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Abstract

An annual rapid bioassessment and physiochemical
survey of Sager Creek in Northwest Arkansas was
conducted. Sager Creek is a first to second order
stream that flows through the city of Siloam Springs,
AR. Invertebrate collections and water samples were
collected at three different reaches, with the most
downstream reach being below the effluent of the
Siloam Springs Wastewater Treatment Plant. Benthic
arthropods were collected, identified, and counted to
produce a family-level biotic index and a family-level
index of diversity. Statistical analysis revealed that
these indices were significantly different for the
effluent- influenced reach. However, this difference
could not be correlated to any measured
physiochemical parameter.

Key words:--- Aquatic insects, macroinvertebrates,
rapid bioassessment, water quality

Introduction

Benthic macroinvertebrates possess several
characteristics that make them especially useful in
assessing water quality. First, they occupy several
trophic levels and are principle components in stream
food webs. They typically have life cycles which
extend over multiple seasons and experience varying
environmental conditions. They tend to display low
motility within the stream benthos and also show
varying levels of tolerance to environmental conditions
including stream pollution (Kuep et al. 1966).

In 1988, in recognition of a need for a rapid field-
based assessment tool, Hilsenhoff published a biotic
index based on the pollution tolerance levels of
families of benthic arthropods. Although the family-
level biotic index (FBI) tended to overestimate the
pollution level of clean streams and underestimate the
pollution level of polluted streams, compared to a
species-level biotic index (BI), it still provided

valuable information for assessing water quality in
lotic environments (Hilsenhoff 1987, 1988).

Diversity indices are also used to evaluate the
structure of macroinvertebrate communities.
Simpson’s Index of Diversity (SID) calculates the
probability that two sampled organisms will belong to
different taxonomic groups (Simpson 1949). In other
words, as diversity increases, the probability that the
two individuals sampled will belong to different
taxonomic groups also increases. Although SID is
most commonly applied at the species level, taxonomic
sufficiency (Ellis 1985) has been demonstrated at
higher taxonomic levels in both marine and freshwater
systems (Warwick 1988, Marchal 2005, Marshall et al.
2006, Jones 2008). Significant correlations between
reduced taxonomic diversity and polluted water have
also been indicated (Wright et al. 1993, Nedeau et al.
2003).

The practice of using benthic macroinvertebrate
surveys as an assessment of water quality has been
applied to many streams and creeks in Arkansas
(Shackleford 1988, Brown et al. 1997, Burns 2001,
Williams et al. 2002, Grippo and McCord 2006,
McCord et al. 2007, Brueggen-Boman and Bouldin
2012). However, no macroinvertebrate stream
assessment study has been published on Sager Creek, a
small stream in Northwest Arkansas.

The objectives of this study were to: (1) provide
baseline water quality conditions of the understudied
Sager Creek (2) determine if rapid bioassessments
using benthic macroinvertebrates is sensitive enough to
assess the health of Sager Creek.

Materials and Methods

The Sager Creek watershed, which is located in the
Ozark Highlands Ecoregion of Northwest Arkansas,
(Omernick 1987) encompasses approximately 44 km2.
Wet weather tributaries of the stream extend east of the
city of Siloam Springs by as much as 6.7 km.
However, the principle flow of Sager Creek begins at
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Box Springs, an underground aquifer that opens to the
surface on the Siloam Springs Municipal Golf Course
(GBMc & Associates 2005). This first to second order
stream (Vannote et al. 1980) flows west through the
city of Siloam Springs, through the campus of John
Brown University and into Oklahoma. Approximately
300 m from the state line, effluent from the Siloam
Springs Wastewater Treatment Plant is discharged into
the stream.

Sampling of Sager Creek occurred during
September of 2009 and continued through July of
2010. A total of three test reaches are located along
Sager Creek. The Honeycutt reach (H) is the highest
upstream site and is located near Box Springs. The
JBU reach (JBU) is located to the north and northeast
of the John Brown University campus and is
downstream from the business district of Siloam
Springs. The Wastewater reach (W) is the farthest
downstream and is below the Wastewater Treatment
Plant effluent. Each of the three reaches was further
broken down into eight individual riffle sites labeled
A-H.

A 500-micron D-net was used to collect benthic
macroinvertebrate samples. The D-net was placed
randomly in the riffle, downstream of the water-flow,
and an approximate 0.30 meter by 0.30 meter area was
scrubbed for thirty seconds in front of the D-net to
dislodge the organisms. This process was performed at
two different locations within each of the eight sites
contained in a reach. The sample was then transferred
from the D-net through a 5-mm rock screen into a
bucket. The screen and D-net were inspected and all
clinging organisms were removed. Organisms that
would contribute to the FBI (i.e. insect larvae) were
transferred to the bucket, while noncontributing
invertebrates (i.e. Decapodans, Oligochaetes and
Hirudineans) were discarded. The sample was then
filtered through a 500-micron screen to remove excess
water. The final sample was emptied into a collection
container and preserved with 95% ethyl alcohol.

In the laboratory, each sample was dispensed into a
gridded counting tray and a grid was chosen at random
to begin the organism count. A one hundred organism
subsample was separated, identified to the family level
(Needham and Needham 1962, Voshell 2002), and
recorded. A FBI and a family-level SID (FSID) were
calculated according to Hilsenhoff (1988) and Simpson
(1949) for each subsample. Tolerance values for the
FBI were assigned according to the Missouri
Department of Natural Resources database (Sarver
2005). A mean family-level biotic index (MFBI) was
calculated for each reach utilizing all eight of the

individual site FBI. MFBI during the months of June
and July were calculated utilizing only four individual
site’s FBI.

Calculations for stream water flow were performed
according to EPA standards (USEPA 2004).
Physiochemical data were collected using various
means. A Milwaukee portable pH meter (model
MW100) was used to record stream pH. A handheld
thermometer was used to record stream temperature.
These tests were performed at three randomly selected
sites at each reach and a mean value for each parameter
was recorded. At these same sites, approximately 120
ml of water was collected, according to EPA standards
(USEPA 2004), for additional physiochemical tests.
The 120 ml unfiltered water samples, were tested for
dissolved oxygen (HRDO method 8166), nitrogen
(cadmium reduction method 8039), and phosphorous
concentrations (USEPA method 365.2) using a
Hach colorimeter (model DR/850). A mean value for
each concentration was calculated and recorded.

Physiochemical data, MFBI and FSID were
compared using paired t-tests, with an application of
the Bonferroni Multiple Comparison Test (Triola and
Triola 2006), with an alpha value set at 0.05.

Results

Arthropods from six different insect orders,
representing 17 different families were collected along
with two groups of crustaceans; isopods and
amphipods (Table 1). Mayflies and isopods were the
most commonly counted organisms collected in the
Honeycutt reach, averaging 59% and 20% of all
organisms counted respectively. The most commonly
counted organisms from the JBU reach were again the
mayflies (42%) with the true flies (Dipterans) a close
second (35%). However the Wastewater reach was
almost completely dominated by the true flies (83%)
with mayflies the next largest group at only 13%.

According to the FBI established by Hilsenhoff
(1988), an increasing value represents an increasing
level of organic pollution. The Honeycutt reach’s
MFBI (5.057) would place it in the “fair” ranking,
indicating that a “fairly substantial amount of organic
pollution was likely”. The JBU reach’s MFBI (4.935)
would place it in the “good” ranking, indicating “some
organic pollution was probable”. However, as can be
seen in Fig. 1, the Honeycutt reach is only slightly
higher than the JBU reach and there was no significant
difference between these two values (P = 0.821). The
Wastewater reach’s MFBI (5.736) was ranked at the
very upper end of the “fair” ranking, just below the
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Table 1. List of organisms collected, identified, counted and utilized in the production of the mean Family Biotic
Index (MFBI) and Family-level Index of Diversity (FSID). All numbers are the average number of individuals
identified per reach per sample day.

Fig. 1. Mean Family-level biotic index value. Values range from 0
to 10 indicating increasing pollution levels. Standard error bars and
values are also indicated.

Fig. 2. Mean Family-level Simpson Index of Diversity value.
Values range from 0 to 1 indicating increasing diversity. Standard
error bars and values are also indicated.
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“fairly poor” ranking, indicating that “substantial
pollution is likely”, and was significantly different than
both the JBU reach (P = 0.009) and the Honeycutt
reach (P = 0.0005).

Similarly, the FSID of both the Honeycutt and JBU
reaches (0.7097 and 0.6874) were notably high,
indicating a fairly high level of diversity within the
population of benthic macroinvertebrates (Fig. 2).
When compared to each other, there was no significant
difference between these two reaches (P = 1.245).
However, the FSID of the Wastewater reach (0.3441)
was significantly lower than both the JBU reach (P =
0.038) and the Honeycutt reach (P = 0.009) indicating
a much lower level of diversity.

Physiochemical calculations (Table 2) revealed no
significant difference between temperature, dissolved
oxygen, nitrate and phosphate levels within any of the
reaches. There was a significant difference between
the level of water-flow between the Honeycutt and
Wastewater reaches (P = 0.015) and a significant
difference in the pH level of the Honeycutt reach
compared to the Wastewater reach (P = 0.017).

Discussion

Utilizing stream macroinvertebrates as indicators
of potential stream pollution has been a practice in the
U.S. for approximately 100 years (Weston and Turner
1917). During that time period the number of different

macroinvertebrate indices used to assess water quality
has grown significantly (Perkins 1983, Resh 1994).
However, there seems to be substantial debate
concerning the accuracy of these indices in predicting
water quality, particularly when those indices utilize
“rapid” bioassessments (Hannaford and Resh 1995,
Taylor 1997). Rapid bioassessments utilize techniques
that are designed to fulfill two primary objectives:
reduce the costs and efforts of assessments relative to
more labor intensive, highly-specialized traditional
approaches; and make the results of the assessments
meaningful to a more generalized audience (Resh and
Jackson 1993). The first of these objectives was of
paramount importance in this current study as both
financial and man-power resources were both
extremely limited. In a final analysis, the use of a
rapid bioassessment protocol seems warranted
considering that the USEPA sanctions this approach
(Barbour et al. 1999).

The presence of such a large number of Dipterans,
particularly the Chironomids in the Wastewater reach
heavily influence both the FSID and MFBI resulting in
this reach’s significant difference from both of the
upstream reaches. Some Chironomidae genera have a
very rapid life cycle and may produce several
generations of individuals within a season, particularly
during the warm summer months (Pinder 1986). Thus,
it might be concluded that the high Chironomid
numbers in the Wastewater reach, during the months of

Table 2. Mean and standard error values for water-flow, temperature, pH, dissolved nitrate, phosphate and oxygen tests
performed on water samples from Sager Creek. Significant P-values of compared reaches are in bold type.
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June and July, distorted the overall FSID when in fact
this is only a seasonal effect. However an analysis of
family percentages per reach sample reveals that the
percentage of Chironomids in the Wastewater reach
remained relatively high throughout the entire year
ranging from 60% to 98%, with the second highest
percentage (90%) occurring during the month of
Feburary. By comparison, the Honeycutt reach’s
Chironomid percentage ranged from 0% to 26%. The
JBU reach had one sample with a high Chironomid
percentage (88%) while all others ranged from 8% to
48%. Thus, the high percentage of Chironomids in the
Wastewater reach appears to be reach-specific rather
than seasonal.

The family-level pollution tolerance value (6) for
the Chironomids is fairly high (Sarver 2005). When
this is compared to the tolerance values of the
dominating families of mayflies from the two upstream
reaches, (Baetidae 4 and Heptageniidae 4), the reason
for the MFBI differences becomes clear. However, it
should be noted that the Chironomid family is highly
diverse with many genera, some of which have widely
varying levels of pollution tolerance. Thus it is
possible that the MFBI for this reach is overestimated.
This would be consistent with Hilsenhoff’s initial study
in which the family-level biotic index tended to
overestimate the pollution level of clean streams
(Hilsenhoff 1988).

Hilsenhoff (1988) identified eight different insect
orders from which individual larvae could be utilized
in producing the FBI. The absence of two orders from
our Sager Creek data was of particular interest. In all
of the samples collected and surveyed, no Plecopterans
(stoneflies) or Megalopterans (dobsonflies and
alderflies) were identified. This is somewhat
surprising as early exploration of a nearby stream
(Flint Creek) revealed the presence of both of these
orders in some abundance (Wakefield, unpublished
data). The absence of the Plecopterans could be
explained by their pollution sensitivity. All of the
families within this order have tolerance values that
range from 0-3 (Sarver 2005). Thus, it is possible that
even the “fair” to “good” rankings of the two upstream
sites indicate water quality that is not suitable for this
sensitive order of insects.

The absence of Megalopterans is more difficult to
explain. Megaloptera consists of families that act as
predators within the stream benthos. Predators, by
their trophic position in a stream food web, should be
relatively low in number. This was seen in the low
number of Odonatans (damselflies and dragonflies)
found in the subsamples. The dominant Odonatan

(Coenagrionidae or narrow-winged damselflies) in
samples has one of the highest pollution tolerance
values (9) of any insect larvae collected (Sarver 2005).
The dobsonflies (Corydalidae) have a tolerance value
of 4, while the alderflies (Sialidae) have a tolerance
value of 7.5 (Sarver 2005). Although both of these
tolerance values are below the tolerance of the narrow-
winged damselflies, they are well within the range of
other organisms that were identified in the subsamples.
Thus pollution intolerance does not seem to be the
reason for the absence of this order. It’s possible that
patchy distribution and preferred habitat of the
organisms resulted in noncapture.

Differences in MFBI and FSID are also not easily
correlated to physiochemical analysis. The level of
water-flow at the Wastewater reach was significantly
higher than the level at the Honeycutt reach. The
effluent of the wastewater treatment plant adds
approximately 11.4 x 107 liters/day to the stream,
(water-flow measures of 81.0 -116.0 x 107 liters/day
include this effluent.) Even without this, the level of
water-flow should be expected to increase downstream
as many small springs and wet-weather tributaries feed
into the creek as it grows from a first to second order
stream. Vannote et al. (1980) suggested that
taxonomic diversity should actually increase as stream
size increases reaching a maximum level of diversity in
mid-order streams. However, this suggested diversity
increase is not due to increased water flow but
increased instability in the physical parameters of the
growing stream system including diel temperature
changes, riparian shading, and shifts in food resources
(Vannote 1980). The fact that this study found a
decreased diversity in the higher-ordered portion of the
stream suggests a negative impact from some
physiochemical parameter, but does not suggest that
increased water-flow causes a decrease in taxonomic
diversity.

Also, although the pH levels of the Honeycutt and
Wastewater reaches were significantly different from
each other (7.022 vs 7.650), both are still clearly within
the suitable pH range (6.5-9.0) as previously
established by the U.S. Environmental Protection
Agency (USEPA 1986). Thus, it is doubtful factors
impacting pH alone is directly responsible for the
differences seen in the MFBI or FSID. Since no
significant differences were found in any of the other
tested parameters, the reasons for the differences in
arthropod populations is still not discernible.

A comparison of the results of this study to
previous studies in Arkansas (Shackleford 1988,
Brown et al. 1997, Burns 2001, Williams et al. 2002,
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Grippo and McCord 2006, McCord et al. 2007) is
difficult due to a variety of factors. These factors
include, but are not limited to, the fact that these
surveys were done on streams in different ecoregions
of the state and these studies used a variety of different
indices to determine stream quality. However,
Brueggen-Boman and Bouldin’s (2012) study of the
Strawberry River watershed was in the same ecoregion
as Sager Creek. Additionally this study utilized the
Hilsenhoff Biotic Index (HBI) and some family-level
tolerance values for calculating a biotic index score as
one indicator of stream health (Hilsenhoff 1987,
Brueggen-Boman and Bouldin 2012). Although this
study was primarily focused on agricultural/grazing
impacts on stream health, some results were similar to
what was found in Sager Creek. In particular, stream
reaches that had a high percentage of Dipterans (over
80%) also scored in the high range of the “fair”
ranking on the HBI and indicated a low level of
diversity within the ephemeroptera, plecoptera,
trichoptera orders. Water chemistry data was not
collected in this study, instead habitat assessments of
the riparian zone and changes in the watershed land
usage over time were evaluated in conjunction with
macroinvertebrate indices. The authors concluded that
water quality was being affected by changes in land
usage, most notably loss of forested land and
increasing urbanization (Brueggen-Boman and Bouldin
2012).

Although the precision of family-level
bioassessments remains in question, it seems clear that
these tools do provide valuable information for
assessing stream health. The results of these
assessments support the conclusion that the effluent
from the Wastewater Treatment Plant is having a
negative effect on the health of Sager Creek. However,
the absence of plecopterans and megalopterans from
the upstream sites and the conclusion drawn from the
Strawberry River study may indicate a larger problem
that encompasses the entire watershed. A more
comprehensive study of the Sager Creek watershed
including land usage data may be valuable in
elucidating the causes of the declining stream health.
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