
University of Arkansas, Fayetteville
ScholarWorks@UARK

Horticulture Undergraduate Honors Theses Horticulture

12-2016

The Effects of Shade on Growth, Development and
Yield of a Primocane Fruiting Blackberry, ‘Prime-
Ark 45’ to Extend the Market Season
Olivia C. Caillouet
University of Arkansas

Follow this and additional works at: http://scholarworks.uark.edu/hortuht

Part of the Horticulture Commons

This Thesis is brought to you for free and open access by the Horticulture at ScholarWorks@UARK. It has been accepted for inclusion in Horticulture
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu,
ccmiddle@uark.edu.

Recommended Citation
Caillouet, Olivia C., "The Effects of Shade on Growth, Development and Yield of a Primocane Fruiting Blackberry, ‘Prime-Ark 45’ to
Extend the Market Season" (2016). Horticulture Undergraduate Honors Theses. 4.
http://scholarworks.uark.edu/hortuht/4

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fhortuht%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/hortuht?utm_source=scholarworks.uark.edu%2Fhortuht%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/hort?utm_source=scholarworks.uark.edu%2Fhortuht%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/hortuht?utm_source=scholarworks.uark.edu%2Fhortuht%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/105?utm_source=scholarworks.uark.edu%2Fhortuht%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/hortuht/4?utm_source=scholarworks.uark.edu%2Fhortuht%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


The	Effects	of	Shade	on	Growth,	Development	and	Yield	of	a	Primocane	Fruiting	Blackberry,	

‘Prime-Arkâ	45’	to	Extend	the	Market	Season	

	

Olivia	Caillouet1	

Department	of	Horticulture,	University	of	Arkansas,	Plant	Sciences	Building	PTSC	316,	

Fayetteville,	AR	72701	

	

This	thesis	was	written	as	partial	fulfillment	of	an	undergraduate	Bumpers	College	Honors	

Degree	Program	

	

	

	

	

	

	

	

	

	

																																																													
1	Honors	program	with	a	major	in	Horticulture,	Landscape,	and	Turf	Sciences	and	
minoring	in	Foundations	of	Sustainability	



	 1	

	

The	Effects	of	Shade	on	Growth,	Development	and	Yield	of	a	Primocane	Fruiting	Blackberry,	

‘Prime-Arkâ	45’	to	Extend	the	Market	Season		

	

Subject	Category:	Sustainability	and	Fruit	Production		

Additional	Index	Words.	Plant	physiology,	Arkansas,	adaptation,	high	tunnel,	flower	

	

	

	

	

	

	

	

	

	

	

	



	 2	

	

	

	

	

Thesis	Director	

Dr.	Curt	R.	Rom2	

	

Thesis	Committee:	

Dr.	John	R.	Clark3		
	

Dr.	M.	Elena	Garcia4	
	

Dr.	Lawton	Lanier	Nalley5	
	

	

	

	

	

	

	

	

	

	

																																																													
2	University	Professor,	Department	of	Horticulture 
3	Distinquished	Professor,	Department	of	Horticulture	
4	Professor,	Department	of	Horticulture 
5	Associate	Professor	of	Agricultural	Economics	and	Agribusiness,	Agriculture	Bldg.	Room	218A	



	 3	

	

	



	 4	

Acknowledgements	

This	 research	 would	 not	 have	 been	 possible	 without	 the	 support	 and	 guidance	 from										

Dr.	 Curt	 Rom.	 I	 appreciate	 the	 opportunity	 to	 gain	 research	 experience	 with	 blackberry	

production	during	my	time	as	an	undergraduate.		

I	would	also	like	to	thank	my	thesis	committee,	Drs.		John	Clark,	Elena	Garcia,	and	Lanier	

Nalley,	for	the	advice	and	help	throughout	this	process.	Special	thanks	is	given	to	Jason	McAfee6	

who	gave	technical	support	and	help	during	and	after	data	collection.	This	research	would	not	

have	been	possible	without	the	assistance	from	Heather	Friedrich7,	Luke	Freeman8	and	Shelby	

Goucher9.		

Financial	 support	was	provided	by	 the	 Southern	 Sustainable	Agriculture	Research	 and	

Education	 (SSARE;	 LS12-250)	 grant	 and	 an	 additional	 SSARE	 Young	 Scholar	 Enhancement	

apprenticeship	grant.	 In	addition,	 the	University	of	Arkansas	Honors	College	and	Horticulture	

Department	made	this	experience	accessible.		

I	would	like	to	thank	those	close	to	family,	friends,	and	me	who	offered	advice	and	words	

of	 encouragement	 along	 the	 way.	 This	 undergraduate	 research	 thesis	 would	 not	 have	 been	

possible	without	those	listed	above.			

	

	

	

																																																													
6	Program	Technician	III	
7	Program	Technician	III	
8	Program	Technician	I	
9	Fiscal	Support	Specialist	



	 5	

																																																					Table	of	Contents																																																																														Page	

	

Table	of	Figures……………………………………………………………………………………………………………….……………..........7	

Table	of	Tables	………………………………………………………………………………………………………………………….……………9	

Table	of	Appendices……………………………………………………………………………………………………….….………..………..10	

List	of	Abbreviations………………………………………………………………………………………………………….…………………..15	

									Abstract………….………………………………………………………………………………………………………………..……………………17	

Chapter	1:	Introduction	and	Review	of	Relevant	Literature	

							Introduction………….…………………………………………………………………………………………………………………………………19	

								Literature	Review…….………………………………………………….…………………….……………….………………………………….22	

																				Blackberry	production……….……………….…………………………….……………….…………………………………………22	

																				Primocane	blackberries……….……………….…………………………….……………….……………………………………….24	

																				Light	influences	on	plant	growth……….……………….…………………………….……………….…………………………28	

																				Effects	of	shade	on	light	levels……….……………….…………………………….……………….…………………………….29	

																				Effects	of	shade	on	temperature	……….……………….…………………………….……………….………………………..31	

									Literature	Cited…………………….…………………….……………………….….…………………………………………………………….33	

Chapter	 2:	 Effect	 of	 timing	 of	 shade	 on	 growth,	 development,	 physiology	 and	 fruiting	 of	 a	

primocane	fruiting	blackberry	in	a	controlled	environment		

Introduction…………………….…………………….……………………….…………………….……………………….……………………39	

Literature	Review…….……………………….……………………….…………………….…….………………………..……………………40	

Materials	and	Methods…….……………………….……………………….………………..………….……………………………………44	

Results,	Discussion,	Conclusions…….……………………….………………………..….……………………….………………………48	

Literature	Cited…….……………………………………….….………………………………………………………….……………….………62	



	 6	

Chapter	3:	The	effect	of	time	and	amount	of	shade	on	growth	and	fruiting	of	‘Prime-Arkâ	45’	

primocane	blackberry	in	field	conditions	

Introduction…………………….…………………….…………………….…………………….…………………………………………………65	

Literature	Review…….……………………….……………………….……………………….………………………..……………………….66	

Materials	and	Methods…….……………………….……………………….……………………….…………………………………….….70	

Results,	Discussion,	Conclusions…….……………………….……………………….……………………….…………………………..75	

Literature	Cited…….…………………………….……………………………….……………………………………….……………………….89	

	

Appendices:	Greenhouse	Tables	and	Figures……………………………………………………………..………………………..91	

Appendices:	Field	Tables	and	Figures…………………………………………………………………………….…………………..114	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 7	

	
Table	of	Figures	

	
Page	

Figure	1.	Shade-unshaded	treated	plants	of	‘Prime-Arkâ	45’	day	36	of	the	
experiment	trained	to	a	single	bamboo	stake	while	grown	in	a	greenhouse,	
Fayetteville,	AR.,	2014.	……………………………………………………………………………………………..	
	

51	

Figure	2.	The	Shaded-shaded	treatment	on	day	1	of	the	experiment	of	‘Prime-Arkâ	
45’	blackberry	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.,	2014……………….	
	

52	

Figure	3.	All	shade	was	removed	day	59	of	the	experiment	and	‘Prime-Arkâ	45’	
blackberry	grown	in	pots	as	affected	by	four	shade	treatments	grew	for	an	
additional	30	days	in	the	greenhouse,	2014,	Fayetteville,	AR…………………………………….	
	

53	

Figure	4.	Estimated	leaf	chlorophyll	content	measured	as	measured	by	Minolta	
SPAD-502	Plusâ	monitor	of	‘Prime-Arkâ	45’	blackberry	grown	in	pots	as	affected	by	
four	shade	treatments,	2014,	Fayetteville,	AR……………………………………………………………	
	

54	

Figure	5.	Cane	height	of	a	single	cane	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	
grown		in	pots	as	affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	
2014,	Fayetteville,	AR.	………………………………………………………………………………………………	
	

56	

Figure	6.	Cane	diameter	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	grown	in	
pots	as	affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	
Fayetteville,	AR.	………………………………………………………………………………………………………..	
	

58	

Figure	7.	Assimilation	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	grown	in	pots	
as	affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	
Fayetteville,	AR.	………………………………………………………………………………………………………..	
	

59	

Figure	8.	Estimated	leaf	chlorophyll	as	measured	by	SPAD	content	of	‘Prime-Arkâ	
45’	blackberry	grown	in	pots	as	affected	by	four	shade	treatments	while	grown	in	a	
greenhouse,	2014,	Fayetteville,	AR.	………………………………………………………………………….	
	

60	

Figure	9.	Prior	to	early	shade	treatment	implementation,	day	1	of	the	experiment,			
of	‘Prime-Arkâ	45’	blackberry	while	grown	in	the	field	experiment,	2014…………………	
	

78	

Figure	10.	Assimilation	measurements	of	the	control	treatment	of	‘Prime-Arkâ	45’	
blackberry	while	grown	in	the	field	experiment,	2014……………………………………………….	
	

79	

Figure	11.	Assimilation	measurements	of	a	control	treatment	plot	after	
implementation	of	early	shade	and	middle	shade	treatment	cloth	of	‘Prime-Arkâ	
45’	blackberry	grown	in	the	field	experiment,	2014…………………………………………………..	

80	



	 8	

	
Figure	12.	An	example	of	fruit	ripeness	variation	of	‘Prime-Arkâ	45’	control	
treatment	blackberries	while	grown	in	the	field	experiment,	2014……………………………	
	

81	

Figure	13.	Blackberries	of	treatment	plots	of	‘Prime-Arkâ	45’	blackberry	as	affected	
by	seven	shade	treatments	while	grown	in	the	field	experiment,	2014.	……………………	
	

82	

Figure	14.	Estimated	leaf	chlorophyll	content	as	measured	by	SPAD	of	‘Prime-Arkâ	
45’	blackberry	as	affected	by	seven	shade	treatments	while	grown	in	the	field	
experiment,	2014.	…………………………………………………………………………………………………….	
	

84	

Figure	15.	Cumulative	yield	berry	weight	of	‘Prime-Arkâ	45’	blackberry	plants	across	
all	harvest	dates	as	affected	by	seven	shade	treatments	while	grown	in	the	field	
experiment,	2014.…………………………………………………………………………………………………….	
	

85	

Figure	16.	Total	berry	weight	at	each	day	of	harvest	of	‘Prime-Arkâ	45’	blackberry	
as	affected	by	seven	shade	treatments	while	grown	in	the	field	experiment,	2014……	
	

87	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	 	



	 9	

Table	of	Tables	
	

Page	

Table	1.	Height	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	grown	in	pots	as	
affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	
AR………………………………………………………………………………………………………………………………	
	

55	

Table	2.	Final	growth	and	harvest	measurements	of	a	single	cane	of	‘Prime-Arkâ	45’	
blackberry	grown	in	pots	as	affected	by	four	shade	treatments	while	grown	in	a	
greenhouse,	2014,	Fayetteville,	AR………………………………………………………………………………………..	
	

57	

Table	3.	Date	of	first	flower	blooms	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	grown	in	
pots	as	affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	
AR.	………………………………………………………………………………………………………………………………………..	
	

61	

Table	4.	Estimated	leaf	chlorophyll	content	as	measured	by	SPAD	of	‘Prime-Arkâ	45’	
blackberry	as	affected	by	seven	shade	treatments	while	grown	in	the	field	
experiment,	2014.	………………………………………………………………………………………………………………	
	

83	

Table	5.	Cumulative	yield	berry	weight	of	‘Prime-Arkâ	45’	blackberry	of	plants	
across	all	harvest	dates	as	affected	by	seven	shade	treatments	while	grown	in	the	
field	experiment,	2014.	……………………………………………………………………………………………………..	
	

86	

Table	6.	Cumulative	marketable	yield	berry	weight	of	‘Prime-Arkâ	45’	blackberry	of	
plants		across	all	harvest	dates	as	affected	by	seven	shade	treatments	while	grown	
in	the	field	experiment,	2014.	…………………………………………………………………………………………..	

88	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 	



	 10	

Table	of	Appendices																																																															
	

Page	

	 	
Appendix	1.	Root	and	shoot	ratio	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	
shade	treatments	while	grown	in	a	greenhouse,	2014.………………………………………………	
	

91	

Appendix	2.	Estimated	leaf	chlorophyll	content	as	measured	by	SPAD	set	to	percent	
of	control	(100%)	of	‘Prime	Arkâ	45’	blackberry	as	affected	by	seven	shade	
treatments	while	grown	in	the	field	experiment,	2014.……………………………………………..	
	

92	

Appendix	3.	Assimilation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
treatments	while	grown	in	a	greenhouse,	2014.………………………………………………………	
	

93	

Appendix	4.	Assimilation	set	to	percent	of	control	(100%)	of	‘Prime-Arkâ		45’	
blackberry	as	affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	
Fayetteville,	AR.………………………………………………………………………………………………………..	

94	

Appendix	5.	Evapotranspiration	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	
shade	treatments	while	grown	in	a	greenhouse,	2014.…………………………………………….	
	

95	

Appendix	6.	Evapotranspiration	of	‘Prime-Arkâ	45’	blackberry	affected	by	four	
shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR…………………….	
	

96	

Appendix	7.	Evapotranspiration	set	to	percent	of	control	(100%)	of	‘Prime-Arkâ	45’	
blackberry	as	affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	
Fayetteville,	AR.……………………………………………………………………………………………………….	
	

97	

Appendix	8.	Vapor	pressure	deficiency	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
four	shade	treatments	while	grown	in	a	greenhouse,	2014……………………………………….	
	

98	

Appendix	9.	Vapor	pressure	deficit	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	
shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR……………………	
	

99	

Appendix	10.	Ambient	leaf	temperature	of	‘Prime-Arkâ	45’	blackberry	as	affected	
by	four	shade	treatments	while	grown	in	a	greenhouse,	2014…………………………………..	
	

100	

Appendix	11.	Ambient	leaf	temperature	of	‘Prime-Arkâ	45’	blackberry	as	affected	
by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR…………	
	

101	

Appendix	12.	Chamber	relative	humidity	of	a	leaf	of	‘Prime-Arkâ	45’	blackberry	as	
affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	while	
measuring	gas	exchange	(CIRAS-2	with	Parkinson	leaf	chamberâ)……………………………	
	

102	



	 11	

Appendix	13.	Chamber	relative	humidity	of	a	leaf	of	‘Prime-Arkâ	45’	blackberry	as	
affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	while	
measuring	gas	exchange	(CIRAS-2	with	Parkinson	leaf	chamberâ)……………………………	
	

103	

Appendix	14.	Photosynthetically	active	radiation	of	a	single	leaf	measured	at	the	
time	of	assimilation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
treatments	while	grown	in	a	greenhouse,	2014…………………………………………………………	
	

104	

Appendix	15.	Photosynthetically	active	radiation	of	a	single	leaf	measured	at	the	
time	of	assimilation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.	…………………………….	
	

105	

Appendix	16.	Leaf	temperature	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	
shade	treatments	while	grown	in	a	greenhouse,	2014………………………………………………	
	

106	

Appendix	17.	The	leaf	temperature	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR……………	
	

107	

Appendix	18.	Internal	CO2	concentrations	of	‘Prime-Arkâ	45’	blackberry	as	affected	
by	four	shade	treatments	while	grown	in	a	greenhouse,	2014…………………………………..	
	

108	

Appendix	19.	Internal	CO2	concentrations	of	‘Prime-Arkâ	45’	blackberry	as	affected	
by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR…………	
	

109	

Appendix	20.	Stomatal	conductance	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
four	shade	treatments	while	grown	in	a	greenhouse,	2014……………………………………….	
	

110	

Appendix	21.	Stomatal	conductance	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR……………..	
	

111	

Appendix	22.	Foliar	water	use	efficiency	of	‘Prime-Arkâ	45’	blackberry	as	affected	
by	four	shade	treatments	while	grown	in	a	greenhouse,	2014…………………………………..	
	

112	

Appendix	23.	Foliar	water	use	efficiency	of	‘Prime-Arkâ	45’	blackberry	as	affected	
by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR…………	
	

113	

Appendix	24.	Assimilation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	
treatments	while	grown	in	the	field	experiment,	2014………………………………………………	
	

114	

Appendix	25.	Assimilation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	
treatments	while	grown	in	the	field	experiment,	2014………………………………………………	
	

115	

Appendix	26.	Internal	CO2	concentrations	of	‘Prime-Arkâ	45’	blackberry	as	affected	
by	seven	shade	treatments	while	grown	in	a	field	experiment,	2014…………………………	

116	



	 12	

	
Appendix	27.	Internal	CO2	concentrations	of	‘Prime-Arkâ	45’	as	affected	by	seven	
shade		 treatments	while	grown	in	a	field	experiment,	2014………………………………………	
	

117	

Appendix	28.	Chamber	relative	humidity	of	a	leaf	of	‘Prime-Arkâ	45’	blackberry	as	
affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	2014,	while	
measuring	gas	exchange	(CIRAS-2	with	Parkinson	leaf	chamberâ)……………………………	
	

118	

Appendix	29.	Chamber	relative	humidity	of	a	leaf	of	‘Prime-Arkâ	45’	blackberry	as	
affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	2014,	while	
measuring	gas	exchange	(CIRAS-2	with	Parkinson	leaf	chamberâ)……………………………	
	

119	

Appendix	30.	Photosynthetically	active	radiation	of	‘Prime-Arkâ	45’	blackberry	as	affected	
by	seven	shade	treatments	while	grown	in	the	field	experiment,	2014………………………………….	
	

120	

Appendix	31.	Photosynthetically	active	radiation	of	‘Prime-Arkâ	45’	blackberry	as	affected	
by	seven	shade	treatments	while	grown	in	the	field	experiment,	2014………………………………….	
	

121	

Appendix	32.	Evapotranspiration	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	
shade	treatments	while	grown	in	the	field	experiment,	2014……………………………………	
	

122	

Appendix	33.	Evapotranspiration	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	
shade	treatments	while	grown	in	the	field	experiment,	2014……………………………………	
	

123	

Appendix	34.	Stomatal	conductance	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
seven	shade	treatments	while	grown	in	the	field	experiment,	2014…………………….		
	

124	

Appendix	35.	Stomatal	conductance	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
seven	shade	treatments	while	grown	in	the	field	experiment,	2014……………………….	
	

125	

Appendix	36.	Total	berry	weight	by	day	of	harvest	of	‘Prime-Arkâ	45’	blackberry	as	
affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	2014………….	
	

126	

Appendix	37.	Cumulative	yield	berry	weight	across	all	days	of	harvest	of	‘Prime-
Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	field	
experiment,	2014.		Numbers	in	parenthesis	represented	percent	of	the	control………	
	

127	

Appendix	38.	Total	average	total	berry	weight	by	harvest	date	of	‘Prime-Arkâ	45’	
blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	
2014…………………………………………………………………………………………………………………………	
	

128	

Appendix	39.	Total	marketable	berry	weight	by	harvest	date	of	‘Prime-Arkâ	45’	
blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	
2014.………………………………………………………………………………………………………………………….	

129	



	 13	

	
Appendix	40.	Total	percentage	of	marketable	weight	out	of	total	berry	weight	by	
harvest	date	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	
while	grown	in	a	field	experiment,	2014…………………………………………………………………..	
	

130	

Appendix	41.	Cumulative	marketable	yield	weight	across	all	days	of	harvest	of	
‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	while	grown	in	
the	field	experiment,	2014……………………………………………………………………………………….	
	

131	

Appendix	42.	Total	culled	berry	weight	by	harvest	date	of	‘Prime-Arkâ	45’	
blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	
2014…………………………………………………………………………………………………………………………..	
	

132	

Appendix	43.	Total	percentage	of	culled	weight	out	of	total	berry	weight	by	harvest	
date	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	while	
grown	in	a	field	experiment,	2014……………………………………………………………………………..	
	

133	

Appendix	44.	Cumulative	culled	berry	weight	across	all	days	of	harvest	of	‘Prime-
Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	field	
experiment,	2014………………………………………………………………………………………………………	
	

134	

Appendix	45.	Cumulative	culled	berry	weight	across	all	days	of	harvest	of	‘Prime-
Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	field	
experiment,	2014………………………………………………………………………………………………………	
	

135	

Appendix	46.	Berry	25	count	of	brix's	or	soluble	solids	(estimated	sugar	content)	of	
‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	
field	experiment,	2014.	…………………………………………………………………………………………….	
	

136	

Appendix	47.	Final	destructive	cane	analysis	of	‘Prime-Arkâ	45’	blackberry	as	
affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	2014…………..	
	

137	

Appendix	48.	Cane	diameter	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	
shade	treatments	while	grown	in	a	field	experiment,	2014……………………………………….	
	

138	

Appendix	49.	Cane	shoot	length	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	
shade	treatments	while	grown	in	a	field	experiment,	2014……………………………………….	
	

139	

Appendix	50.	Number	of	nodes	per	cane	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
seven	shade	treatments	while	grown	in	a	field	experiment,	2014……………………………..	
	

140	

Appendix	51.	 Length	between	nodes	of	 ‘Prime-Arkâ	45’	blackberry	as	affected	by	
seven	shade	treatments	while	grown	in	a	field	experiment,	2014……………………………..	
	

141	



	 14	

Appendix	52.	Number	of	lateral	branches	per	cane	of	‘Prime-Arkâ	45’	blackberry	as	
affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	2014…………..	
	

143	

Appendix	53.	Number	of	fruit	clusters	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
seven	shade	treatments	while	grown	in	a	field	experiment,	2014……………………………..	
	

143	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	

	

	

	

	

	

	

	

	

	

	



	 15	

List	of	Abbreviations	

Abbreviation	 	 Complete	Form	

A		 	 	 CO2	Assimilation	(µm/m2/s1)	

BPs	 	 	 Best	Practices	

CK	 	 	 Check	or	Control	treatment	

CEA	 	 	 Controlled	Enviroment	Agriculture		
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Abstract	

This	thesis	examines	the	effects	of	shade	on	‘Prime-Arkâ	45’	blackberries	(Rubus	spp.)		in	

greenhouse	(GH)	and	field	(FD)	experiments	aimed	at	improving	fruit	production	in	the	southern	

United	 States	Ozark	Plateau	 region.	 Primocane	blackberry	production	 in	 the	 southern	United	

States	is	limited	in	acreage	of	production	as	well	as	low	yields	by	high	temperatures	during	the	

bloom	and	early	fruiting	period,	resulting	in	poor	fruit	set	and	poor	fruit	quality.	Shade	may	have	

the	 potential	 to	 delay	 bloom	 and	 flowering	 to	 a	 more	 favorable	 season	 or	 by	 reducing	

temperatures	that	cause	a	poor	fruit	set	and	quality.	Both	the	GH	and	the	FD	experiment	was	

established	in	the	June	2014	to	evaluate	the	effects	of	shade	on	primocane	fruiting	blackberry	

growth,	 physiology	 and	 fruiting.	 The	 research	 objectives	were	 experimenting	 the	 timing	 and	

intensity	 of	 shade	 on	 the	 potential	 for	 delayed	 flowering	 and	 fruiting.	 The	 GH	 experiment	

analyzed	 four	 treatments	using	50%	 shade	 cloth:	 1)	 an	untreated	nonshaded	 control	 [CK],	 2)	

unshaded	for	29	days	then	shaded	for	30	days	[US],	3)	shaded	for	29	days	then	shaded	for	30	

days	[SS],	and	4)	shaded	for	29	days	and	unshaded	for	30	days	[SU].		Each	treatment	had	11	single	

plant	 replicates.	 The	 number	 of	 flower	 buds,	 flowers,	 and	 individual	 fruits	 did	 not	 vary	

significantly	among	treatments	in	the	greenhouse	experiment.		The	last	to	bloom	was	the	SU,	26	

days	after	the	CK	on	28	July.	These	findings	are	significant	because	fruit	could	be	shifted	to	5	Sept.	

compared	to	the	CK	which	would	fruit	approximately	10	Aug.	A	FD	experiment	was	conducted	to	

study	the	effects	of	various	levels	and	time	of	shade	treatments	on	‘Prime-Arkâ	45’	blackberries.	

The	FD	experiment	differs	from	the	GH	experiment	because	it	included	two	levels	of	shade	30%	

and	50%	 implemented	at	different	 times	 throughout	 the	growing	season.	The	FD	experiment	

consisted	 of	 seven	 treatments	with	 varying	 levels	 of	 shade	 and	 differing	 dates	 of	 treatment	

implementation:	1)	an	untreated	nonshaded	control	[CK],	2)	early	shade	30%	[ES30],	mid	shade	

30%	[MS30],	4)	late	shade	30%	[LS30],	5)	early	shade	50%	[ES50],	6)	mid	shade	50%	[MS50],	7)	

late	shade	50%	[LS50].	The	30%	and	50%	treatments	began	16	June	[ES],	1	July	[MS]	and	15	July	

[LS];	there	were	5	replications	per	treatment.	Growth	measurements	were	taken	weekly	for	both	

experiments	to	measure	estimated	leaf	chlorophyll	content	and	leaf	assimilation.	No	significant	

differences	for	cane	length,	cane	diameter,	node	number,	internode	length,	number	of	lateral	

branches	or	number	of	fruit	clusters	were	observed	among	treatments.	Field	treatments	ES30,	
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MS30	and	ES50	had	less	fruit	than	LS	treatments	during	the	experiment	period.	It	is	possible	that	

flowering	and	fruiting	of	the	ES	treatment	could	have	continued	after	the	end	of	this	experiment	

due	to	the	delay	in	flowering	and	fruiting	as	observed	in	the	GH	experiment.	In	the	future	shade	

should	be	applied	1	May	as	opposed	to	16	June	and	could	be	coupled	with	season-extending	high	

tunnel	systems	to	protect	fruit	against	freezing	autumn	weather.	
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Chapter	1:	Introduction	and	Review	of	Relevant	Literature	

Introduction	

Fruit	production	is	an	important	aspect	of	agriculture	with	economic	and	environmental	

impacts	in	the	southern	region.	For	farmer’s	fruit	production	is	a	high	energy	intensive	process	

that	offers	a	wide	range	of	obstacles	that	can	reduce	profitability	and	the	return	on	

investments.	Through	organic,	sustainable	practices	this	research	aims	to	improve	fruit	quality,	

reduce	negative	environmental	impacts	and	improve	the	local	food	system	in	the	south.		Shade	

was	used	as	a	management	tool	to	reduce	heat	stress	on	berries	from	high	solar-radiation	

experienced	throughout	the	summer	months	in	the	southern	region.	

With	a	steadily	growing	population	and	unpredictable	fuel	prices	there	is	an	increasing	

importance	to	produce	food	in	a	sustainable,	ecologically	sound	system.	The	research	funded	by	

Southern	 Sustainable	 Agriculture,	 Research	 and	 Education	 (SARE)	 strives	 to	 encourage	 soil	

quality,	integrated	pest	management	(IPM),	and	energy	conservation.		

Two	experiments,	a	GH	and	a	FD	project	were	studied	 to	 test	 the	effects	of	 shade	on	

primocane	 blackberry	 growth,	 flower	 formation	 timing	 and	 yield.	 The	 GH	 experiment	 was	

designed	to	complement	the	FD	experiment	and	provide	further	insight	into	the	impacts	of	shade	

on	primocane	physiology	in	a	controlled	environment.	Research	projects	focused	on	the	timing	

and	intensity	of	shade	to	delay	flowering	and	fruiting	of	primocane	blackberries.		

An	overall	goal	of	the	sustainable	blackberry	project	was	to	extend	the	market	season	for	

berry	production	which	will	allow	this	high	value	crop	to	be	sold	in	periods	of	high	demand	where	

in	 the	 past	 fruit	 was	 imported.	 With	 recent	 studies	 there	 has	 been	 increased	 interest	 in	
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blackberries	for	their	perceived	health	benefits.	Sustainable,	organic	berry	production	offers	a	

wide	spectrum	of	positive	impacts	for	farmers,	consumers	and	the	environment.		

This	research	aims	to	help	farmers	while	also	improving	the	long-term	sustainability	of	

primocane	blackberry	production.	This	research	holds	significance	for	farmers	because	it	intends	

to	 contribute	 to	 technologies	 which	 would	 allow	 for	 added	 value,	 reduced	 environmental	

degradation	and	an	extended	production	season.	Retail	sales	for	organic	produce	have	steadily	

increased	over	the	years.	In	1997	it	was	recorded	that	3.6	billion	dollars	in	organic	foods	was	sold	

and	a	little	over	a	decade	later	sales	were	marked	at	21.1	billion	in	2008	(Dimitri	and	Oberholtzer,	

2009).	For	farmers	the	ability	to	grow	produce	organically	opens	an	opportunity	to	take	part	in	a	

niche	market.	Many	fruit	farmers	in	the	southern	region	are	small	acreage,	family	owned	and	

economic	sustainability	is	vital	to	keep	the	production	system	operating.	The	chance	to	take	part	

in	local	farmer’s	markets,	community	supported	agriculture	(CSA)	and	a	direct	sale	to	consumers	

is	 thought	 to	 strengthen	 the	 enterprise.	 Economic	 stability	 has	 been	 stated	 to	 increase	with	

season	extension	due	to	increased	cash	flow	as	well	as	the	distributed	income	throughout	the	

year,	while	also	keeping	a	strong	connection	with	consumers	over	the	entire	year	(ANON.,	2006).		

Conventional	 farming	often	has	higher	yields,	but	with	 this	comes	with	environmental	

problems	such	as	soil	degradation	and	 loss	of	diversity	 in	both	animal	and	plant	communities	

(Hill,	2009).	One	alternative	is	organic	farming	which	has	been	shown	to	have	to	have	increased	

soil	health	as	well	as	increased	biological	activity	than	that	of	conventional	farming	(Mäder,	et	

al.,	2002).	 In	 some	cases,	 it	 is	difficult	 to	compare	energy	consumption	on	organic	 farms	and	

conventional	 farms	 due	 to	 the	 size,	 location	 and	 the	 wide	 range	 of	 production	 methods.	

However,	a	report	in	2007	stated	that	organic	farming	practices	used	30-50%	less	energy	per	unit	
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of	output	 than	conventional	 farms	due	 increased	human-labor,	efficiency	and	reduced	 inputs	

(Hill,	2009).			

The	research	conducted	in	the	FD	and	GH	studies	were	a	means	for	possibly	extending	

the	growing	season	through	sustainable,	organic	production	methods.	A	problem	of	excessive	

heat	 and	 solar-radiation	 limits	 primocane	 blackberry	 production	 in	 the	 southern	 region	 and	

shade	 may	 provide	 a	 means	 of	 improving	 the	 fruit	 set	 and	 quality.	 In	 high	 temperatures,	

blackberries	tend	to	have	poor	performance	related	to	their	adaption	to	cooler	more	northern	

climates	(Stafne,	et	al.,	2001).	 Implementation	of	shade	treatments	are	aimed	to	reduce	heat	

stress,	 delaying	 flower	 and	 fruiting	 of	 fall	 bearing	 primocanes	 in	 the	 southern	 region	 so	 that	

flowering	would	take	place	during	cooler	temperatures.		

In	 the	past	 several	decades’	blackberries	have	made	an	economic,	environmental	and	

social	 impact	 on	 the	 small	 fruit	 industry	 (Clark,	 et	 al.,	 2008b).	 Consumers	 expect	 to	 have	

blackberries	year	round	in	stores	and	to	have	the	ability	to	purchase	new,	higher	quality	berries	

than	 ever	 before	 across	most	 regions	 (Finn	 and	Clark,	 2011).	 The	 ability	 to	 delay	 flower	 and	

fruiting	could	possibly	improve	yield	quality,	opening	a	local	market	for	growers	to	tap	into	this	

high-value	crop	that	is	growing	in	popularity	(Clark,	et	al.,	2008b).		
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Literature	Review	

Blackberry	production:	 Blackberry	 production	 has	 made	 economic,	 environmental	 and	

social	impacts	between	the	years	of	1990	and	2010.	Blackberries	were	an	understory	plant	that	

could	be	found	growing	abundant	in	the	wild	within	wooded	areas	across	North	America	(Finn	

and	Clark,	2011).	Finn	and	Clark	(2011)	stated,	around	the	mid	to	late	1800s	people	started	to	

select	for	unique	characteristics	that	made	blackberries	more	appealing	to	consumers,	thus	more	

adequate	 for	 the	 market	 which	 marked	 the	 transition	 from	 canning	 berries	 to	 more	 fresh	

consumption.	Berry	production	increased	during	the	1970s-1990s	with	interest	from	Driscollâ	

Company	originating	in	Watsonville,	California	(Clark,	et	al.,	2008b).	It	has	been	suggested	that	

large	commercial	grower’s	involvement	in	blackberry	production	was	a	foundation	for	increased	

blackberry	 production	 worldwide	 and	 further	 research	 into	 better	 developing	 this	 crop	 for	

markets	 (Finn	 and	 Clark,	 2011).	 Raspberries	 and	 blackberries	 have	 similarities	 in	 cultivation	

methods,	physiology	and	marketing	techniques;	however,	blackberries	have	 lower	production	

costs	 (Finn	 and	 Clark,	 2011).	 Finn	 and	 Clark	 (2011)	 explained,	 blackberries	 tend	 to	me	more	

disease	resistant	and	have	higher	rates	of	growth	which	make	it	a	more	economical	crop	to	grow.	

Blackberry	 production	 has	 been	 broken	 down	 by	 worldwide	 regions:	 42%	 in	 North	

America,	31%	in	Europe	and	19%	in	Asia	(Strik,	et	al.,	2007).	North	America	was	found	to	be	the	

leading	blackberry	producer	worldwide	 for	profitable	production	 systems	 (Strik,	 et	 al.,	 2007).			

The	U.S.	produced	23%	of	total	blackberry	sales	in	2005	(Strik,	et	al.,	2007).	More	specific,	Oregon	

resulted	 in	72%	of	 the	blackberry	sales,	California	7%	and	Arkansas	4%,	while	all	other	states	

made	up	the	remaining	17%	of	the	total	blackberry	production	in	2005	(Strik,	et	al.,	2007).	This	

highlighted	in	2007,	the	Pacific	northwestern	area	of	the	United	States	to	be	the	most	suitable	
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for	 blackberry	 production	 due	 to	 cooler	 temperatures.	 The	 southern	 region	 of	 the	 U.S.	

production	is	on	the	rise	with	continued	research	for	adaptive	cultivars	(Drake	and	Clark,	2009).	

Rodriguez,	 et	 al.,	 (2012)	 explained	 that	 between	 the	 years	 of	 1997	 and	 2007	 the	 cultivated	

acreage	of	blackberry	production	 in	Arkansas	 increased	277%.	According	to	the	United	States	

Department	 of	 Agriculture	 (USDA)	 agriculture	 census,	 there	 has	 been	 an	 increase	 of	 1,597	

blackberry	 farms	 or	 28%	 of	 farms	 that	 grew	 blackberries	 (including	 Marionberries	 and	

Dewberries)	from	the	year	2007-2012	(USDA,	2014).	With	an	increase	in	farms	there	was	also	a	

decline	in	the	number	of	farms	that	produced	marketable	yields	(USDA,	2014).		It	is	possible	to	

have	an	increase	in	farms	and	at	the	same	time	decreased	sales	due	to	low	quality	berries	not	

sold	at	the	market.	Of	the	1,597	additional	farms	established	between	the	years	2007-2012,	it	

was	 reported	 that	 669	 farms	or	 35%	of	 those	 farms	did	not	have	harvest	 production	 (USDA,	

2014).	 There	 has	 been	 an	 interest	 from	 producers	 to	 invest	 in	 berry	 production,	 however	

improved	fruit	set	needs	to	be	researched	in	the	southern	region	to	increase	sales	at	market.			

If	 producers	 are	 able	 to	 increase	 marketable	 yields,	 the	 literature	 reported	 that	 the	

demand	for	blackberries	has	been	present.	Blackberry	demand	has	increased	in	relation	to	the	

reported	 health	 benefits,	 which	 has	 encouraged	 production	 in	 the	 U.S.,	 as	 well	 as	 at	 the	

international	scale	(Lewers,	et	al.,	2010).	There	are	health	benefits	that	are	associated	with	berry	

consumption	for	their	anthocyanin	and	anti-oxidant	content	that	has	driven	consumer	demand	

(Finn	and	Clark,	2011).	Many	factors	attribute	to	the	health	benefits	with	berry	consumption	such	

as	the	cultivar	grown,	location	of	production	and	methods	of	cultivation.	A	experiment	on	the	

blackberries	stated	that	the	chemical	phenolic	compounds	of	blackberries	are	well	understood	

about	 positive	 effects	 in	 combating	 age-related	 neurodegenerative	 diseases	 and	 bone	 loss	
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(Kaume,	et	al.,	2012).	In	addition,	more	research	must	be	conducted	to	better	understand	effects	

of	 metabolism	 and	 the	 bioavailability	 of	 nutrients	 in	 the	 consumption	 of	 berries	 that	 are	

associated	with	health	benefits	(Kaume,	et	al.,	2012).	The	related	benefits	to	the	human	body	is	

one	aspect	that	is	driving	the	increased	consumer	demand	seen	in	the	recent	decades	(Rodriguez,	

et	al.,	2012).			

Primocane	blackberries:	 The	Rubus	genus	included	a	wide	taxonomic	range	of	fruiting	plants	

also	referred	to	as	brambles.	The	blackberry	fruit	was	classified	as	an	aggregate	fruit,	meaning	

the	flower	contains	several	carpels	that	are	not	joined	together.	The	carpel	of	the	flower	is	the	

female	part	of	the	flowering	plant	containing	reproductive	organs	including	the	stigma,	style	and	

ovary.		When	flowers	mature,	each	separate	carpel	creates	an	individual	druplet,	when	combined	

create	one	blackberry.		

The	 University	 of	 Arkansas	 breeding	 program	 discovered	 the	 primocane	 fruiting	

blackberry	 27	 Sept.	 1997	 and	 later	 determined	 there	 was	 potential	 for	 extended	 season	

production	of	this	high-value	fruit	crop	in	the	southern	region	of	the	U.S.	(Clark,	2008a).	However,	

there	has	been	production	problems	in	the	southern	region	with	lac	of	heat	tolerance	that	lowers	

fruit	 quality	 and	 yield	 quantities.	 High	 tunnel	 production	 systems	 as	 well	 as	 shading	 show	

potential	to	make	primocane	cultivars	adaptable	to	areas	that	exhibit	higher	temperatures.		

The	 traditional	blackberry	 cultivar	will	 produce	 first	 year’s	 growth	 termed	primocanes	

(vegetative)	and	then	in	the	second	year	of	growth	the	same	canes	become	floricanes	that	are	

expected	 to	 flower	 and	 fruit.	 The	 introduction	 of	 the	 primocane-fruiting	 blackberry	 cultivars	

began	with	the	first	commercial	release	of	‘Prime-Janâ’	and	‘Prime-Jimâ’	 in	2004	by	Dr.	John	

Clark	at	the	University	of	Arkansas	(Clark,	et	al.,	2005).	This	unique	type	of	blackberry	fruits	on	
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current-season	 canes	 (primocanes)	 and	 second-season	 canes	 (floricanes)	 (Clark,	 et	 al.,	 2005).	

Studies	conducted	on	these	cultivars	observed	that	the	lack	of	heat	tolerance	was	a	major	factor	

limiting	the	commercial	use	and	profitability	of	these	cultivars.	Several	years	later,	‘Prime-Arkâ	

45’	was	released	in	2009	and	displayed	increased	fertility	in	comparison	to	other	cultivars	given	

the	heat	conditions	of	the	southern	U.S.	 (Ruple,	et	al.,	2010).	While	there	were	 limitations	to	

primocane-fruiting	cultivars,	the	harvest	seasons	tended	to	be	longer	than	floricane	cultivars	and	

had	the	potential	to	impact	the	southern	region	production	systems.	Similar	changes	were	made	

with	 primocane-fruiting	 red	 raspberries	 and	 it	was	 anticipated	 that	 this	 alteration	 in	 fruiting	

habits	would	have	the	ability	to	impact	current	and	future	blackberry	cultivation	as	well	(Clark,	

et	al.,	2005).		

In	the	past,	blackberry	consumption	in	the	southern	U.S.	has	relied	on	imports	from	the	

Mexico	and	the	pacific	northwest	of	the	U.S.	Blackberry	production	in	Mexico	reported	wide	use	

of	the	floricane	blackberry,	‘Tupyâ’.	This	erected	cultivar	contributed	to	the	blackberry	supply	in	

the	United	States	during	 the	months	of	October	 through	early	May	with	around	6,500-8,000	

hectare	 (ha)	cultivated	 in	2011	(Finn	and	Clark,	2011).	 	The	production	system	in	Mexico	was	

reported	to	use	chemical	manipulations	to	control	the	timing	of	flower	and	fruit	formations.	In	

Mexico,	 specialized	production	 systems	used	chemical	defoliants,	pruning	methods	and	plant	

growth	regulators	(PGRs)	in	combination	to	extend	the	season	and	experience	increased	yields	

(Strik,	 et	 al.,	 2012).	 Blackberries	 cultivated	 in	 Mexico	 underwent	 extensive	 pruning	 and	

application	methods	 to	ensure	 fruit	production,	which	was	 supplied	 the	United	States	during	

seasons	 of	 reduced	 domestic	 production	 (Strik,	 et	 al.,	 2012).	 In	 Mexico,	 flower	 buds	 are	

stimulated	to	develop	using	growing	techniques	that	apply	phosphoric	acid	(Strik,	et	al.,	2012).	
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About	5-7	months	after	primocane	emergence,	growth	was	slowed	using	a	mixture	application	

of	copper	sulfate,	urea	and	mineral	oil	(Strik,	et	al.,	2012).	Then	plants	are	hedged	and	defoliated	

with	another	combination	of	urea,	ammonium,	sulfate,	copper	sulfate	and	mineral	oil	(Strik,	et	

al.,	2012).	Hill	(2009)	stated,	farms	that	require	less	inputs	tend	to	be	more	energy	efficient	and	

less	demanding	per	unit	of	output.	There	were	many	inputs	used	in	the	production	of	primocane	

blackberries	in	Mexico,	while	these	were	not	a	requirement	for	blackberry	production.		

Production	from	Mexico	supplied	the	U.S.	during	times	when	domestic	production	was	

low.	However,	with	past	research	there	is	potential	to	shift	production	to	the	southern	U.S.	aimed	

at	 improving	 fruit	quality	and	 reducing	 imports.	As	mentioned	 there	are	problems	associated	

with	primocane-fruiting	blackberry	cultivars	in	the	southern	region,	due	to	lack	of	heat	tolerance.	

Nevertheless,	Primocanes	are	unique	in	the	sense	that	they	flower	and	fruit	on	current	season	

canes	 as	 opposed	 to	 floricanes	 that	 flower	 and	 fruit	 on	 second	 season	 canes;	 this	 change	 in	

reproductive	cycles	leaves	a	lot	to	be	learned	for	improved	production	in	differing	regions	with	

varying	climatic	patterns	(Strik,	et	al.,	2012).	From	the	natural	evolution,	floricane	cultivars	would	

bear	fruit	 in	 late	spring	around	April	and	May.	While	 in	Arkansas,	the	primocane	types	began	

bloom	in	late	June	(about	the	time	of	completion	of	floricane	fruiting)	meaning	fruit	began	to	

ripen	in	early	August	(Clark,	2008a).		Clark	(2008a)	observed,	flower	and	fruiting	of	primocane	

cultivars	 in	 the	 south	 results	 in	 small,	 low	 quality,	 unmarketable	 fruit	 often	 poor	 color	 from	

sunburn	when	first	fruits	are	seen	in	early	August.	

A	viable	option	 for	growers	 to	delay	 flower	and	 fruit	as	well	as	extend	 the	season	 for	

blackberry	 production	 is	 with	 the	 use	 of	 high	 tunnel	 production	 systems.	 A	 high	 tunnel	 is	 a	

modified	hoop	house	that	is	often	covered	in	plastic	with	the	ability	for	the	sidewalls	to	be	rolled	
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up	or	down.	This	passive	environment	has	no	permanent	heating	or	cooling	system	and	can	be	

described	as	a	growing	area	in-between	that	of	an	open	FD	and	GH	system	(Heidenreich,	et	al.,	

2012).	 Plants	 are	produced	 in	 the	ground	with	an	 irrigation	 system	 in	place.	Benefits	of	high	

tunnel	 production	 included:	 1)	 increased	 profitability	 by	 extending	 the	 harvest	 season,	 2)	

increased	fruit	quality	and	3)	reduced	pest	pressure	and	the	need	for	pesticide	application	(Rom,	

et	al.,	2010).		

However,	an	important	consideration	when	high-tunnels	were	implemented	was	the	cost	

of	construction	and	management	with	an	understanding	of	potential	yields.	It	was	stated	that	

blackberry	 production	 in	 a	 tunnel	 could	 increase	 economic	 risk	 due	 to	 the	 cost	 and	 delayed	

harvest	to	establish	plants	(Rodriguez,	et	al.,	2012).	Tunnels	could	be	combined	with	primocane	

blackberry	cultivars	to	extend	the	season	and	protect	fruits	from	season	ending	freezes,	but	little	

published	 research	 has	 been	 completed	 on	 this.	 Imported	 berries	 from	 Oregon	 and	Mexico	

supply	the	southern	region	during	the	southern	U.S.	non-growing	season	between	the	months	of	

October-May.	Rodriguez	explains	that	growers	could	benefit	from	out-of-season	production	by	

having	a	 longer	 fruiting	 season	 that	 competes	with	other	producers	 (Rodriguez,	et	al.,	2012).	

According	 to	 a	 recent	 experiment,	 blackberries	 imported	 from	Mexico	 increased	 from	 4,500	

kilogram	(kg)	in	the	year	2000	to	around	54,545	kg	in	2010	(Finn	and	Clark,	2011).	The	majority	

of	the	blackberries	shipped	are	for	fresh	market	consumption.	If	growers	in	the	southern	region	

could	supply	what	has	in	the	past	been	imported,	it	could	contribute	to	local	economic	growth.	

Furthermore,	 it	 would	 provide	 growers	 with	 a	 reliable	 revenue	 and	 reduced	 energy	 inputs	

needed	for	the	transportation	of	fruit	from	other	regions.			
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Light	influences	on	plant	growth:	 Light	 is	an	essential	 factor	for	plant	growth,	development	

and	physiological	 functions.	Plants	undergo	a	process	called	photosynthesis	where	 light	 is	the	

energy	 that	drives	 the	conversion	of	atmospheric	carbon	dioxide	 (CO2)	and	water	 (H2O)	 into	

glucose	(C6H12O6)	and	oxygen	(O2).	Two	aspects	to	consider	for	the	impact	of	light	on	fruit	crops	

included:	 the	 interception	of	 available	 light	 on	plants	 and	 the	distribution	of	 light	within	 the	

plants	that	results	in	maximum	performance	and	crop	development	(Rom,	1991).	The	amount	

and	intensity	of	light	has	a	significant	influence	on	plant	growth	and	development.	The	amount	

of	light	absorbed	by	the	leaf	surface	area	as	well	as	the	distribution	of	light	influenced	crop	yields.	

Light	can	be	measured	 in	wavelengths	which	can	be	short	or	 long	depending	on	 their	

energy	 levels.	 The	 primary	 pigment	 in	 plants	 responsible	 for	 photosynthesis	 was	 chlorophyll	

which	 reflected	 green	 light,	 while	 red	 and	 blue	 spectrums	 were	 absorbed	 (Carter,	 2014).	

Photoreceptors	are	proteins	that	are	sensitive	to	light,	these	controlled	almost	all	functions	of	

plant	development	and	growth.	These	proteins	control	the	ability	to	produce	flower	and	fruit	

formations	which	were	associated	with	day	length	(Briggs	and	Olney,	2001).		Many	relevant	traits	

for	berries	are	influenced	by	photoreceptors	such	as	dormancy	of	buds,	size	or	shape	of	leaves,	

stem	 length,	 chloroplast	 development	 and	 even	 flowering	 time	 (Hudson,	 2003).	

Photosynthetically	Active	Radiation	(PAR)	referred	to	the	wavelengths	of	light	in	which	the	plant	

utilized	in	the	process	of	photosynthesis.	Blue	light	is	measured	as	(460-480	nm)	and	red	light	is	

(650-700	nm);	both	are	available	to	plants	through	the	process	of	photosynthesis	(Carter,	2014).	

Lombardini,	 et	 al.,	 (2009)	 explained,	 the	 source	 of	 light	 was	 vital	 and	 the	 more	 efficient	

absorption	 of	 light	 resulted	 in	 alterations	 of	 dry	 matter	 allocation	 of	 plants.	 This	 literature	

suggested	that	light	can	be	manipulated	to	alter	plant	physiology	and	crop	yields.	
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The	photosynthetic	process	was	influenced	by	the	size	of	the	plant	canopy	in	addition	to	

the	leaf	surface	area.	The	total	surface	area	was	influenced	by	previous	season	cropping	levels,	

mineral	 nutrients,	 soil	 moisture	 levels,	 PGRs,	 pruning,	 light	 distribution,	 and	 cultivar	 types	

(Barritt,	et	al.,	1991).	It	has	been	shown	with	apple	production	that	light	interception	and	leaf	

area	(cm2)/	ha	are	correlated	(Barritt,	et	al.,	1991).	Increased	light	intensity	levels	could	also	alter	

overall	primocane	yields	similar	to	responses	contributed	to	increased	temperatures	(Oliveira,	et	

al.,	2004).		

Effects	of	shade	on	light	levels:	 Some	 outcomes	 of	 shadecloth	 on	 plant	 development	

included:	physical	plant	protection	from	(birds,	wind	and	hail),	impact	on	environmental	factors	

(humidity,	 light	 and	 temperature)	 and	 increased	 diffused	 light	 that	 may	 absorb	 or	 reflect	

particular	 light	wavelengths;	 all	 of	which	 influenced	plant	 growth	 and	development	 (Stamps,	

2009).	Stamps	(2009)	explained,	the	use	of	shade	increased	the	relative	humidity	(RH)	inside	the	

shade	structures	compared	to	outside	the	shading	structure.	There	were	many	aspects	of	plant	

development	 that	 could	 be	 altered	 with	 shadecloth	 and	 as	 such	 should	 be	 monitored	 to	

determine	 the	 potential	 impacts	 on	 crop	 yields,	 fruit	 set	 as	 well	 as	 fruit	 quality	 in	 terms	 of	

marketable	or	unmarketable	fruit.	Shadecloth	has	also	shown	to	have	increased	light	scattering	

by	up	to	50%	or	more,	this	can	affect	plant	growth	and	development	(Stamps,	2009).	It	was	found	

that	shade	netting	on	blackberries	extended	the	ripening	period	and	increased	cumulative	yields	

due	to	the	less	concentrated	fruit	development	(Rotundo,	et	al.,	1999).	

The	use	of	shade	altered	light,	which	influenced	the	leaf	chlorophyll	content.	Shade	leaves	

had	 lower	 photosynthetic	 rates	 than	 that	 of	 none	 shaded	 plants	 and	 have	 been	 reported	 to	

contain	more	total	chlorophyll	than	sun	leaves	(Björkman,	1968).	Further	examination	of	 light	



	 30	

effects	of	shaded	leaves	found	that	higher	chlorophyll	content	was	due	to	the	adaption	of	leaves	

to	environments	with	low	light	over	time	(Rotundo,	et	al.,	1999).		This	suggested	that	plants	have	

the	ability	to	adapt	to	changing	environmental	parameters	with	regard	to	varying	 light	 levels.	

Plants	ability	to	adapt	to	changing	light	environments	can	be	used	to	alter	growing	conditions	

and	hold	the	potential	to	improve	crop	yields	of	primocane	cultivars	in	the	southern	region.		

An	experiment	of	shade	effects	on	apple	trees	reported	that	constant	shade	of	73%-95%	

reduced	canopy	temperatures	in	comparison	to	temperatures	outside	of	the	shade	structures,	

but	also	reduced	plant	size,	yields	and	encouraged	shoot	extension	(Miller,	2001).	In	contrast,	

low	levels	of	light	can	be	detrimental	to	plant	development	and	experience	reduced	cropping	to	

unfavorable	 amounts.	 Understanding	 the	 implications	 of	 various	 levels	 of	 shade	 on	

photosynthesis,	plant	growth,	development	and	plant	physiology	has	been	crucial	to	improving	

fruit	yields	of	various	rosacea	species.		

Photosynthetic	 capacity	 of	 leaf	 canopy	 of	 peaches	 explained	 that	 the	 studies	 of	

photosynthetic	acclimation	to	light	over	simplified	the	complexity	of	natural	light	environments	

in	plant	canopies	(DeJong	and	Doyle,	1985).	Environmental	conditions	are	much	more	complex	

in	natural	 environments	due	 to	abiotic	 and	biotic	 factors	 then	 first	 suggested	by	DeJong	and	

Doyle	(1985).	When	light	measurements	were	determined	within	apple	canopies,	it	was	observed	

that	 haze	 and	 clouds	 fluctuated	 before	 a	 set	 of	 instantaneous	 light	 measurements	 were	

completed	 in	 a	 forest	 canopy	 (Campbell	 and	 Marini,	 1992).	 There	 are	 many	 environmental	

influences	 such	 as	 clouds,	 seasonal	 changes	 and	 competitive	 plant	 vegetation	 that	 could	

influence	the	availability	as	the	quality	of	light.	The	day-to-day	changes	of	light	levels	within	plant	
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canopies	 are	 known	 to	 differ	 in	 available	 light	 quality	 as	 well	 as	 quantity	 and	 impact	 the	

development	of	fruit	(Rom,	1991).		

Effects	of	shade	on	temperature:	 Heat	 and	 light	might	have	direct	 positive	 correlations.	As	

light	levels	increased	beyond	optimum	range	of	600	µmol•m-2s-1	and	soil	and	air	temperatures	

exceeded	16	°C	and	24	°C,	primocanes	entered	a	state	of	bud	dormancy,	reduced	fruit	weight	as	

well	as	quality	(Oliveira,	et	al.,	2004).	Given	its	complexity	there	are	multiple	considerations	that	

need	to	be	evaluated	when	determining	impacts	of	shade	on	plant	growth	and	development	and	

physiological	 responses.	 Stamps	 (1994)	 reported,	 that	 reductions	 in	 radiation	 resulted	 from	

netting	could	affect	temperatures	of	the	surrounding	air,	soil	and	plants	as	well	as	influence	the	

RH	within	the	shaded	structures.	Some	net	shade	houses	increased	the	temperatures	inside	the	

structures	 (Stamps,	 1994).	 This	 highlighted	 the	 need	 for	 further	 research	 to	 determine	 the	

optimal	 intensity	and	 implementation	of	 shade	 to	obtain	desired	 fruit	 set	and	 fruit	quality	of	

primocanes.	Despite	heat	 injury	of	plants,	 it	was	predicted	that	photosynthesis	would	decline	

with	higher	 temperatures	because	photorespiration	 increased	with	 temperature	and	was	 the	

growth	limiting	factor	(Schuster	and	Monson,	1990).	High	temperatures	above	32	°C	have	been	

found	to	reduce	photosynthesis	which	was	stated	to	have	negative	influences	on	bud,	flower	and	

fruit	formation	of	primocane	cultivars	(Clark,	2008a).		

Photosynthesis	was	not	the	only	physiological	response	that	high	temperatures	effected	

during	plant	development.	Research	on	Rubus	raspberry	cultivars	 in	hot	environments	set	the	

stage	for	improved	primocane	blackberry	use	in	the	southern	U.S.	The	gas	exchange	of	‘Titan’	

primocane	 leaves	 declined	 as	 temperature	 increased	 (Fernandez,	 et	 al.,	 1994).	 	 High	

temperatures	 reduced	 the	 process	 of	 gas	 exchange	 or	 assimilation	 (A).	 High	 temperatures	
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inhibited	assimilation	and	reduced	the	rate	of	stomates	opening	and	closing	(Fernandez,	et	al.,	

1994).	In	addition,	A	rates	were	not	the	only	component	of	plant	gas	exchange	affected	by	solar	

radiation	intensity,	but	that	dark	respiration	also	decreased	with	shade	(Lombardini,	et	al.,	2009).	

High	 temperatures	 were	 found	 to	 damage	 cellular	 structures	 and	 metabolic	 pathways	 and	

contributed	to	secondary	water	stress	(Levitt,	2012).	Plant	growth	and	development	altered	with	

heat	 stress	 and	 drought	 tolerance	 exhibited	 leaf	 rolling,	 leaf	 shading	 and	 reduced	 leaf	 area	

(Morgan,	 1984).	 Shade	 on	 blackberries	 was	 reported	 to	 decrease	 both	 assimilation	 and	

transpiration	rates	(Rotundo,	et	al.,	1999).	Plant	physiological	functions	have	been	reported	to	

have	 optimal	 ranges.	 If	 assimilation	 and	 transpiration	 fall	 below	 an	 optimal	 range	 for	 fruit	

production,	the	decreased	rates	are	not	favored	in	production	systems.	While	shade	has	been	

reported	to	have	increased	temperatures	within	shading	structures,	shade	could	be	used	to	delay	

flower	formation	thus	avoiding	flower	formation	in	some	of	the	hottest	months	(July	and	August)	

in	the	southern	region.		

Plant	 physiological	 processes	 have	been	 altered	by	 light	 and	 temperature	which	have	

influenced	 reproductive	 structures	 (flowers	 and	 fruits).	 The	 objective	 of	 this	 research	was	 to	

evaluate	the	effects	of	shade	on	primocane-fruiting	‘Prime-Arkâ	45’	to	delay	flower	formation.	

The	 implementation	 of	 varying	 levels	 of	 shade	 throughout	 the	 2014	 growing	 season	 studied	

improving	 the	 adaption	 of	 a	 primocane	 blackberry	 to	 the	 southern	 region	 by	 improved	 fruit	

quality	and	quantity	with	an	objective	of	increased	area	of	cultivation	along	with	increased	yields	

in	the	southern	U.S.	
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Chapter	 2:	 Effect	 of	 timing	 of	 shade	 on	 growth,	 development,	 physiology	 and	 fruiting	 of	 a	

primocane	fruiting	blackberry	in	a	controlled	environment		

Introduction	

	 	A	controlled	environment	greenhouse	(GH)	experiment	was	conducted	to	compliment	a	

field	(FD)	experiment	that	examined	the	shade	effects	of	primocane-fruiting	blackberries.	The	

controlled	environment	GH	experiment	reduced	variability	and	environmental	stresses	that	may	

have	 occurred	 in	 the	 FD	 experiment	 and	 provided	 near	 optimal	 growing	 conditions,	 FD	

production	 systems	 are	 vulnerable	 to	 changing	 environmental	 parameters,	 while	 the	 GH	

research	provided	greater	control	over	water,	light,	temperature,	insect	and	disease	pressures.	

The	greater	control	over	external	factors	could	provide	greater	insight	into	the	shade	effects	on	

Primocane	blackberry	physiology,	flower	and	fruit	development	that	may	be	confounded	with	

other	environmental	factors	in	the	FD.			
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Literature	Review	

Blackberry	production	in	Arkansas,	the	region	and	the	U.S.	has	increased.		Rodriguez,	et	

al.,	 (2012)	showed	that	the	cultivated	acreage	of	blackberry	production	 in	Arkansas	 increased	

277%	 between	 the	 years	 of	 1997	 and	 2007.	 The	 new	 autumn-bearing,	 primocane	 fruiting	

blackberries	expand	the	market	season	for	the	fruit.	However,	studies	have	shown	that	fruiting	

during	hot	seasons	resulted	in	poor	pollination,	fruit	set	and	fruit	quality.	Stanton,	et	al.,	(2007)	

tested	three	levels	of	temperature	on	primocane	blackberries	cultivars	in	growth	chambers	and	

it	was	found	that	increased	temperatures	had	a	direct	correlation	with	lower	percent	of	flowers	

and	fruits.	Primocane	fruiting	blackberries	flower	during	July	and	August,	in	general	the	hottest	

months	of	the	year.		These	new	genotypes	have	not	been	proven	to	be	well	adapted	to	Arkansas	

conditions.		

Based	 upon	 preliminary	 field	 experiments	 and	 observations	 (Rom,	 2014,	 personal	

communication),	 it	 was	 hypothesized	 that	 shade	 could	 delay	 flowering	 in	 primocane-fruiting	

blackberries.	 If	 that	 was	 true,	 the	 flowering	 and	 fruiting	 period	 could	 be	 shifted	 to	 a	 more	

favorable	season	for	 fruit	set	and	quality.	There	have	been	very	few	studies	on	the	effects	of	

shade	on	blackberries	and	no	studies	on	the	effects	of	shade	on	primocane	blackberries	were	

identified.		

Shade	had	the	potential	to	delay	flower	and	fruiting	of	other	species,	which	resulted	in	

extended	crop	production	as	well	as	increased	marketability.	The	completion	of	this	experiment	

in	 a	 greenhouse	 environment	 had	 some	 benefits	 in	 regard	 to	 observed	 effects	 of	 shade	 on	

primocane	blackberries.	Abiotic	factors	included	percepitiation,	temperature,	light	intensity,	air	

quality,	humidity	and	soil	conditions	which	could	impact	plant	growth	and	development.	Yields	
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in	the	FD	would	have	been	greater	if	not	affected	by	high	rates	of	precipitation	(Strik,	et	al.,	2008).	

Enviromental	conditions	in	the	FD	experiement	influenced	the	crop	quality	and	quanity	in	the	

Midwest	during	the	warmest	year	on	record	(Nonnecke	and	Riesselman,	2012).	The	inability	to	

control	enviromental	parameters	in	the	FD	added	additional	factors	that	impacted	research	data.	

The	GH	enviorment	had	the	potential	to	provide	more	control	over	the	growing	conditions	and	

add	clarity	to	the	affects	of	shade	on	primocane	growth,	physiology	and	development.		

The	 specific	 leaf	 weight	 of	 leaves	 in	 peach	 plants	 was	 found	 to	 decrease	 with	 the	

implentation	of	shade	(Marini	and	Sowers,	1990).	It	was	also	found	that	apple	plants	grown	in	a	

GH	controlled	enviroment	had	reduced	photosyntheitc	measurments	when	20%	light	reduction	

shade	fabric	was	implemented	and	rates	slowed	in	full	sun	(Barden,	1978).	Marini	and	Sowers	

(1990)	reported	that	shade	needed	to	be	implemented	for	longer	periods	of	time	than	3	weeks	

to	experience	changes	in	leaf	photosynthesis	morphology	with	peach	plants.	Furthermore,	the	

specific	leaf	weight	(SLW)	of	peaches	was	found	to	decline	more	under	shade	compared	to	the	

unshaded	control	and	then	increased	at	greater	levels	when	the	shade	was	removed	(Marini	and	

Sowers,	1990).	The	shoot	lengths	were	longer	as	the	percentage	of	light	shade	reduction	cloth	

was	increased	(Marini	and	Sowers,	1990).	Marini	and	Sowers	(1990)	explained	that	specific	leaf	

weight	may	be	a	good	indicator	to	determining	previous	light	enviroments	while	the	abiltiy	to	

estimate	levels	of	photosyntheic	capability	(Pn)	is	limited	to	younger	leaves	(Marini	and	Barden,	

1981).	 It	was	 found	that	40%	 light	shade	redution	netting	 increased	the	cane	 length	and	also	

increased	 the	 dry	 matter	 acumulation	 of	 two	 blackberry	 cultivars	 compared	 to	 the	 control	

(Rotundo,	et	al.,	1999).		
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Shade	 altered	more	 than	 shoot	 and	 cane	 length	 or	 dry	matter	 accumualation.	 Plants	

grown	in	low	light	enviroments	were	unable	to	undergo	high	rates	of	photosynthesis;	however,	

they	could	perform	at	the	low	light	intensities	(Boardman,	1977).	Boardman	(1977)	stated	that	

shaded	plants	have	been	found	to	have	large	grana	stacks,	containing	as	many	as	100	thylakoids	

per	granum,	which	might	have	been	contributed	to	increased	efficiency	in	comparison	to	full	sun	

tolerant	plants.	Rotundo,	et	al.,	(1999)	reported	that	the	40%	shade	netting	increased	chlorophyll	

content	of	two	floricane	blackberry	cultivars	that	might	have	contributed	to	adaption	to	low	light	

enviroments.	 Rates	 of	 photosynthesis,	 transpiration	 and	 stomatal	 conductance	 were	 also	

lowered	for	shaded	blackberry	leaves	(Rotundo,	et	al,.	1999).		

There	was	a	experiment	which	focused	on	shade	implemented	on	apple	trees	as	a	means	

of	thinning	fruit	set	in	the	early	stages	of	fruit	development	(Morandi,	et	al.,	2011).	The	findings	

reported	that	reduced	light	levels	through	shade	may	have	altered	fruit	devleopment	as	well	as	

quanity	(Morandi,	et	al.,	2011).	Two	days	of	shade		on	young	apple	trees	reduced	the	rate	of	fruit	

growth	by	half	in	comparision	to	the	unshaded	control	(Morandi,	et	al.,	2011).	Morandi,	et	al.,	

(2011)	reported	that	shading	decreased	rates	of	A,	which	had	a	direct	influence	on	flow	rates	of	

phloem	and	contributed	to	the	decrease	in	fruit	growth	rate	each	day	of	the	experiment.	

In	addition	to	assimilation,	fruit	development	and	quality	has	been	altered	with	shade.	

Two	shade	levels,	0%	control	and	40%	shade	were	implemented	on	‘Kiowaâ’	thorny,	primocane	

blackberries	20	May	2008	and	plants	grown	under	shade	were	found	to	have	higher	cummulative	

yields	compared	to	all	other	treatments	(Makus,	2010).	 	Makus	(2010)	stated,	shading	berries	

reduced	the	berry	pulp	temperatures	which	resulted	in	higher	juice	yields	(mg/g)	and	resulted	in	

larger	berries	compared	to	all	other	treatments.		
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Research	in	a	controlled	environment	reduced	variability	and	externalities	that	influenced	

plant	 growth	 and	 development	 and	 therefore	 isolated	 treatment	 effects.	 This	 might	 have	

provided	isolated	treatment	effects	of	various	levels	of	shade	on	primocane-fruiting	physiology	

with	 an	 emphasis	 on	 flower	 and	 fruit	 development.	 The	 objective	 of	 this	 experiment	was	 to	

determine	 the	 effects	 of	 changing	 light	 environments	 on	 the	 growth	 and	 development	 of	

primocane	fruiting	blackberries	with	the	goal	of	delaying	bloom	in	primocane	blackberry	cultivars	

so	production	systems	can	be	adapted	to	the	southern	region.	
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Materials	and	Methods	

The	 greenhouse	 (GH)	 was	 located	 at	 the	 University	 of	 Arkansas	 System	 Division	 of	

Agriculture,	Arkansas	Agriculture,	Research	and	Extension	Center	(AAREC),	Fayetteville	Arkansas	

(Latitude:	36°"N;	Longitude:	94°"W).	Potted	blackberry	plants	were	grown	in	a	double	layer	6	mm	

polyethylene	covered	climate	controlled	Quonset	GH	that	is	12.	5	m	(L)	x	9	m	(W)	x	3	m	(H)	and	

has	a	north	south	orientation.	GH	temperatures	were	controlled	by	a	pad-and-fan	cooling	system	

during	the	summer.		

Plant	Material	and	Management:	 Sixty	dormant	cuttings	of	‘Prime-Arkâ	45’	were	planted	in	

12	L	pots	using	certified	organic	peatmoss	and	perlite	based	growing	media	(Sunshineâ	Natural	

and	Organic	Mix	 (Sungro	Products).	Bare	root	cuttings	were	obtained	 from	Indiana	Berry	and	

Plant	Company	(Plymouth,	Indiana).	

Potted	plants	were	placed	on	wire-mesh	benching	systems	and	the	height	of	the	benches	

was	lowered	throughout	the	experiment	as	the	plants	height	increased.	During	the	experiment,	

canes	 were	 pruned	 of	 lateral	 bud	 break	 and	 trained	 to	 bamboo	 stakes.	 Every	 week	 suckers	

(adventitious	 shoot	 that	 arise	 from	 the	 base	 of	 the	 plant)	 were	 removed	 to	 prevent	 to	

reallocation	 of	 dry	 matter	 away	 from	 the	 terminal	 shoot.	 When	 canes	 reached	 heights	 of	

approximately	1.5	m,	the	bamboo	stakes	were	doubled	to	increase	structural	support	for	potted	

plants	(Figure	1).	Blackberry	plants	were	watered	as	needed	and	amount	varied	depending	on	

cloud	coverage,	outside	temperature	and	humidity	inside	the	GH.	When	plants	were	watered	the	

potted	plants	were	filled	from	the	media	line	to	the	top	of	the	pot	around	5	cm	in	height	and	was	

allowed	to	absorb.	
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Osmocoteâ		(14-14-14,	Scoots	Miracle-Gro	Company)	fertilizer	was	applied	as	needed	to	

each	 potted	 plant	 throughout	 the	 experiment	 in	 amounts	 of	 1	 tablespoon	 (tbsp)	 then	 light	

watered	was	applied.	In	addition,	one	application	of	Marathonâ	(Imidacloprid,	1-[(6-Chloro-3-

pyridinyl)methyl]-N-nitro-2-imidazolidinimine,	 Olympic	 Horticultural	 Products)	 nursery	

insecticide	was	applied	28	July	2014	to	combat	an	armyworm	(Spodoptera	exempta)	infestation	

that	caused	some	defoliation	of	plants.	

Treatments:	 Beginning	on	4	June	2014,	when	canes	average	25	cm	in	height,	44	plants	were	

assigned	one	of	four	random	treatments;	1)	an	untreated	control	[CK],	2)	unshaded	for	29	days	

then	shaded	for	30	days	[US],	3)	shaded	for	29	days	then	shaded	for	30	days	[SS],	and	4)	shaded	

for	29	days	and	unshaded	for	30	days	[SU]	(Figure	2).	Plants	grew	for	29	days	at	which	time	shade	

treatments	were	changed.	Shade	cloth	was	either	added	or	removed	2	July	2014	which	affected	

2)	US,	now	shaded	and	treatment	4)	SU,	now	unshaded.	All	44	potted	plants	were	allowed	to	

grow	for	an	additional	30	days	with	these	treatments.	After	a	59-day	period	of	treatments,	all	

shade	structures	were	removed	and	the	plants	were	allowed	to	grow,	flower,	and	fruit	for	an	

additional	 30	 days	 (Figure	 3).	 Potted	 plants	 were	 rearranged	 at	 random	 starting	 35	 days	 of	

treatment	(DOT)	implementation	every	week	to	limit	impact	of	microclimates	within	the	GH	that	

could	have	affected	plant	growth	and	development.	Shade	was	provided	by	50%	shade	neutral	

density	cloth	covering	metal	frame	structures	over	the	GH	benches.	There	were	11	single	plant	

replicates	of	each	treatment.	Plants	within	each	treatment	were	assigned	separate	benches	by	

positioned	 at	 the	 south	 end	 of	 the	 GH	 nearest	 the	 cooling	 system.	 Plants	 were	 not	 in	 a	

randomized	design	due	to	greenhouse	space	and	management	limitations.		
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Measurements:	 Starting	the	same	week	as	treatments,	physiological	measurements	were	

begun.	Measurements	were	made	weekly	for	13	weeks	of	cane	diameter	(6	cm	above	the	soil	

line),	cane	height	(cm),	estimated	leaf	chlorophyll	content	(Minolta	model:	502	Plusâ)	and	CIRAS-

2â	portable	gas	exchange	monitor	equipped	with	a	Parkinsonâ	 leaf	chamber)	(Figure	4).	The	

terminal	leaf	of	the	leaflet	near	the	middle	leaf	margin	lamina	was	used	for	measurements.	The	

leaf	was	chosen	four	to	five	nodes	down	from	the	terminal	cane	tip	of	each	potted	plant	and	was	

used	for	estimated	leaf	chlorophyll	and	assimilation	measurements.	Estimated	leaf	chlorophyll	

and	assimilation	measurements	were	taken	using	the	same	leaf,	but	leaf	selection	varied	weekly.	

Only	 healthy	 leaves	 were	 used	 in	 measurements	 of	 estimated	 leaf	 chlorophyll	 content	 and	

assimilation	measurements.	

Leaf	assimilation	was	measured	on	a	6.25	cm2	area	of	leaf.		Cuvette-chamber	conditions	

were	set	for	incoming	[C02]	of	385	ppm,	cuvette	temperature	of	28	oC,	RH	of	50%.		Saturating	

light	conditions	of	1,200	umols/m2/s1	were	provided	with	the	PP	Systems	â	PLC3	Universal	LED	

Light	head	attached	to	the	cuvette	chamber.		Assimilation	was	measured	after	apparent	steady-

state	conditions	after	120-180	s.			

The	date	of	first	flowers	seen	in	each	treatment	was	recorded.	The	final	height	(cm),	cane	

diameter	6	cm	above	the	soil	line	(mm),	number	of	flower	buds,	flowers	and	fruits	was	recorded	

for	each	plant	in	all	treatment	plots.	Destructive	harvest	for	all	plants	were	made	14	Aug.	The	

total	weight	of	buds	(g),	flowers	(g)	and	fruits	(g)	was	measured	for	all	potted	plants.	The	total	

leaf	area	(cm²)	and	total	number	of	leaves	for	each	potted	plant	was	recorded.	After	the	fresh	

plant	 data	were	 collected,	 the	 canes,	 stems,	 leaves,	 and	 reproductive	 organs	were	 placed	 in	

paper	bags	within	a	dryer	20	Aug.	for	approximately	336	hours	at	70	°C	and	weighted.	Dry	weights	
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of	plant	biomass	included:	leaves	(g),	stems	(g)	and	roots	(g)	and	total	biomass	was	calculated.	

One	plant	 in	the	US	treatment	not	 included	 in	the	data	set	due	to	factors	that	terminated	 its	

growth	prior	to	the	end	of	the	GH	experiment	and	data	are	excluded	from	analysis.	Observations	

were	made	about	 changing	 climatic	 conditions	outside	of	 the	GH	 that	 included	 temperature,	

rainfall	and	cloud	coverage.	

Each	treatment	had	eleven	single	plant	replications.	Data	were	analyzed	with	Proc	GLM	

procedure	in	SASâ	statistical	software	(SAS	version	9.3,	SAS	Institute	Inc.,	Cary,	NC)	and	mean	

separation	was	calculated	by	least	significant	difference	(LSD)	(α	=	0.05).			
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Results,	Discussion	and	Conclusion		

Plants	in	the	SU	treatment	were	the	tallest	compared	to	other	treatments	(Table	1,	Figure	

5).	The	other	treatments	all	had	similar	heights	until	shade	was	changed	after	29	days,	with	no	

significant	difference	in	the	US	but	significantly	 less	biomass	 in	the	SS	treatment	(Table	1	and	

Table	 2).	 Shade	 treatment	plants	 had	 reduced	plant	 growth	 and	development,	 especially	 dry	

weights	compared	to	the	unshaded	control.	Although	there	were	differences	 for	height,	cane	

diameter	and	dry	weights	(shoots,	leaves,	roots,	and	total	dry	weight),	there	were	no	significant	

differences	for	 leaf	number,	 leaf	area,	average	 leaf	size,	number	of	flowers	and	dry	weight	of	

flowers	(Table	2	and	Figure	6).		

	 Leaf	dry	weight	was	similar	for	all	treatments	except	for	SS	which	was	significantly	less	

(Table	2).	 The	 results	 from	 this	experiment	agree	with	previous	 findings	made	by	Marini	 and	

Sowers	(1990)	with	another	Rosacea	species,	peaches,	in	which	specific	leaf	weight	was	found	to	

decline	with	shade.		

Treatments	CK	and	US,	had	the	highest	rates	of	CO
2	assimilation	(A)	at	the	start	of	the	

experiment	and	were	different	from	SS	and	SU	which	were	the	least	(Figure	7).	Plants	adapted	to	

the	 alteration	 in	 light	 conditions	 when	 shade	 treatments	 were	 changed	 as	 observed	 by	 the	

maintenance	of	similar	A	patterns	within	a	treatment.	The	SS	treatment	adjusted	to	shading	and	

A	levels	were	greater	than	US;	all	treatments	were	different	from	US	at	the	conclusion	of	A	data	

collection	(Figure	7).		

After	shade	treatments	were	changed	on	day	29	of	the	experiment,	the	estimated	leaf	

chlorophyll	(CHL)	content	(SPAD)	was	greatest	for	CK	and	SU,	while	SS	and	US	were	the	same	and	

less	 than	 CK	 and	 SU	 (Figure	 8).	 At	 the	 end	 of	 the	 experiment	when	 the	 final	 estimated	 leaf	
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chlorophyll	content	measurements	were	taken,	SS	and	CK	were	the	same	and	resulted	 in	the	

highest	estimated	leaf	chlorophyll	content	values	compared	to	other	treatments;	while	SU	and	

US	plants	were	the	same	and	had	the	least	estimated	leaf	chlorophyll	content	(Figure	8).	This	

supports	previous	research	by	Rotundo,	et	al.,	(1999)	that	plants	may	adapt	to	continuous	shade	

such	as	 the	SS	 treatment	plants,	which	 increased	 levels	of	estimated	 leaf	chlorophyll	 content	

compared	to	other	treatments	and	resulted	in	the	same	amounts	as	the	CK	(Figure	8).	The	dry	

weight	root	and	shoot	ration	were	calculated	by	adding	the	weight	of	roots	and	shoots	for	an	

average	of	each	cane	per	treatment	(Appendix	1).	Additional	measurements	were	recorded	using	

SPAD	and	CIRAS-2â.		

The	estimated	leaf	chlorophyll	content	is	set	to	percent	of	control	(100%)	(Appendix	2).	

Assimilation	was	 recorded	 and	percent	 of	 control	 (100%)	 (Appendix	 3	 and	4).	 At	 the	 time	of	

assimilation	 other	 measurements	 were	 taken	 that	 included:	 evapotranspiration,	

evapotranspiration	 set	 to	 percent	 of	 control	 (100%),	 vapor	 pressure	 deficient,	 ambient	 leaf	

temperature,	 relative	 humidity	 of	 the	 Parkinsonâ	 leaf	 chamber,	 photosynthetically	 active	

radiation,	leaf	temperature,	internal	concentration	CO2,	stomatal	conductance	and	foliar	water	

use	efficiency	was	recorded	(Appendix	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16,	17,	18,	19,	20,	21,	

22	and	23).		

Flowers	were	distinguished	depending	on	if	they	were	opened	flowers	with	petals	or	fruit	

compared	to	unopened	flowers;	unopened	flowers,	opened	flowers	and	buds,	and	fruits	were	

summed	 for	 total	 potential	 fruiting	units	 (Table	 1).	 The	number	of	 flower	buds,	 flowers,	 and	

individual	fruits	did	not	vary	significantly	among	treatments	(Table	1).		

For	the	first	date	of	individual	flower	appearance,	shading	in	the	SU	treatment	resulted	
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in	a	delay	of	flower	and	fruit	set.	The	CK	plants	bloomed	first	2	July	(28	days	after	treatment)	

followed	by	US	on	17	July	(43	days	after	treatment)	and	SS	on	27	July	(53	days	after	treatment;	

Table	3).	The	last	to	bloom	was	the	SU,	26	days	after	the	CK	on	28	July	(54	days	after	treatment)	

(Table	 3).	 Given	 the	 research	 presented	 by	 Clark	 and	 Perkins-Veazie	 (2011)	 where	 fruit	 was	

formed	39	days	after	first	flower,	these	findings	are	significant	because	fruit	could	be	shifted	to	

5	Sept.	compared	to	the	CK	which	would	fruit	approximately	10	Aug.	This	shift	of	bloom	time	

could	 be	 long	 enough	 to	 avoid	 heat	 stress	 that	 has	 been	 stated	 to	 be	 the	 challenge	 with	

primocane	cultivars	fruiting	in	Arkansas	late	July	and	August	(Clark,	2008a).		

Results	from	the	controlled	environment	GH	experiment	supported	the	hypothesis	that	

shading	 primocane-fruiting	 potted	 plants	 does	 influence	 plant	 physiology,	 growth	 and	

development.	Shading	 in	 the	SU	treatment	resulted	 in	a	delay	of	 flower	and	fruit	set.	Results	

displayed	treatment	US	resulted	in	the	largest	number	of	flowers	at	the	end	of	the	experiment,	

SS	 had	 the	 largest	 number	 of	 flower	 buds	 and	 CK	 had	 the	 largest	 number	 of	 fruits	 at	 the	

conclusion	 of	 the	 experiment.	 This	 experiment	met	 the	 objective	 to	 gain	 further	 insight	 into	

effects	of	50%	shade	cloth	on	primocane	delayed	flower	formation	and	adaption	to	the	southern	

region.	Further	research	is	needed	on	other	primocane	cultivars,	with	different	levels	of	shade	as	

well	as	the	translation	of	information	to	FD	production	systems	in	the	southern	region.			
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Figure	1.	Shade-unshaded	treated	plants	of	‘Prime-Arkâ	45’	day	36	of	the	experiment	trained	
	 to	a	single	bamboo	stake	while	grown	in	a	greenhouse,	Fayetteville,	AR.,	2014.	
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Figure	2.	The	Shaded-shaded	treatment	on	day	1	of	the	experiment	of	‘Prime-Arkâ	45’	
	 blackberry	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.,	2014.		
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Figure	3.	All	shade	was	removed	day	59	of	the	experiment	and	‘Prime-Arkâ	45’	blackberry	
	 grown	in	pots	as	affected	by	four	shade	treatments	grew	for	an	additional	30	days	in	the	
	 greenhouse,	2014,	Fayetteville,	AR.	
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Figure	4.	Estimated	leaf	chlorophyll	content	measured	as	measured	by	Minolta	SPAD-502	Plusâ	
	 monitor	of	‘Prime-Arkâ	45’	blackberry	grown	in	pots	as	affected	by	four	shade	
	 treatments,	2014,	Fayetteville,	AR.	
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Table	1.	Height	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	grown	in	pots	as	affected	by		

	 four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.		

ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
YThis	week	photosynthetic	measurements	were	taken	without	the	LSD	light	head.	
XDOT	=	days	of	treatment	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	

First	Interval	 Second	Interval	
	

Treatment	 DOTX	1	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	55		 DOT	62	

Control	 26	 38	 58	bZ	 77	b	 122	b	 150	b	 168	b	 179	b	 186	b	 196	by	

Unshaded-Shaded	 26	 41	 59	b	 80	b	 127	b	 152	b	 177	b	 194	ab	 205	ab	 228	a	

Shaded-Shaded	 26	 40	 60	b	 81	b	 132	b	 153	b	 168	b	 181	b	 186	b	 189	b	

Shaded-Unshaded	 32	 49	 77	a	 103	a	 159	a	 187	a	 210	a	 221	a	 231	a	 246	a	

Prob	>	F	 ns	 ns	 0.02	 0.01	 0.02	 0.01	 0.02	 0.02	 0.01	 0.0002	



	 56	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	vertical	bars	on	the	graph	represent	the	+/-	standard	deviation	in	the	data	set.		
	
Figure	5.	Cane	height	of	a	single	cane	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	grown	
	 in	pots	as	affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	
	 Fayetteville,	AR.	
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Table	2.	Final	growth	and	harvest	measurements	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	

	 grown	in	pots	as	affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	

	 Fayetteville,	AR.		

	
	 Shoots	 Leaves	 Flowers	 Dry	Weight	

Treatment	 Height	
(cm)	

Diameter	
(mm)	 No.	 Area	

(cm2)	

Avg.	
Size	
(cm2)	

No.	 Shoots	
(g)	

Leaves	
(g)	

Roots	
(g)	

Flowers	
(g)	

Total	
(g)	

Control	 197	cZ	 9	ab	 41	 5955	 146	 3	 37	a	 53	a	 106	a	 2.27	 196	a	

Unshaded-	
Shaded	

227	ab	 9	ab	 44	 7917	 189	 11	 35	ab	 51	a	 75	b	 3.36	 162	b	

Shaded-	
Shaded	

204	bc	 8	b	 42	 7166	 183	 6	 26	b	 34	b	 64	b	 1.09	 124	b	

Shaded-	
Unshaded	 251	a	 10	a	 49	 7077	 145	 9	 42	a	 52	a	 94	ab	 1.9	 188	ab	

Prob	>	F	 0.0025	 0.05	 ns	 ns	 ns	 ns	 0.009	 0.0017	 0.0347	 ns	 0.0185	

Z	Mean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
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The	vertical	bars	on	the	graph	represent	the	+/-	standard	deviation	in	the	data	set.		
	
Figure	6.	Cane	diameter	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	grown	in	pots	as	
	 affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.	
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The	vertical	bars	on	the	graph	represent	the	+/-	standard	deviation.		
	
Figure	7.	Assimilation	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	grown	in	pots	as	affected	
	 by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.	
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The	vertical	bars	on	the	graph	represent	the	+/-	standard	deviation	in	the	data	set.		
	
Figure	8.	Estimated	leaf	chlorophyll	as	measured	by	SPAD	content	of	‘Prime-Arkâ	45’	
	 blackberry	grown	in	pots	as	affected	by	four	shade	treatments	while	grown	in	a	
	 greenhouse,	2014,	Fayetteville,	AR.	
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Table	3.	Date	of	first	flower	blooms	of	a	single	cane	of	‘Prime-Arkâ	45’	blackberry	grown	in	

	 pots	as	affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	

	 Fayetteville,	AR.	

	
Treatment		 Date	

Treatment	1	(Control)	 2	July	2016	

Treatment	2	(Unshaded,	Shaded)	 17	July	2016	

Treatment	3	(Shaded,	Shaded)	 26	July	2016	

Treatment	4	(Shaded,	Unshaded)	 28	July	2016	
*There	are	no	statistical	differences	in	the	table	above.		
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Chapter	3:	The	effect	of	time	and	amount	of	shade	on	growth	and	fruiting	of	‘Prime-Arkâ	45’	

primocane	blackberry	in	field	conditions	

Introduction	

A	FD	experiment	was	completed	to	evaluate	the	effects	of	various	levels	of	shade	applied	

at	different	times	throughout	the	growing	season	on	‘Prime-Arkâ	45’	blackberries.	Observations	

and	 a	 preliminary	 experiment	 of	 2013	 indicated	 that	 shading	 may	 be	 used	 to	 delay	 and	

synchronize	bloom	in	autumn-bearing	primocane	blackberries.		This	experiment	was	a	repetition	

of	 the	2013	experiment	 to	 confirm	previous	 results.	Research	 in	 the	FD	provided	 insight	 into	

management	strategies	of	primocane-fruiting	blackberries	in	the	southern	region.	

Primocane	 fruiting	 blackberry	 production	 in	 Arkansas	 is	 limited	 by	 heat	 during	 the	

flowering	and	early	fruiting	season.		Shade	could	both	alter	temperature	due	to	direct	radiation,	

or	delay	flowering	and	fruiting	to	more	favorable	growth	period.	This	experiment	was	designed	

to	test	three	levels	of	shade	(0%	[control],	30%	and	50%	shading)	applied	at	two	times	during	the	

growing	season	on	growth,	development,	physiology	of	flowering	and	fruiting	of	‘Prime-Arkâ	45’	

blackberries.	 This	 experiment	 has	 given	 insight	 into	 the	 effects	 of	 shade	 on	 ‘Prime-Arkâ	 45’	

blackberry	physiology,	growth	and	flowering	and	fruiting	in	the	FD.	It	was	found	that	shade	may	

be	used	to	delay	flowering,	reduce	heat	stress,	resulting	in	higher	fruit	quantities.		However,	FD	

studies	 also	 indicated	 some	 ES	 treatments	 reduced	 cropping	 compared	 to	 LS	 treatments.	

Continued	research	is	needed	to	improve	this	production	system	for	niche	market	in	the	southern	

region.	
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Literature	Review	

When	temperatures	are	above	29.4	°C,	heat	stress	has	been	found	to	be	detrimental	to	

flower	and	fruit	production	of	autumn	bearing	primocane	blackberries	 (Stanton,	et	al.,	2007).	

This	 limits	 the	 production	 of	 the	 new	 cultivars	 of	 primocane	 blackberries	 for	 production	 in	

Arkansas	 which	 begin	 flowering	 in	 July	 or	 August	 during	 times	 of	 high	 temperatures.	

Observations	and	a	preliminary	experiment	in	2013	indicated	that	shading	may	be	used	to	delay	

and	synchronize	bloom	to	a	cooler,	more	favorable	environment	in	autumn-bearing	primocane	

blackberries.	A	field	experiment	was	conducted	2014	to	evaluate	the	effects	of	various	levels	of	

shade	applied	at	different	times	throughout	the	growing	season	on	‘Prime-Arkâ	45’	blackberries	

in	order	to	confirm	previous	observations.		

Blackberry	demand	and	production	worldwide	are	increasing	by	advanced	cultivars	and	

with	high	tunnel	and	field	production	systems	(Strik,	et	al.,	2007).	Small	fruit	crops,	blackberries	

in	particular,	are	economically	viable	and	could	serve	as	a	sustainable	income	for	farmers	while	

supplying	consumers	 in	the	southern	region	with	 local	produce.	Traditional	blackberries	are	a	

biennial	 plant	with	 the	 first	 year	 cane,	 the	 primocane,	 arising	 from	 a	 perennial	 root	 system,	

remaining	vegetative.	After	a	winter	dormant	period,	the	second-year	cane,	the	floricane,	flowers	

in	spring,	fruits,	and	dies.	A	new	genotype	of	an	autumn-bearing	fall	harvested	primocane	fruiting	

blackberries	have	been	developed	at	the	University	of	Arkansas	System	Division	of	Agriculture.	

Superior	cultivars	of	the	primocane	fruiting	autumn-producing	blackberries	are	being	released	

and	being	grown.	This	has	significantly	expanded	the	blackberry	production	and	market	season.		

Although	 very	 productive	 in	 cooler	 climates,	 these	 new	 genotypes	 have	 limited	

adaptability	in	Arkansas	due	to	high	temperatures	during	the	flowering	and	fruit	set	period	of	



	 67	

July	and	August.	It	has	been	suggested	that	shade	cloth	could	reduce	fruit	temperatures	while	

also	 increasing	 fruit	 size	 and	 the	 amount	 of	 marketable	 berries	 with	 crop	 season	 extension	

(Makus,	2010).	Therefore,	 there	are	 two	proposed	methods	 for	 improving	 fruit	of	primocane	

cultivars:	 one	 method	 is	 to	 shade	 fruit,	 while	 a	 second	 is	 implement	 shade	 during	 flower	

production	 to	 shift	 fruit	 to	 a	 time	where	heat	 is	 avoided.	 The	 light	 treatments	 during	 flower	

formation	 were	 not	 meant	 for	 fruit	 temperature	 reduction	 in	 this	 experiment.	 It	 has	 been	

thought	 that	 shade	may	 delay	 flowering	 of	 primocane	 bearing	 cultivars	 to	 a	more	 favorable	

season,	although	the	research	 is	scarce.	The	purpose	of	 this	experiment	was	to	use	 light	as	a	

means	of	shifting	the	flower	and	fruit	fruiting	sequence	of	primocane	blackberries	to	avoid	heat.	

Based	 upon	 previous	 work,	 light	 saturation	 of	 blackberries	 occurred	 at	 750-900	

umoles/m2	/s1	light	flux	which	is	approximately	equivalent	to	50%	full	sun	on	an	average	Arkansas	

day.	 Shade	 treatments	 would	 generally	 have	 allowed	 at	 or	 near	 light	 saturation	 allowing	

achievement	of	near	maximum	average	photosynthesis	rates	(Curt	Rom,	pers.	comm.).	It	is	well	

studied	that	 light	 is	 the	driving	energy	source	for	photosynthesis	which	 influences	the	rate	of	

growth	as	well	as	development	of	plant	organs	(Janick,	1986).	Plant	organs	such	as	stems,	leaves,	

and	 flowers	 reach	 a	 genetically	 programmed	 minimal	 age	 of	 development,	 which	 varies	 by	

species	and	determines	when	the	plant	is	capable	of	flower	formation	(Durner,	2013).	However,	

Janick	(1986)	states	that	when	a	plant	reaches	maturity,	it	is	capable	of	flowering,	but	will	not	

make	 the	 transition	 from	 a	 vegetative	 stem	 primordia	 into	 floral	 primordia	 unless	 the	

environment	it	was	exposed	to	at	the	time	of	maturity	is	conducive	

An	experiment	on	apple	trees,	another	rosacea	species	implemented	three	treatments:	a	

nonshaded	control,	continuous	80%	shade,	and	intermittent	shade	that	provided	both	full	sun	
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and	full	shade	(Barden,	1977).	The	experiment	by	Barden	(1977)	found	that	plant	growth	was	

dependent	upon	accumulated	photosynthetically	active	radiation	rather	than	the	level	of	light	

provided.	An	experiment	on	blackberries	in	a	greenhouse	tested	a	full	sun	control,	20%,	50%,	and	

70%	irradiance	to	full	sun	(Gallagher,	et	al.,	2014).	Gallagher,	et	al.,	(2014)	reported	the	flower	

and	 fruit	 period	 were	 more	 concentrated	 when	 70%-100%	 irradiance	 to	 full	 sun	 was	

implemented	 during	 initiation,	 meaning	 lower	 light	 levels	 may	 result	 in	 delayed	 flower	

differentiation	and	or	incomplete	development.	It	is	proposed	in	this	experiment	that	the	use	of	

30%	 and	 50%	 shade	 isolated	 the	 light	 intensity	 factor	 and	 would	 not	 reduce	 the	

photosynthetically	active	radiation	required	for	growth,	but	delay	vegetative	bud	development.	

Flower	bud	initiation	of	several	primocane	fruit	blackberry	cultivars	under	field	conditions	

was	 statistically	 different	when	 number	 of	 nodes	 reached	 25	 between	 14	 and	 28	May	 1997	

(Lopez-Medina,	et	al.,	1999).	This	research	was	the	first	of	its	kind	and	provided	the	foundation	

to	 further	 understand	 primocane	 blackberry	 flower	 initiation	 development	 under	 nonshaded	

conditions,	which	may	be	used	to	manipulate	flower	development	in	the	future	(Lopez-Medina,	

et	al.,	1999).	This	previous	research	gave	insight	for	determining	when	shade	treatments	(ES,	MS,	

and	LS)	would	be	implemented	in	the	field	for	this	experiment.	Rotundo,	et	al.,	(1998)	shaded	

blackberry	cultivars	starting	the	last	ten	days	in	June	lasting	until	the	last	ten	days	in	October,	

which	lasted	throughout	the	hottest	summer	months	in	Italy.	Rotundo,	et	al.,	(1998)	found	that	

40%	shade	reduction	cloth	extended	the	fruiting	period	25	days	for	eight-year-old	plantings	of	

‘Black	Satin’	floricane	blackberries	and	28	days	for	‘Smoothstem’	blackberries	compared	to	the	

unshaded	control	in	the	Basilicata	region	of	southern	Italy	at	an	altitude	of	approximately	630	m.	

Furthermore,	 when	 shade	 was	 implemented	 in	 late	 July	 1996	 until	 late	 October,	 these	 two	
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blackberry	cultivars	had	an	increased	cumulative	fruit	production	the	following	year,	1997,	by	9%	

and	12%,	respectively,	compared	to	the	control	(Rotundo,	et	al.,	1998).		

Through	decreasing	levels	of	light,	it	is	thought	that	the	development	of	flowers	during	

the	first	three	vegetative	states—induction,	initiation,	and	differentiation—may	be	manipulated	

to	 shift	 primocane	 blackberry	 flower	 development.	 The	 objective	 of	 this	 experiment	 was	 to	

determine	if	various	levels	of	shade	(30%	and	50%)	used	at	different	times	of	the	pre-flowering	

season	 (ES,	MS	 and	 LS)	 could	 alter	 the	 flowering	 and	 fruiting	 season	 of	 a	 new	 genotype	 of	

autumn-producing	primocane	fruiting	blackberries	in	Arkansas.	The	hypothesis	was	that	shading	

may	affect	flowering	and	fruiting	differentially	based	upon	the	time	of	the	season	and	the	stage	

of	growth.		
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Materials	and	Methods	

Location:	 The	field	(FD)	experiment	was	located	in	the	horticulture	unit	organic	block	of	the	

University	 of	 Arkansas	 Agriculture	 Research	 and	 Extension	 Center	 in	 Fayetteville,	 Arkansas	

(Latitude:	36°6'8"	N;	Longitude:	94°10'17"	W).	The	FD	was	managed	following	National	Organic	

Production	(NOP)	standards	that	enforce	regulations	on	organic	food	production	in	the	United	

States	(NOP,	2014).		

Plant	Materials	and	Experimental	Design:	 The	 field	plot	was	established	 in	2011	 for	pruning	

studies	of	‘Prime-Arkâ	45	plants	and	shade	studies	began	in	2013.	‘Prime-Arkâ	45	plants	were	

obtained	from	Boston	Mountain	Nurseries,	(Mountianburg,	AR).	The	experiment	was	designed	

in	a	3	X	3	factorial	with	five	replicated	plots	of	each	treatment	in	a	complete	randomized	design.	

The	plant	spacing	was	30.5	cm	in	row	with	a	total	of	six	rows.	There	were	2.7	m	between	rows	

and	50	cm	between	plant	crowns	within	the	row.	Plants	were	grown	in	the	FD	with	Captina	(Fine-

silty,	siliceous,	active,	mesic	Typic	Fragiudult)	silt	loam	soil.	

	Shade	structures	were	placed	over	1.8	m	row	sections	and	considered	as	experiment	

plots.	Size	and	dimension	of	shading	structure	were	1.5	m	(L)	X	1.2	m	(W)	X	2.1-	2.4	m	(H).	The	

experiment	was	 designed	 to	 test	 three	 levels	 of	 shade	 (0%	 [control],	 30%	 and	 50%	 shading)	

applied	for	30-45	days	at	three	different	times	during	the	summer	growing	cycle.	The	experiment	

had	 seven	 treatments	 with	 various	 levels	 of	 shade	 and	 differing	 dates	 of	 treatment	

implementation:	 1)	 an	 untreated	 control	 [CK],	 2)	 early	 shade	 30%	 [ES30],	 3)	mid	 shade	 30%	

[MS30],	4)	late	shade	30%	[LS30],	5)	early	shade	50%	[ES50],	6)	mid	shade	50%	[MS50],	7)	late	

shade	50%	[LS50].	The	30%	and	50%	treatments	were	implemented	16	June	[ES],	1	July	[MS]	and	

15	 July	 [LS]	 during	 the	 2014	 summer	 season.	 The	 treatment	 plots	 were	 observed	 prior	 to	
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implementation	of	the	ES	treatment	(Figure	9).	There	were	five	replications	for	all	treatments.	

Buffer	plots	were	established	between	treatment	plots	to	isolate	treatments	and	minimize	cross-

treatment	effects.		

Plot	Management:	 Rye	straw	hay	was	spread	between	the	bases	of	all	blackberry	crowns	23	

May	to	control	walk-row	and	in-row	competitive	vegetation.	Canes	were	pruned	to	the	crown	

each	winter	and	new	primocanes	were	thinned	to	five	primocane	canes	per	crown	in	the	spring.	

Canes	were	tipped	by	pruning	the	growing	tip	of	5-10	cm	6	June	to	encourage	lateral	bud	break.	

Previously	formed	flowers	were	removed	from	canes	under	shade	treatments	when	cloths	were	

implemented	on	16	June	(Figure	9).	This	was	done	to	insure	uniformity	among	treatment	plots	

and	provide	accurate	observations	regarding	effects	on	shade	flower	and	fruiting	formation.	The	

field	 was	 irrigated	 as	 needed	 according	 to	 Irrometers	 when	 soil	 moisture	 tension	 reached	

approximately	10	cbars.	The	irrigation	was	inline	drip	tube	with	30.5	cm	spacing	and	a	flow	rate	

of	1.9	L/hour.	Plants	were	fertilized	every	spring	using	Bradfield	Organicsâ	Luscious	Lawns	Mix	

(3-1-5)	 which	 was	 applied	 in	 banded	 rows.	 Seasonal	 pest	 control	 sprayed	 for	 spotted	 wing	

drosophylla	 using	 Naturalyteâ	 (Spinosad	 A	 and	 D	 and	 Propylene	 glycol,	 DOW	 AgroSciences	

Company)	Insect	Control	at	a	rate	0.01	L	per	0.40	ha.		

Research	Variables	and	Data	Collection:	 Two	 healthy,	 vigorous	 primocanes	 in	 each	

treatment	plot	were	tagged	as	sub-samples	within	each	plot.	Prior	to	the	initiation	of	the	15	July,	

shade	 treatment	 structures,	 canes	 were	 chosen	 as	 subsamples	 in	 each	 treatment	 plot	 and	

tagged.	The	primocanes	were	selected	on	uniformity,	growth	and	overall	health.		

Weekly	 assimilation	 measurements	 were	 recorded	 from	 tagged	 plants	 from	 each	

treatment	plot	using	a	CIRAS-2â	portable	gas	exchange	monitor	equipped	with	a	Parkinsonâ	
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leaf	chamber	(Figure	10)	which,	but	was	not	limited	to:	assimilation	(A),	evapotranspiration	(Et),	

and	stomatal	conductance	(gs).	At	the	time	of	assimilation	other	measurements	were	taken	that	

included:	 internal	 concentration	 CO2,	 relative	 humidity	 of	 the	 Parkinsonâ	 leaf	 chamber,	

photosynthetically	active	radiation,	evapotranspiration	and	stomatal	conductance	(Appendix	24,	

25,	26,	27,	28,	29,	30,	31,	32,	33,	34,	35,	36,	37,	38	and	39).		

The	first	assimilation	measurements	were	collected	on	25	June	and	once	every	seven-day	

period	until	18	Aug	(Figure	11).	The	area	of	the	leaf	measured	was	6.25	cm2.	The	terminal	leaf	of	

the	leaflet	near	the	middle	leaf	margin	lamina	was	used	for	measurements.	The	leaf	was	chosen	

four	to	five	nodes	down	from	the	terminal	cane	tip	of	each	plant	and	was	used	for	estimated	leaf	

chlorophyll	 and	 assimilation	 measurements.	 Estimated	 leaf	 chlorophyll	 and	 assimilation	

measurements	were	taken	using	the	same	leaf,	but	 leaf	selection	varied	weekly.	Only	healthy	

leaves	 were	 used	 in	 measurements	 of	 estimated	 leaf	 chlorophyll	 content	 and	 assimilation	

measurements.	CIRAS	was	set	at	a	flow	rate	of	300,	the	RH	setting	was	50%,	and	the	incoming	

CO2	concentration	was	390	ppm	with	a	leaf	temperature	28	°C.	Measurements	were	taken	with	

the	CIRAS	light	head	and	set	to	PAR	1,200	µmols/m2/s1.	If	leaves	were	moist	from	morning	dew	

or	precipitation,	they	were	dried	with	paper	towels	prior	to	data	collection.	

	 Measurements	began	around	7:30	AM	 lasting	until	12:00	PM	for	the	FD	plots	or	until	all	

plots	were	recorded	in	a	randomized	order.	The	center	most	leaf	located	four	to	five	nodes	from	

the	tip	was	used	for	each	reading.		

Chlorophyll	 estimates	 were	 made	 with	 the	 Minolta	 model:	 SPAD-502	 Plusâ	 monitor	

measured	on	the	same	leaf	used	for	foliar	assimilation	measurements.	Estimated	leaf	chlorophyll	

content	were	measured	can	be	related	to	foliar	nitrogen	content.	
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Soil	moisture	for	each	treatment	plot	was	collected	21	Aug.	Furthermore,	in	the	morning	

soil	moisture	was	collected	in	each	treatment	plot	of	the	organic	blackberry	block	with	the	TDR	

reflectrometry,	Model	FieldScout	TDR	300,	at	a	depth	of	12	cm	25	June	(Data	not	presented).		

Plots	began	to	fruit	60	days	after	first	shade	treatment	on	18	Aug.	After	ripening	fruit	was	

harvested	from	FD	treatment	plots	twice	every	seven	day	period	(most	Tuesdays	and	Fridays)	

after	the	first	ripe	fruit	was	seen	(Figure	12).	Towards	the	end	of	the	experiment,	the	ripe	fruit	

from	each	treatment	plot	was	harvested	once	every	seven-day	period.	The	total	berry	weight	(g)	

for	each	treatment	was	recorded	(Figure	13).	There	were	a	total	of	50	days	of	harvest.		

The	blackberries	were	culled,	sorting	berries	between	marketable	and	unmarketable	fruit	

for	the	first	seven	weeks.	Criteria	for	the	marketable	berries	were	firmness,	size,	without	disease	

or	 mold	 and	 limited	 punctures	 to	 druplets.	 Once	 graded,	 the	 weight	 of	 the	 berries	 for	

unmarketable,	marketable	along	with	the	weight	of	25	randomly	chosen	marketable	berries	was	

recorded	 for	 each	 plot	 and	 determined	 the	 average	 berry	weight	 for	 treatment	 plots.	 Twice	

during	the	harvest	collection	of	berries,	29	Aug.	and	12	Sept.,	five	randomly	selected	marketable	

berries	were	measured	for	the	soluble	solids	content.	“Total	Berry	Weight”	was	used	to	describe	

the	individual	harvest	by	date	(Appendix	36).	The	term	“Cumulative	Yield”	of	berry	weight	was	

used	for	all	days	of	harvest	combined	and	was	calculation	by	adding	weights	per	treatments	from	

past	harvest	days	to	equal	total	yields	per	treatment	plots	(Appendix	37).		

The	average	berry	weight	was	calculated	by	dividing	the	25	berry	count	total	weight	by	

25	berries	for	each	treatment	by	individual	harvest	date	(Appendix	38).	Total	marketable	berry	

weight	was	the	weight	of	marketable	berries	by	 individual	harvest	dates	 (Appendix	39).	Total	

percent	marketable	berry	weight	was	calculated	by	dividing	the	weight	of	marketable	berries	by	
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total	weight	of	harvest	per	treatment	by	individual	harvest	dates	(Appendix	40).	The	cumulative	

marketable	 yield	 was	 the	 weight	 of	 marketable	 berries	 for	 all	 days	 of	 harvest	 combined	

(Appendix	41).	

After	 the	 conclusion	 of	 fruit	 data	 collection	 on	 19	 Oct.,	 the	 tagged	 canes	 in	 each	 FD	

treatment	plot	were	destructively	harvested	for	final	growth	measurements.	The	measurements	

included:	 cane	diameter	 (6	 cm	above	 the	 soil	 line)	 (mm),	 cane	 shoot	 length	 (cm),	number	of	

nodes,	number	of	lateral	branches	formed	after	pruning,	number	of	flower	clusters	per	cane,	and	

the	number	of	fruit	clusters	for	each	cane.	
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Results,	Discussion	and	Conclusion		

The	estimated	 leaf	chlorophyll	content	at	36	DOT	of	plants	 in	 the	LS50	treatment	was	

statistically	greater	than	all	other	treatments	except	CK	and	LS30	(Table	4	and	Figure	14).	At	DOT	

36,	there	were	no	treatments	that	had	chlorophyll	contents	significantly	different	from	the	CK.	

However,	at	DOT	45,	the	CK,	MS30,	LS30	and	LS50	had	greater	chlorophyll	contents	than	MS50,	

while	 ES30	was	 not	 different	 from	any	other	 treatments.	 These	data	 indicated	 that	 over	 the	

course	of	the	experiment,	there	were	only	two	days	out	of	eight	when	statistical	differences	were	

measured	for	chlorophyll	content	among	treatments	(Table	4	and	Figure	14).		

Fruits	 were	 harvested	 beginning	 at	 60	 days	 after	 the	 onset	 of	 the	 experimental	

treatments.	Day	of	Harvest	(DOH)	is	used	to	compare	fruit	harvest	of	the	differing	treatments.	

There	was	no	apparent	difference	in	the	dates	of	first	harvest	among	the	treatments.	Plants	in	

the	LS30	and	LS50	treatments	produced	greater	cumulative	yield	berry	weight	than	ES30,	MS30	

and	ES50	treatments,	while	all	treatments	were	not	different	from	the	CK	(Figure	15	and	Table	

5).	 The	 cumulative	 harvested	 berry	 weight	 which	 was	 greatest	 for	 LS30	 and	 LS50	 began	 to	

differentiate	 in	 harvest	 berry	 weight	 from	 ES30	 starting	 22	 DOH	 and	 continued	 until	 the	

conclusion	of	the	experiment,	49	DOT	(Figure	15	and	Table	5).	At	approximately	33	DOT,	LS30	

and	LS50	treated	plants	had	average	yields	above	1500	g	per	plot	compared	to	ES30,	MS30	and	

ES50	that	had	average	berry	yields	less	than	1000	g	(Figure	15	and	Table	5).		

The	total	cumulative	berry	weights	peaked	for	all	treatments	around	DOH	20	(Figure	16).	

While	this	does	not	show	significant	differences,	it	is	useful	for	understanding	the	increase,	peak	

and	decline	in	yields	per	plot	(Figure	16).		
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After	sorting	fruit	to	segregate	marketable	and	nonmarketable	fruit,	the	mean	cumulative	

marketable	yields	were	269%	greater	for	LS30-treated	plants	compared	to	ES30	treated	plants	

which	were	the	least	(Table	6).	There	were	no	statistical	differences	among	treatments	for	culled	

berry	weights	and	soluble	solids	(Appendix	42,	43,	44,	45	and	46).	

No	significant	differences	for	cane	length,	cane	diameter,	node	number,	internode	length,	

number	 of	 lateral	 branches	 or	 number	 of	 fruit	 clusters	 were	 observed	 among	 treatments	

(Appendix	47,	48,	49,	50,	51,	52	and	53).	The	short-term	shade	treatments	were	made	after	canes	

were	tipped,	setting	their	final	height,	and	after	lateral	bud	break	had	occurred.	Therefore,	shade	

did	not	affect	gross	growth	in	this	experiment.		

The	hypothesis	was	that	that	shade	would	affect	flower	formation	and	subsequently	fruit	

formation	of	primocane	blackberries	in	the	field.	There	was	no	effect	on	plant	growth	and	some	

shade	 treatments	 did	 reduce	 yield	 although	 it	 was	 observed	 in	 the	 GH	 experiment.	 Field	

treatments	ES30,	MS30	and	ES50	had	less	fruit	than	LS	treatments	during	the	experiment	period.	

Gallagher,	et	al.,	(2014)	stated	that	flower	and	fruit	were	more	concentrated	when	lower	light	

levels	were	implemented	during	the	flower	initiation	stage.	Since	previously	formed	flowers	were	

removed	prior	to	the	ES	treatments,	it	is	possible	that	shade	was	not	applied	early	enough	during	

the	vegetative	stages	of	initiation.	Also,	the	experiment	was	terminated	prior	to	the	end	of	all	

flowering	and	fruit	harvest.	This	could	explain	why	there	was	no	difference	in	plant	growth,	but	

yields	were	lower	in	some	ES	treatments.			

As	observed	in	the	GH	experiment,	shade	delayed	flowering	and	fruiting.		Rotundo,	et	al.,	

(1998)	 found	 that	 40%	 shade	 extended	 the	 fruiting	 period	 by	 25	 days	 for	 several	 floricane	

blackberry	cultivars;	however,	this	study	is	unable	to	compare	results	because	the	fruiting	season	
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was	ended	due	to	limiting	weather.	It	is	possible	that	flowering	and	fruiting	of	the	ES	treatment	

could	have	continued	after	the	end	of	this	experiment	due	to	the	delay	in	flowering	and	fruiting	

as	observed	in	the	GH	experiment.	If	that	was	the	case,	in	the	future	shade	should	be	applied	1	

May	as	opposed	to	16	June.	Field	canes	were	approximately	60	cm	in	height	at	the	start	of	the	

experiment	 and	 the	 first	 shaded	 treatment	was	 implemented	 16	 June.	 Lopez-Medina,	 et	 al.,	

(1999)	stated,	flower	bud	initiation	of	several	primocane	fruit	blackberry	cultivars	was	observed	

between	14	and	28	May	1997,	which	further	supports	that	shade	needs	to	be	implemented	May	

1	 in	 future	 experiments.	 Earlier	 shade	 could	 be	 coupled	 with	 season-extending	 high	 tunnel	

systems	to	protect	fruit	against	freezing	autumn	weather	that	would	end	field	production.	This	

is	among	first	research	of	its	kind	and	more	work	needs	to	be	completed	to	determine	if	shade	is	

a	possible	management	tool	for	delaying	flower	formation	and	cropping.	This	work	demonstrated	

both	potential	and	problems	of	shading	primocane	blackberries.	If	shaded	early	in	the	season,	it	

may	delay	bloom	without	affecting	yield	if	shade	is	removed.	However,	if	shaded	at	other	times,	

it	 may	 reduce	 yields.	 Shade	 late	 in	 the	 season	 during	 fruiting,	 may	 increase	 fruit	 size	 and	

marketable	yield.	These	preliminary	studies	 indicate	 that	 the	effects	of	shading	are	very	 time	

dependent,	although	more	work	needs	to	be	done.			The	potential	of	shading	in	combination	with	

high	tunnels	may	provide	an	opportunity	for	primocane	fruiting,	autumn-bearing	blackberries	in	

Arkansas	and	the	southern	region	of	the	United	States.	
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Figure	9.	Prior	to	early	shade	treatment	implementation,	day	1	of	the	experiment,	of		
	 ‘Prime-Arkâ	45’	blackberry	while	grown	in	the	field	experiment,	2014.	
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Figure	10.	Assimilation	measurements	of	the	control	treatment	of	‘Prime-Arkâ	45’	blackberry	
	 while	grown	in	the	field	experiment,	2014.		
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Figure	11.	Assimilation	measurements	of	a	control	treatment	plot	after	implementation	of	early	
	 shade	and	middle	shade	treatment	cloth	of	‘Prime-Arkâ	45’	blackberry	grown	in	the	
	 field	experiment,	2014.	
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Figure	12.	An	example	of	fruit	ripeness	variation	of	‘Prime-Arkâ	45’	control	treatment	
	 blackberries	while	grown	in	the	field	experiment,	2014.	
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Figure	13.	Blackberries	of	treatment	plots	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	
	 shade	treatments	while	grown	in	the	field	experiment,	2014.	

	

	



	 83	

	

	

Table	4.	Estimated	leaf	chlorophyll	content	as	measured	by	SPAD	of	‘Prime-Arkâ	45’	blackberry	

	 as	affected	by	seven	shade	treatments	while	grown	in	the	field	experiment,	2014.	

Z	
Mean	comparisons	among	treatments	were	calculated	using	SAS	Proc	GLM	LSD.																										
Means	followed	by	different	letters	are	statistically	different	from	one	another	(α	<	0.05,	n	=	5).		
XDOT	=	days	of	treatment	

	
	

	

	

	

	

	

	

	

	

	

	

Estimated	Leaf	Chlorophyll	Content	
Treatment	 DOT	10X	 DOT	15	 DOT	27	 DOT	36	 DOT	45	 DOT	57	 DOT	64	 DOT	69	

Control	 38	 35	 37	 40.7	abcZ	 42.3	a	 44	 47	 47	

Early	Shade	30%	 40	 31	 36	 36	bc	 38.9	abc	 43	 45	 47	

Middle	Shade	30%	 38	 35	 36	 39	bc	 41.9	ab	 44	 48	 49	
Late	Shade	30%	 41	 36	 39	 41	ab	 41.3	ab	 42	 46	 48	
Early	Shade	50%	 37	 28	 37	 35	c	 38	bc	 44	 44	 44	
Middle	Shade	50%	 35	 37	 38	 35	c	 36	c	 43	 45	 45	
Late	Shade	50%	 41	 35	 41	 45	a	 42.4	a	 44	 47	 49	

Prob	>	F	 ns	 ns	 ns	 0.01	 0.03	 ns	 ns	 ns	
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*There	are	no	statistical	differences	represented	in	the	figure	above.	

Figure	14.	Estimated	leaf	chlorophyll	content	as	measured	by	SPAD	of	‘Prime-Arkâ	45’	
	 blackberry	as	affected	by	seven	shade	treatments	while	grown	in	the	field	experiment,	
	 2014.	 	
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Z	
Mean	comparisons	among	treatments	were	calculated	using	SAS	Proc	GLM	LSD.		Means	followed	by	dif
ferent	letters	are	statistically	different	from	one	another	(α	<	0.05,	n	=	5).		
	
	
Figure	15.	Cumulative	yield	berry	weight	of	‘Prime-Arkâ	45’	blackberry	plants	across	all	harvest	
	 dates	as	affected	by	seven	shade	treatments	while	grown	in	the	field	experiment,	2014.		
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Table	5.	Cumulative	yield	berry	weight	of	‘Prime-Arkâ	45’	blackberry	of	plants	across	all	harvest	

	 dates	as	affected	by	seven	shade	treatments	while	grown	in	the	field	experiment,	2014.	

	

	

	

	

	

	

	

	

	

	

	

Z	
Mean	comparisons	among	treatments	were	calculated	using	SAS	Proc	GLM	LSD.		Means	followed	by	dif
ferent	letters	are	statistically	different	from	one	another	(α	<	0.05,	n	=	5).		
SE=	Standard	Error 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Treatment	 Cumulative	Yield	Berry	Weight	(g)	 SE	
Control	 1544.6	abz	 283.5	

Early	Shade	30%	 968.4	b	 74.6	
Middle	Shade	30%	 993.6	b	 86.6	
Late	Shade	30%	 1907.4	a	 344.2	
Early	Shade	50%	 1063.4	b	 171.7	
Middle	Shade	50%	 1300.8	ab	 117.9	
Late	Shade	50%	 1912	a	 240.7	

Prob	>	F	 0.01	 	
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*There	are	no	statistical	differences	in	the	table	above.	
	
Figure	16.	Total	berry	weight	at	each	day	of	harvest	of	‘Prime-Arkâ	45’	blackberry	as	affected	
	 by	seven	shade	treatments	while	grown	in	the	field	experiment,	2014.	
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Table	6.	Cumulative	marketable	yield	berry	weight	of	‘Prime-Arkâ	45’	blackberry	of	plants	

	 across	all	harvest	dates	as	affected	by	seven	shade	treatments	while	grown	in	the	field	

	 experiment,	2014.	

	
	

	

	

	

	

	

	

	

Z	
Mean	comparisons	among	treatments	were	calculated	using	SAS	Proc	GLM	LSD.		Means	followed	by	dif
ferent	letters	are	statistically	different	from	one	another	(α	<	0.05,	n	=	5).		
SE=	Standard	Error 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Treatment	 Cumulative	Marketable	Yield	(g)	 SE	
Control	 585	abz	 104	

Early	Shade	30%	 244	d	 72	
Middle	Shade	30%	 355	cd	 40	
Late	Shade	30%	 657	a	 100	
Early	Shade	50%	 399	b-d	 64	
Middle	Shade	50%	 473	a-c	 62	
Late	Shade	50%	 579	ab	 61	

Prob	>	F	 0.006	 	
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Appendices:	Greenhouse	Tables	and	Figures	

Appendix	1.	Root	and	shoot	ratio	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
	 treatments	while	grown	in	a	greenhouse,	2014.	
	

	

	

	

	

	

	

	

	

	

	

	

	

*There	are	no	statistical	differences	in	the	figure	above.		
(Dry	weight	for	roots/dry	weight	for	top	of	plant	=	root/shoot	ratio)	
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	Appendix	2.	Estimated	leaf	chlorophyll	content	as	measured	by	SPAD	set	to	percent	of	control	
	 (100%)	of	‘Prime	Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	while	
	 grown	in	the	field	experiment,	2014.	

	

	

	

	

	

	

	

	

	

*There	are	no	statistical	differences	represented	in	the	figure	above.		
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Appendix	3.	Assimilation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	treatments	
	 while	grown	in	a	greenhouse,	2014.	

Assimilation	(µmol/m2/s1)	
Treatment	 DOT	1X	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	55Y	

Control	 11.1	 15.4	 19.4	a	Z	 13	 13.5	 13.6	 10.1	ab	 13.1	 11.8	a	

Unshaded-Shaded	 11.3	 15.3	 19	a	 14.7	 14.2	 11.1	 7.7	c	 11.7	 5.8	bc	

Shaded-Shaded	 11.8	 14.5	 15.1	b	 13.5	 13	 11.1	 8.6	bc	 13.5	 4.4	c	

Shaded-Unshaded	 10.8	 14.4	 15.1	b	 15.1	 12.2	 11.4	 11.3	a	 14	 7.3	b	
Prob	>	F	 ns	 ns	 <0.0001	 ns	 ns	 ns	 0.05	 ns	 <0.0001	

ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOT=	days	of	treatment	
YDOT	=	measurements	taken	without	light	head	
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Appendix	4.	Assimilation	set	to	percent	of	control	(100%)	of	‘Prime-Arkâ		45’	blackberry	as	
affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.		

	

	

	

	

	

	

	

*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	5.	Evapotranspiration	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
	 treatments	while	grown	in	a	greenhouse,	2014.	

Evapotranspiration	(mmol	H2O/m2/s1)	
Treatment	 DOT	1X	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	55Y	

Control	 4.41	 5.3	c	Z	 5.5	b	 5.3	 4.9	b	 5.8	a	 5	 4.3	a	 6a	

Unshaded-Shaded	 4.4	 5.9	ab	 6a	 5.6	 5.5	a	 5.8	a	 5	 4.1	a	 4	b	

Shaded-Shaded	 4.6	 6.1	a	 5.3	b	 5.3	 5.2	ab	 5	b	 5	 3	b	 5	b	

Shaded-Unshaded	 4.1	 5.7	bc	 5.4	b	 5.5	 5.7	a	 3.8	c	 5	 4.5	a	 5	b	
Prob	>	F	 ns	 0.001	 <.0001	 ns	 0.04	 <.0001	 ns	 0.0003	 0.03	

ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOT=	days	of	treatment	
YDOT	=	measurements	taken	without	light	head	
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Appendix	6.	Evapotranspiration	of	‘Prime-Arkâ	45’	blackberry	affected	by	four	shade	
	 treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	vertical	bars	on	the	graph	represent	the	+/-	standard	deviation	in	the	data	set.	
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Appendix	7.	Evapotranspiration	set	to	percent	of	control	(100%)	of	‘Prime-Arkâ	45’	blackberry	
	 as	affected	by	four	shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	
	 AR.		

	

	

	

	

	

	

	

	

	

*There	are	no	statistical	differences	represented	in	this	unanalyzed	data			
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Appendix	8.	Vapor	pressure	deficiency	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
	 treatments	while	grown	in	a	greenhouse,	2014.	

Vapor	Pressure	Deficiency	(VPD)	(kPa)	

Treatment	 DOT	1X	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	55y	

Control	 1.3	 1.5	a	Z	 1.1	b	 1.5	 1.3	 1.4	b	 1.4	bc	 0.98	bc	 1	b	
Unshaded-Shaded	 1.3	 1.8	ab	 1.1	b	 1.4	 1.3	 1.4	b	 1.3	c	 0.95	c	 2	a	
Shaded-Shaded	 1.3	 1.35	c	 1.3	a	 1.5	 1.2	 1.7	b	 1.7	ab	 1.08	ab	 1	b	

Shaded-Unshaded	 1.4	 1.4	bc	 1.1	b	 1.4	 1.3	 2.1	a	 1.8	a	 1.14	a	 2	a	

Prob	>	F	 ns	 0.0009	 <.0001	 ns	 ns	 <.0001	 0.02	 0.02	 0.0005	
ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOT=	days	of	treatment	
YDOT	=	measurements	taken	without	light	head	
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Appendix	9.	Vapor	pressure	deficit	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
	 treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
*There	are	no	statistical	differences	in	the	figure	above.		
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Appendix	10.	Ambient	leaf	temperature	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	
	 shade	treatments	while	grown	in	a	greenhouse,	2014.	

Ambient	Leaf	Temperature	(°C)	

Treatment	 DOT	1X	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	
55Y	

Control	 36	 29	cZ	 35	a	 30	 31	b	 34	a	 33	 36	a	 35	b	

Unshaded-Shaded	 36	 29	c	 33	c	 30	 31	b	 34	a	 33	 36	a	 36	a	
Shaded-Shaded	 36	 32	a	 34	bc	 30	 32	b	 33.6	ab	 33	 36	a	 34	bc	

Shaded-Unshaded	 36	 30	b	 35	ab	 30	 33	a	 32.4	b	 33	 34	b	 34	c	

Prob	>	F	 ns	 <0.0001	 0.0009	 ns	 0.005	 0.04	 ns	 0.0002	 0.001	
ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOT=	days	of	treatment	
YDOT	=	measurements	taken	without	light	head	
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Appendix	11.	Ambient	leaf	temperature	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	
	 shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.	
	

	

	

	

	

	

	
	

	

*There	are	no	statistical	differences	in	the	table	above.		
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Appendix	12.	Chamber	relative	humidity	of	a	leaf	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
	 four	shade	treatments	while	grown	in	a	greenhouse,	2014,	while	measuring	gas	
	 exchange	(CIRAS-2	with	Parkinson	leaf	chamberâ)	

Relative	Humidity	(RH)	(%)	
Treatment	 DOT	1X	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	55Y	

Control	 61	 45	cZ	 61	a	 54	 57	 56	a	 57	ab	 72	b	 57	a	
Unshaded-Shaded	 63	 46	c	 58	b	 54	 56	 56	a	 58	a	 74	a	 46	c		
Shaded-Shaded	 62	 52	a	 58	b	 55	 58	 53	a	 54	bc	 74	a	 55	a	

Shaded-Unshaded	 62	 50	b	 62	a	 53	 55	 48	b	 52	c	 69	c	 50	b	
Prob	>	F	 ns	 <0.0001	 <0.0001	 ns	 ns	 <0.0001	 0.005	 <0.0001	 <0.0001	

ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOT=	days	of	treatment	
YDOT	=	measurements	taken	without	light	head	
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Appendix	13.	Chamber	relative	humidity	of	a	leaf	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
	 four	shade	treatments	while	grown	in	a	greenhouse,	2014,	while	measuring	gas	
	 exchange	(CIRAS-2	with	Parkinson	leaf	chamberâ)	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	14.	Photosynthetically	active	radiation	of	a	single	leaf	measured	at	the	time	of	
	 assimilation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	treatments	while	
	 grown	in	a	greenhouse,	2014.	

	 Photosynthetically	active	radiation	(PAR)	(µmol/m2/s1)	

Treatment	 DOT	1X	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	55Y	

Control	 831	 530	 723	a	Z	 95	 393	ab	 605	a	 295	ab	 392	a	 560	a	
Unshaded-Shaded	 788	 678	 688	a	 94	 450	a	 219	b	 87	c	 237	b	 310	b	
Shaded-Shaded	 726	 461	 331	b	 132	 296	b	 275	b	 197	bc	 206	b	 174	c	

Shaded-Unshaded	 697	 242	 297	b	 108	 265	b	 680	a	 373	a	 423	a	 394	b	

Prob	>	F	 ns	 0.001	 <.0001	 ns	 0.03	 <.0001	 0.0002	 <.0001	 <.0001	
ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOT=	days	of	treatment	
YDOT	=	measurements	taken	without	light	head	
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Appendix	15.	Photosynthetically	active	radiation	of	a	single	leaf	measured	at	the	time	of	
	 assimilation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	treatments	while	
	 grown	in	a	greenhouse,	2014,	Fayetteville,	AR.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	16.	Leaf	temperature	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
	 treatments	while	grown	in	a	greenhouse,	2014.	

Leaf	Temperature	(Tleaf)	(°C)	
Treatment	 DOT	1X	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	55Y	

Control	 28	 27	cZ	 28	 28	 26.6	bc	 28	b	 28	 32	b	 27.4	bc	
Unshaded-Shaded	 28	 27.3	b	 28	 28	 26.9	b	 28	b	 29.6	 33	a	 30	a	

Shaded-Shaded	 28	 27.8	a	 28	 28	 26	c	 29	b	 29.6	 33	a	 27.7	c	
Shaded-Unshaded	 28	 27.5	b	 28	 28	 27.6	a	 30	a	 30	 32	b	 28	b	

Prob	>	F	 ns	 <.0001	 ns	 ns	 0.001	 0.006	 ns	 0.0001	 <.0001	
ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOT=	days	of	treatment	
YDOT	=	measurements	taken	without	light	head	
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Appendix	17.	The	leaf	temperature	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
	 treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.	
	

	

	

	

	

	

	

	

	

	

*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	18.	Internal	CO2	concentrations	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	
	 shade	treatments	while	grown	in	a	greenhouse,	2014.	

Internal	CO2	(Ci)	(µmol/mol1)	
Treatment	 DOT	1X	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	55Y	

Control	 296.3	 269	cZ	 270	c	 290	 289	 294	ab	 310	ab	 302	ab	 316	b	
Unshaded-Shaded	 297.1	 278	bc	 277	bc	 282	 291	 309	a	 326	a	 310	a	 317	b	
Shaded-Shaded	 297.5	 291	a	 282	b	 286	 301	 291	b	 304	b	 281	c	 350	a	

Shaded-Unshaded	 295.3	 288	ab	 291	a	 280	 303	 246	c	 283	c	 291	bc	 318	b	
Prob	>	F	 ns	 0.006	 <.0001	 ns	 ns	 <.0001	 0.0003	 0.0007	 0.0002	

ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOT=	days	of	treatment	
YDOT	=	measurements	taken	without	light	head	
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Appendix	19.	Internal	CO2	concentrations	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	
	 shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.	
	

	

	

	

	

	

	

	

	

	

	

	

*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	20.	Stomatal	conductance	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
	 treatments	while	grown	in	a	greenhouse,	2014.	

Stomatal	Conductance	(gs)	(mmol	H20/m2/s1)	
Treatment	 DOT	1X	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	55Y	

Control	 424.7	 398	cZ	 583	ab	 426	 465	 515	a	 469	 519	a	 694	a	
Unshaded-Shaded	 398.3	 465	b	 642	a	 460	 548	 510	a	 470	 525	a	 329	c	

Shaded-Shaded	 435.5	 541	a	 466	c	 423	 539	 384	b	 386	 399	b	 578	ab	
Shaded-Unshaded	 360.7	 467	b	 564	b	 452	 528	 219	c	 338	 493	a	 426	bc	

Prob	>	F	 ns	 0.0005	 0.0002	 ns	 ns	 <.0001	 ns	 0.03	 0.003	
ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOT=	days	of	treatment	
YDOT	=	measurements	taken	without	light	head	
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Appendix	21.	Stomatal	conductance	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	shade	
	 treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	22.	Foliar	water	use	efficiency	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	
shade		 treatments	while	grown	in	a	greenhouse,	2014.	

Water	Use	Efficiency	(WUE)	(mmol	CO2/	mol1	CO2)	
Treatment	 DOT	1X	 DOT	8	 DOT	15	 DOT	20	 DOT	29	 DOT	36	 DOT	41	 DOT	50	 DOT	55Y	

Control	 2.5	 2.9	a	Z	 3.5	a	 2.4	 2.7	a	 2.4	b	 1.9	b	 3	b	 2	a	
Unshaded-Shaded	 2.6	 2.6	b	 3.1	b	 2.6	 2.6	a	 1.9	c	 1.5	c	 3	b	 1.3	bc	
Shaded-Shaded	 2.6	 2.4	b	 2.9	bc	 2.5	 2.5	a	 2.2	bc	 1.8	bc	 4	a	 0.8	c	

Shaded-Unshaded	 2.6	 2.5	b	 2.8	c	 2.7	 2	b	 3	a	 2.3	a	 3	b	 1.6	b	

Prob	>	F	 ns	 0.009	 <.0001	 ns	 0.003	 <.0001	 0.0004	 0.001	 <.0001	
ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOT=	days	of	treatment	
YDOT	=	measurements	taken	without	light	head	
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Appendix	23.	Foliar	water	use	efficiency	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	four	
	 shade	treatments	while	grown	in	a	greenhouse,	2014,	Fayetteville,	AR.	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendices:	Field	Tables	and	Figures	

Appendix	24.	Assimilation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	
	 treatments	while	grown	in	the	field	experiment,	2014.	
	

Z	
Mean	comparisons	among	treatments	were	calculated	using	SAS	Proc	GLM	LSD.		Means	followed	by	dif
ferent	letters	are	statistically	different	from	one	another	(α	<	0.05,	n	=	5).		
XDOT=	days	of	treatment	
 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Assimilation	(A)	(µmol/m2/s1)	
Treatment	 DOT	10X	 DOT	15	 DOT	27	 DOT	36	 DOT	45	 DOT	57	 DOT	64	 DOT	69	
Control	 14	 11	 12	 11	 13	 14	abZ	 14	 13	

Early	Shade	30%	 13	 10	 11	 10	 12.5	 10	c	 12	 14	
Middle	Shade	30%	 13	 10	 10	 10	 12.7	 14.5	a	 13	 13	
Late	Shade	30%	 12	 12	 11	 9	 12.8	 11.6	bc	 12	 13	
Early	Shade	50%	 11	 9	 11	 13	 11.5	 12.4	abc	 12	 13	
Middle	Shade	50%	 11	 11	 11	 10	 10	 13.5	ab	 12	 12	
Late	Shade	50%	 13	 10	 12	 13	 13	 12	abc	 12	 11	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 0.05	 ns	 ns	
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Appendix	25.	Assimilation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	
	 while	grown	in	the	field	experiment,	2014.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

*There	are	no	statistical	difference	represented	in	the	figure	above.		
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Appendix	26.	Internal	CO2	concentrations	of	‘Prime-Arkâ 45’	blackberry	as	affected	by	seven	
	 shade	treatments	while	grown	in	a	field	experiment,	2014.		

Internal	CO2	(Ci)	(µmol/mol1)	
Treatment	 DOT	10X	 DOT	15	 DOT	27	 DOT	36	 DOT	45	 DOT	57	 DOT	64	 DOT	69	
Control	 262*	 258	 256	 238	 272	 269	 275	 276	

Early	Shade	30%	 278	 261	 230	 235	 291	 252	 290	 275	
Middle	Shade	30%	 274	 245	 249	 243	 275	 256	 273	 280	
Late	Shade	30%	 295	 261	 234	 268	 281	 266	 303	 284	
Early	Shade	50%	 285	 270	 241	 232	 271	 263	 257	 275	
Middle	Shade	50%	 287	 241	 264	 228	 287	 271	 273	 276	
Late	Shade	50%	 276	 253	 251	 234	 282	 275	 273	 274	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 ns	 ns	 ns	
*There	are	no	statistical	differences	represented	in	the	figure	above.	
XDOT=	days	of	treatment	
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Appendix	27.	Internal	CO2	concentrations	of	‘Prime-Arkâ	45’	as	affected	by	seven	shade	
	 treatments	while	grown	in	a	field	experiment,	2014.		
	

	
	

	

	

	

	

	

	

	

	

*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	28.	Chamber	relative	humidity	of	a	leaf	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
	 seven	shade	treatments	while	grown	in	a	field	experiment,	2014,	while	measuring	gas	
	 exchange	(CIRAS-2	with	Parkinson	leaf	chamberâ).		
	

Relative	humidity	(RH)	(%)	
Treatment	 DOT	10X	 DOT	15	 DOT	27	 DOT	36	 DOT	45	 DOT	57	 DOT	64	 DOT	69	
Control	 54*	 58	 45	 41	 68	 47	 51	 50	

Early	Shade	30%	 53	 55	 42	 42	 70	 43	 51	 52	
Middle	Shade	30%	 55	 56	 43	 40	 67	 46	 48	 50	
Late	Shade	30%	 53	 52	 44	 43	 69	 46	 58	 54	
Early	Shade	50%	 54	 59	 42	 42	 67	 45	 44	 48	
Middle	Shade	50%	 53	 59	 45	 39	 68	 48	 48	 50	
Late	Shade	50%	 52	 57	 44	 41	 69	 46	 49	 49	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 ns	 ns	 ns	
*There	are	no	statistical	differences	represented	in	the	figure	above.	
XDOT=	days	of	treatment	
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Appendix	29.	Chamber	relative	humidity	of	a	leaf	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
	 seven	shade	treatments	while	grown	in	a	field	experiment,	2014,	while	measuring	gas	
	 exchange	(CIRAS-2	with	Parkinson	leaf	chamberâ).		
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	30.	Photosynthetically	active	radiation	of	‘Prime-Arkâ 45’	blackberry	as	affected	by																			
	 seven	shade	treatments	while	grown	in	the	field	experiment,	2014.	
	

Photosynthetically	active	radiation	(PAR)	(µmol/m2/s1)	
Treatment	 DOT	10X	 DOT	15	 DOT	27	 DOT	36	 DOT	45	 DOT	57	 DOT	64	 DOT	69	
Control	 548	 907	 849	 700	 706	 849	 906	aZ	 703	

Early	Shade	30%	 322	 386	 338	 644	 213	 570	 445	b	 313	
Middle	Shade	30%	 555	 850	 641	 602	 226	 811	 331	b	 339	
Late	Shade	30%	 423	 218	 676	 492	 721	 422	 279	b	 329	
Early	Shade	50%	 180	 370	 628	 887	 282	 503	 549	ab	 395	
Middle	Shade	50%	 475	 514	 362	 678	 224	 560	 447	b	 333	
Late	Shade	50%	 466	 766	 618	 865	 576	 389	 259	b	 306	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 ns	 0.03	 ns	
Z	
Mean	comparisons	among	treatments	were	calculated	using	SAS	Proc	GLM	LSD.		
	Means	followed	by	different	letters	are	statistically	different	from	one	another	(α	<	0.05,	n	=	5).		
XDOT=	days	of	treatment	
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Appendix	31.	Photosynthetically	active	radiation	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
	 seven	shade	treatments	while	grown	in	the	field	experiment,	2014.		

	

	

	

	

	

*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	32.	Evapotranspiration	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	
	 treatments	while	grown	in	the	field	experiment,	2014.	
	

Evapotranspiration	(Et)	(µmol	H20/	m2/s1)	
Treatment	 DOT	10X	 DOT	15	 DOT	27	 DOT	36	 DOT	45	 DOT	57	 DOT	64	 DOT	69	
Control	 5	 4	 5	 3	 3	 6.2	aZ	 5.6	ab	 6	

Early	Shade	30%	 5	 4	 4	 3	 4	 4.5	c	 5.2	abc	 6	
Middle	Shade	30%	 4	 3	 4	 3	 3	 5.7	ab	 5	abc	 6	
Late	Shade	30%	 6	 4	 4	 4	 3	 4.8	bc	 5.7	a	 5	
Early	Shade	50%	 4	 3	 4	 4	 3	 5.4	abc	 4.5	c	 7	
Middle	Shade	50%	 5	 3	 4	 3	 3	 6.0	a	 4.9	bc	 6	
Late	Shade	50%	 5	 3	 5	 4	 4	 5.7	ab	 4.9	bc	 6	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 0.04	 0.05	 ns	
Z	
Mean	comparisons	among	treatments	were	calculated	using	SAS	Proc	GLM	LSD.		Means	followed	by	dif
ferent	letters	are	statistically	different	from	one	another	(α	<	0.05,	n	=	5).		
XDOT=	days	of	treatment	
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Appendix	33.	Evapotranspiration	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	
	 treatments	while	grown	in	the	field	experiment,	2014.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
*There	are	no	statistical	difference	represented	in	the	figure	above.		

	
	
	
	
	

	

	

	

	

	

	

	

	

	



	 124	

Appendix	34.	Stomatal	conductance	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	
	 treatments	while	grown	in	the	field	experiment,	2014.	 	

Stomatal	Conductance	(gs)	(µmol	H20/	m2/s1)	
Treatment	 DOT	10X	 DOT	15	 DOT	27	 DOT	36	 DOT	45	 DOT	57	 DOT	64	 DOT	69	
Control	 334*	 224	 250	 193	 327	 392	aZ	 1331	 422	

Early	Shade	30%	 412	 234	 174	 190	 404	 212	c	 522	 389	
Middle	Shade	30%	 312	 194	 198	 192	 313	 322	abc	 338	 395	
Late	Shade	30%	 500	 284	 200	 220	 397	 271	bc	 759	 484	
Early	Shade	50%	 300	 210	 185	 219	 273	 286	abc	 269	 379	
Middle	Shade	50%	 419	 244	 246	 171	 259	 355	ab	 338	 352	
Late	Shade	50%	 370	 200	 224	 189	 394	 344	ab	 421	 311	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 ns	 ns	 ns	
*There	are	no	statistical	difference	represented	in	the	table	above.		
XDOT=	days	of	treatment	
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Appendix	35.	Stomatal	conductance	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	
	 treatments	while	grown	in	the	field	experiment,	2014.		
	
	

	

	

	

	

	

	

	

	

*There	are	no	statistical	difference	represented	in	the	figure	above.		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 126	

Appendix	36.	Total	berry	weight	by	day	of	harvest	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	
	 seven	shade	treatments	while	grown	in	a	field	experiment,	2014.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOH=	day	of	harvest	
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Appendix	37.	Cumulative	yield	berry	weight	across	all	days	of	harvest	of	‘Prime-Arkâ	45’	
	 blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	
	 2014.		Numbers	in	parenthesis	represented	percent	of	the	control.			

Treatment	 Cumulative	Yield	Berry	Weight	(g) 
Control 1124* 

Early	Shade	30% 739	(65.7) 

Middle	Shade	30% 713	(63.4) 

Late	Shade	30% 1296	(115.3) 

Early	Shade	50% 773	(68.7) 

Middle	Shade	50% 892	(79.4) 

Late	Shade	50% 1411	(125.5) 
*There	are	no	statistical	differences	represented	in	the	table	above.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 128	

Appendix	38.	Total	average	total	berry	weight	by	harvest	date	of	‘Prime-Arkâ	45’	blackberry	as	
	 affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	2014.	
	

Total	Average	Berry	Weight	(g)	
Treatment	 DOH	1X	 DOH	5	 DOH	8	 DOH	12	 DOH	15	 DOH	20	 DOH	22	
Control	 3.8*	 5	 4.2	 4	 4.7	 5	 5.2	

Early	Shade	30%	 5.6	 5	 5.3	 4.4	 4.5	 5.3	 4.8	
Middle	Shade	30%	 5.3	 5	 5.2	 5	 5.1	 5.2	 4.8	
Late	Shade	30%	 4.3	 5	 5	 5.2	 5	 5.5	 4.9	
Early	Shade	50%	 5.6	 6	 4.6	 4.9	 5	 5.4	 5.3	
Middle	Shade	50%	 4.8	 6	 5.2	 4.8	 5.3	 6.2	 4.6	
Late	Shade	50%	 4.8	 6	 5	 4.8	 5.3	 5.2	 4.9	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 ns	 ns	
*There	are	no	statistical	differences	represented	in	the	figure	above.	
XDOH=	day	of	harvest	
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Appendix	39.	Total	marketable	berry	weight	by	harvest	date	of	‘Prime-Arkâ	45’	blackberry	as	
	 affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	2014.	
	

Total	Marketable	Berry	Weight	(g)	
Treatment	 DOH	1X	 DOH	5	 DOH	8	 DOH	12	 DOH	15	 DOH	20	 DOH	22	
Control	 14	 23	 34	 38	 140	 253	 86	abcZ	

Early	Shade	30%	 30	 26	 14	 39	 59	 112	 32	c	
Middle	Shade	30%	 5	 7	 22	 28	 85	 161	 51	bc	
Late	Shade	30%	 7	 27	 29	 92	 130	 244	 128	a	
Early	Shade	50%	 24	 16	 31	 58	 72	 143	 55	bc	
Middle	Shade	50%	 22	 26	 42	 60	 109	 166	 67	bc	
Late	Shade	50%	 30	 32	 21	 62	 100	 234	 100	ab	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 ns	 0.05	
ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOH=	day	of	harvest	
	
	
	
	
	
	
	
	
	

	

	

	

	

	

	

	

	

	

	



	 130	

Appendix	40.	Total	percentage	of	marketable	weight	out	of	total	berry	weight	by	harvest	date	
	 of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	
	 field	experiment,	2014.	

Total	Percent	Marketable	Weight	of	Total	Berry	Weight	(%)	
Treatment	 DOH	1X	 DOH	5	 DOH	8	 DOH	12	 DOH	15	 DOH	20	 DOH	22	
Control	 43*	 79	 65	 61	 70	 68	 62	

Early	Shade	30%	 71	 56	 52	 57	 71	 55	 54	
Middle	Shade	30%	 53	 28	 66	 53	 71	 54	 50	
Late	Shade	30%	 57	 53	 74	 75	 80	 55	 57	
Early	Shade	50%	 66	 45	 64	 66	 75	 58	 66	
Middle	Shade	50%	 64	 50	 79	 62	 80	 52	 55	
Late	Shade	50%	 64	 44	 56	 62	 65	 56	 54	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 ns	 ns	
*There	are	no	statistical	differences	represented	in	the	figure	above.	
XDOH=	day	of	harvest	
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Appendix	41.	Cumulative	marketable	yield	weight	across	all	days	of	harvest	of	‘Prime-Arkâ	45’	
	 blackberry	as	affected	by	seven	shade	treatments	while	grown	in	the	field	experiment,	
	 2014.		

	
	
	
	
 

	

	

	

	

	

	

								*Error	bars	represent	standard	error	from	the	mean	(n=5).		
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Appendix	42.	Total	culled	berry	weight	by	harvest	date	of	‘Prime-Arkâ	45’	blackberry	as	
	 affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	2014.	
	

Total	Culled	Berry	Weight	(g)		
Treatment	 DOH	1X	 DOH	5	 DOH	8	 DOH	12	 DOH	15	 DOH	20	 DOH	22	
Control	 20	 10	 14	 24	 52	abZ	 119	 49	c	

Early	Shade	30%	 11	 17	 10	 31	 25	c	 101	 26	c	
Middle	Shade	30%	 5	 23	 11	 20	 31	bc	 123	 45	c	
Late	Shade	30%	 11	 23	 9	 30	 34	bc	 200	 94	a	
Early	Shade	50%	 12	 11	 15	 23	 23	c	 107	 23	c	
Middle	Shade	50%	 22	 15	 14	 33	 27	c	 158	 56	bc	
Late	Shade	50%	 13	 30	 8	 38	 57	a	 170	 89	ab	

Prob	>	F	 ns	 ns	 ns	 ns	 0.01	 ns	 0.03	
ZMean	separation	followed	by	different	letters	are	significantly	different,	α=0.05.	
XDOH=	day	of	harvest	
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Appendix	43.	Total	percentage	of	culled	weight	out	of	total	berry	weight	by	harvest	date	of		
	 ‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	field	
	 experiment,	2014.	

Total	Culled	Weight	of	Total	Berry	Weight	(%)	
Treatment	 DOH	1X	 DOH	5	 DOH	8	 DOH	12	 DOH	15	 DOH	20	 DOH	22	
Control	 57*	 21	 35	 39	 30	 32	 38	

Early	Shade	30%	 29	 44	 48	 44	 29	 46	 46	
Middle	Shade	30%	 48	 72	 34	 48	 29	 45	 50	
Late	Shade	30%	 43	 47	 26	 25	 20	 45	 43	
Early	Shade	50%	 34	 55	 36	 34	 25	 42	 34	
Middle	Shade	50%	 36	 50	 21	 38	 20	 48	 45	
Late	Shade	50%	 36	 56	 44	 38	 35	 44	 46	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 ns	 ns	
*There	are	no	statistical	differences	represented	in	the	figure	above.	
XDOH=	day	of	harvest	
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Appendix	44.	Cumulative	culled	berry	weight	across	all	days	of	harvest	of	‘Prime-Arkâ	45’	
	 blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	
	 2014.	 	
	

Treatment	 Cumulative	Culled	Yield	(g)	 SE	
Control	 49*	 42	

Early	Shade	30%	 26	 123	
Middle	Shade	30%	 49	 21	
Late	Shade	30%	 94	 116	
Early	Shade	50%	 23	 116	
Middle	Shade	50%	 56	 42	
Late	Shade	50%	 89	 83	

Prob	>	F	 ns	 	
*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	45.	Cumulative	culled	berry	weight	across	all	days	of	harvest	of	‘Prime-Arkâ	45’	
	 blackberry	as	affected	by	seven	shade	treatments	while	grown	in	a	field	experiment,	
	 2014.	
	
	

	

	

	

	

	

	

	

	

				*Error	bars	represent	standard	error	from	the	mean	(n=5).	
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Appendix	46.	Berry	25	count	of	brix's	or	soluble	solids	(estimated	sugar	content)	of		
	 ‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	treatments	while	grown		
	 in	a	field	experiment,	2014.	

Brix's	or	Soluble	Solids	(estimated	sugar	content)	
Treatment	 DOH	15X	 DOH	29	
Control	 11.6*	 7.9	

Early	Shade	30%	 10.7	 7.6	
Middle	Shade	30%	 11.3	 8.5	
Late	Shade	30%	 10.8	 6.3	
Early	Shade	50%	 11.4	 7.1	
Middle	Shade	50%	 11.7	 7.4	
Late	Shade	50%	 10.8	 6.5	

Prob	>	F	 ns	 ns	
*There	are	no	statistical	differences	represented	in	the	table	above.	
XDOH=	Day	of	Harvest	
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Appendix	47.	Final	destructive	cane	analysis	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven				
	 shade	treatments	while	grown	in	a	field	experiment,	2014.	

Field	Destructive	Cane	Analysis	

Treatment	
Cane	

Diameter	
(mm)	

Shoot	
Length	
(cm)	

Node	
Number	
(No.)	

Length	
between	
Nodes	
(cm)	

Number	of	
Lateral	
Branches	
(No.)	

Number	of	
Fruit	

Clusters	
(No.)	

Control	 10.4*	 130	 18.8	 7	 1.9	 0.5	
Early	Shade	30%	 8.9	 124	 17.4	 7.3	 2	 0.5	
Middle	Shade	30%	 9.8	 115	 17.4	 6.7	 2.2	 0.8	
Late	Shade	30%	 10.3	 127	 17.7	 8	 2.7	 1.3	
Early	Shade	50%	 9.1	 123	 16.2	 7.7	 1.6	 0.6	
Middle	Shade	50%	 9	 127	 18.9	 6.9	 1.6	 0.1	
Late	Shade	50%	 8.3	 113	 14.6	 8.1	 1.4	 0.4	

Prob	>	F	 ns	 ns	 ns	 ns	 ns	 ns	
*There	are	no	statistical	differences	represented	in	the	figure	above.	
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						Appendix	48.	Cane	diameter	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	 												
	 treatments	while	grown	in	a	field	experiment,	2014.	
	

	

	

	

	

	

	

	

	

	

	

	

	

					*There	are	no	statistical	differences	represented	in	the	figure	above.	

	

	

	

	

	

	

	

	

	



	 139	

	

	

Appendix	49.	Cane	shoot	length	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade		 			
	 												treatments	while	grown	in	a	field	experiment,	2014.	

	

	

	

	

	

	

	

	

	

	 *There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	50.	Number	of	nodes	per	cane	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven						
																									shade	treatments	while	grown	in	a	field	experiment,	2014.	
	

	

	

	

	

	

	

	

	

	

	

	

	*There	are	no	statistical	differences	represented	in	the	figure	above.	 	
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Appendix	51.	Length	between	nodes	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade		
																									treatments	while	grown	in	a	field	experiment,	2014.	
	

	

	

	

	

	

	

	

	

	

	

*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	52.	Number	of	lateral	branches	per	cane	of	‘Prime-Arkâ	45’	blackberry	as	affected	by					
	 												seven	shade	treatments	while	grown	in	a	field	experiment,	2014.	

	

	

	

	

	

	

	

	

	

	

	

	

																				*There	are	no	statistical	differences	represented	in	the	figure	above.	
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Appendix	53.	Number	of	fruit	clusters	of	‘Prime-Arkâ	45’	blackberry	as	affected	by	seven	shade	
																									treatments	while	grown	in	a	field	experiment,	2014.	
	

	

	

	

	

	

	

	

	

	

	

	

	

*There	are	no	statistical	differences	represented	in	the	figure	above.	
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