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Abstract

Pauling’s empirical bond valence-length
correlation has proven valuable because it offers a
quick and convenient way of checking and evaluating
molecular structures and determining oxidation states
from measured bond lengths. In this study, a
simplified quantum-mechanical approach was used to
derive Pauling’s empirical bond valence-length
relationship by considering overlap of hydrogen-like
orbitals. An expression for the b “empirical” fitting
parameter was derived in terms of atomic-orbital
exponents. A new set of orbital exponents is presented
using published atomic/covalent radii and a continuous
function for the effective principal quantum. The b
parameters calculated from the orbital exponents are
consistent with bond valence-length data from
crystallographic data. In general, atomic-orbital
exponents may be used to determine bond valence-
length relationships for any chemical bond regardless
of state, oxidation number, or environment.

Introduction

Pauling’s second rule of chemical bonding
(Pauling 1929) is the principle of local charge
neutrality where the negative charge of each anion is
neutralized by the positive charges of neighboring
cations and, conversely, that the cationic charges are
neutralized by neighboring anions. This rule, called the
valence sum rule, states that the sum of the bond
strengths (in valence units) around each bonding atom
is compensated by the total valence of that atom

(1)

where sij is the bond valence for each bond to the atom,
and Vi is the oxidation state of the atom and/or the
number of electrons used for bonding. The sum of
bond valences around any ion, i, is equal to its valence,
Vi.

Bond valence – bond length empirical correlations

have been used for many years (Pauling 1947,
Zachariasen 1954, Brown and Altermatt 1985, Brown
2002, Brown 2009). Perhaps the two most commonly
used relationships are

N
oRRs )/( (2)

and

b

RR
s 0exp (3)

where s is the bond valence, sometimes referred to as
the bond order or bond number; it is also the number of
shared electron pairs involved in the bond. R is bond
length, Ro is the bond length of a chemical bond having
unit valence, and N and b are empirical fitting
parameters and sometimes associated with the softness
of the bond. Eq. (3) is the most widely used and was
first proposed by Pauling in 1947 to describe metal-
metal bonding (Pauling 1947).

In practice, b and R0 are both adjustable parameters
found by minimizing the difference between the bond
valence sums and the atomic valence of the central
bonding atom. Most values of b have been
experimentally found to range between 0.25 and 0.55
Å, but because of limited results, b is often assumed to
be a universal constant of 0.37 Å (average of tabulated
values). This common assumption changes Eq. (3) to a
one-parameter fit and makes it easier to use, but
severely limits the applicability of the relationship,
decreasing reliability for very short and very long
bonds. In fact, there is a large variability in reported b
parameters that is sensitive to the selection of Ro as
well as crystallographic data. Adams (Adams 2001,
Adams 2008) demonstrated that the value of b for a
given bond type depends on the arbitrarily chosen
maximum bond length, and that the bond valence
parameters determined using both the first and second
coordination spheres were significantly different from
those determined using the first coordination sphere
alone.

Bond valence–length relationships, Eq. (3),

j
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combined with the valence sum rule, Eq. (1), have
obvious applications where molecular structures are of
interest. The relationships are typically used to check
crystal structures or to evaluate the reasonableness of a
proposed molecular structure for crystalline and
amorphous systems. They can also be used to
determine oxidation states of cations or anions, or to
determine coordination numbers for organo-metallic
complexes.

In the present study, a simplified quantum-
mechanical approach is used to derive Pauling’s
empirical bond valence – bond length relationship. An
expression for the b parameter was derived in terms of
atomic-orbital exponents. A new set of orbital
exponents is presented using published atomic/covalent
radii and a proposed continuous function for the
effective principal quantum, n*. The b parameters
calculated from the orbital exponents were found to be
consistent with bond valence-length data from
crystallographic data.

Theory

Defining Bond Valence
Following the widely used method of linear

combination of atomic orbitals (LCAO) to represent
the bonding between two atoms

21 (4)

where is the bonding molecular-orbital wave
function, and 1 and 2 are atomic-orbital wave
functions for the bonding atoms. The probability
density is given by the square of the wave function

21
2
2

2
12121

2 2 (5)

where integration over all space is normalized to unity.
The integrated third term (2 1 2) is the Mulliken
population density (Mulliken 1955), or the integrated
sum of the overlap between the two atomic-orbital
wave functions. This term represents the electronic
interaction between the two atoms and is associated
with bond strength or bond valence. We define the
bond valence, s, as the cross-section or thickness of
this overlap region (non-integrated form)

212s (6)

Hydrogen-Like Wave Functions and Orbital
Exponents

It is common to use hydrogen-like wave functions
to represent a valence electron in a chemical bond. In
1930, Slater (Slater 1930) found that when the wave
function of any orbital is approximated, the wave
functions can be written as a node-less function

,,
1

,,
0

ml

R
na

Z

n
mln YeR (7)

where Z is the nuclear charge of the atom, is the
screening constant (the core electrons shield the
valence electron(s) from the nuclear charge), and a0 is
the Bohr radius (0.529 Å). The pre-exponential factor
Rn-1 scales the function by broadening and shifting as
the principal quantum number n increases. Slater
replaces the principal quantum number n with an
effective principal quantum number n*. The effective
nuclear charge, Zeff = Z - , with respect to the effective
principle quantum number, n*, is expressed as an
orbital exponent, ,

*n

Zeff
(8)

Slater proposed values of n* = 1, 2, 3, 3.7, 4.0 and 4.2
for principal quantum numbers n = 1, 2, 3, 4, 5 and 6,
respectively. Slater’s values are still used today,
although investigators suggest that n* is some function
of n. The simplest method of calculating orbital
exponents is to use Slater’s rules to determine
screening constants, outlined in most inorganic
chemistry texts (Miessler and Tarr 2003). Self-
consistent field methods yield more reliable numbers
(Clementi and Raimondi 1963, Clementi et al. 1967).
In a previous study, we attempted to reproduce
Clementi and coworkers' exponents by incorporating a
modified Pauling covalency factor (Hardcastle and
Laffoon 2012). In the present study, new orbital
exponents are reported using a best fit to published
atomic radii and single-bond covalent radii. A few
exponents were independently verified using empirical
bond length – valence relationships derived from
crystallographic data.

For our application, the wave function is “shifted”
or “scaled” when the corresponding bond length is
normalized to the bond length at unit valence; that is, R
= R0 when s = 1. We therefore eliminate the Rn-1 pre-
exponential scaling term from Slater’s wave function,
Eq. (7). Since only the overlap region between the two
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bonding atoms is of interest, the spherical harmonic
term, Y( , ), is also ignored (constant). The bond
valence between bonding atoms 1 and 2 can now be
written, using Eq. (6), as

(9)

in terms of orbital exponents, Eq. (8).
The radial probability density function (RDF) for

the Slater wave function is obtained by multiplying Eq.
(7) by 4 R2. The derivative of the RDF with respect to
R yields the atomic radius, which is the maximum of
the RDF. The atomic radius for both the Slater
function and the hydrogen-like orbital, Eq. (9) occurs
at

(10)

where n* is the effective principal quantum number
and scales the atomic radius (actually scaled by n*2).
Because this is the maximum of the RDF, it is
equivalent to finding R for the wave function when the
electron density is 1/e times its initial value.

The same reasoning is used within the overlap
region of the chemical bond. The average value for the
electron density of the exponential functions expressed
in Eq. (9) with respect to the chemical bond is defined
as the bond length at which the electron density decays
to 1/e (or 37%) of its maximum radial value for both
bonding atoms: R1=R2=R/e. This is an assumption and
should be equivalent to finding the minimum of the
electron density between the two atoms.

Bond Valence-Length Relationship
Taking the natural logarithm of Eq. (9),

(11)

Substituting R1=R2=R/e and collecting terms

(12)

For a chemical bond of unit valence, s=1 and R=R0, Eq.
(12) becomes

(13)

Subtracting Eq. (13) from Eq. (12), simplifying and
collecting terms, yields

(14)

(15)

Eq. (15) is Pauling’s empirical bond valence -length
relationship, Eq. (3), where the b “empirical” fitting
parameter is

(16)

The b parameter may be calculated from appropriate
atomic-orbital exponents 1 and 2 for the two bonding
atoms, and verified from crystallographic bond-length
data.

Results and Discussion

The b and R0 fitting parameters from the bond
length-valence relation, Eq. (15-16), may be optimized
from published data from several sources. These data
are not reproduced here, but are conveniently compiled
into a few major references (Adams 2001, Brown 2002,
Brown 2009), as well as on a web site (Adams 2008).
A comprehensive list has been tabulated and
referenced in a recent publication in this journal
(Hardcastle and Laffoon 2012). It is important to
recognize that b values are closely coupled to the
choice of Ro, so that a different (or erroneous) choice
of R0 necessarily affects the value of b and also the
value of the orbital exponents determined in this way.
For this reason, published bond valence parameters
were not utilized to determine atomic-orbital exponents,
but are used only to corroborate values.

Atomic size or radius is generally regarded as a
vague concept and not well defined. Published atomic
radii and single-bond covalent radii for elements 1
through 103 were collected from several widely used
sources (Slater 1964, Clementi and Raimondi 1963,
Clementi et al. 1967, Pyykkö and Atsumi 2009,
Cordero et al. 2008). Based on this data, a continuous
function for the effective principal quantum number n*
was found from a best fit of the average
atomic/covalent radii using the functional form

)(* kZeCAn (17)
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where A = 4.286, C = 1.176, k = 0.0588, and Z is the
atomic number of the element. The maximum possible
value of n* is AC = 5.04, whereas Slater (Slater 1930)
set this value at 4.2.

Using published atomic/covalent radii, Eq. (17) for
n*, and Eq. (10), atomic-orbital exponents for elements
1 through 103 were calculated and tabulated in Table 1.
For comparison, orbital exponents from Clementi and
coworkers (Clementi and Raimondi 1963, Clementi et
al. 1967) and Ghosh’s (Gosh and Biswas 2002) are
included in italics. Most of the values calculated in the
present study are similar to those published. Our value
of 1.9369 for helium is consistent with a smaller
shielding ( =0.0631) caused by the paired electron in
the 1s orbital, compared with the variation-method
result of 1.6875 ( =0.3125). Table 1 shows that our
values for elements in the second shell (n=2) are
slightly smaller than those published, but our orbital
exponents are very similar to those published for the
remainder of the main-group elements. The largest
discrepancy is observed for first-and second-row
transition elements, scandium through zinc and yttrium
through cadmium, where our values are significantly
higher. This discrepancy is attributed mainly to the use
of different effective principal quantum numbers n*;
we assumed a continuous function that depends on Z,
Eq. (17), while other investigators use a constant-value
step-function approach according to Slater (n*=3 (3d),
n*=3.7 (4d), n*=4.0 (5d)). The third-row transition
elements, lutetium through mercury, have orbital
exponents only slightly higher than those of Clementi
and coworkers (Clementi and Raimondi 1963,
Clementi et al. 1967), but much smaller than those of
Ghosh and Biswas (2002).

All oxide valence-length data tabulated in a
previous study (Hardcastle and Laffoon 2012) were
simultaneously fit to the oxygen orbital exponents, and
the error was significantly reduced when the exponent
was reduced from Clementi’s value of =2.2266 to our
value of =1.9535. Substituting this value (1.9535
from Table 1) into Eq. (16) results in b= 0.3682; the O-
O unit valence bond length is R0 = 1.462 Å. This
results in the following bond valence for O-O bonds:

3682.0

462.1
exp

R
s OO (18)

This relationship accurately predicts the double bond
of O2 at 1.207 Å (Huber and Herzberg 1979). For
oxide molecules where the oxidation state of oxygen is
always 2, Eq. (18) can also be used in conjunction with

the valence sum rule

(19)

where sij is the bond valence for each bond to the
oxygen atom. The valence sum of all bonds to the
oxygen atom will add to the total oxygen valence. This
is similar to Kirchoff’s law that states that the current
at an electrical junction (in this case an atom) is
additive - in units of electrons.

For titanium-oxygen bonds, the Ti-O bond length
having unit valence was found to be R0 = 1.789 Å.
Table 1 shows the orbital exponents of Ti and O are
1.3710 and 1.9535, respectively, yielding a value of b
= 0.4327 Å, Eq. (16). Substituting these values into
Pauling’s relationship, Eq. (15), yields

4327.0

789.1
exp

R
s OTi (20)

For silicon-oxygen bonds, the necessary parameters are
=1.4814 (Table 1) and R0=1.605 Å, yielding

4188.0

605.1
exp

R
s OSi (21)

Eqs. (20) and (21) describe quantitative relationships
between Ti-O and Si-O bond valence and
corresponding bond length in units of Angstroms.
These two relationships have been verified using
published crystallographic bond distances for silicates
(Laffoon et al. to be submitted) and titanates (Dodd et
al. 2013), by converting these values to bond valences
and using the valence sum rule. These bond valence–
length relationships hold regardless of environment,
physical state, or oxidation state. In addition to
verifying the validity of this approach for Si-O and Ti-
O bonds, orbital exponents for carbon, nitrogen,
phosphorus, chromium, molybdenum, tungsten and
rhenium were also tested by combining data from
metal-metal bonding, published bond lengths for
diatomic gas phase molecules (Huber and Herzberg
1979), published b parameters, and best fits to
crystallographic data (Hardcastle, unpublished results).

Conclusions

Pauling’s bond valence–bond length empirical
correlation has been used for many years along with
the valence sum rule as a check on crystal structures

j
ijs000.2
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and to evaluate the reasonableness of proposed
molecular structures for metallic, ionic and covalent
systems. Unfortunately, two adjustable fitting
parameters, b and R0, are required, which severely
limits the range of applicability if erroneous values are
selected. The empirical relationship would be more
useful if independent methods of determining b and Ro

were found.
In this study, a simplified quantum-mechanical

approach was used to derive Pauling’s empirical bond
valence–bond length relationship by considering
overlap of hydrogen-like orbitals. An expression for
the b parameter was derived in terms of atomic-orbital
exponents. New values for atomic-orbital exponents
were determined using published atomic/covalent radii
and a continuous function for the effective principal
quantum number n*. The b parameters calculated from
the orbital exponents are consistent with bond valence-
length data from crystallographic data. In general,
atomic-orbital exponents may be used to determine
bond valence-length relationships for any chemical
bond regardless of state, oxidation number, or
environment.
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