University of Arkansas, Fayetteville ScholarWorks@UARK

Theses and Dissertations

12-2013

Sedimentary Provenance of the Wedington Member, Fayetteville Shale, From Age Relations of Detrital Zircons

William Tyson Cains University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the <u>Geology Commons</u>, <u>Other Earth Sciences Commons</u>, <u>Sedimentology Commons</u>, and the <u>Stratigraphy Commons</u>

Recommended Citation

Cains, William Tyson, "Sedimentary Provenance of the Wedington Member, Fayetteville Shale, From Age Relations of Detrital Zircons" (2013). *Theses and Dissertations*. 992. http://scholarworks.uark.edu/etd/992

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Sedimentary Provenance of the Wedington Member, Fayetteville Shale, From Age Relations of Detrital Zircons

Sedimentary Provenance of the Wedington Member, Fayetteville Shale, From Age Relations of Detrital Zircons

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology

by

William Cains University of Arkansas Bachelor of Science in Geology, 2012

December 2013 University of Arkansas

This Thesis is approved for recommendation to the Graduate Council.

Dr. Walter L. Manger Thesis Director

Dr. Xiangyang Xie Committee Member

Dr. Doy Zachry Committee Member

ABSTRACT

U-Pb geochronology of detrital zircons collected from the Chesterian Wedington Sandstone allows interpretation of sediment provenance and dispersal patterns in the southern midcontinent during the Late Mississippian. Detrital zircons analyzed from six samples of Wedington Sandstone yielded a final result of 565 concordant analyses used for interpretation. Results are plotted as Probability-Density Plots to interpret the spectrum of ages. Significant peaks occurred at 350-500 Ma, 950-1250 Ma, 1300-1500 Ma, 1600-1800 Ma, 1800-2300 Ma, and >2500 Ma. These peaks are interpreted as sourced by crystalline rocks within the Laurentian craton from Taconic-Acadian, Grenville, Midcontinent Granite-Rhyolite, Yavapai-Mazatzal, Paleoproterozoic, and Superior Provinces. The high percentage of grains derived from Acadian, Taconic, and Grenville Provinces indicate the Appalachian Mountains were the primary source of sediment during the Chesterian. The Midcontinent Granite-Rhyolite and Yavapai-Mazatzal Provinces were the second most prevalent source terranes, indicating the Nemaha Ridge was uplifted and supplying a significant amount of sediment by the Late Mississippian. Sediments were likely transported from both eastern and western sources into a drainage basin moving sediments south into northwest Arkansas, where they were deposited on the Arkoma shelf as a small constructive delta complex.

ACKNOWLEDGEMENTS

I would like to thank my parents, Bill and Mary Jane Cains, for putting me through school, and especially my dad, for inciting my interest in geology. I'd like to thank my sisters, Caroline, Amanda and especially Julie, for her artistic contributions.

Special thanks for Dr. Walter Manger, whose invaluable advice led to my decision to enter the Graduate Program at the University of Arkansas, and also for taking over as Committee Chair halfway through the thesis. Special thanks for Dr. Cheyenne Xie for offering me the project as part of his ongoing research, and serving as Chair for much of the thesis process. I would also like to thank Dr. Doy Zachry for his critiques and for always being available to discuss ideas.

Thanks to Department of Geosciences and Ralph Davis, for offering the opportunity to achieve and education in something I hold so dear (Rocks!).

Special thanks to all those whose work came before mine and served as stepping stones to getting the project completed: C. McNully, T. Cochran, Chuck Price, Daniel Allen, Walter Manger, Doy Zachry, George Gehrels, William Dickinson, and many more that contributed to North American Geology over the past century.

TABLE OF CONTENTS

I.	Introduction	1		
A.	Purpose and Scope	4		
B.	Study Area	4		
C.	Methods	4		
	Sampling Method	4		
	Procedure	6		
	U-Pb Detrital Zircon Geochronology	7		
	Stratigraphy	.11		
D.	Geologic Setting	. 15		
E.	Previous Investigations	. 17		
II.	Southern Midcontinent Depositional Dynamics.	. 20		
III.	Detrital Zircon Analysis	. 26		
A.	WD-1	. 26		
B.	WD-2	. 28		
C.	WD-3	. 29		
D.	WD-5	. 29		
E.	WD-6	. 31		
F.	WD-8	. 31		
IV.	Potential Provenance Terranes	. 34		
A.	Archean	. 34		
B.	Paleoproterozoic	. 35		
C.	Yavapai – Mazatzal Provinces	. 35		
D.	Midcontinent Granite-Rhyolite Province.	. 36		
E.	Grenville Province	. 37		
F.	Iapetan Synrift	. 37		
G.	Acadian – Taconic Orogenic Terranes	. 38		
V.	Provenance Discussion	. 40		
A.	Archean Paleoproterozoic Provenance	. 44		
B.	Midcontinent and Yavapai - Mazatzal Provenance.	. 47		
С	Appalachian Provenance	. 49		
Fut	Future Study			
Co	Conclusions			
Ref	References			
Ap	Appendix			

LIST OF FIGURES

Figure 1 – Generalized Stratigraphic Column for Chesterian of northern Arkansas.	3
Figure 2 – Lithofacies map with sample locations	5
Figure 3 – Cathodoluminescence image of mounted zircons	8
Figure 4 – Probability density plot for Sample WD-8	9
Figure 5 – Concordia diagram for Sample WD-8	10
Figure 6 – Type log for the Wedington Sandstone	12
Figure 7 – Isopach map of the Wedington Sandstone	13
Figure 8 – Depositional Model for the Wedington Delta	14
Figure 9 – Geologic Provinces of Arkansas	
Figure 10 – Contact of Wedington Sandstone and Lower Fayetteville	19
Figure 11 – Early to Middle Mississippian Sed-Tectonic Paleogeography	21
Figure 12 –WD-1 Outcrop along Highway 62	27
Figure 13 – WD-5 Outcrop – Wedington Gap	30
Figure 14 – WD-8 Outcrop – Pea Ridge	32
Figure 15 – Probability density plot of all samples	33
Figure 16 – Precambrian basement features of North America	39
Figure 17 – Wedington Sandstone photomicrograph.	41
Figure 18 – Dickinson Provenance Triangle for Wedington Sandstone	43
Figure 19 – Pre-Chesterian Mississippian strata and St. Peter Sandstone	46
Figure 20 – Prominent basement provinces and associated ages	48
Figure 21 – Paleogeography and sediment transport pathways	53

LIST OF TABLES

Table 1 – Distribution of Concordant Grains	. 28
Table 2 – Normalized modal data for plot in Figure 13	. 42

I. INTRODUCTION

The Chesterian series of northern Arkansas is a third order depositional sequence bounded by type one unconformities at top and bottom (Moyer and Manger, 2006). The sequence is dominated by the Fayetteville Formation, a thick terrigenous clastic formation composed mostly of black shales, with the Wedington Sandstone Member in the upper middlesection. The sequence is bounded above and below by two thinner limestone units, the Pitkin and Hindsville Formations, respectively. Since the sequence is bounded by limestones, the region must have been located in the "Limestone Belt" for the duration of deposition. The switch in deposition from carbonates to terrigenous clastics demonstrates that the carbonate factory was suppressed by an influx of clastic material. From this, it can be inferred that a new source of clastic sediment appeared during this time or that new sediment transport routes opened across Laurentia.

In a broad perspective, much work has been done using detrital zircon analysis to interpret how sediments were being transported across Laurentia during the Mississippian (Gehrels *et al.*, 2011; Thomas, 2011a). In the southern Ozarks, along the southern margin of Laurentia, sandstone deposition during the Chesterian was limited to the Wedington Sandstone Member of the Fayetteville Formation and the Batesville Sandstone. The thickness of the Wedington Sandstone (up to 108 feet), and its relatively coarse grain size, make it a good candidate for interpreting how clastic sediment was moving across the region. The deltaic geometry of the Wedington also gives a good constraint on localized sediment transport direction. For these reasons, the Wedington was chosen for detrital zircon analysis.

The Wedington Sandstone is a fine to medium grained sandstone with moderately sorted, subrounded to rounded grains (Price, 1981). Petrographic studies have shown that it ranges from a sublitharenite to a quartzarenite on QFL diagrams (Allen, 2011). Stratigraphically, it is located

in the upper-middle section of the Fayetteville shale (Figure 1). The formal Wedington Sandstone Member divides the Fayetteville Formation into two informal members, the organic rich lower Fayetteville shale and the less organic upper Fayetteville shale (Price, 1981). The lower Fayetteville shale was deposited during transgression and maximum flooding interval of the Chesterian cycle. Still stand conditions following shale deposition allowed the Wedington to be deposited as a small constructive delta prograding to the southeast. Shale deposition of the organic poor upper Fayetteville member followed delta progradation as the Chesterian cycle entered highstand and then regressive conditions (Moyer and Manger, 2009).

Although previous studies have detailed the stratigraphy and petrology of the Wedington Sandstone, there are few constraints on the source of the clastic sediments of the Fayetteville Formation. Uranium-lead (U-Pb) detrital zircon geochronology has emerged as a powerful tool for evaluating sediment provenance, sediment transport pathways, and sedimentary stratigraphy (Thomas, 2011a; Gehrels, 2010). The ages of detrital zircon grains in sandstones give absolute ages of the bedrock from which the sand grains are derived. Analysis of detrital zircons in sandstones allows an interpretation of sedimentary provenance by matching the ages of zircons with the ages of potential crystalline source terranes (Thomas, 2011a). Interpretations from detrital zircon ages must account for sediment transport pathways as well as paleogeography, tectonic settings, stratigraphy, and sediment mixing (Gehrels *et al.*, 2011). Detrital zircon analysis can also be used to determine maximum depositional age of sedimentary rocks based on the youngest ages of zircons analyzed, as well as a stratigraphic correlation tool (Gehrels, 2010).

Figure 1. Generalized stratigraphic column for the Chesterian interval of northern Arkansas with a diagrammatic column showing the sequence stratigraphy of the Chesterian third-order sequence (SB 1 = Type 1 Sequence Boundary; TST = Transgressive Systems Tract; MFI = Maximum Flooding Interval; HST = High-stand Systems Tract) (From Allen, 2010).

A. PURPOSE AND SCOPE

This project proposes a framework for sediment provenance of the Wedington Sandstone Member of the Fayetteville Formation. Determining a sediment source for the Wedington Sandstone will provide valuable insight on how sediments were transported on the southern margin of North America during the late Mississippian, which has been problematic. The project used detrital zircon analysis to identify original sources of sediments deposited in the Arkoma basin during the Chesterian. The ages are then used to establish a provenance framework, which must fit the zircon data into a stratigraphic, sedimentologic, tectonic, and paleogeographic framework (Thomas, 2011a).

B. STUDY AREA

The study area for the project coincides with the extent of the Wedington Sandstone. The unit is contained within northwest Arkansas and northeastern Oklahoma in the Springfield Plateau, Boston Mountains, and Arkansas Valley Physiographic provinces. The Wedington crops out in a belt approximately 60 miles wide from Stillwell, Oklahoma to Compton, Arkansas. The unit then dips into the subsurface, and extends in the subsurface as far south as Township 9N (Price, 1981). Samples were also collected from older sandstones in north-central Arkansas and southern Missouri for comparison.

C. METHODS

Sampling

Six samples of approximately ten pounds each were collected from outcrops of the Wedington Sandstone. The samples were obtained from fine to medium grained sandstones from different lithofacies, based off of the map by Price (1981) and the USGS quadrangle geologic map of Arkansas. These facies include channel, interdistributary bay, delta front, and prodelta

facies. The offshore facies is found only in the subsurface and was not available for sampling. Since the laser ablation step requires a minimum size grain in order to obtain an adequate reading (laser diameter $=30\mu$ m), more samples were taken from the channel facies due to their larger average grain size.

Figure 2. Lithofacies Map Used to Collect Samples. Demonstrates Distribution of Wedington Sandstone and Locations of Analyzed Samples, (Modified from Price, 1981).

Four additional samples were acquired and analyzed from other sandstone units in the midcontinent to provide a comparison to the zircon signature of the Wedington. These samples were collected from the Everton, Saint Peter, Bachelor Member, St. Joe, and Batesville Formations. At the same time, another student, Greg Buratowski, collected and analyzed zircons from eight samples of Morrowan Middle Bloyd Sandstone. By comparing the evolution of zircon signatures through time, changes in sediment sources to the basin as well as changes in regional tectonics can be identified. Understanding how deposition in the basin evolved prior to deposition of the Wedington is critical in constructing a model to explain its sedimentary provenance. Depending on their spatial distribution, older sandstones may also constitute potential sources for sediments in a multi-cycle sandstone.

Procedures

The samples were crushed at the University of Arkansas in Fayetteville into approximately one-inch diameter pieces that were fed into a disc mill to crush them to a fine sand size powder. Mineral separation was performed at the University of Arkansas at Little Rock. First, the powdered sand was fed onto a Wilfley table to separate the lightest minerals (mostly clay). The heavier portion was dried and then separated using the magnetic separator to get rid of the magnetic minerals. The remaining portion was placed in heavy liquid (Methylene lodide, $\rho > 3.3$ g/cm³) for further separation based on the density. The final heavy, nonmagnetic population from each sample was manually picked in alcohol under a binocular microscope using optical and physical characteristics and a needle tool. A statistically valid number of grains must be selected by both random and non-random picking methods to obtain a mixture of different grain types (Gehrels *et al.*, 2010). The zircons were then mounted in epoxy and polished to expose a clean surface on which to perform the LA-ICP-MS process.

Cathodoluminesence images were taken to determine internal features of the zircons to assess overgrowths and locate laser targets. Due to the purposes of this study, zircons that contained overgrowths and multiple age zones, ablation pits were targeted at the oldest zone. During the analysis process, each zircon was marked on the image to keep track of points of analysis. This allows post-processing comparison of analyses with CL images.

U-Pb Detrital Zircon Geochronology

The zircons were analyzed using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) at the GeoAnalytical Laboratory at Washington State University. Analyses were performed using a New Wave UP-213 laser ablation system in conjunction with a ThermoFinnigan Element2 single collector double focusing magnetic sector ICP-MS. Each sampling consisted of a 6 second warm up, then an 8 second delay to allow the sample to travel through a helium circulation system to the plasma, followed by 35 seconds of rapid scanning of the masses ²⁰²Hg, ²⁰⁴(Hg + Pb), ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, ²³⁵U, and ²³⁸U (Chang *et al.*, 2006). At the beginning of each session, the known standards Peixe and FC1 were analyzed until isotopic and elemental fractionation stabilized and the ²⁰⁶Pb/²³⁸U and ²⁰⁷Pb/²⁰⁶Pb ratio variance approached $\pm 2\%$ (Xie and Heller, 2013). These standards were then run again for every 5-15 collected zircons analyzed. A minimum of one hundred and ten zircons from each sample were analyzed at random, discounting grains that were not zircons or were too small for analysis. Ages were obtained from ²⁰⁷Pb/²⁰⁶Pb ratios for samples older than one billion years, and ²⁰⁶Pb/²³⁸U ratios for samples younger than one billion. Calibration of the measured ages of unknowns was made by comparison to the standards Peixe and FC1.

Figure 3. Cathodoluminescence Image of Mounted Zircons.

The data acquired from the zircon analysis must be processed and analyzed using an Excel-based program (Chang *et al.*, 2006). All grain analyses were evaluated using Concordia diagrams and discordance calculations. A discordance value of less than ten percent was required in order for the data to be considered concordant. This rather strict value (some workers use up to twenty-five percent discordance) was chosen to make different age populations more easily differentiated. The age values are plotted on Probability-Density Plots using IsoPlot 3.0 (Ludwig, 2003), from which can be differentiated into individual populations. Plotting software available from the Arizona LaserChron Center web site was also used to analyze LA-ICP-MS data (http://www.laserchron.com). By interpreting the data based on age clusters and not individual zircon ages, the risk of the data being affected by an individual bad reading is eliminated (Gehrels *et al.*, 2006).

Figure 4. Probability Density Plot showing zircon age distributions for Sample WD-8. Diagram constructing using IsoPlot 3.0 (Ludwig, 2003).

Figure 5. Concordia Diagram for Sample WD-8. Concordia diagram constructed using Isoplot 3.0 (Ludwig, 2003).

Stratigraphy

The stratigraphic distribution of the sand fraction within a delta is the best indicator of direction of sediment transport. The delta geometry can be used with paleocurrent measurements to place a high degree of constraint on the direction that sediment is being dispersed. For construction of a Wedington Sandstone map, subsurface thicknesses were determined from well logs obtained from the Arkansas Geologic Survey and loaned from Dr. Doy Zachry. Surface thicknesses from Price's thesis (1981) were used with interpreted subsurface thicknesses to make the isopach map.

In subsurface mapping, the most common way to map channel deposits, including those within a delta, is to measure the "net" sand thicknesses, which is the sandstone thickness that has porosity greater than a set amount, usually 8-10%. The Wedington Sandstone is present in both the surface and subsurface. Since there are no porosity values available for surface localities, a "gross" sand map is used to integrate surface thicknesses with subsurface thicknesses. Gross sand thickness is the total amount of sand present, independent of porosity.

Identification of the Wedington in the subsurface is a straightforward procedure. The sandstone of the Wedington has a low gamma ray reading situated between the higher gamma ray emitting upper and lower shales of the Fayetteville Formation. The organic rich lower Fayetteville shale has a "hot shale" signature that causes the gamma ray to be high enough to wrap around the log scale. The Fayetteville is situated between the Pitkin and Boone Formations, which are readily identifiable by their low gamma ray and high resistivity readings. The gamma ray log is used to identify how much sand is present in the Wedington for each log. The sand thickness is then plotted on a basemap and contoured by hand to derive a gross sand isopach map for the Wedington Sandstone.

Figure 6. Type Log for the Wedington Sandstone.

Figure 7. Gross Sand Isopach Map showing Wedington Sandstone distribution and geometry in surface and subsurface.

Figure 8. Depositional Model for the Wedington Delta.

D. GEOLOGIC SETTING

Present day Arkansas can be divided into five separate geologic provinces: Ozark Dome, Arkoma Basin, Ouachita Mountains, Mississippi Embayment, and the Gulf Coastal Plain (Figure 9). Each region has a different tectonic history and the modern geology contained within each reflects their evolution. The Ozark Plateau, Arkoma Basin, and Ouachita Mountains consist primarily of Paleozoic sedimentary rocks, while the Mississippi Embayment and Gulf Coastal Plain contain younger Mesozoic and Cenozoic sedimentary rocks.

Figure 9 – Geologic Provinces of Arkansas (Manger, Zachry, and Garrigan, 1988)

The Ozark Dome region is a broad, asymmetrical, cratonic uplift extending from southeastern Missouri into northern Arkansas and northeast Oklahoma. The Precambrian granitic core of the Ozark Dome uplift is exposed in the St. Francois Mountains of southeastern Missouri. In Arkansas, the Ozark Dome is represented by the Springfield Plateau in the northwestern corner, the Salem Plateau in the north-central part of the state, and the Boston Mountains forming the southern extent of the uplift. The study area lies in this region. The Springfield Plateau is capped by Lower Mississippian carbonates overlying Ordovician dolostones. The Salem Plateau is capped by Lower Ordovician dolostones of the Arbuckle group. The Boston Mountains region is covered by the Middle Pennsylvanian clastic rocks and capped by the Atoka Formation (Moyer and Manger, 2006).

The Arkoma Basin is a foreland basin resulting from the collision of Laurentia with Gondwana along a south dipping subduction zone during the Ouachita orogeny that ended during the late Pennsylvanian. The basin extends from the Arbuckle Mountains in western Oklahoma into central Arkansas (Houseknecht and Kacena, 1983). The present low lying topography can be attributed to erosion by the Arkansas River as it flows eastward to the Mississippi River. The modern asymmetrical trough shape of the basin is a result of the Middle Mississippian-Late Pennsylvanian continent-continent collision. Prior to collision, the region was a passive margin characterized by shelf carbonates, shales, and transported ramp carbonates. Sediment loading began during the Late Mississippian from the formation of an accretionary wedge and caused rapid subsidence and thick sections of Pennsylvanian clastics accumulated in the basin in front of the orogen. A maximum of 35,000 feet of sedimentary rocks can be found in the deepest part of the basin (Moyer and Manger, 2006).

The Ouachita Mountains region contains sedimentary rocks ranging in age from Cambrian through Pennsylvanian. The Cambrian through Lower Mississippian section is comprised of deep water shales and cherts that accumulated very slowly in a starved basin. Beginning during the Late Mississippian and continuing through the Pennsylvanian, the approaching orogen provided large amounts of clastic sediments that accumulated as thick flysch deposits. These strata were intensely deformed into East-West trending synclines and anticlines during the collision of Laurentia with Gondwana to give them their present structural features.

The two regions of Arkansas characterized by Mesozoic and Cenozoic sediments are the Gulf Coastal Plain and the Mississippi Embayment. The Gulf Coastal Plain is an onshore extension of the Gulf of Mexico that began receiving sediments during the Mesozoic and Cenozoic as a passive margin developed following the rifting of Pangea. The Mississippi Embayment is a low-lying topographic region consisting primarily of Tertiary and Quaternary alluvial deposits of the Mississippi River. The region has its roots in the failed arm of the Reelfoot rift following the breaking up of Pangea.

E. PREVIOUS INVESTIGATION

The first formal naming of Chesterian strata was published by the Branner for the Arkansas Geological Survey in 1891 (Branner, in Simonds, 1891). He miscorrelated the Wedington Sandstone overlying the lower Fayetteville Shale as the Batesville Sandstone overlying the Moorefield Shale. The correct correlation was established by 1904 and the name Wedington was chosen from outcrops near Wedington Mountain by Adams (1905).

McNully (1966) performed a grain size study of the Wedington Sandstone in an unusual Master's thesis at the University of Arkanasas. He noted a lateral variation in grain size from coarsest in the northwest to progressively finer in the southeast. His conclusions was that the

Wedington Sandstone was deposited as a delta that was moving sediment from northwest to southeast into a marine environment, with a paleoshore trending 70-80° E (McNully, 1966).

In his 1981 Master's thesis titled "Transportational and Depositional History of the Wedington Sandstone (Mississippian), Northwest Arkansas", C. R. Price (1981) mapped the delta geometry of the Wedington Sandstone in outcrop and the subsurface. He identified five different facies within the Wedington Sandstone: channel, interdistributary bay, coastal sand, transitional, and offshore facies. Using paleocurrent measurements and delta geometry, he concluded that the delta prograded from northwest to southeast. Though he did no quantitative petrography, he noted that the Wedington was mostly quartz sand and concluded it was recycled from a cratonic source in the northern midcontinent region (Price, 1981).

T. L. Cochran (1989) performed a detailed petrographic study of the Batesville Sandstone. He believed that the Batesville resembled Chesterian sandstones in the Illinois Basin and proposed a delivery mechanism from the Michigan River delta. Cochran mentions that the Wedington Sandstone may share a common source with the western Batesville Sandstone, but the presence of feldspar in the western Batesville and the lack of feldspar in the Wedington would dispute this suggestion (Cochran, 1989).

D. E. Allen (2010) performed a comparative petrographic study of three Chesterian sandstones: the Batesville, Wyman, and Wedington. Using thin section modal analysis and Folk's Sandstone Classification scheme, he determined the Wedington Sandstone ranges from a lithic wacke to a quartzarenite. He described the Wedington as being mostly angular to subangular quartz, with rare to absent feldspar, and a significant clay component. For provenance, Allen postulated a metamorphic terrane to supply the MRFs, the adjacent Lower Mississippian (Boone) terrane to supply chert, and a third terrane of granitic composition, possibly the Nemaha Ridge (Allen, 2010).

Figure 10. Contact of Wedington Sandstone with the top of Lower Fayetteville Shale at Outcrop WD-1. Lens cap near contact for scale. Photograph by Will Cains, November 28, 2013.

II. SOUTHERN MIDCONTINENT DEPOSITIONAL DYNAMICS

During the late Proterozoic, Laurentia occupied a central position in the supercontinent Rodinia. Late Precambrian rifting of Rodinia allowed a passive margin to develop on the southeast margin of Laurentia (Powell *et al.*, 1993). This margin evolved into a south-dipping subduction zone by the Late Mississippian that culminated in a continent-continent collision during the Ouachita Orogeny (Houseknecht and Kacena, 1983). Along the southeast margin of Laurentia, the Southern Midcontinent experienced three broad sedimentologic phases that were heavily influenced by regional tectonics during the Phanerozoic: quiet Late Cambrian through Mississippian epicontinental sea deposition, Pennsylvanian Ouachita orogenic influenced sedimentation, and post-Permian rifting and development of a passive margin along the present continental margin (Johnson *et al.*, 1989). Late Cambrian-Mississippian sedimentation directly affected the deposition of the Wedington Sandstone, and more attention will be directed toward strata deposited during this time.

Following development of a passive margin during the Cambrian, sea level transgression of the Sauk Sequence over exposed crystalline basement rocks deposited basal sandstones over a wide area of southeast Laurentia. These basal Cambrian sandstones are difficult to correlate regionally due to the thick sedimentary cover, but they are found over much of the midcontinent and have been termed the Reagan in Oklahoma, the Lamotte in Missouri, and the Hickory Sandstone near the Llano uplift in Texas (Johnson *et al.*, 1989). Though this basal sandstone is not exposed in Arkansas, there is a high probability that it underlies the Arbuckle Group in northern Arkansas. The Lamotte Sandstone has been reported above Precambrian granite on well logs in Franklin County, Arkansas.

Figure 11. Early to Middle Mississippian Sed-Tectonic Paleogeographic map showing major tectonic features impacting sediment dispersal patterns. (Blakey, 2013).

From Middle Cambrian through the Mississippian, the southern midcontinent was covered by a shallow epeiric sea. Widespread carbonate deposition dominated during this time, with lesser amounts of marine sand and shale deposition. The Lower Ordovician of Arkansas is dominated by the limestones and dolomites of the Arbuckle Group, which were deposited on a vast carbonate platform that covered most of the craton interior and stretched along the southeast margin from New Mexico to New York (Johnson et al., 1989). In addition to limestones and dolostones, the Middle Ordovician section in Arkansas contains two major sandstone formations: the Everton and the St. Peter. The Everton is limited in lateral extent, ranging from northern Arkansas into southern Missouri (McFarland, 1998). The Everton Formation displays variable lithologies of dolostone, sandstone, and limestone. The St. Peter ranges up to 200 feet in thickness and is widely distributed across the craton interior, stretching north-south from Arkansas into Minnesota, and east-west from Nebraska to Ohio (Giles and Bonewits, 1930). The St. Peter unconformably overlies the Everton, and both are mature, well rounded, frosted, medium grain sized orthoquartzites. The petrographic similarity implies a similar sediment provenance, with the southern Canadian Shield being the likely source of the siliciclastic grains.

The Silurian and Early Devonian strata in northern Arkansas consist of the much less extensive limestones, shales, and cherts of the Cason, St. Clair, Lafferty, and Penters Formations. The Middle Devonian Clifty Formation is a thin unit that was originally designated a limestone, but outside of the type locality consists primarily of sand reworked from underlying Ordovician sandstones (Manger and Zachry, 2009). The Upper Devonian Woodford/Chattanooga Shale extends along the southern margin of Laurentia from Alabama westward to Oklahoma (McFarland, 1998). Initial transgression deposited a basal orthoquartzitic sandstone represented by the Sylamore and Misener Formations that are succeeded by an organic rich black shale

(Johnson *et al.*, 1989). The black shales are interpreted to have been deposited in shallow water on a continental shelf. The source of the sediment and the cause of the shallow water anoxia remain unknown (Manger and Zachry, 2009).

During the Early Mississippian, the area from Kansas into Missouri and north Arkansas was dominated by a broad carbonate platform called the Burlington Shelf (Manger and Zachry, 2009). In Arkansas, the Lower Mississippian succession consists of the St. Joe and the overlying Boone Formation (Moyer and Manger, 2006). Reaching thicknesses up to 390 feet, Early Mississippian chert-bearing carbonates represent the thickest lithostratigraphic unit deposited on the southern midcontinent post-Lower Ordovician carbonates and pre-Middle Pennsylvanian clastics (Manger and Zachry, 2009; Johnson *et al.*, 1989). They form a blanket over much of southern Laurentia, stretching from northeastern Illinois to southwestern Arizona, and northward into the Canadian Rockies (Manger and Zachry, 2009). This widespread cover would restrict access to clastic sediment sources in the midcontinent for overlying sandstones deposited onto the Arkoma Shelf.

By the Middle Mississippian, tectonic events associated with the approaching orogen from the south began to alter sedimentation in Arkansas. After epeiric seas retreated from the midcontinent during the Meramecan, the Burlington Shelf gave way to a less extensive shelf termed the Arkoma Shelf (Manger and Zachry, 2009). Deposition on the shelf continued in similar fashion to the Lower Mississippian, while thick turbidites of the Stanley Formation began to accumulate in the deepening Ouachita trough to south (Sutherland, 1988).

The Chesterian series of northern Arkansas is a third order depositional sequence bounded by type one unconformities on top and bottom (Moyer and Manger, 2006). Sea level transgression over an eroded Boone Limestone surface deposited the limestones of the Hindsville

Formation in western Arkansas that interfinger with the Batesville Sandstone to the east. The Batesville Sandstone is a probable first-order sandstone derived from sediment supplied by an Appalachian source to the east through the ancestral Mississippi Embayment. Conformably overlying the Hindsville/Batesville interval is the organic rich lower Fayetteville shale. The Wedington Sandstone was deposited during maximum flooding interval following the end of lower Fayetteville deposition. Still-stand conditions allowed the Wedington delta to form as a small constructive delta complex that prograded from the northwest to the southeast. Shale deposition of the organic poor upper Fayetteville member followed delta progradation as the Chesterian cycle entered highstand, and then regressive conditions (Moyer and Manger, 2006). The Pitkin Formation conformably overlies the upper Fayetteville shale and represents a shoaling upward sequence with the Mississippi-Pennsylvanian boundary at the top (Manger and Zachry, 2009).

The Late Mississippian-Early Pennsylvanian Ouachita orogeny drastically changed the depositional environment along the southeast margin of Laurentia. The broad epicontinental carbonate platforms that had dominated since the Cambrian were broken up by the Amarillo, Wichita, Arbuckle, Nemaha, and Muenster Uplifts, among others. Downwarping of the Arkoma, Anadarko, Ardmore, and Fort Worth Basins created new depocenters that began to fill with clastic sediment from the adjacent uplifts. The Anadarko and Arkoma basins each have over 5,000m of sediment deposited during the Pennsylvanian (Johnson *et al.*, 1989). Deposition ended with the closure of the Ouachita Mountains during the Middle Pennsylvanian in Arkansas, but continued well into the Permian in basins to the west. The result of this is a thinner sedimentary cover over much of the cratonic interior, with drastic increases in sedimentary rock thickness in the foreland basins formed in front of the Ouachita thrust front.

Late Triassic rifting associated with the breakup of Pangea began to open the modern Gulf of Mexico. Mesozoic synrift sediments were deposited in south Arkansas as marine incursion inundated what is now the Gulf Coastal Plain (Fillon, 2007). Eventually, a passive margin developed and deposits of evaporates, sandstone, limestones, and shales accumulated along the southern margin as North America began to take its present shape.

III. DETRITAL ZIRCON ANALYSIS

In total, 797 zircons were collected from samples at six outcrops of Wedington Sandstone in northwestern Arkansas. After culling analyses with greater than ten percent discordance, 565 concordant analyses were used for interpretation. Physical characteristics such as size, shape, color, and internal zoning varied greatly within and between samples. Analyzed zircon grains were between 100-200 µm in diameter, and varied from well rounded to euhedral in shape. Internal zoning ranged from un-zoned to minor zoned, and care was taken to place the ablation pit in the core of the oldest zone in the case of zoned zircons. Probability-density plots made using Ludwig's IsoPlot were used to visualize and interpret the data (Ludwig, 2003). Clusters of similarly aged zircons appear as peaks on these plots, and comparison with other samples allows for easy analysis between samples.

A. WD-1

Sample WD-1 was collected from a road cut near the town of Lincoln. The Wedington Sandstone there forms a large bluff approximately 65 feet high. The contact with the underlying lower Fayetteville shale can be seen in the ditch along the road. The sandstone is fine-medium grained and tan to grey in color. A total of 139 individual zircons were analyzed from sample WD-1. After removing discordant analyses, 119 zircon ages were used for interpretation (<10% discordance). Ages from sample WD-1 ranged from 398 ± 5.2 Ma to 2824 ± 14.3 Ma. Within this age spectra there are several peaks at ~440, ~1000, ~1100, ~1320, ~1640, ~1800, and ~2760 Ma. The largest peak occurs at ~1040 Ma (n = 31) in the 930-1240 Ma range, which encompasses 59% of the zircons in sample WD-1 (n = 70). 10% of the zircons date back to the Archean (n = 12). Both 398-472 Ma and 1614-1810 Ma ranges contain 9% of the ages. 6.7% fall in the 1300-1500 Ma range, and 5.9 % fall in the 1800-2300 Ma range.

Figure 12. Roadcut along Highway 62 showing Outcrop WD-1. Photograph by Will Cains, November 28, 2013.

B. WD-2

111 concordant analyses were used for interpretation from the 145 WD-2 zircons analyzed. Zircons from this sample ranged in age from 436 ± 3.6 Ma to 2818 ± 6.5 Ma. The largest peak occurs at 1080 Ma (n = 20). The 940-1300 Ma range contains 51% of the zircons from the WD-2 sample (n = 57). Smaller peaks occur at ~440, ~1280, ~1640, ~1720, ~1860, and ~2800 Ma. 5.4% of the grains analyzed ranged from 350-500 Ma (n = 6), 12.6% ranged from 1300-1500 Ma (n = 14), 18.9% ranged from 1600-1800 Ma (n = 21), 6.3% fell into the 1800-2300 Ma range (n = 7), and 5.4% were greater than 2500 Ma (n = 6).

Number of Grains								
		Acadian - Taconic	lapetan Synrift	Grenville	Midcontinent	Yavapai - Mazatzal	Paleo- proterozoic	Archean
	<u>Total</u>	<u>350 -</u>	<u>500-</u>	<u>950-</u>		<u>1600-</u>		
Sample	<u>#</u>	<u>500</u>	<u>760</u>	<u>1300</u>	<u>1300-1500</u>	<u>1800</u>	<u>1.8-2.3 Ga</u>	<u>>2.5 Ga</u>
WD-1	119	11	0	70	8	11	7	12
WD-2	111	6	0	57	14	21	7	6
WD-3	48	0	0	18	12	13	4	1
WD-5	95	9	1	50	14	14	0	7
WD-6	83	2	2	46	8	15	6	4
WD-8	109	6	1	49	16	23	6	8
TOTAL	565	34	4	290	72	97	30	38
Percentage								
		Acadian						
		-	lapetan			Yavapai -	Paleo-	
		Taconic	Synrift	Grenville	Midcontinent	Mazatzal	proterozoic	Archean
	<u>Total</u>	<u> 350 -</u>	<u>500-</u>	<u>950-</u>		<u>1600-</u>		
<u>Sample</u>	<u>#</u>	<u>500</u>	<u>760</u>	<u>1300</u>	<u>1300-1500</u>	<u>1800</u>	<u>1.8-2.3 Ga</u>	<u>>2.5 Ga</u>
WD-1	119	9.2	0.0	58.8	6.7	9.2	5.9	10.1
WD-2	111	5.4	0.0	51.4	12.6	18.9	6.3	5.4
WD-3	48	0.0	0.0	37.5	25.0	27.1	8.3	2.1
WD-5	95	9.5	1.1	52.6	14.7	14.7	0.0	7.4
WD-6	83	2.4	2.4	55.4	9.6	18.1	7.2	4.8
WD-8	109	5.5	0.9	45.0	14.7	21.1	5.5	7.3
Total	565	6.0	0.7	51.3	12.7	17.2	5.3	6.7

Table 1. Distribution of all concordant zircon ages in number and percentage.
C. WD-3

Sample WD-3 was collected from an exposure along the side of a creekbed just south of the town of Cane Hill on Arkansas 45. The Wedington here is a tight, fine grained, tan colored sandstone. Of the 110 zircon grains analyzed from sample WD-3, only 48 analyses had a concordance value less than 10%. This is due to the sample having a smaller average grain size than other samples. Zircons analyzed from this sample ranged from 1003 ± 15.2 Ma to 2568 ± 9.2 Ma. Sample WD-3 is the only Wedington sample analyzed that did not contain zircons less than 1000 Ma. Prominent peaks occur at ~1020, ~1375, ~1620, with lesser peaks at ~1150, ~1800, ~2050, and ~2550 Ma. Zircons in this sample were more evenly distributed between the 950-1250, 1300-1500, and 1600-1800 Ma groups.

Most workers try to obtain approximately 100 concordant ages, having fewer concordant analyses increases the chance that an age population may not be recognized in a sample (Gehrels *et al.*, 2006). As a result, sample WD-3 is included in this study, but less weight is given to interpretations from this age distribution. The distribution of age peaks on the probability density plot for this sample is significantly different than the distribution in other samples. WD-3 is the only sample with the largest peak occurring in the 1600-1800 Ma range, the rest having the most prominent peak in the 950-1200 Ma range. There are also no peaks below the 1000 Ma peak.

D. WD-5

Sample WD-5 was collected from near the top of an outcrop of sandstone by Wedington Gap. The Wedington Sandstone here forms a bluff 25 ft. high and consists of fine to medium grained, moderately sorted, subrounded quartz grains. Large scale trough cross bedding with individual beds approximately 12 inches thick indicates channel facies. In total, 135 individual zircons were analyzed from sample WD-5, with 95 zircons being used for final interpretation. Age ranges from sample WD-5 ranged from 420 ± 6.7 Ma and 3590 ± 9.6 Ma. This sample

contained the oldest zircon dated from Wedington Sandstone samples. The largest peak occurs at ~1100 Ma, with the age range of 950-1300 Ma making up the most prominent grouping (n = 50). Significant peaks also occur within the ranges 420-500 Ma (n = 9), 1330-1500 Ma (n = 14), 1520-1770 (n = 14), and >2500 Ma (n = 7).

Figure 13. Outcrop WD-5 (Wedington Gap). Note stacked sets of trough cross beds. Lens cap near middle of picture for scale. Photograph by Will Cains, November 28, 2013.

E. WD-6

Sample WD-6 was collected from an exposure just down the hill off of Jackson Highway. WD-6 is a fine-medium grained, mostly grey in color, trough cross bedded sandstone. Exposures down the road along Lincoln Lake show the Wedington is at least 45 ft. thick in the vicinity. Stacked sets of large scale trough cross beds make up the majority of the exposure. A total of 83 concordant analyses were obtained for interpretation from 130 WD-6 zircons. Zircons ranged from 432 ± 3.8 Ma to 3036 ± 6.2 Ma in this sample. The most prominent peak occurs at ~1050 Ma (n = 17), with lesser peaks at ~460, ~1450, ~ 1640, ~1760, ~1980, and ~2400 Ma. An unusual characteristic of the age distribution for sample WD-6 is the presence of two zircons dating in the 500-760 Ma, with only four total zircons from all samples falling in this range.

F. WD-8

The northernmost sample collected, WD-8 was collected from a 48 foot thick section of Wedington Sandstone that forms the caprock of a bluff near Pea Ridge National Military Park. The Wedington here is a coarse grained sandstone and petrographically comprises a true quartzarenite (Allen, 2010). Sample WD-8 yielded zircon ages between 428 ± 5.6 Ma and 2827 ± 11.2 Ma. Several age peaks at ~500, ~1050, ~1500, ~ 1620, ~1850, and ~2700 Ma. About 45% of the ages fall in the 950-1300 Ma range, 21% in the 1600-1800 Ma range, and 15% in the 1300-1500 Ma range. The rest of the age groups make up less than 10% of the age distribution.

Figure 14. Outcrop of Wedington in Pea Ridge National Military Park (Sample WD-8). Massively bedded sandstone underlying horizontal, thin bedded sandstone. Exposures down hill demonstrate similar thin bedding. Photograph by Will Cains, November 28, 2013.

Figure 15. Probability density plots for detrital zircons analyzed from each sample. Plot constructed using software available from Arizona LaserChron Center Web Site (http://www.laserchron.org).

IV. POTENTIAL PROVENANCE TERRANES

The calculated ages of detrital zircons gives the absolute date of the crystalline rock from which the zircon grain originated. The North American craton was assembled over billions of years from plate collisions of microcontinents (Slave, Rae-Hearne, Superior), volcanic arcs, and oceanic terranes along active plate margins (Whitmeyer and Karlstom, 2007). This continual process of collision and accretion has resulted in a multitude of potential zircon source terranes that range from recent to Archean in age. This section focuses on the protosource of the zircons, which are the crystalline basement rocks within the North American craton that are believed to be potential sources for the zircons collected from the Wedington Sandstone. Sediment source from other continental blocks is possible, but unlikely, based on direction of sediment transport interpreted from stratigraphy and paleocurrent measurements from Price (1981).

A. ARCHEAN (>2.5 Ga)

All samples analyzed contain zircons over 2500 Ma. For a Laurentian protosource, the Archean basement rocks of the Canadian Shield are the most likely candidate. The Canadian Shield forms the core of the Laurentian craton and was assembled in the Paleoproterozoic from collision of Archean microcontinents (Whitmeyer and Karlstom, 2007). These continentcontinent collisions took place from 1.96 Ga to 1.80 Ga for the Slave-Rae-Hearne-Superior Provinces and resulted in large scale mountain belts that would supply Archean zircons into adjacent basins. The southernmost provinces of the Canadian Shield, the Superior and Wyoming Provinces, are the most proximal sources of Archean grains. On the southern margin of these two provinces are thick miogeoclinal successions (Huronian and Snowy Pass Supergroups) dating from 2.0 to 2.5 Ga (Whitmeyer and Karlstom, 2007). Petrographic investigation of units containing large percentages of Archean zircons (Bachelor, St. Peter, and Everton) indicates that grains derived from these provinces have undergone multiple cycles of sedimentation.

B. PALEOPROTEROZOIC (1.8-2.3 Ga)

Every Wedington sample analyzed contained four to seven zircons between 1.8 and 2.3 Ga except WD-5, which contained none. Paleoproterozoic provenance terranes on the Laurentian craton can be found in the Canadian Shield. Within the Laurentian core, the Trans-Hudson Orogen and the Penokean Province stand out as the two most likely protosources of 1.8-2.3 Ga zircons. The Trans-Hudson Orogen resulted from the collision and suturing of the Hearne, Wyoming, and Superior cratons between 1.78 and 1.85 Ga. The Trans-Hudson orogenic belt stretches from the northern United States to Hudson Bay and consists of reworked Archean crust, accreted magmatic arcs, and a small archean crustal fragment called the Sask Craton (Whitmeyer and Karlstom, 2007). Stretching elongate from Minnesota to the Grenville orogen front in Ontario, the Penokean Province is a belt of igneous and metasedimentary rocks that is roughly coeval with the Trans-Hudson Orogen (Whitmeyer and Karlstom, 2007). Archean basement and overlying miogeoclinal sediments were deformed and metamorphosed as the southern margin of the Superior craton collided with oceanic island-arcs (Barovich et al., 1989). Both the Trans-Hudson Orogen and Penokean Orogen resulted in uplifted terranes that would be significant sediment sources

C. YAVAPAI-MAZATZAL PROVINCES (1.6-1.8 Ga)

Zircons ranging in age from 1.6 to 1.8 Ga constitute a tenth to a quarter of the zircons analyzed from Wedington Sandstone samples. These grains were interpreted to be derived from the Yavapai (1.7-1.8 Ga) and Mazatzal (1.6-1.7 Ga) Provinces. The Yavapai Province stretches in a wide northeast trend that stretches from southwest Arizona, through Colorado, and into the subsurface of the midcontinent (Condie, 1993). The Yavapai basement rocks consist of mostly juvenile arc crust accreted to Laurentia through a series of arc collisions from 1.7 - 1.8 Ga. The collision of ocean arc crust with the Laurentian craton resulted in an orogenic belt from 1.68 - 1.68

1.71 Ga that supplied zircons of Yavapai age onto the craton (Whitmeyer and Karlstom, 2007). The Mazatzal Province also extends in a northwest trend from southwestern United States, through the northern midcontinent, and into eastern Canada. Mazatzal basement rocks consist of juvenile arc igneous rocks ranging from 1.6 Ga rhyolites to 1.68 Ga greenstone successions that include oceanic basalt, basaltic andesite, dacitic tuffs, and rhyolites (Whitmeyer and Karlstom, 2007). The province formed as a result of the accretion of several crustal blocks with the Laurentian craton from 1.65 - 1.60 Ga during the Mazatzal Orogeny (Amato *et al.*, 2008). The Mazatzal Orogeny reactivated Yavapai thrust faults as well as uplifting Mazatzal age source terranes, supplying zircons of both ages onto the midcontinent. The two provinces are semi-parallel to each other and formed in similar manners. The suture zone between the two provinces been proposed along the Jemez lineament (Whitmeyer and Karlstom, 2007).

D. MIDCONTINENT GRANITE-RHYOLITE PROVINCE (1350-1550 Ma)

All Wedington samples analyzed contained zircons in the 1300-1500 Ma range. The most obvious source terrane for these zircons is the Midcontinent Granite-Rhyolite Province, which includes the basement rocks underlying northwest Arkansas. 1300-1500 Ma crust lies adjacent to Mazatzal crust and extends along what would have been the southeast margin of Laurentia from northern Mexico into northeast Canada. This crust consists of juvenile crusts ranging from 1550-1400 Ma and intruded granitoids ranging from 1480-1350 Ma (Whitmeyer and Karlstom, 2007). Most of this province is covered by Paleozoic and younger strata, but modern day outcrops can be seen near Spavinaw, Oklahoma (~30 miles west), and the St. Francois Mountains of Missouri (~240 miles northeast).

E. GRENVILLE PROVINCE (950-1300 Ma)

The largest percentage (~51%) of all zircons analyzed from Wedington samples occurr at 950-1300 Ma. This peak is interpreted to be associated with Grenville orogenic terranes in the Appalachian Mountains Region. The Grenville Province is the exhumed root of a major orogenic belt that resulted from the continent-continent collision that was part of the assembly of the supercontinent Rodinia (Tover *et al.*, 2006; Whitmeyer and Karlstom, 2007). The Grenville deformation front on the south and eastern margins of North America is approximately 4,000 km long and stretches from northern Mexico into Labrador, Canada. The Grenville orogeny consisted of multiple stages that included the suturing of continental blocks (Elzeverian Orogeny), the intrusion of anorthositic plutons (Shawingian phase), and collision with other large continental masses (Ottawan Orogeny) (Whitmeyer and Karlstom, 2007). Grenville aged zircons are found in sandstones throughout Laurentia. This is due to a combination of high zircon fertility, widespread distribution of terranes, and repeated uplift resulting from multiple orogenic events associated with the Appalachians.

F. IAPETAN SYNRIFT (500-760 Ma)

Zircons dating from 500-760 Ma are rare in Wedington samples. Only five total zircons analyzed from three of the samples are in this range. These zircons are interpreted to be derived from rocks related to the late Precambrian-Cambrian rifting of Laurentia that broke up Rodinia. Volcanic activity associated with active rifting supplied the zircons into synrift clastic sedimentary rocks. Individual rifts include the Blue Ridge, Ouachita, and Marathon rifts, which are presently buried beneath younger Appalachian/Ouachita allochthons and sedimentary cover (Thomas, 2011b).

G. ACADIAN-TACONIC OROGENIC TERRANES (350-500 Ma)

Every sample except for one (WD-3) contained multiple zircons in the 350-500 Ma range. Almost 10% of the zircons analyzed from sample WD-5 fell into this category. These zircons were interpreted to be sourced by terranes associated with the Acadian and Taconic Orogenies. The two terranes lie adjacent to each other along the eastern margin of North America. The Ordovician Taconic Orogeny resulted from the collision of eastern Laurentia with either an island-arc system over an east dipping subduction zone or the western margin of Gondwana between approximately 465-445 Ma (Stanley and Ratcliffe, 1985; McLennan *et al.*, 2001). The Devonian Acadian Orogeny resulted from a collision between approximately 400-350 Ma of the Avalon terrane with the eastern margin of Laurentia following the Taconic Orogeny. The Acadian and Taconic Orogenies are often listed together, due to volcanism and metamorphism occurring almost continuously between them (McLennan *et al.*, 2001).

Figure 16. Precambrian Basement Features of North American terranes (Whitmeyer and Karlstom, 2007).

V. PROVENANCE DISCUSSION

Evaluating provenance for clastic sedimentary rocks is a difficult process that involves many variables. Sandstones will commonly contain sediment from multiple crystalline sources. The broad range of detrital zircon ages present within the Wedington Sandstone demonstrates this complexity. Virtually all of the major potential basement sources within the Laurentian craton are present within the Wedington. Sediment dispersal pathways must be able to link the potential source areas with the location of deposition.

The potential source areas must also satisfy petrographic requirements. Most of the petrographic data for the Wedington Sandstone comes from Allen (2010). His modal analyses indicated two source terranes were required to supply the sediment. The first source is a metamorphic terrane to supply the metamorphic rock fragments and polycrystalline quartz. A metamorphic terrane could also supply the extremely small amount of plagioclase feldspar. The second terrane required is a chert-bearing terrane, with the adjacent Lower Mississippian chert bearing carbonates the definitive source. The amount of chert found in the Wedington is suprisingly low, indicating that sediment moved over the Lower Mississippian carbonates that cover most of the midcontinent with minimal erosion (Allen, 2010). This is probably due to the fact that sea level was at a maximum flooding interval during the deposition of the Wedington Sandstone, resulting in an increased base level and diminished ability for streams to erode downward.

Allen's modal analysis of Wedington thin sections never counted any feldspar grains. Plagioclase grains were noted in very rare abundance, as well as a single grain of potassium feldspar. Clay matrix, on the other hand, was abundant in Wedington samples (up to 32%). Hjulstrom's diagram would indicate that clay should not be deposited together with coarser

quartz grains, especially in the channel deposits where most samples were collected. Allen concluded that the clay formed from weathering of claystone clasts deposited with the sand grains (Allen, 2010). Feldspar deposited with the quartz grains in the Wedington would have been heavily weathered from transportation, and may have been further altered to clay during diagenesis. As a result, feldspar bearing source terranes, including crystalline rocks and first cycle sediments, are not discounted as potential sources for Wedington sediment.

Figure 17. Wedington Sandstone photomicrograph showing pervasive clay matrix. (Allen, 2010).

Methods for interpreting the tectonic setting from which sandstone grains are derived have been outlined by Dickinson *et al.* (1983). Composition of framework grains plotted on triangular Quartz-Feldspar-Lithic (QFL) diagrams divides sandstones into continental block, magmatic arc, or recycled orogen derived (Dickinson *et al.*, 1983). A provenance triangle utilizing point count data from Allen's thesis is shown in Figure 18. For this diagram, the Q pole contains only monocrystalline quartz, the F pole was monocrystalline feldspar, and the L pole contained both metamorphic and sedimentary rock fragments, as well as polycrystalline quartz. Most of the lithic grains counted were claystone clasts. Six Wedington Samples in total were plotted according to their composition, with samples M-8-1 and PR-2 (Using Allen's nomenclature) overlapping (Allen, 2010). Half of the samples indicate the Wedington Sandstone was sourced by a cratonic source. The other three samples indicate derivation from a recycled orogenic source. All six samples plotted relatively close to each other, No feldspars were counted, meaning all six samples plotted along the Q-L axis. The range in lithic composition varied from 4-20%.

Sample Number	Quartz	Feldspar	Lithics	Folk/Dott Name
M-7-1*	85	0	15	Sublithic wacke
M-8-1*	96	0	4	Quartzwacke
M-10-5*	80	0	20	Sublithic wacke
M-13-1	94	0	6	Sublitharenite
PR2	96	0	4	Quartzarenite
PG23	87	0	13	Sublitharenite

Table 2. Normalized modal data for plot in Figure 13 (Allen 2010).

Figure 18. Dickson Provenance Triangle for Wedington Sandstone predicting tectonic source from sandstone composition. Composition data from Allen, 2010.

A. ARCHEAN AND PALEOPROTEROZOIC PROVENANCE

Sandstones underlying the Wedington in Arkansas are significantly different in composition from Wedington and younger sandstones. Ordovician – Lower Mississippian sandstones in northwestern Arkansas are mostly clean, mature orthoquartzites. The Everton, St. Peter, Clifty, and Bachelor formations are all mature, frosted, well rounded, fine-medium grain sized orthoquartzites. Detrital zircon analyses of these units indicate that the vast majority of the sediment was ultimately derived from the Canadian Shield, with smaller contributions from the Grenville, Midcontinent Granite-Rhyolite, and Yavapai-Mazatzal basement terranes (Xie and Cains, 2014, in prep). The limited aerial extent of the Bachelor and Clifty formations indicates that they were probably derived from recycling of underlying St. Peter or Everton Formations. The Everton is confined to northern Arkansas and southern Missouri. This area is almost completely covered by thick Lower Mississippian carbonates, making these sediments inaccessible as a source for sediment in the Wedington.

The St. Peter Formation likely contributed a small amount of sediment to the Wedington Sandstone. The Middle Ordovician St. Peter Sandstone is a classic example of a cratonic sheet sand deposited on a shallow shelf. The widespread distribution of the St. Peter, stretching north-south from Arkansas into Minnesota, and east-west from Nebraska to Ohio, extends beyond the cover of Lower Mississippian carbonates (Giles, 1930; Shell, 1975). With its high quartz content and thicknesses up to 200 feet, the St. Peter could supply a large amount of quartz sand from exposures of limited lateral extent. Detrital zircons analysis of the St. Peter indicates that the bulk of the sediment (~85%) was derived from Archean and Paleoproterozoic terranes of the Canadian Shield, with the remaining portion derived from the Grenville Province (Xie and Cains, 2014, in prep). The Grenville aged zircons present in the St. Peter were probably sourced

by Grenville basement rocks uplifted during the Ordovician Taconic Orogeny. These sediments were then transported into Arkansas by the epicontinental depositional systems of the St. Peter. The St. Peter contains a bimodal grain shape distribution, with one population being smooth and well rounded, while the other population is irregular and angular (Mazullo and Ehrlich, 1983). The detrital zircon analyses would indicate that the well rounded population of grains would correspond with the Archean and Paleoproterozoic sources and the angular population would correspond with the younger Grenville age population. A small amount of sediment derived from the St. Peter could account for the small percentage (10-15%) of the Archean and Paleoproterozoic zircons found in Wedington Sandstone samples. The St. Peter cannot be the source for the vast majority of the Grenville zircons found in the Wedington. The Everton shares the same source and composition as the St. Peter, but its limited extent makes the St. Peter the more likely candidate as a source for Wedington Sandstone grains.

Pre-Chesterian Mississippian Strata and St. Peter Sandstone Distribution

Figure 19. Map showing distribution of Pre-Chesterian Mississippian Strata and St. Peter Sandstone Distribution. Areas covered by Mississippian Limestone would be unable to supply sediments. St. Peter distribution from Dake, 1921. Pre-Chesterian Mississippian distribution from Shell Oil Company, 1975.

B. MIDCONTINENT AND YAVAPAI-MAZATZAL PROVENANCE

Midcontinent and Yavapai-Mazatzal zircons were likely derived from a similar source area. The combined abundance of zircons of these ages ranges from 16-35% in Wedington samples. The Midcontinent Granite-Rhyolite Province underlies the Wedington and extends both east and west of the study area. The Yavapai-Mazatzal Province is west of the study area, indicating an eastward sediment delivery system. Two sources for Midcontinent and Yavapai-Mazatzal grains are possible: the Nemaha Ridge and the Illinois Basin.

The Nemaha Ridge in northeast Kansas and Nebraska contains exposed basement rocks dating between 1350 Ma and 1950 Ma that could supply both Midcontinent and Yavapai-Mazatzal aged zircons (Goebel, 1968). The division between the Midcontinent Granite-Rhyolite Province and the Yavapai-Mazatzal Province runs in an east-west line through southern Kansas over the Nemaha Ridge (Figure 20). Uplift of the north-south trending Nemaha Anticline could expose basement rocks of both provinces. The Cambrian Lamotte/Reagan Sandstone deposited in this locality would contain abundant sediment derived from underlying crystalline rocks of the Midcontinent and Yavapai-Mazatzal. Recycling of this sediment following uplift of the Nemaha Ridge would be able to supply zircons of the same ages as the granite. The Forest City Basin, located in between the Nemaha Ridge and the study area, poses a potential barrier to sediment transportation. However, Forest City Basin does not contain any Chesterian strata, suggesting that sediment could have been transported through this area over Lower Mississippian carbonates into northwest Arkansas. This interpretation indicates that the Nemaha ridge was uplifted by late Mississippian time, most likely as a result of compressional stresses associated with the Alleghanian Orogeny on the eastern margin of Laurentia.

The sandstones within the Illinois Basin are another potential source of Midcontinent and Yavapai-Mazatzal grains. Midcontinent and Yavapai-Mazatzal grains are likely to be found in abundance in Illinois Basin sandstones due the basin's proximity to these basement provinces. Detrital zircon analyses from these sandstones could confirm or refute this assertion. Sediment recycled from the Illinois Basin could also supply a large amount of the Grenville zircons analyzed from Wedington samples. The Illinois Basin was actively receiving sediment and subsiding during the Chesterian, making recycling older sandstones difficult, if not impossible (Swann, 1968).

Figure 20. Map showing prominent basement provinces and associated ages. Note the boundry between Yavapai-Mazatzal and Granite-Rhyolite Provinces in southern Kansas. (Soreghan et al., 2002).

C. APPALACHIAN PROVENANCE

The Batesville Sandstone, deposited to the east of the Wedington during early Chesterian time, is the first sandstone to differ from the orthoquartzites that dominated sandstone deposition from the Lower Ordovician through Lower Mississippian. The Batesville contains significant potassium feldspar grains and metamorphic rock fragments, indicating that it is a first cycle sandstone (Allen, 2010). This sandstone has been interpreted as being deposited by a deltaic system and then reworked by east-west longshore currents to form a shoreface deposit (Handford, 1995). This unit likely represents the first influx of sediment from the actively uplifting Appalachians to the east.

The high abundance of zircons ranging from 950-1250 Ma indicates that the majority of sediment for the Wedington Sandstone was derived from the Grenville Province in the Appalachians. Grenville aged zircons were being transported into northern Arkansas at least by the Early Ordovician (Xie and Cains, 2014, in prep). The amount of Grenville aged zircons present in Ordovician sandstones is not sufficient to supply the large volume present in Wedington Sandstone samples. The abundance of Grenville zircons indicates large amounts sediment must have been transported from Appalachian sources into Arkansas. Moving sediment from the eastern Appalachian sources into Arkansas raises some issues, as the direction of sediment transport during deposition of the Wedington Sandstone is firmly constrained by delta geometry and paleocurrent measurements as northwest to southeast. Three different sediment sources are possible. 1.) First cycle sediment, eroded from Grenville crustal rocks following onset of the Alleghanian orogeny, which was transported westward once an overfilled Appalachian Basin topped the Cincinnati forebulge, and then south into northwest Arkansas. 2.) Recycling of sandstones deposited during Acadian/Taconic uplifts. This model requires that sand

derived from Appalachian Basin sandstones be eroded, transported over the Cincinnati arch, westward across the Illinois basin, then south into northwest Arkansas. 3.) Recycling of Illinois Basin sandstones of Cambrian–Mississippian age, that were eroded and transported south into Arkansas.

Mid- Late Mississippian Alleghanian uplift would have enabled Grenville basement rocks as an active sediment source. A Grenville crystalline source would satisfy the requirement of a metamorphic source terrane necessitated by Allen's modal analysis. The long transport distance required to move first cycle sediment from the Grenville Province to Arkansas would be sufficient to weather out the vast majority of feldspars, leaving the very minor amount found in Wedington Sandstone thin sections (Allen, 2010). A Grenville crystalline source on its own would not be able to satisfy all the Appalachian sediment requirements, as a significant percentage (2-10%) of Wedington zircons were derived from Acadian/Taconic terranes.

Sandstones deposited in the Acadian and Taconic foreland basins are composed mainly of grains derived from the Grenville Province, with smaller inputs from the active orogenic and rift related terranes. Cambrian-Ordovician sandstones deposited on the passive margin and early in the foreland are devoid of Taconic aged zircons, probably due to sediment trapping by the accretionary wedge. Devonian synorogenic and postorogenic sediments contain Taconic zircons in an abundance of about 40% (McLennan *et al.*, 2001). Analyzed Wedington Sandstone samples contain zircons of both Taconic and Acadian ages, as well as a few individual grains that fit rift related magmatism ages. The sandstones from the Taconic and Acadian foreland basins are a good match as a source for these Wedington sediments. Later uplift of these Cambrian-Devonian sandstones during onset of the Alleghanian Orogeny in the Late Mississippian would allow access to these sediments (Steltenpohl and Kunk, 1993).

The third model for Appalachian sediment transport into northwest Arkansas requires recycling of Cambrian-Mississippian sandstones in the Illinois Basin. At least twice, during the Upper Ordovician and Upper Devonian, sediment derived from Acadian and Taconic uplifts overfilled the Appalachian Basin. Sediment of Grenville, Taconic, and Acadian ages would have spilled over the Cincinnati Arch and been deposited in the Illinois Basin (Swann, 1968). Recycling of these sandstones could supply the Appalachian sediment found in Wedington Samples. The problem with recycling Illinois Basin sandstones for sediment deposited in the Wedington Sandstone is the presence of Chesterian sandstones in the Illinois Basin (Swann, 1968). It is impossible to erode older formations while deposition is actively occurring.

It seems more likely that west-moving sediment from Appalachian sources was transported through or around the Illinois Basin. One possibility is that the supply of sediments flowing into the Illinois Basin from the rising Appalachian Mountains to the east exceeded the accommodation space of the basin. Sediments could then be transported to the west to be deposited in northwest Arkansas. This explanation would eliminate the Illinois Basin as a barrier for a westward transportation of Appalachian sediments. If sediment did not move through the Illinois Basin, the only other possible routes westward to northwest Arkansas would be south of the Illinois Basin or north of the Michigan Basin. Fluvial systems transporting sediment south of the Illinois Basin would have to make a nearly 180° bend to deposit the Wedington in the orientation we see today. Sediment transported north of the Michigan Basin would be very unlikely to make it south to Arkansas. A third method of transporting sediment past the Illinois Basins involves an eolian system similar to one proposed for Grand Canyon sediments by Gehrels *et al.* (2011). Trade winds from the northeast during the late Paleozoic would be consistent with the southwest transport of sediment from the Appalachian Mountains into the

continent interior (Peterson, 1988). However, quartz grains within the Wedington Sandstone do not demonstrate evidence of eolian transport, such as grain frosting. The possibility of an eolian system is retained, due to the fact that the fine grained size quartz may not have sufficient impact to frost, or fluvial processes following eolian deposition could remove signs of frosting.

It is the author's opinion that the most likely scenario involves a combination of eroded Acadian/Taconic Paleozoic sandstones and Grenville crystalline rocks overfilling the Appalachian foreland basin westward and feeding into the interior lowlands, entering a southward drainage system that emptied into the Rheic Ocean in northwest Arkansas. A Grenville crystalline source is suggested in addition to recycled Taconic/Acadian foreland sandstones due to the ratio of Grenville:Taconic/Acadian zircons in Wedington samples being higher than those ratios found in Acadian/Taconic foreland sandstones (McLennan *et al.*, 2001). In this scenario, the Alleghanian Orogeny is the most significant factor impacting depositional patterns in northern Arkansas. The timing of collision onset coincides well with the drastic change in sand composition deposited in Arkansas during the Chesterian.

Future Study

Sandstone provenance is difficult to establish with complete certainty. Assigning zircon ages to specific source terranes can be nearly impossible for ages that match multiple terranes. Further study utilizing Nd isotope analysis could add further constraint on Wedington Sandstone provenance by identifying the type of crystalline terrane from which a zircon is derived. Knowledge of the age spectra of zircons in sandstones throughout the craton would allow interpretation of potential recycled sources. Specifically, detrital zircon analysis of Upper Mississippian sandstones could provide an essential link for sediment transport from Appalachian sources into Arkansas.

Figure 21. Late Paleozozoic Structural features map with interpreted transport pathways for Wedington sediment into northwest Arkansas. Modified from Thomas, 2011a.

CONCLUSIONS

- The Wedington Sandstone contains sediment supplied by two main regions: the Appalachian Mountains and the Nemaha Ridge
- 2. Archean and Paleoproterozoic zircons are derived from recycled sandstones exposed along the Nemaha Ridge and the Great Lakes region.
- 3. Midcontinent and Yavapai-Mazatzal zircons are derived from Nemaha Ridge granite and the basal Cambrian sandstone overlying the crystalline rocks.
- 4. Grenville, Taconic, and Acadian zircons are derived from Appalachian sandstones and crystalline rocks uplifted during the Alleghanian Orogeny.
- 5. The Nemaha Ridge and Appalachian features were uplifted and supplying sediment by the Chesterian.

REFERENCES

- Adams, G. I., 1904, Zinc and Lead Deposits of Northern Arkansas (No. 24). US Government Printing Office.
- Adams, G. I. and E. O. Ulrich, 1905, Description of the Fayetteville Quadrangle: U. S. Geological Survey, Geological Atlas, Folio 119.
- Allen, Daniel Eugene, 2010, A Comparative Petrographic Study of Three Upper Mississippian (Chesterian) Sandstones in Northern Arkansas. Unpublished M.S. Thesis – University of Arkansas, 59p.
- Amato, J. M., Boullion, A. O., Serna, A. M., Sanders, A. E., Farmer, G. L., Gehrels, G. E., and Wooden, J. L.,2008, Evolution of the Mazatzal Province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico. Geological Society of America Bulletin, 120(3-4), 328-346.
- Barovich, K. M., Patchett, P. J., Peterman, Z. E., and Sims, P. K., 1989, Nd isotopes and the origin of 1.9-1.7 Ga Penokean continental crust of the Lake Superior region. Geological Society of America Bulletin, *101*(3), 333-338.
- Blakey, R., 2013, Carboniferous Mississippian Paleotectonic and Sedimentation Map. Retrieved from http://www.cpgeosystems.com/namekeytectonic.html
- Branner, J. C., 1891, Introduction *in* Simonds, F. W., The geology of Washington County: Arkansas Geological Survey, Report for 1888, v. 4, part 1, p. xi-xiv.
- Chang, Z., Vervoort, J. D., McClelland, W. C., and Knaack, C., 2006, U-Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(5).
- Cochran, T. L., 1989, "Petrology of the Batesville Sandstone (Mississippian), northern Arkansas". Unpublished M.S. Thesis, University of Arkansas.
- Condie, K. C., 1993, "Proterozoic crustal evolution". Access Online via Elsevier.
- Dake, C. L., 1921, The problem of the St. Peter Sandstone (Vol. 6, No. 1). Columbia University.
- Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., and Ryberg, P. T., 1983, Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94(2), 222-235.
- Fillon, R. H., 2007, Mesozoic Gulf of Mexico Basin Evolution From a Planetary Perspective and Petroleum System Implications. Petroleum Geoscience, 13(2), 105-126.

- Gehrels, G., Valencia, V., and Pullen, A., 2006, Detrital Zircon Geochronology by Laster
 Ablation Multicollector ICPMS at the Arizona LaserChron Center, in Olszewski, T., ed.,
 Geochronology: Emerging Opportunities: Paleontology Society Papers, Volume 12, p.
 67-76
- Gehrels, G., 2010, U-Th_Pb Analytical Methods for Zircon, Arizona LaserChron Center, University of Arizona.
- Gehrels, G. E., Blakey, R., Karlstrom, K. E., Timmons, J. M., Dickinson, B., and Pecha, M., 2011, Detrital Zircon U-Pb Geochronology of Paleozoic Strata in the Grand Canyon, Arizona. Lithosphere, 3(3), 183-200.
- Giles, A. W., and Bonewits, E. E., 1930, "St. Peter and Older Ordovician Sandstones of Northern Arkansas" Little Rock, Ar: Arkansas Geological Survey (Vol. 4).
- Goebel, E. D., 1968, Precambrian Rocks, The Stratigraphic Succession in Kansas: Kansas Geological Survey Bulletin, 189, 9-11.
- Handford, C. R., 1995, Baselap Patterns and the Recognition of Lowstand Exposure and Drowning—a Mississippian-ramp Example and its Seismic Signature: Journal of Sedimentary Research, vol. B65, No. 3, p. 323-337.
- Houseknecht, D. W., and Kacena, J. A., 1983, Tectonic and sedimentary evolution of the Arkoma foreland Basin. Tectonic-sedimentary evolution of the Arkoma basin: Society of Economic Paleontologists and Mineralogists Midcontinent Section, Guidebook 1, 3-33
- Johnson, K.S., Amsden, T. W., Denison, R. E., Dutton, S. P., Goldstein, A. G., Rascoe, B., Sutherland, P. K., and Thompson, D. M., 1989, "Geology of the Southern Midcontinent", Oklahoma Geological Survey, 53p.
- Ludwig, K.R., 2003, Isoplot 3.00 A Geochronological Toolkit for Microsoft Excel, in Berkeley Geochronology Center Special Publication No. 4, Berkeley, CA.
- Manger, Walter L., and Zachry, Doy L., 2009, Middle Devonian to Middle Carboniferous (Morrowan, Pennsylvanian) Geology, Southern Ozark Region, Northwestern Arkansas, American Association of Petroleum Geologists Midcontinent Section Meeting Field Trip, October 10-11, 2009.
- Mazzullo, J. M., & Ehrlich, R., 1983, Grain-shape Variation in the St. Peter Sandstone; a Record of Eolian and Fluvial Sedimentation of an Early Paleozoic Cratonic Sheet Sand. Journal of Sedimentary Research, 53(1), 105-119.
- McFarland, J. D. ,1998,. Stratigraphic Summary of Arkansas (Vol. 36). Arkansas Geological Commission, p. 4-9.

- McLennan, S. M., Bock, B., Compston, W., Hemming, S. R., and McDaniel, D. K., 2001, Detrital Zircon Geochronology of Taconian and Acadian Foreland Sedimentary Rocks in New England. Journal of Sedimentary Research, 71(2), 305-317.
- McNully, C. V., 1966, Grain Size Studies of the Wedington Sandstone of the Fayetteville Formation. Unpublished M.S. Thesis, University of Arkansas.
- Moyer, C., and Manger, W. L., 2006, "Fayetteville Shale (Upper Mississippian-Chesterian) and Adjacent Formations, Northern Arkansas". Desoto and Southwestern Energy Technical Teams Meeting. Fayetteville, Arkansas, p. 1-27.
- Peterson, F., 1988, Pennsylvanian to Jurassic Eolian Transportation Systems in the Western United States. Sedimentary Geology, 56(1), 207-260.
- Powell, C. M., Li, Z. X., McElhinny, M. W., Meert, J. G., and Park, J. K., 1993, Paleomagnetic constraints on timing of the Neoproterozoic Breakup of Rodinia and the Cambrian Formation of Gondwana. Geology, 21(10), 889-892.
- Price, C. R., 1981, Transportational and depositional history of the Wedington Sandstone (Mississippian), Northwest Arkansas. Unpublished M.S. Thesis, University of Arkansas, 146p.
- Shell Oil Company., 1975, Prechesterian Mississippian Strata, Stratigraphic Atlas of North and Central America. Princeton University Press. 272p.
- Soreghan, M. J., Soreghan, G. L., and Hamilton, M. A., 2002, Paleowinds inferred from detritalzircon geochronology of upper Paleozoic loessite, western equatorial Pangea. Geology, 30(8), 695-698.
- Stanley, R. S., and Ratcliffe, N. M., 1985, Tectonic synthesis of the Taconian orogeny in western New England. Geological Society of America Bulletin,96(10), 1227-1250.
- Steltenpohl, M. G., and Kunk, M. J., 1993, 40Ar/39Ar thermochronology and Alleghanian development of the southernmost Appalachian Piedmont, Alabama and southwest Georgia. Geological Society of America Bulletin, 105(6), 819-833.
- Sutherland, P. K., 1988, Late Mississippian and Pennsylvanian depositional history in the Arkoma basin area, Oklahoma and Arkansas. Geological Society of America Bulletin, 100(11), 1787-1802.
- Swann, D. H., 1968, A summary geologic history of the Illinois Basin. Geology and Petroleum Production of the Illinois Basin, 3-21.
- Thomas, W. A., 2011a, Detrital-zircon Geochronology and Sedimentary Provenance. Lithosphere, 3(4), 304-308.

- Thomas, W. A., 2011b, The Iapetan Rifted Margin of Southern Laurentia.Geosphere, 7(1), 97-120.
- Tohver, E., Teixeira, W., van der Pluijm, B., Geraldes, M. C., Bettencourt, J. S., and Rizzotto, G., 2006, Restored transect across the exhumed Grenville orogen of Laurentia and Amazonia, with implications for crustal architecture. Geology,*34*(8), 669-672.
- Whitmeyer, S. J., and Karlstrom, K. E., 2007, Tectonic model for the Proterozoic growth of North America. Geosphere, *3*(4), 220-259.
- Xie, X., and Heller, P. L., 2013, U-Pb Detrital zircon geochronology and its implications: the early Late Triassic Yanchang Formation, south Ordos Basin, China. Journal of Asian Earth Sciences. 86-98.

APPENDIX

<u>Samples</u>	Names	Notes	GPS Location
Sandstone Stop 1	WD-1		N 35°57′23.2′′, W 094°22′21.0′′
Wedington Stop 2	WD-2		N 35°51′11.7′′, W 094°22′31.8′′
Dutch Mill Stop		* small sample size,	
3B	WD-3	send out	N 35°53′54.7′′, W 094°24′06.3′′
Wedington Gap		* extra, repeat with	
(top) Stop 5	WD-5	WD-4, no picking	N 36°06′58′′, W 094°23′09.4′′
Wedington			
(Bottom) Stop 6	WD-6	* send out	N 36°03′45.7′′, W 094°25′35.6′′
Pea Ridge Stop 8	WD-8	* send out	N 36°26′39.5′′, W 093°58′19.0′′

Appendix A - Sample Locations

Appendix B - WD-1

	Isotopic Ratio		Apperant Ages					
				<u>±1σ</u>		<u>±1σ</u>	Best	<u>±1σ</u>
<u>Sample</u>	<u>206/238</u>	<u>±1σ</u>	<u>206/238</u>	<u>(Ma)</u>	<u>207/206</u>	<u>(Ma)</u>	Age	<u>(Ma)</u>
WD1_139	0.5217	0.0062	2706.26	26.2091	2700.95	10.4374	2700.95	10.4374
WD1_137	0.1996	0.0032	1173.30	16.9437	1237.09	18.9491	1237.09	18.9491
WD1_136	0.2393	0.0031	1383.19	15.8696	1378.03	15.7013	1378.03	15.7013
WD1_135	0.1973	0.0025	1160.62	13.5390	1167.10	17.8918	1167.10	17.8918
WD1_134	0.1676	0.0021	998.95	11.8022	986.63	16.7032	998.95	11.8022
WD1_133	0.1776	0.0024	1053.93	12.9643	1060.38	19.8014	1060.38	19.8014
WD1_132	0.1977	0.0027	1162.87	14.3631	1167.35	18.7765	1167.35	18.7765
WD1_131	0.4761	0.0057	2510.12	25.0489	2730.90	10.1395	2730.90	10.1395
WD1_130	0.2038	0.0035	1195.93	18.4921	1224.18	36.2190	1224.18	36.2190
WD1_129	0.1908	0.0025	1125.67	13.3717	1128.72	16.9385	1128.72	16.9385
WD1_127	0.3505	0.0044	1936.77	20.7653	1853.52	12.3958	1853.52	12.3958
WD1_126	0.3621	0.0061	1992.07	28.7661	2095.62	17.2943	2095.62	17.2943
WD1_125	0.1526	0.0025	915.55	14.1359	1006.93	27.4781	1006.93	27.4781
WD1_122	0.1773	0.0025	1052.27	13.7478	1104.09	21.2366	1104.09	21.2366
WD1_121	0.0759	0.0013	471.52	7.6567	446.24	39.2299	471.52	7.6567
WD1_120	0.1743	0.0026	1035.52	14.4313	1061.59	28.8519	1061.59	28.8519
WD1_119	0.2026	0.0029	1189.30	15.3648	1223.34	16.5871	1223.34	16.5871
WD1_118	0.5210	0.0097	2703.22	40.8737	2824.47	14.2942	2824.47	14.2942
WD1_117	0.1706	0.0024	1015.63	13.4727	1046.33	19.8350	1046.33	19.8350
WD1_116	0.0665	0.0008	414.92	5.1097	427.36	16.8318	414.92	5.1097
WD1_115	0.2932	0.0040	1657.28	19.9658	1664.57	15.3945	1664.57	15.3945
WD1_114	0.5257	0.0070	2723.44	29.3909	2785.92	11.4639	2785.92	11.4639
WD1_113	0.1667	0.0025	994.14	13.8842	1038.90	25.5923	1038.90	25.5923
WD1_112	0.5176	0.0067	2689.01	28.5380	2775.60	11.0108	2775.60	11.0108
WD1_111	0.1794	0.0030	1063.63	16.6144	1170.18	24.7702	1170.18	24.7702
WD1_110	0.5074	0.0065	2645.44	27.5992	2768.65	10.6162	2768.65	10.6162
WD1_109	0.2501	0.0033	1438.99	16.9418	1497.54	10.7454	1497.54	10.7454
WD1_108	0.0638	0.0009	398.50	5.2480	441.06	19.7686	398.50	5.2480
WD1_106	0.2864	0.0040	1623.56	20.2387	1662.69	15.7931	1662.69	15.7931
WD1_104	0.1776	0.0023	1053.69	12.6272	1070.77	13.8278	1070.77	13.8278
WD1_103	0.4785	0.0059	2520.52	25.8061	2488.51	6.6095	2488.51	6.6095
WD1_102	0.1738	0.0026	1032.85	14.0501	1078.19	21.4886	1078.19	21.4886
WD1 101	0.2059	0.0027	1206.92	14.3294	1228.96	14.1728	1228.96	14.1728

Sample WD-1 (Wedington Stop 1) U–Pb detrital zircon LA-ICP-MS analysis results

WD1_100	0.1966	0.0024	1156.83	12.9894	1179.48	9.6106	1179.48	9.6106
WD1_99	0.1926	0.0024	1135.65	13.1043	1149.18	10.8747	1149.18	10.8747
WD1_98	0.1702	0.0023	1013.22	12.4176	1076.92	15.5315	1076.92	15.5315
WD1_97	0.1767	0.0023	1048.84	12.4236	1015.29	11.2435	1015.29	11.2435
WD1_95	0.1603	0.0021	958.27	11.5405	997.26	15.0941	958.27	11.5405
WD1_94	0.1858	0.0027	1098.69	14.5951	1130.96	22.1899	1130.96	22.1899
WD1_92	0.0688	0.0012	429.13	7.4350	474.07	51.8793	429.13	7.4350
WD1_91	0.1737	0.0021	1032.24	11.2851	1052.94	13.8919	1052.94	13.8919
WD1_90	0.1800	0.0020	1067.19	10.8374	1108.64	11.6940	1108.64	11.6940
WD1_89	0.2316	0.0028	1342.70	14.4963	1349.83	13.4272	1349.83	13.4272
WD1_88	0.1648	0.0018	983.54	10.2010	996.38	11.9284	983.54	10.2010
WD1_87	0.1841	0.0027	1089.32	14.6791	1094.37	19.1108	1094.37	19.1108
WD1_85	0.1596	0.0019	954.81	10.3483	1023.54	12.4683	1023.54	12.4683
WD1_84	0.2311	0.0025	1340.09	13.3225	1333.38	9.8213	1333.38	9.8213
WD1_83	0.1994	0.0022	1172.14	11.8007	1175.48	10.4406	1175.48	10.4406
WD1_82	0.3121	0.0035	1751.18	17.2053	1790.44	8.9460	1790.44	8.9460
WD1_81	0.2293	0.0027	1330.87	13.8827	1338.49	11.9369	1338.49	11.9369
WD1_78	0.1887	0.0014	1114.10	7.7295	1221.45	16.1031	1221.45	16.1031
WD1_76	0.1731	0.0015	1029.26	7.9810	1127.47	20.4230	1127.47	20.4230
WD1_75	0.1640	0.0011	979.21	6.0542	974.28	15.8679	979.21	6.0542
WD1_74	0.1808	0.0010	1071.54	5.5574	1056.22	12.6085	1056.22	12.6085
WD1_73	0.1806	0.0018	1070.44	10.0829	1057.80	23.4084	1057.80	23.4084
WD1_72	0.1758	0.0013	1043.84	7.2549	1074.62	16.4407	1074.62	16.4407
WD1_71	0.3118	0.0021	1749.39	10.1239	1808.17	12.6595	1808.17	12.6595
WD1_70	0.1691	0.0018	1007.09	10.0748	1052.13	24.3330	1052.13	24.3330
WD1_69	0.1655	0.0016	987.00	8.6838	1097.72	20.9915	1097.72	20.9915
WD1_68	0.1961	0.0016	1154.26	8.5566	1155.92	18.4776	1155.92	18.4776
WD1_67	0.1748	0.0016	1038.62	8.7658	1134.93	17.9376	1134.93	17.9376
WD1_66	0.2801	0.0019	1591.88	9.4574	1616.74	13.7839	1616.74	13.7839
WD1_65	0.3306	0.0020	1841.49	9.7462	1819.85	11.5530	1819.85	11.5530
WD1_63	0.5490	0.0058	2821.15	24.2775	2786.97	9.0295	2786.97	9.0295
WD1_62	0.4053	0.0037	2193.24	17.1553	2186.32	9.1708	2186.32	9.1708
WD1_60	0.0699	0.0007	435.65	4.1414	447.88	16.9168	435.65	4.1414
WD1 59	0.2035	0.0022	1193.92	11.8201	1148.81	13.1632	1148.81	13.1632
WD1_58	0.1968	0.0025	1157.87	13.7122	1083.40	22.6014	1083.40	22.6014
WD1_57	0.1795	0.0018	1063.99	9.8037	1054.98	15.0158	1054.98	15.0158
WD1_56	0.1653	0.0024	986.29	13.2818	973.81	27.5626	986.29	13.2818
WD1_55	0.2952	0.0030	1667.53	15.0922	1656.34	12.6690	1656.34	12.6690
WD1_54	0.2802	0.0027	1592.17	13.5225	1643.31	10.1202	1643.31	10.1202

WD1_53	0.0645	0.0008	402.66	4.8891	447.69	30.2329	402.66	4.8891
WD1_52	0.1761	0.0018	1045.77	10.0553	1032.36	15.9024	1032.36	15.9024
WD1_51	0.1875	0.0031	1107.62	16.5626	1098.72	31.0471	1098.72	31.0471
WD1_50	0.1651	0.0017	985.02	9.1813	1030.29	13.7917	1030.29	13.7917
WD1_48	0.2890	0.0018	1636.72	9.0503	1644.27	10.0390	1644.27	10.0390
WD1_47	0.4943	0.0023	2589.11	9.7860	2546.80	5.4750	2546.80	5.4750
WD1_46	0.1952	0.0012	1149.65	6.4376	1138.11	13.0458	1138.11	13.0458
WD1_45	0.3307	0.0019	1841.62	9.3642	1806.73	8.5506	1806.73	8.5506
WD1_44	0.1823	0.0022	1079.67	11.7506	1077.42	21.7779	1077.42	21.7779
WD1_43	0.1919	0.0023	1131.51	12.4803	1162.54	19.3100	1162.54	19.3100
WD1_42	0.2592	0.0024	1485.56	12.2595	1441.80	15.1279	1441.80	15.1279
WD1_41	0.1774	0.0012	1052.64	6.3383	1067.49	12.8690	1067.49	12.8690
WD1_40	0.0671	0.0007	418.74	4.1721	434.30	31.5431	418.74	4.1721
WD1_39	0.1842	0.0012	1089.87	6.4080	1069.32	15.3272	1069.32	15.3272
WD1_38	0.1754	0.0021	1041.72	11.5033	1003.85	26.2996	1003.85	26.2996
WD1_36	0.1918	0.0012	1131.17	6.4602	1155.89	11.4346	1155.89	11.4346
WD1_35	0.1830	0.0018	1083.39	9.6524	1112.03	20.9120	1112.03	20.9120
WD1_34	0.1760	0.0012	1044.90	6.7904	1041.14	15.5978	1041.14	15.5978
WD1_33	0.1823	0.0014	1079.43	7.8161	1020.53	16.9472	1020.53	16.9472
WD1_32	0.1892	0.0016	1116.82	8.4281	1080.59	21.1359	1080.59	21.1359
WD1_30	0.4713	0.0031	2489.27	13.5295	2686.86	12.3668	2686.86	12.3668
WD1_29	0.2011	0.0015	1181.07	7.8904	1138.02	18.7904	1138.02	18.7904
WD1_28	0.3361	0.0017	1867.81	8.2193	1798.51	14.2067	1798.51	14.2067
WD1_27	0.3331	0.0019	1853.54	8.9676	1807.37	14.4486	1807.37	14.4486
WD1_26	0.2921	0.0013	1651.88	6.2639	1649.50	14.0433	1649.50	14.0433
WD1_25	0.0670	0.0006	418.28	3.8472	364.64	35.6287	418.28	3.8472
WD1_24	0.2862	0.0021	1622.69	10.2907	1664.81	15.2809	1664.81	15.2809
WD1_23	0.5043	0.0043	2632.37	18.4947	2638.63	15.2008	2638.63	15.2008
WD1_22	0.2332	0.0016	1351.23	8.4119	1385.97	17.7925	1385.97	17.7925
WD1_21	0.1778	0.0016	1055.04	8.8290	1061.85	25.3358	1061.85	25.3358
WD1_20	0.1893	0.0014	1117.41	7.5120	1099.40	17.3929	1099.40	17.3929
WD1_19	0.1832	0.0016	1084.56	8.4959	1064.38	22.3797	1064.38	22.3797
WD1_18	0.1937	0.0023	1141.33	12.1862	1090.56	31.1182	1090.56	31.1182
WD1_17	0.1749	0.0014	1039.04	7.5657	979.27	19.6537	1039.04	7.5657
WD1_16	0.1916	0.0014	1130.22	7.8205	1126.51	18.7187	1126.51	18.7187
WD1_15	0.0717	0.0006	446.51	3.6003	479.79	25.0769	446.51	3.6003
WD1_14	0.1557	0.0013	932.91	7.2531	937.17	20.1447	932.91	7.2531
WD1_13	0.0729	0.0005	453.89	3.2095	467.99	18.8769	453.89	3.2095
WD1_11	0.5288	0.0027	2736.30	11.2612	2702.32	6.9802	2702.32	6.9802

0.1905	0.0014	1124.28	7.7965	1154.24	16.4765	1154.24	16.4765
0.0667	0.0005	416.07	2.8154	388.03	20.0207	416.07	2.8154
0.1695	0.0013	1009.38	7.3102	1048.82	17.8110	1048.82	17.8110
0.1897	0.0017	1119.54	9.0573	1217.71	20.8062	1217.71	20.8062
0.1810	0.0011	1072.55	6.0746	1180.40	10.5183	1180.40	10.5183
0.2394	0.0013	1383.52	6.8785	1343.42	9.9527	1343.42	9.9527
0.1887	0.0014	1114.23	7.5443	1115.51	16.5487	1115.51	16.5487
0.2833	0.0017	1608.11	8.5355	1613.71	10.0810	1613.71	10.0810
e >10%							
0.1866	0.0024	1284.16	13.3189	1284.16	13.3189		
0.1289	0.0018	1070.10	18.1790	1070.10	18.1790		
0.0683	0.0009	512.51	16.6662	425.80	5.2756		
0.0633	0.0008	489.32	16.5441	395.50	5.0841		
0.0681	0.0009	487.98	21.6886	424.85	5.3890		
0.0687	0.0011	351.05	38.2924	428.51	6.4622		
0.1760	0.0022	1192.91	14.5060	1192.91	14.5060		
0.2364	0.0032	1622.67	16.0289	1622.67	16.0289		
0.2288	0.0032	2487.09	9.1376	2487.09	9.1376		
0.0674	0.0009	486.25	27.3394	420.55	5.5982		
0.4668	0.0045	2805.65	8.4102	2805.65	8.4102		
0.0670	0.0009	342.71	47.1556	417.97	5.4310		
0.1943	0.0026	1001.27	26.5224	1001.27	26.5224		
	0.1905 0.0667 0.1695 0.1897 0.1810 0.2394 0.2394 0.2833 e > 10% 0.1886 0.1289 0.0683 0.0683 0.0683 0.0681 0.0687 0.1760 0.2364 0.2288 0.0674 0.4668 0.0670 0.1943	$\begin{array}{c cccc} 0.1905 & 0.0014 \\ \hline 0.0667 & 0.0005 \\ \hline 0.1695 & 0.0013 \\ \hline 0.1897 & 0.0017 \\ \hline 0.1810 & 0.0011 \\ \hline 0.2394 & 0.0013 \\ \hline 0.1887 & 0.0014 \\ \hline 0.2833 & 0.0017 \\ \hline \\ e > 10\% \\ \hline \\ 0.1289 & 0.0018 \\ \hline \\ 0.0683 & 0.0009 \\ \hline \\ 0.0683 & 0.0009 \\ \hline \\ 0.0681 & 0.0009 \\ \hline \\ 0.0681 & 0.0009 \\ \hline \\ 0.0687 & 0.0011 \\ \hline \\ 0.1760 & 0.0022 \\ \hline \\ 0.2364 & 0.0032 \\ \hline \\ 0.2288 & 0.0032 \\ \hline \\ 0.2288 & 0.0032 \\ \hline \\ 0.2288 & 0.0045 \\ \hline \\ 0.0670 & 0.0009 \\ \hline \\ 0.1943 & 0.0026 \\ \hline \end{array}$	$\begin{array}{c ccccccc} 0.0014 & 1124.28 \\ \hline 0.0667 & 0.0005 & 416.07 \\ \hline 0.1695 & 0.0013 & 1009.38 \\ \hline 0.1897 & 0.0017 & 1119.54 \\ \hline 0.1810 & 0.0011 & 1072.55 \\ \hline 0.2394 & 0.0013 & 1383.52 \\ \hline 0.1887 & 0.0014 & 1114.23 \\ \hline 0.2833 & 0.0017 & 1608.11 \\ \hline \\ e > 10\% & \\ \hline \\ 0.1289 & 0.0018 & 1070.10 \\ \hline 0.0683 & 0.0009 & 512.51 \\ \hline 0.0681 & 0.0008 & 489.32 \\ \hline 0.0681 & 0.0009 & 487.98 \\ \hline 0.0687 & 0.0011 & 351.05 \\ \hline 0.1760 & 0.0022 & 1192.91 \\ \hline 0.2364 & 0.0032 & 1622.67 \\ \hline 0.2288 & 0.0032 & 2487.09 \\ \hline 0.0674 & 0.0009 & 342.71 \\ \hline 0.1943 & 0.0026 & 1001.27 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

WD-1 Probability Density Plot

Appendix C - WD-2

	Isotopic	Ratio	Apperan	t Ages				
				<u>±1σ</u>		<u>±1σ</u>	Best	<u>±1σ</u>
<u>Sample</u>	<u>206/238</u>	<u>±1σ</u>	<u>206/238</u>	<u>(Ma)</u>	<u>207/206</u>	<u>(Ma)</u>	Age	<u>(Ma)</u>
WD2_145	0.1712	0.0014	1018.73	7.6335	1035.00	14.2034	1035.00	14.2034
WD2_144	0.1911	0.0019	1127.60	10.2860	1066.93	15.3709	1066.93	15.3709
WD2_143	0.2162	0.0015	1261.71	8.0293	1176.04	8.7196	1176.04	8.7196
WD2_142	0.2420	0.0032	1397.17	16.8233	1420.56	21.5035	1420.56	21.5035
WD2_140	0.3126	0.0023	1753.53	11.1463	1729.49	7.7943	1729.49	7.7943
WD2_139	0.2537	0.0025	1457.74	12.6998	1473.92	11.5038	1473.92	11.5038
WD2_138	0.1630	0.0019	973.16	10.3093	972.47	13.8649	973.16	10.3093
WD2_137	0.1566	0.0012	938.11	6.8966	964.29	13.6140	938.11	6.8966
WD2_136	0.2179	0.0027	1270.62	14.4874	1277.55	16.8115	1277.55	16.8115
WD2_134	0.0807	0.0011	500.15	6.4230	478.16	33.9884	500.15	6.4230
WD2_132	0.2406	0.0027	1390.07	14.2377	1491.68	15.5516	1491.68	15.5516
WD2_131	0.2038	0.0020	1195.44	10.5683	1274.50	12.4316	1274.50	12.4316
WD2_130	0.1679	0.0018	1000.78	9.8238	1065.93	14.1256	1065.93	14.1256
WD2_129	0.1894	0.0031	1117.93	16.9777	1120.51	25.3341	1120.51	25.3341
WD2_128	0.2889	0.0027	1635.90	13.7362	1641.71	10.2256	1641.71	10.2256
WD2_125	0.1706	0.0016	1015.28	9.0468	1041.35	13.8042	1041.35	13.8042
WD2_124	0.4492	0.0041	2391.86	18.3429	2554.81	10.1959	2554.81	10.1959
WD2_122	0.3163	0.0030	1771.65	14.6885	1760.12	10.5210	1760.12	10.5210
WD2_121	0.2313	0.0021	1341.45	11.0744	1279.14	12.3384	1279.14	12.3384
WD2_120	0.1752	0.0024	1040.71	13.3143	1034.44	20.5537	1034.44	20.5537
WD2_118	0.2702	0.0036	1541.70	18.0086	1591.33	12.3266	1591.33	12.3266
WD2_115	0.3112	0.0043	1746.58	20.8945	1698.16	16.5349	1698.16	16.5349
WD2_114	0.1928	0.0024	1136.73	12.8447	1069.93	17.6299	1069.93	17.6299
WD2_111	0.1780	0.0021	1056.12	11.6683	1088.75	16.1073	1088.75	16.1073
WD2_110	0.1830	0.0026	1083.12	14.0288	1168.23	21.9331	1168.23	21.9331
WD2_109	0.3373	0.0040	1873.63	19.2993	1878.18	12.5343	1878.18	12.5343
WD2_108	0.4875	0.0058	2559.69	25.1683	2660.67	10.2812	2660.67	10.2812
WD2_107	0.2940	0.0039	1661.60	19.1624	1633.44	14.8260	1633.44	14.8260
WD2_106	0.1841	0.0022	1089.32	12.0752	1096.82	17.5847	1096.82	17.5847
WD2_105	0.3048	0.0048	1715.29	23.5005	1656.71	13.1792	1656.71	13.1792
WD2_104	0.5574	0.0071	2855.96	29.2762	2793.13	8.3592	2793.13	8.3592
WD2_103	0.1890	0.0024	1115.68	12.9001	1140.69	13.0920	1140.69	13.0920
WD2 102	0.5597	0.0068	2865.29	28.1995	2818.38	6.5164	2818.38	6.5164

Sample WD-2 (Wedington Stop 2) U–Pb detrital zircon LA-ICP-MS analysis results

WD2_101	0.0711	0.0008	442.54	5.1062	407.88	17.0886	442.54	5.1062
WD2_98	0.2535	0.0033	1456.72	16.7535	1419.54	14.1313	1419.54	14.1313
WD2_97	0.1903	0.0022	1123.07	12.0367	1127.97	8.9760	1127.97	8.9760
WD2_96	0.3391	0.0042	1882.30	20.1673	1875.47	7.7215	1875.47	7.7215
WD2_94	0.2184	0.0027	1273.41	14.2902	1256.35	10.0890	1256.35	10.0890
WD2_94	0.2184	0.0027	1273.41	14.2902	1256.35	10.0890	1256.35	10.0890
WD2_93	0.2503	0.0029	1440.22	15.1602	1449.53	7.8338	1449.53	7.8338
WD2_92	0.1717	0.0025	1021.71	13.6735	1122.66	17.4155	1122.66	17.4155
WD2_91	0.0701	0.0009	436.54	5.4894	421.97	21.9744	436.54	5.4894
WD2_90	0.2539	0.0034	1458.32	17.2694	1600.99	13.9124	1600.99	13.9124
WD2_89	0.1899	0.0022	1120.57	12.0542	1099.07	17.5148	1099.07	17.5148
WD2_88	0.2019	0.0023	1185.64	12.3008	1244.03	14.8268	1244.03	14.8268
WD2_86	0.1708	0.0020	1016.44	11.2647	1006.72	18.5319	1006.72	18.5319
WD2_84	0.5257	0.0058	2723.47	24.6096	2772.38	7.6174	2772.38	7.6174
WD2_82	0.1727	0.0020	1026.91	10.9893	1035.80	17.7456	1035.80	17.7456
WD2_81	0.2024	0.0021	1187.99	11.2190	1199.03	12.9735	1199.03	12.9735
WD2_80	0.1837	0.0019	1087.38	10.3026	1083.82	15.5621	1083.82	15.5621
WD2_78	0.1838	0.0018	1087.74	9.7786	1016.80	12.9273	1016.80	12.9273
WD2_77	0.1793	0.0018	1062.98	9.8465	1036.88	13.0164	1036.88	13.0164
WD2_76	0.2347	0.0024	1359.11	12.7460	1343.44	13.1228	1343.44	13.1228
WD2_75	0.1814	0.0018	1074.67	9.5732	1096.33	16.4112	1096.33	16.4112
WD2_74	0.3590	0.0032	1977.36	15.0289	1856.81	8.2901	1856.81	8.2901
WD2_72	0.2061	0.0020	1207.81	10.5653	1196.09	13.7768	1196.09	13.7768
WD2_71	0.2287	0.0037	1327.90	19.2047	1375.25	17.2619	1375.25	17.2619
WD2_70	0.2204	0.0043	1283.82	22.6125	1264.22	26.5350	1264.22	26.5350
WD2_69	0.0700	0.0006	436.27	3.6451	426.05	11.2594	436.27	3.6451
WD2_68	0.0767	0.0012	476.57	7.0733	508.72	28.1446	476.57	7.0733
WD2_67	0.1947	0.0020	1146.78	10.6686	1144.57	14.2311	1144.57	14.2311
WD2_65	0.1712	0.0031	1018.47	17.0433	1089.79	16.2263	1089.79	16.2263
WD2_63	0.1832	0.0018	1084.49	9.8869	1049.44	15.0909	1049.44	15.0909
WD2_62	0.3791	0.0032	2071.95	14.9522	2009.51	11.8053	2009.51	11.8053
WD2_61	0.1778	0.0021	1054.81	11.4149	1008.61	17.3238	1008.61	17.3238
WD2_60	0.2938	0.0040	1660.48	20.0345	1741.34	11.7702	1741.34	11.7702
WD2_59	0.3385	0.0036	1879.23	17.3120	1825.86	5.3850	1825.86	5.3850
WD2_58	0.3157	0.0034	1768.80	16.5786	1738.13	5.1215	1738.13	5.1215
WD2_56	0.1767	0.0032	1048.92	17.4491	1097.33	31.3320	1097.33	31.3320
WD2_55	0.2318	0.0025	1344.08	13.2664	1312.45	8.0226	1312.45	8.0226
WD2_54	0.2962	0.0034	1672.51	17.0642	1642.12	8.7010	1642.12	8.7010
WD2_52	0.2997	0.0048	1689.78	23.7039	1658.55	13.2309	1658.55	13.2309

WD2_51	0.1857	0.0028	1097.81	15.1596	1057.60	23.9522	1057.60	23.9522
WD2_50	0.3259	0.0039	1818.72	19.1254	1750.49	9.2098	1750.49	9.2098
WD2_49	0.2414	0.0030	1393.71	15.4968	1394.40	8.7694	1394.40	8.7694
WD2_48	0.2980	0.0034	1681.22	16.7705	1555.29	9.1571	1555.29	9.1571
WD2_47	0.1857	0.0023	1098.06	12.4606	1081.53	11.8681	1081.53	11.8681
WD2_46	0.3232	0.0037	1805.52	17.9760	1794.19	7.3426	1794.19	7.3426
WD2_45	0.5341	0.0072	2758.51	30.2539	2699.36	7.6426	2699.36	7.6426
WD2_43	0.1748	0.0026	1038.53	14.0058	960.65	18.7034	1038.53	14.0058
WD2_42	0.3225	0.0042	1801.79	20.2868	1945.34	7.6003	1945.34	7.6003
WD2_41	0.2163	0.0036	1262.20	18.8155	1255.64	22.1629	1255.64	22.1629
WD2_40	0.3032	0.0040	1706.92	19.6916	1698.60	10.5290	1698.60	10.5290
WD2_39	0.3132	0.0039	1756.49	19.3287	1693.67	8.2247	1693.67	8.2247
WD2_38	0.2092	0.0029	1224.35	15.4118	1353.37	10.0851	1353.37	10.0851
WD2_37	0.3497	0.0046	1933.14	21.7119	1865.76	8.6668	1865.76	8.6668
WD2_36	0.3065	0.0039	1723.47	19.2706	1594.91	8.4266	1594.91	8.4266
WD2_34	0.1748	0.0039	1038.48	21.1544	1036.97	35.3697	1036.97	35.3697
WD2_33	0.2061	0.0029	1207.91	15.6376	1245.29	13.6383	1245.29	13.6383
WD2_32	0.2583	0.0033	1481.16	16.8216	1460.84	8.3279	1460.84	8.3279
WD2_31	0.2914	0.0059	1648.37	29.1541	1639.10	16.7841	1639.10	16.7841
WD2_29	0.1877	0.0018	1108.99	9.8698	1052.57	15.1235	1052.57	15.1235
WD2_28	0.1923	0.0024	1134.05	12.6981	1147.49	16.3673	1147.49	16.3673
WD2_27	0.2202	0.0036	1282.80	18.9760	1368.17	11.5279	1368.17	11.5279
WD2_25	0.2213	0.0019	1288.81	9.7738	1265.68	11.8673	1265.68	11.8673
WD2_24	0.2005	0.0015	1177.86	7.9005	1131.15	11.8814	1131.15	11.8814
WD2_23	0.2372	0.0015	1371.87	7.7194	1314.70	9.7872	1314.70	9.7872
WD2_21	0.3144	0.0031	1762.31	15.3308	1631.37	8.5884	1631.37	8.5884
WD2_20	0.1950	0.0037	1148.34	19.9424	1206.44	45.1554	1206.44	45.1554
WD2_18	0.1735	0.0010	1031.49	5.5665	984.05	9.9384	984.05	9.9384
WD2_16	0.2001	0.0021	1176.07	11.4251	1157.76	13.9928	1157.76	13.9928
WD2_15	0.0709	0.0012	441.70	7.0480	462.25	20.8321	441.70	7.0480
WD2_14	0.1802	0.0028	1068.32	15.2909	1020.44	11.6044	1020.44	11.6044
WD2_11	0.1923	0.0032	1133.71	17.1916	1078.47	19.2423	1078.47	19.2423
WD2_10	0.1959	0.0032	1153.23	17.4115	1132.34	14.3930	1132.34	14.3930
WD2_7	0.1874	0.0031	1107.51	16.9125	1059.09	15.1240	1059.09	15.1240
WD2_5	0.2001	0.0034	1175.76	18.3312	1142.31	19.4460	1142.31	19.4460
WD2_4	0.2978	0.0046	1680.55	22.6479	1710.23	8.5979	1710.23	8.5979
WD2_3	0.1890	0.0031	1115.95	16.5416	1083.55	15.9438	1083.55	15.9438
WD2_2	0.1745	0.0027	1036.96	14.7263	1017.76	11.1160	1017.76	11.1160
WD2_1	0.2480	0.0041	1428.34	21.0640	1422.94	14.4105	1422.94	14.4105

Discordanc	e >10%						
WD2 141	0.2122	0.0026	1240.38	13.7760	1712.22	7.6461	
WD2_135	0.1793	0.0048	1063.29	26.1426	1189.55	41.6049	
WD2_133	0.0488	0.0005	307.24	2.8744	400.00	14.9324	
WD2_127	0.0748	0.0010	464.86	5.8068	1066.11	14.6330	
WD2_126	0.0363	0.0005	230.09	3.1282	544.61	32.3625	
WD2_123	0.1693	0.0026	1008.27	14.4474	1452.85	32.3464	
WD2_119	0.2010	0.0033	1180.92	17.4457	1575.52	23.1143	
WD2_117	0.1387	0.0018	837.25	9.9263	1185.22	13.3591	
WD2_116	0.1851	0.0027	1094.67	14.6974	1510.85	26.5998	
WD2_113	0.1538	0.0021	921.96	11.7074	1193.82	16.6268	
WD2_112	0.1879	0.0023	1109.84	12.2564	1498.45	16.6156	
WD2_100	0.1767	0.0025	1049.18	13.7678	1200.34	17.7734	
WD2_99	0.1589	0.0021	950.65	11.8868	1106.49	10.1117	
WD2_95	0.1453	0.0018	874.79	10.0672	1048.25	7.1407	
WD2_87	0.4086	0.0048	2208.37	21.7513	2702.80	8.1968	
WD2_85	0.2083	0.0024	1219.60	12.9785	1813.93	8.8472	
WD2_83	0.6652	0.0062	3287.15	24.0998	2800.39	7.4842	
WD2_79	0.2436	0.0032	1405.34	16.4234	1921.22	41.4745	
WD2_73	0.0697	0.0008	434.38	4.9607	643.85	25.1299	
WD2_66	0.2519	0.0066	1448.15	34.1134	1620.22	20.9205	
WD2_64	0.0401	0.0006	253.72	3.8110	617.05	20.7825	
WD2_57	0.1215	0.0017	739.32	9.7248	1121.15	10.2220	
WD2_53	0.0916	0.0025	564.90	14.5269	1141.88	57.4074	
WD2_44	0.1806	0.0031	1070.27	16.8543	1379.51	10.5587	
WD2_35	0.1546	0.0039	926.80	21.5440	1265.21	25.6493	
WD2_26	0.0503	0.0012	316.31	7.2181	475.00	42.7849	
WD2_22	0.2267	0.0027	1317.38	14.0039	1528.44	22.2314	
WD2_19	0.2012	0.0077	1181.97	41.3873	3637.77	58.2155	
WD2_17	0.0518	0.0012	325.76	7.4830	871.83	36.9136	
WD2_13	0.0659	0.0011	411.29	6.4127	457.82	25.0304	
WD2_12	0.1205	0.0031	733.32	17.6296	1625.19	15.4984	
WD2_9	0.1710	0.0054	1017.37	29.4837	1147.83	77.3405	
WD2_8	0.0271	0.0029	172.08	17.9596	8095.52	26.4839	
WD2_6	0.0686	0.0014	427.66	8.5723	873.40	40.0135	

WD-2 Concordia Diagram

WD-2 Probability Density Plot

Appendix D - WD-3

	Isotopic	Ratio	Apparen	t Ages				
				<u>±1σ</u>		<u>±1σ</u>	Best	<u>±1σ</u>
<u>Sample</u>	<u>206/238</u>	<u>±1σ</u>	<u>206/238</u>	<u>(Ma)</u>	<u>207/206</u>	<u>(Ma)</u>	Age	<u>(Ma)</u>
WD3_110r	0.2314	0.0023	1341.81	12.1527	1377.40	12.45	1377.40	12.45
WD3_105	0.3137	0.0053	1758.72	25.7706	1761.75	10.41	1761.75	10.41
WD3_103	0.2387	0.0036	1379.96	18.9387	1451.61	9.39	1451.61	9.39
Wd3_101	0.3402	0.0066	1887.83	31.7287	2038.18	14.56	2038.18	14.56
WD3_97	0.4573	0.0075	2427.57	33.1465	2568.60	9.28	2568.60	9.28
WD3_95	0.1902	0.0041	1122.38	21.9575	1205.62	19.18	1205.62	19.18
WD3_87	0.1861	0.0030	1100.23	16.4200	1164.87	16.95	1164.87	16.95
WD3_85	0.1682	0.0018	1002.35	9.9633	1051.75	10.09	1051.75	10.09
WD3_83	0.2094	0.0022	1225.77	11.6843	1373.38	10.18	1373.38	10.18
WD3_80	0.1998	0.0025	1174.09	13.3645	1218.19	12.08	1218.19	12.08
Wd3_79	0.2679	0.0036	1530.01	18.3485	1651.76	10.42	1651.76	10.42
WD3_76	0.2490	0.0029	1433.55	14.8369	1546.13	15.51	1546.13	15.51
WD3_73	0.2934	0.0065	1658.31	32.0771	1715.63	8.48	1715.63	8.48
WD3_72	0.2048	0.0054	1201.29	28.8888	1323.78	20.26	1323.78	20.26
WD3_71	0.2276	0.0052	1321.77	27.4062	1282.37	12.51	1282.37	12.51
WD3_68	0.1740	0.0041	1034.25	22.2292	1086.14	15.21	1086.14	15.21
WD3_66	0.2848	0.0064	1615.33	32.1129	1653.57	9.92	1653.57	9.92
WD3_64	0.2397	0.0045	1384.96	23.1953	1473.56	12.59	1473.56	12.59
WD3_63	0.2410	0.0048	1391.76	24.8246	1486.88	10.24	1486.88	10.24
WD3_62	0.2893	0.0052	1637.79	26.0376	1689.16	11.11	1689.16	11.11
WD3_61	0.2359	0.0043	1365.42	22.3338	1385.09	12.85	1385.09	12.85
WD3_59	0.2631	0.0026	1505.80	13.3750	1627.84	12.35	1627.84	12.35
WD3_57	0.2946	0.0035	1664.65	17.3831	1627.32	12.44	1627.32	12.44
WD3_56	0.3487	0.0105	1928.26	49.9473	2115.26	38.48	2115.26	38.48
WD3_52	0.2765	0.0041	1573.79	20.6091	1651.04	9.89	1651.04	9.89
WD3_48	0.2071	0.0034	1213.55	18.2678	1275.93	12.38	1275.93	12.38
WD3_47	0.2021	0.0034	1186.84	18.4692	1190.87	18.64	1190.87	18.64
WD3_45	0.2944	0.0024	1663.71	11.9259	1784.96	8.61	1784.96	8.61
WD3_44	0.1641	0.0017	979.28	9.3678	1058.54	12.08	1058.54	12.08
WD3_37	0.2346	0.0027	1358.36	14.2817	1309.29	16.93	1309.29	16.93
WD3_36	0.2417	0.0022	1395.72	11.6192	1390.40	10.82	1390.40	10.82
WD3_34	0.2824	0.0025	1603.45	12.7173	1641.05	10.73	1641.05	10.73
WD3 24	0.2970	0.0024	1676.63	11.7059	1845.13	9.58	1845.13	9.58

Sample WD-3 (Dutch Mill) U–Pb detrital zircon LA-ICP-MS analysis results

WD3_22	0.2359	0.0020	1365.55	10.5876	1430.05	8.88	1430.05	8.88
WD3_21	0.1957	0.0015	1151.99	8.1596	1153.61	11.98	1153.61	11.98
WD3_20	0.1719	0.0015	1022.81	8.0192	1003.35	15.28	1003.35	15.28
WD3_17	0.2556	0.0026	1467.35	13.1818	1343.16	14.09	1343.16	14.09
WD3_15	0.1601	0.0016	957.48	8.6370	1024.66	17.43	1024.66	17.43
WD3_14	0.1703	0.0032	1013.52	17.6647	1029.99	12.72	1029.99	12.72
WD3_13	0.1697	0.0033	1010.32	17.9736	1024.65	12.88	1024.65	12.88
WD3_11	0.1979	0.0040	1163.81	21.2998	1168.15	15.03	1168.15	15.03
WD3_9	0.1735	0.0033	1031.15	18.1387	1114.61	10.39	1114.61	10.39
WD3_8	0.3150	0.0059	1765.34	28.8405	1775.35	8.98	1775.35	8.98
WD3_7	0.3480	0.0064	1925.27	30.3902	1859.43	9.85	1859.43	9.85
WD3_5	0.2698	0.0050	1539.77	25.4597	1644.47	9.60	1644.47	9.60
WD3_3	0.1855	0.0035	1096.72	18.8056	1117.57	12.43	1117.57	12.43
WD3_2	0.2536	0.0047	1457.11	24.3524	1436.67	10.04	1436.67	10.04
WD3_1	0.1741	0.0032	1034.80	17.5570	1038.78	10.79	1038.78	10.79
Discordance	e>10%							
WD3_107	0.3654	0.0058	2007.72	27.1663	2723.77	9.66		
WD3_106	0.2818	0.0032	1600.39	16.1679	2671.61	7.72		
WD3_104	0.2193	0.0156	1278.37	81.7607	1903.08	62.58		
WD3_102	0.1880	0.0029	1110.58	15.9315	1668.55	11.96		
WD3_100	0.1836	0.0034	1086.78	18.3019	1440.07	10.16		
WD3_99	0.0764	0.0014	474.76	8.3482	636.72	20.57		
WD3_98	0.1974	0.0031	1161.41	16.7832	1482.19	11.18		
WD3_96	0.0789	0.0017	489.42	10.0933	838.82	32.71		
WD3_94	0.2334	0.0043	1352.51	22.5999	1525.88	12.61		
WD3_93	0.1710	0.0028	1017.37	15.1225	1281.15	10.48		
WD3_92	0.2429	0.0039	1401.57	20.0150	1692.34	9.46		
WD3_91	0.0787	0.0013	488.22	7.5205	1287.88	10.26		
Wd3_90	0.1680	0.0021	1000.96	11.4951	1199.32	18.47		
WD3_88	0.0919	0.0018	566.67	10.7720	1155.31	20.08		
WD3_86	0.2342	0.0025	1356.66	13.1839	1577.66	10.85		
WD3_84	0.1232	0.0018	748.71	10.2345	1264.82	16.23		
WD3_82	0.1686	0.0021	1004.54	11.4600	1162.52	16.65		
WD3_81	0.0375	0.0005	237.38	2.9251	1986.85	17.48		
WD3_78	0.1491	0.0018	895.71	10.2239	1137.39	10.75		
WD3_77	0.2361	0.0032	1366.20	16.8108	1614.73	16.27		
WD3_75	0.1631	0.0039	974.05	21.5245	1100.47	18.42		
WD3_74	0.0595	0.0016	372.87	10.0278	678.49	31.32		

WD3_70	0.0663	0.0018	413.90	11.0309	546.17	35.90	
WD3_69	0.1670	0.0039	995.74	21.5601	1533.49	11.78	
Wd3_67	0.1102	0.0026	674.15	14.8043	1473.62	11.60	
WD3_65	0.0395	0.0017	249.45	10.7247	1230.37	17.08	
WD3_55	0.1678	0.0045	1000.16	24.8565	1302.48	26.59	
WD3_54	0.1860	0.0030	1099.71	16.3215	1265.68	12.09	
WD3_51	0.2127	0.0031	1243.27	16.7183	2179.80	10.80	
WD3_50	0.0689	0.0016	429.79	9.4391	556.70	52.35	
WD3_49	0.1504	0.0032	903.41	17.9927	1274.76	22.52	
WD3_46	0.1602	0.0068	957.63	37.6712	2146.04	54.61	
WD3_41r	0.1586	0.0048	948.98	26.6100	1331.17	24.84	
WD3_43	0.0682	0.0006	425.20	3.5092	540.32	12.73	
WD3_42	0.4469	0.0038	2381.41	17.0779	2710.12	7.49	
WD3_41	0.1405	0.0033	847.24	18.8583	1221.21	24.34	
WD3_39	0.0660	0.0006	412.02	3.6131	653.56	16.99	
WD3_38	0.0671	0.0010	418.81	6.1650	661.29	17.42	
WD3_35	0.2200	0.0066	1282.13	34.9708	1537.48	34.94	
WD3_33	0.0661	0.0010	412.55	6.0658	700.85	26.47	
Wd3_32r	0.1670	0.0027	995.35	15.0822	1147.37	21.94	
WD3_31	0.0685	0.0009	427.06	5.2264	695.60	21.57	
WD3_30	0.2519	0.0028	1448.07	14.5532	1856.35	10.22	
WD3_29	0.1724	0.0025	1025.16	13.5273	1208.51	22.04	
WD3_28	0.4053	0.0045	2193.49	20.7151	2667.57	9.67	
WD3_27	0.1655	0.0015	987.27	8.4294	1200.28	15.05	
WD3_25	0.3036	0.0024	1709.26	11.8291	1485.30	9.78	
WD3_23	0.2553	0.0021	1465.78	11.0123	1653.94	9.54	
WD3_19	0.0722	0.0014	449.62	8.5844	994.14	31.60	
WD3_18	0.1365	0.0013	824.89	7.2114	1128.14	11.94	
WD3_16	0.2095	0.0017	1226.32	9.0156	1430.74	11.12	
WD3_12	0.2183	0.0041	1272.71	21.7967	1476.39	10.06	
WD3_10	0.0573	0.0012	359.06	7.3302	1502.29	36.08	
WD3_6	0.2165	0.0047	1263.19	24.5947	2245.05	27.00	
WD3_4	0.1227	0.0031	746.32	17.7026	1760.00	14.26	

WD-3 Concordia Diagram

WD-3 Probability Density Plot

Appendix E - WD-5

	Isotopic	Ratio	Apparent Ages					
				<u>±1σ</u>		<u>±1σ</u>	Best	<u>±1σ</u>
<u>Sample</u>	<u>206/238</u>	<u>±1σ</u>	<u>206/238</u>	<u>(Ma)</u>	<u>207/206</u>	<u>(Ma)</u>	Age	<u>(Ma)</u>
WD5_134	0.0731	0.0010	454.60	6.2170	483.62	23.9419	454.60	6.2170
WD5_133	0.2624	0.0032	1502.19	16.5485	1604.94	12.3764	1604.94	12.3764
WD5_132	0.2004	0.0031	1177.34	16.4754	1281.54	21.1562	1281.54	21.1562
WD5_131	0.2402	0.0032	1387.52	16.5121	1386.68	15.6870	1386.68	15.6870
WD5_130	0.1680	0.0027	1000.84	14.7182	1062.11	31.4462	1062.11	31.4462
WD5_129	0.0705	0.0009	439.10	5.5608	471.40	21.0664	439.10	5.5608
WD5_128	0.2515	0.0033	1446.24	17.0702	1455.38	14.6332	1455.38	14.6332
WD5_126	0.5794	0.0073	2946.35	29.8632	2969.85	10.3181	2969.85	10.3181
WD5_125	0.1790	0.0033	1061.67	18.0417	1127.44	24.8504	1127.44	24.8504
WD5_124	0.1728	0.0026	1027.70	14.3164	1052.06	14.0851	1052.06	14.0851
WD5_122	0.1773	0.0027	1052.43	14.7571	1078.61	16.6322	1078.61	16.6322
WD5_121	0.1911	0.0030	1127.48	16.0107	1161.23	16.0491	1161.23	16.0491
WD5_120	0.1791	0.0036	1062.09	19.3967	1011.10	29.1764	1011.10	29.1764
WD5_119	0.0674	0.0011	420.17	6.6599	463.70	25.9193	420.17	6.6599
WD5_118	0.2314	0.0037	1342.01	19.5006	1372.17	18.8509	1372.17	18.8509
WD5_117	0.4973	0.0076	2602.34	32.6642	2698.44	11.2028	2698.44	11.2028
WD5_114	0.1793	0.0032	1063.10	17.5366	1097.31	27.3415	1097.31	27.3415
WD5_111	0.1954	0.0021	1150.36	11.3929	1188.91	17.0127	1188.91	17.0127
WD5_110	0.0742	0.0009	461.57	5.4985	485.39	27.2481	461.57	5.4985
WD5_109	0.1753	0.0019	1041.45	10.5961	1069.85	16.5907	1069.85	16.5907
WD5_105	0.5074	0.0054	2645.55	23.2004	2736.17	10.8640	2736.17	10.8640
WD5_104	0.1808	0.0020	1071.10	10.9133	1044.97	17.2712	1044.97	17.2712
WD5_103	0.1794	0.0021	1063.93	11.5330	1084.21	18.3133	1084.21	18.3133
WD5_101	0.2646	0.0032	1513.20	16.0509	1478.92	16.3956	1478.92	16.3956
WD5_100	0.2246	0.0023	1305.93	12.2034	1332.92	14.6328	1332.92	14.6328
WD5_99	0.2951	0.0032	1666.89	15.8016	1688.27	13.0610	1688.27	13.0610
WD5_98	0.2966	0.0030	1674.35	14.6827	1720.75	12.8541	1720.75	12.8541
WD5_96	0.1703	0.0018	1013.67	9.6813	1102.69	19.8603	1102.69	19.8603
WD5_95	0.2165	0.0025	1263.16	13.1935	1287.56	18.9469	1287.56	18.9469
WD5_94	0.1754	0.0021	1041.97	11.6376	1121.84	25.1310	1121.84	25.1310
WD5_93	0.2897	0.0033	1639.79	16.4204	1646.14	14.4439	1646.14	14.4439
WD5_92	0.0753	0.0010	468.27	6.0271	468.42	29.2454	468.27	6.0271
WD5 91	0.1838	0.0018	1087.62	9.7217	1125.68	16.2039	1125.68	16.2039

Sample WD-5 (Wedington Gap) U–Pb detrital zircon LA-ICP-MS analysis results

WD5_88	0.2353	0.0029	1362.09	15.2339	1424.73	20.3210	1424.73	20.3210
WD5_85	0.1634	0.0015	975.49	8.4160	1058.69	14.0591	1058.69	14.0591
WD5_84	0.1731	0.0016	1029.21	8.7151	1036.72	14.2329	1036.72	14.2329
WD5_83	0.1783	0.0020	1057.61	10.7497	1031.02	22.6192	1031.02	22.6192
WD5_82	0.1987	0.0036	1168.49	19.3260	1267.02	21.4827	1267.02	21.4827
WD5_81	0.5442	0.0095	2800.84	39.4939	2779.21	12.4330	2779.21	12.4330
WD5_80	0.6521	0.0104	3236.57	40.4810	3590.28	9.6354	3590.28	9.6354
WD5_79	0.1691	0.0028	1006.96	15.2980	1025.41	16.5954	1025.41	16.5954
WD5_78	0.1767	0.0029	1049.11	15.6807	1038.46	14.5950	1038.46	14.5950
WD5_77	0.3053	0.0050	1717.68	24.4242	1752.93	12.9782	1752.93	12.9782
WD5_76	0.1830	0.0034	1083.33	18.2504	1152.68	21.2922	1152.68	21.2922
WD5_74	0.1891	0.0035	1116.41	19.0296	1142.89	25.0785	1142.89	25.0785
WD5_73	0.5334	0.0086	2755.72	36.2419	2710.35	10.3428	2710.35	10.3428
WD5_71	0.2986	0.0049	1684.42	24.2148	1685.24	12.9360	1685.24	12.9360
WD5_70	0.0940	0.0017	579.30	9.7556	602.60	27.4790	579.30	9.7556
WD5_69	0.2129	0.0034	1244.37	18.1597	1277.22	13.2884	1277.22	13.2884
WD5_68	0.2301	0.0040	1335.14	20.8268	1407.38	15.8746	1407.38	15.8746
WD5_66	0.0690	0.0010	430.38	6.3070	452.69	20.1880	430.38	6.3070
WD5_64	0.0676	0.0010	421.73	5.9347	442.91	16.8873	421.73	5.9347
WD5_63	0.2610	0.0038	1495.20	19.2803	1494.06	12.2159	1494.06	12.2159
WD5_62	0.1662	0.0031	990.95	16.9652	1071.83	24.2236	1071.83	24.2236
WD5_61	0.1764	0.0028	1047.54	15.3956	1150.56	17.1999	1150.56	17.1999
WD5_60	0.5365	0.0083	2768.87	34.5648	2737.32	10.4891	2737.32	10.4891
WD5_57	0.2846	0.0047	1614.25	23.7401	1630.97	18.2241	1630.97	18.2241
WD5_56	0.2416	0.0037	1394.86	18.9590	1495.38	14.9293	1495.38	14.9293
WD5_55	0.2805	0.0044	1593.78	22.2065	1666.37	13.1550	1666.37	13.1550
WD5_51	0.2983	0.0025	1683.07	12.2497	1765.45	13.3833	1765.45	13.3833
WD5_49	0.1976	0.0018	1162.26	9.5467	1189.86	17.6068	1189.86	17.6068
WD5_48	0.2412	0.0025	1393.15	13.0607	1457.18	14.3383	1457.18	14.3383
WD5_46	0.2646	0.0035	1513.22	17.6478	1532.04	18.4191	1532.04	18.4191
WD5_44	0.2622	0.0032	1501.27	16.3916	1606.23	14.5215	1606.23	14.5215
WD5_43	0.1868	0.0014	1103.84	7.6532	1138.45	14.6305	1138.45	14.6305
WD5_41	0.1763	0.0014	1046.60	7.4084	1068.76	14.4840	1068.76	14.4840
WD5_40	0.1716	0.0014	1020.79	7.4791	1004.15	15.4400	1004.15	15.4400
WD5_39	0.2292	0.0020	1330.39	10.4385	1469.14	16.4515	1469.14	16.4515
WD5_38	0.2617	0.0024	1498.37	12.1388	1598.83	13.5428	1598.83	13.5428
WD5_37	0.1823	0.0011	1079.68	6.1384	1099.11	13.9074	1099.11	13.9074
WD5_33	0.2480	0.0018	1428.25	9.0726	1448.35	14.2420	1448.35	14.2420
WD5_31	0.2692	0.0021	1536.65	10.8823	1599.45	15.4811	1599.45	15.4811

WD5_30	0.2103	0.0020	1230.51	10.7658	1171.62	16.8496	1171.62	16.8496
WD5_29	0.0763	0.0005	473.89	3.1914	522.46	17.9202	473.89	3.1914
WD5_28	0.1965	0.0017	1156.49	8.9002	1208.70	20.0592	1208.70	20.0592
WD5_24	0.1917	0.0014	1130.37	7.7335	1116.62	15.2039	1116.62	15.2039
WD5_23	0.1986	0.0013	1167.95	6.7762	1132.06	13.9383	1132.06	13.9383
WD5_21	0.1669	0.0025	995.27	13.6130	1032.72	25.1106	1032.72	25.1106
WD5_20	0.1820	0.0022	1077.93	11.8759	1120.80	17.5446	1120.80	17.5446
WD5_19	0.1624	0.0021	969.93	11.5258	1004.31	20.7270	1004.31	20.7270
WD5_18	0.1855	0.0023	1097.03	12.3112	1096.97	18.4094	1096.97	18.4094
WD5_17	0.2111	0.0023	1234.49	12.3680	1281.54	14.4838	1281.54	14.4838
WD5_15	0.1761	0.0029	1045.78	15.8465	1011.94	26.3671	1011.94	26.3671
WD5_13	0.2302	0.0028	1335.29	14.8029	1493.76	15.0840	1493.76	15.0840
WD5_12	0.2428	0.0030	1401.14	15.6264	1492.02	14.3405	1492.02	14.3405
WD5_11	0.1720	0.0024	1023.30	13.1182	1002.31	27.7860	1002.31	27.7860
WD5_10	0.1929	0.0030	1137.16	16.3646	1190.30	32.8668	1190.30	32.8668
WD5_9	0.1749	0.0022	1039.15	12.2436	1018.50	20.6045	1018.50	20.6045
WD5_8	0.1783	0.0020	1057.92	10.7442	1042.12	15.9860	1042.12	15.9860
WD5_7	0.1748	0.0019	1038.73	10.3667	989.35	16.8368	1038.73	10.3667
WD5_6	0.1720	0.0024	1023.24	13.2856	1109.11	22.5086	1109.11	22.5086
WD5_5	0.1605	0.0015	959.29	8.1842	1069.71	14.6710	1069.71	14.6710
WD5_3	0.0719	0.0007	447.41	4.4756	500.90	21.9791	447.41	4.4756
WD5_2	0.2598	0.0025	1489.02	12.5658	1524.55	13.7866	1524.55	13.7866
WD5_1	0.1791	0.0025	1061.80	13.3897	1158.32	27.9320	1158.32	27.9320
Discordanc	e >10%							
WD5_135	0.4384	0.0062	2343.26	27.9224	2814.55	11.1438		
WD5_127	0.1796	0.0028	1064.61	15.3497	1203.96	26.2875		
WD5_123	0.1929	0.0029	1137.10	15.3942	1326.55	13.2028		
WD5_116	0.2148	0.0035	1254.48	18.3707	1691.00	12.9180		
WD5_115	0.1674	0.0026	997.97	14.3208	1232.70	20.3506		
WD5_112	0.2179	0.0025	1270.82	12.9761	1490.17	13.5831		
WD5_108	0.1666	0.0026	993.33	14.1619	1132.39	26.8114		
WD5_107	0.1811	0.0030	1073.03	16.5023	1363.58	19.2515		
WD5_106	0.3989	0.0047	2163.90	21.7739	2678.58	11.1157		
WD5_97	0.0694	0.0007	432.29	4.1838	558.24	18.3823		
WD5_90	0.0625	0.0011	390.96	6.5784	540.83	54.3691		
WD5_89	0.0659	0.0006	411.27	3.8940	532.13	21.3690		
WD5_87	0.0661	0.0007	412.47	4.4108	468.52	18.0435		
WD5_86	0.0908	0.0010	560.31	5.8465	645.47	22.0800		

WD5_75	0.1869	0.0060	1104.44	32.3184	1354.95	43.0516	
WD5_72	0.0700	0.0013	436.10	7.9369	568.36	24.2041	
WD5_65	0.2491	0.0042	1433.88	21.7841	1611.13	17.3903	
WD5_59	0.2033	0.0031	1193.07	16.8530	1381.82	23.0770	
WD5_58	0.0956	0.0017	588.40	10.0748	690.59	30.9296	
WD5_54	0.4335	0.0063	2321.59	28.1565	2655.74	10.3822	
WD5_53	0.2637	0.0042	1508.90	21.3429	1913.84	14.4669	
WD5_52	0.0691	0.0007	430.74	4.0844	524.62	18.5643	
WD5_50	0.0650	0.0007	405.77	4.0719	484.49	26.6326	
WD5_47	0.1862	0.0026	1100.91	14.1424	1294.82	19.9733	
WD5_45	0.3725	0.0034	2041.04	15.8055	2341.66	11.5109	
WD5_42	0.0496	0.0006	312.25	3.7388	612.99	20.7574	
WD5_36	0.1317	0.0009	797.40	4.9546	1071.73	13.2894	
WD5_35	0.0642	0.0006	401.18	3.6603	479.90	23.4320	
WD5_34	0.0493	0.0008	310.22	5.1174	596.30	18.0272	
WD5_32	0.2032	0.0018	1192.66	9.8748	1497.90	15.4800	
WD5_27	0.1792	0.0027	1062.86	14.7994	1264.32	26.6254	
WD5_26	0.0776	0.0040	481.59	24.0017	1583.52	68.5766	
WD5_25	0.4529	0.0052	2408.01	23.1659	2795.18	10.7365	
WD5_16	0.1984	0.0030	1166.70	16.1578	1532.04	20.7068	
WD5_14	0.1754	0.0025	1041.97	13.6364	1300.71	22.6270	
WD5_4	0.0695	0.0012	432.91	7.2703	498.69	52.1456	

WD-5 Concordia Diagram

WD-5 Probability Density Plot

Appendix F - WD-6

	Isotopic	Ratio	Apparent Ages					
				<u>±1σ</u>		<u>±1σ</u>	Best	<u>±1σ</u>
<u>Sample</u>	<u>206/238</u>	<u>±1σ</u>	<u>206/238</u>	<u>(Ma)</u>	<u>207/206</u>	<u>(Ma)</u>	Age	<u>(Ma)</u>
WD6_130	0.1745	0.0023	1036.82	12.5842	1045.21	16.0155	1045.21	16.0155
WD6_129	0.3199	0.0037	1789.19	18.2721	1791.41	9.8664	1791.41	9.8664
WD6_126	0.1660	0.0023	990.03	12.9771	1039.92	15.3603	1039.92	15.3603
WD6_125	0.1691	0.0020	1006.90	11.0556	1038.92	12.4545	1038.92	12.4545
WD6_122	0.1826	0.0027	1081.20	14.6771	1081.03	18.8088	1081.03	18.8088
WD6_121	0.2964	0.0056	1673.36	27.7431	1854.26	10.5901	1854.26	10.5901
WD6_119	0.2145	0.0035	1252.62	18.8074	1257.47	10.6525	1257.47	10.6525
WD6_118	0.1860	0.0031	1099.41	16.8687	1119.05	11.6411	1119.05	11.6411
WD6_116	0.1981	0.0035	1165.00	18.7078	1235.07	13.2289	1235.07	13.2289
WD6_114	0.3163	0.0051	1771.62	25.0577	1789.23	7.5145	1789.23	7.5145
WD6_113	0.3496	0.0060	1932.66	28.5303	1963.78	8.7280	1963.78	8.7280
WD6_112	0.3055	0.0052	1718.62	25.6954	1800.18	9.2877	1800.18	9.2877
WD6_111	0.2773	0.0062	1577.90	31.2883	1654.23	16.9686	1654.23	16.9686
WD6_109	0.2350	0.0043	1360.85	22.5214	1372.67	11.6986	1372.67	11.6986
WD6_108	0.2562	0.0034	1470.14	17.5940	1518.75	10.7881	1518.75	10.7881
WD6_106	0.1824	0.0019	1079.81	10.2479	1146.66	6.5343	1146.66	6.5343
WD6_105	0.1765	0.0032	1047.68	17.4512	1057.26	15.2351	1057.26	15.2351
WD6_104	0.2008	0.0024	1179.68	12.7762	1234.06	10.5088	1234.06	10.5088
WD6_102	0.3660	0.0054	2010.60	25.2902	1999.84	8.2080	1999.84	8.2080
WD6_101	0.2763	0.0044	1572.94	22.0358	1735.68	11.5493	1735.68	11.5493
WD6_98	0.1765	0.0151	1048.06	82.2659	1163.01	62.5921	1163.01	62.5921
WD6_97	0.2728	0.0032	1554.89	16.3573	1615.41	6.9391	1615.41	6.9391
WD6_96	0.1697	0.0020	1010.67	10.8170	1092.05	12.6618	1092.05	12.6618
WD6_94	0.2864	0.0034	1623.69	17.2507	1769.65	6.7937	1769.65	6.7937
WD6_93	0.4216	0.0055	2267.85	24.6763	2304.15	6.6201	2304.15	6.6201
WD6_92	0.1774	0.0026	1052.84	14.2868	1013.89	17.7000	1013.89	17.7000
WD6_91	0.1688	0.0020	1005.45	10.9084	1021.62	10.5208	1021.62	10.5208
WD6_90	0.1809	0.0022	1071.68	11.8197	1025.10	13.8131	1025.10	13.8131
WD6_89	0.2142	0.0040	1251.20	21.0388	1194.19	18.3408	1194.19	18.3408
WD6_88	0.1945	0.0021	1145.57	11.5508	1201.09	7.8620	1201.09	7.8620
WD6_86	0.1136	0.0014	693.60	7.9849	687.45	16.0628	693.60	7.9849
WD6_85	0.1841	0.0029	1089.25	15.6068	1169.64	17.4627	1169.64	17.4627
WD6 84	0.2591	0.0029	1485.47	14.9869	1483.39	5.9438	1483.39	5.9438

Sample WD-6 (Wedington Stop 6) U–Pb detrital zircon LA-ICP-MS analysis results.

WD6_80	0.1815	0.0021	1075.37	11.2302	1105.79	14.8870	1105.79	14.8870
WD6_79	0.1832	0.0032	1084.29	17.6339	1179.17	22.6797	1179.17	22.6797
WD6_76	0.2654	0.0030	1517.20	15.1025	1619.12	10.9495	1619.12	10.9495
WD6_71	0.0695	0.0006	432.98	3.8481	472.91	14.2959	432.98	3.8481
WD6_69	0.1766	0.0032	1048.39	17.7285	1080.98	21.0378	1080.98	21.0378
WD6_68	0.2452	0.0022	1413.43	11.2603	1508.54	9.3118	1508.54	9.3118
WD6_67	0.2661	0.0051	1520.99	25.9751	1642.21	15.4768	1642.21	15.4768
WD6_63	0.3196	0.0024	1787.81	11.6834	1792.07	6.9713	1792.07	6.9713
WD6_62	0.1708	0.0027	1016.65	14.7070	1025.48	27.5271	1025.48	27.5271
WD6_61	0.1585	0.0024	948.28	13.3497	991.94	22.5269	948.28	13.3497
WD6_59	0.1756	0.0012	1043.01	6.7301	1020.64	10.5904	1020.64	10.5904
WD6_58	0.0746	0.0005	464.06	3.1996	500.97	14.5070	464.06	3.1996
WD6_57	0.2114	0.0018	1236.23	9.4427	1243.09	12.6212	1243.09	12.6212
WD6_56	0.1682	0.0015	1002.16	8.0547	1046.55	13.8820	1046.55	13.8820
WD6_55	0.1691	0.0025	1007.14	13.4994	1099.86	16.8384	1099.86	16.8384
WD6_53	0.1584	0.0024	948.07	13.5763	1043.37	15.1099	1043.37	15.1099
WD6_51	0.1522	0.0023	913.49	12.7230	955.83	17.7652	913.49	12.7230
WD6_50	0.1827	0.0024	1081.91	13.2332	1093.36	12.9372	1093.36	12.9372
WD6_49	0.2135	0.0057	1247.24	30.0998	1262.31	30.8900	1262.31	30.8900
WD6_48	0.1816	0.0027	1075.61	14.4687	1140.48	13.4214	1140.48	13.4214
WD6_47	0.2855	0.0039	1618.79	19.5844	1782.77	10.7590	1782.77	10.7590
WD6_46	0.2127	0.0029	1243.23	15.2863	1315.42	11.5112	1315.42	11.5112
WD6_45	0.1847	0.0025	1092.60	13.7269	1137.16	12.4307	1137.16	12.4307
WD6_44	0.4263	0.0063	2288.91	28.2986	2465.58	10.1329	2465.58	10.1329
WD6_43	0.3059	0.0040	1720.72	19.6547	1676.97	10.5771	1676.97	10.5771
WD6_42	0.2265	0.0032	1316.27	16.6817	1454.44	11.4769	1454.44	11.4769
WD6_41	0.1957	0.0038	1152.13	20.1873	1220.59	22.0689	1220.59	22.0689
WD6_39	0.2067	0.0035	1211.43	18.6658	1270.98	24.7000	1270.98	24.7000
WD6_37	0.1814	0.0038	1074.69	20.8941	1044.82	24.8287	1044.82	24.8287
WD6_36	0.0915	0.0006	564.28	3.4076	547.85	15.5340	564.28	3.4076
WD6_33	0.2298	0.0014	1333.71	7.2350	1286.17	11.9868	1286.17	11.9868
WD6_32	0.6034	0.0059	3043.59	23.5555	3036.18	6.1682	3036.18	6.1682
WD6_28	0.2198	0.0013	1281.00	6.9457	1308.95	10.9433	1308.95	10.9433
WD6_26b	0.1725	0.0020	1026.01	11.1067	1066.31	14.0874	1066.31	14.0874
WD6_25	0.1873	0.0022	1106.97	11.6769	1163.82	12.5067	1163.82	12.5067
WD6_23	0.2372	0.0029	1371.93	15.0214	1479.09	12.4393	1479.09	12.4393
WD6_19	0.1900	0.0023	1121.37	12.4888	1130.83	14.2958	1130.83	14.2958
WD6_18	0.1869	0.0029	1104.29	15.5157	1108.12	14.5055	1108.12	14.5055
WD6_17	0.1836	0.0021	1086.63	11.5839	1095.31	13.9668	1095.31	13.9668

WD6_15	0.2102	0.0026	1230.13	14.0733	1194.45	12.9703	1194.45	12.9703
WD6_14	0.2844	0.0031	1613.66	15.3701	1642.59	10.2308	1642.59	10.2308
WD6_13	0.1750	0.0021	1039.48	11.4904	1085.86	15.2256	1085.86	15.2256
WD6_11	0.2295	0.0027	1331.80	14.2074	1323.58	11.0782	1323.58	11.0782
WD6_10	0.1883	0.0025	1112.29	13.5117	1200.45	17.9323	1200.45	17.9323
WD6_9	0.2188	0.0024	1275.42	12.7901	1343.41	12.6333	1343.41	12.6333
WD6_8	0.1892	0.0026	1116.83	14.1614	1062.77	17.5328	1062.77	17.5328
WD6_7	0.5563	0.0061	2851.53	25.2088	2826.49	9.0962	2826.49	9.0962
WD6_5	0.3542	0.0105	1954.70	49.5618	1980.98	14.1539	1980.98	14.1539
WD6_3	0.5077	0.0161	2646.59	68.5561	2497.32	15.0675	2497.32	15.0675
WD6_1	0.2969	0.0084	1675.88	41.6546	1656.80	12.4301	1656.80	12.4301
Discordanc	e >10%							
WD6_131	0.2131	0.0035	1245.21	18.3817	1517.75	19.3688		
WD6_128	0.1530	0.0019	917.86	10.8259	1170.62	14.0677		
WD6_127	0.0837	0.0015	518.47	8.9397	586.91	44.1138		
WD6_124	0.0695	0.0017	432.92	10.2802	617.59	46.8132		
WD6_123	0.1138	0.0017	695.03	10.1179	926.88	19.6125		
WD6_121	0.2511	0.0042	1444.12	21.7295	1699.10	14.2595		
WD6_120	0.0712	0.0014	443.67	8.6836	609.22	26.3684		
WD6_117	0.1030	0.0031	631.99	17.8678	972.15	43.6828		
WD6_115	0.0872	0.0017	539.17	9.9338	724.68	26.4612		
WD6_110	0.1760	0.0036	1045.07	19.6536	1223.89	27.7764		
WD6_107	0.3988	0.0109	2163.61	49.8114	2795.96	9.9211		
WD6_103	0.1798	0.0029	1065.69	15.8039	1342.02	18.3857		
WD6_100	0.1962	0.0037	1154.70	19.8508	1342.98	17.1302		
WD6_99	0.1714	0.0028	1020.04	15.4245	1632.52	16.8912		
WD6_95	0.1518	0.0022	911.22	12.1123	1089.51	7.5374		
WD6_87	0.2262	0.0056	1314.33	29.1714	1554.24	20.7765		
WD6_83	0.0680	0.0009	424.11	5.6341	575.02	19.9162		
WD6_82	0.1640	0.0049	978.81	27.1526	1160.22	23.3957		
WD6_81	0.1708	0.0031	1016.57	17.0442	1328.36	16.1971		
WD6_77	0.1950	0.0024	1148.28	13.2026	1603.82	10.1752		
WD6_75	0.0697	0.0011	434.64	6.6109	524.21	21.0609		
WD6_74	0.1921	0.0042	1132.88	22.4327	1431.39	9.0232		
WD6_73	0.1629	0.0016	972.77	8.9359	1099.54	13.3770		
WD6_72	0.2177	0.0025	1269.62	13.4605	1676.91	8.2396		
WD6_70	0.0829	0.0014	513.38	8.0909	652.38	36.0249		
WD6_66	0.1322	0.0018	800.14	10.0977	1076.55	15.3712		

WD6_65	0.1021	0.0019	626.72	11.0335	1180.71	11.9727	
WD6_64	0.0618	0.0006	386.57	3.3761	526.55	12.7788	
WD6_60	0.0683	0.0004	425.79	2.3112	542.98	11.9038	
WD6_54	0.0390	0.0012	246.81	7.1460	503.44	54.7563	
WD6_52	0.0369	0.0009	233.48	5.7023	449.06	19.7281	
WD6_40	0.1527	0.0027	915.93	15.2302	1644.81	12.4814	
WD6_38	0.2098	0.0012	1227.70	6.5476	1060.96	11.5333	
WD6_35	0.2236	0.0019	1300.98	9.9247	1150.05	16.3207	
WD6_34	0.2250	0.0013	1308.15	6.9528	1132.58	10.3780	
WD6_31	0.2204	0.0013	1284.10	6.6955	1041.84	11.3524	
WD6_30	0.2207	0.0015	1285.77	7.7543	1098.64	14.8393	
WD6_29	0.2332	0.0013	1351.12	7.0472	1137.00	11.2543	
WD6_27	0.0998	0.0011	613.29	6.5075	729.81	52.7744	
WD6_26	0.1477	0.0068	887.94	37.9716	1056.15	16.6906	
WD6_24	0.0715	0.0009	445.10	5.4744	638.49	18.1290	
WD6_22	0.0820	0.0010	508.04	5.8795	747.26	18.9829	
WD6_21	0.1869	0.0033	1104.64	17.7973	2434.08	11.3401	
WD6_20	0.5486	0.0661	2819.23	269.4132	4544.76	27.7552	
WD6_16	0.1702	0.0048	1013.41	26.1221	1199.99	33.5286	
WD6_12	0.0812	0.0011	503.43	6.5358	751.90	22.7353	
WD6_6	0.4307	0.0127	2308.94	56.8326	2768.54	10.4216	
WD6_4	0.1955	0.0060	1151.35	32.1917	1492.36	21.3838	
WD6_2	0.0682	0.0022	425.40	13.4018	645.31	23.9343	

WD-6 Concordia Diagram

WD-6 Probability Density Plot

Appendix G - WD-8

	Isotopic	Ratio	Apparent Ages					
				<u>±1σ</u>			Best	<u>±1σ</u>
<u>Sample</u>	<u>206/238</u>	<u>±1σ</u>	<u>206/238</u>	<u>(Ma)</u>	<u>207/206</u>	<u>±1σ (Ma)</u>	Age	<u>(Ma)</u>
WD8_137	0.0687	0.0009	428.15	5.6071	424.93	29.9720	428.15	5.6071
WD8_136	0.1868	0.0028	1104.17	15.3044	1183.28	18.9877	1183.28	18.9877
WD8_135	0.1694	0.0020	1008.89	11.2268	1043.54	16.2845	1043.54	16.2845
WD8_134	0.1890	0.0020	1116.11	10.8046	1144.25	15.9427	1144.25	15.9427
WD8_133	0.3353	0.0037	1863.87	17.8664	1859.37	12.7582	1859.37	12.7582
WD8_132	0.1731	0.0024	1029.16	12.9748	1022.02	20.6964	1022.02	20.6964
WD8_131	0.0808	0.0013	500.97	7.4778	503.43	34.5197	500.97	7.4778
WD8_130	0.1947	0.0020	1146.85	10.6696	1164.19	14.7078	1164.19	14.7078
WD8_128	0.1749	0.0033	1039.03	17.8433	1161.53	23.7643	1161.53	23.7643
WD8_127	0.0739	0.0008	459.62	4.6634	496.28	18.8978	459.62	4.6634
WD8_126	0.1813	0.0019	1074.19	10.5942	1135.57	14.4027	1135.57	14.4027
WD8_125	0.1999	0.0024	1174.53	13.1423	1214.66	18.0610	1214.66	18.0610
WD8_124	0.2304	0.0028	1336.67	14.7142	1410.92	13.7528	1410.92	13.7528
WD8_123	0.2899	0.0037	1640.78	18.2189	1655.66	12.3757	1655.66	12.3757
WD8_122	0.0701	0.0009	437.05	5.1379	465.94	18.4209	437.05	5.1379
WD8_121	0.0775	0.0009	481.11	5.5561	460.88	27.5958	481.11	5.5561
WD8_120	0.1741	0.0021	1034.94	11.7063	1090.93	19.0667	1090.93	19.0667
WD8_119	0.2580	0.0030	1479.37	15.5811	1640.83	14.4414	1640.83	14.4414
WD8_118	0.2157	0.0035	1259.20	18.3325	1398.79	20.5211	1398.79	20.5211
WD8_117	0.1750	0.0021	1039.66	11.4740	1124.61	18.4874	1124.61	18.4874
WD8_115	0.1928	0.0020	1136.77	10.9474	1202.27	19.5991	1202.27	19.5991
WD8_114	0.1823	0.0019	1079.60	10.3643	1066.34	16.2359	1066.34	16.2359
WD8_113	0.2629	0.0023	1504.78	11.7431	1494.62	12.7581	1494.62	12.7581
WD8_112	0.2535	0.0033	1456.65	16.7873	1425.17	17.1239	1425.17	17.1239
WD8_111	0.1905	0.0033	1124.05	18.0350	1100.07	29.5298	1100.07	29.5298
WD8_110	0.1842	0.0030	1090.03	16.1912	1092.84	25.1271	1092.84	25.1271
WD8_109	0.1732	0.0019	1029.94	10.5465	1058.57	14.6102	1058.57	14.6102
WD8_108	0.1847	0.0033	1092.57	18.1106	1105.13	27.7055	1105.13	27.7055
WD8_107	0.2473	0.0030	1424.75	15.6555	1493.78	14.6788	1493.78	14.6788
WD8_106	0.1779	0.0020	1055.56	10.8484	1073.15	14.0373	1073.15	14.0373
WD8_105	0.5244	0.0060	2717.70	25.1385	2779.70	10.5982	2779.70	10.5982
WD8_104	0.2303	0.0028	1335.99	14.4001	1312.86	16.1436	1312.86	16.1436
WD8 103	0.5033	0.0088	2628.13	37.7159	2750.16	14.1982	2750.16	14.1982

Sample WD-8 (Pea Ridge) U–Pb detrital zircon LA-ICP-MS analysis results.

WD8_102	0.2769	0.0034	1575.93	17.1979	1660.48	12.9880	1660.48	12.9880
WD8_101	0.2766	0.0044	1574.12	22.4233	1642.21	18.1396	1642.21	18.1396
WD8_100	0.2804	0.0039	1593.21	19.4564	1687.90	14.2171	1687.90	14.2171
WD8_99	0.4528	0.0053	2407.86	23.6331	2479.28	11.2886	2479.28	11.2886
WD8_98	0.2847	0.0037	1614.83	18.7332	1642.19	13.1618	1642.19	13.1618
WD8_96	0.2330	0.0026	1350.40	13.6361	1384.73	13.2980	1384.73	13.2980
WD8_95	0.3325	0.0057	1850.26	27.6874	1803.26	18.6553	1803.26	18.6553
WD8_94	0.2048	0.0031	1201.01	16.6776	1191.66	20.0886	1191.66	20.0886
WD8_93	0.2456	0.0033	1415.95	17.0963	1519.48	13.5339	1519.48	13.5339
WD8_92	0.5083	0.0117	2649.35	49.6595	2729.76	15.0892	2729.76	15.0892
WD8_91	0.4997	0.0073	2612.46	31.1696	2687.32	11.4971	2687.32	11.4971
WD8_89	0.2216	0.0033	1290.41	17.6004	1364.84	16.7823	1364.84	16.7823
WD8_88	0.1764	0.0025	1047.28	13.5033	1123.23	18.1473	1123.23	18.1473
WD8_87	0.1864	0.0025	1102.05	13.5013	1204.76	16.8804	1204.76	16.8804
WD8_86	0.2822	0.0047	1602.54	23.7850	1619.20	15.5636	1619.20	15.5636
WD8_85	0.2449	0.0035	1412.37	18.0772	1582.69	14.5268	1582.69	14.5268
WD8_84	0.1627	0.0029	971.53	15.9699	1071.23	28.6371	1071.23	28.6371
WD8_82	0.0717	0.0010	446.13	5.7571	496.28	19.7041	446.13	5.7571
WD8_81	0.1863	0.0038	1101.07	20.5261	1190.17	32.7522	1190.17	32.7522
WD8_80	0.1903	0.0029	1122.92	15.8507	1185.91	18.7178	1185.91	18.7178
WD8_75	0.1895	0.0028	1118.58	15.1045	1086.13	14.3622	1086.13	14.3622
WD8_74	0.1982	0.0035	1165.70	18.6561	1087.98	21.3004	1087.98	21.3004
WD8_73	0.1828	0.0029	1082.06	15.7742	1086.06	16.1654	1086.06	16.1654
WD8_72	0.1688	0.0025	1005.56	13.9022	1016.26	19.7182	1016.26	19.7182
WD8_71	0.1833	0.0027	1085.19	14.6981	1068.57	17.5231	1068.57	17.5231
WD8_70	0.1481	0.0024	890.30	13.6345	866.27	23.4671	890.30	13.6345
WD8_69	0.1701	0.0024	1012.51	13.0378	1049.63	14.8086	1049.63	14.8086
WD8_67	0.4701	0.0068	2483.90	29.6490	2708.20	11.1047	2708.20	11.1047
WD8_66	0.1816	0.0024	1075.56	13.0208	1069.68	13.2803	1069.68	13.2803
WD8_64	0.5451	0.0078	2804.86	32.6448	2827.01	11.2012	2827.01	11.2012
WD8_63	0.2131	0.0042	1245.56	22.0691	1313.52	22.5945	1313.52	22.5945
WD8_62	0.3039	0.0040	1710.67	19.6749	1874.08	11.6097	1874.08	11.6097
WD8_61	0.2512	0.0034	1444.49	17.3711	1502.72	13.7445	1502.72	13.7445
WD8_59	0.2083	0.0030	1219.96	15.8503	1260.48	18.7090	1260.48	18.7090
WD8_58	0.2518	0.0038	1447.95	19.7779	1517.68	15.5476	1517.68	15.5476
WD8_57	0.3032	0.0045	1707.30	22.0314	1883.09	12.7513	1883.09	12.7513
WD8_56	0.1724	0.0019	1025.39	10.5018	1081.78	16.7176	1081.78	16.7176
WD8_55	0.1794	0.0022	1063.80	11.9862	1091.39	18.8672	1091.39	18.8672
WD8_52	0.2739	0.0027	1560.72	13.5281	1570.07	14.0651	1570.07	14.0651

WD8_51	0.3388	0.0035	1881.06	16.6749	1873.31	13.7983	1873.31	13.7983
WD8_50	0.2714	0.0024	1547.72	12.3436	1500.37	12.9883	1500.37	12.9883
WD8_49	0.2868	0.0028	1625.43	13.9177	1633.14	13.8209	1633.14	13.8209
WD8_47	0.1692	0.0020	1007.95	10.8819	1070.80	22.3785	1070.80	22.3785
WD8_46	0.2708	0.0030	1544.88	15.1785	1594.53	15.4634	1594.53	15.4634
WD8_44	0.2948	0.0028	1665.60	14.0195	1727.44	13.2969	1727.44	13.2969
WD8_42	0.1760	0.0024	1045.34	13.0335	1057.10	16.0435	1057.10	16.0435
WD8_41	0.2896	0.0049	1639.32	24.4621	1664.82	17.7149	1664.82	17.7149
WD8_40	0.2728	0.0073	1554.90	36.8334	1659.24	28.5198	1659.24	28.5198
WD8_38	0.1776	0.0022	1053.68	12.0164	1133.17	13.2276	1133.17	13.2276
WD8_37	0.2592	0.0034	1485.62	17.5947	1470.51	13.9643	1470.51	13.9643
WD8_36	0.1717	0.0022	1021.64	12.2258	1054.15	14.2883	1054.15	14.2883
WD8_35	0.2322	0.0029	1346.01	15.2670	1354.41	13.9929	1354.41	13.9929
WD8_34	0.1696	0.0022	1009.97	11.9356	1058.02	15.2540	1058.02	15.2540
WD8_33	0.1997	0.0029	1173.48	15.5557	1241.34	18.5883	1241.34	18.5883
WD8_32	0.1876	0.0031	1108.51	17.0012	1173.06	19.9900	1173.06	19.9900
WD8_31	0.4568	0.0068	2425.22	29.9472	2618.45	11.3784	2618.45	11.3784
WD8_29	0.2826	0.0036	1604.63	18.2680	1636.44	12.8705	1636.44	12.8705
WD8_28	0.1946	0.0039	1146.43	20.7644	1237.11	28.9402	1237.11	28.9402
WD8_26	0.3039	0.0023	1710.66	11.4906	1745.17	12.1182	1745.17	12.1182
WD8_25	0.1704	0.0015	1014.56	8.0138	1032.90	16.0298	1032.90	16.0298
WD8_24	0.3237	0.0027	1807.64	12.9931	1836.82	12.2404	1836.82	12.2404
WD8_23	0.2597	0.0030	1488.27	15.3977	1505.62	17.4952	1505.62	17.4952
WD8_22	0.2579	0.0030	1478.89	15.4007	1491.87	15.9490	1491.87	15.9490
WD8_19	0.3185	0.0026	1782.61	12.6274	1851.00	11.7114	1851.00	11.7114
WD8_18	0.1636	0.0014	976.91	7.5521	1019.25	15.5098	1019.25	15.5098
WD8_17	0.0821	0.0017	508.39	10.0007	555.19	31.9896	508.39	10.0007
WD8_16	0.2615	0.0022	1497.67	11.0502	1517.29	12.1800	1517.29	12.1800
WD8_11	0.2922	0.0023	1652.65	11.6922	1645.24	10.3815	1645.24	10.3815
WD8_9	0.1860	0.0017	1099.51	9.3288	1140.74	13.2565	1140.74	13.2565
WD8_8	0.1521	0.0018	912.70	10.1054	987.41	16.1969	912.70	10.1054
WD8_7	0.1733	0.0013	1030.43	7.2150	1052.42	12.4303	1052.42	12.4303
WD8_6	0.2610	0.0022	1494.74	11.0907	1453.86	10.7178	1453.86	10.7178
WD8_5	0.2691	0.0022	1536.43	11.1844	1641.64	10.3461	1641.64	10.3461
WD8_4	0.1744	0.0040	1036.37	21.8396	1082.59	26.4337	1082.59	26.4337
WD8_3	0.1899	0.0018	1120.97	9.8132	1137.37	15.2811	1137.37	15.2811
WD8_1	0.2819	0.0021	1600.72	10.4826	1616.43	9.8864	1616.43	9.8864

Discordanc	e >10%						
WD8 129	0.0701	0.0011	437.04	6.7242	858.34	50.4075	
WD8 116	0.1912	0.0020	1127.62	10.5797	1395.30	15.4749	
WD8_90	0.0768	0.0011	476.85	6.8258	545.99	26.2775	
WD8_83	0.2491	0.0032	1433.91	16.5182	1790.66	19.1184	
WD8_79	0.3288	0.0069	1832.47	33.3123	2141.53	21.2178	
WD8_78	0.1996	0.0031	1172.91	16.3895	1324.73	17.8079	
WD8_77	0.0750	0.0011	465.98	6.3359	555.10	18.4193	
WD8_76	0.0673	0.0010	420.02	6.1010	500.46	21.9550	
WD8_68	0.0826	0.0014	511.49	8.0536	806.30	27.8334	
WD8_65	0.0768	0.0012	477.20	6.9769	743.37	21.8656	
WD8_54	0.1275	0.0024	773.71	13.8237	1187.55	20.6058	
WD8_53	0.1040	0.0018	637.94	10.3810	2248.61	63.4970	
WD8_48	0.0871	0.0010	538.22	5.8977	663.44	27.2554	
WD8_45	0.4255	0.0046	2285.30	20.6188	2779.40	11.5306	
WD8_43	0.0912	0.0011	562.50	6.3397	761.76	25.9136	
WD8_39	0.2088	0.0027	1222.20	14.1675	1819.05	11.6870	
WD8_30	0.0741	0.0010	460.93	6.1210	544.42	20.7267	
WD8_21	0.1908	0.0036	1125.66	19.4496	1599.29	16.9331	
WD8_20	0.0889	0.0028	549.06	16.3025	850.17	52.4139	
WD8_15	0.0699	0.0006	435.53	3.7164	573.47	19.3775	
WD8_14	0.1244	0.0015	755.95	8.7151	854.92	18.8636	
WD8_13	0.1604	0.0020	959.02	10.8425	1248.54	12.9128	
WD8_12	0.3065	0.0041	1723.67	20.1020	2634.92	12.3292	
WD8_10	0.2002	0.0043	1176.39	23.2318	3549.77	14.4247	
WD8_2	0.1629	0.0013	972.89	7.2938	1099.22	11.8101	

WD-8 Concordia Diagram

WD-8 Probability Density Plot

Appendix H - Surface Thicknesses (From Price, 1980)

<u>Point</u>	Locations	Gross Sand Thickness
1	SE1/4, NW1/4, Sec. 27, T.16N, R.32W.	62
2	SE1/4, NE1/4, Sec. 13, T.16N, R.33W.	21
3	Wedington Mtn.	25
4	SE1/4, NW1/4, Sec. 27, T.17N, R.32W.	32
5	NW1/4, SE1/4, Sec. 15, T.17N, R.32W.	25
6	NW1/4, NE1/4, Sec. 7, T.15N, R.32W.	30
7	SE1/4, NW1/4, Sec. 6, T.15N, R.32W.	48.5
8	SW1/4, NW1/4, Sec. 27, T.15N, R.32W.	77.5
9	NE1/4, SW1/4, Sec. 2, T.13N, R.32W.	8
10	NE1/4, NE1/4, Sec. 5, T.14N, R.30W.	75
11	NE1/4, NE1/4, Sec. 30, T.18N, R.29W.	70
12	Price Mtn.	75
13	NW1/4, NE1/4, Sec. 14, T.17N, R.28W.	34
14	NE1/4, NE1/4, Sec. 3, T.17N, R.28W.	63
15	NE1/4, SW1/4, Sec. 2, T.15N, R.30W.	13.5
16	NE1/4, SE1/4, Sec. 25, T.16N, R.29W.	16.5
17	NW1/4, NW1/4, Sec. 34, T.17N, R.27W.	11
18	SE1/4, NE1/4, Sec. 19, T.16N, R.25W.	7.25
19	SE1/4, NE1/4, Sec. 1, T.15N, R.24W.	9.5
20	NE1/4, NW1/4, Sec. 26, T.12N, R.33W.	3.75
21	SW1/4, NE1/4, Sec. 17, T.14N, R.32W.	29
22	NW1/4, SW1/4, Sec. 14, T.15N, R.31W.	6.75
23	NE1/4, SE1/4, Sec. 23, T.16N, R.29W.	16
24	NW1/4, NW1/4, Sec. 14, T.21N, R.25E.	9.5
25	SW1/4, NE1/4, Sec. 8, T.16N, R.25E.	25
26	NE1/4, SW1/4, Sec. 27, T.16N, R.26E.	16
27	NE1/4, SW1/4, Sec. 18, T.17N, R.21W.	50
28	NW1/4, SW1/4, Sec. 34, T.15N, R.29W.	25
29	NW1/4, NW1/4, Sec. 22, T.15N, R.29W.	28
30	NW1/4, NW1/4, Sec. 27, T.15N, R.29W.	25
31	NW1/4, SW1/4, Sec. 14, T.21N, R.28W.	48

Appendix I - Subsurface Thickness

				<u>Gross Sand</u>	
Well	<u>Point</u>	<u>Latitude</u>	<u>Longitude</u>	Thickness	<u>County</u>
Mason 1	32	35.5295	-94.1259	42	Crawford
Bearden 3	33	35.5565	-93.9840	20	Franklin
MayCarty 1	34	35.5553	-93.9934	58	Franklin
Magruder 1	35	35.5308	-93.8717	11	Franklin
Wilson 4	36	35.5248	-93.9845	44	Franklin
Hamm 1	37	35.5894	-93.7856	8	Franklin
Ray 1	38	35.5482	-93.7958	7	Franklin
Magruder 2	39	35.5321	-93.8784	14	Franklin
Whiterock 1	40	35.6888	-93.9547	15	Franklin
Richason Mountain 1	42	35.6925	-93.9943	7	Crawford
Hayes - 1	43	36.0624	-93.7830	8	Madison
Rogers - 1	44	35.9454	-93.8134	8	Madison
L. Keck 3	45	35.9437	-93.6882	5	Madison
Lambeth 1	46	35.9157	-93.9611	14	Washington
Yett 1	47	35.8672	-93.8525	10	Madison
Waldrop -1	48	35.8478	-93.5565	4	Madison
McRay Baker 1	49	35.7521	-93.7906	10	Franklin
Deffenbaugh - 1	50	35.6154	-94.3919	26	Crawford
Brewer 1	51	35.6278	-94.0172	6	Franklin
Federal Es. 11609	52	35.6467	-93.7437	2	Franklin
Montgomery 3	53	35.6409	-93.5487	0	Johnson
Bruce 1 26	54	35.5151	-94.1599	10	Crawford
F. Johnson Et al 1	55	35.5463	-93.8740	2	Franklin
N. Orr 1	56	35.4769	-94.4260	2	Crawford
Arkansas Valley Trust 1	57	35.4493	-94.0138	4	Franklin
Hiatt V 1	58	35.4087	-94.0633	6	Franklin
Nall Johnny Mark 1	59	35.8987	-94.3436	12	Washington
Butler A 1	60	35.8166	-94.1008	14	Washington
Ray Henson 1	61	35.8179	-94.0020	4	Washington
Hampton A2	62	35.8066	-94.1055	12	Washington
Timmons Seth and					
Clarrissa 1	63	35.9195	-94.2436	46	Washington
Beller 1	64	35.5001	-94.2651	15	Crawford

Appendix J

