
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2015

Single-Walled Carbon Nanotube Arrays for High
Frequency Applications
Asmaa Elkadi
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Electromagnetics and Photonics Commons, Electronic Devices and Semiconductor
Manufacturing Commons, and the Nanotechnology Fabrication Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Elkadi, Asmaa, "Single-Walled Carbon Nanotube Arrays for High Frequency Applications" (2015). Theses and Dissertations. 1078.
http://scholarworks.uark.edu/etd/1078

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=scholarworks.uark.edu%2Fetd%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=scholarworks.uark.edu%2Fetd%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=scholarworks.uark.edu%2Fetd%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/273?utm_source=scholarworks.uark.edu%2Fetd%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/1078?utm_source=scholarworks.uark.edu%2Fetd%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


 

 

 

 

 

 

 

 

 

 

 

Single-Walled Carbon Nanotube Arrays for High Frequency Applications 

  



Single-Walled Carbon Nanotube Arrays for High Frequency Applications 

 

 

 

A dissertation submitted in partial fulfillment  
of the requirements for the degree of  

Doctor of Philosophy in Electrical Engineering 

 

 

by 

Asmaa Elkadi 
Cairo University 

Bachelor of Science in Electronics and Communications Engineering, 2004  
Cairo University  

Master of Science in Electronics and Communications Engineering, 2008 
 

 

May 2015 
University of Arkansas 

 
This dissertation is approved for recommendation to the Graduate Council 
 
 
 
 
 
Dr. Samir M. El-Ghazaly, Professor 
Dissertation Director 

Dr. Hameed A. Naseem, Professor 
Committee Member 
 

Dr. Douglas Spearot, Associate Professor 
Committee Member 

 



Abstract 

This dissertation presents a thorough analysis of semiconducting Single-Walled Carbon Nanotube-

based devices, followed by a test structure fabrication and measurements.  

The analysis starts by developing an individual nanotube model, which is then generalized for 

many nanotubes and adding the parasitic elements.  The parasitic elements appear when forming 

the device electrodes degrade the overall performance.  

The continuum model of an individual nanotube is developed. A unique potential function is 

presented to effectively describe the electron distribution in the carbon nanotube subsequently 

facilitating solving Schrödinger’s equation to obtain the energy levels, and to generalize the model 

for many nanotubes.  

It is shown that the overall energy band gap is inversely proportional to the number of nanotubes 

due to the coupling between the nanotubes. The coupling is then enhanced by applying an external 

transverse electric field, which controls the energy band gap. The electric field is represented as a 

function of the number of nanotubes per device showing that the higher the number of nanotubes, 

the lower the value of the electric field needed to alter the energy band gap. An electromagnetic 

model is developed for the contact where a detailed parametric study of the length, thickness, and 

conductivity of the contact area is presented. The overlap length between the nanotube and the 

metal of the contact appears to be the dominating factor.There is a clear inverse proportionality 

between overlap length and contact resistance to reach a minimum value after an effective overlap 

length. An equation is developed to describe the conductance as a function of the number of 

nanotubes per device. 

A four-electrode test structure is fabricated using both photolithography and electron-beam-

lithography. The carbon nanotubes are deposited using the dielectrophoresis method for many 

devices simultaneously to provide a sheet resistance as low as 10 K/�. The I-V characteristics 



are measured with and without change in the transverse electric field. It shows a change in the 

current reflecting the changes in the energy band gap discussed earlier. There are many 

applications for the results presented in this dissertation such as optimizing devices operating in 

the THz frequency range. 
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Chapter I. Introduction 

Carbon nanotubes have attracted the attention of researchers due to their substantial properties 

along their axis such as one dimensional confined carriers and photons and high electrical 

conductivity. In addition, carbon nanotubes have tremendous mechanical properties such as high 

thermal conductivity and tensile strength [1].  Single-walled carbon nanotubes can be regarded as 

a rolled graphene sheet and it is either semiconducting or metallic based on its chiral angle 

determined by rolling indices (m, n). A semiconducting single-walled carbon nanotube (s-

SWCNT) has a typical diameter of 0.5 to 2 nm, and its energy gap is inversely proportional to its 

diameter in the range of 1.4 to 0.35 eV [2].   

Aligned s-SWCNTs demonstrated promising responses in various devices [3]-[5].  It led 

researchers to compare the enhanced properties of aligned multi s-SWCNTs to individual ones. 

Studying aligned s-SWCNTs theoretically is a complex problem due to the lack of a well-defined 

potential function of individual s-SWCNT. The electronic structure of the nanotube will be 

discussed followed by the fabrication aspects that might hinder the performance of the carbon 

nanotube-based devices. 

1. Electronic Band structure of SWCNT 

Carbon nanotube is a rolled single atomic layer of carbon. Based on the way this atomic layer is 

rolled, it will define the boundary conditions and hence the properties of the carbon nanotube. Fig. 

1 shows the different chiral vector aamanC


 1 the nanotube could take. The common types are 

either armchair or zigzag.   

The one dimensional energy dispersion relation of SWCNT is defined by 
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where ccaa  3  , ac-c is the lattice constant and Vppπ is the nearest neighbor overlap integral 

between carbon atoms(2.5-3 eV).[6] 

A. Armchair SWCNT 

The periodic boundary conditions are satisfied by 

݁௜௞ೣேೣ√ଷ௔ ൌ 1 ⇒ ݇௫ ௫ܰ√3ܽ ൌ 				ߨ2݉ ∴ ݇௫ ൌ
݉

௫ܰ

ߨ2

√3ܽ
,݉ ൌ 1,2, … . . ௫ܰ 

Substitute in (1) 

∴ ܧ ൌ ඥ|݄௢|
ଶ ൌ േ ppV ඨ1 േ 4cos	൬

ߨ݉

௫ܰ
൰ ݏ݋ܿ ൬

݇ܽ

2
൰ ൅ ଶݏ݋4ܿ ൬

݇ܽ

2
൰ 

where ݄௢ ൌ ppV ቄ݁௜௞ೣ௔/√ଷ ൅ 2݁ି௜௞ೣ௔/ଶ√ଷܿݏ݋ ቀ
௞೤௔

ଶ
ቁቅ, ܽ ൌ 1.42Հ√3 is the lattice constant, and 

௣ܸ௣గ ൌ 2.7ܸ݁ is the hopping integral constant. Hence െߨ ൏ ݇ܽ ൏  ߨ

B. Zigzag SWCNT 

The periodic boundary condition are satisfied by  

݁௜௞೤ே೤௔ ൌ 1 ⇒ ݇௬ ௬ܰܽ ൌ 				ߨ2݉ ∴ ݇௬ ൌ
݉

௬ܰ

ߨ2

ܽ
,݉ ൌ 1,2, … . . ௬ܰ 

Substitute in (1) 

∴ ܧ ൌ ඥ|݄௢|
ଶ ൌ േݐට1 േ 4cos	ቀ

√ଷ௞ ௔

ଶ
ቁ ݏ݋ܿ ൬

௠గ

ே೤
൰ ൅ ଶݏ݋4ܿ ቀ

௞௔

ଶ
ቁ  
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hence 
ିగ

√ଷ
൏ ݇ܽ ൏

గ

√ଷ
 

Zigzag Carbon nanotubes have special characteristic that if Ny=3n, where n is integer, the carbon 

nanotube will behave like metallic one. Otherwise it will be semiconducting carbon nanotube. 

Fig. 1 (a) shows the schematic of carbon nanotubes with different chiralities.  

(a) (b) 

 

Fig. 1 (a) Carbon nanotubes of different chiralities (b) schematic of how graphene sheet can be 
rolled to form the different carbon nanotubes. [7] 

 

Fig.2 shows some examples of the dispersion relation of semiconducting and metallic SWCNTs. 

It can be inducted from Fig.2 (a) that the Zigzag SWCNTs is semiconducting when the difference 

between their chiral numbers is not dividable by three and the armchair nanotubes are always 

metallic. 
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(a) (b) 

Fig. 2 Example of the dispersion relation of (a) semiconducting SWCNT(b) metallic SWCNT 

 

For electronic applications the main difference between semiconducting carbon nanotubes and 

metallic ones is its conductivity. The conductivity of the metallic ones is three orders of magnitude 

higher than the semiconducting ones. In addition, the metallic carbon nanotube’s conductivity is 

constant while the semiconducting carbon nanotube can be modulated by a bias voltage. 

Semiconducting ones are used for FET devices and metallic ones for interconnects.  

2. Growth Techniques 

Producing carbon nanotubes as a mass production is very challenging and there many methods 

are under research. In this section, we are exploring some of the growth techniques that are 

already well established. 

A. Arc discharge 

When two graphite rods are connected to a power supply in hot plasma chamber, and applying 

high current, carbon vaporizes and forms carbon nanotubes. Arc discharge technique is one of the 
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first methods known for producing carbon nanotubes and it can produce SWCNT and MWNTs 

(Multi-walled Carbon nanotubes) with few structural defects. The main known disadvantage is 

that the produced carbon nanotubes are short with random size and direction [8]. 

B. Laser ablation 

When a graphite rod is shined with intense laser pulses, carbon gas will be produced from which 

the carbon nanotubes form. Various conditions should be tried until finding one that produces 

remarkable amounts of SWCNTs. Laser ablation is one of the best methods because its parameters 

can be controlled to produce precise SWCNTs but it needs very expensive laser source [9]. 

C. Chemical vapor deposition (CVD) 

In this method a substrate is placed in oven with temperature equals 600 oC, and slowly methane 

gas is added. As the gas decomposes it carbon atoms are free hence it recombines to form of carbon 

nanotubes. This is the most used method for mass production and substrate direct use but it is 

mostly MWCNTs and it might have a lot of defects [10]. 

All the produced carbon nanotubes are mix between metallic and semiconducting SWCNTs in 

addition to MWCNTs. In order to have a specific type of the carbon nanotubes a separation 

technique has to be used. 

3. Separation 

Having the SWCNTs grown in the powder form makes it hard to separate them. Nanointegris 

manufacturer has introduced the idea of putting them in an aqueous solution and adding mix of 

ionic surfactant materials. So each surfactant material convolutes the different carbon nanotubes’ 

types based on its polarity. This makes the overall solution is mix different density materials. Then 

spinning this solution with high revolution speed, these materials will spate to form layers, where 
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the highly dense will be in the bottom and the lightly dense on the top. Then they can be sucked 

separately and getting a very high purity metallic and semiconducting SWCNTs. 

 

Fig.3 Carbon nanotube solutions after separation-Nanointegris [11] 

 

4. Alignment 

The carbon nanotubes are sold in the form or powder or aqueous solution. In order to use in 

devices, it has to be deposited on a substrate. Alignment of carbon nanotubes plays a vital role in 

designing electronic devices and optimizing their operation. Ren et al. have used aligned metallic 

SWCNT to develop THz polarizer. THz signals polarized parallel to the carbon nanotubes are 

absorbed, while signals polarized perpendicular to the alignment direction are 

transmitted.  Wang et al. have used partially aligned s-SWCNTs in a FET transistor, where the 

performance is a function of the number of nanotubes per device [12].  Aligned carbon nanotubes 

have been used in many devices. The measured results were not to highly accurate with respect to 

electron transport physics in carbon nanotubes due to the lack of comprehensive theoretical model. 

Carbon nanotubes modeling can be prepared either by electromagnetic theory or by photonics. 
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Transmission line model for the carbon nanotubes in the gigahertz range was presented by Burke 

[13].  Transmission line is not an efficient tool in THz frequency range. Hence, in our model, we 

are applying the photonics properties in modeling carbon nanotubes in order to enhance and 

synthesize better devices in the THz range. 

There are different techniques used to align an aqueous solution of carbon nanotubes on a substrate. 

Langmuir-Blodgett technique is considered the mechanical method where a substrate is slowly 

dipped into a solution of well-dispersed highly dense carbon nanotubes and then is slowly 

(1cm/min) pulled out.[14] The second method uses gas flow of linear velocity (10cm/s) while the 

solution of dispersed CNTs is being drop-wise deposited onto a substrate. The flow simultaneously 

spreads the drops, dries them and aligns the nanotubes along the flow direction [15]. Finally, using 

an AC electric field aligns the individual nanotubes between the electrodes, thereby producing 

high-quality electrical CNT devices which is known as dielectrophoresis method [16]. 

5. Dissertation Structure 

This dissertation is composed of six chapters containing previously published papers. Chapter two 

discusses the theoretical background of the Thomas Fermi model applied in this work. Then an 

analytical approach is introduced to obtain the potential function of one s-SWCNT that describes 

the carrier charge density. The unique potential function proposed facilitates solving the problem 

as a cylindrical quantum well. Hence, integrating the potential function into Schrödinger's equation 

facilitates obtaining the probability wave functions and the energy band gap of one s-SWCNT. 

Extending the model to contain two s-SWCNTs is then realized by two methods, analytically and 

numerically. The analytical solution uses the double quantum well analogy. The numerical 

solution is obtained by implementing the model in COMSOL Multiphysics simulator. Results 

obtained using the two methods are in good agreement. The coupling effect of two aligned s-
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SWCNTs reduces the energy band gap of the system. A specific case where an external electric 

field is applied across the aligned s-SWCNTs is studied to show the variation of the energy band 

gap as a function of the applied electric field. 

Chapter three is divided into two sections that describe general cases of nanotube configurations.  

The first part, an analytical approach is adapted to obtain the potential function of DWNT. The 

expression for the potential function of DWNT’s carrier charge density.  Schrodinger model is 

built in ComSol Multiphysics simulator. Therefore, the probability wave functions are obtained 

and the energy band gap is calculated. The second part, in order to enhance the performance of 

future carbon based devices, it is essential to improve simulated model closer to experiments. Thus, 

two different approaches can be considered to develop new models. An efficient model based on 

experimental observations considering fabrication technique, nanotube defects, parasitic effects 

are developed by imposing new constraints. The approach utilized with the emergence of new 

technologies and growth techniques, semiconducting carbon nanotube highly uniform can now be 

produced allowing models to predict the behaviour of a device more accurately justifying this 

approach. The developed model at high frequency considers either metallic or semiconducting 

nanotubes depending on the applications. The presented model predicts the energy band gap of a 

bundle of aligned s-SWCNTs arranged in semi-random order considering different radii and 

distances separating nanotube. A typical diameter of s-SWCNT is in the order of 1.4-2.1nm, and 

the minimum distance between s-SWCNTs is the graphite interlayer distance 0.34 nm. The 

effective potential function is implemented in the Schrödinger equation to determine the ground 

state wave function and the energy band gap variations. Finally, the energy band tuning is 

demonstrated after applying an external electric field across the bundle. 
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Chapter four discusses the observed discrepancies between simulated data and experimental results 

of fabricated devices that obstruct the development of SWCNT-based devices into practical and 

large-scale integrated circuits. The contact resistance and fringe capacitance between nanotubes 

and metallic electrodes are important factors degrade carbon-based devices. Although palladium 

provides the highest on-current in SWCNT due to its matching work function, carbon-based 

devices contact resistances have been reported to be on the order of a few KΩ.  These values are 

higher than the ones for the Ohmic contacts formed in conventional semiconductor devices. A 

perfect ohmic contact could not be formed at the nano-scale level due to the chemical reactivity 

between the SWCNT and the metal. Instead, an overlap area of a lower conductivity forms between 

the SWCNT and the metal which creates an extra barrier due to the hybridization between the 

carbon atoms and the metal. The chapter presents a physical insight to understand this phenomena. 

A scheme for calculating the contact resistance and the fringe capacitance for individual SWCNT-

based devices is presented, with full parametric study. The results are presented which includes an 

independent verification of the model. 

Chapter five is divided into two parts. The first part, alignment of the nanotubes to optimize the 

performance of electronic devices and consider mass production manufacture is developed. The 

method based on AC dielectrophoresis technique to align semiconducting single-walled carbon 

nanotubes (s-SWCNTs) is applied to several devices at once. In addition, the resulting density of 

s-SWCNTs per device has exceeded the ones reported in the literature and the enhancement of the 

sheet resistance is observed compared to recent publications. The second part presents a physical 

insight into the processes affecting the contact resistance and the fringe capacitance of an 

individual SWCNT-based device. Then a method to calculate their values is presented. 

Understanding arrays of nanotubes is one of the key contributions of this paper. Thanks to their 
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ability to retain their interesting quantum properties, nanotube arrays may provide a large current 

carrying capacity and low impedance. The resultant parasitic-element models of the individual 

nanotube are embedded into a model for multiple SWCNT-based devices using a quantitative 

physics-based RC model to estimate the frequency dependence of such a device. A test structure 

is presented with a verification of the model followed by discussion and future insight. 

Chapter six discusses the effective potential function of an individual s-SWCNT, this it is 

generalized for aligned s-SWCNTs. Then an analogy between Quantum Cascaded Lasers (QCL) 

and system of aligned s-SWCNTs is discussed. The current-voltage characteristics of an individual 

nanotube and an array of nanotubes is discussed. The measurements are then compared to the 

theory. 
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Chapter II. Aligned semiconducting single-walled carbon nanotubes: Semi-analytical 

solution 

© Reprinted with permission from Asmaa Elkadi, Samir El-Ghazaly, Emmanuel Decrossas, Shui-

Qing Yu, and Hameed Naseem, Journal of Applied Physics, vol 114, pp., AIP Publishing LLC. 

Abstract 

This paper presents a semi-analytical model to study coupling between adjacent 

semiconducting single-walled carbon nanotubes (s-SWCNT) and its effect on the energy band 

gap. A potential function is proposed to describe the charge density distribution of s-SWCNT 

based on the continuum model. The potential function is then used in solving 

Schrödinger'sequation to obtain the ground state probability wave function for one s-SWCNT and 

aligned bundle of s-SWCNTs. Then, a parametric study of energy band gap is developed by 

varying the distance between adjacent s-SWCNTs and applying transverse electric field across the 

bundle axis. The energy band gap of aligned s-SWCNTs is 10% less than one s-SWCNT. When 

the distance (d) between the adjacent s-SWCNTs is increased, the change of the energy band 

gapvanishes. By applying transverse electric field, the energy band gap may reduce by as much as 

20% and vanishes with the increase of d. 

1. Introduction 

Carbon nanotubes have attracted the attention of researchers due to their substantial properties 

along their axis such as one dimensional confined carriers and photons and high electrical 

conductivity. In addition, carbon nanotubes have tremendous mechanical properties such as high 

thermal conductivity and tensile strength [1].  Single-walled carbon nanotubes can be regarded as 

a rolled graphene sheet and it is either semiconducting or metallic based on its chiral angle 
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determined by rolling indices (m, n). A semiconducting single-walled carbon nanotube (s-

SWCNT) has a typical diameter of 0.5 to 2 nm, and its energy gap is inversely proportional to its 

diameter in the range of 1.4 to 0.35 eV [2].   

Aligned s-SWCNTs demonstrated promising responses in various devices [3]-[5].  It led 

researches to compare the enhanced properties of aligned multi s-SWCNTs to individual ones. 

Studying aligned s-SWCNTs theoretically is a complex problem due to the lack of a well-defined 

potential function of individual s-SWCNT. Two adjacent s-SWCNTs were studied by Kim et al 

[6].  using first principle ab initio method. It was mentioned that their method could be extended 

to three aligned s-SWCNTs. 

Alignment of carbon nanotubes plays a vital role in designing electronic devices and optimizing 

their operation. Ren et al. have used aligned metallic SWCNT to develop THz polarizer. THz 

signals polarized parallel to the carbon nanotubes are absorbed, while signals polarized 

perpendicular to the alignment direction are transmitted. 3 Wang et al. have used partially aligned 

s-SWCNTs in a FET transistor, where the performance is a function of the number of nanotubes 

per device [7].  Aligned carbon nanotubes have been used in many devices. The measured results 

were not to highly accurate with respect to electron transport physics in carbon nanotubes due to 

the lack of comprehensive theoretical model. Carbon nanotubes modeling can be prepared either 

by electromagnetic theory or by photonics. Transmission line model for the carbon nanotubes in 

the gigahertz range was presented by Burke [8].  Transmission line is not an efficient tool in THz 

frequency range. Hence, in our model, we are applying the photonics properties in modeling 

carbon nanotubes in order to enhance and synthesize better devices in the THz range. 

This paper is organized as follows: Section II discusses the theoretical background of the Thomas 

Fermi model applied in this work. In Sec. III , an analytical approach is introduced to obtain the 
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potential function of one s-SWCNT that describes the carrier charge density. Having a well-

defined potential function facilitates solving the problem as a cylindrical quantum well. Hence, 

integrating the potential function into Schrödinger's equation facilitates obtaining the probability 

wave functions and the energy band gap of one s-SWCNT. Extending the model to contain two s-

SWCNTs is then realized by two methods, analytically and numerically. The analytical solution 

uses the double quantum well analogy. The numerical solution is obtained by implementing the 

model in COMSOL Multiphysics simulator [9]. Results obtained using the two methods are in 

good agreement. The coupling effect of two aligned s-SWCNTs reduces the energy band gap of 

the system. Section IV describes a specific case where an external electric field is applied across 

the aligned s-SWCNTs. The study of the energy band gap variation as a function of the applied 

electric field is presented. 

2. Theoretical Background 

The continuum approach introduced by Zuloaga [10]  is applied to an individual s-SWCNT, where 

the surface charge density of graphene describes the positive charge on its wall and an electron gas 

surrounds it, as shown in the inset of Fig. 1(a) . A generalization of Thomas-Fermi (TF) model is 

then used to calculate the charge distribution for individual s-SWCNT. In this model, the 

equilibrium electron density distribution is combined with Poisson's equation to compute the 

potential function which is then inserted in Schrödinger's equation. The equilibrium electron 

density is calculated by minimizing the overall system energy function [10] 

݊ሺݎሻ ൌ ቆ
ଷ

ହ஼ி
	 ௘ܸ௙௙ሺݎሻቇ

య

మ

                                                    (1)  

where ௘ܸ௙௙ is the electrostatic potential produced by the positive ion core and ܥி is TF energy 

coefficient. Poisson's equation is given by 
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ଶߘ ௘ܸ௙௙ሺݎሻ ൌ െ4ߩߨሺݎሻ                                                     (2) 

where the total charge is ߩሺݎሻ ൌ െ݊ሺݎሻ ൅ ݊ାሺݎሻ and the positive charge is only located on the s-

SWCNT's surface:݊ାሺݎሻ ൌ ߪ ∗ ݎሺߜ െ ܴ௧ሻ	, hence ߘଶ ௘ܸ௙௙ሺݎሻ ൌ  . Substituting Eq. (1) in	ሻݎሺ݊ߨ4

Eq. (2) results in Thomas Fermi's differential equation 

ଶߘ ௘ܸ௙௙ሺݎሻ ൌ ߨ4 ቆ
ଷ

ହ஼ಷ
	 ௘ܸ௙௙ሺݎሻቇ

య

మ

.                                             (3) 
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Fig. 1 Normalized Potential function V eff (a) 2D with inset shows the continuum model of s-
SWCNT (b) 3D plot obtained from COMSOL Multiphysics simulator (a.u.) ( R t  = 0.7 nm). 
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3. Model for s-SWCNT 

A.  Analytical potential function 

Semi-analytical solution of TF differential equation is obtained by substituting asymptotic 

form [11] of ௘ܸ௙௙ ൌ
஺

௥್
		 , and calculating the constants A and b. The analytical potential function 

is proposed to be in the form 

௘ܸ௙௙ሺݎሻ ൌ
ି஻ൈ௖మ௥

మ

൫௥మିோ೟
మ൯
మ
ା௖మ௥మ

				                                                   (4) 

where ܴ	
௧
 is the nanotube's radius, ܿ ൌ

ோ೟

ଵଵ.ସସ଺
 represents the effective s-SWCNT's wall thickness 

[12],  and B = 8.75 eV is the potential well depth [2].  The 2D and 3D plots of the potential function 

is shown in Figs. 1(a) and 1(b) , respectively. The results agree with TF equation solved 

numerically [10], [13].  The potential function is symmetrical around the tube axis and localized 

around the tube wall. A comparison is presented in Fig. 2 between the normalized electron charge 

distribution calculated by substituting Eq. (4) in Eq. (1) and the numerical data produced by 

Zuloaga [10].  According to the derivative of the potential function, it results in a huge number 

due to very small nanotube wall thickness. That is an acceptable approximation for the 

discontinuity on the carbon nanotube wall that encounters the positive localized charge on the wall. 

After having a well-defined potential function describing the s-SWCNTs, this potential function 

is inserted in Schrödinger's equation to obtain the wave function for the system ground state wave 

function. 
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Fig. 2. Electron charge distribution calculated using the proposed potential function compared 
with the one calculated numerically by Zuloaga [10].  ( ܴ

௧
ൌ 0.32 ݊݉). 

 

B.  Solving Schrödinger equation 

For this problem, Schrödinger equation is formulated as follows: 

ሺെ
԰మ

ଶ௠∗ ߘ
ଶ ൅ ௘ܸ௙௙ሺݎሻሻߖሺݎ, ߶, ሻݖ ൌ ,ݎሺߖܧ ߶,   ሻ                             (5)ݖ

where ԰ is Planck's constant and m* is the effective mass [14]. The general solution of Schrödinger 

differential equation in cylindrical coordinates is 

,ݎሺߖ ߶, ሻݖ ൌ   ሻ                                    (6)ݖሺ݅݇௭݌ݔ݁ ߶݉ ݏ݋ሻܿݎሺݕ

where ݕሺ	ݎሻ is the radial component , ݉ ൌ 0,േ1,േ2, . . .. is the azimuthal number, and k z is the 

axial wave vector. Taking into account the large aspect ratio of the s-SWCNT, where the length is 
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three orders of magnitude larger than the diameter, the z-component is considered propagating. 

Therefore, Eq. (5) is reduced to 

డమ௬

డ௥మ
൅

ଵ

௥

డ௬

డ௥
	൅ ቀ

ଶ௠∗

԰
	ቀܧ െ ௘ܸ௙௙ሺݎሻቁ െ

௠మ

௥మ
ቁ ݕ ൌ 0                        (7)  

To obtain the analytical expression of the wave function, Frobenius method is used, the details are 

given in Appendix A . The resultant radial component of the wave function of the ground state is 

ሻݎ଴ሺݕ ൌ ሻݎ଴ሺ݇௥ܬ ൅ ଵܥ ቀܭ
∗ ஻௖మ

௞ೝ
మோ೟

రቁ ሻݎ௥݇ߙସሺܬ െ ଶܬଶܥ ൬ܭ√ߚ
ଶܿܤ∗ ቀ

௥

ோ೟
ቁ
ଶ

൰                   (8)  

where ܬ	
௜
	ሺ	ݔሻ is Bessel function of the first kind, ܭ ∗ൌ 2݉ ∗ ԰2 , the quantized radial wave 

number ݇௥ ൌ ට
ாబ

௄∗
	, ଴ܧ  ൌ ܤ െ  is the highest energy value an electron can take in a carbon ܤ and	ܧ

atom. ܧ are the energy states obtained from the eigenvalue solution of Eq. (8) . Fig. 3 presents the 

probability wave function for the ground energy state and the second energy level for single s-

SWCNT. 
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Fig. 3 Probability wave function (a) ground state (b) second energy level (a.u.) ( ܴ 	௧	ଵ  ൌ 0.7 ݊݉, 

and ܧ	
଴
 ൌ 	ܧ	,ܸ݁ 0.285 

ଵ
 ൌ  0.6 ܸ݁). 

 

4. Coupling between Two Carbon Nanotubes 

A.  Without electric field 
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In this section, the coupling between two adjacent aligned s-SWCNTs is studied as a function of 

the wall-to-wall distance (d) separating them. Fig. 4 describes the coupling between two s-

SWCNTs, following the same analogy of double quantum wells. 15As the potential function is 

highly localized around the carbon nanotube wall and that is represented by the positive charge 

݊ା ൌ ߪ ∗ ݎሺߜ െ ܴ௧ሻ , the potential of each carbon nanotube, a repeated shifted version around the 

center of each carbon nanotube. Hence, the total potential function  ܸ	
௧௢௧

 , plotted in Fig. 4 , is the 

superposition of the potential function of each individual s-SWCNT, ௧ܸ௢௧ ൌ ௘ܸ௙௙ଵ ൅ ௘ܸ௙௙ଶ . The 

overall potential function replaces the individual s-SWCNT potential function in Eq. (5) . The 

model is general and can be applied for any semiconducting carbon nanotubes regardless of their 

chiralities or diameter because it uses the potential function proposed in Eq. (4) and the wave 

function obtained in Eq. (8) . The energy band gap changes by coupling effect between aligned s-

SWCNTs 

ሻ݈݀݁݌ݑ݋௚ሺܿܧ ൌ ௚ܧ ൅ 2 ଵܸ
ഥ േ തܸ

ଵଶ                                                         (9)  

where തܸଵ ൌ ൻߖଵ ∣∣ ௘ܸ௙௙ଶሺݎሻ ∣∣ ଵߖ ൿ ൌ ൻߖଶ ∣∣ ௘ܸ௙௙ଵሺݎሻ ∣∣ ଶߖ ൿ is the shift integral, and  

തܸ
ଵଶ ൌ ൻߖଵ ∣∣ ௘ܸ௙௙ଶሺݎሻ ∣∣ ଶߖ ൿ ൌ ൻߖଶ ∣∣ ௘ܸ௙௙ଵሺݎሻ ∣∣ ଵߖ ൿ	is the transfer integral. The coupling 

between s-SWCNTs produces a splitting in the ground levels in both directions; higher and lower 

than the original ground state. Hence the new lowest state is what defines the system energy band 

gap. The difference between the energy band gap of individual s-SWCNT and the energy band 

gap of the coupled system is 

ܧ߂ ൌ ሻ݈݀݁݌ݑ݋௚ሺܿܧ െ ݏ ݁݊݋௚ሺܧ െ   ሻ                                (10)ܶܰܥܹܵ
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Fig. 4 Normalized Potential function ܸ
௘௙௙

 for two s-SWCNT (a) 2D shows the distance between 

the adjacent s-SWCNTs (b) 3D plot obtained by COMSOL Multiphysics simulator (a.u.) 
( ܴ	௧	ଵ  ൌ  	ܴ	

௧	ଶ
 ൌ  0.7 ݊݉	ܽ݊݀	݀  ൌ 0.35 ݊݉). 
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The ground energy state presented in Fig. 5(a) shows direct coupling between s-SWCNTs. 

However, Fig. 5(b) shows the second level energy state which is across the bundle axis; hence, it 

does not assist in the coupling between s-SWCNTs. As expected, the coupling between two 

aligned s-SWCNTs decreases as the distance between them increases. By decreasing the coupling 

effect, the energy band gap difference Δ E between the coupled nanotubes compared to a single 

one is reduced as shown in Fig. 6 . The s-SWCNTs used in this work are identical (i.e., they have 

the same chirality (19, 0); hence, their radius is ܴ	
௧
	  ൌ  0.7 nm and their energy band gap 

is ܧ௚ሺ݈݁݃݊݅ݏ	ݏ െ ሻܶܰܥܹܵ  ൌ  0.57 ܸ݁). There is a discrepancy between the analytical and the 

numerical data in the small distances in the case of no-electric field. It could be induced by the 

approximations made in the Frobenius series. 
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Fig. 5 Probability wave function of the coupled s-SWCNTs (a) ground state (b) second energy 
level (a.u.) ( ܴ	

௧ ଵ
 ൌ  	ܴ	

௧	ଶ
 ൌ 0.7 ݊݉, ݀ ൌ 0.35 ݊݉, and ܧ

଴
ൌ  0.2825 ܸ݁, ܧ ଵ ൌ

 0.588 ܸ݁). 
 



25 
 

 

Fig. 6 The reduction in the energy band gap versus the distance between two s-SWCNTs black 
square curve is calculated using Eq. (10) and red circle curve is calculated using COMSOL 
simulator. 

 

B.  With applied transverse electric field 

The contribution of the transverse electric field across one s-SWCNT will change the Hamiltonian 

of the electron to be 

ܪ ൌ ଵܪ െ   (11)                                                ߶ ݏ݋ܿ ݎܨ݁

where ܪ	
ଵ
 is the original Hamiltonian without electric field perturbation, e is the electron charge, 

and F is the electric field. An additional variational parameter is added to the wave function in 

order to calculate the energy levels. Following the same approach developed by Vázquez et 

al.[16],  the wave function for the ground state is expressed as 

,ݎ଴ሺߖ ߶, ሻݖ ൌ   ሻ                                   (12)ݖሺ݅݇௭݌ݔሻ݁߶ߟሺݏ݋ሻܿݎ଴ሺݕ



26 
 

where ݕ	
଴
ሺ	ݎሻ is the same as Eq. (8) , and ߟ is the variational parameter. The energy of the ground 

state ܧ଴ఎ ൌ
ൻߖ∣∣ܪ∣∣ߖ ൿ	

ൻߖ∣∣ߖ ൿ
 is then minimized with respect to the variational parameter to obtain a lower 

limit of	ܧ଴ఎ . It has been observed that applying an electric field perpendicularly to an individual 

s-SWCNT reduces its energy band gap [2], [16].  Fig. 7 presents the energy band gap variation as 

function of the applied electric field. Although the concept of the energy gap reduction by applied 

electric field is valid for individual s-SWCNT, it requires a high electric field 3 × 10 9 V/m [2]. 

Applying the same procedure for a system of aligned s-SWCNTs, the ground state energy of the 

system is the sum of the electric field's effect on each s-SWCNT added to the coupling between 

them, as shown in Appendix B. The transverse polarizability of bundle of carbon nanotubes is 

higher than the isolated carbon nanotube [17] and it is a function of the distance d between the 

nanotubes [18], which enhances the response of the bundle to an applied electric field with respect 

to the isolated carbon nanotube. The developed model shows that the applied electric field needed 

to decrease the energy band gap is lower for aligned s-SWCNTs than for an individual s-SWCNT 

due to the coupling effect between nanotubes as it has been observed [6].  Fig. 8 shows the energy 

change for a bundle formed of two identical s-SWCNTs in the existence of applied electric field. 
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Fig. 7 Energy band gap variation of s-SWCNT versus the applied electric field magnitude. 
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Fig. 8 The reduction in the energy band gap in the case of applying transverse electric field 
versus the distance between two s-SWCNTs black square curve is calculated using Eq. (10) with 
the expression of wave function of Eq. (12) and red circle curve is calculated using COMSOL 
simulator. (The electric field magnitude is F = 0.1 V/nm applied across the axis of single 
SWCNT.) 

 

5. Conclusion 

An analytical potential function is introduced to describe the charge density of s-SWCNTs. 

Schrödinger's equation is then solved by implementing the proposed analytical potential function. 

The wave function of an individual s-SWCNT as well as multi s-SWCNTs organized inside a 

bundle is obtained from the semi-analytical approach. The energy band gap reduction due to the 

coupling in aligned s-SWCNTs is investigated as a function of the distance between s-SWCNTs 

in the absence and in the presence of transverse electric field. The energy band gap change reaches 



29 
 

10% due to coupling while in the case of applied transverse electric field it increases as much as 

22%. The proposed closed-form potential function offers significant reduction in the computation 

time. Hence, this model can be easily generalized to incorporate a large number of aligned 

nanotubes. Finally, this study provides innovative approaches for terahertz or far-infrared 

frequency components requiring a small energy band gap semi-conducting material. 

Appendices 

APPENDIX A: Frobenius method 

The Frobenius method assumes that the solution for Ordinary Differential Equations (ODE) is 

expressed as a power series [19].  This method begins by assuming the solution for ODE 

൬
ௗమ

ௗ௥మ
൅

ଵ

௥

ௗ

ௗ௥
	൅ ሻܧሺ∗ܭ ൅

஻௖మ௥మ௄∗

௥రା൫௖మିଶோ೟
మ൯௥మାோ೟

ర െ
௠మ

௥మ
൰   (A1)                                    ݕ

to be a power series 

ݕ ൌ ∑ ݎ௡ܣ
௡ାఔஶ

௡ୀ଴                                            (A2)  

The first and the second derivatives with respect to r are derived as 

ௗ௬

ௗ௥
ൌ ∑ ݎ௡ܣ

௡ାఔିଵሺ݊ ൅ ሻஶߥ
ሺ௡ୀ଴ሻ                                           (A3)  

ௗమ௬

ௗ௥మ
ൌ ∑ ݎ௡ܣ

௡ାఔିଶሺ݊ ൅ ሻሺ݊ߥ ൅ ߥ െ 1ሻஶ
௡ୀ଴ 			                        (A4)  

By substituting Eqs. (A2)–(A4) in Eq. (A1) , the following expression is obtained: 

∑ ௡ܴ௧ܣ
ସሺሺ݊ ൅ ሻଶߥ െ ݉ଶሻݎ௡ାఔஶ

௡ୀ଴ ൅ ∑ ܭ൫	௡ିଶܣ
∗ሺܧሻܴ௧

ସ ൅ ሺሺ݊ ൅ ߥ െ 2ሻଶ െ ݉ଶሻ൯ݎ௡ାఔஶ
௡ୀଶ ൅

∑ ܭ௡ିସሺܣ
∗ሺܿܤଶ ൅ ሺܿଶ െ 2ܴ௧

ଶሻሺܧሻஶ
௡ୀସ 	ሻ ൅ ሺሺ݊ ൅ ߥ െ 4ሻଶ െ ݉ଶሻሻ	ݎ௡ାఔ 	൅

∑ ܭ௡ି଺ܣ
∗ሺܧሻݎܧ௡ାఔஶ

௡ୀ଺ 	ൌ 0                            (A5)  
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The coefficients ܣ	
௡

 are computed by equating both sides of Eq. (A5) ; hence, the following 

recursion equations are obtained: 

݊ ൌ 0 → ଴ܴ௧ܣ
ସሺሺ0 ൅ ሻଶߥ െ ݉ଶሻ ൌ 0 → ଶߥ ൌ ݉ଶ 

݊ ൌ 1 → ଵܣ ൌ 0, 

݊ ൌ 2 → ଶܣ ൌ െ
௄∗ா

ሺሺଶାఔሻమି௠మሻ
 ,଴ܣ

݊ ൌ 3 → ଷܣ ൌ 0, 

݊ ൌ 4 → ସܣ ൌ െ
௄∗ா

ሺሺସାఔሻమି௠మሻ
ଶܣ 	൅ െ

௄∗஻ቆ
೎మ

ೃ೟
రቇ

ሺସାఔሻమି௠మ  ,଴ܣ

݊ ൌ 5 → ହܣ ൌ 0, 

݊ ൌ 6 → 

଺ܣ ൌ
ି௄∗ா

ሺ଺ାఔሻమି௠మ ସܣ ൅
ି௄∗஻ቆ

೎మ

ೃ೟
రቇ

ሺ଺ାఔሻమି௠మ ଶܣ െ െܤ∗ܭ ቀ
௖మ

ோ೟
ఴቁ ሺܿ

ଶ െ 2ܴ௧
ଶሻሺሺ6 ൅ ሻଶߥ െ ݉ଶሻܣ଴. 

Substituting all coefficients in Eq. (A1), the solution is a summation of Bessel function of the first 

order and approximated terms. 

ሻݎሺݕ ൌ ሻݎఔሺ݇௥ܬ ൅ ଵܥ ቀ
௄∗஻௖మ

௞ೝ
మோ೟

ర ቁ ሻݎ௥݇ߙఔାସሺܬ െ ഌܬଶܥ
మ
ାଶሺܭ√ߚ

ଶܿܤ∗ ቀ
௥

ோ೟
ቁ
ଶ
ሻ            (A6)  

The second term in Eq. (A6) is due to the hollow shape of the s-SWCNT. The third term represents 

the finite depth of the potential function. In other words, if an infinite depth of the potential 

function is considered, then the third term is neglected. C 1 and C 2 are normalization constants 

while α and β are calculated using the least square method to satisfy the boundary conditions: The 

wave function has a zero derivative at r = 0, and it vanishes at infinity. The constants α and β are 
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added to achieve the highest possible accuracy. They are calculated using the least square method 

by comparing the zeros of Eq. (8) to the zeros of the power series of Frobenius method. The same 

approach is applied to calculate C1 and C2 to ensure the integration of absolute value of wave 

function squared is the unity ( ׬∞െ∞ ∣∣ ሻݎሺݕ ∣∣ 2 ൌ 1 ). Hence, to obtain the wave function for 

the ground state, it is substituted by ൌ ݉ ൌ 0 . 

 

APPENDIX B: Coupling equations 

For coupled s-SWCNTs, the Hamiltonian can be expressed as 

௧ܪ ൌ ଵܪ ൅ ଶܪ െ ߶ ݏ݋ܿ ݎଵܨ ൌ ሺܪଵ െ ሻ߶ ݏ݋ܿ ݎଵܨ ൅ ሺܪଶ െ  ,ሻ߶ ݏ݋ܿ ݎଶܨ

௧ߖ ൌ ଵߖଵܣ ൅  ,ଶߖଶܣ

where ߖ௧,  ,௧ are the wave function and the Hamiltonian for all the systemܪ

respectively. F1 and F2 are the proportion of the applied electric field on each individual carbon 

nanotube 

ݐܧ ൌ
అ௧|ு௧|అ௧ۧۦ

	అ௧|అ௧ۧۦ
, 

ۧݐߖ|ݐܪ|ݐߖۦ ൌ ଵܪ|ଵߖଵܣۦ െ ଵۧߖଵܣ|߶ ݏ݋ܿ ݎଵܨ ൅ ଵܪ|ଵߖଵܣۦ െ ଶۧߖଶܣ|߶ ݏ݋ܿ ݎଵܨ

൅ ଶܪ|ଵߖଵܣۦ െ ଵۧߖଵܣ|߶ ݏ݋ܿ ݎଶܨ ൅ ଵܪ|ଶߖଶܣۦ െ ଶۧߖଶܣ|߶ ݏ݋ܿ ݎଵܨ

൅ ଶܪ|ଶߖଶܣۦ െ ଵۧߖଵܣ|߶ ݏ݋ܿ ݎଶܨ ൅ ଶܪ|ଶߖଶܣۦ െ  ଶۧߖଶܣ|߶ ݏ݋ܿ ݎଶܨ

ݐܧ ൌ
ாభആభାଶ௏భାଶ௏భమାாమആమ

ଶ
, 

where ܧଵఎଵ and ܧଶఎଶ are the contribution of the applied electric field to the energy band gap in 

first and second s-SWCNTs, respectively. It is that the total effect of applying electric field across 

aligned s-SWCNTs is assisted by the interaction between the s-SWCNTs. 
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Abstract 

In this paper, a new method of investigating the electronic properties of double-walled carbon 

nanotube is introduced. The method is based on dealing with it as two concentric single-walled 

carbon nanotubes. The results confirm that double-walled carbon nanotubes can be classified 

as semi metallic, from the electronic conductivity point of view, regardless the electronic type 

of the two concentric tubes. 

1. Introduction 

Carbon nanotubes have attracted the attention of researchers due to their electrical properties 

such as one dimensional confined carriers and photon along their axis; high tensile strength; 

large thermal and electrical conductivities [1]. A single-walled carbon nanotube (SWCNT) can 

be regarded as a rolled graphene sheet. Considering its electric conductivity, a SWCNT is either 

semiconducting or metallic based on its chiral angle determined by rolling indices (m,n). A 

semiconducting single-walled carbon nanotube has a typical diameter of 0.5 to 2 nm and its 

energy gap is in the range of 0.5 to 1 eV.  
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Studying multi-walled and single-walled carbon nanotubes is theoretically a complex problem 

because the potential function is not well defined. Two adjacent semiconducting carbon 

nanotubes (s-SWCNTs) were studied by Kim et. al [2] using first principle ab intio method. 

Kim et al. mentioned they could extend their calculations to three aligned s-SWCNTs. There 

are two ways to describe Multi-walled nanotubes (MWNT), either Russian Doll model or 

Parchment model. The Russian Doll model describes MWNTs as sheets of graphene rolled to 

form concentric multiple SWCNTs. Whereas the Parchment model describes it as a single sheet 

of graphite rolled around itself. The interlayer distance in multi-walled nanotubes is close to 

the distance between graphene layers in graphite, approximately 3.4 Å. A double-walled carbon 

nanotube (DWNT) is a special case of MWNT as it has just two carbon nanotubes. 

In this paper, an analytical approach is adapted to obtain the potential function of DWNT. 

Section 2 presents the expression for the potential function of DWNT’s carrier charge density. 

Having a well-defined potential function facilitates solving the problem as cylindrical quantum 

wells. Hence, it enables introducing the potential function expressions into Schrodinger's 

equation. In this research, Schrodinger model is built in ComSol Multiphysics simulator. 

Therefore, the probability wave functions are obtained and the energy band gap is calculated 

in section 3. 

2. Analytical Potential Function 

Elkadi et al. [3] developed the analytical expression for the potential function of single-walled 

carbon nanotubes shown in (1).  

 

 

(1),
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where Rt is the nanotube’s radius, 
446.11
tR

c   represents the effective SWCNT’s wall thickness 

[4], and eV 25.8B is the potential well depth. This expression facilitates understanding the 

properties of different configurations of carbon nanotubes. Any configuration can be 

considered as a superposition of several individual SWCNT. Hence, the overall potential can 

be derived as the sum of the individual potentials of each tube. A typical distribution of the 

potential function is presented in Fig. 1. 

A DWNT is analysed as two concentric carbon nanotubes of different radii. Hence, its overall 

potential function is defined as: 

(2),

 

where Veff-1, and Veff-2 are the effective potential functions of concentric nanotubes of Rt1and 

Rt2 , respectively. 
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Fig. 1 Potential function of semiconducting single walled carbon nanotube of radius Rt=0.7nm 
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The resulting overall effective potential of DWNT is shown in Fig. 2. The graph displays the 

overall potential function of DWNT is similar to that of a larger carbon nanotube with larger 

effective wall thickness. The larger the diameter of the carbon nanotube, the smaller its energy 

band gap is. 
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Fig. 2 Potential function of double walled carbon nanotube of radii Rt1=0.7nm, and Rt2=1nm 

3. Simulations and Results 

The total potential function Veff-total is then imbedded in a Schrodinger model. The solution of 

Schrodinger model in ComSol simulator provides the probability wave functions. Fig. 3 

demonstrates the first two principle wave functions which are the ground state and the first 

energy level. They behave as a carbon nanotube with a larger radius and hence a larger effective 

wall thickness. From the ground state, the energy band gap is calculated. It depicts semi-

metallic characteristics. In other words, the calculated energy band gap of DWNT is on the 

order of few mili-electron Volts which is significantly less than the energy band gap of a s-
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SWCNT. The results are in a good agreement with established characteristics of DWNT with 

semi-metallic properties. 

 

(a) 

 

(b) 

 Fig. 3 Probability wave function (a) ground state (b) second energy level 

One of the challenges to testing carbon nanotubes is their dimensions; a typical diameter of a 

carbon nanotube is around 1-2 nm and its length is around few micrometres. Fig. 4 shows a 

prototype device fabricated to test carbon nanotubes. The device consists of four probes. 

Carbon nanotubes are deposited between Electrode2 and Electrode4 using AC 

dielectrophoresis process. Different measurements setup can take place between the four 

electrodes (e.g., I-V characteristics measurements along the carbon nanotubes.) Fig. 4 shows 

scanning electron microscope (SEM) pictures of the fabricated device consisting of four 

palladium (Pd) nano-elecrodes to realize ohmic contacts at the metal-carbon nanotube 

interface. 
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μm100

μm2

 

Fig. 4 Scanning electron microscope (SEM) pictures of the fabricated device (the electrode’s 

width is 17m with gap of around 4m) and the inset shows SEM picture of Electron Beam 

lithography fabricated nano-electrodes overlapped with the electrodes made by 

Photolithography 

4. Conclusion 

An analytical potential function is introduced to describe double walled carbon nanotubes. A 

Schrodinger-based model is solved to provide a comprehensive quantum solution. The 

calculated results are inn good agreement with published data. This paper confirms that double-

walled carbon nanotubes are semi-metallic regardless the electronic type of its composing 

carbon nanotubes. 
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Abstract  

The electronic properties of multiple semiconducting single walled carbon nanotubes (s-

SWCNTs) considering various distribution inside a bundle are studied. The model derived from 

the proposed analytical potential function of the electron density for an individual s-SWCNT is 

general and can be easily applied to multiple nanotubes. This work demonstrates that regardless 

the number of carbon nanotubes, the strong coupling occurring between the closest neighbours 

reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent 

on the distance separating the s-SWCNTs. In addition, based on the developed model, it is 

proposed to enhance this coupling effect by applying an electric field across the bundle to 

significantly reduce the energy band gap of the bundle by 20%.  
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1. Introduction 

Carbon Nanotubes (CNTs) consists of a rolled mono-atomic sheet of carbon also known as 

graphene.  Nanotube physical properties including high thermal and electrical conductivities, great 

tensile strength, and elastic modulus have certainly attracted researchers in the last two decades 

[1]. For instance, the chiral angle pair of indices (n,m) which defines how the graphene sheet is 

wrapped and the diameter of a single-walled carbon nanotube (SWCNTs) also determine the 

semiconducting or conducting nature of the nanotube [1].  

Although those physical properties have extensively been studied over the years based on the 

structural carbon atoms assembly, experimental data still lack to reach such theoretical values. 

Consequently, to enhance the performance of future carbon based devices, it is essential to improve 

simulated model closer to experiments. Thus, two different approaches can be considered to 

develop new models. First, experiments are performed to extract the electrical properties of carbon 

nanotube that are directly implemented in simulation software. For instance, Decrossas et al. built 

a measurement setup to extract the frequency dependence of the complex permittivity of carbon 

nanotube in a powder form to engineer novel composite material for high frequency applications 

[2],[3]. An accurate model predicting the behaviour of the complex nano-powder mixture 

including both semiconducting and metallic nanotubes entangled together was developed. Second, 

more efficient model based on experimental observations considering fabrication technique, 

nanotube defects, parasitic effects are developed by imposing new constraints. This is the approach 

utilized in this work. In fact, with the emergence of new technologies and growth techniques, 

semiconducting carbon nanotube highly uniform can now be produced allowing models to predict 

the behaviour of a device more accurately justifying this approach. The developed model at high 

frequency considers either metallic or semiconducting nanotubes depending on the applications. 
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For instance, Sarto et al. predicted the coupling effect occurring between conducting nanotubes in 

a bundle based on a hybrid transmission line quantum mechanical model for signal integrity 

purposes [4]. In this work instead, semiconducting SWCNTs are studied due to their unique 

property: the energy band gap is inversely proportional to their diameter leading to potential future 

terahertz (THz) devices [5]. However, fabrication techniques and experimental observations show 

that highly dense aligned s-SWCNTs are organized in bundles [6] in a device. Understanding the 

alignment of carbon nanotubes plays a vital role in designing electronic devices and optimizing 

their operation. Ren et. al. have developed THz polarizer using aligned metallic SWCNT. THz 

signals polarized parallel to the carbon nanotubes are absorbed, while signals polarized 

perpendicular to the alignment direction are transmitted [7]. Wang et. al. have developed a FET 

transistor based on partially aligned s-SWCNTs where the performance is a function of the number 

of nanotubes per device [8].  

Aligned carbon nanotubes have been used in many devices and measured. The obtained results 

were not adequately correlated to electron transport physics in carbon nanotubes due to the lack of 

comprehensive theoretical model (i.e. asymmetrical separation distance between nanotubes, partial 

alignment,…etc.). Modelling carbon nanotubes can be done either based on electromagnetic 

theory or based on photonics. Burke et. al. have developed a transmission line model for the carbon 

nanotubes in the gigahertz range [9]. In the THz range, as all the recent devices are, the 

transmission line is no longer an efficient tool. Hence, in our model we are applying the photonics 

properties in modelling carbon nanotubes in order to enhance and synthesize better devices in the 

THz range. 

The presented model predicts the energy band gap of a bundle of aligned s-SWCNTs arranged 

in semi-random order as shown in Fig. 1 considering different radii and distances separating 
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nanotube. A typical diameter of s-SWCNT is in the order of 1.4-2.1nm, and the minimum distance 

between s-SWCNTs is the graphite interlayer distance 0.34 nm [10]. First, a novel proposed 

analytical potential function of the s-SWCNT is introduced and generalized to the bundle. Then, 

the potential function is implemented in the Schrödinger equation to determine the ground state 

wave function and the energy band gap variations. Finally, the energy band tuning is demonstrated 

after applying an external electric field across the bundle.  

 

 

Fig. 1. Geometrical configuration of the semi-conducting single wall carbon nanotube bundle 
where parallel nanotubes are randomly distant from a centred one (d1, d2, …, d6). (not to scale).
 

2. Analytical Potential Function 
 

The analytical potential function describes the electron carrier concentration localized around 

the tube wall due to the tube’s cylindrical geometry. Having a well-defined potential function 

facilitates the study of the electrical and optical properties of a single nanotube as well as the 

interaction occurring in a bundle. The potential function expression of s-SWCNT was first 

proposed in [5] as: 
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 where Rt is the nanotube radius, 
446.11
t

R
c   represents the effective SWCNT’s wall thickness 

[11], and eV 25.8B is the potential well depth is calculated from the general energy dispersion of 

SWCNT [12] . From (1), the potential function of a single s-SWCNT plotted in Fig. 2 clearly 

shows that the free carrier electrons are localized on the surface wall of the nanotube.  
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Fig.  2. Normalized potential function across a single s-SWCNT as shown in the inset. Rt is the 
nanotube radius and c the wall thickness. 

 

The random configuration can be considered as a superposition of several individual s-

SWCNTs. Hence, the overall potential is derived as the sum of the individual potentials of each 

tube.  

effn
V

eff
V

eff
V

totaleff
V  ...

21
 

(2)
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where n is the number of nanotubes. 

The potential function including the contribution of each individual s-SWCNT is then inserted 

in the differential Schrödinger’s equation: 

),,(),,(2
*2

zrEzr
totaleff

V
m

 








   (3)

where  is the Planck’s constant, m* is the effective mass obtained from [13], 2 is the Laplacian 

and  is the wave function in cylindrical coordinates. 

 

Schrödinger’s equation is then solved using Multiphysics ComSol Simulator [14]. An ordinary 

differential equation (ODE) is defined in the radial direction where the azimuthal dependence is 

sinusoidal and the longitudinal axis is the propagating direction by considering the high aspect 

ratio (defined by the length and radius) of s-SWCNT. The potential function is then inserted as the 

analytical expression in Eq. (1) for individual s-SWCNT or the resultant from Eq. (2) in case of a 

bundle. 

3. Simulations and Discussions 
 

Let’s first considers three adjacent tubes as shown in Fig.3. All tubes have a diameter of 1.4nm 

and are separated by 3.4Å.  
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(a) 

 

(b) 
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(c) 

Fig. 3 Coupling effect occuring between three adjacent s-SWCNT orthogonally localized; (a) 
uniformly distributed without the presence of an external electric field (b) maximized along the 
x-axis where the external electric field is applied (c) maximized in the y-axis direction of the 
applied external electric field . 

 

In this case, the coupling effect between the two adjacent tubes and the centred SWCNT appears 

to be uniform as presented in Fig. 3(a). 

Then an external electrical field of 107 V/m is applied in the x direction, the coupling distribution 

varies with the field direction as shown in Fig.3 (b). It is observed that when applying electric field 

the coupling is maximized along the tubes in the direction of the electrical field as presented in 

Fig.3(c) where the electric field is applied in the y-direction. 

In the second case, the three nanotubes are now parallel to each other along the x-axis and is 

referred as configuration A shown in Fig. 4. Similarly to the previous case, all tube diameters are 

1.4nm and the distance separating them is fixed to 3.4Å. Again in the absence of an external 

electric field, the coupling is uniformly distributed, Fig. 4(a).  The second case depicted in Fig. 

4(b) shows the coupling distribution with the presence of an external electric field along the x-axis 
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from left to right. It should be noted that the applied electric field greatly enhances the coupling 

between the two tubes on the left along the field direction.  

The third case shows a centred s-SWCNT surrounded by six peripheral s-SWCNTs and is 

referred as configuration B. Again all tubes 1.4nm wide and equidistant by 3.4Å.  

Without external electric field, the coupling effect occurring along the s-SWCNT is equally 

distributed between 

 

(a) 
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(b) 

Fig. 4 Configuration A: Coupling effect distribution between three parallel s-SWCNT; (a) in the 
absence of an external electric field, (b) with the presence of an external electric field applied 
along x-axis from left to right. 
 

the nanotube at the centre and its adjacent ones. It should be noted that less coupling occurs among 

the out-of-centre ones as shown in Fig. 5 (a). Then an external electric field is applied along x-

direction from left to right to redistribute the localized coupling among the carbon nanotubes 

bundle as shown in Fig.5 (b). 

In order to clearly understand the effect of the coupling between the adjacent tubes on the 

electrical and optical properties, the difference of the energy band gap due to the contribution of 

the coupling effect is calculated: 

ܧ߂ ൌ ሻ݈݀݁݌ݑ݋௚ሺܿܧ െ ݁݊݋௚ሺܧ ݏ െ ሻ (4)ܶܰܥܹܵ

To calculate the energy band gap for the proposed configuration accounting the influence of the 

electric field, Schrödinger’s equation is modified according to [15]: 
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




 
   (5)

where e is the electron charge, F is the electric field applied along the x-axis expressed in 

cylindrical coordinates.  
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(a) 

 

(b) 

Fig. 5 Configuration B: Coupling effect distribution between seven adjacent s-SWCNT; (a) in 
the absence of an external electric field, (b) with the presence of an external electric field applied 
along x-axis from left to right. 
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Fig. 6 (a) shows the energy band gap variation versus the distance separating the semi-

conducting single-walled carbon nanotubes considering configuration A and B. When the carbon 

nanotube are close to each other, the contribution of the coupling effect becomes non negligible. 

As expected the coupling effect is highly dependent of the distance separating the nanotube. The 

energy band gap is reduced from 50meV to 5meV when the distance between the nanotubes in 

configuration A and B increases from 3.4Å to 15Å.  It should be mentioned that no noticeable 

effect occurs based on the different configurations. In fact, the coupling effect is equally distributed 

between the numbers of SWCNTs in the absence of an external electrical field. Fig. 6 (b) presents 

the energy band gap distinction in the existence of an external applied electric field for both 

configurations. Applying the electric field clearly enhances the coupling between the s-SWCNTs 

and; hence, the energy band gap change is 20% more than the case where there no electric field. 
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Fig. 6 the change in the energy band gap for both configurations A and configuration B (a) with 
no electric field applied, (b) with an electric field applied along x-axis. 
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4. Conclusion 
 

A comprehensive study of the coupling effect between semi-conducting single-walled carbon 

nanotube is demonstrated considering different configurations. In the absence of an external 

electric field, the coupling between the nanotubes is equally distributed among the SWCNT in the 

bundle. Then by applying an external electric field, our data show that not only the coupling is 

now localized between the first nanotubes encounter by the electric field along its direction, but 

also the energy band gap of the bundle is greatly enhance. This is an important property for 

terahertz or far infrared optical applications where the development of devices in this spectrum is 

limited by the current semiconductor material properties. Finally, the potential to tune or reduce 

the energy band gap of semiconducting single-walled carbon nanotube can improve solar cell 

efficiency by enlarging the absorption spectrum compared to the current technology. 
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Chapter IV. Single-Walled-Carbon-Nanotube Contact Resistance: Analysis and RF 

Performance 

 

Abstract 

This paper presents detailed electromagnetic analysis of individual single-walled carbon nanotube-

based devices in order to enhance their synthesis and performance. A model is developed using 

physics-based parameters from measurements to realistically determine the sources of the usual 

discrepancies that appear between the theory and measurements for nanotube devices. The model 

is developed for one nanotube calculating the effects of associated parasitic elements on its 

performance. The proposed electromagnetic model shows good agreement with first-principles 

calculations and measurements. The model is flexible and could be integrated with quantum 

transport models. 

1. Introduction 

Integration of semiconducting nanomaterials such as carbon nanotubes, nano-wires and 

graphene nano-ribbons into large scale circuits has attracted the attention of many researchers due 

to their unique 1-D properties [1]. The carbon nanotube’s electrical conductivity is anisotropic 

along its axis while quantified on the perpendicular axis due to the high aspect ratio [2]. Promising 

electrical and optical 1-D characteristics make carbon nanotubes viable candidates for high 

frequency devices [3]-[10]. In addition, altering the nanotubes’ properties by functionalizing them 

in the form of composites has been used for photonics applications [11]. Despite the promising 

theoretical expectations of ballistic high speed transport of single-walled carbon nanotubes 

(SWCNTs) -based devices, synthesizing and improving their performance is still a challenge [12]-

[14].  
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Observed discrepancies between simulated data and experimental results of fabricated devices 

obstruct the development of SWCNT-based devices into practical and large-scale integrated 

circuits15. Among key factors that degrade the performance of SWCNT-based devices are the 

contact resistance and fringe capacitance between nanotubes and metallic electrodes, as they are 

not well established. Although palladium provides the highest on-current in SWCNT due to its 

matching work function, carbon-based devices contact resistances have been reported to be on the 

order of a few KΩ [16]-[20].  These values are higher than the ones for the Ohmic contacts formed 

in conventional semiconductor devices. A perfect ohmic contact could not be formed at the nano-

scale level due to the chemical reactivity between the SWCNT and the metal. Instead, an overlap 

area of a lower conductivity forms between the SWCNT and the metal which creates an extra 

barrier due to the hybridization between the carbon atoms and the metal [21].  

This paper presents a physical insight to understand this phenomena. In Section II, a scheme for 

calculating the contact resistance and the fringe capacitance for individual SWCNT-based devices 

is presented, with full parametric study. The results are presented in Section III, which includes an 

independent verification of the model.  

2. Model 

The basic building blocks of an electronic device are the transport medium and contacts. 

Theoretically speaking, using carbon nanotubes as the transport medium is expected to produce 

ballistic electron transport. However, there are significant discrepancies between the theory and 

measurements. One of the main factors behind the discrepancy is the vague understanding of what 

happens around the contacts and the limitations they introduce. In order to address this problem, 

this paper takes a close look at the contact areas and performs a parametric study to determine the 

significant parameters that affect the contacts. This is a considerable step toward enhancing the 
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overall performance.  

A. Electrostatic Analysis 

At room temperatures, the charge transport is governed by Luttinger Liquid tunneling for 1-D 

conductors to describe the electron interactions. Although electrons ballistically transport along 

the carbon nanotubes due to their long mean free path, they suffer back scattering with optical 

phonons19. The strength of the electron-phonon coupling is defined by the distance an electron 

travels after the phonon is emitted and before the electron is backscattered. The effect of the 

backscattering around the contacts is a key factor that controls the overall transport. In this paper, 

a SWCNT connecting two metallic pads, as shown in Fig. 1(a), can be modeled as a hollow 

cylinder that has a diameter-dependent effective wall thickness22. SWCNTs are either metallic or 

semiconducting, which determines the material conductivity of the tube. The chemical reactivity 

between the SWCNT and the metal forms an extra barrier which will be referred to as a chemically-

altered resistance (CAR) region due to the hybridization between the dz2 orbitals of the palladium 

atoms and the pz orbitals of the carbon atoms in the nanotubes [21]. This barrier is modelled by an 

overlap area, as shown in Fig. 1(b). In this study, this area is parameterized to develop a correlation 

between the physical properties and the experimental measurements. The parameters of this region 

are described as: l2, the overlap length, is varied from few nanometers to sub-micrometers; t, the 

overlap thickness, varies as a fraction of the effective wall thickness of the SWCNT [22]; and 2, 

the conductivity of the overlap area, varies from insulating material to high conductivity material 

in the same order of magnitude as the main conductivity of the SWCNT body. To simplify the 

model, without any loss of generality, the remaining metallic pads are formed of a lossless 

conductor. Their resistivity can easily be incorporated, if needed.  
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(a) 
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(b) 

Fig. 1(a) 3-D schematic of SWCNT touching two metallic contacts, (b) cross-section of the one 
end of the SWCNT touching the metal. 

 

The electric potential of the structure is governed by Poisson’s equation which is solved using a 

Finite Difference (FD) scheme developed for these structures [23]. For comparison, it is also 

solved using a commercial Multiphysics simulator [24]. Fig.2 (a) shows a schematic of the 

boundary conditions applied at the surfaces of the SWCNT. A virtual potential is applied at one 

end of the tube. The edge of the other end touches the metallic plane, which is grounded. Figs. 

2(b)- 2(d) show the electric potential distribution along the SWCNT for different overlap lengths. 

It is observed that for very short lengths, the electric potential drops too slowly. For long overlap 

length, the potential drops quickly and the electric charges find a shorter path to the ground plane; 

hence, a lower resistance is achieved. 
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(d) 

Fig. 2 (Color online) (a) the schematic of the nanotube boundary conditions for Poisson’s 
equation, (b) the electric potential distribution for overlap length 1 nm, (c) 5 nm, and (d) 10 
nm. 
 

The electric field distribution is calculated and depicted in Fig. 3. The three-dimensional 

distributions of the electric field lines are shown in Fig. 3(a). Their projections in the x-y plane and 

the z-y plane are presented in Fig. 3(b) and Fig.2(c) respectively.    
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(a) 

 

 

(b) 

  

(c) 

 

Fig. 3 (a) 3-D Current lines of the SWCNT, (b) Cut projection of the current lines at metallic 
edge overlap with SWCNT at l2, (c) Cut projection of the current lines in the middle of the 
SWCNT wall thickness.  
 

A parametric study has been performed in [25]. This shows that the dominant parameter 

influencing the contact resistance is the overlap length between the SWCNT and the metallic plane. 

When the overlap length is very small, the device suffers very high contact resistance regardless 

of how efficient the metallic electrodes are fabricated or how close their work function is to the 

carbon nanotubes’ work function. The overlap length is then increased to demonstrate the 

significant improvement of the contact resistance. The study shows that the contact resistance 

rapidly decreases first, then it reaches an asymptotic minimum value after some characteristic 

overlap length. This characteristic length may be referred to as the effective length. 

To validate the FD results and confirm the previous observation, the parametric study was 

performed using a Multiphysics simulator. Fig. 4 shows the change of the contact resistance versus 
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the change in the overlap length for both the Multiphysics simulator and the FD method. The two 

schemes demonstrate the same trend. They are in a good agreement with the concept of the 

effective length described earlier. The FD scheme has the advantages of controlling the aspect 

ratio and mesh size, and offers the possibility of scalability and large scale integration with 

quantum transport equations.  
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Fig. 4 The contact resistance variation versus the overlap length for both the Multiphysics 
simulator and the solution obtained by FD (the nanotube radius a=0.7nm; the nanotube bulk 
conductivity 1=106 S/m; the overlap layer conductivity 2 = 103; and the thickness of the 
overlap layer t=0.1nm). 
 

Fig. 5 shows the variation of the contact resistance as a function of the overlap area thickness. 

The thickness is modeled as a fraction of the SWCNT wall thickness.  The contact resistance 

exhibited a slight increase with the increase of the CAR thickness that is not significant in the 

device performance with respect to the effect of the overlap length, which concludes that the 

thickness of the overlap layer is not a governing parameter if the overlap length is less than the 

effective length [25].  
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Fig. 5 Contact resistance variation versus overlap thickness (the nanotube radius a=0.7nm; the 
nanotube bulk conductivity 1=106S/m; the overlap layer conductivity 2=103; the overlap 
length l2=40nm). 

 

In Fig. 6, the contact resistance is studied as a function of the CAR region conductivity for 

different overlap lengths. The conductivity values are varied ranging from a totally insulating 

material to a high conductivity, just as the bulk part of SWCNT (1=106). It is demonstrated that 

as conductivity increases, the overall contact resistance decreases toward ideal Ohmic resistances 

regardless of the contact overlap length. Hence, if the measured resistance is very high (in the order 

of 100 MΩ), the first parameter to be checked is the overlap length, followed by the conductivity 

of the overlap area, ending with the overlap thickness. 
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Fig. 6 Contact resistance variation versus overlap conductivity for various overlap length (the 
nanotube radius a=0.7nm; the nanotube bulk conductivity 1=106S/m; the thickness of the overlap 
layer t=0.1nm). 

 

Some efforts have been made to enhance the contact between the nanotubes and the metallic 

plane by depositing the metal on top and introducing a graphitic layer as a buffering inter-layer in 

between to enhance the carrier injection [26]. Adding the metal on top of the nanotubes slightly 

increases the surface area, while the graphitic layer enhances the conductivity of the area between 

the nanotube and metal and improves the coupling. 

B. RF Analysis 

Analyzing the device frequency response gives more information about the other parasitic 

elements that might limit the device performance. In order to develop the schematic circuit of 

SWCNT-based devices, one must understand the RF of the tube itself.  The nanotube mainly 

consists of two parts: the non-contacting segment of the SWCNT, and the segment where the 

SWCNT lays on the metallic pad connected to the ground plane. Fig. 7 shows this schematic of 

the circuit representation. The non-contacting part deals with quantum quantities Rq and Cq of 
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values 12.9 KΩ and 82 aF respectively [27].  The contact area quantities Rc and Cc are the contact 

resistance and capacitance, respectively. The resistance is directly dependent on the conductivity 

of the overlap-section. The capacitance is dependent on the material permittivity. The conductivity 

of the carbon nanotubes is position dependent, but the permittivity is independent of position and 

obtained from experimental data (a very high value, around 80 at low frequencies [28]). The 

contact resistance is calculated as described before. The capacitance is obtained from the 

electrostatic analysis of the structure. 

The contact reflection coefficient described by the schematic appearing in the inset of Fig. 7 is 

calculated for different overlap conductivities (the hashed area in Fig.1 (b)) and varied as a function 

of the overlap length. The results shown in Fig. 7 illustrate that the contact reflection coefficient 

exhibits direct dependence on the overlap length and the conductivity of CAR. The reflection 

coefficient has significantly high values for low conductivities, which is expected for the high 

anticipated contact resistances. However, the reflection coefficient decreases with the increase of 

the overlap length (l2) until it reaches an effective length which agrees with the observations and 

physical explanations provided earlier. The reflection coefficient is also calculated using the 

equation obtained by ab-initio calculations in [29]: 

Γ ൌ ݁
ି

೗మ
ೌ೎೎

∗
∆

ം                                                                (1)

 where Δ is the coupling factor between the overlap area and the nanotube body; acc is the 

carbon-carbon bond unit length 0.246nm; ߛ	is the hopping energy between carbon atoms; 2.66eV.  

The coupling factor Δ is found to be proportional to the ratio between the conductivity of the 

overlap area and the conductivity of carbon nanotube body. The results of Eq. (1) are plotted in 

Fig. 7 in addition to those obtained using the model. This RF analysis agrees with the trend 

calculated using the atomistic approach proposed by Nemec et al. [29]. 
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The model could be generalized to include multi-walled carbon nanotube (MWCNT), where the 

overlap area concept is applied to the outer shell of the MWCNT as shown in the inset of Fig.8. 

The contact resistances of a multi-wall nanotube is calculated using the model and using the 

equation developed in [30]: 

ܴ௖ ൌ ඥݎ௖ݎ௖௡௧ cothሺට
௥೎೙೟

௥೎
݈ଶሻ                                                        (2)

where ݎ௖ ൌ 1/ሺߪଶܽ ∗  (Ω.m) which defines the resistivity of the overlap area, l2 is the overlap	଴ሻߠ

length, ߠ଴is the angle of the overlap between the metallic plane and the carbon nanotube, and ݎ௖௡௧ 

is the resistance per unit length of  main body of the MWCNT nanotube (1KΩ/µm) [30]. 
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Fig. 7 The contact reflection coefficient versus the overlap length (l2) with RF schematic model 
in the inset for the model and ab-initio calculations (the nanotube radius a=0.7nm, the nanotube 
bulk conductivity 1=106S/m, the thickness of the overlap layer t=0.1nm). 
 

The contact resistances for MWCNT are plotted versus the overlap length between the nanotube 

and the metallic plane in Fig. 8. The resistances are calculated using the model and Eq. (2) for 
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different conductivities of the overlap area. Both methods agree to a great extent in estimating the 

contact resistance of the MWCNT as well as the good agreement with the measurements [30]. 

 

Fig. 8 The contact resistance variation versus the overlap length for both the Multiphysics 
simulator and the solution obtained by Eq.(2) 30 (the nanotube radius a=2nm; the nanotube bulk 
conductivity 1=106 S/m (inner shells as well); and the thickness of the overlap layer t=0.1nm).

 

3. Results 

In order to correlate the measurements with the model, measurements of an individual SWCNT 

are extracted from [31] and plotted with the model in Fig. 12. The model parameters for the CAR 

area for the individual nanotube structure are: the overlap length l2 = 50 nm, the thickness t = 0.1 

nm, and the conductivity 2 = 40 S/m.  The model predicts an estimated resistance of 132 MΩ, 

which is in good agreement (within acceptable error range) with the measurements. 
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Fig.12  I-V Characteristics of an individual SWCNT device  for both the model and the measured 
data extracted from [31] (the overlap length l2 = 50 nm; the thickness of the overlap area t = 0.1 
nm; and the conductivity of the overlap area 2 = 40 S/m).   

 

Enhancing the contact resistance could be achieved for a single SWCNT by ensuring that the 

overlap section between the tube and the contact pad is higher than the effective length studied 

earlier. The parasitic elements could also be affected by additional post processing (e.g., thermal 

annealing, RF induction heating, Electron beam irradiation…etc.)[32]. 

4. Conclusion 

   A comprehensive model has been developed for SWCNT-based devices. The model incorporates 

realistic parameters to decrease reported discrepancies between the theory and measurements. The 

model also provides a physical insight and thorough understanding of the different factors affecting 

contact resistance values. The model is developed for an individual SWCNT. A parametric study 

has been performed to demonstrate that the critical factor for improving the device performance 

and minimizing the contact resistance is ensuring the overlap length between the nanotube and the 

metallic pad is longer than the effective length. The model results have been compared with 
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measurements and a good agreement has been observed. This study provides an understanding of 

key parameters and limitations that degrade the SWCNT-based devices and suggest techniques to 

enhance their performance. 
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Nanotubes Devices” IEEE Photonics Conference, Sept. 2012, In reference to IEEE copyrighted 

material which is used with permission in this thesis, the IEEE does not endorse any of University 

of Arkansas's products or services. Internal or personal use of this material is permitted. If 

interested in reprinting/republishing IEEE copyrighted material for advertising or promotional 

purposes or for creating new collective works for resale or redistribution, please go to 

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to 

obtain a License from RightsLink. 

Abstract  

A fabrication technique using dielectrophoresis is demonstrated to align semiconducting single-

walled carbon nanotubes (s-SWCNTs) and improve electronic devices performance. The 

proposed method produces highly dense aligned nanotubes (>40 s-SWCNTs/m) and low sheet 

resistance (<10 K/�). 

1. Introduction 

In the last decades, carbon nanotubes have attracted the attention of researchers due to their 

extraordinary electrical properties along their axis [1]. The very large scale integration (VLSI) of 

carbon nanotube based devices is challenging as it requires high devices yield and alignment of 

the nanotubes to optimize the performance of electronic devices and consider mass production 

manufacture [2,3]. In this paper, the developed method based on AC dielectrophoresis technique 
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to align semiconducting single-walled carbon nanotubes (s-SWCNTs) is applied to several devices 

at once. In addition, the resulting density of s-SWCNTs per device has exceeded the ones reported 

in the literature and the enhancement of the sheet resistance is observed compared to recent 

publications [4]. 

2. Fabrication Technique 

The semiconducting single-walled carbon nanotubes furnished by Nanointegris suspended in 

aqueous solution are deposited and aligned using an AC dielectrophoresis (DEP) technique, [2, 3], 

across the horizontal electrodes presented in Fig. 1(a). According to the manufacturer the utilized 

solution consists of 20 g/ml of 99% pure s-SWCNT with diameter from 1.2 nm to 1.7 nm, and 

length from 300 nm to 5 μm suspended in aqueous solution consisting of 1% w/v ionic surfactant 

diluted in deionized (DI) water [5]. The fabricated chip is 1 cm2 and has 17 devices in the center 

of the chip with two common electrodes to apply the AC bias voltage across the isolated electrodes 

to all of them at once. The device consists of a four probes as shown in Fig. 1(b) to verify the 

alignment conditions. Dielectrophoresis is applied along the horizontal electrodes 2 and 4, while 

the other two vertical electrodes provide information about the isolation between the different 

electrodes and the good alignment conditions. The s-SWCNTs are deposited and aligned in the 4 

µm gap delimited by the electrodes by applying an AC bias voltage of 4 volts with a 2 MHz 

frequency. 
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(a) 

μm100

 

(b) 

Fig.1 (a) DEP schematic where the AC source is kept in all the process. (b) Scanning electron 
microscope (SEM) pictures of the fabricated device(the electrode’s width is 17 m with gap of 
4 m) and the inset shows SEM picture of aligned s-SWCNT bundles 

 

The AC voltage source is connected to the common electrodes of the chip. The chip is then dipped 

into the s-SWCNTs solution for 1 min. While still applying the AC bias voltage the chip is 

transferred into an isopropyl alcohol (IPA) solution to remove the remaining surfactant. The ionic 

surfactant acts as an insulator between the electrodes, so by varying the time of the immerged chip 
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in the IPA solution from 2 min to 15 min, the electrical resistance measured between the horizontal 

electrodes is lowered by one fifth. Then the chip is removed to (DI) water to remove the IPA 

residues and finally dried with nitrogen to remove the remaining liquid particles. A density higher 

than 40 s-SWCNTs/m is estimated from the scanning electron microscope (SEM) picture 

presented in the inset of Fig. 1 (b) exceeding the reported ones in [4,6]. In addition, this technique 

provides cleaner devices compared to the common DEP techniques which consist of depositing a 

droplet of suspended CNTs in a an aqueous solution and wait the complete evaporation of the 

liquid as less residual useless CNTs are observed on the chip [4,6]. 

3. Results and Discussion 

The I-V characteristics along the carbon nanotubes between electrodes 2 and 4 are measured using 

a Keithley 236 source measure unit. Fig. 2 (a) shows the I-V curve of one of the devices with the 

inset gives the error bar of the multiple conducted measurements for the same device. It represents 

a resistance of around 0.4 K with tolerance of 2.5% and a sheet resistance is lower than 10 K/�. 

Raman spectrum of the devices shown in Fig. 2 (b) highlights the D-, G-, G’-modes that are in a 

very good agreement with the manufacturer provided data [5]. D-mode represents the disorder 

bonds; its magnitude is related to the defects in the sample. G-mode represents tangential shear 

mode of carbon atoms, in SWCNTs it is double peak G+ and G-. G+ location and its value do not 

change with the type of the SWCNT. G- is strong and separates from G+ by greater than 100 cm-

1 for metallic ones. So It is apparent that the device is totally semiconducting SWCNTs, the very 

small D- peak reflects low defects in the sample. G- is 1570cm-1 and G+ is 1590cm-1 even after 

processing the DEP.  
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Fig. 2: (a) I-V characteristics of the device presented in Fig.1(b) after s-SWCNTs deposition, 
(b) Raman spectrum of aligned bundle of semiconducting SWCNTs prototype. 

 

4. Conclusion 

A new method for depositing high density s-SWNTs devices is introduced to improve very large 

scale integration of carbon=based electronic devices. High number of yield with high aligned high 

density of higher than 40 s-SWCNTs/1m and sheet resistance less than 10 K/� is achieved. I-

V measurements are realized to show the low electric resistance achieved with 2.5% tolerance. 
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Raman Spectroscopy is carried out and it shows typical spectrum for highly pure and uniforms-

SWCNTs sample. 
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Abstract 

This paper presents a detailed model of devices utilizing many nanotubes and the coupling between 

them based on the electromagnetic model of a device using one nanotube. Empirical equations are 

proposed to link the device conductance with the number of nanotubes per device. Then, a circuit 

model is developed to predict the effect of the number of nanotubes per device on the overall 

conductance, capacitance, and the frequency response of the device. A prototype structure is 

fabricated and its performance is tested and compared with the proposed model and it shows 

promising agreements. The model is flexible and can be integrated with quantum transport models. 

1. Introduction 

Nanomaterials like carbon nanotubes, graphene nano-ribbons, and nano-wires have attracted  

many researchers because of  their unique and promising properties [1],[2]. For example, carbon 

nanotubes offer the following interesting properties: high mechanical strength, high-temperature 
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operation, electromigration robustness, and electrically- tunable properties. In addition to the 

intrinsic material properties of carbon-carbon bonds in the nanotubes, the fact that they could be 

fabricated in 1-D nano-scale dimensions with very low defects gives them advantage over other 

materials [3]. Their electrical, optical, and mechanical properties are promising for analog, digital, 

biomedical, and optical applications [4]-[7]. From theoretical point of view, their electron transport 

properties are expected to be mostly ballistic, which is very promising for high-speed device 

applications. Nevertheless, it is still a challenge to synthesize and optimize carbon-nanotube-based 

devices [8]-[12]. Discrepancies between theoretical calculations, simulation data and experimental 

results of fabricated devices are among the main obstacles that delay applications and full 

exploitations of single-walled carbon nanotubes (SWCNT) in electronic devices and large-scale 

integrated circuits. Estimating the values of parasitic circuit elements, such as contact resistances 

and fringe capacitances, between nanotubes and metallic electrodes are still among the major 

challenges. The complete understanding of the physical processes affecting their values is 

necessary. The parameters limiting the formation of ohmic contacts on the nano-scale include 

matching of work functions, chemical reactivity, and limited conducting channels.  Metals such as 

palladium (Pd), and rhodium (Rh) should be used to fabricate the contacts because their work 

function approximately match that of SWCNTs [13]. Although Pd provides the highest on-current 

in carbon-based devices due to its matching work function, contact resistances have been reported 

to be on the order of a few KΩ [14-16]. These values are higher than the ohmic contacts formed 

for conventional semiconductor devices. A perfect ohmic contact could not be formed at the nano-

scale level due to the chemical reactivity between the SWCNT and the metal. An overlap area of 

a lower conductivity forms between the SWCNT and the metal, which forms an extra barrier [17].  
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This paper presents a physical insight into the processes affecting the contact resistance and the 

fringe capacitance of an individual SWCNT-based device. In Section II, a method to calculate their 

values is presented.  

Understanding arrays of nanotubes is one of the key contributions of this paper. Thanks to their 

ability to retain their interesting quantum properties, nanotube arrays may provide a large current 

carrying capacity and low impedances [3]. 

The resultant parasitic-element models of the individual nanotube are embedded into a model 

for multiple SWCNT-based devices using a quantitative physics-based RC model to estimate the 

frequency dependence of such a device. Section III shows a fabricated prototype structure with a 

verification of the model followed by discussion and future insight. 

2. Model 

Electronic devices basically consist of a transport medium and contacts. Theoretically speaking, 

the use of carbon nanotubes as the transport medium is expected to provide ballistic transport. 

However, there are significant discrepancies between theoretical and experimental results. One of 

the main factors contributing to the discrepancy is the incomplete understanding of what happens 

around the contacts. From devices point of view, the contact properties are among the figures of 

merit that characterize the device’s performance. In order to address this problem we are taking a 

close look at the contact areas and preforming a parametric study to determine the significant 

parameters that affect the contacts and hence take a step toward enhancing the overall performance.  

A. Individual SWCNT 

An individual SWCNT connecting two metallic pads, as shown in Fig. 1(a), is modeled as a hollow 

cylinder that has a diameter-dependent effective wall thickness [18]. SWCNTs are either metallic 

or semiconducting, which is the parameter that determines the material conductivity of the tube. 
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The metallic pads are formed of a lossless conductor. Due to the chemical reactivity between the 

SWCNT and the metallic pads, an extra area is introduced as shown in Fig. 1(b). The parameters 

of this area are variables to correlate the physical properties to the experimental measurements. 

The parameters l2, the overlap length, varies from few nanometers to sub-micrometers; t, the 

overlap thickness, varies as a fraction of the effective wall thickness of the SWCNT; and 2, the 

conductivity of the overlap area, varies from insulating material to high conductivity material in 

the same order of magnitude as the main conductivity of the SWCNT body. The electromagnetic 

model takes into account the resistance of the bulk section of the nanotube, the solid blue area in 

Fig. 1(b), and the chemically-modified high-resistance region of the overlap area to obtain the 

equivalent contact resistance. 

 
(a) 

 
(b) 

 

 
(c) 

Fig.1 3-D schematic of N SWCNT touching two metallic contacts, (b) cross-section of SWCNT 
touching the metal z-y plane, (c) cross-section SWCNT touching the metal z-y plane where it 
shows the separation distance dc and the dotted black is the coupling layer. 
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The Poisson’s equation of the structure is solved using Multiphysics simulator [19]. A parametric 

study has been performed in [20]; it shows that the most influential parameter on the contact 

resistance is the overlap length between the SWCNT and the metallic plane. When the overlap 

length is very small, the device suffers very high contact resistance regardless of how efficient the 

metallic electrodes are fabricated or how close their work function is to that of the carbon 

nanotubes. The overlap length is then increased to show a significant improvement to the contact 

resistance that decreases drastically to reach its minimum after an effective length. The boundary 

conditions are applied to one SWCNT by applying a virtual potential at one end of the tube, and 

the edge touching the metallic plane is connected to ground.  The electric field lines along the main 

body of the nanotube are mostly along the z-axis. The field lines are then get crowded around the 

metallic plane.  For very short overlap length, small percentage of the field lines reach the ground. 

However, for long overlap length, most of the field lines reach the ground. Hence, a lower 

resistance is achieved. 
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Fig.2 The contact resistance of one side of the device that has 5 SWCNTs for different 
separation distance dc. 

 

The model has shown very close agreement with individual SWCNT device measurements in [21]. 

The parameters extracted for an individual SWCNT are then used to establish a model for multiple-

nanotube devices. 

B. Arrays of  SWCNTs  

1. Resistive Elements  
 

For many SWCNTs (Fig. 1 (c)), they are placed at a distance dc. apart from each other. Fig. 2 

indicates that the contact resistance increases with the increase of distance dc. This demonstrates 

that the coupling between the nanotubes decays with the increase of the separation between them 

to reach a case where the SWCNTs are considered isolated and could be dealt as parallel 

conductors [21].  In order to implement the coupling between the nanotubes, intersection layers 

are introduced as shown in Fig. 1 (c) as the black dotted areas with physical parameters that 

represent the coupling. The layers’ thickness is in the same order of the overlap areas’ thickness, 
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and their lengths are the same as the SWCNTs’ length. The conductivity of these layers may vary 

from air’s conductivity, which represents no coupling at all between the SWCNT (used when they 

are far apart) to the quantum conductivity of a graphene layer (2e2/h) 7.775×10-5(S/M) (used when 

they are so close). The conductance of nanotube based devices has an exponential increase 

behavior rather than linear. This could be due to the fact that the coupling between the nanotubes 

influences the overall band structure and it widens the potential function [8]. Hence, it increases 

the number of conducting channels dramatically. The barrier between one SWCNT and metallic 

electrode could be described as a triangular barrier. The transmission probability across this barrier 

is [22] 

ܶሺܧሻ ൌ exp	ቆ
ିସ√ଶ௠∗

ଷ௘ࣟ԰
ቀ݁߶ െ ൫ܧ െ ௙൯ቁܧ

య

మ
ቇ                                         (1) 

where m* is the electron effective mass, e is the electron charge, E is the electron energy, Ef is 

Fermi level energy,  is the difference between the SWCNT work function and the metal work 

function, and ࣟ is the magnitude of the electric field (the potential divided by the overlap length 

l2). The current in one nanotube is a function of the transmission probability [22]: 

ܫ ൌ െ
ଶ௘

௛
∑ ,ܧ൫݂׬ ܧሻ݀ܧ௙൯ܶሺܧ
ே೎
௠ୀଵ                                                 (2) 

where Nc is the number of conducting channels, in the case of semiconducting nanotubes of 

small radii it will have a single subband and hence Nc=1, and  f is Fermi-Dirac distribution. 

In order to obtain the overall current for a different number of nanotubes, the transmission 

probability of the new system should replace the individual SWCNT one: 

ேܶሺܧሻ ൌ ଵܶሺܧሻ ∗ ଶܶሺܧሻ ∗ …	∗ ேܶሺܧሻ                (3) 

where N is the number of nanotubes and * is the convolution operator. Fig. 3 shows the numerical 

solution of (2) using the transmission probability described in (3). The transmission probability 
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function (1) is proportional to exp	ሺݔ
య

మሻ, which is not a canonical known distribution function; 

therefore, there is no closed form solution for (3). Nevertheless, this distribution function is 

somewhere between an exponential distribution and a normal distribution. The convolution of 

many exponential distribution functions gives Gamma distribution function, and the convolution 

of many normal distribution functions gives normal distribution of N dependence mean and 

deviation. This gives the trend of an exponential dependence on the number of nanotubes from 

both distributions, which gives the trend that the dependence of our problem’s distribution function 

sum will also follow an exponential dependence on the number of the nanotubes (at least 

asymptotically). Hence, the overall current and the conductance will be also exponentially 

dependent on N. 

Basic curve fitting equation has been proposed in [21] to describe the relation between the device 

conductance and the number of SWCNTs. The conductance, G0, equation: 

ሻࡺ૙ሺࡳ ൌ ૚૙ࢇ૚∗࢈ିࡺ૚ሺࡿሻ                       (4) 

where N is the number of nanotubes per device, and ܽଵ and ܾଵ are curve fitting parameters 

obtained by the method of least squares; their values are 0.21, and 8.3 respectively. Equation (4) 

is plotted in Fig.3 shows a good trend with respect to the measurements for low density nanotubes 

(less than 20/µm). But as the density increases the curve deviates from the measurements. Hence, 

an additional equation for the conductance expression is proposed here based on the asymptotic 

exponential behavior of the overall transmission probability explained previously: 

 

ሻࡺ૙ሺࡳ ൌ ቀି܍
૛ࢇ
ࡺ
ା࢈૛ቁ                                                        (5) 

where ܽଶ, and ܾଶ are the fitting parameter calculated by the method of least squares; their values 

are 45 and -9.4 respectively. This equation also agrees with the form the field enhance factor took 
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for an array of nanotubes in [23] (the field was presented as function of the separation of nanotubes 

in the array which is inversely proportional to the density of the tubes.) 

Both equations (4) and (5) show a close trend to the measured data as shown in Fig. 3. They are 

used to extract a lot of information about the device and help to build the RF model for many 

SWCNTs as done for one SWCNT in [20]. The contact resistance of many nanotubes does not 

follow the direct parallel dependence on the individual nanotube contact resistance. The relation 

between the individual nanotube resistance, Rc(1), and the resistance of each nanotube in a many-

tube device, Rc(N), is proposed to be: 

ሻࡺሺࢉࡾ

ሺ૚ሻࢉࡾ
ൌ

૙ሺ૚ሻࡳ

ሻࡺ૙ሺࡳࡺ
                                                                  (6) 

where for highly aligned array of nanotubes, the thickness of the individual- and many-tubes 

devices is the same. In addition, the nanotubes used are highly purified, and they have uniform 

length and diameter distributions of average 1 µm, and 1.4 nm respectively. The conductance 

calculated from (4), (5), and the measured data for different number of nanotubes per device [25] 

are plotted in Fig.3. As shown, the conductances follow the same trend for low density nanotubes. 

However, when depositing higher density of nanotubes per device the model deviates from the 

measurements. Possible explanation for this deviation could be explained that the nanotubes tend 

to form many layers instead of single layer. Hence, a stochastic model is needed to explore the 

different possibilities. In this paper, thin film of almost one layer on nanotubes is considered. 
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Fig. 3 (Color online) the conductance of the different devices of different number of 
SWCNTs, the solid blue line is for the measured data obtained from [25] for zero gate 
voltage, the diamond symbol  is for the conductance calculated using (4), and the star 
symbol * is for the conductance calculated using (5), solid black line represents the 
numerical solution for (2) . 

 

2. Capacitive Elements  

Analyzing the device frequency response gives more information about the other parasitic 

elements that might limit the device performance. In order to implement the schematic circuit of 

SWCNTs-based device, the nanotube mainly consists of three parts: the main body of the SWCNT, 

the segment where the SWCNT lays on the pad connected to ground, and the coupling between 

SWCNT and its adjacent tubes. Fig.4 shows the schematic of the circuit that describes the 

nanotubes-based device. The non-contacting part deals with quantum quantities Rq, and Cq of 

values 12.9KΩ, and 82aF respectively [24].  

The contacting part quantities Rc, and Cc are the contact resistance and capacitance, respectively. 

The resistance is directly dependent on the overlap-section conductivity and the nanotube number 

per device N. The capacitance is dependent on the material permittivity.  
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The contact resistance is calculated as described previously. The capacitances are calculated 

using two methods; electrostatically across the structure by the Multiphysics simulator, and using 

the capacitance equation derived in [3]: 

௖ܥ ൌ
଴ߝ௥ߝߨ2

ቌ݈݊ ቀ
2ܽ ൅ ݐ
ܽ

ቁ ൅ 2∑ ݈݊ ቌඨ1 ൅ ൬
2ܽ ൅ ݐ

݉ሺ2ܽ ൅ ݀௖ሻ
൰
ଶ

ቍேିଵ
௠ୀଵ ቍ

 

                               (7)

where a is the nanotube radius, t is the thickness of the overlap area, dc is the distance between the 

nanotubes, andr is the relative permittivity extracted in [26]. 
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Fig. 4 Circuit schematic of aligned SWCNTs device, Rc is the contact resistance variable of the 
number of the nanotubes, Cc is the contact capacitance. Rj,and Cj are the coupling resistance and 
capacitance. Rq, and Cq are the nanotube quantum resistance and capacitance. 
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Fig. 5 elucidates the capacitance per nanotube versus the number of carbon nanotubes per device. 

The denser the nanotubes array, the higher the screening effects between them that leads to a 

decrease in the value of the nanotube capacitance [3], as shown in Fig. 5.  

 

Fig. 5 Contact Capacitance per tube for different number of nanotubes per device 

The coupling between the tubes is implemented by Rj and Cj, so they vary with the condition of 

the nanotubes alignment and the inter-tube distance dc. In other words, Rj and Cj would vary from 

the quantum values to the insulating values where the nanotubes are barely coupled to each other. 

As it will be shown in fabrication (Section III A) when the nanotubes are highly aligned, they 

distribute 4-5 tubes with dc less than 1nm every 100±10nm. The microscopic mechanism is not yet 

fully understood. 

The impedance (Z=R+jX) of the device’s schematic circuit is calculated for one and ten 

SWCNTs cases. Fig. 6 presents the resistance and the reactance of the impedances of both cases. 

The maximum of the reactance curve defines the fall off frequency. Below the fall off frequency 

the charges tend to travel long distance in the same order of the nanotube lengths, while beyond 

this frequency the charges tend to travel short distances and be more localized [27]. The higher 

this frequency, the better the performance and the higher the speed of the device. The fall off 
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frequency shows strong dependence of the number of nanotubes per device. The fall off frequency 

of ten SWCNTs device is higher than that of the one SWCNT device. This could refer to the 

significant improvement of the contact resistance of the device.  The capacitances are calculated 

using (7) and the Multiphysics simulator as well. The overall capacitive effect shows a linear 

increase as function of the number of nanotubes per device. While the overall resistive effect shows 

an exponential decrease as function of the number of nanotubes per device.   

In order to reach the best performance of the device, the parasitic elements of the contacts should 

be optimized. This could be approached for one SWCNT by ensuring the overlap length between 

the nanotube and the metallic pad is higher than the effective length studied earlier. The parasitic 

elements could also be enhanced by some post processing (i.e. thermal annealing, RF induction 

heating, Electron beam irradiation…etc.) [28], so the fall off frequency could reach to the 

theoretical values calculated by Bruke [29].   
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Fig. 6 (Color online) Frequency dependence of the resistance R and reactance X of one SWCNT 
and ten SWCNTs devices.  
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3. Measurements and Discussions 

A. Fabrication 

In order to test the model developed earlier, a prototype structure is designed and fabricated. 

Two stages of lithography are used to fabricate a structure of metallic electrodes. Photolithography 

is used to fabricate micrometer scale, then E-beam lithography is used to overlap nano-electrodes 

with the micrometer ones. The nanotubes used here are semiconducting single-walled carbon 

nanotubes furnished by Nanointegris suspended in aqueous solution. They are deposited and 

aligned using an AC dielectrophoresis (DEP) technique [30],[ 31], across the horizontal electrodes 

presented in Fig. 7. According to the manufacturer, the utilized solution consists of 20 µg/ml of 

99% pure s-SWCNT with diameter from 1.2 nm to 1.7 nm, and length from 0.3 µm to 5 μm. They 

are dispersed in aqueous solution consisting of 1% w/v ionic surfactant diluted in deionized (DI) 

water [32]. Fig. 7 shows the scanning electron microscopy (SEM) picture of the device with the 

inset of higher resolution to ensure the connections between the nanotubes and the metallic 

electrodes. This high resolution SEM picture of the device after depositing the SWCNTs shows 

that nanotubes tend to align in groups of 4-5 s-SWCNTs of less than 1nm inter-tube distance. Each 

group is separated by 100±10nm. There is no clear physical explanation of this behavior yet. 

 
(a) 
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(b) 

Fig. 7  SEM picture of  (a) two palladium nano-electrodes with aligned s-SWCNTs bundles are 
deposited using dielectrophoresis (b) zoomed image to estimate the number of nanotubes per 
device. 
 

B. Measurements 

The I-V characteristics are measured for the device, and it is plotted in Fig.8. The model is 

developed based on the measured resistance and using (4) and (5); one could estimate the number 

of the nanotubes. For this structure, the estimated number of SWCNTs based on the measured 

resistance is seven. The I-V characteristics for the model developed for six and seven SWCNTs 

based device is plotted in addition to the measured data on Fig. 8. The model shows an acceptable 

estimation of the number of tubes. In addition, referring to the high resolution SEM picture of the 

device, one could estimate a number of 5-10 nanotubes which is very close to the estimate obtained 

from the model. 
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Fig. 8 (Color online) I-V characteristics for the fabricated SWCNTs device and the model of six 
and seven SWCNTs- devices. 
 

Impedance spectroscopy provides a method to measure the complex impedance of a device and 

correlate it with some proposed equivalent circuit [33, 34]. Garrett et. al. have measured the 

impedance of a random network of SWCNTs using impedance spectroscopy [27]. Their 

capacitance is high with respect to the values calculated in this paper. This could be due to higher 

density of nanotubes per device. The closer the density is to the percolation limit, the higher the 

overall permittivity [35]. The drastic increase in the permittivity introduces macroscopic 

characteristic of the material that dominates the capacitance. Therefore, the fall off frequency of 

the random network is lower than that of the model due to some more parasitic elements of extra 

joints between the bundles of the SWCNTs degrading the overall performance. This supports the 

conclusion that the better the SWCNTs are aligned per device, the better the performance of the 

device and the lower the contact parasitic elements. Table I summarizes the values of the 

resistances and capacitances for a various number of nanotubes per device, as well as, the extracted 
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resistance and capacitance tube. These values are implemented in the circuit model to calculate the 

frequency response. The fall off frequency of the device is calculated and plotted in Fig. 9.  

Table I 
PARASITIC ELEMENTS’ VALUES FOR VARIOUS NUMBER OF SWCNTS 

Number of 
nanotubes 

(N) 

Resistance Capacitance 
Individual  

(6) 
Overall 

(measured) 
Individual 

 (7) 
Overall 

 
1 132MΩ 132MΩ 29.2aF 29.2aF 
7 1MΩ 23.6MΩ 17.4aF 121.83aF 
10 500 KΩ 7.7MΩ 17.15.aF 171.52aF 

 

The overall resistances decrease exponentially, while the capacitances show a linear increase. 

Hence, the fall off frequency is increasing as shown in Fig.9 (almost linearly). But, as mentioned 

before, as the density of nanotubes per device increases, the more parasitic elements are 

introduced. In sum, when increasing the number of nanotubes per device, there is a trade-off 

between the overall resistances and the overall capacitances that limits the fall off frequency. 

 

Fig. 9 Fall off frequency as a function of the number of carbon nanotubes per device. 

0 5 10 15 20 25
10

7

10
8

10
9

10
10

10
11

Number of nanotube (N)

F
al

l o
ff

 F
re

q
u

en
cy

(H
z)



 

106 
 

4. Conclusion 

A comprehensive model has been developed for SWCNTs-based devices incorporating realistic 

parameters into the model to decrease the discrepancies between the theory and measurements. 

The model is developed for individual SWCNT, then it is used to build the model for multiple 

SWCNTs aligned in a device. The model has included the electrostatic and frequency dependence 

in a schematic circuit to represent the structure. A prototype structure has been fabricated, tested, 

and compared to the proposed model, and shows a good agreement. The frequency response has 

been calculated for various number of nanotubes per device showing linear increase for low density 

and it saturates with the increase of the number of nanotubes per device.  The model helps 

understand the limitations affecting SWCNTs-based devices followed by some suggested 

techniques to enhance the performance.  
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Chapter VI. Tuning the Energy Band Gap of Aligned Arrays of semiconducting single-

walled carbon nanotubes for THz Applications1 

1. Introduction 

An individual semiconducting single-walled carbon nanotube (s-SWCNT) has a typical diameter 

of 0.5 to 2 nm, and its energy gap is inversely proportional to its diameter in the range of 1.4 to 

0.35 eV [1]. An array of aligned s-SWCNTs demonstrates promising responses in various devices 

compared to individual ones. Arrays of aligned s-SWCNTs is a difficult problem to solve due to 

the lack of a well-defined potential function of individual s-SWCNT.  

Alignment of carbon nanotubes plays a vital role in designing electronic devices and optimizing 

their operation. Ren et al. [2] have used aligned metallic SWCNT to develop THz polarizer. THz 

signals polarized parallel to the carbon nanotubes are absorbed, while signals polarized 

perpendicular to the alignment direction are transmitted [2]. Wang et al. have used partially aligned 

s-SWCNTs in a FET transistor, where the performance is a function of the number of nanotubes 

per device [3]. Aligned carbon nanotubes have been used in many devices. The measured results 

were not highly accurate with respect to electron transport physics in carbon nanotubes due to the 

lack of comprehensive theoretical model.  

This paper is organized as follows: Section 2 discusses the effective potential function of an 

individual s-SWCNT, this is generalized for aligned arrays of s-SWCNTs. In Section 3, an analogy 

between Quantum Cascaded Lasers (QCL) and system of aligned s-SWCNTs is discussed and the 

energy band gap of the system is studied for various number of nanotubes with/out applied 

transverse electric field. The current-voltage characteristics of an individual nanotube and an array 

                                                            
1 Parts of this chapter are reprinted with permission from EuMA March 15, 2015 “Controlling the 
Energy Band Gap of Aligned Semiconducting Single-Walled Carbon Nanotubes for THz 
Modulator” IEEE European Microwave Integrated Circuits Conference, Oct. 2012.   
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of nanotubes is discussed in Section 4. The measurements are then compared to the theory in 

Section 5. 

2. Analytical Potential Function 

A developed the analytical expression for the potential function of single-walled carbon nanotubes 

shown in (1).  

 

(1), 

where Rt is the nanotube’s radius, 
446.11
tR

c   represents the effective SWCNT’s wall thickness [4], 

and eV 25.8B is the potential well depth. This expression facilitates understanding the properties 

of different configurations of carbon nanotubes. Any configuration can be considered as a 

superposition of several individual SWCNT. Hence, the overall potential can be derived as the 

sum of the individual potentials of each tube.  

The effective potential function is inserted in Multiphysics simulator in order to solve Schrödinger 

equation for a system of many nanotubes. The probability wave functions and energy levels are 

obtained for various number of nanotubes.  Fig.1 demonstrates the ground state probability wave 

function for different number of adjacent s-SWCNT. The coupling between the wave function is 

strong for the first neighbor s-SWCNT then it decays for the second neighbor and almost vanishes 

for the third neighbor s-SWCNT. 
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(a) (b) (c) 

Fig. 1 Ground state probability wave function (a) two s-SWCNTs, (b) three s-SWCNTs, and (c) 
five s-SWCNTs. 

Fig. 2 shows that the energy band gap decreases with increasing the number of s-SWCNTs due to 

the coupling between them but it asymptotically reaches to a constant value. This indicates that by 

placing the nanotubes into proximity arrays, the energy band gap could be altered; hence, it could 

be tuned as shown in Fig. 2. In the next section applying transverse electric field across these 

adjacent s-SWCNTs will be studied. 
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)
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Fig. 2 Energy band gap versus the number of s-SWCNTs 
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3. Quantum Cascaded Laser Analogy 

The quantum cascaded laser (QCL) consists of consecutive quantum wells that interact with each 

other; hence, this interaction alters the overall system wave functions and energies.  

As an analogy, an individual SWCNT represents a cylindrical quantum well. By putting the 

nanotubes proximately in an array, it will adopt the same behavior as the QCL.  

Hence, as it is done in solving QCL the potential function in Schrödinger’s equation of many s-

SWCNT will be an effective form that represents the overall effective potential function ௘ܸ௙௙ ൌ

ଵܸ ൅ ଶܸ ൅ ଷܸ ൅ ⋯൅ ேܸ, where N is the number of nanotubes per device. As shown in Fig. 3, when 

applying electric field to quantum cascaded laser the ground state wave function is due to the 

coupling between the ground state probability wave function of the first and second quantum wells. 

Then the second level wave function is due to coupling between the ground state function of the 

second and third quantum well. This pattern varies with the variation of the quantum well width 

and the value of the applied electric field. If all the quantum wells have the same width, the pattern 

will repeat itself till the last quantum well. 
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Fig. 3 Probability wave functions in quantum cascaded laser subject to applied electric field 
[5].  

The resultant probability density functions for s-SWCNT system consisting of 5 nanotubes is 

shown in Fig. 4. It is apparent that it follows the same ideology as the QCL, the ground state energy 

wave function is mainly the coupling between the first two s-SWCNTs wave functions. The second 

energy level wave function is the coupling between the next two s-SWCNTs then it repeats itself 

until it reaches the last nanotube. 

(a) (b) 
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(c) (d) 

Fig. 4 Probability wave functions (a) ground state energy level,(b) second energy level, (c) 
third energy level, (d) fourth energy level.  

Correspondingly, the applied transverse electric field is varied to study its effect on various the 

applied transverse electric field affects the energy sub bands and hence it alters the energy band 

gap.  Fig. 5 presents the change in the energy band gap for various number of nanotubes as a 

function of the applied transverse electric field. The same applied electric field value the bundle 

of s-SWCNTs show drastic reduction in the energy band gap. This result illustrates that for higher 

number of s-SWCNTs, the electric field needed to reduce the energy band gap is less than what is 

required for a single s-SWCNT.  
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Fig.5 Energy band gap reduction versus applied electric field for different number of s-
SWCNTs. 

4. The Current  

The current along an individual SWCNT body is theoretically ballistic, it follows [6] 

ܫ ൌ
ସ௘௞ಳ்

԰
∑ ln ቀ1 ൅ exp ቀ

ିா೔ି௘௏ೞ

௞ಳ்
ቁቁ െ ln ቀ1 ൅ exp ቀ

ିா೔ି௘௏ವ

௞ಳ்
ቁቁ	∀௜                  (2)  

where Ei is the sub band energy levels, i is the number of sub bands contribute to the transport. For 

the semiconducting nanotubes of small diameters, the ground state is the most contributing to the 

electron transport. Fig.6 presents the quasi-ballistic current as function of the normalized electric 

field along the carbon nanotube.  

The contact resistance is then included in the current equation: 

ௗ௦ܫ ൌ
௏೏ೞ

ೇವೄ
಺
ቚ
೗೚ೢ೑೔೐೗೏

ାோ೎
                                                               (3) 
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Fig.6 

Fig. 7 presents the overall current versus the applied voltage. The current amplitude degrades due 

to the value of the contact resistance.  
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Fig.7 

By introducing the coupling between the nanotubes discussed earlier, Fig.8 presents the overall 

current for an individual nanotube along with the current of many nanotubes. The current of the 

many nanotubes device is significantly higher due to coupling between the nanotubes and the 

significant reduction of the overall contact resistance.  
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Fig. 8 

For many nanotubes, an extra control voltage has been applied to represent the transverse electric 

field. Fig.9 presents the current with and without applying the voltage control signal across the 

aligned nanotubes. The current increases by applying the control voltage due to the decrease of the 

energy band gap of the system.  
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Fig. 9 The current calculated with/out applying transverse electric field (Vcontrol) for 7 nanotubes 
device 

5. Measurements 

In order to verify the theoretical work developed previously, a four-electrode test structure has 

been fabricated using lithography techniques (photolithography for the micro-dimensions and e-

beam lithography for the nano-dimensions). The carbon nanotubes are then deposited between two 

of the electrodes using the dielectrophoresis method [7]. An electrical field is created by applying 

a potential difference between the two vertical electrodes. Fig. 10 shows scanning electron 

microscope (SEM) pictures of the fabricated device consisting of four palladium (Pd) nano-

electrodes.  
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Fig. 10 SEM pictures of the measurement setup where an electrical field is vertically applied 
while I-V characteristics are realized along the carbon nanotubes axis. The inset zooms in to 
highlight the nanoscale device where the width of the nano-electrodes is 300 nm and the gap 
separating them is 500 nm. 
 
An electric field is applied perpendicularly to the semiconducting carbon nanotubes axis by 

applying a DC voltage between electrodes 1 and 3 as shown in Fig. 10. Then, I-V characteristics 

along the carbon nanotubes between electrodes 2 and 4 are measured using a Keithley 236 source 

measure unit. By augmenting the electrical field across the s- SWCNTs, the measured bias current 

along the carbon nanotubes increases as shown in Fig. 11. In other words, the measured 

conductance increases due to the energy band gap reduction caused by the applied external electric 

field. A bias current enhancement is observed when applying control voltage across the bundled 

SWCNTs equivalent to an Electric Field of 4x106 V/m considering the distance between the 

electrodes and the applied potential. From these measurements, it is obvious that when an electric 

field is applied across the SWCNT bundle the current increases. This increase in the measured bias 

current is explained by the idea proposed earlier, that the coupling effect between the SWCNTs 
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bundle helps generating free carriers. Consequently, these free carriers concentration enhances the 

conductivity and reduces the energy band gap. 
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Fig. 11 The current measured with/out applying transverse electric field (Vcontrol) for 7 nanotubes 
device 
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Fig. 12 Variation of the measured bias current along the aligned s-SWCNTs for different DC 
applied voltage across the bundle; the inset shows the I-V characteristics along the aligned s-
SWCNTs without applying DC voltage 

The change in the current due to the applied control voltage is plotted in Fig. 13 along with the 

measured current. The change in the current reflects more than 10% of the original current. 
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Fig. 13 Comparison between the calculated and measured change of the current due to applied 
control voltage 

Tuning the band gap of this prototype device will enable tuning the operating frequency of the 

device. Controlling the material energy band gap of the device has a direct impact in THz 

applications. First the typical semiconducting SWCNT absorption is in the mid infra-red (IR) 

region. By applying an electric field, the absorption can be tuned to Far IR and even reach the THz 

frequency band. Second, metallic carbon nanotubes have anisotropic conductance in the THz 

range. So, by inserting semiconducting carbon nanotubes and tuning their energy band gap, the 

device will modulate the THz signal.  

6. Conclusion 

Theoretical and experimental results have demonstrated the possibility to tune the energy band gap 

by applying an external electrical field across aligned arrays of semiconducting single-walled 
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carbon nanotubes. The developed analytical model predicts that the coupling effect between 

semiconducting single-walled carbon nanotubes enhances the energy band gap reduction 

compared to an individual s-SWCNT. The measurements showed an increase of around 10% in 

the conductance for 4x106V/m applied transverse electrical field across the aligned bundled carbon 

nanotubes. The obtained results show promise for s-SWCNTs to be used in THz frequency range.  
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Chapter VII. Conclusion 

An analytical potential function is introduced to describe the charge density of (semiconducting 

single-walled carbon nanotube) s-SWCNTs. Schrödinger's equation is then solved by 

implementing the proposed analytical potential function. The wave function of an individual s-

SWCNT as well as multi s-SWCNTs organized inside a bundle is obtained from the semi-

analytical approach. The potential function is developed to describe different kinds of nanotubes. 

For instance double walled carbon nanotubes are solved and comprehensive quantum solution is 

provided. The calculated results are in a good agreement with published data that double-walled 

carbon nanotubes are semi-metallic regardless the electronic type of its composing carbon 

nanotubes. 

Additionally, a comprehensive study of the coupling effect between s-SWCNTis demonstrated 

considering different configurations. In the absence of an external electric field, the coupling 

between the nanotubes is equally distributed among the SWCNT in the bundle. Then by applying 

an external electric field, our data show that not only the coupling is now localized between the 

first nanotubes encounter by the electric field along its direction, but also the energy band gap of 

the bundle is greatly enhanced. This is an important property for terahertz or far infrared optical 

applications where the development of devices in this spectrum is limited by the current 

semiconductor material properties.  

The model is then developed to incorporate realistic parameters to decrease reported discrepancies between 

the theory and measurements. The model provides a physical insight and thorough understanding of the 

different factors affecting contact resistance values. The model is developed for an individual SWCNT. A 

parametric study has been performed to demonstrate that the critical factor for improving the device 

performance and minimizing the contact resistance is ensuring the overlap length between the nanotube 
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and the metallic pad is longer than the effective length. The model results have been compared with 

measurements and a good agreement has been observed. This study provides an understanding of key 

parameters and limitations that degrade the SWCNT-based devices and suggest techniques to enhance their 

performance. A test structure is then fabricated and a new method for depositing high density s-SWNTs 

devices is introduced to improve very large scale integration of carbon=based electronic devices. 

High number of yield with high aligned high density of higher than 40 s-SWCNTs/1m and sheet 

resistance less than 10 K/� is achieved. I-V measurements are realized to show the low electric 

resistance achieved with 2.5% tolerance. Raman Spectroscopy is carried out and it shows typical 

spectrum for highly pure and uniforms-SWCNTs sample. 

The model that was developed for individual SWCNT, is used to build a model for arrays of 

aligned SWCNTs. The model has included the electrostatic and frequency dependence in a 

schematic circuit to represent the structure. The proposed model is compared to the measurements, 

and it shows a good agreement. The frequency response has been calculated for various number 

of nanotubes per device showing linear increase for low density and it saturates with the increase 

of the number of nanotubes per device.  The model helps understand the limitations affecting 

SWCNTs-based devices followed by some suggested techniques to enhance the performance.  

Theoretical and experimental results have demonstrated the possibility to tune the energy band gap 

by applying an external electrical field across aligned arrays of semiconducting single-walled 

carbon nanotubes. The developed analytical model predicts that the coupling effect between 

semiconducting single-walled carbon nanotubes enhances the energy band gap reduction 

compared to an individual s-SWCNT. The measurements showed around 10% in the conductance 

for 4x106V/m applied transverse electrical field across the aligned bundled carbon nanotubes. The 
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obtained results provide innovative approaches for terahertz or far-infrared frequency components 

requiring a small energy band gap semi-conducting material. 
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