagnetics and Photonics Commons, Oil, Gas, and Energy Commons, and the Power 

and Energy Commons 

Citation Citation 
Shumate, S. D. (2015). Top-down Aluminum Induced Crystallization for Photovoltaics. Graduate Theses 
and Dissertations Retrieved from https://scholarworks.uark.edu/etd/1111 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact scholar@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=scholarworks.uark.edu%2Fetd%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=scholarworks.uark.edu%2Fetd%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.uark.edu%2Fetd%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.uark.edu%2Fetd%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/1111?utm_source=scholarworks.uark.edu%2Fetd%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu


 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top-down Aluminum Induced Crystallization for Photovoltaics 

  



 

 

Top-down Aluminum Induced Crystallization for Photovoltaics 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy in Microelectronics-Photonics 
 
 
 
by 

 

Seth Daniel Shumate 
Hendrix College 

Bachelor of Arts in Physics and Spanish Literature, 2002 
University of Arkansas 

Master of Science in Microelectronics-Photonics, 2008 
 
 
 
 

May 2015 
University of Arkansas 

 
 

This dissertation is approved for recommendation to the Graduate Council. 

 

 

Dr. Hameed Naseem 
  

Dissertation Director   

 

 

Dr. Shui-Qing Yu 
 

Dr. William F. Oliver III 
Committee Member  Committee Member 

 

 

Dr. Douglas A. Hutchings 
Committee Member 

  

Prof. Ken Vickers 
Ex-Officio Committee Member 



 

 

   

The following signatories attest that all software used in this dissertation was legally licensed for 

use by Seth Shumate for research purposes and publication. 

__________________________________    __________________________________ 

Mr. Seth Shumate, Student    Dr. Hameed Naseem, Dissertation Director 

This dissertation was submitted to http://www.turnitin.com for plagiarism review by the TurnItIn 

company’s software. The signatories have examined the report on this dissertation that was 

returned by TurnItIn and attest that, in their opinion, the items highlighted by the software are 

incidental to common usage and are not plagiarized material. 

__________________________________    __________________________________ 

Dr. Rick Wise, Program Director   Dr. Hameed Naseem, Dissertation Director 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

 Passivating silicon solar cell surfaces is critical to fabricating very high efficiency and 

low cost photovoltaic devices.  The sun-facing surface of the solar cell, known as the emitter, is 

particularly important when designing a solar cell.  This work focused first on an alternative 

method of forming the emitter of silicon solar cells, and secondly on a method for improving the 

surface passivation of both these non-traditional and standard n-type solar cells.  

 Top-down aluminum induced crystallization (TAIC) was used for forming a 

polycrystalline silicon layer from amorphous silicon using aluminum to catalyze the 

crystallization at much lower temperatures than otherwise possible.  Inherent to TAIC is the 

doping of the resultant crystalline silicon by the aluminum, an acceptor impurity.  Thus, n-type 

solar cells with p-type polycrystalline emitters were fabricated.  It was found that several 

variations of this crystallization process occurred and their effect on solar cell performance was 

analyzed.  An inherent disadvantage to this method was the presence of defects at the junction of 

the highest efficiency solar cells fabricated.  These defects were passivated by an atomic 

hydrogen treatment.   

Another method of improving solar cells was invented, theoretically modeled, and 

experimentally explored.  The process improves silicon solar cells by hydrogen inactivation of 

acceptor impurities in the emitter (shown for both aluminum and boron in silicon).  Low surface 

doping has been linked to lower measured surface recombination velocities for solar cell emitters 

with high quality dielectric passivation layers.  By lowering emitter doping levels, n-type solar 

cell efficiencies were increased.    
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CHAPTER 1:  INTRODUCTION 

1.1 Motivation 

Great strides have been made in silicon photovoltaics.  The record-holding 25.0% 

efficient silicon cell was created over a dozen years ago [1.1].  Due to its complexity, however, it 

is not currently manufacturable for a competitive cost and simply serves as a target of device 

design.  While efficiency is important, the real goal of solar photovoltaics (PV) is to achieve the 

lowest manufacturable cost per peak-watt ($/Wp) while maintaining efficiencies just high 

enough to keep installation costs minimized.  In order for research to have a near-term impact on 

this industry, any efficiency gains must outweigh the monetary penalty of implementation.  This  

research involves two industrially feasible approaches to substantially reduce cost and/or 

increase efficiency of crystalline silicon photovoltaics. 

1.2 Solar Industry 

Every hour, the sun delivers enough energy to the Earth’s surface to provide for all the 

energy needs of the entire human population on an annual basis.  However, until recently, solar 

energy has not been cost-competitive with traditional fossil fuel resources.  The past 10 years in 

the solar industry have seen innovation coupled with reaching economies of scale.  The industry 

used to rely on polysilicon supply from the integrated circuits (IC) industry.  Once demand for 

solar outstripped supply for polysilicon around 2008, the cost for polysilicon reached a 

maximum of $450/kg to projections of below $20/kg in 2013 [1.2].  The reason for such a steep 

decline was vertical integration.  Too many major manufacturers, mostly Chinese-based 

companies, began producing their own polysilicon, and now the solar polysilicon market is in 

oversupply.   
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In the years leading up to this climax of polysilicon prices in 2008, a lot of progress, 

investment, and innovation around non-silicon technologies and thin-film silicon approaches to 

PV gained momentum.  The main competitors to silicon’s domination of the PV industry have 

been based on the material systems of cadmium telluride (CdTe), copper-indium-gallium-

selenide (CIGS), and amorphous/microcrystalline silicon (micromorph tandem junction solar 

cells).  Other technologies perhaps a little further behind than these three, at least in terms of 

commercial sales, are organic-based, multi-junction III-V based, perovskite, and dye-sensitized 

solar cells.  Despite this competition, silicon still retains about 90% PV market share with the 

most cost-effective $/Wp.  Figure 1.1 shows the recent and projected market share for thin-film 

(CdTe, CIGS, and a-Si:H-based technologies), p-type, and n-type silicon [1.3], [1.4].      

Figure 1.1  Installed photovoltaic capacity by segment per year. 

P-type silicon was historically used due to its proven radiation hardness for space 

applications.  Since most high-energy radiation is absorbed in the atmosphere, this design 

0

10

20

30

40

50

60

70

80

90

2008 2010 2012 2014 2016 2018 2020 2022

In
st

a
ll

e
d

 C
a

p
a

ci
ty

 (
G

W
)

Production Year

P-type Silicon Thin-film N-type Silicon



3 
 

requirement does not hold for terrestrial PV applications.  N-type silicon is seen as the superior 

material for silicon-based terrestrial photovoltaics due to a resistance to metallic impurities and a 

lack of boron-oxygen complexes which also reduce minority carrier lifetime.  Although the 

resistivity range for n-type silicon is harder to control due to the lower segregation coefficient of 

phosphorus in silicon, this issue may have been overcome by continuous Czochralski processes 

[1.4].  Since p-type silicon solar cells may degrade by up to a few absolute percent efficiency 

under illumination and generally have lower minority carrier lifetime, there is a focus in the 

industry to move to n-type.  Three major manufacturers use n-type material with many others 

having the switch to n-type on their technology roadmaps [1.4]:  Panasonic, SunPower, and 

Yingli.  This market shift has commercial implications for the top-down aluminum induced 

crystallization (TAIC) emitter solar cells as well as the hydrogen selective emitter (HSE) process 

explored in this work.     

Another major technological trend in academic research and industrial manufacturing has 

been the use of thin crystalline silicon technologies to replace wafer-based PV and amorphous 

silicon display technology.  While much of the impetus for this type of work as well as thin-film 

approaches based on other materials systems has disappeared since the polysilicon price plunge, 

wafers still account for about 40% of a finished module cost [1.5].  However, hundreds of 

millions of dollars have been invested in these approaches on the promise of PV modules with 

crystalline silicon efficiencies at thin-film prices.  The research in this work falls under the 

category of a seed-layer/epitaxy approach.  The goal of this approach is to epitaxially grow a 

solar cell absorber either homo- or hetero-epitaxially onto a seed layer which resides on an 

inexpensive substrate such as glass or stainless steel.  This approach has very low silicon usage.  

Industry standard solar cells today use about 5-6 g Si/Wp.  Cells with the seed-layer/epitaxy 
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approach could use as little as 0.05 g Si/Wp while reaching efficiencies comparable to those 

achieved by wafer-based silicon solar cells.   

The approach for creating seed layers as well as emitters for wafer-based solar cells was 

the TAIC process.  This is a variation of metal induced crystallization wherein the interaction 

between silicon and a metal results in crystallization well below the temperatures required for 

solid phase crystallization of hydrogenated amorphous silicon (a-Si:H).  These emitters and seed 

layers were assessed for their potential in high efficiency photovoltaics through theoretical 

considerations coupled with experimental validation.  Figure 1.2 shows a very basic flow-chart 

of generic parameters used throughout the research in this dissertation.  The variation on the left 

was used for p-type emitters of wafer-based solar cells and the variation on the right was used to 

Figure 1.2  Process flows of Top-down Aluminum Induced Crystallization. 
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create seed layers on glass for epitaxial thickened solar cells.  Other variations and combinations 

of these two modes of crystallization or lack of crystallization were observed and are discussed 

in more detail in Chapter 2 in addition to implications for photovoltaic device fabrication. 

Understanding of the TAIC emitter solar cells, the TAIC seed layer thin-film silicon solar 

cells, and the HSE solar cells required device modeling.  Three different programs were used to 

obtain quantifiable insights into experimental observations for each of the aforementioned 

technologies:  PC1D, AMPS-1D, and EDNA [1.6]-[1.8].  Each software package has its own 

advantages.  PC1D is the most commonly used PV simulation tool in both research and industry.  

AMPS-1D has the advantage of modeling interface defect states which PC1D does not offer.  

This was a very important choice for TAIC emitter solar cells because the p-n junction of these 

devices lies at the interface between the crystallizing amorphous silicon (p-type) and crystalline 

silicon (n-type).  EDNA was important for modeling the HSE solar cells because it is the only 

software package which allows for a custom dopant profile.  Experimental and analytical work 

was performed at the High-Density Electronics Center (HiDEC), the Arkansas Advanced 

Photovoltaics Research Center, University of Arkansas-Fayetteville Nanoscience and 

Engineering, the National Renewable Energy Labs, and Solecon Labs, Inc.     

 The TAIC process has several relevant applications for the creation of both wafer-based 

and thin-film solar cells.  Chapter 2 focuses on the work done for TAIC emitter solar cells.  

Major results include the highest efficiencies reported for this type of solar cell.  Spectra of 

aluminum-silicon interactions were observed ranging from aluminum doping of amorphous 

silicon with very minimal crystallization, partial crystallization, minimal layer exchange with 

extensive crystallization, and full layer exchange with extensive crystallization.  Most of these 
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possibilities were observed, analyzed, and fabricated into solar cells.  Solar cell output 

parameters, theoretical modeling, and future work are discussed. 

 Seed layer development to date is the subject of Chapter 3.  Collaboration between 

Silicon Solar Solutions, LLC and the National Renewable Energy Laboratories was developed 

based on this work.  Contributions of others will be distinguished from the contribution from the 

author, however both sets of results will be presented with original analysis to provide a 

complete understanding of TAIC seed layers.  Material requirements for thin-silicon solar cells 

will also be discussed at the end of Chapter 3. 

 Thin-silicon solar cells are achievable with epitaxial growth of silicon on TAIC seed 

layers.  One method for relatively low temperature, high-growth rate epitaxy developed recently 

is hot-wire chemical vapor deposition (HWCVD).  The distinction between HWCVD and CVD 

is essentially that a hot, current-carrying filament rather than the substrate surface dissociates the 

precursor gas.  This allows the substrate to be at lower temperatures, opening the possibility for 

using cheap substrates such as display glass.  A system in the Arkansas Advanced Photovoltaics 

Research Center (AAPRC) was modified for HWCVD.   

Efficiency of thin silicon solar cells is dominated by surface recombination.  

Hydrogenation was investigated to control the electrically active acceptor impurity concentration 

of aluminum in silicon.  Since the aluminum dopant concentration of TAIC thin films is 

inherently p+, the ability to control the doping of TAIC thin films could be important for several 

device applications.  Through researching hydrogen’s capability to electrically inactivate 

acceptor impurities in silicon, a novel use of this phenomenon was invented.   
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The hydrogen selective emitter (HSE) technology for creating selective emitters or 

selective back-surface fields for solar cells is discussed in Chapter 4 and Chapter  5.  Theoretical, 

experimental, and device work is presented.    The vacuum chamber modified for hot-wire 

hydrogenation was used for atomic hydrogen treatment of both TAIC solar cells to reduce 

junction recombination and TAIC thin-films on glass.  TAIC thin-films on glass were used to 

optimize the hydrogenation chamber.  In turn, the hydrogenated selective emitter invention is 

applicable to both TAIC solar cells and thin TAIC cells on glass, creating a suite of crystallized 

materials.  The invention of an enabling hydrogenation technology also has stand-alone research 

and commercial potential.  Chapter 6 includes overall conclusions and future work for each of 

these topics.    
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CHAPTER 2:  TAIC EMITTER SOLAR CELLS 

 Amorphous silicon is a highly defective, direct band gap semiconductor material.  Its 

electrical quality can be increased by the introduction of hydrogen.  Plasma-enhanced chemical 

vapor deposition (PECVD) using a silane gas (SiH4) is a method of choice for depositing high-

quality, hydrogenated amorphous silicon (a-Si:H).  Metal induced crystallization is a 

phenomenon in which amorphous silicon crystallization is catalyzed at temperatures lower than 

those required by solid phase crystallization.  Several metals have been identified to have this 

property [2.1].  Of all the metals, however, aluminum is the most promising as it contributes as a 

high level acceptor impurity [2.2].  Aluminum is also the third most abundant element in the 

Earth’s crust. 

 Aluminum induced crystallization of a-Si:H has been performed with several different 

aluminum/a-Si:H layered configurations.  Most of the work has been focused on aluminum 

induced layer exchange (ALILE) [2.3]-[2.40].  The initial and final ALILE configurations are 

shown in Fig. 2.1.  On both silicon and non-silicon substrates, large-grained, randomly oriented 

silicon occurs.  In 1981, Tsaur, et al., reported the possibility of a solid-phase epitaxy by this 

method and its application for solar cells.  Equal thicknesses of 200 nm e-beam evaporated 

aluminum and a-Si were deposited on (100) and multicrystalline n-type wafers and annealed 

Figure 2.1  Schematic illustrations of the aluminum-induced layer exchange process (ALILE). 
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between 400oC (4 hours) and 500oC (30 minutes) [2.3].  Excess interstitial aluminum was 

detected in the samples, which when annealed at 900oC increased carrier concentration and 

decreased hall mobility from 2 x 1018 cm-3 to 2 x 1019 cm-3 and 70 cm2/Vs to 26 cm2/Vs, 

respectively [2.3].  Solar cells made with this method achieved open-circuit voltages (Voc) of up 

to 540 mV on float-zone wafers [2.3].  This was the only report of using ALILE for the emitter 

of n-type wafer based cells found in literature.  Table 2.1 lists reported mobilities for ALILE 

films from the literature.  Compared to carrier mobility for single crystal silicon, the best 

material quality reported for this method was the polycrystalline sample from Jeong and Boo 

[2.40] with grain size around 15 µm.  Interestingly, the mobility is slightly higher for the 

polycrystalline value than the solid-phase epitaxy film’s mobility value reported by Tsaur, et al. 

[2.3].    

Table 2.1  Mobility of ALILE layers on glass or quartz substrates 

Al:a-Si 

Ratio 

Important 

Details 

Carrier 

Concentration 

(cm-3) 

Mobility 

(cm2/Vs) 

Mobility of C-Si 

at same carrier 

concentration 

(cm2/Vs) 

Reference 

1:1 8 nm Al2O3 at 
interface 
between 
aluminum 
and a-Si 

1.1x1018  90.91 
(61.7% of 
maximum) 

147.45 [2.40] 

450-550 
nm : 
500 nm 

No interfacial 
oxide 
mentioned 

2.6x1018 56.3 107.06 [2.5] 

400 nm 
: 400 
nm 

No interfacial 
oxide 
mentioned 

1x1019 10 70.85 [2.14] 

1 : 1.7 1 hour 
ambient 
oxidation 

Up to 7.5x1019 
for 34 nm film  

21 (field-
effect 
mobility) 

51.3 [2.25] 

200 nm 
: 200 
nm 

No oxide, 
Epitaxial 

2x1018  70  
(59.4 % of 
maximum) 

117.8 [2.3] 
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The most important characteristic when considering solar cells with deposited emitters 

rather than those formed by diffusion or ion implantation is open-circuit voltage (Voc); those 

recombination currents at the interface being especially detrimental.  This is because the junction 

is now at the interface as opposed to traditional cells where the junction is hundreds of 

nanometers below the cell’s surface.  Any source of recombination within a diffusion length of 

the junction will decrease Voc.  A good real-world example of the effect of interface defects on 

Voc for solar cells with deposited emitters is the heterojunction-with-intrinsic-thin (HIT) cell.   

 According to simulations, the Voc of a HIT cell can decrease by 20% if the number of 

interface defects such as unsatisfied silicon bonds increases from 1010 cm-2 to 1012 cm-2 [2.41].  

This is approximately only 1 defect every 10 nm.  Reduction in Voc has been found to be even 

more detrimental if the minority carrier barrier provided by the band offset of the i-a-Si:H is 

removed:  cells with Voc approaching 600 mV had 300 mV without this layer when using doped 

microcrystalline silicon as the emitter [2.42].  Although not in commercial production, other 

types of solar cells with deposited or grown emitters have been reported as well.   

Polycrystalline emitters for solar cells have the potential to dramatically increase the 

control with which solar cells are produced.  Performance benefits have been both 

experimentally and theoretically explored [2.43]-[2.45] due to both reduced back injection 

current, decreased emitter thickness, and the absence of a dead layer.  Previous work was 

plagued by high carrier losses from defective grain boundaries which override LPCVD films.  

Also, high deposition temperatures eliminate useful defect-passivating hydrogen.  To mitigate 

these problems, thinner emitters were employed which resulted in relatively high sheet 

resistances [2.43].  However, open circuit voltages in excess of 650 mV were obtained on 0.1 

Ωcm float zone wafers due to a minimized back injection current.  
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In order for high-efficiency polysilicon emitter solar cells to be viable, high throughput, 

low temperature processes must be utilized which result in well passivated films.  One such 

method is Top-down Aluminum Induced Crystallization (TAIC) of hydrogenated amorphous 

silicon (a-Si:H).  TAIC is a variant of metal induced crystallization in which little to no layer 

exchange occurs.  Most research involving aluminum induced crystallization has focused on 

layer exchange in which the starting layer configuration is substrate/aluminum/a-Si:H and the 

final structure after annealing is substrate/polycrystalline-Si/aluminum.  This structure has been 

used extensively as a seed layer for epitaxial growth of absorber layers for thin film polysilicon 

solar cells.  However, such high temperature processes (>400oC) may act to eliminate hydrogen 

mediated defect passivation due to hydrogen effusion.     

Work has been done with the TAIC configuration, substrate/a-Si:H/aluminum, involving 

the roles of stress, hydrogen content, and native interfacial oxide layers on crystallization.  Only 

two works have implemented the process for the use as an emitter layer in wafer-based solar 

cells [2.46], [2.47].  Efficiencies up to 7.35% [2.47] have been reported without the incorporation 

of a back surface field or antireflection coatings and almost no reported optimization on the films 

themselves with respect to resulting solar cell performance.  Section 2.8 of this chapter was 

previously published [2.48].   

A more thorough investigation of these solar cells as well as guidelines for efficiency 

optimization is presented in this chapter.  Higher values for each solar cell characteristic, new 

observations, and direct transmission-electron microscopy evidence of a-Si:H crystallization 

without layer exchange will be shown for the first time.   



12 
 

During the course of experimentation a spectrum of results were found.  Observed 

phenomenon ranged from doping amorphous silicon to partial crystallization to full 

crystallization with minimal layer exchange to full layer exchange.  The interesting thing is that 

each of these interactions may occur with the same processing parameters and different 

interactions were sometimes observed on a single sample.  Specific causes for such a wide 

variation were not identified, but material quality implications for photovoltaic devices 

fabricated from these different emitters were characterized.  Figure 2.2 is a graph of some of the 

solar cells fabricated and measured during the course of this research. 

 

Figure 2.2  TAIC solar cell characteristics determining efficiencies:  Jsc, Voc, and FF. 

 Most of the TAIC cells fabricated shown in Fig. 2.2 were processed under similar 

conditions:  amorphous silicon deposited on n-type silicon capped with aluminum of less 
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thickness and annealed at temperatures of 350oC or less.  The highest efficiency samples appear 

to have a Voc limit of just above 500 mV in the absence of BSF structures and surface 

passivation (light red box).  These samples were found to be mostly crystallized by analysis of 

their Raman curves. The light orange box represents samples with low similar Voc and low Jsc.  

These were found to be samples with layer exchange.  The samples with partial crystallization 

(light green box) were partially crystallized, benefitting from the passivation quality of intrinsic 

amorphous silicon.  In order to understand how these emitters affect device performance, it was 

necessary to determine how much of the original amorphous silicon had crystallized and how 

much remained amorphous, as the two materials have distinct optical and electronic qualities.   

 Crystallization fraction was determined using Raman spectroscopy.  Crystalline silicon 

has a characteristic, sharp peak at 520 cm-1 and a-Si:H has various peaks at 315 cm-1, 400 cm-1, 

and 480 cm-1 [2.49].  Once the Raman spectra were fitted to Gaussian curves for each of these 

peaks, the curves were integrated and a crystalline fraction Xc was found according to Eq. 2.1. 

X� =  ����	
��
����	
��
�����:�

                                 Eq. 2.1 

Icrystal and Ia-Si:H are the areas under the Gaussian peaks mentioned.  The wavelength of laser light 

used was 532 nm.  The attenuation coefficient for green light is approximately an order of 

magnitude higher for amorphous silicon than crystalline silicon.  Raman scattered light is shifted 

up in wavelength at room temperature to 545.9 nm and 547.15 nm for amorphous and crystalline 

silicon, respectively.  So not only the laser light, but the scattered light is also much more 

attenuated for amorphous as opposed to crystalline silicon.  These factors contribute to the 

qualitative nature of determining the crystalline fraction.     
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The crystalline fraction is an important predictor for a maximum possible short circuit 

current, Jsc.  Amorphous silicon is a highly defective material with poor carrier transport 

properties compared to crystalline silicon.  Additionally, as seen in Fig. 2.3, a-Si:H has much 

higher light absorption than crystalline silicon up to about 680 nm.  Excellent silicon solar cells 

will have quantum efficiencies close to 100% in this very important wavelength range.  41% of 

the photons from 350 nm to 1200 nm are from the 350 nm to 680 nm range.  For efficient TAIC 

solar cells, it is necessary to minimize the amount of parasitic amorphous silicon left.  To put this 

into perspective, the HIT cell which uses less than 20 nm of doped and intrinsic a-Si:H as the 

emitter of its solar has been reported to lose 3.5 mA/cm2 in Jsc compared to diffused junction 

silicon solar cells [2.42].    

Figure 2.3  Remaining 532 nm laser power versus depth for amorphous and crystalline 

silicon. 
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Amorphous silicon thickness typically used in this study was 300 nm.  Since the 

spectrum of observed TAIC interactions ranged from no crystallization to nearly full 

crystallization, a simple simulation based study of varying a-Si:H thickness was done to 

understand what Jsc values could be expected depending on crystallization fraction.  AMPS-1D 

was used to model heterojunction solar cells with amorphous emitters of varying thicknesses.  

Parameters used follow the model published by Hernandez-Como and Morales-Acevedo [2.41] 

with the exception of front amorphous silicon thicknesses.  Figure 2.4 shows the cross section of 

the modeled devices.  Both intrinsic and doped amorphous layers were modeled with changing 

thickness alternatively.   
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Figure 2.4  Absorption coefficients for a-Si:H (red) and crystalline silicon (green) vs. 

wavelength.  Photon flux density is also shown versus wavelength (blue line) with the color 

range superimposed. 
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Figure 2.5 shows the results of these simulations; carrier collection was reduced with 

increasing doped or intrinsic a-Si:H thicknesses.  However the reduction in Jsc was much more 

pronounced when the front surface intrinsic a-Si:H thickness was increased than when the p+ a-

Si:H thickness was increased.  In order to relate these results to the TAIC cells fabricated which 

had no intentional surface texturing or antireflection coatings, a front surface reflection of 25% 

was chosen.               

Figure 2.5  Simulated HIT solar cells.  a)  p+ a-Si:H front surface layer thickness was 

changed from 5 to 300 nm while i-a-Si:H layer was held constant at 5 nm.  b)  i-a-Si:H front 

surface layer thickness was changed from 5 to 300 nm. 

 Despite the differences in cell structure, this simple simulation study indicates two things:  

the highest efficiency cells reported in the previous thesis on this type of solar cell were most 

likely only partially crystallized and that at least some of the intrinsic a-Si:H remained undoped 

by aluminum during the crystallization process.  In 1999, H.A.. El-Jammal reported a TAIC solar 

cell efficiency of 4.9% with Jsc = 14.6 mA/cm2, Voc = 0.48, and FF = 0.7 [2.46].  As can be seen 

in Fig. 2.2, the Jsc values recorded from the solar cells made with the TAIC process have slightly 

higher Jsc than the simulated values in Fig. 2.6.  This may be because on those samples, full 

a)                   b)                                                                                             
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crystallization was achieved and little to no parasitic loss from excess a-Si:H was present.  

Further experimental evidence for this will be discussed in section 2.1.       

Figure 2.6  Jsc results from simulation of varying doped and undoped front surface a-Si:H 

layers in the HIT structures shown in Fig. 2.5. 

 The crystallization fraction was determined from the Raman spectra of an example TAIC 

cell.  The structure of this cell is shown in Fig. 2.7 with its J-V curve.  300 nm of intrinsic a-Si:H 

was deposited onto an n-type substrate.  The sample was quickly transferred to an evaporator and 

a 50 nm aluminum film was evaporated onto the amorphous silicon and the sample was annealed 

for 30 minutes under vacuum.  Aluminum contacts were evaporated on the front and back of the 

cell and front grid was photolithographically defined.  The cell was 5.85% efficient under one-

sun conditions at room temperature. 
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This solar cell has an emitter crystallization fraction of  87.6%  following the fitting 

method and crystallization fraction calculation procedure in [2.49].  The crystalline fractions 

used in Eq. 2.1 were found by integrating the areas of the peaks at 515 cm-2 and 520 cm-2 for 

defective and crystalline silicon, respectively.  The amorphous contribution was found by 

integrating the 480 cm-1 peak.  The 400 cm-1 represents another phonon mode of the same 

amorphous volume and was not included in the calculation, consistent with [2.49] and [2.50].  

Figure 2.8 shows the original data, four Gaussian fitting curves, and the cumulative curve (dotted 

line) closely matching the experimental data.   

Figure 2.7  Light J-V curve of the device structure shown.  Waviness near Jsc is due to 

varying power for the lamp array. 
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The broad peak at 515 cm-1 indicates that the TAIC material, contrary to layer exchanged 

material (see Chapter 3), at least for this sample, is highly defective, fine-grained polycrystalline 

silicon with a substantial fraction of a-Si:H remaining.  Unfortunately, Raman spectroscopy 

yields no extractable information about the location of the mixed-phase material.  This would be 

very useful information since carrier transport in an emitter with pockets of a-Si:H would behave 

differently than transport would in an emitter with an intact layer of a-Si:H.  Although this is a 

quantitative assessment of the layer, it lends itself to only qualitative insights into the 

performance of TAIC emitter solar cells. 

The defect peak is most likely exaggerated.  Figure 2.9 shows the Raman signal from the 

same system from the intrinsic silicon calibration sample where no grain boundaries and very 

few defects should have been present. 

Figure 2.8  Fitted measured Raman spectrum for the mostly crystallized TAIC solar cell. 
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2.1:  Mostly crystallized TAIC Solar Cells 

 The highest efficiency 1 cm2 device produced was 7.26% at room temperature under 1-

sun illumination.  This is the highest efficiency ever reported for this type of solar cell.  Obvious 

losses come from a lack of texturing, front and rear-side passivation, and a lack of antireflection 

coatings.  The world’s highest efficiency silicon solar cell had a short-circuit current of 42.7 

mA/cm2 [1].  Calculating the loss from the reflectivity of silicon (Fig. 2.10), this cell would have 

had a maximum of 28 mA/cm2 without texturing or an anti-reflection coating.   

A lack of front surface passivation would also decrease this current, but has a much more 

drastic effect on open-circuit voltage, which in turn lowers the maximum achievable fill factor.  

PC-1D was used to model a 23.8% efficient solar cell with a 300 nm emitter with a uniform 

doping of 1x1018 cm-3, near the doping expected for full crystallized TAIC emitters. Changes 

made to further account for the physical and electrical structure of the fabricated cells were 

adapted from this model.  A list of the important modeling parameters is given in Table 2.2.  The 

Figure 2.9  Raman spectrum of intrinsic silicon.  No amorphous peaks present and an 

artificial defect peak was used to fit the measured data. 



21 
 

PC-1D simulation indicates a maximum efficiency of 10.8% for the devices fabricated in this 

chapter.  PC-1D does not account for fill factor losses due to power loss in high sheet resistance 

emitters or losses due to grid coverage.  This loss and other discrepancies are addressed below.       

 

Table 2.2  High efficiency and simulated TAIC Cell structures compared to the actual 

highest efficiency cell fabricated. 

Parameter High Efficiency Cell TAIC Cell Best Actual Cell 

Front Reflectance 2% 34.5% No Texture/ARC  
Bulk Lifetime (µs) 1000 150 Prime Grade/n-type 

Front SRV (cm/s) 0 1x106 No Passivation 
Rear SRV (cm/s) 0 1x106 No BSF 
Voc (mV) 707.8 557.4 510 
Jsc (mA/cm2) > 40 23.8 20.7 
Fill Factor (%) > 80 81.4 0.688 
Efficiency (%) 23.8 10.8 7.26 

Figure 2.10  Reflection of silicon and AM1.5 photon flux vs. wavelength. 
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 The metal grid of the solar cells used in this work covers approximately 5% of the active 

area of the devices.  This reduces the simulated Jsc for the TAIC Cell in Table 1 to 22.61 

mA/cm2 from a maximum of 23.8 mA/cm2.  Losses in Voc are most likely due to non-ideal 

junction recombination.  Using the pseudo-fill factor equation with an ideality factor of 2 (the 

lowest observed for untreated TAIC cells), and the voltage of 510 mV obtained for this cell, the 

pseudo-fill factor assuming no losses due to poor grid design was found to be 0.69.  This was 

very close to the measured value.  Although the sheet resistance of these 300 nm emitters is 

relatively high at 1100 Ω/□, the power loss due to series resistance with such tightly packed grid 

lines (0.255 mm between lines) is negligible.  This grid design was meant for concentrator solar 

cells which would have much higher I2R power loss.   

Raman scattering data for this solar cell indicated 97.92% crystallization fraction (Fig. 

2.11).  This would mean a remaining current loss due to parasitic absorption from amorphous 

silicon of 2.08%, reducing the simulated current even further to 22.14 mA/cm2.  The remaining 

1.44 mA/cm2 were likely lost due to the highly defective nature of non-layer exchange TAIC 

films.  Using PC-1D with a minority carrier lifetime in the emitter of zero, the short circuit 

current density dropped by 1.8 mA/cm2.  Including all of these factors, the maximum theoretical 

efficiency for a TAIC solar cell following the fabrication scheme used here would be 8.73% 

assuming an ideality factor of 2, no front or rear surface passivation, material with a bulk lifetime 

of 150 µs, and the same crystallization fraction as that obtained by the highest real solar cell.  

However, similar unpassivated samples with well over 600 mV were obtained, albeit partially 

crystallized, the implications of which will be discussed in section 2.2.    

The external quantum efficiency (EQE) for this cell is shown in Fig. 2.12.  Also listed is 

the calculated short circuit current density for this cell of 23.89 mA/cm2.  This Jsc does not 
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include grid contacts.  The reflection of crystalline silicon as well as the ideal EQE based on this 

curve is shown.  Several conclusions are immediately obvious from this curve.  First, the short 

wavelength response is very poor.  The main reason for this is because there is not an effective 

passivation layer on the surface of this cell.  However, in comparison with a homojunction, 

which does not have as many defects in the emitter, it is also likely that the defective material 

quality in this TAIC emitter is causing additional losses.  Auger recombination can be ruled out 

because the typical doping density of TAIC layers has been found not to typically exceed 1x1019.  

Another discrepancy, which is simply an artifact of non-ideal semiconductor physics is that the 

spectral response of real devices does not cut off at silicon’s band gap (about 1100 nm or 1.124 

eV).  Despite that, it is also the case that this device has poor long-wavelength response, likely 

due to the absence of a back surface field and low quality base material.  An effective back 

surface field will fill out the longer wavelength EQE curve to be more square to between 900-

Figure 2.11  Raman scattering spectrum for the highest efficiency TAIC solar cell. 
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1000 nm.  Also, TAIC films, unless very low crystallization is observed, are typically textured.  

 

Figure 2.12  External Quantum Efficiency curve for fully crystallized TAIC solar cell (blue 

curve) 

The surfaces scatter light, and according to this EQE curve, also help trap light.  This is 

the only possibility for having a measured EQE higher than that of crystalline silicon if the 

assumption is that TAIC material is mostly crystalline silicon, an assertion supported by the 

crystallization fraction calculated from the Raman spectrum.  The texturing of TAIC emitters is a 

very interesting feature of the process.  The EQE peaks at 860 nm with a conversion of 76% of 

the incident photons into electrons.  However, pyramidal texturing reduces reflection at these 

wavelengths to around 10%, yielding EQE of 90% assuming the bulk material is a high enough 

quality.  While the reflection of TAIC emitters is superior to planar silicon, it does not match the 

performance of KOH preferential etching which creates (111) faced pyramids across the surface.  
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It would be interesting to create TAIC films on top of pyramidal textured silicon to see if the 

90% EQE limit could be exceeded.   

2.1.1 Microscopic characteristics of the highest efficiency solar cell   

Cross-sectional SEM and TEM analysis was done on the highest efficiency TAIC solar 

cell.  In order to enhance the fill factor, the crystallizing layer of aluminum was left.  350 nm 

aluminum was evaporated for the front contact.  Areas were opened up via photolithography and 

10 µm gridlines were left.  The TEM sample was taken from a grid line in order to see the extent 

of layer exchange in the original 50 nm layer of aluminum.  The TEM sample was prepared by 

digging out trenches with a Focused-Ion Beam capability of the FEI Nova HR-SEM.  The 

sample was then lifted out and attached with platinum to the post of a TEM grid.  SEM images 

reveal stark contrast between silicon and aluminum and insights into the crystallization process. 

Figure 2.13 shows the cross-sectional HR-SEM image of the TEM sample.  Dashed lines 

are meant to guide the eye.  The top-most layer is platinum used to protect the sample from ion-

beam damage during the focused-ion beam (FIB) cutting.  The second layer down is the grid-line 

applied after the crystallization process.  The third layer was the original aluminum layer.  Since 

there is high contrast in the SEM image between aluminum and silicon, it is evident that some 

layer exchange for this sample has occurred.  In the process of layer exchange, silicon dissolves 

into the aluminum layer and nucleates at grain boundaries.  This nucleation leads to lateral solid-

phase epitaxy within the aluminum layer (see Chapter 3).  The layer-exchanged crystalline 

silicon is limited in thickness to the thickness of the original aluminum layer.  However, as can 

be seen with the lighter shaded aluminum regions in the “polycrystalline layer” of Fig. 2.13, the 

aluminum mostly does not directly change places with the silicon.  In this picture, roughly 3% of 
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the junction has aluminum in direct contact with it.  These shunt paths did not seem to decrease 

the shunt resistance of this sample as it was in the MΩ range.  However, other solar cells with 

abundant layer exchange have displayed very severe shunt resistance degradation.   

Figure 2.14 shows the top-view SEM of a similar high efficiency, mostly crystallized 

solar cell.  The raised, flat portions are regions where silicon has crystallized within the 

aluminum layer.  Figure 2.15 shows the TEM cross-sectional image of the FIB sample from Fig. 

2.13.  Selected area electron diffraction shows the polycrystalline aluminum grid (top), a single 

grain with twin defects in the polycrystalline emitter layer, and the single crystalline silicon 

substrate.  This shows that the majority of the amorphous silicon did not exchange places with 

the aluminum layer and that most of it crystallized (97.92% crystallization fraction).   

Figure 2.13  Cross-sectional SEM Image of highest efficiency TAIC emitter solar cell. 
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Figure 2.14  HRSEM image of the surface of an almost fully crystallized TAIC solar cell 

surface. 
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2.2:  Partially Crystallized TAIC Solar Cells 

 Several causes exist which produce partially crystallized TAIC films.  Limiting 

aluminum, minimizing time, and limiting temperature were determined.  Other instances of 

minimal crystallization were observed without any obvious cause.  All of these resulted in partial 

crystallization, higher Voc, lower Jsc, and lower fill factors compared to the most efficient cell.  

The increased Voc can be explained by excellent junction passivation by the uncrystallized 

hydrogenated amorphous silicon.  The decrease in Jsc for these samples was due to increased 

absorption by hydrogenated amorphous silicon which is a parasitic absorber, because very few 

minority carriers generated here will be collected as useable electricity.  Despite being forgiving 

Figure 2.15  Cross-sectional TEM image and SAED patterns of TAIC emitter solar cell. 



29 
 

to the high sheet resistances of some crystalline silicon homojunctions that have been fabricated 

in this work, the concentrator grid design does have its limits, and fill factors may have been 

decreased because of the extremely high resistivity of these samples.  Another possibility is that 

evaporated aluminum may have also had high contact resistivity to the partially crystallized, and 

almost certainly lightly doped, silicon material.  Figure 2.16 shows the Raman spectrum of 

interest for a partially crystallized solar cell.  This TAIC cell was heated for only 5 minutes, 

limiting the amount of crystallization.  

    

The crystallization fraction, as calculated from the methods described before, was 49.2%.  

As compared to the best solar cell’s Raman spectrum, it can also be seen that there is a greater 

defect peak relative to the crystalline peak.  This indicates that the amorphous silicon that is 

crystallizing first in the TAIC process may be more defective than from the sample that was fully 

crystallized. Figure 2.17 shows the quantum efficiency curves of this cell, along with the ideal 

curve and crystalline silicon reflection peak.  The short wavelength response for these cells is 

Figure 2.16  Raman spectrum of the emitter of a partially crystallized TAIC solar cell. 
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extremely poor.  This is due to parasitic light absorption in the mixed-phase material which is 

only about 49.2% crystallized.  Even when carriers are generated within the emitter, they quickly 

recombine in the low mobility material.  The loss of short circuit current for these cells is not 

enough for the marginal Voc boost of partially crystallized samples like these.  The Voc for these 

samples was around 550 mV initially and had dropped by 200 mV two years later, indicating an 

instability in the passivation quality of the emitter at the junction over time.  

2.3:  Layer Exchange TAIC Solar Cells 

 Anomalous cells with similar Voc compared to the highest efficiency cell and high 

detected crystallization fractions were observed.  Upon further investigation these cells were 

found to have surfaces which were consistent with extensive layer exchange occurring over most 

of the surface.  For these cells, amorphous silicon moved into the aluminum and crystallized in 

Figure 2.17  External quantum efficiency of a partially crystallized TAIC solar cell. 
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plateau like shapes, limited in thickness to the thickness of aluminum.  After etching aluminum, 

large voids were left, replaced by air.  The low short circuit current densities for these types of 

cells can be understood from the problems of typical solar cells:  surface recombination and light 

trapping.  These cells are even worse than planar cells since there are multiple reflecting 

surfaces.   

 Figure 2.18 shows the Raman spectrum for these cells.  The crystallization fraction of this 

particular sample was calculated as 95.6%.  In addition to having slightly more amorphous 

material detected, this sample also shows a greater defect peak compared to the Raman spectrum 

from the best solar cell.     

Figure 2.18  Raman spectrum from a layer-exchanged TAIC emitter solar cell. 

 Figure 2.19 shows the quantum efficiency curve for this cell as well as the reflection of 

crystalline silicon and the ideal quantum efficiency curve based on reflection of planar, single 

crystalline silicon.  Like the partially crystallized samples, these layer exchanged cells have 

extremely poor short wavelength response.  However, this characteristic cannot be explained by 
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excessive parasitic absorption due to amorphous material because this emitter is almost 

completely crystallized.  However, the total short circuit current density of this cell was 

calculated as 10 mA/cm2, which was even lower than that for the partially crystallized cell.  

Large portions of these emitters are effectively air/silicon/air/silicon interfaces.  Additional 

detrimental characteristics is that these additional surfaces are unpassivated.  It is well known 

that surface texturing, or increasing surface area, also increases surface recombination velocity.  

The combination of these two features eliminates quite a bit of the useable light entering the cell.  

These air/silicon/air/silicon interfaces are relatively planar as the top layer is dictated by the 

aluminum surface.   

 
Figure 2.19  Quantum efficiency for a layer-exchanged TAIC emitter  solar cell. 

This additionally minimizes light scattering.  For light that does enter the cell, the path 

length in this case is mostly limited to the thickness of the cell.  Contrarily, textured surfaces 
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scatter light into the cell, increasing the path length of many photons, increasing the likelihood 

the photons will create charge carriers, and increasing the chances they will be converted to 

useable electricity.     

 The visual appearance of these cells is strikingly colorful.  Typically neon green or pink 

will be seen which is likely determined by selective reflection based on the original thickness of 

the aluminum determining the thickness of both the top layer of silicon as well as the thickness 

of the air interfaces below the top “plateau” of crystalline silicon.  This is a very similar process 

to crystallizing large grain polysilicon layers on glass, as described in Chapter 3.  Like large 

grain polycrystalline films on glass, layer exchange on these emitters may have been promoted 

by excess formation of a native oxide layer.   

 Figure 2.20 shows an HR-SEM image of an emitter that was almost exclusively layer 

exchanged.  The left image shows that the majority of the film does indeed have a relatively 

Figure 2.20  Surface view of mostly layer exchanged TAIC emitter. 
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planar surface with what appear to be 100-500 nm irregularly shaped holes spread evenly across 

the picture.  Optically, these films are highly reflective and reflection is relatively non-diffuse.  

The highlighted area was magnified for a better view of the multi-layered structures that result 

from this type of crystallization.  While the amorphous silicon moves into and crystallizes 

laterally in a planar fashion, resembling the original aluminum layer, how the rest of the 

crystallization occurs remains for speculation.  One possibility is that the remaining amorphous 

silicon also enters the newly layer exchanged aluminum and crystallizes within it until most of 

the amorphous material has crystallized.  Another possibility is that the aluminum diffuses into 

the amorphous silicon and crystallizes it without much movement from the amorphous silicon 

itself.   

2.5:  Effect of Rapid Thermal Annealing 

A method of improving the open circuit voltage was developed for TAIC cells.  High 

Voc samples showed less improvement, but samples with Voc below 400 mV could show 

improvements in excess of 100 mV when heated for five seconds at 475 oC.  One possible cause 

for this improvement was the realease of hydrogen near the silicon/polycrystalline or amorphous 

silicon interface, passivating defects.  Another possible reason is the activation of more 

aluminum acceptor impurities, thus increasing the potential for Voc.  One partially crystallized 

sampling having undergone this treatment showed an increase from 550 mV to 600 mV.      

2.6:  Effects of Hydrogenation on TAIC Solar Cells 

 In an attempt to heal interfacial defects which likely are the dominant factor limiting Voc 

through increased reverse saturation current densities for these solar cells, a device with one of 

the lowest initial Jo values underwent catalytic hydrogenation (see Chapter 5 for chamber 

details).  An interesting and seemingly contradictory result was observed.  The reverse saturation 
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current decreased, signaling lower junction recombination.  At the same time, the open-circuit 

voltage decreased and the ideality factor also decreased.  Figure 2.21 shows the Dark J-V curves 

before and after hydrogenation and Light J-V characteristics are given in the table in the figure.     

 

 Several interactions are likely happening.  1)  The TAIC emitters are lightly doped 

compared to standard solar cell emitters:  < 1x1018 cm-3 versus > 5x1019 cm-3.  Ideally, Voc 

increases with decreasing reverse saturation current density.  After hydrogenation, the reverse 

saturation current of this cell decreased, which would ideally result in a boost of efficiency.  2)  

The reverse saturation current is a recombination current.  Hydrogen passivates dangling bond 

defects in silicon, and this is the likely cause for decreasing the reverse saturation current in this 

device.  3)  Lightly doped emitters suffer from increased SRH recombination in the absence of 

Figure 2.21  Dark J-V curves and Light J-V characteristics before and after hydrogenation. 
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surface passivation.  This has the effect of decreasing Voc and Jsc, both of which can be 

observed after the hydrogenation treatment.  4)  Decreases in Voc lower the maximum possible 

fill factor, however these fill factors are within the measurement error.   

The aluminum-hydrogen complex which inactivates the shallow acceptor energy level in 

silicon has weaker bond energy than that of hydrogen bonded to a dangling silicon bond.  It is 

likely that hydrogen passivation of defects at the interface could be accomplished by 

hydrogenation followed by a low-temperature anneal below 350 oC.  The solar cell was annealed 

at 350oC which reactivated the aluminum dopants.  The Dark I-V curve did not fully recover to 

its initial state.  The reverse saturation current and ideality factors were slightly lower than the 

pre-hydrogenation values.  The Voc was 3 mV higher at 499 mV.  Since the hydrogen 

inactivation of the aluminum acceptor impurity reactivates at around 150 oC, it might be possible 

to heal many of the dangling bond defects throughout the material, then restore the electrical 

activity of the dopants while avoiding losing the hydrogen passivation.         

2.8:  Effects of amorphous silicon quality on TAIC emitter solar cells  

The influence of hydrogen content of PECVD a-Si:H on TAIC solar cell performance 

was also investigated.  Fourier-Transform Infrared Spectroscopy (FTIR) has been used to 

determine the total bonded hydrogen content as well as relative amounts of Si-H and Si-

H2/clustered Si-H bonding; the latter is typically indicative of voids in the material and device 

quality a-Si:H has a minimum of this.  It has not been experimentally determined whether 

device-quality a-Si:H is the ideal precursor to device-quality polycrystalline films for TAIC 

processing.   
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1”x1” SSP [100] 1-3 Ωcm n-type wafer die were cleaned with 1:1 H2SO4:(30%)H2O2 

followed by a 10 second submersion into a 10% HF solution.  The samples were dried with N2 

gas.  200 nm a-Si:H was deposited at 1.85 Å/s in an RF parallel plate reactor on 8 of the 1”x1” 

samples with 25% silane in helium at 30 mW/cm2, a substrate temperature of 155 oC, a chamber 

pressure of 0.5 Torr, and a silane flow rate of 20 sccm.  200nm a-Si:H was deposited at 2.2 Å/s 

with the same processing conditions except that the precursor gas was 100% silane.  Batches 

with 100% silane with substrate temperatures of 113oC and 250oC were also deposited at 3.47 

Å/s and 2.36 Å/s, respectively.  FTIR analysis was done following [2.50] on one double sided 

polished 1”x1” wafer from each deposition in order to determine atomic percentages of hydrogen 

as well as to calculate the microstructural parameter R for each deposition.  A Nicolet 8700 FTIR 

was used for hydrogen measurement at a resolution of 6 cm-1 in air.  Within 10 minutes after a-

Si:H deposition, samples were transferred to an Edwards Auto 306 vacuum thermal evaporator.  

1x10-5 mBar was reached before 50nm of high purity aluminum was evaporated at a rate of 

approximately 1nm/s.  Samples were then annealed for 35 minutes each, including a 2 minute 

ramp time from room temperature to 350oC under 2x10-2 Torr vacuum for crystallization.  After 

etching the aluminum, approximately 600 nm of aluminum was thermally evaporated on the 

front and back.  Two metallization patterns were used, one with a shadow mask with and one 

photolithographically defined, one with approximately 16% grid coverage and the other with 

approximately 5% coverage.  None of the reported cells incorporate surface passivation, BSF, or 

antireflection coatings.  

Table 2.3  Si-H bonding properties of a-Si:H with varying deposition conditions. 

 TOTAL H SI-H SI-H2 R 

Helium 8.81% 6.63% 1.01% 0.132 

113C 14.56% 4.40% 10.66% 0.708 

155C 8.92% 6.44% 2.35% 0.267 

250C 6.26% 4.24% 0.51% 0.107 
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In agreement with reports in the literature for PECVD a-Si:H, increasing the substrate 

temperature was found to decrease total hydrogen content as well as the microstructure 

parameter, R (Table 2.3).  The microstructure parameter is defined as [Si-H2]/([Si-H2]+[Si-H]).  

Atomic percentages of the total and different bonding configurations were calculated following 

[2.50].  The introduction of helium gas in a flow ratio of 3:1 to SiH4 decreased R by a factor of 2 

as compared to films prepared with pure silane at the same temperature and pressure.   

Figure 2.22 shows the Gaussian fits for the 640cm-1 peak used to calculate the total 

hydrogen concentration in each of the sample sets.  The integral of the Gaussian can be 

calculated and multiplied by a proportionality constant (A = 2.1x1019cm-2) to find the 

concentration of Si-H bonds regardless of bonding configuration.  The Si-H and Si-H2/clustered 

Si-H peaks are counfounded around 2000 cm-1 (A = 9x1019 cm-2) and 2090 cm-1 (A = 2.21x1020 

cm-2), respectively, and required the superposition of Gaussian functions in order to separate 

their contributions from one another.  Typically an R value of 0.1 is representative of device-

quality a-Si:H.  Only the helium and 250oC samples approach this microstructure.  The 155oC 

pure SiH4 sample has a significantly greater R value, indicating an increase in voids throughout 

the film.  As expected, the 113oC sample, while having the highest total hydrogen content, also 

had the highest R value, indicating the worst quality film.  However, it should not be assumed a 

priori that the best quality amorphous silicon leads to the best crystallization quality.  In this 

paper, crystallization quality means that the emitter region formed through TAIC should be 

judged based on typical solar cell outputs:  Voc, Jsc, and FF as determined by series and shunt 

resistances. 

Figure 2.23 shows J-V curves for representative cells from each sample set.  The results 

are so drastically different that some samples from each of the poor quality sets were processed 
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twice to ensure these problems were not caused by a processing error.  The 113oC samples 

displayed extremely low shunt resistance, with the substrate acting almost as a simple resistor 

between the front and back contacts.   

 

Figure 2.22   640cm-1 wavenumber Gaussian peaks. 

 

To illustrate this, the resistance between the front and back of one of the cells from this 

set was 15Ω.  In order for this to be possible with 1 Ohm-cm n-type silicon of 380µm thickness, 

the front and back contacts would only need an area of 2.5x10-3cm2.  Since the grid coverage for 

this cell was 16% of a 4cm2 total area, the resistive equivalent of 1.2% of the grid should be in 

direct contact with the substrate.  The HRSEM image (see Fig. 2.24) for this sample reveals 
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structures covering approximately 16% of the film.  It is possible that these structures are the 

surface feature of the shunting paths. 

 

Figure 2.23 Example J-V curve under AM1.5 all film types. 

Both the helium and 250oC samples, which have hydrogen content most closely matching 

device-quality amorphous silicon, did not give the best emitter properties.  The shunt resistance 

measured for the helium sample was, like the 155oC pure SiH4 sample, greater than 1MOhm.  

The series resistance as well as the lower Jsc value can be explained by the film only being 

partially crystallized.  A significant amount of uncrystallized a-Si:H would lead to current loss as 

well as increased sheet resistance.  However, the 250oC samples had major shunting like the 

113oC samples.  The best case from this experiment, by far, was the pure SiH4 deposited film 

with a substrate temperature of 155oC even though the hydrogen bonding distribution of this film 

is not characteristic of device quality a-Si:H.  Papadopoulos, et al., reported an improvement of 
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29.9% in short circuit current density with the addition of a simple SiO2 ARC [2.44].  The same 

consideration would give the 155oC sample from this experiment a Jsc of 32mA/cm2 without 

additional texturing.  

It is important to note that the RTA step only benefitted the 250oC samples by changing 

pre-metallization Voc from 0mV to between 100-280mV.  The Helium and 155oC samples 

remained unchanged with 500-505mV before metallization, and the 113oC samples actually 

degraded due to the RTA from 400-482mV to 355-424mV.  The RTA step was also performed 

on the helium FTIR sample with no loss of hydrogen.  This is consistent with reports in the 

literature of the relative immobility of hydrogen in these films even at processing temperatures 

much higher than those used here.  

Figure 2.24 Surface view of TAIC emitters with distinct amorphous silicon. 

 



42 
 

Hossain, et al., found that increasing total bonded hydrogen concentration in sputtered a-

Si:H decreased the crystallization initiation temperature [2.52].  These films were not 

demonstrated in a device and the majority of hydrogen bonded was in Si-H2 and clustered 

monohydride groups, the opposite of hydrogen in device-quality amorphous silicon.  At least 

some of these films were most likely layer inverted [2.38].  The samples most like sputtered 

films from this experiment were from the 113oC set.  Partial layer inversion, in which silicon 

exchanges places in some areas with aluminum, would explain the low shunt resistance.  Despite 

the relatively low values for the best of samples, low Voc is not inherent to the TAIC process 

and values exceeding 600mV have been obtained with different experimental procedures than 

described here. 

TAIC has been performed with varying SiH4 dilution as well as substrate temperature.  

Initial bonded hydrogen concentrations were measured with FTIR.  The results indicate that 

hydrogen characteristic of device-quality a-Si:H is not necessarily optimal for crystallization 

with the TAIC process for the purpose of the emitter layer of silicon solar cells.  Further work 

will be necessary to control the a-Si:H microstructure and its influence on the TAIC process. 

The diffusion of aluminum into, the effusion of hydrogen from, as well as the 

crystallization of a-Si:H are the three causes for hydrogen loss during the TAIC process.  The 

breaking of bonded hydrogen and its release changes the local and global microstructure of the 

amorphous network [2.51], either inhibiting or promoting TAIC or layer exchange mechanisms 

of crystallization.  These factors also influence film stress which has been found to influence 

crystallization.  To develop a full understanding of TAIC, the interplay between hydrogen and 

film stress and the resulting crystallization kinetics must be explored.    
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2.7:  a-SiC:H Crystallization-Stop Layer  

 Another way to optimize these solar cells would be to have an interfacial layer with low 

light absorption and excellent surface passivation.  This layer should also be resistant to 

crystallization at temperatures at which the TAIC process takes place.  One such candidate 

material is hydrogenated amorphous silicon carbide.  Carbon doping in amorphous silicon 

increases the material’s band gap, thereby decreasing parasitic absorption characteristic of HIT 

cells.  a-SiC:H has also been found to be capable of providing excellent surface passivation on 

silicon [2.53].  Aluminum induced crystallization of a-SiC:H has been reported in the literature at 

600oC [2.54], [2.55].   

It has been reported that during the fabrication of HIT cells, even small pockets of 

interfacial epitaxy will drastically reduce Voc [2.56].  Were a-SiC:H incorporated into TAIC 

solar cells, it would be very important to be sure that no crystallization takes place at 

temperatures used for crystallization of a-Si:H.  To do this, a-SiC:H was deposited in MPZ 2 

with the following parameters:  5 sccm SiH4, 25 sccm CH4, 0.5 Torr, 3W, 155oC substrate 

Figure 2.25  FTIR spectra of before and after annealing a-SiC:H 
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temperature.  Figure 2.25 shows FTIR data of a-Si:C before and after a 400oC anneal with 50 nm 

aluminum.  Figure 2.25 shows that a small amount of hydrogen has left the sample which is 

indicated by a decrease in the signal strength around 640 cm-1.  400oC is 50oC higher than the 

temperature needed to begin driving out hydrogen from Si-H bonds.  The decrease here is most 

likely indicative of that process, and not crystallization. 

This temperature is above any used for creating any of the solar cells in this chapter.  No 

visible change was observed in the film.  After this, a solar cell was attempted with 30 nm a-

SiC:H and 200 nm a-Si:H crystallized with 50 nm aluminum.  The voltage was below 300 mV, 

indicating a poor interfacial quality between the a-SiC:H and the crystalline silicon.  In order to 

prove this method, future work needs to include ensuring the passivation quality of the deposited 

a-SiC:H layer through lifetime testing.   

2.8  Notable Anomalous Interactions  

Some partially crystallized samples were not intentionally limited to partial 

crystallization through means of limited aluminum or limited crystallization time.  One 

possibility is that the aluminum evaporation process for these samples was somehow the culprit.  

Reusing the tungsten boats with alloyed aluminum and tungsten is perhaps a cause.  If, for some 

reason at least partial layer exchange is needed to initiate full crystallization, then the aluminum 

deposited on such samples may have inhibited layer exchange from taking place.  Another 

possibility along these lines is that the rate of aluminum evaporation was high enough to cause 

sample heating and crystallization at the interface between aluminum and amorphous silicon.  

This may have inhibited further crystallization as well.  Regardless, these incidents proved to be 

very interesting.  Voltages in excess of 620 mV was achieved on such samples, indicating that 

some sort of p-i-n heterojunction was established.  The temperatures at which this sample was 
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processed would be enough to release some hydrogen near the interface between amorphous and 

crystalline silicon, possibly healing defects that existed there from the plasma deposition of 

amorphous silicon while at the same time crystallizing a very small fraction of the amorphous 

silicon near the surface:  calculated as 2.58% crystallization. 

The Raman spectrum for this sample is shown in Fig. 2.26.  While this sample may 

appear mostly amorphous, there is a slight hump on the 480 cm-1 peak centered around 518 cm-1, 

which should be attributed to crystallized silicon in a strained, defective, or contaminated area.   

Figure 2.26  Raman spectrum of the TAIC sample with the highest Voc. 

Unfortunately this sample was not large enough to process into a solar cell, but it 

certainly would have suffered from large parasitic absorption and low fill factors limiting its 

efficiency. 

 Quite a wide variety of partially crystallized samples were observed with various levels 

of crystallinity, microscopic, and macroscopic appearance.  Macroscopically, the high voltage 

sample appeared unchanged compared to freshly deposited amorphous silicon.  Samples could 

also appear milky to purple in color with layer exchanged texturing as well.       
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CHAPTER 3:  TAIC SEED LAYERS ON GLASS FOR EPITAXIAL SOLAR CELLS 

Thin-film silicon solar cells remain a promising technology to approach wafer-based 

efficiencies at thin-film costs.  Epitaxial growth of silicon cells on seed layers has been a 

prominent approach with demonstrated efficiencies.  However, cost-effective seed layers on 

glass or other low-cost substrates still remain one of the biggest road blocks to the success of this 

technology.  Top-down aluminum induced crystallization (TAIC) has been developed to produce 

large-grain silicon seed layers on glass.  Initial cells have been fabricated by Hot-Wire CVD at 

the National Renewable Energy Laboratory (NREL).  The seed layers with grain-gaps show poor 

electrical characteristics comparable to reported cells grown on wafer templates with defect 

densities around 2x106 cm-3.  New seed layers without grain gaps have been developed and are 

described here.      

There are three main factors yet to come together to enable thin-film silicon solar cells:  

material quality, light trapping, and cheap substrates.  The first two have been proven [3.1]-[3.2] 

and the third requires high-quality silicon seed layers.  Researchers at NREL have achieved 

630mV for epitaxial cells grown on “dead” wafers, in part due to high material quality and in 

part due to the incorporation of the HIT architecture [3.1].  A high fill factor of 78% was also 

reported [3.1].  CSG solar has achieved 29.5mA/cm2 with solid-phase crystallized silicon of only 

1.4µm [3.2].  This excellent value was achieved with textured glass, a white-resin back reflector, 

and back-contact to both base and emitter of the cell [3.2].    Were both technologies effectively 

combined, an efficiency of 14.5% would be feasible with a good seed layer.  However, more 

work on seed layers will be necessary to achieve such a goal.  This paper highlights initial work 

on large grain polysilicon seed layers created by top-down aluminum induced crystallization 

(TAIC) of amorphous silicon (a-Si:H) on glass.   
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Extensive research has been carried out on traditional aluminum induced layer exchange 

(ALILE).  ALILE seed layers are prepared with a substrate/aluminum/a-Si configuration 

resulting in substrate/pc-Si/aluminum.  The aluminum is etched away before epitaxial growth on 

the remaining polycrystalline grains.  Solar cells with up to 8% efficiency with light trapping 

have been prepared at IMEC with CVD epitaxial growth on ALILE seed layers [3.3].  An 

independence of grain size on cell quality was later found to be inherent to the ALILE grains 

because of defect densities, Nd ≈ 109 cm-3 [3.4].   

Top-down aluminum induced crystallization begins with the opposite configuration; 

substrate/a-Si:H/aluminum and heat results in substrate/aluminum/pc-Si.  This method has been 

used with low-temperature PECVD grown “microcrystalline” silicon to achieve cells of up to 

5.2% efficiency [3.5].  The aluminum in this case is left to serve as a contact.  In order to reach 

efficiencies well above this, defect density requirements warrant high quality epitaxy with seed 

layers that have low defect densities [3.6].  NREL has developed a relatively low-temperature 

(~760°C), high rate epitaxial deposition method using Hot-Wire CVD (1.8 µm/min) [3.7].  These 

temperatures being above the eutectic of aluminum and silicon (577°C) require that the 

aluminum in TAIC films be etched.   

TAIC seed layers were prepared on Corning Eagle XG® glass.  A-Si:H films of thickness 

300 nm were deposited at 1.85 Å/s in an RF parallel plate reactor with 100% silane at 

30mW/cm2, a substrate temperature of 155°C, a chamber pressure of 0.5Torr, and a silane flow 

rate of 20sccm.  The films were allowed to oxidize before sputtering aluminum.  Samples were 

then annealed in vacuum for layer exchange to occur at temperatures above 450°C.  These seed 

layers failed to fully grow together, leaving gaps between grains.  However, they were sent to 

NREL for cell fabrication.  Figure 1 shows the cell structure fabricated at NREL.  Electrical 
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contacts were made by mesa etching the structure and contacting the n+ epi layer.  N-type 

epitaxial layer was followed by a HIT architecture and an ITO transparent conducting oxide 

layer.      

 

Figure 3.2 shows grain structure of the preliminary TAIC seed layers.  Electron 

Backscatter Diffraction shows grain boundaries and SEM revealed these boundaries to be gaps.  

The two grains outlined in red demonstrate that these grains can grow together.   

Figure 3.3 shows the JV curve for the first device made on a TAIC seed layer.  The 

device quality was poor, comparable to epitaxial cells grown on perfect wafer templates at 

temperatures of 660°C [3.8].  At these temperatures, oxygen was found to be the cause of 

increased threading dislocations which severely limit device quality [3.8].   

Figure 3.1  Cell architecture used by NREL. 
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Figure 3.2 EBSD and SEM of TAIC large-grain polysilicon films on glass. 
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Figure 3.3  J-V curve for TAIC seed layers with grain gaps. 

 

 

Table 3.1 compares this cell with similar cells grown on “dead” wafers with varying 

temperatures and consequently varying defect densities [3.8].  It can be seen that device 

characteristics were very similar to those cells grown at 660°C.  Assuming that the grain gaps did 

not enhance the device, which should not be the case since epitaxy over these regions would be 

highly defective, then it is probable that the defect density of the TAIC grains was at most 

2x106cm-2.  This is only four times higher than that required for high efficiency devices of this 
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thickness, and orders of magnitude lower than those inherent to seed layers produced by ALILE 

[3.6], [3.4].   

 

Table 3.1  Comparison table of TAIC thin-film solar cell and NREL epitaxial solar cells on 

“dead” wafers. 

Sample TAIC 660°C 710°C 760°C 

Voc (V) 0.42 0.43 0.51 0.57 

Jsc (mA/cm2) 6.98 6.9 14.6 15.37 

FF (%) 57.9 63 68.3 72.5 

Efficiency (%) 1.7 1.9 5.1 6.3 

Nd (cm-2) ? 2x106 5x105 1x105 

    

Since the first cell was made, TAIC seed layers with grains almost completely grown 

together have been produced.  Small holes are left at grain boundaries where aluminum may be 

etched away.  Hall mobility for films with grain gaps were found to be 13 cm2/V-s while seed 

layers with fully grown grains were measured to be 42 cm2/V-s.  Aluminum was fully etched 

away, albeit more slowly due to the limited penetration beneath the grains.  Aluminum was still 

be etched in less than fifteen minutes with even 0.2% grain gap density.  As shown in Fig. 3.4, 

the edges have separate grains which, moving toward the center, change to fully grown films 

with sparse holes along grain boundaries.  The non-uniformities are only related to lower 

deposition rates near the substrate holder edges and are a system limitation, not a process 

limitation.  However, the edge grain size gives a good indication that, on average, the grains in 

the center will greatly surpass the 10 µm required for efficient devices [3.9].  This particular seed 

layer had an average grain diameter of 21.7 µm, however 200 µm grains have been achieved 

recently.    The discolorations seen within the grains in Fig. 3.4 are sub-surface crystals.  The 

structure has been verified by Transmission Electron Microscopy (TEM).   
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Figure 3.4 TAIC seed layer on glass with grain gaps present along edges. 

 



53 
 

Figure 3.5 shows a cross-sectional TEM image of the surface TAIC crystal attached to 

the display glass by a sub-surface crystal.  The density of the sub-surface crystals depends on the 

ratio of aluminum to a-Si:H and also controls the adhesion of the film to the glass.        

 
Figure 3.5  Cross sectional TEM of TAIC thin-film silicon on glass. 

 
 

 

Figure 3.6 shows another TEM image upside-down with epitaxial silicon grown on top 

(below in image) the surface TAIC crystal.  This image shows two things; First, the sub-surface 

crystal is not necessarily attached to the surface crystal at all places and second, the epitaxial 

silicon on TAIC seed layer has been achieved.  A device was not made from this sample and 

future work will include device fabrication on these seed layers.  Another technical consideration 

is whether or not these crystals may have bulk aluminum within them.  Figure 3.7 shows EDS 
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done in an SEM from the back side of a TAIC film.  The film was etched with 49% HF acid and 

then lifted off with carbon tape.  Figure 3.7a shows a spot EDS going through both the sub-

surface and surface crystals while the beam in Fig. 3.7b is only through the surface crystal. 

  

Figure 3.6 Cross sectional TEM image of epitaxial silicon on TAIC seed layer. 

The measurement time was held constant for both.  The EDS spectra in 3.7a has a higher 

peak count than 3.7b, and aluminum was not detected in appreciable quantities.  The doping 

density typically measured for these films by the Hall measurement technique was found to be 

between 1018 cm-3 and 1019cm-3.   
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In order to investigate the crystal quality of the seed layers without making a device, 

films were lifted off of the glass by exposure to 49% HF acid.  The HF acid penetrated the 

surface of the film through the intergranular gaps and etched the glass beneath the sub-surface 

crystals.  Entire films can be lifted off with this method and samples were prepared for plan-view 

TEM.  Figure 3.8 shows an inter-grain gap.  This was a section of film where two grains had not 

fully grown together.  The SAED pattern on the bottom left shows multiple crystal orientations 

and this area includes a sub-surface and a surface crystal.  The SAED pattern of the top-right 

Figure 3.7 EDS scan of TAIC seed layer.  a) Black dot in the SEM inset image shows the 

EDS spot on the   subsurface crystal.  b) The EDS spot is on the surface crystal only.  The 

silicon peak is smaller in b), and the aluminum is not heavily present in either, indicating 

a simple thickness variation of primarily silicon. 
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section indicates a single, twin-free crystalline region. 

 

Large grain polycrystalline silicon seed layers on glass were successfully fabricated with the 

TAIC process.  These were relatively low temperature (all processes below 450oC).  While the 

structure literally seems to be the reverse of the traditional ALILE process, surface polishing is 

not necessary for this configuration since the excess crystalline silicon is all underneath the 

surface crystal.  Another difference found for TAIC versus ALILE was that films could be 

intentionally peeled off due to the limited adhesion points present between the surface crystal 

and the glass substrate.  The adhesion strength was found to be related to the density of 

subsurface crystals.  Future work will include crystallization on various substrates as well as 

Figure 3.8  Plan-view TEM image and SAED patterns of a TAIC seed layer. 
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fabricating solar cells epitaxially grown on TAIC seed layers with HWCVD.  This chapter was 

based in large part on work previously published [3.10].    
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CHAPTER 4:  HYDROGENATED SELECTIVE EMITTER 

Most silicon solar cells in industry use heavily doped homogeneous emitters even though 

it has long been known that emitters have much lower surface recombination velocity (SRV) 

values with lighter surface doping.  Low SRV leads to increases in Jsc, Voc, and FF.  However, 

industrial screen printing paste has lower contact resistance when the underlying silicon is 

heavily doped.  Selective emitters combine these two design features by having lower doping 

between grid lines and high doping below grid lines.  There are several methods for achieving 

selectively doped emitters [4.1]-[4.4].  Extra process and control steps for several industrial 

selective emitters are shown in Fig. 4.1.  Each of these selective emitters has at least two extra 

process steps and one extra process control necessary. 

 One key trade-off with using selective emitters, however, is increased sheet resistance.  

Optimal emitter surface doping between the grid lines is much lower than what is currently used 

with modern selective emitters.  This is because these SE techniques increase sheet resistance 

substantially.  Increases in sheet resistance necessitate decreased grid spacing to minimize power 

Figure 4.1  Process flows for solar cells and industrially relevant selective emitters. 
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loss.  For instance, JA Solar’s selective emitter cells have 15% more gridlines than their 

homogeneous emitter cells.  Assuming a spot-price for silver of $33/ounce, 100 µm grid line 

widths, and the 2012 usage of 0.25 g Ag/cell [1.3], a GW scale manufacturer using selective 

emitters would pay at least a $20,000,000/year penalty for extra shading loss and silver paste 

costs.  This is probably why selective emitter technologies have seen little market penetration.   

An ideal selective emitter would have low surface doping while retaining low sheet 

resistance by using a single self-aligning step.  One way to possibly achieve this is through 

hydrogenation of boron-diffused emitters.  The method of hydrogenating a boron emitter may 

answer the fundamental question of whether SRV’s dependence on surface doping concentration 

is due to the physical presence of boron atoms or its electrical activity. 

 SRV has been found experimentally to increase with increasing doping for both 

phosphorus and boron diffused emitters [4.5].  Figure 4.2 shows a graph of this relationship for 

Figure 4.2  Surface recombination velocity vs. surface dopant concentration [4.6].  The star 

shows the SRV of a highly doped, homogeneous emitter.  The triangle shows the SRV of a 

typical selective emitter.  The circle shows the possible SRV of a hydrogenated emitter with 

99% inactivation of surface dopants. 
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phosphorus doped silicon surfaces passivated with silicon nitride [4.6].  The shapes, from left to 

right, represent possible SRV values for the hydrogenated selective emitter (HSE), a standard 

selective emitter, and a highly doped homogeneous emitter.  These values are incorporated into 

the emitter modeling software EDNA as a user-defined parameter.  EDNA was used to 

investigate performance changes of homogeneous emitters under various atomic hydrogen 

treatments [4.7].  

4.1 Hydrogen Inactivation of Acceptor Impurities in Silicon 

 Atomic hydrogen was originally thought to simply bind to a silicon atom to fill the hole.  

However, more detailed molecular cluster modeling revealed that the hydrogen atom actually 

binds in an interstitial site along the (111) direction behind the boron atom (Fig. 4.3) [4.8].  This 

positioning removes the acceptor impurity level from the band-gap, thus neutralizing the 

electrical activity normally provided by a substitutional boron atom. 

Diffusion of hydrogen in boron doped silicon is trap-limited, considering the boron 

Figure 4.3  Anti-bonding location of the boron-hydrogen complex in crystalline silicon. 
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impurities as traps for hydrogen.  The diffusion coefficient given by Eq. 4.1 has been fitted 

experimentally by Herrero, et al. [4.9], 

D = D�exp �− ��
���                                                      (4.1) 

where D is the trap-free diffusion coefficient, D0 = 2.4x10-7 cm2s-1, and EM = 0.43eV is the 

activation energy.  In the presence of traps, hydrogen diffusion is slowed following eq. 4.2, 

D�     =  !
"#
$%&'�()�*+

,-�.
                                                   (4.2) 

where Deff is the trap-limited diffusion coefficient, D is the trap-free diffusion coefficient, r = 

1.35x10-27 is a factor related to the hydrogen flux density at the surface, [B] is the concentration 

of boron impurities, and EB = 0.6 eV is the activation energy of hydrogen diffusion in trap-rich 

silicon.  Following these equations, diffusivities of hydrogen can change depending on the 

concentration of boron impurities present given all other equivalent conditions.  According to 

Herrero, et al., temperature and initial boron concentration are the only two factors limiting Deff. 

Figure 4.4 shows that the trap-limited case is only effective for hydrogenation 

temperatures of less than 250oC independent of dopant concentration.  While characterizing the 

hydrogenation chamber built into MPZ 5, TAIC samples hydrogenated from 100oC with doping 

densities on the order of 4 x 1017 cm-3 to 9.5 x 1017 cm-3.  From Fig. 13, the substrate 

temperatures used and the doping density of the films hydrogenated yield little difference in the 

effective diffusion coefficients.  Therefore, trap-limited diffusion effects most likely did not have 

a significant effect on aluminum inactivation for these samples.  It is important to note that this 

model was fitted to experimental data determined by detecting decreased free hole concentration 

through infrared reflection and is not actually representative of the diffusion coefficient of 



62 
 

hydrogen in silicon or the concentration, necessarily.  Molecular dynamics studies have indicated 

that B-H complexes can attract up to 10 other atomic H in energetically favorable positions 

which confirms experimental evidence of detecting unbounded hydrogen in concentrations six to 

eight times that of boron impurities [4.10]. 

There are several key physical features which determine the applicability of 

hydrogenation to selective emitter formation.  1)  Atomic hydrogen should only affect the doping 

near the surface and not appreciably increase sheet resistance.  2)  Atomic hydrogen must affect 

only the areas between grid lines and must be blocked by silver.  3)  Atomic hydrogen must 

penetrate antireflection and passivation coatings.  4)  The performance enhancement must last for 

25 years under operating conditions. 

Figure 4.4  Trap-limited diffusion coefficients of hydrogen in boron-doped silicon.  Curves 

for sample temperatures from 300oC (top) to 100oC (bottom) are shown.  Dashed line shows 

values for TAIC sample hydrogenation processing ranges.   
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4.2  Boron-Hydrogen complex profile in silicon   

The boron-hydrogen complex profile has been determined experimentally for highly 

boron doped monocrystalline silicon substrates [4.9].  In that study, researchers used remote 

hydrogen plasma to expose the bare silicon to atomic hydrogen.  Using infrared reflection 

measurements, they were able to measure the difference in free-carrier absorption and calculate 

the profile of the boron-hydrogen complexes for various hydrogenation times.  The 30 minute 

hydrogenation profile was very interesting and is shown in Fig. 4.5.  It was apparent that, if this 

profile was applied to the areas between grid lines of a solar cell, an ideal selective emitter could 

Figure 4.5  Percentage of electrically inactivated boron acceptor impurities after 30 minute 

hydrogenation on 1 x 1020 cm-3 boron-doped silicon.  Electrical activity returns to 100% 

after 1 µm [4.9]. 
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be formed.  Figure 4.6 shows this data applied to a 500 nm Gaussian diffusion profile to estimate 

the modified profile after hydrogenation.  The sheet resistance of the profile changes from 33 

Ω/□ to 97 Ω/□.  An estimated five minute hydrogenation would only increase the sheet 

resistance to 38 Ω/□.  This could be a very significant achievement as surface recombination 

velocities might be reduced greatly with only a marginal increase in sheet resistance, and 

therefore no additional silver grid lines would be required.  From experimental data [4.9] it 

seems likely to achieve an emitter profile which satisfies light active doping at the surface 

returning to heavier doping, and then the normal reduction toward the p-n junction.  

  

Figure 4.6  Modified boron profile extracted from experimental data [4.9].  The benefits of 

this profile as applied to a selective emitter solar cell were simulated in EDNA. 
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This is in contrast to traditional selective emitters where the surface doping is the highest 

at the surface, requiring higher surface concentration than this approach in order to maintain 

reasonable sheet resistance values (< 100 Ω/□).    

4.3 Hydrogenation Apparatus and Efficacy Experiments 

 There are several ways to generate atomic hydrogen.  Plasma of hydrogen gas or other 

hydrogen containing gases such as ammonia, pressurized and atmospheric boiling water, and 

catalytic filament methods have all been used to hydrogenate semiconductor materials and/or 

inactivate acceptor impurities [4.9], [4.11], [4.12].  Atomic hydrogen can inactivate the electrical 

activity of dangling bonds, point defects, acceptor impurities, and donor impurities in silicon 

[4.8].  Under certain circumstances, atomic hydrogen has also been found to etch silicon [4.13].       

Figure 4.7 shows an annealing chamber on the cluster tool used for amorphous silicon 

depositions was modified to double as a catalytic filament hydrogenation chamber.  Hydrogen 

gas enters the chamber from the ¼” VCR connection in the bottom 8” CF flange.  A tungsten 

filament enters through the same side of the chamber via a 2.75” CF flange.  The tungsten 

filament hovers a few centimeters above the gas inlet.  Gas pressure is controlled remotely 

through the MPZ 2 chamber’s turbomolecular pump and throttle valve.  The tungsten filament is 

resistively heated by passing current through it.  Filament temperature increases with current and 

a 0.05” diameter tungsten wire will be heated to 1900oC with 13.75 Amps.  The substrate heating 

is controlled with a halogen lamp assembly, thermocouple, and temperature controller.  

 After building the system, sputtered amorphous silicon was used to verify that the 

hydrogenation chamber functioned as expected.  That is, that the heated tungsten filament 
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catalytically generates atomic hydrogen from a hydrogen gas.  

  

Sputtered amorphous silicon was chosen because it is inherently not hydrogenated, but 

has been shown to readily incorporate mostly SiH2 bond configurations when grown in the 

presence of hydrogen [4.14].  Atomic hydrogen approaching the surface of a sputtered 

amorphous silicon sample can etch and/or be incorporated into the film.  Fourier transform 

infrared spectroscopy (FTIR) was used to determine the hydrogen bonding present.  Si-H 

bonding presents as a peak at 2000 cm-1 while clustered Si-H around micro/nano voids and Si-H2 

absorb with a peak typically between 2080-2100 cm-1 [4.15].  Various filament temperatures and 

pressures were tested until hydrogen incorporation into the sputtered films was observed.   

Figure 4.7  Atomic hydrogen annealing system schematic diagram with photograph inset in 

the bottom right. 
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 The filament temperature was kept constant at 1900 oC and uniformity, substrate 

temperature, and pressure were varied to optimize the hydrogen inactivation of aluminum 

dopant.  TAIC thin films with minimal layer exchange were first used as a more sensitive 

detector of atomic hydrogen than sputtered amorphous silicon.  Eight TAIC samples were 

prepared with 300 nm a-Si:H and 50 nm aluminum annealed at 300 oC on glass samples. The 

aluminum was removed before hydrogenation was attempted.   

4.4 Effect of Substrate Temperature 

Two samples were hydrogenated for each substrate temperature:  100 oC, 150 oC, 200 oC, 

and 250 oC.  Figure 4.8 shows original resistivity and post-hydrogenation resistivity for each pair 

of samples.  The average baseline resistivity for these samples, as determined by the Van-der 

Pauw method on 1 cm2 samples with indium contacts in the corners was 0.055 Ω-cm.   

Figure 4.8 shows that there is an optimal temperature for hydrogenation given the other 

parameters.  The temperature dependent reversal of resistivity change has been determined 

experimentally for boron as 150 oC [4.9].  This is a trap limited diffusion process, but there is 

still a temperature dependence so that when the temperature increases, formation of boron-

hydrogen complexes increases and can be described as a typical activation energy and 

temperature dependent relationship.  Therefore, the optimum inactivation percentage of a film, or 

aluminum-hydrogen complex formation, is a trade-off between rapid diffusion and reactivation 

of the acceptor impurity level in silicon from substitutional aluminum.  This observation 

necessitated a study of hydrogen-aluminum complex deactivation.  
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4.5 Thermal Restoration of Original Resistivity 

The same samples were heated with the optical annealing apparatus sequentially for 30 

minutes at 125 oC, 175 oC, 225 oC, 275 oC, and 325 oC until the original resistivities were 

restored.  The values shown in Figure 4.9 represent the averages of the sample pairs.  The 

preliminary data indicate that lower hydrogenation temperatures result in more stable 

inactivation of aluminum.  The implication for the adoption of using hydrogen as a selective 

emitter is that there may be a trade-off between processing time and the stability of boron-

hydrogen complexes.  The highest temperature process, including reliability testing, that solar 

cells experience is the 150oC ethylene vinyl acetate (EVA) curing process, although this can be 

done at lower temperatures and non-EVA alternatives exist.   

Figure 4.8  % Increase in resistivity for TAIC films on glass after 30 minute 

hydrogenations at various temperatures. 
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The hall mobility of these samples before hydrogenation were about 1 cm2/V-s and were 

not measurable after hydrogenation.  Mobility in fine-grained polycrystalline silicon does not 

follow the same model of single crystalline silicon where mobility always increases with 

decreasing doping density over the range important to solar cells.  Contrarily, mobility in 

polycrystalline silicon experiences a “dip” at a certain resistivities.  This phenomenon has been 

studied extensively through theoretical modeling and experiments [4.16], [4.17], [4.18] and is 

dependent on grain size and doping density.  With high doping, traps at grain boundaries are 

saturated by charge carriers and mobility can reach values approaching those of crystalline 

silicon.  This mobility minimum has been reported to occur in the 1017 – 1018 cm-3 range, which 

is the range of TAIC polycrystalline films and TAIC seed layers used in this work.   

4.5 Hydrogenation with varying H2 Pressure 

Ten additional 1 cm2 TAIC samples were prepared (300 nm a-Si:H, 50 nm aluminum, 

and 30 minute anneal at 230oC).  These were hydrogenated at different pressures for 30 minutes 

Figure 4.9  Resistivity change as a percentage of original resistivity through sequential 30 

minute annealing cycles. 
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with a substrate temperature of 200oC.  The different pressures were 0.25, 0.5, 0.75, 1.0, 1.25, 

and 1.5 Torr.  Figure 4.10 shows the results.  The optimal hydrogenation boundary seems to be 

from 0.5 to 1.25 Torr with the lowest and highest pressures exhibiting inefficient acceptor 

inactivation.  Low pressures may be ineffective due to a lack of atomic H generation.  At higher 

pressures, atomic hydrogen generated at the surface of the filament can recombine into H2 before 

reaching the sample surface.  Both of these regimes were found to perform poorly for 

rehydrogenating amorphous silicon [4.19].   

It is important to note that the change in resistivity is related to the starting resistivity.  

Atomic hydrogen inactivation of boron has been found to be effectively modeled by a trap 

limited diffusion process.  If doping density increases, then the penetration depth of hydrogen-

Figure 4.10  Atomic hydrogen inactivation shown as a percentage increase in resistivity 

versus pressure of H2 gas.   
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boron complex formation will decrease given the same hydrogenation conditions.  It was almost 

always the case that a lower starting resistivity would result in a lower ending resistivity when 

comparing between samples.  According to Fig. 4.4, however, this should not be the case given 

the doping density ranges and substrate temperatures tried (black outlined box).  Another likely 

explanation for this observation is that the non-layer exchange TAIC samples on glass were 

differentially crystallized and doping depths were different.  Higher resistivity samples may have 

simply had less crystallization fractions which were more easily inactivated than other samples.   

Additionally, viewing results based on change in resistivity can be intuitively misleading 

due to the relationship.  For example, two samples each with 99.47% and 99.24% inactivated 

dopants had measured resistivity increases by 6670% and 4608%, respectively.  The sample with 

lower inactivation percentage also had a higher initial doping concentration, so the effectiveness 

of the hydrogenation was even closer than the percentage increase in resistivity suggests.   

4.6 Uniformity Study   

The uniformity of the hydrogenation chamber was then tested.  The sample set for the 1 

Torr group in Fig. 4.10 were all ten TAIC samples while the other pressures were tested with 

sample pairs placed in the center of the annealing zone.  Figure 4.11 shows the placement of 

these samples in the substrate holder and the results are in Table 4.1.  The inactivation 

percentages were calculated from the ASTM standard empirical formula for boron concentration 

in silicon as a function of resistivity [4.20].   
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Table 4.1  Data from uniformity study of the hydrogen annealing chamber.  Original and 

post-hydrogenation resistivity values are given and % inactivation is calculated assuming 

boron as the dopant. 

Sample # 

Original 

Resistivity (Ω-

cm) 

Hydrogenated 

Resistivity (Ω-

cm) 

Inactivation (%) 
Crystallization 

Fraction (%) 

1 0.052 0.144 78.52 57.21 

2 0.057 0.190 83.21 63.11 

3 0.058 0.189 82.62 62.98 

4 0.074 0.259 83.40 64.93 

5 0.055 0.167 81.00 66.96 

6 0.056 0.187 83.30 65.93 

7 0.058 0.194 83.23 64.92 

8 0.054 0.176 82.84 69.58 

9 0.055 0.177 82.48 68.54 

10 0.052 0.152 80.12 68.01 

 The hydrogenation chamber was moved from its original location.  It was placed at the 

load-lock position of the ITZ and was turned upside down to avoid cutting the frame of the 

system.  A new filament design was used, and an experiment using TAIC seed layers was 

performed to ensure uniformity.  Four samples were cut from the center of a 1.5”x1” TAIC 

silicon on glass sample.  Hydrogenation was performed for 30 minutes with a substrate 

temperature of 150oC, a pressure of 1 Torr, and a filament temperature of 1900oC.  Sample 

Figure 4.11 Sample placement for uniformity study on TAIC non-layer exchange films. 
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locations are shown in Fig. 4.12 and results are given in Table 4.2.  TAIC seed layers are much 

higher quality than TAIC samples where layer exchange is minimized.  

 

Contrary to reported mobility increases in hydrogen-compensated silicon samples [4.20], 

the mobility of TAIC seed layers decreases 3-5x after hydrogenation.  This is possibly due to 

defect formation due to the introduction of too much hydrogen, a mechanism that is taken 

advantage of in the “Smart-Cut” process [4.21].  The percentage inactivation on the ~130 nm 

thick films was 99.45 ± 0.09%.  While only increasing uniformity slightly, the new filament 

design is four inches longer and is about one inch closer to the sample surfaces.  While the 

mechanism of dopant inactivation in poorer quality material may be different, it seems that the 

new filament is much more efficient than the old design.      

Table 4.2  Data for uniformity study after the chamber moved from MPZ5. 

Sample # Original 

Resistivity 

(Ω-cm) 

Hydrogenated 

Resistivity (Ω-

cm) 

Original 

Mobility 

(cm2/V-s) 

Hydrogenated 

Mobility 

(cm2/V-s) 

Inactivation 

(%) 

1 0.044 3.00 45.35 10.98 99.53 

2 0.049 2.96 36.53 10.95 99.45 
3 0.043 2.01 39.75 12.33 99.33 

4 0.044 2.74 46.77 12.43 99.49 

Figure 4.12  Sample placement for uniformity study after MPZ 5 relocation with large-

grain TAIC seed layers. 
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4.7 Theoretical Simulations of the Hydrogenated Selective Emitter   

Although hydrogenation was found to lower the mobility of TAIC films, the process was 

found to increase mobility while lowering the doping density in single crystal silicon [4.22]. 

EDNA was used to simulate the performance of both homogeneous and hydrogenated solar cell 

emitters.  Losses through Auger and SRH recombination were analyzed and resulted in decreases 

in Jsc and Voc, or increases with decreasing surface recombination velocity.  Emitter collection 

efficiency is defined as the carrier collection percentage of total carriers generated under short 

circuit conditions.  EDNA assumes no loss mechanisms from the base of the solar cell, therefore 

Voc is an implied voltage.  Jsc values reported are only for carriers collected from the emitter.   

The hydrogen selective emitter (HSE) process works by inactivating the electrical 

activity of boron in p-type emitters.  Increasing surface doping also increases surface 

recombination velocity, thus limiting solar cell efficiency.  However, decreasing surface doping 

has traditionally had a drastic impact by increasing sheet resistance.  The HSE eliminates this 

trade-off by inactivating boron dopants up to 99.9% near the surface.  Depending on the 

hydrogenation conditions, this inactivation trails off such that high conductivity emitters are 

possible while having very low surface doping.  The goal was to achieve emitters which were 

compatible with high power conversion efficiencies while achieving emitter sheet resistance 

lower than normal in order to reduce the silver costs of the front surface grid lines.  Simulation 

outputs and experimental data were combined to guide emitter design and HSE process 

parameters.   

EDNA, a simulation software package developed by researchers at PV Lighthouse 

(www.pvlighthouse.com.au), was used to simulate non-standard emitter characteristics.  This 

modeling software has advantages over the widely used PC-1D since it employs the latest Fermi-
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Dirac based models for Auger recombination in addition to allowing for more advanced emitter 

doping profiles.  A description of the software has been published [1.8] and has been used by 

research and commercial entities.  The general approach to modeling used here was to start with 

either theoretical or experimental emitters, simulate the emitter characteristics, modify the 

emitter with either theoretical or experimental hydrogen inactivation profiles to arrive at a 

hydrogen super emitter (HSE) active dopant profile, and again simulate the HSE emitter 

characteristics.  Key metrics are surface Shockley-Read-Hall recombination, Auger 

recombination, emitter reverse saturation current density (J0e), implied voltage, and implied 

efficiency.  The implied voltage and efficiency both assume that other components of the cell are 

not limiting the theoretical device, that the fill factor is 80%, and that the maximum short circuit 

current of the entire solar cell is 40 mA/cm2.  The surface recombination velocity (SRV) of each 

emitter was varied between 0 cm/s and 3x 106 cm/s.  3 x 106 cm/s was chosen because at the 

solid solubility limit for boron in silicon, a concentration of around 3 x 1020 cm-3, 3 x 106 cm/s is 

the value for SRV corresponding to that level of surface doping.   

Figure 4.13 shows both experimental and estimated boron-hydrogen pair concentration 

versus depth in crystalline silicon.  The surface dopant concentration can be inactivated by about 

99.5% and this was verified by spreading resistance profiling (SRP).  99.5% dopant inactivation 

at the surface changed the surface dopant level from 3 x 1020 cm-3 to 1.5 x 1018 cm-3.  The 

corresponding drop in theoretically achievable SRV was from 3 x 106 cm/s down to 117.4 cm/s.  

For the baseline case, a 36.61 Ω/□ emitter with a Gaussian profile was modeled with a surface 

boron doping of 3 x 1020 cm-3 and a junction depth of 0.5 µm on a background phosphorus 

doping of 1 x 1015 cm-3.  With an SRV of 3 x 106 cm-3, a cell with this type of emitter would 

have a maximum efficiency of 18.73%.  
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Figure 4.14 shows the original doping profile as well as the modified profiles based on 

experimental and estimated hydrogenation data.  Depending on the level and depth of 

inactivation, the sheet resistance of the original emitter increased from 36.61 Ω/□ to 106.27 Ω/□.   

 Table 4.3 lists the emitter characteristics of the original low sheet resistance emitter and 

the HSE emitters based on inactivation of boron dopants to the levels shown in Fig. 4.13.  The 

emitter with the greatest improvement also had the highest sheet resistance.  As seen from the 

table, this is due both to decreased SRH recombination at the surface as well as limited Auger 

recombination in the emitter.  Any recombination in the emitter negatively impacts J0e, limiting 

Voc, and thus limiting efficiency.  Although the HSE emitters performed better than the original 

emitter, the sheet resistance of the best performing emitter (“1991”) was also high enough to 

Figure 4.13  Boron-hydrogen complex concentration versus depth.  100% means that each 

boron atom has been electrically inactivated.  “30 sec data” and “1991 data” have been 

determined experimentally.  B, C, and D are estimated [B-H]/[B] curves.  No HSE has 0% 

inactivation.   
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increase the amount of silver that would be required at the front of a solar cell.  This potentially 

limited efficiency in three ways:  decreased fill factor if the grid lines were not spaced closer 

together, increased coverage of the front surface, thereby decreasing efficiency.  Additionally, 

parasitic recombination at the metal-silicon interface may also have acted to decrease efficiency 

depending on the metallization quality.  Other modeling outside of EDNA will be necessary to 

determine the optimal case for efficiency considering grid optimization. 

Table 4.3  Simulated emitter characteristics for various experimental and estimated HSE 

emitters. 

Profile Rsheet SRV SRHsurf Augeremitter J0e iVoc Eff. % Improvement 

Original 36.61 3e6 2.01 0.07 242.8 617.5 18.73 Δ Efficiency 

B 47.83 3e2 0.08 0.14 49.3 666.0 21.19 ↑ 13.17% 

C 55.42 3e2 0.06 0.12 47.9 666.8 21.24 ↑ 13.42% 

D 74.82 3e2 0.05 0.07 41.5 670.8 21.40 ↑ 14.28% 

30 sec 100.12 3e2 0.04 0.05 34.5 675.7 21.57 ↑ 15.20% 

1991 106.27 3e2 0.03 0.04 32.8 677.0 21.62 ↑ 15.45% 

Figure 4.14  [B-H] profiles from Fig. 1 applied to a 500 nm deep Gaussian boron profile.  

The sheet resistance of the original emitter was 36.61 Ω/□.  The corresponding sheet 

resistances for the experimental and theoretical profiles are also given. 



78 
 

 It is also interesting to explore the effect of changing surface recombination velocity on 

the level of SRH recombination for emitters of varying surface dopant levels.  Early on in n-type 

cell development, it was concluded, perhaps prematurely, that oxide passivation on p-type 

emitters was unstable.  These cells had very lightly doped emitters and, when coupled with a 

poor passivation layer, had severely degraded efficiency due to both loss in short circuit current 

and open circuit voltage.  When modeling emitters, it becomes readily apparent that lighter 

doped emitters are more sensitive to surface SRH recombination.  With increasing SRV, SRH 

recombination increases more for a lightly doped emitter than for a heavily doped emitter.   

This trend can be seen when modeling the HSE emitters in EDNA.  Figure 4.15 shows 

that at high SRV values, the HSE emitters performed worse than the heavily doped, original 

emitter.  Since the modeled HSE emitters had surface doping of 1.5e18 cm-3, their limiting SRV 

value was actually below 300 cm/s.  Very little recombination occurred at these SRV values.  

Compared to the limiting SRV of the original emitter of 3 x 106  cm/s, each of the HSE emitters 

studied had the potential of increasing the short circuit current density by about 1.95 mA/cm2 

(also see data in Table 4.3).  The HSE profile most closely resembling the original profile was 

“B”.  This profile was more resistant to SRH recombination at higher SRV values, but also 

showed the highest SRH at 300 cm/s.     

Comparing the Auger recombination versus SRV revealed an interesting characteristic.  

Auger recombination increases with increasing dopant density.  Despite having fewer electrically 

active dopants, the B and C HSE emitters had higher Auger recombination at 300 cm/s than the 

original emitter does at 3x 106 cm/s.  This is because of a slight trade-off between SRH 

recombination and Auger recombination.  Whenever SRH is reduced due to the low surface 
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recombination velocity (i.e. with excellent surface passivation), there are more carriers able to 

recombine through Auger recombination.   

 

Figure 4.15  Surface SRH recombination versus SRV for original and various HSE emitters 

as modeled in EDNA. 
 

 

Figure 4.16 shows the Auger recombination in the emitter versus surface recombination 

velocity for each of these emitters.  At the surface recombination velocities of interest, the Auger 

recombination of emitters “30 sec” and “1991” was lower than the original emitter at 3 x 106 

cm/s.   

 

Overall, the best performing emitters from the simulations tended to be those with the 

highest sheet resistance.  However, emitter “B” with only marginally higher sheet resistance than 

the original emitter, still showed a maximum theoretical increase of 13.17% efficiency over the 

baseline cell.  Additional efficiency would come from reducing silver shading, not to mention the 
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cost benefit of using less silver.  Reducing the number of gridlines on a typical cell from 80 to 

62, corresponding to maintaining the same power loss between a 70 Ω/□ emitter compared to a 

45 Ω/□, saves about 2.6 cm2 assuming 100 µm wide gridlines.  So comparing emitter B to D, for 

instance, emitter D would need 35% more gridlines than emitter B to have the same power loss 

due to the emitter contribution to series resistance.  Lowering the number of grid lines can also 

increase series resistance if the metallization paste has poor conductivity.  In conclusion, 

theoretical treatment of both experimental and simulated HSE emitters showed very good 

potential for improving low sheet resistance emitter performance with efficiencies well above 

21% achievable from these few baseline cases.   

Figure 4.16  Auger recombination in the emitter versus surface recombination velocity for 

original and HSE emitters. 
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Modeling of the kinetics of B-H complex formation has been attempted with limited 

success [4.22].  However, experimental evidence for inactivated profiles in highly doped silicon 

such as the dopant concentrations found in emitters of n-type solar cells has been reported [4.9].   

The potential benefits to the solar cell are clear, however a fundamental question remains 

to be answered:  Is surface recombination velocity high for highly doped surfaces because of the 

electrical activity of those surfaces or because of the physical presence of the substitutional 

donors or acceptors?  This question is addressed with experimental evidence in Chapter 5.   
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CHAPTER 5:  EXPERIMENTAL PROOF OF CONCEPT FOR THE HYDROGEN 

SELECTIVE EMITTER 

Simulations clearly indicated that a decrease in efficiency should be expected with the 

emitter profiles simulated from hydrogen inactivation of boron acceptor impurities with poor 

quality surface passivation.  Indeed, initial tests of newly created n-type cells showed a decrease 

in performance consistent with EDNA simulations.  However, cells that have appreciable native 

oxide have sufficient surface passivation in order for the hydrogenation process to increase cell 

efficiency.   

5.1  Fabrication of Diffused Junction Solar Cells 

 Two sets of cells were fabricated starting with 0.1 to 0.9 Ω-cm phosphorus doped silicon.  

These wafers were 475-500 µm thick, single-side polished.  PECVD oxide was deposited on the 

rear surfaces and sides of these wafers to limit boron diffusion to the front surface (emitter).  

Wafer A was diffused at 1150 oC with a soak time of 15 minutes.  Wafer B was diffused at 1150 

oC with a soak time of 7 minutes.  After the pre-deposition diffusion, the wafers were oxidized at 

750 oC and HF dipped for 2 minutes to remove boron rich layers.  Next, >500 nm aluminum was 

deposited on the front and back surfaces of the wafers.  Front contacts were 

photolithographically defined using the SNL Mask Level 3A (described earlier in Chapter 2).  

The final structure from base contact to emitter contact was aluminum, n-type silicon, p-type 

diffused silicon, and aluminum. 

 In order to model the device physics of these particular cells in EDNA, spreading 

resistance profilometry was carried out on seven samples from the same wafers as the cells taken 

from wafers A and B.  These samples were exposed to atomic hydrogen with a substrate 

temperature of 150 oC, a filament temperature of 1900 oC, H2 flow rate of 15 sccm, gas pressure 

of 1 Torr, and processing times of 30 seconds, 1 minute, 3 minutes, 5 minutes, 8 minutes, and 30 
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minutes (one from wafer A and one from wafer B).  The other samples were all from wafer B.  

The original doping profile of wafer A was determined from the 30 minute hydrogenated sample 

by heating the sample up to 350 oC for one hour to reactivate the electrical activity of the boron 

dopants. The original doping profile of wafer B was determined from the 30 second 

hydrogenated sample in the same way.   

Having this data allows analysis of the emitter with the EDNA simulation program since 

measured dopant profiles are a direct input of the program.  In this way, the performance of the 

emitters can be analyzed for projected recombination losses and matched with the experimental 

quantum efficiency data to estimate surface recombination velocities after the hydrogenation 

process.  Although there is an empirical model for surface recombination velocity versus surface 

dopant level for phosphorus diffused surfaces, a similar model has yet to be derived for boron 

doped surface, although similar trends have been observed experimentally [4.5], [4.6].  There are 

also internal models to choose from for modeling Auger recombination within the emitter.  The 

model chosen for this work was developed by Kerr and Cuevas [5.1].   

Both SRH recombination related to the surface recombination velocity input parameter 

and Auger recombination limit the short circuit current such that carriers generated within the 

emitter do not become a collected current, or the short circuit current from the emitter.  Deeper 

diffusions, as modeled in EDNA, result in higher generated current in the emitter simply because 

of the increased depth.  This does point out a design characteristic of industrial solar cells, 

however.  Shallow, highly doped, diffusions have been preferred in the past despite the 

knowledge that lighter doped emitters suffer less from both SRH and Auger recombination.  

Carriers generated within the bulk just below the junction have nearly 100% collection efficiency 

if the material quality is even moderate.  By using shallow junctions, overall quantum efficiency 
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improves even though the emitter quality is very poor.  Having access to new emitter design 

processes like the hydrogen selective emitter, may open new possibilities for industrial emitter 

design without the need to sacrifice emitter conductivity. 

Figure 5.1 shows the boron dopant profile of wafer A as determined by SRP 

measurements after exposure to atomic hydrogen for 30 minutes.  These cells originally had a 

peak surface doping of 9.7x1019 cm-3 and a junction depth of 800 nm.  The phosphorus 

background doping was measured to be 1x1016 cm-3.  After hydrogenation for 30 minutes, the 

peak dopant density was 1.9x1018 cm-3 with a junction depth of 740 nm.  This is an inactivation 

Figure 5.1  Original boron dopant profile in n-type silicon and after the hydrogenated 

selective emitter (HSE)  process was performed. 
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of 98 % of peak electrically active dopants near the surface, and enough inactivation into the 

emitter to decrease the electrical junction depth by 60 nm.   

 Another important component of solar cell design is the emitter sheet resistance.  As 

sheet resistance increases, power loss due to the silicon between grid contacts can be quite 

substantial, depending on the grid design.  The grid used for these cells was the concentrator 

design used for the TAIC emitter solar cells.  It has very close grid spacing with a connected 

contact pad on the perimeter of its 1 cm2 active device area.  This design minimizes losses due to 

sheet resistance and thus increasing sheet resistance for these cells did not result in measureable 

efficiency losses from decreased fill factors.         

PC-1D was used to fit the quantum efficiency data assuming the reflection was of 

crystalline silicon, an assumption verified by third-party reflection measurements on HSE 

processed silicon (shown in Fig. 5.2).   

Figure 5.2  Reflection of the surface of the diffused solar cells indicates the cell has a planar 

silicon surface. 
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This procedure gives estimates for surface recombination velocities, bulk material 

lifetime, dopant densities, and junction depth.  Figure 5.3 shows both the experimentally 

measured quantum efficiency curves before and after the hydrogenation process as well as EQE 

curves fit to this data in PC-1D.  Very precise matches are difficult to achieve in PC-1D because 

the shapes measured by SRP are not achievable with the built-in dopant profile models in PC-

1D.  The junction depths and peak dopant values were matched with the SRP data.  The best fit 

was set with a bulk minority carrier lifetime of 3 µs and a rear surface recombination velocity of 

1x106 cm/s.  For the pre-hydrogenation curve, a front SRV of 2x106 cm/s was found to provide 

Figure 5.3  External Quantum Efficiency curves for solar cells from wafer A before and 

after hydrogenation. 
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the best fit.  For the post-hydrogenation curve, a front surface recombination of 2x105 cm/s was 

found to provide the best fit.  This represents an order of magnitude decrease in surface 

recombination velocity after the HSE treatment.       

Based on the PC-1D fits, simulations of the two dopant profiles were performed in 

EDNA.  The SRV parameter of 2 x 106 cm/s was used for the original dopant profile, and 2 x 105 

cm/s was used for the HSE modified profile.  According to the EDNA models, the sheet 

resistance of the original diffusion was 36.54 Ω/□.  The total current generated in the emitter 

under AM1.5g illumination was calculated to be 10.22 mA/cm2.  Of the current generated, only 

5.16 mA/cm2 is collected.  4.94 mA/cm2 recombine at the surface of the emitter, and another 

0.13 mA/cm2 is lost to Auger recombination within the emitter.   

Because of the decreased junction depth, the total generated current in the HSE processed 

emitter was 9.83 mA/cm2.  Because of the lower SRV value, the collection current was 7.56 

mA/cm2.  2.27 mA/cm2 was lost due to SRH recombination at the surface and there was no 

Auger recombination.  This makes sense because Auger recombination is negligible for lightly 

doped emitters.  Because the junction depth is less than for the original emitter, the generated 

current is also less in the emitter.  The light is instead absorbed in the base of the cell, which has 

a higher collection efficiency due to a number of factors.  The total possible current that could be 

collected from this shorter junction is the difference between the generated current in the original 

junction depth and the generated current in the shallower HSE junction:  10.22 mA/cm2 – 9.83 

mA/cm2 = 0.39 mA/cm2.   

This difference must be accounted for when considering the increased short circuit 

current observed after the HSE process.  However, if the bulk lifetime of the sample is not ideal, 

which is the case for this cell, with an estimated minority carrier lifetime of just 3 µs, then the 



88 
 

collection of this 0.39 mA/cm2 will not be 100%.  Another discrepancy that must be accounted 

for when comparing EDNA output to quantum efficiency measurements is that EDNA does not 

account for reflection.  That is to say, EDNA assumes that 100% of photons are absorbed into 

the cell with no reflection or shading from emitter metallization.  This can be corrected within 

EDNA by multiplying Reflection(λ) by the photon flux, such that the total number of photons 

entering the simulated device is equivalent to the number entering the real solar cells under test 

during the quantum efficiency measurement.  The reflection of the solar cells used to test the 

hydrogenation process for wafers A and B were planar with an additional 4% absolute blocked 

by the grid contacts on the front surface of the solar cells.  With these new changes implemented 

in EDNA, the output for generated and collected current should be directly comparable to that 

measured and shown in Fig. 5.3.  The new output from EDNA for the original emitter shows 

4.20 mA/cm2 generated, 1.99 mA/cm2 collected, 2.16 mA/cm2 lost from SRH recombination at 

the surface, and 0.05 mA/cm2 lost from Auger recombination.  The new output from EDNA for 

the HSE modified emitter shows 4.06 mA/cm2 generated, 3.07 mA/cm2 collected, 0.99 mA/cm2 

lost from SRH recombination at the surface, and 0.00 mA/cm2 lost from Auger recombination in 

the emitter.  The difference in generated current due to junction narrowing was 0.14 mA/cm2.  

Thus, the total possible difference in Jsc according to EDNA would be 1.22 mA/cm2. 

The Jsc was calculated from QE curves for each of the five cells before and after 

hydrogenation.  The average absolute difference in Jsc was found to be 1.25 ± 0.2 mA/cm2.  This 

is very close to the 1.22 mA/cm2 predicted by EDNA.  Thus, the front surface recombination 

velocity found by fitting PC-1D quantum efficiency curves to the experimental data is likely 

close to the actual values.  The front surface SRV may be limited by the inherent quality of the 

native oxide, despite native oxide and other thin oxides (< 2 nm) acting as successful passivation 
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layers in conjunction with silicon nitride anti-reflection coatings.  However, the passivation on 

these cells did not reach the lowest values possible with lightly doped surfaces, despite the 

inactivation process. 

Figure 5.4 shows the profiles for different hydrogenation times for samples from wafer B.  

The “No HSE” curve is the original dopant profile determined by heating up the 30 second HSE 

sample to 350oC for one hour and then again measuring the profile by SRP.  After just 30 

seconds, the surface dopant density went from 1.39 x 1020 cm-3 to 4 x 1018 cm-3.  The 

measureable penetration rate of the inactivation of boron was 360 nm/minute.  It is interesting to 

Figure 5.4  Original profile (No HSE) as well as changed doping profiles for various 

hydrogenation times. 
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note that after 30 minutes, the surface dopant inactivation reaches 99.98%.  After just five 

minutes, the junction depth decreases from 685 nm to 650 nm.   

 EDNA simulations were performed based on these dopant profiles.  Each measured 

profile was input and SRV values were calculated based on the surface dopant density using the 

model internal to EDNA.  Table 5.1 contains the major performance characteristics of these 

different emitters.  Each of these samples, hydrogenated from 30 seconds to 30 minutes, was 

from Wafer B.  As the hydrogenation time increases, the current generated in the emitter 

decreases (Jgen) because of the narrowing junction.  The 30 second hydrogenated emitter has 

theoretically higher Auger recombination than the emitter with no hydrogenation at all.  

However, SRH recombination is drastically reduced from 2.48 mA/cm2 to 0.04 mA/cm2.   

 

As hydrogenation time continues, Auger recombination decreases as well until, after 3 

minutes of hydrogenation, no appreciable Auger recombination is observed.  After 3 minutes, the 

implied Voc reaches a maximum value of 726.8 mV.  iVoc decreases after this because of 

decreasing dopant concentration.  Solar cell efficiency based on the iVoc and the current losses 

were calculated by assuming a fill factor of 80% and total possible current density of 40mA/cm2.  

For point of reference, the world record silicon solar cell had the following characteristics:  Voc 

= 706 mV, Jsc = 42.7 mA/cm2, FF = 82.8%, and an efficiency of 25% [1.1].                      

Table 5.1  Modeled emitter characteristics of the profiles from varying HSE time.  Jgen, 

Jcoll, SRH, and Auger all have units of mA/cm2. 



91 
 

 Four cells from Wafer B were hydrogenated for 5 minutes to achieve the dopant profile 

shown in Fig. 5.4.  The original dopant profile and the 5 minute HSE profile were both analyzed 

in EDNA, accounting for the reflectance of the cells as described previously such that the output 

of EDNA could be directly compared to external quantum efficiency data.  Then, by varying the 

SRV input for the hydrogenated profile in EDNA, a better estimate of the SRV value can be 

found than by fitting the quantum efficiency curves in PC-1D.  According to the internal model 

for calculating SRV, the minimum SRV possible for the original emitter would be 2.59 x 105 

cm/s.  This would be with a high quality passivation layer.  According to PC-1D, however, the 

surface recombination velocity of the original profile with unhydrogenated native oxide was 

around 1 x 106 cm/s.  The SRV value was changed until the output from EDNA,  

(∆012 3456 789:), satisfied the following eq. 5.1: 

∆012 3456 789: = 0.9?@4A B 0CAD − @51E B 0CAD) + ?@51E B 025GG − @4A B 025GG)     (5.1) 

?@4A B 0CAD − @51E B 0CAD) was the difference in generated current density simulated 

by EDNA for the original (Pre H) profile and the modified (Post H) profile.  This quantity would 

be zero if the emitter depth had not changed due to hydrogenation.  ?@51E B 025GG −
@4A B 025GG) was the difference in collected carrier density before and after hydrogenation 

profiles were updated as simulated by EDNA.  All current density values in Table 5.2 are given 

in mA/cm2 and SRV is in cm/s.  Table 5.2 lists these values as determined by the EQE curves of 

Fig. 5.5.  The lowest SRV predicted by EDNA was 2500 cm/s.  While this is not as low as what 

is predicted by the SRV calculator internal to EDNA, it is still quite possible that the native oxide 

used as a passivation layer for these cells was not ideal, as a high temperature thermal oxide or 

high quality Al2O3 passivation layer might be.  Regardless, this is a 400x decrease in SRV 

compared to the pre-H condition, and 100 times better than if the cells had started with an 
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excellent surface passivation but with doping so high as to limit the lower bound of SRV to 

around 2.59 x 105 cm/s.  This analysis, as well as the near-perfect EQE values after 

hydrogenation, indicated that a fundamental question to solar cell device physics has been further 

elucidated by the HSE process:  That the electrical activity, and not the physical presence of 

dopants, is more responsible for increasing surface recombination velocity with increasing 

dopant density. 

Table 5.2  Modeled SRV values based on experimental QE data and EDNA simulations. 

 

 Figure 5.5 shows the average pre-H EQE curve, the post-H EQE curves for each of these 

four samples, and the reflectivity of c-Si.  The internal quantum efficiency, calculated by adding 

the EQE and the reflectance curves, is nearly 100%.  Interestingly, samples 9 and 15 did not 

achieve as high EQE values, despite having higher original EQE values.  One explanation for 

this is that some contamination was present on these cells that interfered with the formation of a 

high quality native oxide.  This contamination, in the absence of well passivating native oxide 

could have provided some level of surface passivation, leading to higher initial EQE values.  

Upon hydrogenation, this hypothetical contamination may have inhibited the full benefit of the 

HSE process.  However, these samples still showed very strong improvement in emitter 

performance.   

The quality of native oxide is important to consider, and it was not clear what the 

minimum SRV could have been had some other proven passivation layer been used.  At the time 

of this work a method of accurately assessing the quality of passivation layers was not available.  

Sample Δ Jsc from EQE Pre-H Jgen Pre-H Jcoll Post-H Jgen Post-H Jcoll Δ Jsc from EDNA SRV (EDNA)

5 1.579 3.95 2.29 3.84 3.77 1.579 4000

9 1.312 3.95 2.29 3.84 3.503 1.312 18500

11 1.608 3.95 2.29 3.84 3.8 1.609 2500

15 1.506 3.95 2.29 3.84 3.697 1.506 8000
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There is evidence that native oxide coupled with silicon nitride can act as an excellent 

passivation layer, with SRV values down to 8 cm/s achieved on lightly doped silicon [5.2].  The 

cells in this work were exposed to ambient air for the development of native oxide.  Certainly the 

composition of this air would be a factor in the quality of the oxide and was not a controlled 

aspect of these experiments.  Native oxides formed from different methods, such as chemical 

boiling, or simple exposure to water, have been found to contain pin-holes or even islands of 

oxide with no, or limited oxide growth between the islands [5.3].  If this is the case with native 

oxides formed in air ambient at low temperatures, then it is quite likely that the lower limit of 

SRV due to passivation quality is not zero.  Regardless, there have been plenty of material 

combinations which do provide very low surface recombination velocities.       

 

Figure 5.5  External Quantum Efficiency curves for four solar cells before and after the 

HSE process.  Also shown is the curve for the reflectance of planar crystalline silicon to 

demonstrate the very high quality of these emitters after hydrogenation. 
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CHAPTER 6:  CONCLUSIONS AND FUTURE WORK 

 Top-down aluminum induced crystallization (TAIC) was explored as a low-temperature 

method for emitter formation on n-type silicon solar cells.  Although the initial solar cells formed 

with this technique were lower in efficiency than modeling would suggest for a comparable 

homojunction solar cell of the same characteristics, there are likely methods by which this 

drawback could be mitigated in future work for both surfaces of n-type and p-type silicon solar 

cells.  One idea proposed was to use amorphous silicon carbide as an intrinsic layer between the 

crystallized layer and the silicon wafer.  Preliminary results presented in chapter 2 demonstrated 

that minimal, if any crystallization of a-SiC:H occurred by aluminum at temperatures that were 

shown to fully crystallize a-Si:H.  A similar scheme has been proposed with a tunneling 

insulating oxide layer capped with n-type polycrystalline silicon for the rear surface of high-

efficiency n-type silicon solar cells [6.1] 

 In order for these emitters to be used on industrial solar cells with screen printed contacts, 

dopant gases such as diborane and phosphine would need to be used to introduce additional 

dopants in the amorphous silicon to decrease sheet resistance.  These additional dopant gases 

may complicate processing if it is found that separate chambers are needed for deposition of 

intrinsic/insulating and doped amorphous silicon.  Another issue with increasing dopant density 

occurs with not only increased Auger recombination, but also increased SRH recombination.  

With further development, this problem may be solved for the emitter by implementing the 

hydrogen selective emitter (HSE), which was invented during the course of this work.  The HSE 

process is currently undergoing transition from lab-scale solar cells to full-size cells with 

industrially compatible processing.  Once complete, the HSE process should be compatible with 
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TAIC emitter solar cells, providing better surface properties while introducing atomic hydrogen 

that is able to heal defects present at the interface of these types of solar cells. 
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Appendix A:  Description of Research for Popular Publication 

 

“Climate change has begun devastating 

the earth in ways only scientists could have 

imagined,” said Seth Shumate with a grim 

demeanor reminiscent of an ER doctor at the end 

of a busy shift.  Seth has been working on solar 

cell research and development for the past 5 

years in an effort to “provide the cheapest, 

greenest energy possible that is so cheap that 

even the staunchest conservatives might come 

around to offset their love of driving SUVs to 

the edge of a cliff that will plunge humanity 

back into the bronze age.”   

His latest invention, the hydrogen 

selective emitter (HSE), has the potential to 

make the cheapest, most reliable solar panels 

even more cost effective.  A solar panel is an 

array of solar cells which converts sunlight into 

the electricity that we use to run our everyday 

lives.  His innovation has the potential to reduce 

silver on the front of solar cells while increasing 

their efficiency.   

“We introduce atomic hydrogen to the 

top layer of the solar cell.  The atomic hydrogen, 

which is generated by catalytically dissociating 

H2 gas, pairs with boron acceptor impurities near 

the surface of the solar cell, reducing surface 

recombination velocities and increasing the 

efficiency potential of the photovoltaic devices 

in much the same way as a traditional selective 

emitter, but without increasing the sheet 

resistance of the photovoltaic device as is the 

case with the incumbent technology,” he said as 

he noticed my eyes glaze over like they were 

being run through a Krispy Kreme production 

line.  “Simply put, we eliminate an age-old 

tradeoff so that we can use less silver while 

increasing the power coming out of the solar 

cell,” he added. 

The technology has been funded by the 

NSF through a Small Business Innovation 

Research grant and a Department of Energy 

SunShot grant to help commercialize the 

technology through their startup company 

Picasolar, Inc.      

 When asked about the outlook of the 

solar industry, Seth commented in a sing-song 

voice, “I think the future of the solar industry 

will shine bright like a diamond.  The industry 

has grown 20x in the past 6 years, kind of like 

my stress level.”  “When you have power 

purchase agreements going in Texas for solar 

projects at rates cheaper than any other form of 

electricity, including coal and natural gas, then 

I’d say we’re at a point where we have the 

technological capability of filling in the grave 

we’ve dug for ourselves through the use of fossil 

fuels…. Only time will tell,” he said.   

 

 So what’s next on the horizon for this 

technology?  “Right now we’re working on 

transitioning the HSE from the lab scale to the 

fab scale.  That means full-sized 6” solar cells 

that can be processed at up to 3000 pieces per 

hour.  We figure if we can do that, the n-type 

market segment of the solar industry will be 

ready to implement our technology.  We’ve 

come a long way towards this goal, and we’ve 

got our work cut out for us”, he said.  “One of 
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the cool things I’m getting to do now is to make 

a chamber that can process full-sized solar cells.  

Here’s a picture of the CAD file that the US 

based manufacturer has sent us,” he said as he 

slid over a printout of an impressive looking 

hunk of metal, knocking over some sample 

boxes and grinning.  I left the interview with a 

renewed sense of hope in humanity and hopeful 

about my grandchildren’s prospects, but I’m still 

going to teach them to shoot!   

-- Lester Smith, science reporter for the 

Northwest Arkansas End of Times   
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Appendix B:  Executive Summary of Newly Created Intellectual Property 

 

[1]  S.D. Shumate, D.A. Hutchings, M.K. Hafeezuddin, M.G. Young, and S. Little, “Solar Cells 
and Methods of Fabrication Thereof,” U.S. Patent Application 14178216, Submitted February 
11th, 2014. 

[2]  D.A. Hutchings, S.D. Shumate, and H.A. Naseem, “Ultra-Large Grain Polycrystalline 
Semiconductors Through Top-Down Aluminum Induced Crystallization (TAIC),” U.S. Patent 
Application 13905966, Submitted May 30th, 2013. 

[3]  S.D. Shumate and D.A. Hutchings, “Solar Cells and Methods of Fabrication Thereof,” U.S. 
Patent Application 13754863, Submitted January 30th, 2013. 

[4]  D.A. Hutchings, S.D. Shumate, H.A. Naseem, and K. Sharif, “Development of Top-Down 
Aluminum Induced Crystallization for High Efficiency Photovoltaics,” U.S. Patent Application 
61449050, Submitted March 3, 2011.  

[5]  D.A. Hutchings, S.D. Shumate, H.A. Naseem, and K. Sharif, “Method of Metal Induced 
Crystallization of Amorphous Silicon and Method of Doping,” U.S. Patent Application 
61352681, Submitted June 8th, 2010. 
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Appendix C:  Potential Patent and Commercialization Aspects of Newly Created IP 

 

i) Patent applications 1) and 3) from Appendix B are currently written around IP that is 

being pursued commercially by Picasolar, Inc.  Patent applications 2), 4), and 5) from 

Appendix B have potential commercialization aspects, but are not actively being 

pursued. 

ii) Patent applications 1) and 3) relate to the HSE technology and various 

implementations that may be possible and, as such, help enable the commercialization 

of this technology.  Patent applications 2), 4), and 5) have the most commercial 

impact in wafer-based, rear surface passivated solar cells or thin-silicon films for 

display technologies. 

iii) No prior disclosure to these documents would void them has occurred, and the major 

ideas that were considered necessary or ancillary to commercializing either the TAIC 

or HSE technologies that appear in this document were included in these patent 

applications and other documentation prior to publishing any data in conference 

proceedings, grant applications, or communications with other entities.  
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Appendix D:  Broader Impact 

  

 The broader impact of the pursuit of photovoltaics as both a research and 

commercialization endeavor has provided great benefit to all of humanity.  Cheap, minimally 

polluting technologies such as photovoltaics are the safest way for our civilization to produce 

electricity.  The intent of the research directions pursued during the course of this Ph.D. were 

typically with a focus toward research that had the potential to impact the improvement of solar 

cells and/or provide alternative means in which to do so.  Educational outreach has been a 

priority and many undergraduate and graduate students have benefitted educationally because of 

work that has been carried out over the course of the past 5 years related to this research.  Jobs 

within the state of Arkansas have been created, and federal funding has been awarded to support 

this research and the people involved in it.  Substantial portions of this funding has gone to 

support local lab facilities including AAPRC and HiDEC at the University of Arkansas.  
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Appendix E:  Microsoft Project Printout 
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Appendix F:  Identification of All Software Used in Research and Dissertation 

 
Computer #1: 

Model Number: Dell Vostro 230 
Serial Number: GF13QL1 
Location: Room 2201, ENRC  
Owner: Silicon Solar Solutions, LLC. 

Software #1:  
Name: Microsoft Office 2010 
Purchased by: Silicon Solar Solutions, LLC 

Software #2:  
Name: EDNA 
Purchased by: Freeware 

Software #3:  
Name: AMPS1D 
Purchased by: Freeware 

Software #4: 
 Name:  PC-1D 
 Purchased by:  Freeware 
 
Computer #2: 

Model Number: Dell XPS 
Serial Number: 46JCPX1 
Location: Home Computer 
Owner: Seth Shumate 

Software #1:  
Name: Microsoft Office 2013 
Purchased by: Seth Shumate 
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Appendix G:  All Publications Published, Submitted and Planned 

1)  S. D. Shumate, M. K. Hafeezuddin, H. A. Naseem, D. A. Hutchings, “Microstructural 

Influence of Hydrogenated Amorphous Silicon on Polycrystalline Emitter Solar Cells 

Prepared by Top-down Aluminum Induced Crystallization,” Proc. of the 2011 IEEE 

PVSC, Seattle, Washington, June 19-24, 2011. 

2) S.D. Shumate, et al., “Self-aligned hydrogenated selective emitter for n-type solar cells,” 

IEEE 38th PVSC, 2012. 

3) S.D. Shumate, et al., “Large-Grain Polysilicon Seed Layers on Glass for Epitaxial Silicon 

Solar Cells,” IEEE 38th PVSC, 2012. 

4) S.D. Shumate, et al., “Progress on the Hydrogen Selective Emitter for N-type Solar 

Cells,” IEEE 39th PVSC, 2013. 

5) S.D. Shumate, et al., “Top-down Aluminum Induced Crystallization for N-type Solar 

Cell Emitters,” IEEE 39th PVSC, 2013. 
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