
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

12-2013

An Open Source, Line Rate Datagram Protocol
Facilitating Message Resiliency Over an Imperfect
Channel
Christina Marie Smith
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Data Storage Systems Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Smith, Christina Marie, "An Open Source, Line Rate Datagram Protocol Facilitating Message Resiliency Over an Imperfect Channel"
(2013). Theses and Dissertations. 971.
http://scholarworks.uark.edu/etd/971

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.uark.edu%2Fetd%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/971?utm_source=scholarworks.uark.edu%2Fetd%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

An Open Source, Line Rate Datagram Protocol Facilitating
Message Resiliency Over an Imperfect Channel

An Open Source, Line Rate Datagram Protocol Facilitating
Message Resiliency Over an Imperfect Channel

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Engineering

by

Christina Smith
University of Arkansas

Bachelor of Science in Computer Engineering, 2011

December 2013
University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

——————————————————–
David Andrews, Ph.D.
Thesis Director

——————————————————–
Christophe Bobda, Ph.D.
Committee Member

——————————————————–
Dale Thompson, Ph.D.
Committee Member

Abstract

Remote Direct Memory Access (RDMA) is the transfer of data into buffers between two compute

nodes that does not require the involvement of a CPU or Operating System (OS). The idea is bor-

rowed from Direct Memory Access (DMA) which allows memory within a compute node to be

transferred without transiting through the CPU. RDMA is termed a zero-copy protocol as it elim-

inates the need to copy data between buffers within the protocol stack. Because of this and other

features, RDMA promotes reliable, high throughput and low latency transfer for packet-switched

networking. While the benefits of RMDA are well known and available within the general purpose

and high performance computing community, only a few open source and portable RDMA capa-

bilities exists for the FPGA community. Within the limited availability of solutions for FPGAs,

many rely on standard Internet Protocol. This thesis presents an open source and portable RMDA

core that enables line rate scaling for data transfer over packet-switched networks over Ethernet for

the FPGA community. An RDMA protocol in which the currency is Datagrams is designed, im-

plemented and tested between two Xilinx FPGA’s over a Layer 2 switch. The implementation does

not rely on an Internet Protocol and is portable, simple and lightweight. Latency, throughput and

area will be reported and discussed. To foster portability, the core was designed and implemented

in Bluespec SystemVerilog and does not utilize any vendor specific technologies.

Acknowledgments

I would like to thank my advisor, Dr. David Andrews, for the pleasure of working in his labora-

tory. His flexibility, guidance and wisdom throughout my higher education have been vital to my

success.

I would like to thank my advisory committee, Dr. Dale Thompson and Dr. Christophe Bobda,

for their flexibility, knowledge and time given to me throughout my time at Arkansas.

I would like to thank my mentor and friend, Shepard Siegel, for his continued support, encour-

agement and mentorship throughout the life cycle of the implementation of the DG-RDMA and

my career.

I would like to thank my family for their continued support, love and understanding in all

circumstances.

I would like to thank my lab mates, Eugene Cartwright, Azad Fakhari, Sen Ma and Abazar

Sadeghian, for their encouragement and words of wisdom.

I would like to thank Xilinx for their generous donation of two KC705 Evaluation Kits for my

use to complete this thesis.

Contents

1 Introduction 1
1.1 Thesis Contributions and Organization . 3

2 Background 4
2.1 High Performance Communication . 4

2.1.1 Internet Protocol Based Related Works 5
2.1.2 Remote Direct Memory Access . 7

2.2 Datagram RDMA (DG-RDMA) Protocol Specification 8
2.3 Design Input Language . 9
2.4 Board and Tool Selection . 10
2.5 Implementation of DG/RDMA . 11

3 System Design and Implementation 13
3.1 Top Level Design . 13
3.2 Sender . 17
3.3 Receiver . 35

4 Results 45
4.1 Experimental Setup . 45
4.2 Frequency . 45
4.3 Utilization . 47
4.4 Bandwidth . 48
4.5 Latency . 52
4.6 Lines of Source Code . 57

5 Conclusion 58
5.1 Contributions . 58
5.2 Future Work . 59

References 61

List of Figures

2.1 BSV Example . 10

2.2 RDMA IP Core is Xilinx Agnostic . 12

3.1 Basic System Design . 13

3.2 Block Diagram of an Endpoint . 14

3.3 HexByte Type Definition . 16

3.4 HexBDG Type Definition . 16

3.5 MLMesg Type Definition . 16

3.6 MLMeta Type Definition . 17

3.7 A day in the life of an outgoing message . 18

3.8 Producer Parameters . 19

3.9 Sender Logic . 24

3.10 Fork Send Module . 26

3.11 Acknowledgment Tracker and surrounding modules 28

3.12 Merge Fork Departure Module . 30

3.13 Arbitration Scheme for Transmission in Merge To Wire Module 31

3.14 Decision Tree for Reception in Merge To Wire Module 32

3.15 ABS Definition . 33

3.16 QABS Definition . 33

3.17 Funnel Module . 34

3.18 Receiver Data Flow Diagram . 36

3.19 Unfunnel Module . 38

3.20 MergeForkFAU module . 39

3.21 Acknowledgment Aggregator and surrounding modules 40

3.22 Merge Receive module . 41

3.23 Receiver module and surrounding modules . 42

3.24 Receiver module data flow . 43

3.25 Consumer Module . 44

4.1 Experimental Set up . 46

4.2 DG-RDMA Packets in Wireshark . 46

4.3 KC705 Chip Utilization . 49

4.4 Send Bandwidth Graph . 50

4.5 Receive Bandwidth Graph . 50

4.6 Round Trip Time Bandwidth . 51

4.7 Send Latency Measured Path . 53

4.8 Send Latency Graph . 53

4.9 Receive Latency Measured Path . 54

4.10 Receive Latency Graph . 54

4.11 Round Trip Latency Graph . 55

4.12 Retransmission Latency Measured Path . 56

4.13 Retransmission Latency Graph . 56

List of Tables

3.1 Description of System Modules . 15

3.2 Frame Header Field Descriptions . 22

3.3 Message Header Field Descriptions . 23

4.1 Utilization for each system Module . 47

Terms and Definitions

10GbE 10 Gigabit Ethernet.

CPU Central Processing Unit. A hardware component, often referred to as processor or core that

processes instructions of a program.

DMA Direct Memory Access. Often referring to hardware devices that can perform memory-to-

memory operations without processor assistance.

FIFO First-In, First-Out. The notion of processing in a first come first serve basis.

FPGA Field Programmable Gate Array. An integrated circuit that can be configured/re-configured

by a designer.

GMAC Gigabit Media Access Controller.

GPU Graphics Processing Unit. A hardware component specialized for graphics processing.

HDL Hardware Description Language (e.g. VHDL or Verilog).

HW Hardware.

I/O Input/Output.

IP Intellectual Property.

LFSR Linear Feedback Shift Register.

LUT Lookup Table. A digital building block used to implement N-bit binary functions via lookup

operations.

MII Media Independent Interface.

OS Operating System.

PAR Place and Route.

PCIe Peripheral Component Interconnect Express.

PHY Interfaces GMAC to Ethernet cable.

RDMA Remote Direct Memory Access.

RHEL5 Red Hat Enterprise Linux version 5.

RTL Register Transfer Level.

SRAM Static Random Access Memory.

SW Software.

TCP/IP or TCP Transmission Control Protocol in the Internet Protocol.

UDP/IP or UDP User Datagram Protocol in the Internet Protocol.

Chapter 1

Introduction

Much of the focus within reconfigurable computing has been on designing ever faster accelerators,

processors, and custom compute components. The literature contains many examples showing

that once these computational components have been implemented, the actual system performance

falls well short of expectations. While there is not a single reason for these shortfalls it is common

to read in the papers’ conclusion section that slow data transfer was the bottleneck. Data transfer

inefficiencies, or I/O bottlenecks, within a standalone FPGA accelerator can be caused by vari-

ous effects, ranging from poor state machine and interface designs, to limited physical resources

such as wires and internal buffers. The relatively recent ability of an FPGA to host a complete

multiprocessor system on programmable chip (MPSoPCs) utilizing standard operating systems is

also bringing the traditional inefficiencies associated with traversing deep software protocol stacks

and unnecessary copying of data between intermediate buffers into the world of reconfigurable

computing [17].

FPGA’s are considered as viable data processing components within emerging distributed net-

works to bring increased processing power into the emerging ”big data” domain. New technologies

continue to emerge to increase the collection, monitoring and sensing of environments and people.

This is causing even larger amounts of data to be collected and stored. FPGA’s can bring real time

custom processing capabilities up close to the distributed input sensors. This holds the promise

of reducing the volume of raw data that needs to be transferred across the network connecting the

sensor nodes and data processing systems, and provide faster response times to real time events be-

ing monitored. Allowing the FPGA based compute nodes to exchange and process raw data close

to the sensor can enable each node to reason locally with at least a subset of data that may have

high geographic semantic meaning. These data intensive applications put more pressure on com-

munication infrastructure to perform well and provide data needed for computation. This raises

1

the importance of addressing all sources of data bottlenecks within and between FPGA’s.

When networking FPGAs together, the latency and bandwidth of the physical network is not

the dominating bottleneck. Instead, the real bottleneck resides within the latency of the protocol

stacks implemented on the FPGAs at each endpoint. As commodity networks become faster more

burden is placed on these protocols. Available bandwidth in commodity networks is continuing to

increase leading to the need for endpoint protocols that can scale accordingly. Clearly, to utilize the

full performance potential of the interconnect, efficient, flexible and low latency protocol stacks

are necessary. There have been attempts to adopt general purpose Internet Protocols such as TCP

due to their ubiquity [9][7][16]. While a compliant TCP/IP protocol would certainly be the best

answer in terms of compatibility and generality, it comes at the cost of performance. To increase

performance TCP Offload Engines (TOE) have been proposed [9]. These TCP offload engines are

typically implemented as standalone accelerators to reduce the interactions required by the CPU

when processing the protocol. Even though this eases the burden of the CPU these TCP offload

engines are complex to design and themselves introduce unwanted processing latency. While

certainly beneficial many applications do not require the flexibility of a fully compliant TCP/IP

protocol. For these types of applications a new OpenCPI Datagram RDMA (DG-RDMA) protocol

specification has been proposed. While this protocol does not provide the ubiquity of a TCP/IP

protocol it does establish a standard for systems that need acceptable levels of interoperability but

at a very low transfer latency.

This thesis introduces the first hardware implementation of the proposed Datagram RDMA

(DG-RDMA) specification for low latency data transfers between FPGAs. A driving requirement

for this work is portability. The implementation was developed to serve as an open source core that

could be easily adopted by system designers regardless of vendor platforms, physical interconnect

medium, or FPGA family.

This is an important piece of infrastructure that can be utilized by almost any application,

similarly to how DMA engines and buses are used by a variety of applications. In particular, this

infrastructure can be useful to application designers who need to partition their application across

2

multiple FPGA boards. This is also important within development environments which currently

do not provide high speed data logging support between the FPGA and host. There are potentially

many use cases for line rate scalable, low latency data transfer that does not require attention from

the Operating System or host CPU.

1.1 Thesis Contributions and Organization

In this thesis, we present an open source, portable, line rate datagram RDMA capability

to the FPGA community. This addresses the current lack of no standard or freely avail-

able reliable datagram protocol employing RDMA for imperfect channels that does not

rely on Internet Protocol.

To support this statement, the thesis provides the following set of contributions:

• Designed a reliable and portable Ethernet RDMA IP core

• IP core does not require Internet Protocol and can be scaled to different line rates

• Implemented prototype on Xilinx KC705

• Tested two KC705s with RDMA IP core over Layer 2 switch

• Created IP core in Bluespec SystemVerilog

This thesis explores how to bring efficient line rate data transfer capabilities for packet switched

networks into the open source FPGA community. Chapter 2 describes approaches to solve data

transfer issues through related work. Chapter 3 gives details about system implementation of

each of the modules in the DG-RDMA IP core. Chapter 4 describes the development and testing

environment along with important metrics and results of the measurements. Chapter 5 provides

conclusions drawn from the implementation and potential improvements and applications for DG-

RDMA.

3

Chapter 2

Background

2.1 High Performance Communication

Data transfer among reconfigurable compute nodes has been solved over a wide variety of in-

terconnects using various protocols and standards. Some have become building blocks for new

methodologies to tackle high speed transfers. Efficient communication has peaked a lot of inter-

est and research which has lead to many proposed solutions. We focus on wired embedded data

transfer, specifically FPGA to FPGA transfers.

When considering paradigms for data transfer, two main classes can be considered - one-sided

and two-sided communication. When both endpoints are involved in a request-response manner,

such as sending a read request and receiving a response, this is two-sided communication. Both

the initiator and receiver share information to agree upon the transfer that will take place. One-

sided communication is the direct transmission of data without a request. Only the initiator must

have all of the information for a transfer to take place, reducing synchronization overhead [6].

Round trip time, a metric for measuring the efficiency of a transaction, is greater for two-sided

communication due to the request-response structure. With an efficient solution in mind, one-sided

communication is preferred. Because of lessons learned through general and High Performance

Computing solutions, we chose to explore Remote Direct Memory Access (RDMA) protocols.

RDMA reduces protocol overhead (zero copy) and allows for local completion of a transfer.

RDMA is not the only solution for efficient data transfer. Research groups have designed

approaches for mediums like Ethernet and PCIe, some of which rely on Internet Protocols and

some of which do not. Internet Protocol is a ubiquitous technology which is often a common

choice for communication solutions. Internet Protocol based data transfer solutions are explored

in sections 2.1.1. RDMA is introduced in section 2.1.2. DG-RDMA, the protocol of choice for

4

this work, is described in section 2.2 as well as design input language (section 2.3) and tool choice

in section 2.4.

2.1.1 Internet Protocol Based Related Works

When solving any problem, looking to similar and well known problems and approaches can lead

to strong, well guided solutions. In conquering high performance communication it is helpful to

consider how data transfer is currently done. The Internet Protocol offers a nice foundation on

which to base communication standards on top of. TCP/IP and UDP/IP are ubiquitous, common

approaches to transferring data between compute nodes. When faced with the same need in re-

configurable computing, many have turned to solutions based on either TCP/IP or UDP/IP as an

underlying transport service. TCP/IP is a ubiquitous protocol in packet switched networks. TCP/IP

offers a reliable, error-free and ordered delivery of a stream of bytes. It is popular because of its ro-

bust qualities and common use. The protocol is not focused on low latency, but resiliency instead.

Because of this, the overhead of the protocol is cumbersome. TCP/IP is typically implemented in

software and demands a lot of processing cycles from the CPU and Operating System. The need

to service the protocol reduces the available cycles of the CPU to be used for computation and de-

grades overall system performance [3]. In addition, TCP/IP processing by a singular CPU cannot

perform well enough for network hardware capable of throughput greater than 10 Gbps according

to [19].

TCP/IP Offload Engines (TOE) are a well accepted approach to reducing the CPU utilization

for processing TCP/IP protocol stack. For these reasons, a hardware TOE can bring performance

improvements to systems utilizing TCP/IP. Many RDMA implementations utilize this approach to

reducing the CPU utilization with a TOE. TOE’s are hardware modules that process the TCP/IP

protocol to relieve the CPU from having to bother with the cumbersome overhead of TCP/IP. Jang,

et al. couples this approach with a software implementation of RDMA that is run on the CPU in an

FPGA[12]. The TOE designed here is a hybrid TOE which performs CRC calculations and sup-

ports zero-copy data transmission. The CPU is responsible for generating and processing RDMA

5

protocol headers. This approaches utilizes Ethernet as the communication channel. Another solu-

tion from Hashimoto and Moshnyaga that utilizes a TOE makes two contributions which yield an

effective solution[9]. Reduction of cost of FIFO memory buffers and the parallelization of specula-

tive processing of TCP/IP headers and data transfers via DMA yield a low power, high throughput

implementation. This approach also utilizes Ethernet as the communication channel.

Along with TCP/IP, UDP/IP is a common protocol within the Internet Protocol. Unlike TCP/IP,

it offers a simple, unreliable datagram transport service. UDP/IP does not guarantee delivery, or-

der of delivery or protection against duplicates. UDP/IP offers minimal features and is used as

the framework of many other protocols such as Transmission Control Protocol(TCP) and Stream

Control Transmission Protocol (SCTP). Data transmission solutions based on UDP/IP tend to be

lighter weight due to less features to implement. One real-time approach by Khalilzad, et al. uti-

lizes UDP/IP to create a 100Mb/s Ethernet core[14]. The advantage to this approach lies in the use

of the Reduced Media-Independent Interface, which requires less hardware to connect physically.

Unless fewer pins are required for connection to the Media Access Controller, this approach offers

few advantages besides being designed with component based methodologies. A more flexible

approach is given by Lofgren, et al. [16]. Three different implementations (minimum, medium

and advanced) of a UDP/IP core are created based on different network functionality needs. This

flexible approach allows the user to decide if they need full functionality, or if some subset will

suit the network needs and save area.

Open source solutions are desired to encourage sharing and wide adoption. An open source

full TCP/IP core is implemented in [7]. UDP/IP is also implemented in this fully loaded core that

is right at 10,000 slices of a Xilinx Virtex 2 FPGA. Alachiotis, et al. created an open source UD-

P/IP core specifically for FPGA to PC communication via Gigabig Ethernet [1].n This approach is

sensitive to area and performance through optimization of transmission cost and checksum calcu-

lations. Lieber and Hutchings present a portable, open source communications framework which is

created for use with Xilinx-based FPGAs over Ethernet[15]. The hardware/software co-designed

core claims to be extensible and is only 600 slices of a Xilinx Virtex 5. The claim for portability is

6

supplemented with information about what changes are needed to port from one Xilinx FPGA to

another. The required changes involve the Ethernet MAC wrapper, the constraints file and an in-

ternal change that is required for hardware/software communication(ICAP). Another open source

Ethernet based core is presented by Bertolotti and Hu in [2] which targets real-time applications

by coupling a lightweight Internet Protocol core (lwIP) with a real-time operating system for low

cost embedded systems.

Although these are viable solutions for data transfer within reconfigurable computing, the over-

head of processing Internet Protocols leaves us curious to find another solution that does not require

reliance on the Internet Protocol.

2.1.2 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is an apparatus where data is transferred directly from

compute node to compute node over a channel without interrupting the operating system[17]. Data

is placed into and taken from predefined application buffers. The idea is borrowed from Direct

Memory Access (DMA). DMA is a mechanism that allows data within a compute node to be

transferred from one memory location to another without interrupting the CPU. RDMA does not

specify specific implementation requirements, but consists of RDMA Verbs, or functionality that

must be provided for it to be considered RDMA [10]. RDMA provides performance advantages in

a few different ways. True zero-copy data transfer with no intermediate buffering, decoupling of

host processor from network yielding low CPU overhead, fixed memory resources (buffers) with

no surprise messages, and unstructured, non-blocking data transfer with local completion are the

main advantages to using RDMA[5].

RDMA does has a few drawbacks. According to Geoffray[8], due to the one-sided nature

of RDMA the ability to agree on where data should be placed between the two communicating

nodes is missing. The origin and destination buffers must be previously agreed upon and cannot be

altered. Matching may cause unexpected messages if the sender and receiver have not yet agreed,

but a message is transmitted. Handling unexpected messages then becomes a necessary function

7

of the implementation. However, the ability to mutually agree on buffer locations within endpoints

allows for greater flexibility with respect to the order that messages are sent and received.

Among a sea of options, we seek a simple and lightweight solution that does not rely on an

underlying protocol namely the Internet Protocol. Although widely adopted, underlying protocols

can be cumbersome and heavy, even at times unnecessary, leading to higher latency and larger

designs. While this work is independent of industry or government, the Department of Defense

has interest in a non-bloated communication protocol for embedded systems. TCP does not offer

this type of solution. Although this work focuses on the implementation of RDMA on FPGA’s, the

suggested protocol can be implemented in software or hardware on a CPU or GPU.

2.2 Datagram RDMA (DG-RDMA) Protocol Specification

The protocol of choice is the Datagram RDMA Protocol (DG-RDMA)[13]. This protocol de-

fines transactions between compute nodes or endpoints - one source and one destination endpoint.

RDMA Write transactions are used to transport data packaged as datagrams. Datagrams in the

DG-RDMA protocol are consumed atomically, either entirely or not at all. RDMA Write trans-

actions are one-sided data transfers that do not require explicit interaction between the nodes[5].

Datagrams are the fundamental unit within a packet-switched network. DG-RDMA requires a

transmission layer that provides an unreliable datagram service with three features: no guarantee

of delivery, no guarantee of order of delivery but does guarantee error-free delivery when data-

grams are delivered. To be clear, the datagram service is not required to be unreliable, however

DG-RDMA tolerates the unreliability. The protocol is datagram based but transmission layer ag-

nostic. The transmission layer limits the size of the datagrams.

For each data payload that DG-RDMA transmits, exactly one meta data message describing

the payload is transmitted. A message is defined as a unit of data (bytes) written to an endpoint

or destination. A frame contains zero or more messages and is encapsulated by a frame header

which specifies the source and destination, among other details listed in section 3.2. This specific

implementation always has exactly one meta data and exactly one data payload included in a frame.

8

Both the meta data message and data payload message are described by a message header.

To ensure reliability, frames are acknowledged by an acknowledgment frame that is transmitted

to the initiator of the message. After a timeout period, if the transmitted frame is not acknowledged,

the initiator must resend the frame. The frame can either be held or recreated in the case of

retransmission.

The DG-RDMA protocol is lighter weight and cheaper than implementations built on top of

TCP/IP or UPD/IP. DG-RDMA relies on an unreliable transport protocol, but adds reliability with-

out the incurred cost of data copy (zero-copy).

2.3 Design Input Language

Bluespec SystemVerilog (BSV) is a fully synthesizable, high-level language used to describe elec-

tronic systems. The combination of fully synthesizable and high level allows complete systems

to be modeled on an FPGA instead of simulation only. The ability to design complex concur-

rent systems at a high level is valuable to a hardware designer, if lower level details are handled

properly.

BSV is a formal specification language providing to main ideas for expressing a circuit: be-

havior and structure. The behavioral model is based on Atomic Rules and Interfaces, which are

parallel by nature. BSV consists of modules that are tied together by interfaces. Modules in BSV

are similar to modules in Verilog or VHDL. Registers, rules and methods make up a module. A

register holds state and can be read and written. Rules are guarded atomic actions that either exe-

cute entirely free from interruption or do not execute at all. The guard is a statement that evaluates

to a Boolean and if true, the rule fires and executes until completion. Rules can also either fire, or

not, based on the implicit conditions of statements inside of the atomic rule. For example, consider

the rule in Figure 2.1.

The guard for rule example is x % 2 == 0. The implicit condition is that the FIFO is not full. If

the FIFO is full, it cannot be enqueued, so the rule cannot execute at all. Rules are not sequential

with one another; they optimistically fire as frequently as they can. Another important aspect of

9

00: rule example(x \% 2 == 0);
01: fifo.enq(x);
02: x <= x + 2;
03: endrule;

Figure 2.1: BSV Example

rules is that they are private and local to the module. Rules are not synonymous to methods, which

can be called from outside the module. Methods are also guarded atomic actions however they can

be invoked with arguments and can return a value. Interfaces are composed of methods.

The notion of atomic rules and interfaces is powerful when constructing complex concurrent

systems. The designer is freed from the constrictive idea of the clock, although BSV does produce

synchronous circuits. Everything is considered in rule steps[11][4]. Rule step order is simpler

to reason about than time step order especially when paired with the notion of groups of atomic

actions.

2.4 Board and Tool Selection

Xilinx 7 Series FPGAs are currently the latest technology available to the FPGA community. The

Kintex 7 (KC705) FPGA was chosen as a development and testing platform.

Vivado, the completely reworked design suite from Xilinx, is chosen for synthesis and place

and route (PAR). The Analytical Place and Route technology offers four times faster implementa-

tion (PAR) time, twenty percent better device utilization and thirty-five percent lower power over

other design suite offerings[18]. Not using Vivado for SAPR would make my design immediately

outdated as it would not be able to work with the next generation 20 nm technology.

An interesting fact to note is that while Xilinx parts and tools have been chosen for imple-

mentation in this case, DG/RDMA does not require Xilinx parts. The bulk of the implementation

is vendor agnostic and can be ported to any FPGA. Figure 2.2 shows the hierarchy of vendor-

specific/vendor-agnostic modules. The MAC and interface to the Marvell Alaska PHY must align

with Xilinx parts, but the other modules can be used in any design for an FPGA. The top level of

10

the design for the FPGA specifies the interfaces that will be utilized on the FPGA. Because these

are specific to the KC705, this part of the design is also Xilinx specific. However, it is very simple

to change the top level module to reflect the FPGA of choice.

There is no reason why this IP core cannot travel to other FPGA boards from other vendors.

The IP core is RTL and does not require any Xilinx IP cores or tools. The IP core stands alone.

A GMAC core is needed which is board specific by nature for this IP core to be compatible with

FPGAs from other vendors.

2.5 Implementation of DG/RDMA

An additive and incremental bottom up approach is taken to implement DG/RDMA in hardware

on an FPGA. This approach is taken with great care as to not lose top down clarity and direction

for implementation. A long-term schedule was made with many version releases along the way.

11

GMAC

Protocol
Implementation

Top - FPGA Interfaces

Figure 2.2: RDMA IP Core is Xilinx Agnostic

12

Chapter 3

System Design and Implementation

3.1 Top Level Design

Ethernet

Sender Receiver

SenderReceiver

FPGA 2FPGA 1
DG-RDMA DG-RDMA

Figure 3.1: Basic System Design

Figure 3.1 shows a very basic description of the implemented system. DG-RDMA has the

capability to send and receive messages, making it full duplex. Full duplex is an important feature

allowing all compute nodes utilizing the DG-RDMA protocol to both send and receive messages.

If the user wishes to only have half duplex transmission, that can be accommodated by making a

few changes to the source code in the top level module.

The modules labeled as Sender/Receiver in FPGA 1 and FPGA 2 are functionally identical.

The only difference in the Sender and Receiver modules implemented in different compute nodes

13

Producer

Sender

Fork Send

FDU

FDU

AckT
rack

M
ergeForkFD

U

M
ergeToW

ire

L2Inserter

G
M

AC

M
ergeForkFAU

Ack
Agg

FAU

FAU
M

erge R
eceive

R
eceiver

C
onsum

er
Producer

L2R
em

over

Endpoint

Sender

Receiver

Funnel
U

nfunnel

Figure 3.2: Block Diagram of an Endpoint

is the L2 Inserter/Remover. The L2 Inserter prepends the correct source and destination MAC

addresses and ether type. The L2 remover checks the L2 header of an incoming packet to make

certain that the packet is meant for this particular compute node.

The interfaces between the shown modules is a stream of bytes across an Ethernet link.

The Sending and Receiving modules are further described in Figure 3.2. The components that

make up Sending and Receiving modules are outlined. The grayed modules are shared by both

Sending and Receiving modules. Table 3.1 describes each of the modules, whether it is a function

of the Sending or Receiving module and the basic function of the component. The functionality of

each component is described in detail in the following subsections.

The interfaces between most of the modules is a FIFO of user defined type HexBDG. HexBDG

14

System Modules
Module Function Of Function
Producer Send Generate/Fetch Payload
Consumer Receive Check payload for error
Sender Send Generate headers, forms frame
Receiver Receive Remove headers
Frame Departure Unit Send Forwards frame, hold frame until Acknowl-

edgment received
Frame Arrival Unit Receive Accepts frame, signals to generate Acknowl-

edgment
Merge Departure Send Merge multiple FDU output into one data

stream
1Fork Arrival Receive Fork input stream to multiple FAU
Acknowledgment Tracker Send Receives Acknowledgment frames, informs

FDU of frame ackd
Acknowledgment Aggregator Receive Generates Acknowledgment frames
Funnel (H2Q) Both Funnels 16 byte stream to 4 byte stream
Unfunnel (Q2H) Both Converts 4 byte stream to 16 byte stream
Fork Sender Send Assign frame to FDU
Merge Receiver Receive Multiplex frame from FAU to Receiver
Merge to Wire Both Multiplexes traffic to/from MAC
L2 Header Inserter Both Inserts the L2 header onto frame
L2 Header Remover Both Removes L2 header from frame
Quad Byte GMAC Both Initializes MAC and funnels 16 byte stream

to 4 byte stream
GMAC Both Interfaces with Marvell PHY chip at Ether-

net port

Table 3.1: Description of System Modules

15

00: typedef Vector#(16,Bit#(8)) HexByte;

Figure 3.3: HexByte Type Definition

00: typedef struct {
01: HexByte data; // 16B of data, Little Endian packed
02: UInt#(5) nbVal; // Number of Bytes 0-16 that are valid
03: Bool isEOP; // True if this is the end of packet
04: } HexBDG deriving (Bits , Eq);

Figure 3.4: HexBDG Type Definition

is a data type that was designed to communicate information about the stream of bytes that is

transferred from one module to the next. HexBDG consists of 16 byte data, a 5 bit unsigned

integer that holds the number of bytes that are valid in the 16 bytes of data and a Boolean that is

true only if it is the final segment of a frame.

HexByte is simply a vector of 16 bytes represented as a Little Endian value. Figure 3.3 shows

the definition of a HexByte. HexByte is used in the HexBDG structure as shown in Figure 3.4.

Knowing the number of bytes in a 16 byte segment that are valid allows for frames that are not

16 byte aligned. This is important because any application that may use the DG-RDMA protocol

may have an arbitrary number of bytes to transmit, not guaranteeing that a frame will consist of an

integer number of full HexBytes.

The Consumer and Producer modules have FIFO interfaces of type MLMesg. MLMesg is a

tagged union. A tagged union is a composite type in which something of type MLMesg is either

of type MLMeta representing meta data or HexByte representing data as shown in Figure 3.5.

The MLMeta type definition is shown in Figure 3.6. Each data payload is described by meta

data. The meta data describes the length of the message payload and an op code. The op code

00: typedef union tagged {
01: MLMeta Meta;
02: HexByte Data;
03: } MLMesg deriving (Bits , Eq);

Figure 3.5: MLMesg Type Definition

16

00: typedef struct {
01: UInt#(32) length; // Message Length in Bytes
02: Bit#(8) opcode; // Message Op code
03: } MLMeta deriving (Bits , Eq);

Figure 3.6: MLMeta Type Definition

describes the type of operation the payload should be used for (e.g. read, write, ack, etc).

The Sending and Receiving modules are described in sections 3.2 and 3.3.

3.2 Sender

The sending module in an endpoint is responsible for wrapping a payload with DG-RDMA headers

and forwarding it to the shared modules (GMAC and supporting modules) for transmission. The

initiating endpoint is also responsible for accepting and handling the acknowledgment frames that

correspond to the frames in flight. Each of the components/modules shown in the Sender module

of Figure 3.2 are described in detail including interfaces, specific function and, in some cases,

logical operation. Figure 3.7 shows the flow of an outgoing message followed by a step-by-step

description of each modules action.

17

U
nfunnel

Funnel

L2R
em

over

Producer

Sender Fork Send

FDU

FDU

AckTra
cker

M
ergeForkFD

U

M
ergeToW

ire

L2Inserter

G
M

AC

A

B

C,S

D

E

F

G

I
J K

L
M

NP

Q

R

H

O

Figure 3.7: A day in the life of an outgoing message

A: Producer generates Payload

B: Payload is encapsulated with message and frame headers forming a frame

C,S: FDU signals that it is free and available to accept a frame

D: Frame is passed into FDU

E: AckTracker is notified of frame ID of Frame in flight

F,G: Frame is forwarded and unaltered

H: Frame is converted from 16 byte wide stream to 4 byte wide stream

I: L2 header is prepended to the frame forming a packet

J: Packet is passed to the GMAC

K: Packet exits through TX resolution layer to PHY

Wait for Ack packet...

L: Ack packet enters through RX resolution layer

M: GMAC gives incoming packet to L2 remover

N: Destination MAC and EtherType of L2 header is checked and removed, yielding a frame

18

00: UInt#(32) length ,
01: LengthMode lMode ,
02: UInt#(32) minL ,
03: UInt#(32) maxL ,
04: DataMode dMode ,
05: Bit#(8) nukeVal

Figure 3.8: Producer Parameters

O: Frame is converted from 4 byte wide stream to 16 byte wide stream

P: Destination ID of Frame Header is checked, frame sent to either sender or receiver (sender in

this case because it is an Ack)

Q: ACKCount in Frame Header is checked, if asserted it is sent to AckTracker

R: AckTracker informs FDU that Ack for specified Frame ID has been received

Producer

The function of the producer to create data payload that will be transferred to the Receiver. The

typical use case would not utilize the producer, but would read data from memory somewhere

in the compute node. In this implementation, it is not a direct goal to interface with the memory

subsystem of any particular FPGA, but rather to provide the framework of the DG-RDMA protocol

that can be adapted to a particular system. Regardless of where the payload data originates, it is

passed on to the Sender for header encapsulation.

The producer has some features that were used to fully test and develop the machinery of DG-

RDMA. As parameters passed at instantiation, length, length mode, minimum length, maximum

length, data mode and nuke value describe different scenarios which must all be supported by the

implementation.

The length mode is used to describe the scheme for determining how long in bytes a payload

and each subsequent payload should be. There are three length modes: constant, incremental and

random. The constant mode utilizes an additional parameter called length which defines a con-

19

stant payload length that will be used for each payload. The incremental mode utilizes additional

parameters minimum and maximum length. The minimum length defines the starting payload

length. Similarly, the maximum length defines the terminating payload length. Each subsequent

payload is one byte longer than the last until the maximum length is reached. The random mode

utilizes a Linear Feedback Shift Register (LFSR) to generate random values. An LFSR register

is a shift register with an input bit that is a linear function of the current state. An LFSR can be

used to generate a deterministic and long sequence of seemingly random numbers even though

the sequence of generated numbers will recur given the same seed value. The random value can

be constrained using the additional parameters of minimum and maximum length in the case that

constrained testing is needed.

The data mode parameter is used to describe what type of pattern the payload will consist of.

There are three data modes: zero origin, incremental origin and rolling count. Zero origin mode

creates each payload beginning with the first byte as zero and increasing each following byte by 1.

A zero origin data pattern of length 10 looks like this:

Payload 1: 00010203040506070809

Payload 2: 00010203040506070809

The incremental origin mode creates the first payload beginning with a value of 0 and increases

the origin of each subsequent payload by one. Incremental origin payload of length 10 looks like

this:

Payload 1: 00010203040506070809

Payload 2: 01020304050607080910

The rolling count mode begins payload creation just as the other two modes do, with the first byte

at 0 and increasing by one each time. However, each subsequent payload picks up where the last

left off in the incremental sequence. Rolling count payloads of length 10 look like this:

Payload 1: 00010203040506070809

Payload 2: 10111213141516171819

There is one more parameter to discuss. Nuke value is a value provided by the user to define what

20

numerical value should be used to represent invalid data. This is utilized in the case that number

of bytes valid in a HexBDG is less than 16. An easily recognized value is used to distinguish each

of the above described payload generation schemes from invalid bytes. Using something easily

recognizable helps in debugging and to be certain that no data is being altered from one module to

the next as data flows through the Sender and Receiver. As an example, a HexBDG with number

of bytes valid set to 5 might look something like this:

0001020304AAAAAAAAAAAAAAAAAAAAAA

It is easy to see that there is a clear pattern for the first 5 bytes followed by 11 bytes of the same

value AA. While the payload is generated, the meta data describing the payload is also created.

The meta data precedes the payload when passed on to the Sender for header generation. There

is always exactly one meta data for each payload. The meta data is 8 bytes long. Zero length

messages are also supported which may be used to signal an event to the receiving endpoint. The

interface into the Producer is the arguments discussed above. The interface out of the Producer is

a FIFO of type MLMesg.

Sender

The Sender has two main purposes: to generate and prepend message and frame headers and to

transform the meta data and payload from type MLMesg to type HexBDG. HexBDG is the main

currency used in this implementation and is what is translated into bytes on the Ethernet wire.

The datagram consists of one message. A message is defined as meta data and payload data.

Each message is encapsulated as a frame and labeled with a frame header. The meta data and

payload data both are also encapsulated with a header, namely, the message header. Both the

frame and message headers have fields which describe important details about the payload itself.

Table 3.2 shows the frame header fields and a description of each.

The Destination ID is a globally unique identifier associated with an endpoint or compute node.

Destination ID’s are assigned sequentially beginning with 1 in a cluster of compute nodes and are

used as an index value.

21

Frame Header Fields
Field Name Description Size

Destination ID ID of destination endpoint 2 octets
Source ID ID of source endpoint 2 octets
Frame ID Rolling sequence of frame number 2 octets
ACKStart Starting ID of ACK sequence 2 octets

ACKCount Total number of ACKS 1 octet
Flags 1 octet

Table 3.2: Frame Header Field Descriptions

Frame ID’s are increasing values that roll over. The initiating endpoint is responsible for main-

taining a unique sequence of frame ID values for each destination.

The upper seven bits of the Flags bytes is reserved and must be set to zero. The remaining,

least significant bit, is set if the frame contains at least one message. If the bit is not set, there are

no messages in the frame.

The frame header itself may contain acknowledgments of received frames. When the ACK-

Count field is greater than zero, the ACKStart value is used to determine which frames are being

acknowledged.

Example ACK payload for 1 frame:

ACKCount - 1

ACKStart - 6577

ACK 1 frame with ID 6577

Example ACK payload for 3 frames:

ACKCount - 3

ACKStart - oxffffffff

ACK 3 frames with ID 0xffffffff to rolled over IDs 0 and 1

Table 3.3 shows the message header fields with a short description and size of each. The protocol

specifies that it is the responsibility of the sending endpoint to pad out the message data in order to

ensure that the next header is aligned on an 8 byte boundary. Because the data type used is 16 bytes

wide, this implementation pads out the message data to a 16 byte boundary in order to simplify

22

Message Header Fields
Field Name Description Size
Transaction ID Rolling ID that is scoped by source and destina-

tion IDs
4 octets

Completion Address Address in the destination end 4 octets
Completion Data Value Completion value to be written 4 octets
Number of data messages in
this transaction

Can be zero 2 octets

Fields above here are the same in all messages in the same transaction
Message sequence TO BE REMOVED 2 octets
Data Address Endpoint address where message data will be

written
4 octets

Data Length Length of message data following this header in
bytes

2 octets

Message Type TO BE REMOVED 1 octet
Trailing Message Boolean, non-zero if there is another message

after this one
1 octet

Table 3.3: Message Header Field Descriptions

processing logic.

The input FIFO to the module is of type MLMesg which consists of either MLMeta or MLData.

An outgoing message will always enter the Sender MLMeta type first. Upon enqueue of the input

FIFO, the meta data (MLMeta) triggers creation of the message header for the meta data. Image

headers shows the header structure for a datagram.

Figure 3.9 shows the frame composition in detail. As the MLMesg type is enqueued into the

input FIFO of the module, creation of the frame header is triggered. A state variable is used to

coordinate which rule cloud is fired when, ensuring proper frame composition.

First, Generate Frame Header rule is fired which will use the meta data to populate the frame

header fields and enqueue the frame header into the ByteShifter. The ByteShifter is a config-

urable module which is in the business of converting segments of a byte stream into convenient 16

byte stream. The module can be configured to produce byte segments of almost any length. The

ByteShifter was chosen in this case because the frame is created in steps that produce different

frame segments of which some are both greater than and less than our 16 byte data type. This

allows the headers to be created and shifted out in 16 byte chunks ensuring that the output FIFO

23

Generate
Frame
Header

MLMesg

Generate
Message
Header

Generate
Message

Data

ByteShifter

HexBDG

Frame
Source
Pump

Sender

Figure 3.9: Sender Logic

will be enqueued with the proper number of bytes.

Once the frame header is shifted into the ByteShifter, the message header that describes the

meta data is created and enqueued into the ByteShifter in the Generate Message Header rule. The

fields of the message header are populated according to some details in the meta data. However,

some fields are arbitrarily assigned in the current implementation. [[more detail about which fields

in header specifically]] In some cases, the user may want to define certain fields of the message

header such as sender and receiver ID. Such fields could be passed in as parameters of the module

or hard coded into the implementation depending on the needs of the user. Either of these changes

can be easily made in the source code.

Next the meta data is forwarded directly to the ByteShifter from the input FIFO. The state

variable to set to return to the Generate Message Header rule in order to generate the message

header that will describe the payload. As shown in Table 3.3 above, some of the message header

fields will be the same for the meta data and payload data.

In the final stage of frame generation, the Generate Message Data rule is fired. This allows

24

the data payload to be forwarded to the ByteShifter from the input FIFO. To determine the end of

the packet, the payload length is collected and stored from the meta data. The number of bytes

of the payload are counted as they are enqueued into the ByteShifter. When the end of payload is

reached, the state variable is set back to the initial state of the module, Generate Frame Header,

which awaits arrival of another message at the input FIFO.

Simultaneously, as 16 bytes of the frame become available at the output of the ByteShifter, they

are converted to type HexBDG and sent out of the Sender module through a FIFO of HexBDG.

25

ForkSend

HexBDG

HexBDG

HexBDG

free!

free! FDU

FDU

Figure 3.10: Fork Send Module

ForkSend

After leaving the Sender module, the newly created frame consisting of HexBDGs enters the Fork-

Send module. The main purpose of this module is to assign the frame to a Frame Departure Unit.

In this implementation, there are two Frame Departure Units. Each Frame Departure Unit will

notify the ForkSend module when it is free and available to accept a new frame. The ForkSend

module will pass a frame along to the available Frame Departure Unit and wait for another frame

and another free Frame Departure Unit. Figure 3.10 shows a diagram of the interfaces of ForkSend

module.

Frame Departure Unit

The Frame Departure Unit (FDU) stages a frame for departure and holds onto the frame until it

receives an acknowledgment from the Acknowledgment Tracker. The frame is held in a BRAM so

that it can be retransmitted in the case that a cycle counter reaches a defined timeout value before

the frame acknowledgment is received.

26

When a frame enters the FDU, the frame header is examined and the frame ID is saved in a

register and forwarded to the Acknowledgment Tracker. The Acknowledgment Tracker holds on

to the frame ID until an acknowledgment for that frame is received. The ID of the acknowledged

frame is sent to the FDU from the Acknowledgment Tracker and the frame is released from the

FDU, allowing the FDU to signal to the ForkSend module that it can accept a new frame.

Once the frame leaves the FDU, it is passed along to the MergeForkFDU module. The FDU

will then signal to the ForkSend module that it is available to accept a new frame. In this im-

plementation, there are two FDUs in an endpoint. This allows the bandwidth to be increased so

that the acknowledgment of the frame being held by a FDU does not do as much damage to the

low latency nature of the design. There will be two frames in flight given that there are frames

available to be sent. The number of FDUs could be increased to further diminish the affect of

the acknowledgment on latency/bandwidth. Figure 3.11 shows the interfaces between the FDU,

ForkSend, AckTracker and MergeForkFDU.

Acknowledgment Tracker

The purpose of the Acknowledgment Tracker is to essentially keep track of frames in flight and

acknowledgments. The frame IDs of all of the frames in flight are passed to the Acknowledgment

Tracker through a FIFO from each FDU. The Acknowledgment Tracker is a singleton among what

could be a variable number of FDUs. In this particular implementation, there are only two FDUs.

As mentioned in 3.2, the number of FDUs was an implementation choice and can be changed. Once

the acknowledgment frame is received, the frame and message headers are removed, the frame ID

is extracted and the proper FDU is notified that the frame it is holding has been acknowledged.

Figure 3.11 shows the interfaces of the Acknowledgment Tracker and the surrounding modules.

27

M
ergeForkFD

U

FDU

Acknowledg
ement

FDU

HexBDG

HexBDG

Fork Send

HexBDG

free!

free!

HexBDG

FrameID

Tracker

FrameID

FrameID

FrameID

HexBDG

Figure 3.11: Acknowledgment Tracker and surrounding modules

28

MergeForkFDU

The MergeForkFDU module is responsible for merging the outgoing messages from the FDUs.

There cannot be multiple outgoing byte streams from the sending endpoint. There are two FIFOs

that interface with the next module in the flow, the Merge To Wire module. They are both of type

HexBDG, one for incoming acknowledgment frame and one for outgoing datagram frames. Upon

reception of an acknowledgment frame, this module forwards the acknowledgment frame to the

Acknowledgment Tracker, which will notify the FDUs that a frame has been received by the other

endpoint. The outgoing frames are merged from the two FDUs using a round robin scheme. FDU

1 gets priority at restart because FDU 1 will receive the first frame from the Sender module. One

complete frame must leave the module at a time; interrupting any frame will cause the message

to not be correct when received by the other endpoint. A block diagram of the module and its

interfaces is shown in Figure 3.12.

29

M
ergeForkFD

U

HexBDG

HexBDG

HexBDG

HexBDG

HexBDG

To AckTrack

From FDU 2

From FDU 1

To
MergeToWire

Figure 3.12: Merge Fork Departure Module

30

Datagram
Out

IDLE

Ack Out

!data.isEOP!ack.isEOP

ack.isEOP && data.notEmpty

data.isEOP && ack.notEmpty
ack.isEOP && data.empty

ack.empty && data.notEmptyac
k.n

otE
mpty

da
ta.

em
pty

 && ac
k.i

sE
OP

Figure 3.13: Arbitration Scheme for Transmission in Merge To Wire Module

Merge To Wire

MergeToWire module is a singleton in an endpoint. Both the sending and receiving circuitry take

advantage of the services that MergeToWire offers. This modules uses an arbitration scheme to

merge the outgoing frames from both the sending and receiving components of an endpoint. This

was a little tricky, but a solution for all test cases was found. The Figure 3.13 shows the state tran-

sition graph of the arbitration scheme for outgoing frames with data payloads and outgoing frames

with acknowledgments. A round robin arbitration scheme cannot be used because it is not a guar-

antee that there will be an outgoing datagram followed by an outgoing acknowledgment followed

by another outgoing datagram and so on. It is also important, just as it is in the MergeForkFDU,

that frames are sent out atomically. The interruption of stream of bytes of a frame will cause the

protocol to break.

The incoming frames are arbitrated using a different scheme. When a frame is received from

the GMAC and passed to the MergeToWire module, the frame header is examined to determine the

31

Incoming Frame

Destination ID =
My DID?

Ack Flag = 1?

YES

NO

Forward to
AckTracker

YES

Forward to
Receiver

NO

End of Frame?

NO

YES

Figure 3.14: Decision Tree for Reception in Merge To Wire Module

destination ID for the frame. The ACKCount flag is also examined to determine if the frame is an

acknowledgment or a datagram with a payload. If the frame is for this endpoint, the ACKCount flag

is used to pass the byte stream to the either the receiving FAU if it is a datagram or the AckTracker

if it is an acknowledgment. Figure 3.14 is a decision diagram for this module.

32

00: typedef union tagged {
01: Bit#(8) ValidNotEOP; // Any valid data cell so long as

// it is not the last
02: Bit#(8) ValidEOP; // A valid final data cell in a

// sequence indicates good EOP
03: void EmptyEOP; // The end of a sequence has

// occurred, the last data was sent
// before indicates good EOP

04: void AbortEOP; // The sequence has ended with an
// abort, all data and metadata
// from this packet is bad

05: } ABS deriving (Bits , Eq);

Figure 3.15: ABS Definition

00: typedef Vector#(4,ABS) QABS;

Figure 3.16: QABS Definition

Funnel

The funnel module converts the outgoing byte stream from type HexBDG to type QABS. QABS is

another user-defined type that is a vector of 4 ABS’s. The type definition for ABS is shown below.

ABS is a tagged union meaning that each byte of data is tagged with one of the tags described

below.

QABS takes 4 of these bytes tagged with a type. The most common type is ValidNotEOP.

Exactly one byte in a datagram byte stream will be marked with ValidEOP. Any residual bytes in a

QABS that are not valid data will be marked with EmptyEOP. This implementation does not utilize

the AbortEOP type.

33

Funnel

HexBDG QABS

Figure 3.17: Funnel Module

The reason for converting the data from 16 bytes wide down to 4 bytes wide is to interface with

the QBGMAC module easily. The QBGMAC module is one that had been previously written, so

reuse of the module is ideal. The addition of the funnel component took a comparable amount of

work that altering the QBGMAC module to interface with type HexBDG.

A block diagram of the Funnel module is shown in Figure 3.17.

L2Inserter

In order to communicate over a Layer 2 switch, an L2 header must be prepended to the frame on

its way to the Gigabit Mac. When the first segment of a frame enters the L2Inserter module, the

L2 header is created and sent out to the QBGMAC module. The entire frame is then forwarded to

the QBGMAC. The L2 Inserter has two FIFO interfaces of type HexBDG, one for the incoming

frame and one for the outgoing packet.

34

3.3 Receiver

The Receiving module in an endpoint responsible for accepting incoming frames from the shared

modules (GMAC and supporting modules). Receiving module must also send acknowledgment

frames to the initiating endpoint for received frames. Each of the modules/components in Figure

3.2 are described in detail including interfaces, specific function and, in some cases, logical op-

eration. Figure 3.18 shows the data flow is described step by step in this figure. In general, the

operations of the Receiving module in an endpoint are simpler than those of the Sending module

in the endpoint.

35

L2Inserter
L2R

em
over

Funnel

C
onsum

er

R
eceiver

M
ergeR

cv

FAU

FAU

AckAgg
M
ergeForkFAU

M
ergeToW

ire

U
nfunnel

G
M
AC

A
L

C
D

E,R

F

G

H

I

J

K

M

N
O

B

P
Q

Figure 3.18: Receiver Data Flow Diagram

A: Packet enters through RX resolution layer

B: Packet is passed up through GMAC to L2 remover

C: Destination MAC and EtherType of L2 header is checked and removed, yielding a frame

D: Frame is converted from 4 byte wide stream to 16 byte wide stream

E,R: FAU signals that it is free and available to accept a frame

F: Destination ID of Frame Header is checked, frame sent to either sender or receiver (receiver in

this case because it is a frame)

G,J : Frame is forwarded and unaltered

H: AckAggregator is notified of frame ID of received frame

I: Ack frame is generated and passed to MergeForkFAU

J: Frames from both FAU’s are merged into one byte stream

K: Frame is passed to Receiver

L: Message and frame headers are stripped from frame yielding a payload

M*: Frame is forwarded and unaltered

N*: Packet is converted from 16 byte wide stream to 4 byte wide stream
36

O*: L2 header is prepended to the frame forming a packet

P*: Packet is passed to the GMAC

Q*: Packet exits through TX resolution layer to PHY

*Ack frame does not wait for frame payload to reach Consumer in order to be transmitted

L2Remover

When a packet comes in from the GMAC, the L2 header must be removed. The Destination MAC

address is checked to see if the packet is for this node. The node is aware of its own MAC address.

The EtherType is also checked to make sure that it is the DG-RDMA protocol. If the packet is for

the receiving node, the L2 header is removed and the frame is forwarded to the Unfunnel module.

If the packet is not for the receiving node, it is not passed further into the protocol stack. The L2

remover has two FIFO interfaces of type HexBDG, one for the incoming packet and one for the

outgoing frame.

Unfunnel

The Unfunnel module is responsible for converting the incoming QABS byte stream to a HexBDG

byte stream, essentially the opposite of the function of the funnel module. Section 3.2 describes the

data types and why the conversion is necessary. Figure 3.19 shows the interfaces of the Unfunnel

module.

MergeToWire

Refer to section 3.2. The MergeToWire component is a singleton in an endpoint.

MergeForkFAU

The MergeForkFAU module is responsible for waiting for assigning an incoming frame to an FAU.

When an FAU becomes available for a new frame, the FAU signals to the MergeForkFAU that it is

37

Unfunnel

HexBDG QABS

Figure 3.19: Unfunnel Module

free. MergeForkFAU then assigns incoming frame to the available FAU. There are two FAU’s in an

endpoint. After the frame is passed to the FAU, MergeForkFAU waits for another incoming frame

and another signal from either of the FAU’s to assign the frame to. The MergeForkFAU module

also forwards outgoing Ack frames from the AckAggregator module to the MergeToWire module

for transmission. The interfaces for the module are shown in Figure 3.20.

Frame Arrival Unit

The Frame Arrival Unit (FAU) holds the incoming frame and notifies the Acknowledgment Ag-

gregator of the received frame’s ID. When an FAU is available to accept a new frame, it signals

the MergeForkFAU module. As the frame enters this module from the MergeForkFAU, the Frame

ID is saved in a register and enqueued into a FIFO that is sent to the Acknowledgment Aggre-

gator for Ack frame generation and transmission. The Acknowledgment Aggregator is described

in section 3.3. BRAM in the FAU holds the frame until the Frame ID of the frame is sent to the

Acknowledgment Aggregator and the frame is forwarded to the Merge Receive module. In this

implementation, two FAUs are employed to increase overall throughput of the design. The number

of FAU’s can be increased to further increase the throughput of the design. Figure 3.21 shows the

FAU and its surrounding modules.

38

M
ergeForkFAU

From AckAgg

FAU 2

FAU 1

To
MergeToWire

HexBDG

HexBDG

HexBDG

HexBDG

HexBDG

free!

free!

Figure 3.20: MergeForkFAU module

39

FAU

Acknowledg
ement

Aggregator

FAU

HexBDG

HexBDG

M
ergeForkFAU

HexBDG

free!

free!

HexBDG

M
erge Arrival

HexBDG FrameID

FrameID

Figure 3.21: Acknowledgment Aggregator and surrounding modules

40

FAU

FAU
M

ergeR
eceive

HexBDG

HexBDG

HexBDG

To Receiver

Figure 3.22: Merge Receive module

Acknowledgment Aggregator

The purpose of the Acknowledgment Aggregator is to generate an acknowledgment frame for

all incoming datagrams as they arrive in their entirety. The two FAU’s forward the frame ID of

the frames they have received to this module. Upon reception of a frame ID, the acknowledgment

frame is generated and sent to the MergeForkFAU module to be sent back to the initiating endpoint.

This module also keeps a count of how many acknowledgments it has generated and transmitted.

Figure 3.21 shows the interfaces with key surrounding modules.

MergeReceive

Frames enter the MergeReceive modules from either of the two FAUs and are forwarded to the

Receiver unmodified. Frames are passed through atomically into the MergeReceive module and

are multiplexed to the Receiver module. The input FIFOs and output FIFO of this module are of

type HexBDG. Figure 3.22 shows a diagrams of the module and it’s interfaces.

41

HexBDG

HexBDG

ForkSend

Receiver

HexBDG MLMesg

From FAU 2

From FAU 1

Figure 3.23: Receiver module and surrounding modules

Receiver

The Receiver module is responsible for removing the DG-RDMA protocol headers and forwarding

the meta data and payload to the Consumer module. The frame enters the Receiver module through

a FIFO of type HexBDG and exits as a message through a FIFO of type MLMesg. Figure 3.23

shows these interfaces. As the frame enters

Figure 3.24 is a logical flow diagram for frame decomposition in the Receiver. A state variable

is used to control which logic cloud the frame will go through. The frame enters the module and

is loaded into a Byte Shifter, similarly to the Byte Shifter in the section 3.2. The first 10 bytes

are removed in the Remove Frame Header logic cloud. The next 24 bytes are removed from the

Byte Shifter in the Remove Message Header logic cloud. Every frame contains meta data, which is

the next 8 bytes that are removed from the Byte Shifter in the Forward Message Data logic cloud.

42

Remove
Frame
Header

HexBDG

Remove
Message
Header

Forward
Message

Data
ByteShifter MLMesg

 Load BS

Receiver

Figure 3.24: Receiver module data flow

Meta Data is forwarded on to the Consumer to be checked against the control for correctness. State

then transitions back to the Remove Message Header logic cloud to strip away the message header

corresponding to the payload data. To retrieve the payload, the only part of the frame left in the

Byte Shifter, the Forward Message Data logic cloud removes the payload from the Byte Shifter

end enqueues it in the outgoing MLMesg FIFO. State in the module is reset upon the end of the

payload and awaits another frame.

Consumer

The interfaces of the Consumer module are shown in Figure 3.25. Two FIFO inputs of type

MLMesg supply the Consumer module with both the expected and received meta data and pay-

load. The expected meta data and payload is sourced from an identical Producer module and is

used as a control to compare to the meta data and payload that has been through the complete DG-

RDMA protocol stack. For each correct meta data and payload comparison, a count is increased

43

Consumer

MLMesg

MLMesg

From Receiver

From Control
Correct Count

Figure 3.25: Consumer Module

by one. The value of the count is available to be read from outside the module and is displayed

on the general purpose LEDs on the KC705. The consumer module is used for debugging during

development to ensure that the data payload is unaltered by the protocol stack.

44

Chapter 4

Results

4.1 Experimental Setup

The experimental set up is shown in Figure 4.1. Two KC705s and a host computer are plugged

into a Layer 2 switch. Netgear Prosafe Plus GS105E Switch was chosen because it is inexpensive

and has port mirroring capabilities. The Layer 2 switch can be configured with port mirroring

easily using a Windows based computer and Netgear’s simple interface. Port mirroring allows all

traffic that enters on one or more ports to be mirrored to exit on another port than the one it would

normally flow to. This will allow traffic to be observed using packet capturing software, Wireshark,

on the host computer. Wireshark version 1.10.0 has been used to observe and capture packets as

they travel between the two KC705’s. The DG-RDMA protocol can be recognized upon packet

inspection. A screen capture of DG-RDGMA packets in Wireshark is shown in Figure 4.2. The

Source and Destination MAC address shown in the figure correspond to the MAC addresses of the

two KC705s.

A variety of data payload sizes have been tested in the range from 0-1K Bytes. Using the

data and length modes as described in section 3.2, different data payload values have been tested

as well. Messages, synonymous to the payload data, are created opportunistically and propagate

through the protocol stack as they are generated.

4.2 Frequency

The system frequency is 125MHz with a 50% duty cycle. All timing requirements at 125MHz

were met. Timing closure at 200MHz would be an added bonus, as it was one lofty goal set during

implementation. Optimization of the system will likely allow timing closure at a greater frequency,

decreasing overall latency.

45

KC705 KC705Layer 2
Switch

Host

Figure 4.1: Experimental Set up

Figure 4.2: DG-RDMA Packets in Wireshark

46

Utilization
Module LUTs Flops/Latches
Producer 478 433

Consumer 173 181
Sender 3036 1385

Receiver 2405 757
FDU 895 886
FAU 704 809

Fork Send 427 812
Merge Receive 554 810

Ack Tracker 146 204
Ack Aggregator 99 150
MergeForkFDU 599 879
MergeForkFAU 706 1251
MergeToWire 873 1411

Funnel 239 359
Unfunnel 409 461

L2 Inserter 495 551
L2 Remover 340 544

GMAC 425 688

Table 4.1: Utilization for each system Module

4.3 Utilization

The device used for implementation and testing is the Xilinx KC705 Evaluation Platform with

FPGA part number XC7K325T-2FFG900CES. The Kintex 7 FPGA uses a 6 LUT architecture.

Xilinx Vivado v2013.1 64-bit is used as for RTL Synthesis, Place and Route for the design on

RHEL5. Total area required for the DG-RDMA IP core is 14,371 Flops/Latches and 14,715 LUTs.

Roughly, 7% of the available LUTs and 4% of the available Flops/Latches. Table 4.1 shows a

break down of the utilization by module.

The total area of the Sending modules is 6,476 LUTs and 10,970 Flops/Latches. Total area of

the Receiving modules is 5,823 LUTs and 10,400 Flops/Latches. The shared modules have a total

area of 2,781 LUTs and 4,014 Flops/Latches.

The area of the design could be reduced by logical optimization in many of the modules. Total

utilization could also be reduced by combining some of the modules that do not necessarily need

47

to stand alone. Most of the FIFO’s between modules are of type HexBDG which is not a small

channel for communication. Employing this reduction would reduce the number of FIFO’s needed

for communication among the modules.

Figure 4.3 shows device utilization for the KC705. Sending modules are in blue, Receiving

modules are in red and shared modules are in yellow.

4.4 Bandwidth

Throughput is the average rate of successful communication transfer over a network. Throughput

can be measured by accumulating the number of Bytes sent out of the IP core over a period of

time.

Ideal or best case throughput is calculated by multiplying the data width that progresses each

cycle by the frequency of the data progressions. The data width is 16 Bytes and the frequency is

125 MHz, as stated in section 4.2. This yields an idealistic throughput of 2 GB/S or 16 Gb/S.

A cycle counter, which measures cycles of a known period, is used to find the length of time

the that it takes for bytes to transmitted. Latency for messages of different payload lengths are

measured. This latency is reported in section 4.5. The calculated bandwidths are shown in figures

4.4,4.5 and 4.6.

The Round Trip Time bandwidth graph shown in figure 4.6 shows that the implementation

comes very close to the ideal bandwidth calculation. With the conversion of MB/S to Mb/S, we

see that bandwidth of 976 Mb/S is achieved. This is very close to the 1 Gigabit Ethernet limit of

the communication channel.

48

Figure 4.3: KC705 Chip Utilization

49

Figure 4.4: Send Bandwidth Graph

Figure 4.5: Receive Bandwidth Graph

50

Figure 4.6: Round Trip Time Bandwidth

51

4.5 Latency

Latency is a measurement of the time for a function to complete. Latency is measured by counted

clock cycles at the known frequency. The number of clock cycles is multiplied by the period of the

system. Latency is reported in microseconds. Cycle counters are sampled at certain points in the

system that indicate complete actions. Overhead latency is measured for a payload size of zero.

Latency is sampled for payload sizes 16 bytes, 256 bytes, 512 bytes and 1024 bytes.

In this design, the latency of interest is outlined below.

Send latency is measured by taking a sample of the cycle count when the first payload byte

enters the Sender module and again when the last byte of the packet leaves the GMAC and goes to

the PHY. This measures the latency between frame creation to packet departure. Figure 4.7 shows

the path that is measured for send latency. The green arrow signifies the start of the measurement,

the red arrow signifies the end of the measurement and the blue arrows show the measured data path

through the protocol stack. This convention is used for each of the described latency measurements

in this section.

The measured results for send latency are shown in Figure 4.8. Latency is measured in mi-

croseconds. The transmission of messages is the most costly operation within this implementation.

Frame generation and acknowledgment are hand

Receive latency is measured by taking a sample of the cycle count when the first byte of the

packet enters the GMAC from the PHY and again when the last byte of the payload is passed into

the Consumer module. The measured results for receive latency are shown in Figure 4.10. As

compared to the latency for transmitting a message, reception latency are much lower. Frames

do not have to be generated and acknowledged, rather the headers just have to be checked and

removed in the receiving module.

Round Trip latency is measured by sampling the cycle count when the first payload byte enters

the Sender module and again when the AckTracker signals to the FDU that it can release the frame

and accept a new one. The measured results for round trip latency are shown in Figure 4.11.

52

U
nfunnel

Funnel

L2R
em

over

Producer

Sender Fork Send

FDU

FDU

AckTra
cker

M
ergeForkFD

U

M
ergeToW

ire

L2Inserter

G
M

AC

Figure 4.7: Send Latency Measured Path

Figure 4.8: Send Latency Graph

53

L2Inserter
L2R

em
over

Funnel

C
onsum

er

R
eceiver

M
ergeR

cv

FAU

FAU

AckAgg
M
ergeForkFAU

M
ergeToW

ire

U
nfunnel

G
M
AC

Figure 4.9: Receive Latency Measured Path

Figure 4.10: Receive Latency Graph

54

Figure 4.11: Round Trip Latency Graph

Round trip latency measures time from frame creation to frame acknowledgment. The majority of

this time is due to the transmission operations.

Retransmission latency is measured by sampling the cycle count when the retransmission time-

out counter expires and again when the last byte of the packet leaves the GMAC and goes to the

PHY. Figure ?? shows the path that is measured for retransmission latency. The measured results

for retransmission latency are shown in Figure 4.13.

55

U
nfunnel

Funnel

L2R
em

over

Producer

Sender Fork Send

FDU

FDU

AckTra
cker

M
ergeForkFD

U

M
ergeToW

ire

L2Inserter

G
M

AC

Figure 4.12: Retransmission Latency Measured Path

Figure 4.13: Retransmission Latency Graph

56

4.6 Lines of Source Code

Lines of source code is a metric used to estimate the time to solution and complexity of the design.

This implementation of DG-RDMA is 2,328 lines of Bluespec SystemVerilog code. The total

number of lines of code was added together and any empty lines were subtracted from the total

number of lines. This calculation will account for only lines in the source that are in fact code.

The Bluespec Compiler is used to generate Verilog RTL. There are 16,939 lines of Verilog that

have been generated. This is almost an order of magnitude difference in the amount of source

code required to implement DG-RDMA IP core. Without the help of BSV, the effort to implement

this design in Verilog would have been much greater and certainly required more time and more

engineering effort.

57

Chapter 5

Conclusion

Communication performance is just as important as computation performance in high speed net-

works, even in embedded systems. Doing fast and efficient data transfers is a responsibility left

to endpoint processing. A myriad of protocols and interconnects exist for high speed transactions.

Due to the advantages of a zero copy protocol, Remote Direct Memory Access (RDMA) is chosen

as a paradigm. Remote Direct Memory Access is the transfer of data into buffers between two

endpoints that does not involve the CPU or Operating System (OS). RDMA promotes reliable,

high throughput and low latency transfer for packet-switched networking.

DG-RDMA Protocol Specification is a simple and lightweight protocol that does not rely on

an underlying Internet Protocol service. It transports datagrams over a transmission layer that is

unreliable, possibly out of order, yet error free when delivered. DG-RDMA has been implemented

in Bluespec SystemVerilog on a Xilinx KC705. The protocol is designed for wired, Layer 2 packet-

switched networks in which endpoints are addressable by MAC address. An experimental set up

with two KC705s connected by an L2 switch is used to perform latency, throughput and area

measurements.

This thesis explores how to bring low latency data transfer capabilities for packet-switched

networks over Ethernet into the open source FPGA community. An RDMA protocol in which the

currency is Datagrams is designed, implemented and tested between two Xilinx FPGA’s over a

Layer 2 switch. The implementation does not rely on an Internet Protocol and is portable, simple

and lightweight.

5.1 Contributions

In this thesis, we present a simple, low-latency, open source, reliable and lightweight RDMA ca-

pability to the FPGA community. This addresses the current lack of no standard or freely available

58

RDMA IP cores that do not rely on Internet Protocol services. The following contributions have

been made in support of this statement.

• Designed a reliable and portable Ethernet RDMA IP core

• IP core does not require Internet Protocol and can be scaled to different line rates

• Implemented prototype on Xilinx KC705

• Tested two KC705s with RDMA IP core over Layer 2 switch

• Created IP core in Bluespec SystemVerilog

5.2 Future Work

The implementation of DG-RDMA focuses on functionality first, then on performance. There are

many instances in the design that can be optimized to improve latency, throughput and area. Data

flow processing can be parallelized and sped up. Increasing the operating frequency from 125 MHz

to 200 MHz would also improve the latency and is not an unrealistic goal for the current design.

The speed increase to 200 MHz will also allow the protocol to run at a line rate for 10GbE.

The DG-RDMA protocol allows for some features that are useful, but not implemented in

this work. Flow control is built in within the endpoint to some degree due to FIFO semantics,

however, more explicit flow control could be implemented. A study to define the max number

of retransmissions that brings the best performance to the system could be performed. In the

current implementation, ack frames are sent separately for each received frame. DG-RDMA allows

for multiple acks to be sent in one frame, reducing the amount of bytes on the wire for each

transaction, which would improve performance. In order to support variable line rates for Ethernet,

the interfaces between modules could be converted to polymorphic types within BSV. This would

support further flexibility and has the potential to allow for improved throughput and latency. One

of the original goals of this implementation is to move to 10GbE, although this implementation

is geared towards 1GbE. With an internal data width of 16 Bytes operating at 200MHz, 10GbE

59

is over provisioned for. By widening the data path further, even greater Ethernet line rates are

probable.

In chapter 3, it is mentioned a few times that the number of FAUs and FDUs in the design is an

implementation choice. Conducting a study to measure throughput with varying number of FAUs

and FDUs would yield the ideal number for maximum throughput. Another study could be con-

ducted to determine if double buffering the BRAM in each FDU/FAU would increase throughput.

Unused header fields that are pointed out in chapter 3 could be removed which would improve the

performance as well. The MAC addresses that are used for source and destination addressing in

the L2 header are hard coded in this implementation. In order to be more correct, the source MAC

address should be read from a local I2C Flash.

The IP core could be packaged and interfaced with Xilinx and Altera tools, making use simple

for developers. A sample implementation on both a Xilinx FPGA and Altera FPGA communicat-

ing over an L2 switch would be a nice demonstration of the cores potential for portability. Another

feature to promote portability and reuse would be to interface the IP core with other interconnec-

tion networks such as PCIe. An implementation of DG-RDMA could be developed for use with

GPUs allowing wider adoption of the protocol. To further promote reuse, a DG-RDMA packet

dissector for WireShark software could be created and made available with the open source IP

core.

Creation of a data logging utility in which the protocol is running in HW on the FPGA and in

SW on a CPU could be used to send data from the FPGA to the CPU. The data would be written

to a text file and available to be read. This is a useful tool for running tests on the FPGA and easily

capturing the data the FPGA produces.

60

References

[1] Nikolaos Alachiotis, Simon A. Berger, and Alexandros Stamatakis. Efficient pc-fpga com-
munication over gigabit ethernet. In Proceedings of the 2010 10th IEEE International Con-
ference on Computer and Information Technology, CIT ’10, pages 1727–1734, Washington,
DC, USA, 2010. IEEE Computer Society.

[2] I.C. Bertolotti and Tingting Hu. Real-time performance of an open-source protocol stack for
low-cost, embedded systems. In Emerging Technologies Factory Automation (ETFA), 2011
IEEE 16th Conference on, pages 1–8, 2011.

[3] Neal Bierbaum. Mpi and embedded tcp/ip gigabit ethernet cluster computing. In Proceedings
of the 27th Annual IEEE Conference on Local Computer Networks, LCN ’02, pages 733–734,
Washington, DC, USA, 2002. IEEE Computer Society.

[4] Bluespec. Bsv by example. http://wiki.bluespec.com/Home/BSV-Documentation. Last ac-
cessed November 22, 2013.

[5] Ron Brigthwell and Matthew Curry. The Case for an RDMA Extension to MPI. http://www.
sandia.gov/∼rbbrigh/slides/posters/rdma-mpi-sc05-poster.pdf. Last accessed November 22,
2013.

[6] Sun HPC ClusterTools. One-sided communication. http://docs.oracle.com/cd/E19061-01/
hpc.cluster6/819-4134-10/1-sided.html. Last accessed November 22, 2013.

[7] A. Dollas, I. Ermis, I. Koidis, I. Zisis, and C. Kachris. An open tcp/ip core for reconfigurable
logic. In Field-Programmable Custom Computing Machines, 2005. FCCM 2005. 13th Annual
IEEE Symposium on, pages 297–298, 2005.

[8] P. Geoffray. A critique of rdma. 2006.

[9] K. Hashimoto and V.G. Moshnyaga. A new approach for tcp/ip offload engine implementa-
tion in embedded systems. In Signals, Systems and Computers (ASILOMAR), 2010 Confer-
ence Record of the Forty Fourth Asilomar Conference on, pages 1249–1253, 2010.

[10] Jeff Hilland, Paul Culley, Jim Pinkerton, and Renato Recio. Rdma verbs specifica-
tion. http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf.
Last accessed November 22, 2013.

[11] Amir Hirsh. An interpreted hardware description language. http://fpgacomputing.blogspot.
com/2006/12/interpreted-hardware-description.html. Last accessed November 22, 2013.

[12] Hankook Jang, Sang-Hwa Chung, and Dae-Hyun Yoo. Implementation of an efficient rdma
mechanism tightly coupled with a tcp/ip offload engine. In Industrial Embedded Systems,
2008. SIES 2008. International Symposium on, pages 82–88, 2008.

[13] James Kulp John Miller and Shepard Seigel. Opencpi datagram rdma (dg/rdma) protocol
specification. http://opencpi.org/doc/ts.pdf, 2012.

61

http://wiki.bluespec.com/Home/BSV-Documentation
http://www.sandia.gov/~rbbrigh/slides/posters/rdma-mpi-sc05-poster.pdf
http://www.sandia.gov/~rbbrigh/slides/posters/rdma-mpi-sc05-poster.pdf
http://docs.oracle.com/cd/E19061-01/hpc.cluster6/819-4134-10/1-sided.html
http://docs.oracle.com/cd/E19061-01/hpc.cluster6/819-4134-10/1-sided.html
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
http://fpgacomputing.blogspot.com/2006/12/interpreted-hardware-description.html
http://fpgacomputing.blogspot.com/2006/12/interpreted-hardware-description.html
http://opencpi.org/doc/ts.pdf

[14] N.M. Khalilzad, F. Yekeh, L. Asplund, and M. Pordel. Fpga implementation of real-time
ethernet communication using rmii interface. In Communication Software and Networks
(ICCSN), 2011 IEEE 3rd International Conference on, pages 35–39, 2011.

[15] P. Lieber and B. Hutchings. Fpga communication framework. In Field-Programmable Cus-
tom Computing Machines (FCCM), 2011 IEEE 19th Annual International Symposium on,
pages 69–72, 2011.

[16] A. Lofgren, L. Lodesten, S. Sjoholm, and H. Hansson. An analysis of fpga-based udp/ip
stack parallelism for embedded ethernet connectivity. In NORCHIP Conference, 2005. 23rd,
pages 94–97, 2005.

[17] Allyn Romanow and Stephen Bailey. An overview of rdma over ip. In In First International
Workshop on Protocols for Fast Long-Distance Networks (PFLDnet, 2003.

[18] Xilinx. Xilinx vivado 4x faster implementation. http://www.xilinx.com/products/
design-tools/vivado/prod-advantage/faster-implementation/index.htm. Last accessed
November 22, 2013.

[19] E. Yeh, H. Chao, V. Mannem, J. Gervais, and B. Booth. Introduction to tcp/ip offload engine
(toe). 2002.

62

http://www.xilinx.com/products/design-tools/vivado/prod-advantage/faster-implementation/index.htm
http://www.xilinx.com/products/design-tools/vivado/prod-advantage/faster-implementation/index.htm

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	12-2013

	An Open Source, Line Rate Datagram Protocol Facilitating Message Resiliency Over an Imperfect Channel
	Christina Marie Smith
	Recommended Citation

	Introduction
	Thesis Contributions and Organization

	Background
	High Performance Communication
	Internet Protocol Based Related Works
	Remote Direct Memory Access

	Datagram RDMA (DG-RDMA) Protocol Specification
	Design Input Language
	Board and Tool Selection
	Implementation of DG/RDMA

	System Design and Implementation
	Top Level Design
	Sender
	Receiver

	Results
	Experimental Setup
	Frequency
	Utilization
	Bandwidth
	Latency
	Lines of Source Code

	Conclusion
	Contributions
	Future Work

	References

