
Inquiry: The University of Arkansas Undergraduate Research
Journal

Volume 11 Article 18

Fall 2010

Research Note: Automated Path Finding Service
for Second Life
Daniel Starling
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/inquiry

Part of the Graphics and Human Computer Interfaces Commons

This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Inquiry: The University of
Arkansas Undergraduate Research Journal by an authorized editor of ScholarWorks@UARK. For more information, please contact scholar@uark.edu,
ccmiddle@uark.edu.

Recommended Citation
Starling, Daniel (2010) "Research Note: Automated Path Finding Service for Second Life," Inquiry: The University of Arkansas
Undergraduate Research Journal: Vol. 11 , Article 18.
Available at: http://scholarworks.uark.edu/inquiry/vol11/iss1/18

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UARK

https://core.ac.uk/display/84120011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.uark.edu/inquiry?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol11%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/inquiry?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol11%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/inquiry/vol11?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol11%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/inquiry/vol11/iss1/18?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol11%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/inquiry?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol11%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol11%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/inquiry/vol11/iss1/18?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol11%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

 Second Life (a product from Linden Labs) is a 3D virtual
world platform where one can create custom objects (houses, cars,
pets, etc.) and embed logic in them through scripts, giving rise to a
rich, interactive world made of user content. Human participants
in the world are represented by “avatars” which can wander about
freely in “regions” (also known as “islands”) that subdivide the
world into pieces that are hosted on servers on the Second Life
(SL) grid (server farm located at Linden Labs). While humans
have the necessary cognitive facilities to navigate this 3D environ-
ment, scripted objects do not. In particular, there are no facilities
for path finding (e.g., moving from A to B via a set of waypoints
that avoid obstacles). Were this feature to exist, it would become
easier to implement realistic simulations and avatar-bots (avatars
operated by programs instead of humans) inside of SL. As it is,
every application needing this functionality implements a special
case, primitive navigation for agents that move from place to place
with very limited knowledge of their surroundings. This is due in
part to resource concerns (e.g., CPU, memory overhead) on SL’s
servers.

Problem

 Part of current research at the University of Arkansas con-
cerns modeling healthcare logistics and medical workflows (e.g.,
medical procedures) within SL. This work falls under an umbrella
project called “Everything is Alive” (EiA) [1]. In EiA, we sup-
pose that pervasive computing exists and that objects are uniquely
identifiable. Consequently, we always know where objects are
located. The simulations that we carry out in SL often require
moving an object (a wheelchair, a box of stents, etc.) using an
agent (an avatar-bot) from location A to B. Typical static obstacles
include hospital walls and medical equipment. Since SL lacks the
ability to determine waypoints that avoid these obstacles (much
less provide a reasonably short path), we needed to implement our
own mechanism.

Path Finding service

 The solution we pursued is called the “path finding web
service” (see [2] for more details). Agents in SL can contact this
web service to navigate SL by providing their current location and
where they want to go – the web service will return an appropriate
list of waypoints that the agent can follow to avoid solid obstacles.
Calculating waypoints from a 3D geometry model is a computa-
tionally intensive task, which is one reason why it is difficult to
implement directly on SL’s servers, which are already bustling
with thousands of scripted objects. By offloading the task to our
own server, we can partially avoid quota restrictions found in SL’s

Linden Scripting Language.

The Path Finding Algorithm

 We use a path finding algorithm known as A*, which incre-
mentally approaches an optimal solution through the use of a
“cost” and “heuristic” function as it evaluates path choices. As
A* searches through potential paths, it will evaluate a cost func-
tion that expresses distance traveled so far and then evaluates a
heuristic function that approximates how close we are to the goal
(in our case, it is approximated as a direct line between the cur-
rent location and the destination). We originally used Djikstra’s
algorithm, which happens to be a special case of A* where there is
no heuristic function (that is, the heuristic function would always
evaluate to zero). This proved to be costly since the heuristic
function is vital in guiding the search and avoiding the need to
traverse the entire search space to find a solution – the heuristic
function allows A* to “home in” on a solution.

 Our algorithm based on A* works as follows:

 1. Take a vertical slice of the world, allowing a reduction of
3D to 2D space. This yields rectangles derived from 3D bounding
boxes of objects. See Figure 1.

 2. Expand rectangle sizes by some factor, which gener-
ally increases the amount of rectangle overlap. This avoids the
problem of adjacent objects (e.g., walls) that have gaps between
them (sometimes nearly imperceptible) that the algorithm would
normally plot a path through, even though the object or avatar-
bot that we are attempting to move through the area could not fit
there. Additionally, this performs a similar duty in assuring that
the entity we move through the world does not clip too close to
corners or attempt to walk inside of a wall as it walks alongside it.
See Figure 2.

 3. Convert the rectangles into a graph, which is a data struc-
ture consisting of vertices (points) and connections between them
(edges). This graph consists of the start and end points and every

ReseARCH NOTe:

AUTOMATeD PATH FINDING seRVICe FOR seCOND LIFe

By Daniel starling

Department of Computer science and Computer engineering

Faculty Mentor: Craig Thompson

Department of Computer science and Computer engineering

Figure 1. First step of the path finding algorithm: collapsing 3D to 2D space.

110 inquiry Volume 11 2010

1

Starling: Research Note: Automated Path Finding Service for Second Life

Published by ScholarWorks@UARK, 2010

vertex of each rectangle. Connectivity of vertices (the introduc-
tion of edges) is determined by line-of-sight reachability from one
vertex to another. This is a quadratic time algorithm and becomes
increasingly CPU-intensive as the number of vertices increases,
sometimes rivaling A* in running time. An adjacency matrix, (a
data structure that demonstrates efficient memory use for graphs
with a large number of edges) stores the graph. See Figure 3.

 4. Run the A* algorithm on our graph, which we have just
framed as a classic single-pair shortest path problem. See Figure
4.

Use of the service

 The EiA project experiences considerable student churn. Un-
dergraduate students may only be around for one or two semesters
but contribute as much to the overall project as graduate students.
The initial path finding web service was not very accessible to
these students since it was not well-documented, relied on hard-
coded parameters, and could not be updated readily as changes to
layout in SL place were made (e.g., a new wall was introduced).
In essence, it was not easy for new students to quickly pick up and
start using the pathfinding web service in projects. Through revi-
sions, we were able to address these issues so that a student who
had just learned about Second Life (and its scripting language)
could use the web service to compute paths in their own projects.

 A tool was designed for student use (pictured on the left in

Figure 5) that visually relates the effects of the parameters that
they pass to the web server (for example, the rectangle expan-
sion factor used in the overall algorithm). Students can also plot
paths to review them for correctness and can also clear out areas
of the island from the model. Re-scanning the island (done when
changes take place) is just a matter of moving a special “scanner”
object into position and activating it, after which it will contact the
web service to report 3D bounding boxes in the world.

Our final step was to release this path finding service as a package
that users can set up on their own servers and use.

Discussion of Limitations

 While generally useful, our design is not without shortcom-
ings. First, to calculate a path in SL, we must be fully aware of
the geometry surrounding that navigation. SL places tight restric-
tions on geometry export – getting a model of an entire SL island
out of the SL servers and into an external format is non-trivial. We
settled on a less-than-precise method that employs SL’s scripted
“scanner” functionality to accumulate “bounding boxes” for each
object found in the world. These bounding boxes roughly describe
the space that the object takes up, although it can be wildly inaccu-
rate in some instances (e.g., L-shaped objects that appear as giant
box-like solids when their bounds are inspected). The process we
developed requires some “manual effort” – our scripted “scanner”
object has to periodically move throughout our region of the world
to read in this data and report it back to the server. This process is
time consuming due to SL scripting restrictions given limits, for
example, on how fast a scanner object can move and query for
world geometry. Our chosen approach can be unwieldy at times;
objects moved by students or changes in building architecture
often require that we be able to re-scan regions. Other issues such
as inconsistencies in SL’s sensor implementation make scanning in
geometry all the more difficult.

 The second shortcoming is not so much an issue with SL but
rather an area for future work. As mentioned, path finding is a
resource-intensive process. To simplify the problem and generate
paths in a reasonably short period of time, we do not search for
paths in the entire 3D world (or region) but rather collapse a verti-
cal slice of it on the Z-axis into a 2D “overhead view” where we
can apply the custom search algorithm to derive the shortest path
(see Figure 5). Since our simulations are carried out on leveled-
out hospital floors, this works sufficiently well, but our solution
is not scalable to more complex geographies that involve vertical
movement (e.g., paths that traverse stairs or windows). A better

Figure 2. Second step of the path finding algorithm: rectangle size expansion.

Figure 3. Third step of the path finding algorithm: conversion of rectangles and
start/end points to a graph

Figure 4. Fourth, final step of the path finding algorithm: apply A* algorithm to
derive shortest path.

Figure 5. A visual tool for inspecting the bounding boxes with which our web ser-
vice is generating a path (left) and the corresponding SL hospital on the University

of Arkansas island (right).

COMPUTeR sCIeNC AND COMPUTeR eNGINeeRING: Daniel starling 111

2

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 11 [2010], Art. 18

http://scholarworks.uark.edu/inquiry/vol11/iss1/18

algorithm would implement A* in full 3D geometry with accom-
modation for picking paths that that are traversable by entities of
varying size and limitation (e.g. gravity-bound objects).

 Right now, all path computation takes place outside of SL. It
is reasonable to assume that implementing path finding directly
on Linden’s servers is not currently feasible. Even if they were to
create native, efficient functions for script-writers to use, the un-
derlying algorithms would necessitate restrictive quotas that would
likely render them less useful for the situations described in this
paper.

Future Work

 To make our functionality more available, we are consider-
ing the addition of the path finding service to OpenSimulator, an
open-source alternative to Second Life. Hopefully, as Second
Life evolves, it will offer features found in the AI component of
current-generation 3D game engines, such as path finding. With
such features, we would come a step closer to creating the realistic
environment that Second Life’s name suggests.

Acknowledgement

The author is indebted to undergraduate Nicholas Farrer, who
developed the first generation path planner on which the current
work is based.

References

[1] For papers on the Everything is Alive project, see
 http://vw.ddns.uark.edu/index.php?page=docs

[2] Starling, Daniel. “Pathfinding Extensions.”
 <http://www.csce.uark.edu/%7Ecwt/COURSES/2009-08--
 CSCE-4613--AI/TERM-PROJECTS/FINAL-REPORT--Path
 finding--Starling.doc>.

[3] Farrer, Nick. “Second Life Robot Command Language.”
 <http://vw.ddns.uark.edu/content/2009-02--SL-Robot-
 Command-Language-v0--Nicholas-Farrer.doc>.

Mentor Comments: Craig Thompson’s students’ work with Sec-
ond Life and the Everything is Alive project appear in three loca-
tions in this journal, first in Eguchi’s award-winning paper, next in
Kumar’s manuscript, and finally in this Research Note by Starling.
Each article demonstrates the diversity of research possibilities
with the EiA project.

For the past three years, my research has involved how to use 3D
virtual worlds like Second Life to explore what the real world will
be like when every physical object is a network object, with its own
identity, behaviors, and the ability to communicate with humans
and other objects. In the Fall 2009, I taught Artificial Intelligence.
Daniel was one of my star students. In a previous semester, one of
my students Nick Farrer, since graduated, had developed a virtual
world robot assembly language that included software for find-
ing paths from a start location to and end location in the virtual
world. The system used a graph of way points and an efficient
path finding algorithm for searching for a route. This allowed a
robot to be tasked to go from A to B in a single command. Daniel
took Nick’s extensive code base, understood it (never easy), and
then extracted the path finding code, and repackaging it as a sepa-
rate modular service that can be used for many purposes. The
ability to modularly build virtual worlds up from a set of modular
services is a hot topic in the virtual world architecture community
at present. Daniel went a step further – he also observed that our
maps of waypoints become out of date fairly quickly. So he devel-
oped a closely related service that scans an area of a virtual world
for obstacles that can include walls but also furnishings or doors.
We now run this second service periodically to maintain our
waypoint graph in a current state. Daniel wrote a paper based on
his work “Automated Path Planning for Second Life” for the X10
Workshop on Extensible Virtual Worlds (http://vw.ddns.uark.edu/
X10, March 29-30, 2010). Having graduated in May 2010, Daniel
went to work for a startup software company to gain real world
experience but he is interested in eventually returning to academ-
ics for a Masters or Ph.D.

112 inquiry Volume 11 2010

3

Starling: Research Note: Automated Path Finding Service for Second Life

Published by ScholarWorks@UARK, 2010

	Inquiry: The University of Arkansas Undergraduate Research Journal
	Fall 2010

	Research Note: Automated Path Finding Service for Second Life
	Daniel Starling
	Recommended Citation

	Inquiry: the University of Arkansas undergraduate research journal

