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ABSTRACT 

In order to ensure a harmonious harness of shale-gas resources while ensuring minimal damage 

to the environment, it is imperative that studies to conduct to inform various aspects of managing 

the environment. This includes the development of reliable hydrologic models to inform in 

decisions concerning water and the environment.  

The first objective of this study was to evaluate the predictive reliability of the Soil and Water 

Assessment Tool (SWAT) model based on respective methods of LULC data classification and 

data type spatial resolution.  Results showed that the high-resolution data classified with object-

oriented image method does not provide any significant advantage in terms of the model’s flow 

predictive reliability. The second goal focused on an application of the object-oriented image 

analysis technique for change detection related to shale-gas infrastructure and subsequently 

evaluates the impact of shale-gas infrastructure on stream-flow in the South Fork of the Little 

Red River (SFLRR). Results showed that since the upsurge in shale-gas related activities in the 

Fayetteville Shale Play (between 2006 and 2010), shale-gas related infrastructure in the SFLRR 

have increased by 78% corresponding to a differential increase on storm water flow by 

approximately 10% over a projected period of simulation.  The last objective deals with the 

evaluation of BMP effectiveness in a shale-gas watershed using a modeling approach. Three 

BMPs identified to control flow were introduced and simulated for a simulation (2000 to 2009) 

and projected (2010 to 2020) periods. The differences in the flow output at the watershed outlet 

for each BMP scenario were derived by comparing baseline and respective BMP scenarios. 

Results indicate that the BMPs have an average effectiveness of approximately 80% in reducing 

storm water flow attributable to shale-gas.  
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CHAPTER 1: INTRODUCTION 

1.0 Problem Definition 

Unconventional natural-gas resources, particularly shale-gas, have seen major changes in 

exploration and development in the conterminous United States in recent years (Figure 1). Using 

hydraulic fracturing and horizontal drilling, energy companies have begun exploration and 

development of this resource with resultant changes in the land-use land-cover (LULC). These 

changes ultimately affect important factors such as the hydrologic regime of the watersheds in 

which their activities occur.  

 

Figure 1: Major shale deposits and significant shale plays in the conterminous U.S. (as of 

May, 2011). Source: Energy Information Administration 
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This dissertation investigates shale-gas related infrastructure changes, the impact on land-use 

land-cover change and the subsequent potential impact on surface-runoff generation. Geographic 

Information Science (GIS) and hydrologic modeling using the Soil and Water Assessment Tool 

(SWAT) (Arnold et al., 1998) are used to evaluate environmental impacts specifically related to 

LULC change and the resultant generation of storm-water runoff as the resultant of LULC 

changes. The prediction accuracy of hydrologic models such as SWAT has been shown to 

depend on the input LULC data. This data is typically created using moderate-resolution (30 m) 

satellite imagery and an assortment of maximum-likelihood classification techniques. The 

availability of low-cost United States Department of Agriculture National Agricultural Imagery 

Program (USDA-NAIP) aerial imagery data of significantly higher resolution (1 m and 2 m) and 

the emergence of object-based land-cover classification methods, have the potential to produce 

land-use land-cover maps of significantly higher accuracy. This presents a significant advantage 

in the choice of data for both spatial and hydrologic analyses.  

However, research on the effect of high resolution LULC input data on various SWAT model 

outputs show that higher resolution data do not always produce hydrologic models of better 

prediction ability. These mixed results arise in part due to the fact that the traditional pixel-based 

image classification methods are designed for moderate-resolution satellite imagery and are not 

well suited to deal with the high spectral and spatial variances inherent in high-resolution 

imagery. A more modern computer-vision-based method known as the object-oriented imagery 

analysis (OOIA) technique has seen extensive use in small-scale studies. This method involves 

an important first step known as image segmentation; which is based on the hierarchical 

aggregation of pixels into objects and the subsequent classification of these objects using the 
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high degree of variation inherent in the spectral, shape, context, texture etc. of the respective 

objects and at some scale of pixel (Baatz and Schape, 2000).  

Albeit a combination of OOIA and the availability of low-cost aerial imagery present a potential 

increase in LULC classification accuracy, no study can be located that employs these two 

advantages in quantifying the relative change in infrastructure related to shale-gas activities and 

their impact on the overall LULC change of the watersheds in which they occur. The ability to 

readily and accurately produce and quantify land-cover changes impacted by shale-gas activities 

in comparison to other urban infrastructure will greatly serve in decision-making and policy 

formulation. Furthermore, a previous study (Bosch et al., 2004), has compared the differential 

effect of high or low-resolution LULC data on SWAT outputs. However, there is little research 

on the impact of classification methods and how the accuracy with which these methods can be 

used to correctly extract land-use data related to local LULC changes affects SWAT runoff 

model predictive reliability. What is lacking is a study that quantifies model predictive reliability 

based on a defined level of uncertainty for SWAT models calibrated for runoff with high-

resolution LULC data derived with object-oriented image classification and of low-resolution 

imagery derived with pixel-based maximum-likelihood method. 

The oil and gas industry though exempt from the provisions of the National Pollutant Discharge 

Elimination System (NPDES), under the Clean Water Act (CWA) the regulatory concern is with 

the Endangered Species Act (ESA) particularly with reference to such predominantly forested 

areas such as the Upper Little Red River watershed of north-central Arkansas. Their activities 

could have potential adverse impacts due to the generation of storm-water carrying sediment 

discharged into receiving downstream waters bodies. This has the impact of increasing turbidity, 

total suspended solids and reduction in the levels of oxygen for aquatic life. Any such impact 
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considered to be detrimental to species listed under the ESA could result in infractions of the 

law. In this sense, albeit the ESA does not directly regulate the oil and gas industry, there are 

possible applications of the law when the industrial activities are deemed as infractions of the 

law.  

This has led to trends where although not required under any regulatory framework, some shale-

gas operators and pipeline companies have taken the initiative to implement storm-water and 

erosion control Best Management Practices. However, the Oil Pollution Act (OPA) of 1990, 

which controls oil and gas activities in Arkansas, does not explicitly define BMPs or BMP 

guidelines, particularly for storm-water management in oil and gas industrial watersheds. 

However it is known that knowledge about the effectiveness of BMPs can be studied with 

hydrologic model. In this sense SWAT model has been applied to evaluate various erosion and 

sedimentation BMP scenarios and quantify agricultural conservation practices in both large and 

relatively small watersheds (Betrie et al., 2011; Arabi et al., 2007). However, the model has not 

been applied in any feasibility study meant to evaluate the effectiveness of BMPs implemented 

in a shale-gas activity setting to mitigate threats in terms of storm-water runoff posed by shale-

gas activities. This study explores this unexamined area and evaluates the feasibility of 

implementing BMPs designed for storm-water management in a shale-gas related construction 

watershed. 
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1.1 Motivation 

Natural-gas from unconventional sources such as shale is increasingly becoming the fuel of 

choice especially as public awareness of the need to become energy-independent gains pervasive 

acceptance. The United States has substantial reserves of this resource. 2012 proved reserves for 

the entire United States is estimated to be about 273 trillion cubic feet (Tcf) (Gruenspecht, 2012). 

This has spurred a significant increase in exploration and production activities throughout the 

country. Concurrent with these activities, public concern about related environmental problems 

has intensified and stakeholders have sought meaningful answers to allay the fears of the 

disparate groups.   

The ability to readily detect and quantify changes in the LULC resulting from activities of the 

shale-gas industry will serve to inform policy and management practices aimed at curbing the 

impacts on the hydrology of the affected watersheds. A quantification of the relative acreage and 

changes in infrastructure in the respective shale-gas plays is essential to aide decisions in the 

issuance of permits, environmental assessment, hydrologic studies and most importantly an 

inventory of infrastructure arising from shale-gas exploration and production. This body of 

knowledge could be used in LULC change predictive models with particular emphasis on shale-

gas related developments. A comparison with other infrastructure change such as urban 

developments will convey a better understanding of the relative impact of the shale-gas related 

activities on the overall land-cover change of a watershed.  

LULC data at different spatial resolutions have also been shown to affect hydrologic model 

outputs (Wegehenkel et al., 2006).  Combined with high-resolution (1 m) National Agricultural 

Imagery Program (NAIP), object-oriented image analysis (OOIA) known to produce land-use 

data of higher classification accuracy than pixel-based methods (Platt and Rapoza, 2008; 
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Willhauk, 2000). The availability of inexpensive yet readily available aerial imagery such as 

NAIP data offers the opportunity of applying aerial imagery for the study of the impact of shale-

gas activities on hydrologic resources. This presents a cost-effective alternative to the 

conventional and expensive-to-obtain satellite imagery data. The evaluation of hydrologic model 

predictive reliability resulting from input LULC data of classified with object-based and pixel-

based methods have the advantage of providing critical information in the performance of cost-

benefit analyses regarding the choice of method of classification and data resolution for a 

particular application.  

The controlling processes in the hydrology of a watershed have been shown to be scale 

dependent (Seyfried and Wilcox, 1995). The ability to quantify processes at varying spatial 

resolutions is expected to provide enhanced understanding of the key processes and controls in a 

watershed and inform the choice of management options that are available. The ability to assess 

the effectiveness of management practices with hydrologic modeling also offers stakeholders 

with a cost-effective means of BMP choice and evaluation in the watershed. This inevitably 

translates into the integration of key environmental concerns in effectively determining and 

mitigating impacts of shale-gas exploration and production activities. Lastly, the ability to apply 

the SWAT model in such an industrial environment answers questions on the feasibility of using 

a primarily agricultural-based distributed hydrologic model in studying non-agricultural related 

applications. This may subsequently enhance the range of applicability of the model.  
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1.2 Research Questions 

Traditional pixel-based image classification methods designed for moderate-resolution images 

are not well-suited to deal with the spatial and spectral variances inherent in high-resolution 

images. Pixel-based classification essentially identifies the class of each pixel by comparing the 

spectral value of individual pixels with sampled training classes and assigns the pixel to a 

specific class based on a specific classification algorithm (Lillesand et al., 2004).  The object-

oriented image classification technique developed from computer-vision research has been 

variously applied to high-resolution images and has been found to produce classified images of 

better accuracy than pixel-based methods (Whiteside and Waqar, 2005). OOIA incorporates a 

multi-scale segmentation approach that groups pixels into homogenous image objects based on 

defined shape, texture, spatial and spectral characteristics of the pixels (Baatz et al., 2001). This 

approach results in discrete regions that are spectrally and spatially homogenous and allows for 

the identification of object features at specific scales of segmentation. Homogeneity in this 

regard refers to the fact that the spectral variance within an object is less than the spectral 

variance between objects (Laliberte et al., 2004). The segmented image objects can then be 

classified by using either the nearest-neighbor classifier or membership function classifier based 

on fuzzy-logic combined with user supplied knowledge.  

Platt and Rapoza (2008) made a comparison of the traditional pixel-based classification using 

maximum-likelihood and object-oriented image classification paradigm embedded in eCognition 

software. They showed that a combination of the segmentation process, nearest-neighbor 

classifier and expert knowledge yielded improved accuracy over a pixel-based approach. 

Accuracy assessment is subsequently used to assess the uncertainty associated with a particular 

classified image. A key research question in this regard is to determine what level of statistical 
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significance is attainable with the detected change of shale-gas infrastructure. Also in 

comparison to other infrastructure change, an answer to the above research question may provide 

an indication of the level of significance the relative changes in infrastructure (as detected from 

high-resolution NAIP imagery using the object-oriented image analysis technique) impact the 

overall land-use land-cover change.  

Shale-gas exploration and production invariably contributes to changes in the land-cover regime 

of a watershed. This ultimately has the potential to impact the hydrology of the watershed as 

well. Wegehenkel et al. (2006) found that a two percent increase (2.9% to 4.9%) in the 

developed land class of a watershed resulted in 70% increase in the surface runoff predictions in 

their hydrologic modeling exercise. Therefore, to better represent the prevailing complexities in a 

system, it is imperative that the classification method captures as accurately as possible the 

prevailing LULC conditions in the landscape. Similarly, the ability of a hydrologic model to 

represent and predict changes in hydrology of a watershed is achieved through calibration. 

Model calibration as a procedure essentially relies on the assumption that the observation data 

are error-free (Moriasi et al., 2007). With this assumption, a model is calibrated by comparing 

repeated simulations with the observations until a “best-fit” parameter set has been found. 

Calibration ultimately relies on the accuracy of model input data.  

The question to be answered concerning this section of the research is whether high-resolution 

LULC input data derived with OOIA provides a SWAT runoff model of better predictive ability 

than a lower-resolution LULC input data produced with the pixel-based maximum-likelihood 

technique. Furthermore, it is imperative to also determine the level of predictive accuracy that is 

associated with the combinations of method of production (pixel-based or OOIA) and image 

resolution (1 m or 30 m) on the so-derived SWAT runoff models. And lastly, to determine the 



 
 

9 

 

feasibility of a primarily agricultural-based model such as SWAT in applications for BMP 

implementation in a shale-gas environment.  

1.3 Research Objectives 

The overall goal of the research is to quantify spatial and hydrologic effects of shale-gas 

exploration and production on the environment. The specific objectives of the research include; 

1. To evaluate the predictive reliability of a calibrated SWAT stream-flow model set-up with high-

resolution (1 m) NAIP LULC data classified with object-oriented image analysis technique and 

low-resolution (28.5 m) LULC data classified with pixel-based maximum likelihood method.  

2. To quantify the overall LULC change relative to shale-gas related infrastructure from 2006 and 

2010 using NAIP aerial imagery classified with Object-oriented image analysis and assess their 

contribution to the generation of the storm-water runoff and stream-flow in the most active (in 

terms of shale gas activities) 10-digit HUC sub-watershed of the Little Red River watershed.  

3. Employ a modeling approach to evaluate the effectiveness of the implementation of storm-water 

BMPs in mitigating runoff generation identified in a high shale-gas activity watershed. 
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1.4 Research Hypotheses 

Based on the objectives as outlined above the research hypotheses are broadly categorized as 

follows: 

 Hypothesis 1: High-resolution LULC data obtained through OOIA yields a SWAT runoff 

model of higher predictive ability than the same model created with a low-resolution LULC data 

derived through pixel-based maximum-likelihood classification.   

Hypothesis 2: Shale-gas related activities have a significant effect on land-cover change from 

2006 to 2010 in the South-Fork of the Little Red River watershed.  

Hypothesis 3: The SWAT model can be used to guide the choice and evaluate effectiveness of 

BMPs meant to control storm water runoff in the South Fork of the Little Red River watershed. 

1.5 Study Significance 

The ability to quantify processes at varying spatial resolutions is expected to provide enhanced 

understanding of the key processes and controls in the study watershed and inform the choice of 

management options that are available. Also, the ability to assess the effectiveness of 

management practices with hydrologic modeling also offers stakeholders with a cost-effective 

means of BMP choice and evaluation. 

To date (2012), no study can be located that evaluates the impact of shale-gas related 

infrastructure on the overall LULC change in the Fayetteville Shale play in north-central 

Arkansas.  The United States Department of Agriculture Farm Service Agency (USDA-FSA) 

administers “leaf-on” aerial image collection on a regular basis. This readily available NAIP 

data, when combined with efficient image classification methods has the potential to produce 

LULC data of improved accuracy. Therefore, using high-resolution (1 m) USDA NAIP data 
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from 2006 and 2010 and OOIA, changes in land-cover related to shale-gas infrastructure in the 

South Fork of the Little Red River watershed are quantified and assessed. This gives a significant 

advantage over traditional pixel-based image classification methods designed for low-resolution 

satellite images. Pixel-based methods are not well-suited to deal with the spatial and spectral 

variances inherent in high-resolution images.  

The object-oriented image classification technique developed from computer-vision studies has 

been variously applied to high-resolution images and has been found to produce classified 

images of higher accuracy than pixel-based methods (Whiteside and Waqar, 2005). OOIA 

incorporates a multi-scale segmentation approach that groups pixels into homogenous image 

objects based on defined shape, texture, spatial and spectral characteristics of the pixels (Baatz et 

al., 2001). The resultant classified image has been shown to be of much better accuracy than the 

pixel-based method carried out on low-resolution imagery (Platt and Rapoza, 2008). LULC data 

so obtained has the potential to improve hydrologic model outputs. However, it not clear whether 

the combination of OOIA with high-resolution necessarily translates into better hydrologic 

model predictive reliability. This study addresses land-use land-cover change as detected from 

high and low-resolution imagery and the corresponding impacts on storm water flow in the South 

Fork of the Little Red River watershed of north-central Arkansas.  

 

 

 

 

 



 
 

12 

 

References 

Arabi M, Frankenberger J R, Engel B A, and Arnold JG, 2007. Representation of Agricultural 

Conservation Practices with SWAT. Hydrological Processes. doi:10.1002/hyp. 

Arnold J G, Srinivasan R, Muttiah R S and Williams J R, 1998. Large Area Hydrologic 

Modeling and Assessment Part I: Model Development. Journal of The American Water 

Resources Association 34 (1): 73–89. 

Baatz M, Heynen M, Hofmann P,  Lingenfelder I, Martthias Mimier, Amo Schape, Michaela 

Weber M, and Willhauck G, 2001. eCognition User Guide 2.0 : Object Oriented Image 

Analysis. Munich, Germany: Definiens Imaging GmbH. 

Baatz M, and Schape A, 2000. Multiresolution Segmentation : an Optimization Approach for 

High Quality Multi-scale Image Segmentation. Ed. J Strobl, T Blaschke, and G 

Greisebener. Journal of Photogrammetry and Remote Sensing 58 (3-4): 12–23. 

http://www.mendeley.com/research/multiresolution-segmentation-an-optimization-

approach-for-high-quality-multiscale-image-segmentation/. 

Betrie G D, Mohamed Y A, van Griensven A., and Srinivasan R, 2011. Sediment Management 

Modelling in the Blue Nile Basin Using SWAT Model. Hydrology and Earth System 

Sciences 15 (3) (March 8): 807–818. doi:10.5194/hess-15-807-2011. http://www.hydrol-

earth-syst-sci.net/15/807/2011/. 

Bosch D D, Sheridan J M, Batten H L, and Arnold J G, 2004. Evaluation of the Swat Model on a 

Coastal Watershed. Transactions of the ASAE 47 (5): 1493–1506. 

Gruenspecht, H, 2012. The U . S . Outlook for Shale Gas. In , 1–13. Washington, D.C. 

Lillesand T.M., Kiefer R.W and Chipman J.W, 2004. Remote Sensing and Image Interpretation. 

5th ed. New York: John Wiley & Sons, Inc. 

Moriasi D N, Arnold J G, Van Liew M W, Bingner R L, Harmel R D, and Veith T L, 2007. 

Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed 

Simulations 50 (3): 885–900. 

Platt R V and Rapoza L, 2008. An Evaluation of an Object-Oriented Paradigm for Land Use / 

Land Cover Classification. The Professional Geographer 60 (1): 87–100. 

Seyfried M S, and Wilcox B P, 1995. Scale and the Nature of Spatial Variability: Field Examples 

Having Implications for Hydrologic Modeling. Water Resources Research 31 (1): (1): 173–

184. 

Wegehenkel M, Heinrich U, Uhlemann S, Dunger V, and Matschullat J, 2006. The Impact of 

Different Spatial Land Cover Data Sets on the Outputs of a Hydrological Model: a 



 
 

13 

 

Modelling Exercise in the Ucker Catchment, North-East Germany. Phys. Chem. Earth 31: 

1075–108. 

Whiteside T and Waqar A, 2005. A Comparison of Object-oriented and Pixel-based 

Classification Methods for Mapping Land Cover in Northern Australia. In Proceedings of 

SSC2005 Spatial Intelligence, Innovation and Praxis: Melbourne, Australia. 

Willhauck G, 2000. Comparison of object-oriented classification techniques and standard image 

analysis for the use of change detection between SPOT multispectral satellite images and 

aerial photos. International Archives of Photogrammetry and Remote Sensing XXXIII: 

214–221. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

14 

 

CHAPTER 2: LITERATURE REVIEW 

2.0 Image Acquisition Theory 

Remote sensing is the science and art of acquiring and recording information about objects 

without physically being in contact with the object of interest; a process which is achieved 

through the use of a specialized remote sensing device (Yan, 2003).  The specialized remote 

sensing device called the sensor, has the capability of recording electromagnetic energy emitted 

by or reflected from objects. Through the use of mathematically and statistically based 

algorithms, the remotely sensed electromagnetic energy data are subsequently analyzed to 

provide pertinent information about objects.  

The amount of the recorded electromagnetic radiance that is measured in the instantaneous field 

of view (IFOV) of the sensor is a function of the wavelength, the size and location of the picture 

element (or pixel), temporal information, angular relationship between the sun, object of interest 

and the sensor, back-scattered energy and precision at which the recording is done by the sensor 

(radiometric resolution) (Jensen, 2005). Of particular importance to remote sensing is the spatial 

and spectral resolution of the sensed data. These characteristics bear a direct relationship to the 

specific sensor used in acquiring the data. Spectral resolution refers to the number and size of 

specific wavelength or bands that the sensor is sensitive to whiles spatial resolution is essentially 

a measure of the smallest angular or linear separation between two objects that the sensor has the 

capability of distinguishing.  

The remote sensing device is typically operated aboard an airborne or spaceborne platform for 

the purposes of collecting information for inventory, mapping and specific information that will 

inform further decision making (Lillesand, 2001).  
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2.0.1 Airborne (Aerial) Image Acquisition 

Aerial image acquisition is mainly achieved through high-quality photogrammetric cameras and 

is collected either ad hoc to support specific mapping or resource management projects or at 

regular intervals over extended periods of time to study environmental processes or economic 

development. For example, the United States Geological Survey (USGS) administers the 

National Aerial Photography Program (NAPP) that is designed to cover the lower 48 states every 

5 to 7 years. NAPP was operational from 1987 to 2007 and consists of over a million images. 

Archived NAPP data and data from a number of remote sensing platforms both satellite and 

aerial photography (including NAPP images) are distributed to the public through the Earth 

Resources Observation and Science (EROS) center internet portal at eros.usgs.gov/find-data.  

Color digital NAPP photographs are acquired at an altitude of 6096 m (20,000 ft) with a 15.24 

cm (6 in) focal length camera at a scale of 1:40,000. The data format is 22.86 X 22.86 cm (9 X 9 

in) covering a ground swath of 8 km (USGS-NAPP, 2012). The photographs are solely acquired 

for the purpose of providing the USGS with accurate and cloud-free data for the creation and 

revision of topographic maps of the United States.  

Other examples of a long-term acquisition project – and of particular importance to this study - is 

the United States Department of Agriculture Farm Service Agency (USDA-FSA) National 

Agricultural Imagery Program (NAIP) which is available for free download through the USDA 

geospatial data gateway internet portal at datagateway.nrcs.usda.gov. This data was hitherto 

acquired on a 5-year cycle but since 2009 has been acquired on a 3-year cycle. NAIP is acquired 

at a ground sample distance (GSD) of 1 meter and a horizontal accuracy that falls within 6 m of 

the photo-identifiable control points. The default spectral resolution is natural color Red Green 

Blue (RGB) but starting in 2007 a capability has been added to deliver RGB with Near Infra-Red 
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as well with a cloud cover of no more than 10%. Each individual image covers a 3.5 X 3.5 

minute quarter quadrangle with a 300-m buffer on all four sides (USDA-FSA, 2011). 

Other examples of hyperspectral aerial sensor systems are the Airborne Visible Infrared Imaging 

Spectrometer (AVIRIS) and the Airborne Terrestrial Applications Sensor (ATLAS).  AVIRIS is 

operated by the National Aeronautics and Space Administration (NASA) Jet Propulsion 

Laboratory with the purpose of collecting data that can be used in characterizing the Earth's 

surface and atmosphere. The sensor acquires imagery at an altitude of 20 km with an IFOV of 

20m with flights planned at regular times throughout the year and also on "on-demand" basis 

(Jensen, 2005; NASA-JPL, 2012; Howell and Green, 1987). The imagery can be obtained from 

the EROS data portal through the use of the earthexplorer utility. ATLAS is also designed and 

operated by NASA for purposes related to environmental, geographic information science, 

mineral exploration etc. The sensor provides various spatial resolutions in the range of 2 to 25 m 

depending on the flight altitude. ATLAS missions are flown on an "on-demand" basis (Sullivan 

et al., 2004; Quatrochi et al., 2000).  
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2.0.2 Satellite Image Acquisition 

Satellite image acquisition is accomplished with unmanned aerial vehicles or satellites that have 

either analog or digital frame cameras orbiting the earth at significantly higher altitudes and 

ground coverage than airborne acquisition systems. Perhaps the two most popular satellite image 

acquisition sensors are the Landsat Multispectral Scanner (MSS) and Landsat Thematic Mapper 

(TM) sensor systems (Jensen, 2005).  

The MSS was placed on Landsat 1 to 5 satellites. The sensor is an optical-mechanical system 

that scans the terrain perpendicular to the flight lines and focuses energy reflected or emitted 

energy from the terrain. MSS has five spectral bands (RGB and infrared) with an IFOV of 79 m 

X 79 m at nadir for bands 4 through 7 and 240 m X 240 m for band 8. Images are acquired at an 

altitude of 919 km with a swath width of 185 km. Each MSS scene contains 185 X 170 km 

ground coverage of the continuous swath of an orbit with a 10% overlap (Jensen, 2005).  

The TM sensor also operates an optical-mechanical whiskbroom sensor that collects 

multispectral data that has higher spatial and spectral resolution than the MSS. The ground 

projected IFOV is 30 X 30 m for bands 1 through 5 and band 7; band 6 however has a 120 X 120 

m ground projected IFOV with all images acquired at an altitude of 185 km. The spectral 

resolution of the sensor spans from 0.45 µm to 2.35 µm encompassing RGB and Infrared spectra 

(Jensen, 2005).  

The main difference between the two sensors aside from the above stated respective 

characteristics is the fact that the original bandwidth of the MSS was selected based on their 

utility for vegetation inventories and geologic studies. On the other hand, the TM bands were 

selected based on their value for water penetration, discrimination of vegetation types etc. There 

other satellite image acquisition sensors other the two described above which are mostly made 
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for specialized purposes. One such sensor is the Advanced Very High Resolution Radiometer 

(AVHRR). One very popular application of this sensor is the study or the mapping of vegetation 

condition over wide areas of the earth surface through the computation of the Normalized 

Difference Vegetation Index (NDVI) and the mapping of sea-surface temperature.  

Satellite and airborne image acquisition platforms have various respective advantages and 

disadvantages most of which depend to a large extent on the spectral and spatial resolutions of 

the respective sensor in a platform. Depending on the study objective, a critical analysis of the 

respective capabilities should be made in view of cost-benefits of each platform to determine the 

suitability and applicability.  

2.1 Land-Use Land-Cover Change 

Land-use is a term used to refer to the specific human or economic activity associated with a 

geographically defined piece of land (Lillesand, 2001). Therefore the land-use of a particular 

area could be said to be agricultural, transportation, commercial etc. The above shows that the 

land-use of a particular area is typically influenced by human activity but above all by the 

geographic location of the specific piece of land as well.  

Land-cover is used to describe the type of feature that is present on the surface of a specific 

geographically defined area such as region, watershed, state etc. The land-cover description of 

any area can therefore be done with terms such as corn, bare land, grass, concrete etc. Land-use 

land-cover forms one of the major components of studies in the earth sciences (Townsend et al, 

1994).    

Land-use land-cover (LULC) change however, is a continual and dynamic process that is a major 

driving force in environmental change (Lambin, et al., 2000). This change can be driven by 
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economic, cultural and political factors (Brown et al., 2000) and in most cases are known to have 

improved conditions relating to cultural and economic aspects of people. However, there are 

negative implications of this change which is mostly seen in the environment relating to weather 

patterns (Chase et al., 1999; Stohlgren et al., 1998),   changes in hydrologic regimes (Barr, 2008; 

Mejia, 1998), water quality and quantity (Tong and Chen, 2002; Faney et al., 2001; Aylward, 

2002).  

LULC change detection is there of critical importance in understanding the myriad of 

environmentally dependent factors in a region. Several methods of LULC change detection have 

been developed in literature. The major underlying principle is classification of multi-temporal 

remotely sensed data into land-use land-cover maps and subsequently performing statistical 

analyses of the relative change of the respective classes at the different acquisition times. The 

development of object-oriented image analysis methods has led to corresponding change 

detection methods such as presented by Das (2009). Niemeyer and Canty (2003) also detail 

pixel-based and object-based methodology for change analysis intended to take advantage of 

high-resolution imagery. Their approach involves the use of canonical correlation analysis in 

order to enhance the change information in the difference images and the use of bayesian 

techniques for the determination of significant thresholds. Changes that are determined to be 

significant are then analyzed explicitly with object-oriented techniques.  

Advances in LULC change detection analysis have implications on hydrologic model 

interpretation and an understanding of the modeled system as well. For example, Wegehenkehl 

et al. (2006) found that a change of ~ 69% (2.9% to 4.9%) in the developed land class resulted in 

a 70% increase in surface runoff predictions. This makes it imperative to perform critical 

analyses in LULC regarding environmental studies so as to ensure an understanding of the 
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linkages between local environmental changes (hydrologic, weather, water quality etc) and 

LULC change detection.  There are a number of studies in literature that deal with LULC change 

detection and others that explicitly tackle the relationship between LULC change and the 

attendant impact on hydrologic model simulation. In all, these studies either employ pixel-based 

or object-oriented classification techniques in their respective methodologies.  Singh(1989) 

presents a comprehensive review of literature, methods and the theoretical basis of some outlined 

change detection techniques. Of particular importance in land cover change detection is the 

concept of thresholding. This basically involves decisions as to where to place threshold 

boundaries in order to separate areas deemed to have changed from those of no change. For 

example if in an image I(x, y),  a light object (represent a change) is found in a dark background 

(an area of no change) then these objects may be expressed by the simple mathematical 

thresholding equation  

 (   )  {
   (   )   

    (   )   
  

where T is the threshold value that is determined by empirical or statistical means. (Singh, 1989). 

Nelson (1983) also presents a tabular presentation of a variety of change detection approaches 

and details other studies that have used the respective approaches.  A comparison of change 

detection techniques is also given in Maas (1999).  

The ability to more closely depict responses in hydrologic processes due to changes in land cover 

has been a key research goal in remote sensing and hydrology (Miller et al., 2007) and a number 

of studies have touched on land cover change and the impact on hydrologic model outputs 

(Norbert and Jeremiah, 2012; Koch et al., 2012; Scott et al., 1993). A key similarity in such 

studies is that a variation or alteration in land cover data ultimately leads to noticeable change in 
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runoff and in some cases sediment yield. For example Alibuyog et al. (2009) showed with a 

SWAT model simulation of a catchment in the Philippines that  land use change can impact the 

hydrology and sediment yield by between 3% to 14% and 200% to 273% respectively (Kock et 

al., 2012). Upward changes of 70% in runoff simulations have been reported in a study done in 

the Ucker Catchment,  in North-East Germany.  

2.2 Land-Use Land-Cover Mapping (Image Classification) 

To better understand the basic concept of image classification there is the need to have an idea of 

the concept of feature space. This is a concept that illustrates with graphical plots the values of 

pixels in specific bands that make up a remotely sensed image.  

Figure 1: Feature space illustration (Jensen, 2001) as depicted in Gao (2003) 
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The number of bands in the image is effectively termed the dimensionality of the image. The 

illustrations below show feature space plots for 2-dimensional and 3-dimensional images (Gao, 

2003). The underlying assumption in image classification is that a specific part of the feature 

space is representative of a specific class in the image data. Pixels are then compared to the 

identified classes in the feature space and a decision on pixel assignment is made based on a 

specific classification rule (Jensen, 2005).  

2.2.0 Pixel-Based Image Classification 

Pixel-based image classification refers to the classification of remote sensing data based on 

spectral properties of individual pixel that make up the image. It is sometimes referred to as 

“pixel by pixel” (Gao, 2003) manner of image classification in which a pixel can belong or be 

assigned to only one class. The two main criteria to be discussed under this method of image 

classification are the supervised and unsupervised classification methods.  

2.2.0.0 Supervised Classification 

In supervised classification the location and specific spectral characteristics of the land-cover 

classes of interest (urban, forest, agriculture, water etc) are known apriori (Jensen, 2005). This 

knowledge is acquired through and combination of field surveys and aerial image interpretation 

and personal experience (Hodgson et al., 2003). An analyst locates specific sites in the remotely 

sensed data that are representative of homogenous areas in the known land-cover types. These 

representative samples of class types are known as training sites (Jensen, 2001). The spectral 

characteristics of these known homogenous areas are used to train classifier for application in 

classifying the entire image. Also multivariate statistics such as means, standard deviations, 

covariance and correlation matrices are calculated for each training class or site. Pixels are 

evaluated with these training classes based on the respective statistics to determine the maximum 
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likelihood of that individual pixel belonging to that specific class. The importance of training 

classes in this regard requires that training samples of each class should be typical and 

encompass the spectral variability that class type (Mather, 1987). There is no known defined 

limit of pixels to be used in formulating a training class. However, in order to use statistically 

based classifiers, it is recommended that a theoretically lower limit of n + 1 (where n is the 

spectral bands) number of pixels must be used in a training class (Lillesand, 2001). 

Pixel-based image analysis classifiers are classically hard classifiers that assign pixels 

membership to a class as either 1 or 0. With 1 expressing a pixel’s membership to a class whiles 

0 denotes that an individual pixel bear no membership to a particular class hence the term “hard 

classifiers” as they express in binary (yes or no) terms whether a pixel is a member or not a 

member of a class. The maximum-likelihood decision rule (classifier) is one of the most widely 

used of such a supervised classifier (Wu and Shao, 2002). It is a classification rule that is based 

on probability: it assigns each individual pixel to a specific class whose units are most probable 

or likely to have given rise to the feature vector (Atkinson and Lewis, 2000). The method 

assumes that the statistics of the training data for each class in each class is normally distributed. 

Therefore training data of n-modes in the histogram is not ideal and such a case implies the 

existence of unique classes (Jensen, 2005).  

2.2.0.1 Unsupervised Classification   

This method of image classification also referred to as clustering, partitions remote sensing data 

into multispectral feature space and subsequently extracting land-cover data (Loveland et al., 

1999). Unlike supervised classification, this method only requires minimum input from the 

analyst; mainly because there is no requirement for training data. Therefore, the algorithm 

searches for natural groupings of the spectral characteristics of the pixels in a specific band as is 
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evident in the feature space. The process results in a classification map that consists of a number 

of spectral classes after which the analyst attempts an after the fact transformation of the spectral 

classes into class types (Jensen, 2001).  

Among the numerous classification algorithms that are used to determine the natural groupings 

in an image is the “K-means” method. The approach in this algorithm requires the analyst to 

specify the number of clusters or data centers representing the potential individual classes. The 

algorithm then locates these number of cluster points in the multidimensional feature space. This 

is followed by assigning each pixel to the cluster based on the closest distance between the mean 

vector of the cluster and the pixel. The mean vectors of the clusters are then revised and are then 

used as the base to reclassify the data (Gao, 2003).   

2.2.1 Object-Oriented Image Classification 

Unlike the “per-pixel” classification which is mainly based on processing an entire image on 

pixel by pixel basis (Blaschke and Strobl, 2001), the object-oriented image analysis procedure 

allows for the decomposition of the image into many homogeneous objects known as segments. 

These segments are created at varying scales in the image leading to what is termed multi-

resolution image segmentation (Baatz and Schape, 2000). Statistical characteristics of the 

defined objects are then used in traditional statistical or fuzzy logic classification algorithms. 

This method is often used on high-resolution imagery such as 1 m IKONOS or 0.6 m QuickBird 

Imagery.   

2.2.1.1 Image Segmentation 

Image segmentation is the process of aggregating pixels into homogenous image objects. 

Homogeneity in this sense is defined in terms of the spatial and spectral characteristics of the 
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discrete objects (Ryherd and Woodcock, 1996) and basically refers to the fact that within object 

variance is less than the variance between objects (Lalliberte et al., 2004).  This process is the 

first step in a method that attempts to replicate the way humans perceive objects in the real world 

(Lang, 2008). There are several methods of image segmentation which can broadly be 

categorized into region-growing, spatial clustering, edge-based, area-based algorithms etc 

(Haralick and Shapiro, 1985; Blaschke and Strobl, 2001). More recent developments have 

yielded the Fractal Net Evolution Approach (FNEA) (Baatz and Schape, 2000) which is a 

multifractal approach to segmentation that is implemented in the eCognition software.  

FNEA is a pair-wise clustering process that determines object areas of least spectral and spatial 

heterogeneity at a given scale, spectral and shape parameter set (Benz et al., 2004). Images are 

thus segmented at different scales which add a scale hierarchy to the analysis (Burnett and 

Blaschke, 2003). This multiscale approach determines the size of the image object which is also 

dependent on the inherent resolution of the image. With the scale parameter increase, so does the 

object size (Platt and Rapoza, 2008); therefore a specific scale level produces objects of specific 

sizes hence the term multiresolution segmentation. The process of segmentation stops when the 

smallest object exceeds the threshold that is set by the scale parameter (Lalliberte et al., 2004). 

Multiresolution segmentation as implemented in ecognition software is governed by the concept 

of minimizing the spectral heterogeneity between pixels making up an image object - thus 

minimizing within object spectral heterogeneity.  Taking the size of objects into consideration 

the following simple equation that can be used to optimize the criterion of minimizing the 

spectral heterogeneity (Baatz and Schape, 2000)  

hdiff = n1(hm - h1) + n2(hm - h2) 
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where hdiff  is the difference in spectral heterogeneity, hm is the spectral heterogeneity of the 

merged object, h1 and h2 are the spectral heterogeneities of the objects 1 and 2 to be merged with 

sizes n1 and n2 respectively.  

The object-oriented image classification paradigm embedded in eCognition software employs 

nearest neighbor in addition to expert knowledge to assign objects to respective class types. The 

nearest neighbor classifier computes the Euclidean distance from the object to be classified to the 

nearest training data mean vector in feature space (as is applied in per-pixel method). 

Classification is subsequently done by assigning each object to the class that is closest to it in 

feature space (Schowengerdt, 1997).  

Another classification method used in object-oriented image analysis is the fuzzy classification 

based on fuzzy logic theory. This is achieved through the use of membership functions. A 

membership function has output ranges from 0 to 1 for each object’s feature values in relation to 

the object’s assigned class (Lalliberte et al., 2004). The fuzzy rules allows for the definition of 

such criteria such as “all image objects with spectral values larger than x are natural gas well-

pads”. 

2.3 Land-Use Land-Cover Map Accuracy Assessment 

Land-use land-cover map accuracy assessment is necessary in order to provide a measure of 

certitude associated with the classified land-cover map. Perhaps the most important aspect of 

accuracy assessment is to clearly state the objective of the accuracy assessment in respect of the  

problem at hand, the classes of interest and method of data sampling (Jensen, 2005).  In this 

research the object of accuracy assessment is to provide a degree of confidence that can be 

associated with the final classes in the produced land-cover map. There are many sources of error 

when it comes to the accuracy of the final thematic map. The most widely used method of 
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thematic map accuracy assessment; the error matrix is plagued with several sources of error. 

Congalton and Green (1993) detail these errors and explain how they affect the implications of 

the error or the accuracy assessment. In order to assess the accuracy of remotely sensed data or 

for that matter classified remotely sensed data, it is essential to evaluate both positional and 

thematic accuracy (Congalton, 2005).  

2.3.0 Positional Accuracy 

The most common measure of map accuracy is the measure of how closely the images represent 

the existing features on the ground. This is known as the positional accuracy (Congalton, 2005). 

The most important factor that affects positional accuracy is topography. The effect of 

topography on positional accuracy can be seen in figure 2.  

 
Figure 2: Illustration of terrain elevation differences on scale effects in aerial image 

acquisition 

Sequence B       Sequence A 
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To achieve positional accuracy it is imperative that the same exact location can be determined 

both on the image and on the ground and that scale effects are minimal. However as illustrated in 

figure 2, the relative scale in the images are at positions A and B are compromised due to terrain 

elevation effects. To better understand this one needs to understand the concept of scale as 

applied to aerial images. By using similar triangles 

∆abC ≈ ∆ABC since   ̅̅ ̅ :    ̅̅ ̅̅ ̅Image distance is proportional to object (ground) distance 

Again f: H (focal length of camera is proportional to height above datum) 

Therefore, 

 

   
  
   

  
  
 

 
  

 Where S = scale of image  

From the above it can be seen that the height or elevation, h, above the datum is the controlling 

factor in the scale for a given focal length at a specific pixel in an image. Therefore in figure 2, 

the pixel for image position A in sequence A will have a much different scale than the same pixel 

for image position A in sequence B. This phenomenon will invariably affect the positional 

accuracy of the acquired image as well.  

Positional accuracy holds an important aspect of thematic map accuracy assessment. For 

example if a position is registered to the ground to within half a pixel size, using GPS in locating 

such a place on the ground to 15 m for instance, then using a single pixel as a sampling unit 

becomes impossible for assessing the thematic accuracy of such a map (Congalton, 2005). In this 

situation the GPS location must be located with a high degree of accuracy so as to prevent 

significant problems with regards to positional accuracy. Positional accuracy is measured in root 

mean square error (RMSE) computed as the sum of the squares of the differences between point 
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positions in one image layer in comparison to the point positions in another image layer (usually 

the ground) with the same data that has been used to register the images layers (Congalton, 

2005).  

2.3.1 The Error Matrix  

Another measure of the accuracy of classified maps obtained from remotely sensed data is the 

thematic accuracy. This refers to the accuracy of a classified or mapped land-cover map obtained 

at a particular time in relation to the prevailing conditions on the ground at the time of 

classification (Congalton, 2005). This definition brings to the bear the fact that knowledge of the 

accuracy associated with a reference or ground-truth data is vital and that the reference data 

should in the least of cases have higher accuracy in order to ensure a fair accuracy assessment 

(Congalton, 1991).  

 The most common measures of accuracy assessment in classified remotely sensed imagery are 

the producer, user and overall accuracy (Story and Congalton, 1986); all based on the error or 

confusion matrix. The error matrix consists of a square array of numbers set out in rows and 

columns to express the number of pixels assigned to a particular classification category in 

relation to the actual category as determined using ground-truth (Congalton, 1991). The error 

matrix essentially provides a systematic way to compare pixels in the classified map and ground-

truth data. The relationship between the two sets of data is expressed or summarized in the error 

matrix (Jensen, 2005). Table 1 is an error matrix used to illustrate the producer, user and overall 

accuracy measures. The columns represent the ground-truth data as the rows of the matrix 

correspond to the classified pixels. The diagonal of the matrix represents the number of pixels in 

each category that is deemed to be accurately classified as the off-diagonals represents the errors 
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in each classification class with respect to the ground-truth data (thus assuming the ground-truth 

data is error-free).  

Table 1: Example of an error matrix (for demonstration purpose): modified from 

Congalton (1991) 

Classified Reference Data     

 Forest Corn Bare Soil Well pad Row Total 

Forest 96 4 15 21 136 

Corn 3 89 5 10 107 

Bare Soil 2 5 92 43 142 

Well pad 21 7 34 97 159 

Column Total 122 105 146 171 544 

 

Overall Accuracy = 374/544 = 68.75%  

Producer’s Accuracy (probability of a reference pixel being correctly classified) 

Forrest: 96/122= 78.69% Corn: 89/105= 84.76% Bare Soil: 92/146= 63.01% Well pad: 

97/171=56.73% 

User’s Accuracy (probability of a classified pixel representing the category on the ground) 

Forrest: 96/136= 70.59% Corn: 89/107= 83.18% Bare Soil: 92/142= 64.48% Well pad: 

97/159=61.01% 

2.3.2 Land-Use Land-Cover Change Detection 

Change detection is a remote sensing procedure that is intended to find alterations or changes in 

objects or phenomena of interest from images acquired at separate times (t1, t2, t3,….tn) 

(Niemeyer, 2003). Traditionally this has been achieved by comparing pixels from multitemporal 

images for time t1 and t2 and subsequently performing some sort of statistical analyses on 

difference data to determine a descriptive statistic with which to report change. Change detection 

algorithms mainly fall under;  
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 Write function memory insertion: This method involves the insertion of each individual 

band or any derivative of it acquired at different times, into each of the three write 

function memory (WFM) banks (red, green or blue) to identify changes in the scene 

(Jensen, 2005).  

  Multi-date composite imagery: this mostly involves the subjection of the images to 

principal component analysis (PCA) to determine change (Fung and LeDrew, 1987; 

Maas, 1999).  

  Band differencing: This in its simplest form can be explained as subtracting the 

brightness values of one image acquired at a specific time from the brightness values of 

another image acquired at a different time of the same scene. The normalized difference 

vegetation index method is perhaps one of the popular examples of this change detection 

method. 

 Post-classification comparison: This involves performing a comparison on a pixel-by-

pixel basis through the use of a change detection matrix obtained from a rectified and 

subsequently classified imagery data of the same scene at separate time periods (Yuan 

and Elvidge, 1998; Civco et al., 2002; Jensen et al., 1995). 

There are a number of studies that have been done on change detection using the object-oriented 

approach as well (Tanathong et al., 2009; Lefebvre et al., 2008; Yuan and Elvidge, 1998; Chen et 

al., 2012). Tanathong et al., (2009) used the object-oriented approach to for post-disaster 

building assessment. Their approach mainly relies on knowledge based intelligent agents 

(Tenuci, 1998) for the recognition of buildings pre and post disaster. The process creates 

building objects (Jacobson, 1998) corresponding to the individual buildings in the image. The 

building objects not only contain properties of the building but also the computational process 
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that are used as decision rules for common properties of the buildings. The detection of change is 

achieved by interacting the individual building objects with each other to obtain matched-up 

pairs of pre and post disaster objects. Differences in the matched up pairs constitute the change 

in the scene.   To more specifically address the issue of the choice of the above-named methods 

and algorithms for a particular task, it is essential to understand the rudimentary steps and scope 

of application. It is also important to note that each of the algorithms is optimized for a particular 

phenomenon of interest. Hence it becomes important to relate the choice of a specific algorithm 

to the dominant change theme or class in a change detection analysis of a scene or area. For 

example in this research land-use land-cover change of interest are particular related to urban, 

agricultural, forest and industrial (shale-gas related industrial change).  

2.4 Data Bridging: Hydrologic Models and Remote Sensing Data Resolution 

Integration of remote sensing data in hydrologic modeling has received some research attention. 

Notable among these are Gupta et al. (2011), Andersen (2008), Blankenship and Crosson (2012) 

and Schultz (1988). In this research what is of particular attention is the land-use land-cover 

(LULC) data of varying resolutions obtained from two fundamentally different methods of 

production. The role of LULC data is more prominent in distributed hydrologic models where 

the concept of hydrologic response unit (HRU) is a key driving factor in model set-up and 

parameterization. The HRU concept basically allows for the conceptualization of models in order 

to take account of the distribution of the physical characteristics of the watershed without having 

to resort to fully represent and perform model calculations at each individual discretization of the 

physical state of the watershed (Beven, 2005).  

HRU discretization is highly aided by the introduction of geographic information science (GIS) 

in hydrological modeling. This is achieved through overlaying different hydrologic descriptive 
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indicators such as soil, land-use data and slope classes which have been properly spatially 

registered to the geographic region of interest. The definition of HRU in this way ultimately 

leads to irregular patterns as overlays are performed with vector and raster data layers. For 

calculation purposes, this concept has a significant advantage in that similar HRUs are grouped 

together into single units thereby simplifying calculations and reducing computing resource 

requirement. The crux of the concept is that sections of the catchment with similar characteristics 

will have similar responses and it is based on this that the predictions of the distribution of 

individual catchment responses are made (Beven, 2005).   

The level of detail that a remotely sensed image is able to capture within an area is a measure of 

the resolution of the image. Therefore, in distributed or semi-distributed hydrologic models such 

as the Soil and Water Assessment Tool (SWAT), where model results have been shown to be 

dependent on the resolution of such data such as soils (Geza and McRay, 2008; Mukundan et al., 

2010; Kumar and Merwade, 2009 ), DEM (Chaubey et al., 2005),   land-cover data (Chen et al., 

2005; Bosch et al., 2004), it becomes important to investigate the effect that methods of LULC 

data classification applied with the high resolution imagery in obtaining high resolution land-

cover map. This is particularly important as computations in distributed surface hydrologic 

models such as SWAT depend to a large extent on the input land-cover data (Kepner  et al., 

2013; Arnold et al., 1998).  
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2.5 The Soil and Water Assessment Tool (SWAT) 

The Soil and Water Assessment Tool (SWAT) is a continuous-time physical process-based 

model for the simulation of landscape processes at the watershed scale (Neitsch et al., 2005; 

Arnold et al., 1998). As described in the preceding section, the watershed is divided into discrete 

regions known as hydrologic response units (HRUs) based on the soil types, slope and land-use 

land-cover classes thus allowing for spatial detail in the simulation (Betrie et al., 2011). The 

major components of the model are hydrology, soil temperature, weather, soil erosion, crop 

growth, agricultural management etc.  

Hydrologic prediction is done at the HRU level using the water balance equation (Arnold et al., 

1998): 

            ∑(                       )

 

   

 

Where: 

Rday (mm) = rainfall on day i  

      (mm) = amount of surface runoff on day i          

Ea (mm) = amount of evapotranspiration on day i   

wseep = amount of water that enters the vadose zone on day i  

Qgw = the amount of return flow on day i  

Surface runoff can be computed with a choice between the Green and Ampt infiltration method 

(Green and Ampt, 1911) or the Natural Resource Conservation Service Curve Number (CN) 

method (USDA-SCS, 1972; Betrie et al., 2011). Flow is calculated at the various HRUs and 
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routed to the nearest channel (Arnold et al., 1995) using either the variable storage coefficient 

method (Williams, 1969) or the Muskingum method (Chow, 1959).  

2.6 The Concept of Equifinality 

An important aspect of hydrologic modeling or any modeling exercise is the need to address the 

problem of model parameter calibration. Most calibrations involve the optimization of some 

parameter values through the comparison of simulated values with observed data until some 

“best-fit” parameter set satisfying an evaluation criterion or criteria are achieved (Beven, 2005; 

Chaubey and White, 2005; James and Burgess, 1982).  

This method of calibration by optimizing parameter values assumes that observed data are error-

free and the model at the end of a calibration exercise is a true representation of the system or 

data. However, in hydrologic modeling there can be significant errors in both observed data and 

model conceptualization (Beven, 2005). While one optimum parameter set may satisfy an 

objective function with a given threshold criterion, there may also be several other optimum 

parameter sets that may well present acceptable model simulations. This brings into focus the 

concept of equifinality that basically points out that the choice of one calibration optimum 

parameter set over another is at best described as arbitrary. Hence equifinality explains the 

concept that for a specific hydrologic model simulation there may be several optimum parameter 

sets that could produce acceptable fits to the observation data (Beven and Binley, 1992; Beven 

and Binley, 2001).   
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2.7 Accounting for Equifinality: The GLUE Method 

 Accounting for the limitations in distributed hydrologic models in terms of the calibration and 

the issue of equifinality has led to the development of methods that are based on the realistic 

estimation of the prediction uncertainty (Beven, 1989a). To this end, Binley and Beven (1991) 

outlined a general strategy for model calibration and uncertainty estimation in such complex 

distributed hydrologic models. The Generalized Likelihood Uncertainty Estimation (GLUE) 

method assumes that before any quantitative or qualitative information is added to any modeling 

exercise, any parameter set combination meant for the prediction of a specific model output 

should be deemed equally likely as a simulator of the system (Beven, 1989b). The glue method 

attempts to account for parameter non-uniqueness as there is no unique solution to a model 

outcome. The approach is to estimate degrees of belief that can be associated with models and 

parameter sets (Beven, 2005).  

The method is simple and easy to implement. The base of the technique relies on the estimation 

of probabilities associated with different parameter sets. A posterior probability function is 

derived from a chosen likelihood function (mostly the Nash-Sutcliffe Index) which subsequently 

becomes the measure used to derive the predictive probability of the output variables 

(Abbaspour, 2011). The choice of a likelihood measure is somewhat subjective and can partly 

depend on the observational data available. Beven (2005) details the criteria for selecting an 

appropriate likelihood measure.  

A GLUE analysis generally consists of the following steps: 

 Define a “generalized likelihood measure”, L(α) 
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 Sample (Monte Carlo or Latin Hypercube or any appropriate sampling strategy) a large 

number of parameter sets from a prior distribution 

 Define a threshold value for a “likelihood measure” 

 Assess parameter sets as either acceptable (behavioral) or unacceptable (non-behavioral) 

based on a comparison with the give threshold value for the likelihood measure 

 Assign weights to each behavioral parameter set using  

    
 (  )

∑  (  ) 
   

 

Where n is the number of acceptable parameters 

 The prediction uncertainty is then presented as a quantile from the cumulative 

distributions of all the weighted parameter sets. (Abbaspour, 2011; Beven, 2005) 

Implementing the method ultimately requires key decisions to be made regarding the choice of a 

sampling strategy, appropriate likelihood measure, feasible parameter range and behavioral 

model threshold. Details regarding these are further discussed in Beven (2005).  

2.8 Prior Applications of SWAT in Best Management Practice (BMP) Implementation  

The SWAT model has been used in several studies to evaluate the Best Management Practices 

(BMPs). These studies encompass areas such as nutrient loading of water bodies, application of 

agricultural chemicals (YunSheng et al., 2005), fate and transport of chemicals and sediments 

(Zhang and Minghua, 2011), sediment control (Betrie et al., 2011), storm-water control etc. The 

model was used to evaluate the effectiveness of five BMPs scenarios in reducing nutrient loading 

in a watershed located in the Inland Bays in southern Delaware (Sood and Ritter, 2010). It has 

also been used in predicting non-point source pollution nitrates nitrogen and total phosphorous 
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loading through evaluation and assessment of large number of scenarios in a watershed in Greece 

(Panagopoulos et al., 2012).  

The model has also been adopted by the United States Environmental Protection Agency’s 

(USEPA) Better Science Integrating Point and Non-Point Sources (BASINS) software package 

for analyses pertaining to development of Total Daily Maximum Load (TMDL) guidelines for 

various water bodies in the United States. A review presented by Kalin and Hantush (2003) 

regarding key features of hydrologic models widely cited for the ability of the models to 

represent BMPs indicated that the SWAT model offers the largest number of management 

alternatives.  

Perhaps a short fall to the use in management representation is that it offers no numerical 

guidelines for the representation of management scenarios. The lack of numeral representation of 

practice performance has been addressed as a vital research need in Nietch et al., (2005) and 

Arabi et al., (2007).  
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CHAPTER 3: OBJECTIVE ONE 

ABSTRACT 

The aim of this study is to evaluate the respective impacts of high-resolution land-use land-cover 

(LULC) data classified with the Object-Oriented Image Analysis (OOIA) method and a 

relatively lower-resolution LULC data classified with the maximum-likelihood method on 

stream-flow predictive reliability of the Soil and Water Assessment Tool (SWAT) model.  In 

essence, the objective was to investigate how the model performs with methods of LULC data 

classification and LULC data type resolution.  The predictive reliability of the model as used in 

this study is primarily evaluated with two descriptive statistic measures; the p-factor and the r-

factor. The p-factor is used to quantify the percentage of the observed data that a calibrated 

model is able to capture whiles the r-factor quantifies the level of uncertainty associated with the 

calibrated model. Statistically, the r-factor measures the thickness of the uncertainty band around 

the best possible model simulation divided by the standard deviation of the observation values. 

The hypothesis was that a combination of GIS-based hydrologic modeling and the promise of 

LULC data obtained from object-oriented image classification method significantly improve 

SWAT flow predictive reliability. Two SWAT models were set-up and calibrated at a gaging 

station located within the study area. The study area is the Little Red River Watershed (LRRW) 

with an approximate area of close to 4700km
2
 located in the north-central portion of Arkansas 

within the Fayetteville Shale Play. After manual and auto-calibration, results showed that the 

high-resolution data classified with object-oriented image analysis method does not present any 

significant advantage in terms of predictive reliability.  

Keywords: SWAT modeling, land-use land-cover, remote sensing, high and low-resolution. 
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3.0 Introduction 

The object-oriented image analysis method (Baatz et al., 2001) is a method of land-use land-

cover (LULC) classification that was developed to optimize classification accuracy by utilizing 

the inherent spectral characteristics and image resolution of remotely sensed images. This 

method has been shown to yield better results in studies regarding LULC change analyses (Gao, 

2003; Rutherford and Platt 2008). The resultant classified image can be ultimately used in 

investigations concerned with the corresponding environmental impacts such as changes on the 

hydrologic balance of watersheds.  

The change to the hydrologic balance can be assessed using hydrologic modeling methods 

(Conly and van der Kamp, 2001; Peterson et al., 2000; Zhang et al., 1999). Also, results of 

hydrologic models such as the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) 

have been shown to be affected by the input LULC data (Bosch et al., 2004; Huang et al., 2013).  

However, there is a lack of assessment of the resolution and methods of LULC data classification 

on SWAT model simulations particularly in a shale-gas impacted watershed. The objective of 

this study is to evaluate the impact of LULC data method of classification performed on imagery 

of different spatial resolutions on the predictive reliability of SWAT flow models. Specifically, 

this study aims to show the difference (if any) in the predictive reliability of SWAT flow models 

simulated with high resolution LULC data that is classified with the object-oriented image 

analysis method and low-resolution LULC data classified with the maximum-likelihood method 

in a shale-gas impacted watershed.  
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3.1 Background and Significance 

Generally, research on the effect of high-resolution LULC input data on various SWAT outputs 

seem to show that, high-resolution data do not necessarily result in better SWAT stream-flow 

simulations (Chen et al., 2005).  This result may arise in part from the fact that traditional pixel-

based image classification methods designed for low-resolution images are not well-suited to 

deal with the spectral variance inherent in higher resolution images. More modern computer-

vision based classification methods have shown great potential and one, object-oriented image 

analysis (OOIA) method, has been used extensively in small and large scale studies (Laliberte et 

al., 2004; Rutherford and Platt, 2008). 

This method is based on a hierarchical, multi-scale segmentation and subsequent classification 

using shape, texture and spectral properties of the segmented image. OOIA is particularly 

optimized for high-resolution data with particular emphasis on spatial and spectral homogeneity 

of the underlying data. Although the differential effect of high or low-resolution LULC data on 

SWAT outputs has been studied (Bosch et al., 2004), we are currently not aware of any study 

that deals with the impact of the respective classification methods and how the accuracy with 

which the respective methods of classification can be used to correctly extract land use related to 

local LULC changes such as shale-gas-related infrastructure (Myint et al., 2011) affect the 

reliability of model outputs.  

Several studies have reported that combined with high-resolution data, OOIA produces LULC 

data of significantly better classification accuracy than traditional pixel-based maximum-

likelihood (PBML) methods (Devi and Krishna, 2012;  Pham et al., 2009; Yan, 2003). 

Furthermore, it is also known that the relative increase or decrease in a particular land-use class 

can have significant impacts on distributed hydrologic model results. For instance Wegehenkel et 
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al. (2006) found that a two percentage increase (2.9% to 4.9%) in the developed land class of a 

watershed resulted in 70% increase in the surface runoff predictions in their study. This implies, 

in particular reference to this study that, it is important to consider the spatial resolution, 

accuracy and the method of classification of LULC data in evaluating the model’s predictive 

reliability based on LULC datasets obtained from high and low-resolution imagery and classified 

with different methods (in this case the object-oriented and pixel-based methods respectively).  

In considering major economic activities that drive LULC changes in this study, general 

agriculture and urbanization activities have in addition to the increase in shale-gas related 

activities resulted in significant LULC change in the general area of the Fayetteville Shale Play 

(FSP) located in north-central Arkansas. Such LULC change has also been shown to have 

negative impacts on stream water quality (Tang et al., 2005; Zampella et al., 2007) and water 

quantity (Bronstert et al., 2002; White and Greer, 2006).  

Albeit there have been rapid changes in LULC mostly related to urban, residential, commercial 

and agricultural activities, higher projected economic growth rate for the counties with oil and 

gas operations (Deck and Riiman, 2012) can lead to land-cover changes that will be exacerbated 

as well. Land-cover change in forested watersheds mostly leads to the exposure of the land; this 

is known to have negative impacts such as decreased water quality, increase runoff velocity and 

volume, reduced groundwater recharge, greater peak flows, increased flood frequency etc. 

(Scanlon et al., 2005; Carlson and Arthur, 2000; Pitman and Narisma, 2004). The increase in 

shale-gas related activities requires that studies be done on the respective shale-plays to 

determine an adequate balance between the need for the energy resource whilst sustaining 

minimal change to the watershed’s hydrology. This requires the development of accurate 

hydrologic models to study the impacts of several LULC change scenarios on stream flow. To 
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achieve this there is the need to investigate the applicability of methods, input data and the 

hydrologic models to be used in such settings. 

3.2 Study Area Description 

Located in north-central Arkansas, the Little Red River watershed (LRRW) is one of the biggest 

watersheds which see significant activities from shale-gas operators in the Fayetteville Shale 

Play. The watershed is completely located within the Fayetteville Shale play and is 

approximately 4668km
2
 in area with roughly 70% of this area being classified as mixed forest 

land (CAST, 2006). The area has an average annual precipitation range of 1270 – 1320 mm with 

winter and summer average temperatures of 2
o
C and 30

o
C respectively.  Mean annual high and 

low temperatures are 5
o
C and 17

o
C respectively (NOAA, 2012). Precipitation normally occurs 

less frequently during the months of June, July and August; summers are hot and humid while 

winters are relatively mild and short. A 2006 LULC analysis revealed that the watershed is 

approximately 70% forest land, 16% pasture, 2% cropland, 3.69% Urbanized, 3.33% water and 

5% herbaceous (CAST, 2006). There are three main population centers within the watershed; 

namely Searcy, Heber Springs and Clinton with population density of 44 persons per square mile 

(CAST, 2006); averaged for the combined area of the three counties encompassing the centers. 

The watershed lies within the physiographic regions of Mississippi Alluvial Valley, Arkansas 

River Valley and Ozark Plateaus, with an elevation range of roughly 52 to 630 m respectively.  

The Ozark Plateau Region is made up of steep valleys; it is further divided into three broad 

plateau surfaces (Springfield Plateau, Salem Plateau and Boston Mountains) mainly based on 

elevation and age of surface rock. The Arkansas Valley is a low-lying region surrounding the 

valley of the Arkansas River and the Mississippi Alluvial Valley which is relatively level plain 
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land (Arkansas Geological Survey, 2012). The main river in the watershed is the Little Red River 

which flows in a mainly south-east direction. 
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Figure 1: Soils and elevation characteristics of the study area: Little Red River Watershed (LRRW)
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3.3 Methodology 

To determine the impact of high and low-resolution LULC data and their respective methods of 

classification on SWAT flow model predictive reliability in a shale-gas watershed, we used a 

combination of Geographic Information Science (GIS), digital image analysis and hydrologic 

modeling.  

3.3.1 Image Classification 

Two main datasets were used as the input LULC data for the LRRW flow models. A low-

resolution (28.5m) data produced by the University of Arkansas Center for Advanced Spatial 

Technologies (CAST) through maximum-likelihood classification from a 2006 Landsat 5 

thematic mapper UTM orthorectified imagery and a high-resolution (4 m) LULC data classified 

with object-oriented image analysis acquired from a 2006 National Agricultural Imagery 

Program (NAIP) orthorectified aerial imagery. This pixel-based maximum-likelihood method 

essentially identifies the class of each pixel by comparing the value of individual pixels with 

sampled training classes and assigns the pixel to a specific class based on a set algorithm 

(Lillesand et al., 2004). The map which was created from the Landsat 5 TM data depicts the land 

cover of the study area and was considered to represent current conditions. The classification 

was obtained from Landsat 5 TM scenes of the watershed with the following classes; agriculture, 

urban, forest, crops, water and grasses. 

The high-resolution (4 m) LULC data was derived from the  National Agricultural Imagery 

Program (NAIP) aerial imagery of 1 m pixel size that was resampled to 4 m and classified with 

object-oriented image analysis method using Trimble eCognition Developer 8 (Trimble, 2012). 

Object-oriented image analysis incorporates a multi-scale segmentation approach that groups 
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pixels into homogenous image objects based on defined shape, texture, spatial and spectral 

characteristics of the pixels (Baatz et al., 2001). This approach results in discrete regions that are 

spectrally and spatially homogenous and allows for the identification of object features at 

specific scales of segmentation. Homogeneity in this regard refers to the fact that the spectral 

variance within an object is less than the spectral variance between objects (Laliberte et al., 

2004). A segmentation procedure known as multi-resolution segmentation based on defined scale 

parameters was used. The scale of a particular segmentation process determines the size of 

objects created at that scale. Through a trial and error method, we determined appropriate 

parameter values for scale, compactness and smoothness for four main levels of segmentation; 

350, 150, 35 and 5 (depending primarily on scale).   

The objective of the classification at level 350 of the object hierarchy was to determine the 

largest size of objects in the imagery that represent the aggregated homogenous pixels. The 

subsequent levels of segmentation were determined to break down the super objects at the 

previous scale in order to attain objects of interest belonging to specific classes of interest for 

accurate classification. In general, classifications of segmented objects into their respective 

classes were done by an assignment classification based on the mean spectral properties of the 

various image channels, specific homogeneity criteria and thematic data attribute values. Other 

classification rules were determined by using either the nearest-neighbor or membership function 

classifier based on fuzzy-logic and supplemented with user supplied knowledge. For example, 

the classification of urban area and road networks were aided with a thematic layer containing 

urban areas and road networks within the area of classification. The land-use classes were 

broadly categorized to include all the classes as used in the low-resolution data; which are 

agriculture, barren, forest, roads, transitional, urban and water.  



 
 

54 

 

The most common measures of accuracy assessment in classified remotely sensed imagery are 

the producer, user and overall accuracy (Story and Congalton, 1986); all based on the error or 

confusion matrix. The error matrix is simply a square array of numbers set out in rows and 

columns to express the number of pixels assigned to a particular classification category in 

relation to the actual category as seen on the ground (Congalton, 1991).  A maximum of 30 

sample objects were selected for each classification category for the creation of test and training 

area (TTA) mask. The TTA mask (which essentially represents ground reference data) was used 

to generate an error matrix for accuracy assessment in eCognition software.  

3.3.2 SWAT Model Description  

SWAT is a physically based and continuous time semi-distributed parameter model that is 

developed to simulate the effects of land management practices on water, sediment, and 

agricultural chemicals in large and complex watersheds over long periods of time (Arnold et al., 

1998). The version of the model that was used for this study is SWAT2009; an ArcGIS extension 

(ArcSWAT) that provides a graphical user interface for SWAT was used as a means of coupling 

the modeling framework within a GIS. Albeit newer versions of SWAT were available, we used 

this version due to GIS software compatibility issues and also the fact that the newer versions did 

not include significant changes in flow simulation. The model requires input data in DEM, land 

use data, soils and slope classes for the delineation of Hydrologic Response Units (HRUs). 

HRUs are created through an overlay of respective slope classes, soils and land-use data. 

Aggregations of overlays of the same slope class, land-use and soil type are grouped into the 

same HRU. Figure 2 illustrates the creation of HRUs in the ArcSWAT environment.  

The HRU is the basic computational unit of the model and helps to ensure efficient computation. 

SWAT simulates the hydrology at each HRU using the water balance equation, comprising 
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precipitation, runoff, evapotranspiration, percolation and base flow components. Runoff is 

computed with either the Soil Conservation Service Curve Number method (USDA-SCS, 1972) 

or the Green and Ampt infiltration method (Green and Ampt, 1911) and routed to the closest 

channel using the Muskingum method (Chow, 1959). 

3.3.3 SWAT model setup 

The models were was set-up in a GIS framework with the ArcSWAT extension of SWAT 

version 2009 is as shown in figure 4. The watershed was delineated based on an input 10 m 

digital elevation model (DEM). Soils data for all the counties in the study area were obtained 

from the Soils Survey Geographic database (SSURGO) of the Natural Resources Conservation 

Service (NRCS). The respective high and low-resolution LULC input data models were 

subsequently divided into hydrologic response units (HRUs) with specific threshold values based 

on soils, slope and land-use. These thresholds were obtained through a trial and error procedure 

to pick the optimum values for the data categories so as to ensure that significant areas of land-

use and soils are not excluded and insignificant areas are not included; thus reducing 

computational overhead and presenting the most likely accurate representation of the watershed 

in the model. To ensure that the land-cover classes were uniform in both datasets, the land-use 

refinement option in the HRU definition component was used to refine the land-use categories in 

both models. The overlay of soil, slope and land-use and subsequent HRU definition operation 

resulted in the creation of a total of 735 and 367 HRUs for high and low-resolution LULC data 

models respectively. SWAT formatted observed daily rainfall and temperature data from 1950 to 

2010 were obtained from the United States Department of Agriculture’s Agricultural Research 

Service (USDA-ARS) climate database (USDA-ARS, 2012) for the weather stations shown 

(figure 3). Greers Ferry Lake, located in the mid-section of the watershed was simulated as a 
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reservoir with estimated monthly outflow derived from the reservoir daily outflow data. This 

data was obtained from the National Inventory of Dams database of the United States Army 

Corps of Engineers (NID-USACE, 2011).  

A third model was added purposely to further evaluate and place the analysis in a broader 

perspective in terms of the results of the above-described data and in respective of the methods 

of classification.  This model was set-up with LULC obtained from the 2006 National Land 

Cover Data (NLCD). The NLCD LULC is a 30 m Landsat 6 enhanced thematic mapper+ 

(ETM+) with classification based on unsupervised classification method (NLCD2006, 2011). 

The models were calibrated from 1997 to 2006 and validated from 2007 to 2009 with the data 

from January-1997 to December-1999 serving as the period for computation of model initial 

(warm-up period) parameters.  
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Figure 4: Workflow of modeling framework 
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Figure 5: General model Set-up parameter and features 
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Figure 6: Low and High-Resolution LULC data models after model set-up 
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3.3.4 Model Calibration 

The model was calibrated against observed data obtained from January 1997 to December 2009 

for the calibration station located near Dewey, AR with USGS station number 07076517 

(indicated on study area map with red triangle). For manual calibration, parameters identified 

from literature to be sensitive to flow were iteratively changed till the simulated output satisfied 

the best fit scenario as defined by the multi-criteria in Moriasi et al., (2007). According to 

Moriasi et al., (2007), model simulations for stream-flow are determined to be satisfactory if 

NSE > 0.5 and PBIAS = ± 25%. The stages and steps for the model calibration are as shown in 

figure 2. Total-flow is expressed in SWAT as a combination of surface-flow and subsurface-flow 

components. A base-flow filter program obtained from the SWAT model website was used to 

separate observed total stream-flow into surface and subsurface components for calibration 

purposes. This program uses an automated base-flow separation method using a digital filter 

which has been tested to be comparable to manual hydrograph separation methods with an 

efficiency of 74% (Arnold et al., 1995).  

Calibration was sequentially performed on surface-flow and base flow components. Parameters 

identified to be sensitive to surface-flow from literature search  were canopy maximum storage 

(CANMX), soil evaporation compensation factor (ESCO), curve number, threshold depth in the 

shallow aquifer required for return flow to occur (GWQMIN), soil available water content 

(AWC) etc, (White and Chaubey, 2005; Betrie et al., 2011). We further performed sensitivity 

analysis to verify the above literature identified flow sensitivity parameter as we could not locate 

any such study done in a shale-gas impacted watershed. Surface-flow calibration was 

subsequently followed by subsurface-flow calibration.  
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Auto-calibration was added to the modeling protocol after manual calibration. In models such as 

SWAT, no one set of parameter values can be considered as the optimum parameter set as there 

are several sets of parameter values that can provide an “acceptable” fit for the objective 

function. This problem is known as equifinality (Beven and Binley, 1992). To account for this 

problem, a method known as generalized likelihood uncertainty estimation (GLUE) (Beven and 

Binley, 1992) is applied.  

GLUE is coupled with SWAT in a software of uncertainty estimation programs known as 

SWAT-CUP (SWAT Calibration and Uncertainty Programs), (Abbaspour, 2011). The basic 

approach of the GLUE program is to estimate uncertainties associated with model predictions 

through the prior determination of respective probabilities associated with each individual 

parameter set which are all part of a large collection of parameter sets. The exact algorithm as 

implemented in the coupling of GLUE with SWAT can be found in Abbaspour (2011). The 

Nash-Sutcliffe efficiency (NSE) criterion of model performance evaluation was selected as the 

objective function with a threshold value of 0.5 and a maximum number of 7000 GLUE 

simulations for both models respectively. 

3.4 Results  

3.4.1 Image Classification 

During the image classification stage, only object-oriented image analysis was performed as the 

low-resolution LULC data obtained from the University of Arkansas Center for Advanced 

Spatial Technologies (CAST) was classified with the pixel-based maximum-likelihood 

classification method.  The pixel-based method operates at the pixel level and does not involve 

the incorporation of any user supplied knowledge of the inherent spectral and spatial difference 

in the scene. The primary classifier uses the optimized feature space spectral variances. The 
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relative proportion of the total watershed area occupied by each class category as determined 

from each classification method is presented in table 2.   

Table 2: Percentage of the total watershed area occupied per class from both methods 

CLASS NAME PIXEL-BASED OBJECT-ORIENTED 

Agric 17.80 20.26 

Barren 0.07 0.002823 

Forest 75.17 70.45 

Water 3.31 4.32 

Urban 3.65 4.97 

 

3.4.2 Accuracy Assessment 

The low-resolution classified data had a reported overall classification accuracy of roughly 88%; 

however to derive the respective user’s and producer’s accuracy measures, the classified data 

was reassessed for accuracy with a minimum of 30 selected reference points per class in the 

original image and was subsequently used as ground-truth data to derive the error matrix 

(Gorham, 2013). Further information concerning accuracy assessment of the low-resolution data 

can be obtained from CAST (2007).  

For the object-oriented image analysis, we used the test and training area utility embedded in 

eCognition software with random sampling of a minimum of 30 training areas per class for 

accuracy assessment. Training areas were selected for each classification category and used as 

the ground reference data. Accuracy assessment was evaluated in terms of the user’s, producer’s 

and overall accuracies. The user’s and producer’s accuracies were above 70% for all classes 

except the agriculture class which had the lowest accuracy in both measures. The average user’s 

and producer’s accuracies were approximately 78% and 86% respectively. The overall 

classification accuracy was also approximately 86% as compared to 88% of the low-resolution 

data classification.  The respective error matrices are presented in Tables 3 and 4. 
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Table 3: Error matrix for accuracy assessment of object-oriented classification 

User \ Reference  Forest Urban Agriculture Transitional Water Barren Roads Sum 

Forest 6113 1 802 274 0 9 64 7263 

Urban 0 5236 0 350 0 3 277 5866 

Agriculture 299 774 3978 236 160 66 136 5649 

Transitional 255 0 9 2479 0 0 74 2817 

Water 0 0 2 0 9491 127 0 9620 

Barren 0 0 0 0 0 219 0 219 

Roads 52 154 806 78 0 57 3206 4353 

Sum 6719 6165 5597 3417 9651 481 3757 

 Accuracy 

Producer 0.910 0.849 0.711 0.725 0.983 0.455 0.853 

 User 0.842 0.893 0.704 0.880 0.987 1.000 0.737 

 Overall  0.858 

        KIA( ̅) 0.826        
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Table 4: Error matrix for accuracy assessment of maximum-likelihood classification 

User \ Reference  Agriculture Forest Urban Roads Transitional Barren Water Sum 

Agriculture 33903 0 8324 1766 3631 73 332 48029 

Forest 0 32957 719 0 1132 0 0 34808 

Urban 0 0 18797 0 0 0 356 19153 

Roads 0 0 797 155 0 0 0 952 

Transitional 0 4199 0 0 19285 0 736 24220 

Barren 0 0 0 0 0 128 0 128 

Water 0 0 0 0 1374 0 28541 29915 

Sum 33903 37156 28637 1921 25422 201 29965 151205 

Accuracy 

Producer 1.000 0.887 0.656 0.081 0.759 0.637 0.952 

 User 0.706 0.947 0.981 0.163 0.796 1.000 0.952 

 Overall Accuracy 0.885 

       KIA( ̅) 0.853 
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To determine if the values for the respective overall accuracies were significantly different 

(statistically significant), the Kappa index of agreement (KIA) and a pairwise Z-score test 

(Congalton and Green, 1999; Weih and Riggan, 2013) were calculated for both methods of 

classifications based on the following equations.  

 ̅  
     

    
 

   
|  ̅̅̅̅    ̅̅̅̅ |

√   (  ̅̅̅̅ )      (  ̅̅̅̅ )

 

Where Po and Pc are the respective overall and chance classification measures,    ̅̅̅ is the kappa 

index (with a and b subscripts designating the respective error matrix measures) and    (  ̅̅̅̅ ) 

   (  ̅̅̅̅ ) are the respective variances related to the two kappa indices. The KIA index measures 

the agreement between two observed and predicted values and is also used to determine whether 

the agreement is by chance; the index ranges from 0 to 1 with values closer to 0 indicating 

chance agreement (Congalton and Green, 1999). KIA values that are higher than 0.8 represent a 

strong agreement between the classified and the reference data while those between 0.4 and 0.8 

indicate moderate agreement (Congalton and Green, 1999; Congalton, 2005).  

For the low-resolution data classification, the derived KIA was 0.85 while that for the high-

resolution object oriented classification was 0.82. This indicates a slightly stronger agreement 

between the maximum-likelihood method classification and reference samples than the object-

oriented method and its corresponding reference data. Additional calculations were performed on 

variances relative to the kappa statistic using a method outlined in (Congalton and Green, 1999) 

and obtained values of 0.23 and 0.16 for the object-oriented and maximum-likelihood methods 
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respectively. This further showed that the maximum-likelihood classification yielded a slightly 

better agreement with the reference data.  

In comparing the two methods by their respective error matrices, the pairwise Z-value computed 

from the stated equation was 0.032 which is less than 1.96, taking a confidence level of 95% on 

the standardized normal distribution. This shows that there is no statistically significant 

difference (at the 95% confidence level) between the classification methods as applied in this 

study.  

3.4.3 Image Classification Discussion 

The feature space optimization algorithm of the maximum-likelihood method results in pixels 

that are spectrally more homogenous within a specific class than they are to other classes. 

Therefore the classification is based on pixels within a land-cover class that are spectrally similar 

in the feature space. However, this is not always true in complex environments (Burnett and 

Blaschke, 2003) like in our study area.  This is seen in the pixel-based method classified data in 

figure 7. It can be seen that spatial continuity of the classified classes is not as strong as that of 

the object-oriented classified image on the left. This is also attributable to the fact that no spatial 

relationship is used in the maximum-likelihood classification method. Another feature which is 

apparent from the pixel-based classified image is that the data appears to depict more isolated 

pixels are classes within the land surface. This effect known as the “salt and pepper effect” (Lang 

et al., 2006) arises from the fact that pixels are potentially classified differently but that they may 

actually belong to the same class. Thus as this method accounts for spectral autocorrelation, the 

lack of spatial knowledge in the classification algorithm potentially leads to wrongful 

classification. This is eliminated in the object-oriented classified image through segmentation.  
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Segmentation in the object-oriented classification uses spatial, textural, shape and spectral 

information to group pixels into object for subsequent classification. This increases the 

probability of a reference pixel being accurately classified (producer accuracy). The forest cover 

therefore had the highest producer’s accuracy (table 3) due in part to the fact that the watershed 

is predominantly forested and was well aggregated than the other classes based on the previously 

stated factors used in the segmentation. This also in part, explains the low producer’s accuracy 

obtained for the barren land class (table 3). Another reason for this low value for the barren class 

is that the barren land bears similar spectral, spatial and textural qualities to the urban class.  

However in this study the similar overall accuracy values obtained from both methods of 

classification represent a marked difference from studies such as Gao (2003) and Rutherford and 

Platt (2008) that reported significantly higher accuracies for the object-oriented method than the 

pixel-based method.  Generally, the object-oriented image classification method is known to 

offer higher overall classification accuracy. This departure from the general trend could be as a 

result of the lack of heterogeneity in the greater percentage of the study area. As mentioned the 

study area is predominated forested, therefore an approach such as the object-oriented method as 

used in this study with a ruleset which optimizes characteristic of the scene with a much higher 

precedence than the spectral signature may not prove significantly advantageous. 
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Object-Oriented/high-resolution classified image of study 

area 

Maximum-likelihood/low-resolution classified image of study 

area 

 

Raw image of part of study area 

Figure 7: Illustration of high and low-resolution LULC data as derived with both methods 
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3.4.4 Pre-Calibration Model Results  

As the separate models are set-up with LULC data of different spatial resolutions, the 

discretization of HRUs are consequently different and results in separate numbers for each model 

– ideally higher for high resolution data of all categories (soils, land-cover etc.). This has the 

potential to affect the objectivity of the comparisons to be made among the models (DiLuzio, 

2013). This effect was accounted for on the comparison by the use of the GLUE methodology 

(Beven and Binley, 1992) in the auto-calibration stage in order to minimize the effect of 

equifinality. Table 4 gives the results of pre-calibrated output from each model. 

Table 5: Pre-Calibration Results for Models with different LULC data 

Criteria 30 m Landsat 6 ETM+ 28.5 m Landsat 5  1 m NAIP 

Calibration Period 

NSE -2.06 -2.44 -2.40 

  R
2
 0.27 0.26 0.24 

   PBIAS -90.95 -100.42 -94.27 

 RSR 8.27 8.04 8.72 

RMSE 5.74 6.09 6.05 

Total Water Yield /mm 665.94 703.10 672.15 

    Validation Period 

NSE -0.85 -1.00 -0.97 

  R
2
 0.35 0.33 0.32 

PBIAS -59.63 -63.29 -59.57 

 RSR 1.02 1.06 1.03 

RMSE 73.95 76.80 76.26 

Total Water Yield /mm 119.66 117.67 115.20 

P-Factor*/% 36 37 32 

R-Factor* 0.14 0.14 0.17 

Number of HRUs 522.00 367.00 735.00 

*Determined through auto-calibration with GLUE 
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The addition of the 30 m Landsat 6 ETM+ model provides more information that ultimately 

gives further insight into model behavior regarding different HRU discretization and hence 

different number of calculation points.  

3.4.5 Manual Calibration and Validation Results for Low-Resolution LULC data Model 

The low-resolution LULC model was manually calibrated against monthly flow data from 2000 

to 2006 and subsequently validated from 2007 to 2009. Observed stream-flow data constituted 

the observed total water yield from the contributing sub-basins to the gaging (calibration) station 

location (figure 5). The proportion of total water yield contributed by subsurface-flow was 

estimated to be an average of 42% from the base-flow filter program. The remainder of the total 

water yield was the proportion contributed by stream-flow.  

The average monthly simulated and observed total stream-flow was 37.11 m
3
s

-1
 and 40.21 m

3
s

-1
 

respectively. The NSE computed for both the calibrated and validated models were 92% and 

97% with simulation biases (PBIAS) of +7.7% and +1.9% respectively; implying that the model 

is capable of accounting for 92% of the variance in the calibration period and 97% of the 

variance in the model for the validation period. The inclusion of ponds and other smaller 

reservoirs from data prepared by CAST had insignificant impact on the total stream-flow 

volume. 
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Figure 8: Calibrated monthly SWAT total flow model with low-resolution LULC data  

 
Figure 9: Validated monthly SWAT total flow model with low-resolution LULC data  
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3.4.6 Manual Calibration and Validation Results for High-Resolution LULC data Model 

Results for calibration and validation for the high-resolution LULC data model were similar to 

the low-resolution LULC data model. As in the low-resolution model, parameters identified to be 

sensitive to flow from literature search (Betrie et al., 2011; White and Chaubey, 2005) were 

iteratively changed between successive runs. Among these the most sensitive parameters to flow 

simulations identified through sensitivity analysis in our study are listed in table 6.  The average 

monthly simulated and observed total stream-flow was 36.81 m
3
s

-1
 and 40.01 m

3
s

-1
 respectively. 

The computed NSE for both the calibrated and validated models were 91% and 97% with 

simulation biases (PBIAS) of +10.78% and +3.23% respectively; implying that the model is 

capable of accounting for 91% of the variance in the calibration period and similarly for the 

validation period.  

 
Figure 10: Calibrated monthly SWAT total flow model with High-resolution LULC data  
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Figure 11: Validated monthly SWAT total flow model with high-resolution LULC data  

 

 

 

 

 

Table 6: Sensitive parameters and parameter ranges in decreasing order of sensitivity 
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*Parameter  Values Parameter Description 

 
Min Max **Average 

Chosen value  

 *** *** HR LR  

r_CN2.mgt        -0.2 0.2 78 83  Curve Number 

v_GW_DELAY.gw    1.0 30 20 10 Groundwater Delay Time/days 

r_SOL_BD.sol  -0.5 0.6 1.45 1.45 Soil Moist Bulk Density/gcm
-3

 

v_ALPHA_BNK.rte  0.0 1.0 0 0 Base Flow Alpha Factor for Bank Storage/days 

v_GW_REVAP.gw    0.0 0.2 0.09 0.05 Groundwater revap Coefficient 

v_ESCO.hru       0.8 1.0 0.2 0.9 Soil evaporation compensation factor 

v_GWQMN.gw       0.0 2.0 1 0 Shallow aquifer threshold depth /mm 

r_SOL_K.sol   -0.8 0.8 9.993 9.993 Saturated Hydraulic Conductivity/kmhr
-1

 

r_SOL_AWC.sol -0.2 0.4 0.11 0.11 Soil Available Water Capacity/mm/mm 

v_CH_K2.rte      5 15 5 5 Channel Hydraulic Conductivity/mmhr
-1

 

v_CH_N2.rte      0.0 0.3 0.014 0.014 Manning's n Value for main channel 

v_ALPHA_BF.gw    0.0 1.0 0.048 0.0112 Base Flow Alpha Factor/days 

v_SFTMP.bsn      -5.0 5.0 1 1 Snowfall Temperature/
0
C 

* r_means the existing parameter value is to be multiplied by (1+ given parameter value) 

v_means the existing parameter value is to be replaced by the given value 

**HR: Areally averaged high-resolution LULC data model, LR: low-resolution LULC data model 

***Minimum and maximum value ranges used during auto-calibration 
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3.4.7 Auto-calibration Results for Low-Resolution LULC data model 

The GLUE method was used in a coupled SWAT software system (SWAT-CUP) (Abbaspour, 

2011) to automatically calibrate the models with model parameters constrained to limits that 

depict the prevailing watershed. The GLUE method allows for the evaluation of the models 

based on the uncertainties associated with the sampled parameter sets.  

From 7000 simulations, 6997 of the simulations had NSE values of 50% or above (termed 

behavioral model runs). The NSE for the best simulation was 92% with RMSE of 8.3; 

determined from the validation period. The predictive reliability of the model was evaluated 

based on uncertainty quantifications as determined from two main parameters output from the 

GLUE analysis; the P-factor and R-factor. A larger P-factor indicates a good fit and ranges 

between 0 and 100% whiles R-factor ranges from 0 to ∞ with lower values depicting a good fit 

(Abbaspour, 2011).  

With the low-resolution model, auto-calibration resulted in P and R-factors of 37% and 14% 

respectively.  This essentially implies that 37% of the observed flow data can be accounted for 

by the model at the 95% prediction uncertainty level. We assumed that all the uncertainty in the 

model is attributable to the uncertainty in the observed data as other system uncertainties were 

deemed improbable to quantify with our knowledge of the watershed.   

P and R-factors results for the simulations run to validate the calibration model were 32% and 

18% respectively.  Figure 12 shows a graph of the calibration output with the best simulation and 

uncertainty band. 
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Figure 12: Auto-calibration output of low-resolution LULC model with best simulation and 95 percent prediction uncertainty 

band 
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3.4.8 Auto-calibration Results for High-Resolution LULC data model 

Similar to the low-resolution model simulations, 7000 auto-calibration runs were performed for 

the high-resolution data model; out of which 6997 (same as in the low-resolution) were 

behavioral. The calibration NSE for the best simulation was 92% with RMSE of 8.3 at P and R-

factors of 39% and 14% respectively. Therefore, the model is able to account for 39% (slight 

increase from 37% of the low-resolution LULC model) with the same uncertainty band of 14%.  

This implies that in spite of the higher number of HRUs which also implies a more detailed 

discretization of the model, the high-resolution LULC model could account for 39% of the 

measured discharge data; this represent a slight increase of 2% over the low-resolution data 

model. The model was further validated for same period as in the low-resolution LULC model; 

results of the validation showed obtained P and R-factors values of 0.32 and 0.17 respectively.  

Furthermore, among the 13 parameters that were optimized (listed in table 2), groundwater delay 

(GW_DELAY), evapotranspiration compensation factor (ESCO), soil bulk density (SOL_BD), 

curve number for antecedent moisture condition II (CN2),  soil available moisture content 

(SOL_AWC) and soil hydraulic conductivity (SOL_K) (in decreasing order of sensitivity) were 

determined to be most sensitive through sensitivity analysis performed in SWAT-CUP 

(Abbaspour, 2011).  
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Figure 13: Auto-calibration output of high-resolution LULC model with best simulation and 95 percent prediction uncertainty 

band 
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3.4.9 NLCD Land-Cover data Model Results  

This model was calibrated with LULC data of 30 m resolution, classified with unsupervised 

classified method (USGS, 2007) with DEM, soils data and slope specified in the same way as the 

previous models. Over all, 522 HRUs were discretized for this model compared to the 367 and 

735 for low and high LULC models. The results of the flow calibrations and validation were also 

determined similarly to the previous LULC data models; calibrated and validated against 

observed monthly stream-flow from 2000 to 2006 and 2007 to 2009 respectively.  

The simulated monthly stream-flow showed acceptable results for the calibration period with 

NSE, PBIAS, RSR, R
2
 and RMSE values 0.91, 10.84%, 0.24, 0.93 and 0.99 respectively 

according to multi-criteria outlined in Moriasi et al., (2007). For the validation period, the 

measured aggreement between observed and simulated flow values was indicated by NSE, 

PBIAS, RSR, R
2
 and RMSE values of 0.96, 3.24%, 0.19, 0.97and 10.2 respectively. By this, it is 

can be inferred that the model slightly under-predicts the system stream-flow response by 3.24% 

while showing a correlation of 97% of the simulated stream-flow to the observed stream-flow.  

Through auto-calibration using GLUE, the NLCD model was determined to capture 36% of the 

observation with r-factor of 0.14 at the 95% prediction uncertainty level, correlation coefficient 

of 92% and NSE of 0.92. Out of the 7000 simulations, 6997 were determined to provide 

acceptable results; the same number as the previous models.  
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Figure 14: SWAT monthly total flow model with NLCD LULC data (Manual Calibration) 
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3.4.10  Model Prediction Bias for high and low-flow Regimes 

In the watershed, water-yield is generally low in August (shown in figure 15). For the entire 

period of the simulation (2000 to 2009) in the NLCD LULC data model, the simulated flow 

represented a general over-prediction. August stream-flow was under-predicted for all the ten 

years of simulation. Similarly for high water-yield which normally occurs around the months of 

March, April and May, the model under and over-predicted the system stream-flow; in May-

2001, 2005 and2008, the model over-predicted the stream-flow by 17%, 25% and 2% 

respectively. The lowest under-prediction occurred in May-2003 (under-predicted by 37%). 

Generally the model under and over-predicted stream-flow in the high-flow season by an average 

value of 15% respectively.  

For the low and high-resolution LULC models, there was only a slight over-prediction of August 

low stream-flow of 2% and 7% respectively for two (2008 and 2009) out of the ten years of 

simulation in the case of the low-resolution LULC model. For the high-resolution LULC data 

model, low stream-flow for August was slightly over-predicted one out of the ten simulation 

years; by 3% for 2009. The average under-prediction was 7% for both low and high-resolution 

models respectively. Again to offer some more perspective on these two model results, the 

NLCD model generally over-predicted August stream-flow by an average value of 8%. Table 3 

shows the comparison of model results for the average simulation prediction bias for high and 

low stream-flow periods in the watershed.  
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Table 7: Model average percentage prediction bias for low and high-flow regimes 

Model High-Flow Regime Low-Flow Regime 

 

Under-

Predicted 

Over-

Predicted 

Under-

Predicted 

Over-

Predicted 

NLCD LULC Model 15.47 -15.37 8.14 None 

Low-Resolution LULC 

Model 10.62 -8.83 6.93 -3.36 

High-Resolution LULC 

Model 11.64 -6.74 7.12 -3.22 

*-ve values represent over-prediction and vice versa 

 

 

 
Figure 15: Average monthly basin water yield for the entire simulation period (2000-2009) 

 

In highly managed watersheds, primary controlling hydrological processes take a secondary role 

in dictating the hydrological responses of the entire watershed (Abbaspour, 2011). This is 

certainly the case in our study with regards to the calibration site. It does not take a keen 

observation to realize that the calibration and validation values of the two LULC dataset models 
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are near “perfect”. This is inferred to be contributed by the fact of the presence of the Greers 

Ferry Lake from which water is released at specific times of the day. The measured release rate 

we incorporated into the models in order to ensure an accurate calibration. This however, 

introduces the problem of a highly managed watershed as discussed in Abbaspour (2011) hence 

the in the above model calibrations, the primary controlling hydrological processes in the system 

take a secondary role in the model. In order words, our models as calibrated do not adequately 

reflect the other prevailing environmental processes that might affect the hydrology of the 

system if the Greers Ferry Lake had not been present in the system. To account for this short-

coming in the study, the models were calibrated against data from a gaging station located 

upstream of the Greers Ferry Lake. The results from the manual and automatic calibrations are 

presented in table 8.  

Table 8: Model calibration for high-resolution LULC model (Upstream gaging station) 

Calibration 

Criterion Criterion Value 

NSE 0.58 

  R
2
 0.6 

  BIAS -1.32 

 RSR 0.87 

Total Water Yield /mm 472.04 

Validation 

NSE 0.87 

R
2
 0.9 

PBIAS 13.96 

 RSR 0.48 

Total Water Yield /mm 363.6 

r-factor 0.33 

p-factor 0.27 
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Table 9: Model calibration for low-resolution LULC model (Upstream gaging station) 

Calibration 

Criterion Criterion Value 

NSE 0.6 

  R
2
 0.6 

  BIAS -2.31 

 RSR 0.83 

Total Water Yield /mm 469.25 

Validation 

NSE 0.88 

R
2
 0.9 

PBIAS 11.39 

 RSR 0.44 

Total Water Yield /mm 322.6 

r-factor 0.73 

p-factor 0.55 
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Figure 16: Hydrograph of low-resolution LULC model (a) and high-resolution LULC model (b) calibrated at the upstream 

gaging station 
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One key question of interest with regards to this study is as to how low-resolution imagery 

classified with object-oriented image classification method performs with the SWAT flow model 

calibration and subsequent predictive reliability. This question becomes particularly pertinent to 

the study in view of the fact that the object-oriented image classification technique is optimized 

for high resolution imagery hence most studies in literature are based on high resolution imagery. 

To account for this in the study, a 30 m Landsat imagery acquired in 2005 for the study area was 

classified with the object-oriented technique and supplied as input land use data to calibrate a 

SWAT flow model matching the exact same criteria as the two main data models in the study; 

this model is here-to-fore referred to as the Landsat model.  

It was observed during the calibration process that with the same criteria, the Landsat model was 

more difficult to calibrate manually. After several iterations, the best manual calibration yielded 

NSE of 0.41 with an approximate total stream flow over-prediction rate of 12%. The model was 

further subjected to the outlined auto-calibration method using GLUE as implemented in SWAT-

CUP software. Due to the effect of the incorporated reservoir outflow data masking out the 

primary hydrologic process, more credence in our results is given to the calibrated model in the 

upstream gage location. However, the results from both stations are presented. At the upstream 

location, the auto-calibrated model produced NSE of 0.57 with a p-and r-factors of 0.28 and 0.32 

respectively. This implies that the calibrated model captures 28% of the observation data with an 

uncertainty band of 0.32 around the best simulation which is expressed in terms of the observed 

data standard deviation. Results for the downstream calibration station showed NSE of 0.96 with 

a p- and r-factors 0.58 and 0.4 respectively. Figure 16 presents the hydrographs of the manual 

calibration results. 
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Figure 17: (a) Upstream and (b) downstream manual calibration hydrograph of Landsat model
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3.5 Discussion  

Examination of the low and high-resolution model results from both manual and automatic 

calibration procedures largely confirms the results obtained by previous researchers such as 

Cheng et al., (2005) and Bosch et al., (2004). Differences in model behaviour with respect to low 

and high resolution LULC data and the respective methods of classification on stream-flow 

prediction reliability, are easier to identify when periods of high and low stream-flow regimes 

are considered.  This approach becomes necessary in this study because all the models have high 

NSE values and thus how the model captures system variabilities is harder to identify with 

manual calibration when only NSE values are considered.  

The percentage bias in prediction at low and high-regimes in the watershed therefore gives a 

much better insight into model behavior. This information is presented in table 3. It is clear that 

the NLCD model over and under-predicts the stream-flow in high-flow regime with much higher 

bias than both low and high-resolution models. Both low and high-resolution LULC data models 

have similar over and under-prediction biases when compared to the NLCD data model. It is also 

worth noting that there was no over-prediction bias with the NLCD model in the low-flow 

regime.  

The results from both high and low-resolution LULC data models can be explained by the fact 

that, much as the high-resolution model had higher HRU discretization and slightly higher NSE 

values, the slightly lower classification accuracy for the high-resolution LULC data could be a 

factor in the model’s inability to account for a greater percentage of the observed discharge data 

over the low-resolution data model. With the results from the Landsat LULC model indicating a 

higher predictive reliability at the downstream gaging station, there appears to to an apparent 

trend in the model results. The trend is that the models with the the lower resolution LULC data 
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appear to offer a much higher stream flow predictive reliability. The main inference for this is 

that the lack of spatial heterogeneity in the low resolution imagery appear to be that the 

watershed is itself dominated by forest land cover therefore the main controling process are 

much better influenced by a cover type which is more generally categorized. By the same 

reasoning the introduction of spatial heterogeneity as evident in the high resolution LULC data 

introduces uncertainties in the model that are much less quantifiable with stream-flow as a metric 

of model result reliability determination.  

3.6 Conclusion 

The objective of this study was to determine the respective impact of high-resolution LULC data 

classified with the object-oriented image analysis technique and low-resolution LULC data also 

classified with pixel-based maximum-likelihood technique on the stream-flow predictive 

reliability of the SWAT model.  It was shown that at the manual calibration level, model 

efficiency were high (NSE of over 90%) for both models. However, due to significant impact of 

equifinality (Beven and Binley, 1992) on the nature of the study (also with regards todifferent 

HRU numbers and model calibration done separately), auto-calibration with GLUE (Beven and 

Binley, 1992) was a necessary and integral part of the study. Out of which the predictive 

reliability were determined based on p and r-factors.  

Both models braketed less than 40% of the observation data; 32% and 37% for high-resolution 

models respectively. The uncertainty band around the best estimation in each case was higher for 

the high-resolution model as shown by r-factors of 0.17 and 0.14 respectively. It was also clear 

from our results that a high-resolution imagery classified with the object-oriented method does 

not enhance the predictive reliability of a SWAT flow model. Furthermore, the object-oriented 

image analysis albeit it has been shown to provide LULC classification of significantly higher 
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classification accuracy than the pixel-based maximum-likelihood method (Platt and Rapoza, 

2008; Yan, 2003), it is also clear from our results that in a watershed with similar characteristics, 

the object-oriented method has no clear advantage over a pixel-based method in producing 

LULC data that enhance the predictive reliability of a SWAT flow model. This conclusion is 

drawn from our study due to the fact that the classification accuracies of the two respective data 

and mothed combinations, were shown to have no statistically significant difference. 

Nonetheless, there were some general trends which include the fact that the monthly simulated 

total water yield were largely similar for both models in the calibration and validation periods. 

This brings the question of how the model would perform with a significantly better object-

oriented classified LULC data; which ultimately requires further studies. Furthermore, a third 

model set-up with 30 m NLCD LULC data showed similar result to the low-resolution LULC 

model; with predictive reliability higher than the high-resolution LULC model. A possible 

limitation of this study is that, the presence of a reservoir with daily discharge data incorporated 

in the model makes the system a managed watershed at the chosen outlet. In such a system, 

natural processes take a secondary role in flow production (Abbaspour, 2011). 
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CHAPTER 4: OBJECTIVE TWO 

Abstract 

No study can currently be located that is done to quantify the relative change in land-cover 

particularly regarding shale-gas infrastructure since active exploration and production began in 

the Fayetteville Shale Play in north-central Arkansas.  An object-oriented land-cover change 

quantification paradigm developed in eCognition was applied on two sets of high-resolution 

imagery obtained in 2006 and 2010 of the Little Red River watershed (LRRW). The classified 

land-use land-cover (LULC) data was used to evaluate impact of shale-gas infrastructure change 

on stream-flow in the South Fork of the Little Red River (SFLRR) which is a sub-watershed of 

the LRRW.  

Results showed that since the upsurge in shale-gas related activities in the Fayetteville Shale Play 

(between 2006 and 2010), shale-gas related infrastructure in the SFLRR have increase by 78%. 

This change in land-cover in comparison with other land-cover classes such as forest, urban, 

pasture, agricultural and water indicates the highest rate of change in any land-cover category for 

the study period. A Soil and Water Assessment Tool (SWAT) flow model of the SFLRR 

simulated from 2000 to 2009 showed a 10% increase in storm water runoff. A forecast scenario 

based on the assumption that 2010 land-cover does not see any significant change over the 

forecast period (2010 to 2020) also showed a 10% increase in storm water runoff. Further 

analyses showed that this change in the stream-flow regime for the forecast period is attributable 

to the increase in land-cover as introduced by the shale-gas infrastructure.  

Keywords: Shale-gas, change detection, land-use land-cover (LULC), SWAT, Storm water 

runoff 
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4.0 Introduction and Background 

Substantial reserves of natural gas are estimated to be locked up in shale formations found 

throughout conterminous United States. Various estimates put the total gas in place in the range 

of 500 tcf to over 600 tcf (tcf: trillion cubic feet); which roughly represent 102 billion barrels of 

crude oil (Andrews et al., 2009). Owing to their low-matrix-permeability, almost all shale-gas 

wells require some form of stimulation in order to produce the gas at economically viable rates 

(Curtis, 2002). One such well stimulation method known as hydraulic fracturing (“fracking”) has 

in addition to technologies such as horizontal drilling has transformed this unconventional 

natural gas resource into an economically viable one. As a direct consequence of this 

technological advancement various shale formations have seen a steady increase in exploration 

and production activities. Among such shale plays is the Fayetteville Shale lay (FSP) located in 

north-central Arkansas.  

Exploration and production of shale-gas in the FSP involve the clearing of vegetation for well-

pad, retention ponds, access roads, drilling, etc. These have various environmental impacts 

including storm-water runoff and sediment loading of downstream water bodies. Environmental 

considerations of modern shale-gas exploration and production range from issues pertaining to 

water management, water availability, water handling and transportation, the release of Naturally 

Occurring Radioactive Materials (NORM), storm-water runoff, management of fracturing fluids, 

water disposal, urban drilling etc (Arthur et al, 2010). This study however investigates the 

specific problem of the quantification of LULC change with particular emphasis on shale-gas 

infrastructure and the subsequent differential effect of the increase in shale-gas related 

infrastructure on runoff and stream-flow generation in a sub-watershed of the Little Red River 

Watershed (LRRW). Currently, no study can be located to that has been done to quantify the 
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differential impact of shale-gas infrastructure on the relative change in LULC in the FSP. This 

study employs the object-oriented image analysis paradigm embedded in eCognition software to 

quantify the relative increase in well-pads in the LRRW from readily available and high-

resolution National Agricultural Imagery Program (NAIP) aerial imagery acquired in 2006 and 

2010.  

 

Object-oriented image analysis (OOIA) is a knowledge driven digital image processing 

technique that mainly involves two stages; segmentation and classification. In the OOIA 

paradigm, segmentation is a pre-classification step that essentially aggregates pixels into image 

objects or divides an image into discrete objects based on homogeneity criteria determined by the 

spatial and spectral properties of the image (Laliberte et al., 2004; Ryherd and Woodcook, 1996). 

The classification stage involves the assignment of the created objects to classes based on the 

desired properties of the determined class (Lang et al., 2006). This is done by two main methods; 

nearest-neighbor based on knowledge samples and membership function based on fuzzy logic 

(Laliberte et al., 2004). The method has been applied in various studies involving the use of 

remotely sensed images. These studies bother on investigations in medicine (Baatz et al., 2006), 

environmental monitoring (Laliberte et al., 2004), ecology (Burnett and Blaschke, 2003), etc. 

The method has also been applied in change detection in nuclear monitoring studies (Niemeyer 

et al., 2005), pre and post-conflict damage analysis (Al-Khudhairy et al., 2005), the development 

of other change detection techniques (Im et al., 2008) etc. Studies have shown that OOIA offers 

significantly higher classification accuracy than pixel-based methods (Platt and Rapoza, 2008; 

Blaschke and Strobl, 2001; Yan, 2003).  
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This study further augments the literature by providing quantifications of change in land-cover as 

attributable to well-pad placement in a shale-gas watershed using the object-oriented image 

analysis paradigm embedded in eCognition. The detected change in the LULC data is further 

employed as input land-cover data to study the differential change in stream-flow in an active 

shale-gas exploration and production sub-watershed in the study area (LRRW). This is to help 

quantify shale-gas activity impact on watershed hydrology with respect to other land-cover 

changes as influenced by categories such as agriculture and urbanization.  

The runoff or stream-flow generation and sediment loading potential of well-pad placement in 

natural-gas producing watersheds has been well documented (Wachal, 2008; Matherne, 2006; 

Sandahl et al., 2007 and Williams et al., 2007). The South Fork of the Little Red River Sub-

watershed (SFLRR) is recognized by the Arkansas Department of Environmental Quality 

(ADEQ) to contain ecologically sensitive tributaries of the upper Little Red River that are 

considered Extraordinary Resource and Ecologically Sensitive water bodies (USFWS, 2009). 

The SFLRR is approximately 387 km
2
 in area representing roughly 8% of the total LRRW 

watershed area. However, this sub-watershed is among the sub-watersheds that see the bulk of 

shale-gas exploration and production activities in the LRRW (Funkhouser, 2012). Therefore 

issues such as runoff and sedimentation are of prime importance in order to ensure the survival 

of such endangered species such as the yellow-cheek darter (which occur nowhere else in the 

world) (USFWS, 2012). Much as sedimentation is known to adversely impact fresh water 

species (Henleya et al., 2000), this study does not tackle sedimentation. Rather runoff is tackled 

as controlling mechanism of sedimentation (Dendy and Bolton, 1976; Easton et al., 2010). The 

decision to exclude sediment modeling in this study was necessitated by the lack of available 

long term field observed sediment data.   
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4.1 Study Area and Methodology 

4.1.1 Study Area 

The Little Red River Watershed (LRRW) encompasses the counties of Cleburne, Independence, 

Pope, Searcy, Stone, White and Van Buren all located in north-central Arkansas. The LRRW is 

one of the watersheds in the Fayetteville Shale Play that is entirely located within the Play and 

also sees majority of shale-gas related activities. Three main physiographic regions make up the 

watershed. These are the Mississippi Alluvial Valley, Arkansas Valley and Ozark Mountains. 

The Mississippi Alluvial Valley is found in the lower-lying portions of the watershed and is 

relatively level terrain with unconsolidated sediments such as sands, gravel, clay and loess. The 

Arkansas Valley Region encompasses a part of the mid-section of the watershed with surface 

rocks consisting of sandstone and relatively higher general elevation than the Mississippi 

Alluvial Valley. Lastly the Ozark Mountain Region is fairly mountainous with high elevations 

and steep rock valley walls (AGS, 2011). 

The Little Red River is the major water body that flows through the watershed in a generally 

north-west to south-east direction. Another major water body, the Greers Ferry Lake is also 

located centrally within the Ozark Mountains physiographic region of the watershed. With an 

approximate surface area of roughly 30,000 acres (USACE, 2011), this lake plays a major role in 

the entire watershed hydrology. Between 65% to 70% of the watershed’s 4668 km
2
 area land-

cover is forest land, with agricultural and urbanized land making up the rest. Located in the 

lower upstream portion of the LRRW is the South Fork of the Little Red River (SFLRR) sub-

watershed. This is a 10-digit HUC (Hydrologic Unit Code) sub-watershed roughly 387 km
2
 in 

area with almost 90% of its land-cover being forest land (CAST, 2006).  The SFLRR is selected 

for the determination of the differential effect of shale-gas related infrastructure on stream-flow 
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due to the fact that this sub-watershed sees the majority of exploration and production activities 

in comparison to the other sub-watersheds within the LRRW. Also there is a USGS stream gage 

located at the outlet of the SFLRR sub-watershed with observation data. 
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 Figure 18: Land-cover and elevation characteristics of the study area: Little Red River Watershed (LRRW)
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4.1.2 Object-Oriented Image Classification and Land-cover Change Quantification 

The object-oriented image analysis (OOIA) method involves the two main stages of image 

segmentation and classification. Segmentation is the division of an image into discrete objects 

based on the inherent homogeneity or heterogeneity of the pixels that make up the image. The 

aim of this process is to optimize the correlation between the image objects and the geographical 

features of the real world which the objects are supposed to represent. Segmentation 

methodology can be categorized into histogram-based methods, which depend on the feature 

space, edge-based which depend on searching for edges that occur between heterogeneous 

objects and region-based which depends on the use of “seed pixels” from which a uniform region 

is aggregated (Lang et al., 2006).  

National Agricultural Imagery Program data from 2006 and 2010 with 1 m resolution were 

resampled to 4 m in order to optimize the segmentation in eCognition, segmented and 

subsequently classified. Extra image layers were added comprising of infra-red bands and 

rasterize layer of urban areas located in the study area. Also, thematic layers for transportation 

network and inventory of hydrologic data (reservoirs, ponds and rivers) were incorporated. This 

was done to aid classification by introducing further spectral and spatial variability. In this study 

a fractal net evolutionary approach (FNEA) methodology of image segmentation embedded in 

eCognition software is used for the segmentation of the images before classification. This 

method of segmentation allows for the incorporation of scale in the segmentation process and is 

referred to as multi-resolution segmentation (MRS) (Laliberte et al., 2004). Two segmentation 

levels with two different scales (100 and 35 respectively) were used in this study. Objects created 

through the first segmentation level (level 100) were further segmented into smaller objects at 

the second segmentation level with a scale parameter of 35; both levels using shape and 
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compactness values of 0.1 and 0.5 respectively. These scales were chosen through a trial and 

error procedure with the goal of optimizing objects size for each classification category. The 

classification categories are as follows; agriculture, barren land, forest, transitional forest (forest 

with deciduous trees), urban, transportation (roads), water and well-pads. Classification of the 

segmented objects were subsequently carried out using a combination of rulesets (based on fuzzy 

logic) and the nearest neighbor classification method based on user-supplied object samples.  

This procedure was repeated for both 2006 and 2010 images to produce classified LULC data of 

the study area. Change detection was primarily performed based on a comparison of the 

calculated total percentage change in the individual land-cover class of respective areas that were 

correctly classified in both 2006 and 2010 datasets. This was done for the entire sub-basin in 

order to obtain a quantification of the well-pads in respect of the other land-cover classes in the 

sub-basin and also obtain a contribution of shale infrastructure to the overall sub-basin land-use 

change.   

4.1.3 Model Description and Set-up 

4.1.3.1 The Soil and Water Assessment Tool (SWAT) Model Description 

SWAT is a physically based and continuous time semi-distributed parameter model that is 

developed to simulate the effects of land management practices on water, sediment, and 

agricultural chemicals in large and complex watersheds over long periods of time (Arnold et al., 

1998). The version of the model that was used for this study is ArcSWAT; an ArcGIS extension 

that provides a graphical user interface for SWAT within a GIS environment. The model has 

been used to study the impact of biofuel production on water quality (Wu et al., 2012), climate 

change studies (Gurung and Bharati, 2012; Zhang et al., 2007). The model requires input data in 
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DEM, land-use data, soils and slope classes for the delineation of Hydrologic Response Units 

(HRUs). HRUs are created through an overlay of respective slope classes, soils and land-use 

data. Aggregations of overlays of the same slope class, land-use and soil type are grouped into 

the same HRU. Figure 2 illustrates the creation of HRUs in the ArcSWAT environment.  

 

 

Figure 19: Illustration of Overlay in GIS for HRU Delineation in ArcSWAT  

The HRU is the basic computational unit of the model and helps to ensure efficient computation. 

The ArcGIS interface of the 2005 version of the SWAT model (Di Luzio et al., 2001) was used 

to set up the model in a GIS environment in this study. This ensures a seamless integration of 

DEM for the delineation of the watershed, flow lines, reservoirs and basin outlets. SWAT 

simulates the hydrology at each HRU using the water balance equation, comprising precipitation, 
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runoff, evapotranspiration, percolation and base flow components as shown in equation 1. 

Runoff is computed with either the Soil Conservation Service Curve Number method (USDA-

SCS, 1972) or the Green and Ampt infiltration method (Green and Ampt, 1911) and routed to the 

closest channel using the Muskingum method (Chow, 1959). Key model components include 

hydrology, sediment yield, nutrient fate, evapotranspiration, groundwater, etc.  

4.1.3.2 Baseline and Well-Pad Impacted Scenarios  

To isolate and quantify the impact of well-pads on the overall storm-water runoff volume, the 

following methodology was adopted. Two main scenarios were calibrated for each of the LULC 

data models; one with well-pads present (SFLR10W) and another with the well-pads land-cover 

replaced with mixed forest land-cover (SFLR10). The latter scenarios involved the representation 

of well-pads with the mixed forest land-cover class (FRST) in SWAT. It was assumed that this 

land-use class will most closely represent the hydrologic response of the hitherto undeveloped 

land area; these individual scenario models were then assumed to represent the baseline 

scenarios in 2006 and 2010 respectively. Baseline in this case is used to denote a condition 

where no well-pads existed as in pre-2006 and when well-pads existed as in 2010.  

The second set of model scenarios involved forecast simulations performed for a 10-year 

projected period (duration from 2010 to 2020); this was done in order to determine the fractional 

impacts (in comparison to the other land-cover classes) of the current (2010) level of well-pad 

activity on stream-flow for the projected forecast period.  The SWAT model does not have a 

land-use code specification for well-pads; to account for this the urban industrial land-use 

categorization code in the SWAT land-use database was selected. This is the land-use 

categorization in the SWAT land-use database that most closely has the hydrologic response of 
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surface such as a well-pad. The models were calibrated and validated from 2000 to 2006 and 

2007 to 2009 respectively.  

4.2 Results and Discussions 

4.2.1 Image Classification Results 

The accuracy of image classification results was assessed through the use of test and training 

area mask (TTA mask) created through selected samples for each class. A minimum of thirty 

samples were selected for each class except the Barren class which had fewer samples due to 

lack of ample samples that represent that class in the study area. An error matrix was then 

created using the TTA mask.  Three measures for assessing the accuracy of the classification 

were used; the user’s, producer’s accuracy and the overall accuracy. The user’s accuracy 

measures the probability of a classified pixel representing the category on the ground whiles the 

producer’s accuracy measures the probability of a reference pixel being correctly classified 

(Congalton, 1991). For the 2006 classified data, user’s accuracy was over 80 percent for all the 

classes except for the deciduous forest class just as was seen in the user’s accuracy for the 2010 

classification. Producer’s accuracy was over 66 percent for all classes.  

The user’s accuracy for all classes for the 2010 classified data was over 68 percent with the 

exception of the deciduous forest and barren classes that had user’s accuracies of less than 10 

percent. Producer’s accuracy was over 64 percent for all classes except for perennial and 

deciduous forest classes. Figures 2 and 3 present the respective error matrices calculated for the 

assessment of the individual accuracies associated with the classifications of the two datasets. 

Two levels of segmentation were used and subsequently followed by classification. Overall, the 
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two classifications were similar in accuracy as is evident from the overall accuracies of 83% and 

84% for 2006 and 2010 classifications respectively.  

To investigate the relative changes in percentages of the total watershed area covered by 

individual land-cover types from 2006 to 2010, the following generalizations were made. The 

respective user’s accuracy measure was multiplied by the classified area for each class to obtain 

a theoretical accurate area as persists on the ground. A super class of the forest land-cover types 

was then created by the addition of the respective watershed area percentages of the mixed 

forest, deciduous forest and the evergreen forest; the barren class was also added to the urban 

class to form a super class known generally as urban. This resulted in six main classes for the 

percentage change analysis for the two years; these are Agricultural range land, Forest, Roads, 

Urban, Water and Well-pads. Results showed that the well-pad class had the most significant 

change (1043%) in land-cover class from 2006 to 2010, followed by agricultural range land with 

4.6%. Road, forest and urban classes had negative changes indicating a reduction in total area 

from 2006 to 2010. However, this might be attributable to the respective lower user’s accuracies 

obtained for these classes with the 2010 data as compared to that obtained with the 2006 data.  

Table 1 presents the various land-cover classes with their respective area coverage in the 

watershed for each year and percentage change in calculated from percentage of the total 

watershed area occupied by the individual land-cover from 2006 to 2010.  The calculations in 

table 1 involve the assumption that the user’s accuracy captures the true cover type as it exists on 

the ground and therefore this accuracy measure is taken as having the best measure of individual 

land-cover classification accuracy. However when the respective overall classification accuracies 

of 83% and 84% for 2006 and 2010 were applied, the relative percent change in well-pads was 

1205% with that of agriculture being 18%.  
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Albeit the forest and agriculture classes had seen the highest changes in acreage, this does not 

present a true picture of the relative overall watershed changes since the user’s accuracy 

associated with both classes from 2006 to 2010 had significant differences in classification 

accuracy. The forest cover reduced from 71% to 66%; a reductive change of 7%. This change 

might reasonably to attributable to an increase in agricultural land-cover much more than it 

might be due to well-pad construction. The reason for this being that agriculture land-cover had a 

significantly higher change in acreage than well-pad cover even with the high rate of change for 

well-pads within the period of study. The percentage change in water cover type increased 

slightly by 1.5%; this is well correlated with the increase in agricultural cover from the attendant 

construction of agricultural ponds and irrigation trenches. Figure 2 is a graph illustrating the 

percentage changes per class. Figures 3 and 4 also show the respective error matrices for the 

2006 and 2010 classifications.
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Table 10: Land-cover Classes with Respective Area Coverage and Percentage Change from 2006 to 2010 in LRRW 

Land-

cover 

Class 

Area in 

2006/(acres) 

% of SLRR 

in 2006 

Area in 

2010/(acres) 

% of SLRR 

in 2010 

% Change 

(2006 - 2010) 

Class Accuracy 

(2006)/% 

Class Accuracy 

(2010)/% 

Water 4394.53 4.60 4690.68 4.91 6.74 98.00 99.30 

Road 1566.74 1.64 1060.42 1.11 -32.32 80.80 68.90 

Agric 11989.41 12.55 11702.81 12.25 -2.39 88.90 77.00 

Forest 76522.08 80.10 76206.82 79.77 -0.41 66.85 36.58 

Well-pad 812.03 0.85 1442.55 1.51 77.65 100.00 68.90 

Urban 248.39 0.26 429.90 0.45 73.08 97.00 87.99 

 

 
Figure 20: Graph Illustrating the Percentage Changes per Class 
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Table 11: Error Matrix for OOIA classification of 2006 LRRW Land-cover 

User\Preference Class Water  Road Agriculture Forest Forest_Trans Barren Well-pads Urban Sum 

Water 505092 0 2373 0 9381 0 0 0 516846 

Road 0 28469 0 0 0 0 0 6761 35230 

Agriculture 0 2706 260269 4524 19610 0 0 5631 292740 

Forest 4699 0 0 502240 101202 0 0 0 608141 

Forest_Trans 349 0 131029 70431 289306 0 0 0 491115 

Barren 0 0 0 0 0 0 1077 0 1077 

Well-pads 0 0 0 0 5703 0 0 184248 189951 

Urban 0 0 0 0 0 7617 0 0 7617 

Unclassified 0 0 0 0 0 0 0 0 0 

Sum 510140 31175 393671 577195 42502 7617 1077 196640   
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Table 12: Error Matrix for OOIA classification of 2010 LRRW Land-cover 

User\Preference 

Class Water  Road Agriculture Forest Forest_Trans Barren Well-pads Urban Sum 

Water  2433168 1346 9875 1221 2065 0 0 2818 2450493 

Road 0 39571 0 0 0 0 0 17859 57430 

Agriculture 0 9060 323036 82370 3167 0 1779 234 419646 

Forest 1567 0 41241 222380 20504 0 0 3932 289624 

Forest_Trans 4374 0 32435 230741 26970 0 0 5581 300101 

Barren 0 0 0 0 0 0 831 0 831 

Well-pads 0 70 6646 279 0 0 15694 103 22792 

Urban 10385 641 86678 0 0 6229 0 787783 891716 

Unclassified 0 0 2 41671 100126 0 0 0 141799 

Sum 2449494 50688 499913 578662 152832 6229 18304 818310   
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4.2.2 Model Calibration and Validation Results for the SFLRR Watershed 

Simulated stream flow was calibrated against monthly measured rates by manually adjusting 

model parameters identified from sensitivity analysis and literature (White and Chaubey, 2005) 

to be sensitive to flow simulation until a best fit criterion was achieved. Model initial parameters 

were calculated from 1997 to 1999 (model warm-up period). Multi-criteria goodness of fit 

measures was employed in this study; among these measures, the most popular is the Nash-

Sutcliffe Efficiency (NSE) criteria.  This efficiency measure (Ef) essentially measures the 

proportion of the total variance in the system that the model is able to account for or explain. The 

equation is as follows: 

      [∑
(  ̂    )

(      ̅)

 

   

] 

  (1) 

Where n = sample size,   ̂ and    predicted and measured values of dependent variable,   ̅ = mean 

of measured values of Y. In general a stream-flow model simulation is judged satisfactory if Ef ≥ 

0.5 (Moriasi et al., 2007). The results of the multi-criteria measures for the calibration and 

validation periods for both models are presented in table 4. The calibration NSE for both models 

was 0.51 and 0.52 for SFLR10 and SFLR10W respectively; implying that on the average both 

models can account for 51.5% of the total variance in the calibration dataset. The validated 

model NSE was 0.9 and 0.89 respectively for SFLR10 and SFLR10W. SWAT simulates total 

flow as a sum of the separated baseflow and surface flow components. Graphical plots 

(hydrographs) of the baseflow and surface flow are presented for the calibration and validation 

periods in figures 3 and 4.  
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Table 13: Multi-criteria model efficiency measures for respective calibration and validation  

  Total Flow  

Efficiency Criteria* Calibration Validation 

  SFLR10 SFLR10W SFLR10 SFLR10W 

NSE  0.52 0.51 0.89 0.90 

  R
2
  0.51 0.51 0.94 0.95 

   PBIAS  1.57 -0.56 11.12 10.20 

 RSR 0.29 0.26 0.45 0.44 

RMSE 0.45 0.45 3.65 3.55 

 

*Multi-criteria measures presented in Moriasi et al., (2007),  

NSE: Nash-Sutcliffe Efficiency (satisfactory if ≥ 0.5),  

R
2
: Coefficient of determination,  

PBIAS: Percent bias (PBIAS) measures the average tendency of the simulated data to be larger 

or smaller than the corresponding observed data. Positive = under-prediction and vice versa 

(satisfactory if ± 25%),  

RSR: ratio of RMSE to standard deviation of observations (satisfactory if ≤ 0.7) 
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Figure 21: SFLR10 discharge hydrographs for total flow 
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Figure 22: SFLR10 discharge hydrographs for sub-surface flow 
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Figure 23: SFLR10 discharge hydrographs for surface flow  
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Figure 24: SFLR10W discharge hydrographs for total flow  
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Figure 25: SFLR10W discharge hydrographs for sub-surface flow  
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Figure 26: SFLR10W discharge hydrographs for surface flow  
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The validated models showed an increase in surface runoff depth for the scenarios where well-

pads were present in the watershed over when the well-pads were represented by the mixed 

forest land-cover. Simulated average annual flow depth for the validation period for both 

scenarios increased from 226.33 mm to 249.61 mm (a change of ~10.3 %). Since these two 

scenarios representing the 2006 and 2010 land-cover scenarios, it implies that the identified 78% 

change from 2006 to 2010 in well-pad land-cover corresponds to a 10% increase in storm water 

runoff depth measured at the sub-basin outlet. The validity of the preceding statement holds only 

when it is considered that classification accuracies are fairly similar and equifinality is reduced to 

a minimum. Since the various land-cover classes had corresponding changes from 2006 to 2010, 

the identified 10% change in runoff depth cannot be differentially attributed to well-pads alone.    

To account for this differential impact of well-pad activity on the storm water runoff depth in the 

sub-basin, forecast simulations were performed with the two baseline scenarios. The forecast 

scenarios essentially predict the projected differential impact on runoff depth if the level of well-

pad activity in 2010 is maintained for a projected 10-year period (up to 2020). That is basically 

predicting the impact of shale-gas related infrastructure on runoff if no more of such 

infrastructure is constructed for the  next 10-years and the general land-cover in the sub-basin 

remains fairly the same. For the model with well-pads present, runoff depth was predicted to 

marginally increase from 249.61 mm in 2010 to 249.81 mm by 2020. Considering the scenario 

where no well-pads or shale-gas related infrastructure existed in the sub-basin, runoff depth was 

predicted to also marginally increase from 226.33 mm in 2010 to 226.51 mm by 2020. From 

these forecast results, runoff is predicted to increase by 23.3 mm from when well-pads were 

introduced for the projected 10-year period (a change of ~10.3%); this change is the differential 

impact of the presence of shale-gas infrastructure in the sub-basin.  
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4.2.4 Limitations of the Flow model  

There are several limitations of the model as detailed in the previous sections. First among these 

is the fact that the model is highly limited by the level of accuracy associated with the classified 

LULC image. The respective overall accuracies of 83% and 84% for 2006 and 2010 LULC 

classifications presented by the error matrices in tables 2 and 3. It is important to note there are 

other measures of classification accuracy that are of peculiar importance especially as a specific 

land-cover type such as well-pads is being studied. One such measure is the user’s accuracy 

which essentially measures the certainty that a classified pixel actually represents that cover type 

on the ground. The distributions of 2006 and 2010 user’s accuracies for all classes within their 

respective matrices have standard deviations of 0.13 and 0.34 with means of 0.88 and 0.61 

respectively. These distributions have disparate variances indicating a lack of consistency in 

classifications among the individual classes across the two datasets. This is a limitation that 

requires further studies to assess classification accuracy impacts on model outputs.   

Other sources of limitation for the model are the fact that the model was only manually 

calibrated and no extensive automatic calibration or uncertainty analyses were performed on the 

calibrated models. The lack of an uncertainty analysis in the model calibration stage introduces 

bias in the interpretation of model results owing to equifinality (Beven and Binley, 1992). This 

also limits the ability to use the model as an effective tool to analyze the inherent dynamics 

between the interactions human activities and the natural systems in the catchment.  
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4.3 Conclusion 

The main objectives of the study are to: 1) quantify the land-use land-cover change in the South 

Fork of the Little Red River Watershed (SFLRR) with specific emphasis on natural gas related 

activities (well-pads) and 2) use the quantified data to examine the impact of natural gas related 

activities on storm water runoff generation in the South Fork of the Little Red River (SFLRR). 

There were generally decreases in land-cover for the forest, road and urban classes; albeit 

changes in the road and urban classes might be logically taken to be much more skewed by 

classification accuracy than in the case of the forest class. Agricultural land, water and well-pads 

on the other hand consistently increased in coverage from 2006 to 2010. Well-pads significantly 

increased in land-cover from 2006 to 2010 by 630.55 acres (representing 0.65% of the total 

SFLRR area). Other land-cover classes that increased in coverage were urban and water; totaling 

slightly over 5% of the sub-basin area. On the other hand, agriculture and forest cover types 

decreased by 2.39%.  

The next objective of the study was to examine the impact of the identified change in land-cover 

attributable to well-pads on storm water runoff generation in the sub-basin. The result from 

calibration and validation periods is inconclusive in that the differential effect of the change in 

well-pads alone could not be isolated. For a 10-year forecast scenario, runoff is projected to 

increase by 23.3 mm which is roughly a 10% projected increase in runoff. This represents the 

change in runoff that is attributable the differential change in shale-gas related infrastructure. 

Therefore, for a 78% in well-pad land-cover, runoff is projected to increase by roughly 10% over 

a 10-year period assuming current conditions in the sub-basin stays fairly constant.  
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CHAPTER 5: OBJECTIVE THREE 

Abstract 

The United States Fish and Wildlife Services (USFWS) has in collaboration with major 

stakeholders in the Fayetteville Shale play developed Best Management Practices (BMPs) for 

implementation in the Fayetteville Shale natural gas development area in north-central Arkansas. 

This was mainly done to encourage energy and energy-support companies operating within the 

play to voluntarily adopt these BMPs in order to ensure improved environmental practices in 

exploration, drilling and reclamation activities. To ensure the effectiveness of the proposed 

BMPs there is the need to conduct evaluative studies to assess their respective effectiveness. 

However, no study could be located at the time of this research, which evaluates the 

effectiveness of the proposed BMPs on the environmental mitigation efforts in the Fayetteville 

Shale Play.   

In this study, a modeling approach was adopted to simulate conditions and evaluate the 

effectiveness or efficiency of BMPs meant to control flow in the South Fork of the Little Red 

River sub-watershed located within the Fayetteville Shale play. Two Soil and Water Assessment 

Tool (SWAT) flow models calibrated and validated with and without shale-gas-related 

infrastructure were simulated for flow to form model baseline scenarios. Three BMPs identified 

to control flow were introduced and simulated for the simulation periods. The differences in the 

flow output at the watershed outlet for each BMP scenario were derived by comparing baseline 

and respective BMP scenarios. Results show that BMPs have an average effectiveness of 

approximately 80% in reducing shale-gas attributable flow.  

Keywords: SWAT runoff modeling, BMPs, Fayetteville Shale Play, GIS. 
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5.0 Introduction 

5.1 Background 

Best management practices (BMPs) have been proposed and implemented in various settings 

where human-related activities are thought to have negative or potentially adverse effects on the 

natural state of the environment. The United States Environmental Protection Agency (USEPA) 

has various guidelines and standards for BMP implementation in various environmental 

mitigation efforts. Some of the areas of concern include erosion, sedimentation and storm water 

pollution in various industrial undertakings. BMPs, among others are part of regulatory 

guidelines for storm water impact mitigation that are implemented by the EPA through the 

National Pollutant Discharge Elimination System (NPDES) (USEPA, 2012).  

Also, the U.S Fish and Wildlife Services (USFWS) in collaboration with the Arkansas Oil and 

Gas Commission, the Arkansas Department of Environmental Quality, members of the academic 

community and some energy companies have developed various BMP guidelines for exploration 

and production activities in the Fayetteville Shale Play. However, the activities of the oil and gas 

industry are exempt from NPDES regulatory provisions.  Therefore the guidelines are meant to 

encourage voluntary implementation by the energy companies of the proposed BMPs during the 

exploration and drilling stages (USFWS, 2007). At the time of this study, no literature could be 

located that deals with the evaluation of the proposed BMPs or their potential to mitigate adverse 

environmental changes as a result of shale-gas activities.  This study is particularly concerned 

with storm water generation which is known to negatively impact erosion and sedimentation 

(Edwards and Owen, 1991). A modeling approach is employed to evaluate the potential impact 

of the implementation of storm water BMPs in a shale-gas activity watershed. 
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The SWAT model has been employed in various studies involving BMP impact simulations. Due 

to its ability to simulate BMPs intended for mostly agricultural purposes and the flexibility to 

adapt the BMPs for other applications, the USEPA supports the use of the model for 

quantification requirements in watershed management planning (USEPA, 2005). Furthermore, 

the model is included as one of several water quality models integrated in a multi-purpose 

analytical software environment implemented with geographic information analysis capability 

(BASINS, 2012). The model has been used for specific applications such as evaluating and 

analyzing BMPs for reducing phosphorus levels (Lee et al., 2010) and evaluating BMPs for 

storm water control (Kaini et al., 2007; Hunt et al., 2009).  

In the case of the shale-gas activities the major environmental concerns include the potential 

impacts on climate change due to climate forcing effects of the released methane gas (Wood et 

al., 2011; Schrag, 2012). In addition to the climate change impacts, it is also known that the 

clearing of vegetation and the use of heavy exploratory equipment contribute to changes in 

runoff generation and sediment yield (Seguis et al., 2004; Entrekin et al., 2011). These ultimately 

have negative impacts on the runoff generation, aquatic life and the overall water quality of the 

subject watersheds (Harney and Hubert, 1984; Hogg and Norris, 1991; Deletic and Maksimovic, 

1998). It is therefore imperative that the storm water BMPs intended for implementation in the 

Fayetteville Shale Play region be evaluated to determine their effectiveness in mitigating the 

negative environmental impacts.  
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 5.2 Methods and Materials 

5.2.1 Study Area 

The South Fork Little Red River (SFLRR) is a 386km
2
 sub-basin of the Little Red River 

Watershed with a 10-digit Hydrologic Unit Code of 1101001402. The sub-basin is located within 

Van Buren County in north-central Arkansas. This study area was selected due to fact that it is 

the only sub-basin within the Little Red River Watershed that sees major shale-gas activities and 

also has reliable gage station data at the sub-basin outlet. The average annual precipitation in the 

region is approximately 1270 – 1320 mm with winter and summer average temperatures of 2
o
C 

and 30
o
C respectively.  Precipitation normally occurs less frequently during the months of June, 

July and August; summers are hot and humid while winters are relatively mild and short. Mean 

annual high and low temperatures are 5
o
C and 17

o
C respectively (NOAA, 2012). 

The land-cover distribution is approximately 80% forest land, 12% agricultural land, 1% 

Urbanized, 5% water and 2% shale-gas infrastructure. There two main population centers within 

the sub-basin; namely the cities of Scotland and Clinton with population density of 5 persons per 

square kilometer (CAST, 2007). Elevation in the sub-basin ranges between 149 and 595 m above 

mean sea level. The major soils are Steprock-Mountainburg complex which are loamy skeletal, 

red clayey loam (Udults) and some fine-silty and loamy soils (USDA-NRCS, 2013) with depths 

ranging between 0.5 and 2 m. With the combination of available stream flow observation data 

and the presence of a significant shale-gas infrastructure, the sub-basin presents a unique 

opportunity to evaluate the potential impact of BMPs meant to control runoff possibly 

attributable to shale-gas activities.  
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5.2.2 SWAT model Description 

SWAT is a physically based and continuous time semi-distributed parameter model that is 

developed to simulate the effects of land management practices on water, sediment, and 

agricultural chemicals in large and complex watersheds over long periods of time (Arnold et al., 

1998). The version of the model that was used for this study is ArcSWAT; an ArcGIS extension 

that provides a graphical user interface for SWAT within a GIS environment. The model requires 

input data in DEM, land use data, soils and slope classes for the delineation of Hydrologic 

Response Units (HRUs). HRUs are created through an overlay of respective slope classes, soils 

and land-use data. Aggregations of overlays of the same slope class, land-use and soil type are 

grouped into the same HRU.  

The HRU is the basic computational unit of the model and helps to ensure efficient computation. 

SWAT simulates the hydrology at each HRU using the water balance equation, comprising 

precipitation, runoff, evapotranspiration, percolation and base flow components. Runoff, stream-

flow and groundwater flow is simulated within the watershed and at the watershed outlet (Gitau 

et al., 2006). Runoff is computed with either the Soil Conservation Service Curve Number 

method (USDA-SCS, 1972) or the Green and Ampt infiltration method (Green and Ampt, 1911) 

and routed to the closest channel using the Muskingum method (Chow, 1959). BMPs are 

implemented in SWAT by specifying or modifying parameter values that are meant to represent 

the desired BMP in a sub-basin. Specific BMPs such as filter strips are represented in SWAT by 

modifying the FILTERW parameter while other BMPs such as grassed waterways is simulated 

by modifying the parameter CH_N(1) (manning’s ‘n’ value for the main channel).  
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5.2.3 SWAT model setup 

The modeling framework was established in ArcSWAT version 2009 (SWAT2009) in ArcGIS 

9.3.1. The watershed was delineated based on an input 10 m digital elevation model (DEM) with 

threshold specifications in flow accumulation and direction.  Land-cover data derived from 4 m 

aerial imagery by object-oriented image classification was overlaid with soil data and slope class 

were subsequently divided into hydrologic response units (HRUs) with specific threshold values 

based on soils, slope and land-use. A trial and error procedure was adopted to pick the optimum 

values for the data categories. This was to ensure the inclusion of significant areas of land-use 

and soils while reducing computation overhead by the exclusion of insignificant areas. A total of 

214 HRUs were derived from the overlay of soil, slope, land-use and slope class at their 

respective thresholds. SWAT formatted observed daily rainfall and temperature data from 1950 

to 2010 were obtained from the United States Department of Agriculture’s Agricultural Research 

Service (USDA-ARS) climate database (USDA-ARS, 2012) for the weather stations shown in 

figure 2. The model was calibrated from 1997 to 2006 and validated from 2007 to 2009 with the 

data from January-1997 to December-1999 serving as the period for computation of model initial 

(warm-up period) parameters.  

5.2.4 BMP Simulation 

Three BMPs intended to reduce storm water flow were simulated. These BMPs were selected 

based on recommendations in USFWS (2007) and USEPA (2005). The selected BMPs were 

grassed waterways, wetlands and check dams. After selecting the appropriate BMPs, the 

calibrated (2000 to 2006) and validated (2007 to 2009) flow model was set as the baseline while 

successive runs with the various BMPs were set as separate BMP scenarios. Grassed waterways 

are implemented in either natural or constructed channels that are graded to specific dimensions 
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and lined with suitable vegetation (SWAT, 2005). The purpose of this BMP is to reduce storm 

water runoff velocity by conveying water from concentrated waterways without causing erosion 

thus helping to improve water quality. Grassed waterways were implemented in this study in the 

main channel of the sub-basin to reduce the storm water flow velocity thus reducing the erosive 

power. This BMP was simulated in SWAT by changing the Manning’s “n” (roughness 

coefficient) value for the main channel (CH_N(1)) assuming a dense grass cover condition. From 

the SWAT manual a recommended value for Manning’s “n” for the selected cover type was 

determined to be 0.3.  The model-calculated main channel length of 45 km, depth and width of 

1.4 and 45 m respectively were used thus leading to a channel width-to-depth ratio of 32. Based 

on an assumption of a fairly uniform main channel soil composition (red clayey loam), an 

effective hydraulic conductivity of 2.5 mm/hr was determined from recommended values as in 

(ArcSWAT Manual, 2009).  

Next, wetlands were simulated as a BMP to control storm water flow. This BMP was selected for 

this study in particular since there are no natural wetlands in the study area sub-basin. Wetlands 

basically serve as impoundments and receive runoff thus effectively allowing loadings from the 

land area to settle. Wetlands data from the USGS National Hydrographic Dataset (NHD) 

database for the state of Arkansas was not available at the time of the study to help in possible 

estimation of wetland parameter based on available data. Therefore wetland simulation 

parameters were determined as follows. The minimum contributing area for the measured data at 

the watershed outlet was determined from a method developed by Dickenson and Whiteley 

(1962) to be 0.74. By proportion the fraction of the basin area that drains into the wetland 

(WET_FR) was subsequently determined. From HRU analysis, HRUs that had slopes of 3% or 

less were selected as suitable response unit types for implementation of the wetland BMP 
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(USFWS, 2007). Through this procedure, a total of approximately 10 km
2 

was derived to be the 

area of the sub-basin that drains into the wetlands. Adopting the method of Wang et al., (2010) in 

the calculation of WET_FR and applying proportionality as defined earlier, this procedure 

resulted in a WET_FR value of 0.019 for wetlands. The remaining wetland simulation 

parameters which account for surface area and volume at principal and emergency spillways 

were also determined as follows.  Assuming that wetlands are constructed such that the surface 

area does not vary with depth, the volume at principal and emergency spillways could be 

obtained as a product of wetland depth and surface area. Furthermore, the principal spillway area 

and volume were constrained to be smaller than the emergency spillway area and volume. With a 

uniform depth of 0.1 m for the principal spillway surface area and volume were calculated to be 

802 X 10
4
 m

2
 and 80.2 X 10

4
 m

3
 respectively as emergency spillway surface area and volume 

were also adjusted for in order to satisfy the model constraints stated earlier.  

Finally, impact of introducing check dams to control storm water flow was simulated. Check 

dams are implemented on areas with concentrated flow and essentially serve to pond water 

thereby reducing storm water runoff during periods of high flow (ArcSWAT manual, 2005).  In 

this study check dams were simulated as ponds in SWAT and parameters determined as in 

wetlands BMP. Pond simulation parameters were determined as in wetlands scenarios with the 

exception that ponds total sub-basin area occupied by ponds was estimated to be 61 X 10 m
2
 

from shapefile data obtained from CAST(2010).  

To quantify the effectiveness of the BMPs at reducing storm water flow that can be differentially 

attributable to shale-gas infrastructure, the difference in simulated flow rates for model runs with 

and without well-pad cover types was determined. This value was divided by the difference in 

baselines simulated flow rates of the two models and expressed as a percentage to obtain the 
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BMP effectiveness at reducing flow that is caused by the presence of well-pads in the sub-basin. 

This value is termed well-pad-flow in table 2. The model calibrated without well-pad land cover 

type was set-up with the exact parameters as in the previous model to achieve the similar 

efficiency criteria measures. The only difference was that well-pads were simulated as normal 

vegetated forest land. The difference in the simulated surface flows between the two models is 

the storm water flow attributable to the impact well-pads have on flow in the sub-basin. This 

analysis was done in order to isolate and quantify the effectiveness of the BMPs on storm water 

flow as impacted by shale-gas infrastructure.  

Table 14: Implemented BMPs and how they were modeled in SWAT 

Scenario 

Name 

Description SWAT parameter SWAT file to be 

modified 

Baseline Baseline scenario   

Scenario 

1 

Grassed 

Waterways 

Manning’s “n” (roughness coefficient) 

value for the main channel (CH_N(1)) 

Sub-basin (.sub)and 

routing (.rte) 

Scenario 

2 

Wetlands All wetland parameters that apply to 

flow 

Pond component in 

sub-basin (.pnd) 

Scenario 

3 

Check dams Simulated as ponds. All pond 

parameters that apply to flow 

Wetland in pond 

component (.pnd) 

 

5.2.5 BMP Impact 

BMP impact on flow was evaluated with baseline and the various BMP scenarios calibrated and 

validated against monthly observation data. The effectiveness of a BMP in reducing or 

controlling storm water flow was calculated by subtracting the simulated surface flow 

components of each BMP scenario from that of the baseline. The result was then divided by the 

baseline simulated surface flow and expressed as a percentage.   The obtained value is the 

measure of the BMP effectiveness at reducing flow in the sub-basin.  
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5.3 Results and Discussion 

 The baseline scenario was simulated from 2000 to 2009 from the calibrated (2000 to 2006) and 

validated (2007 to 2009) models with a warm-up period set from 1997 to 1999. Calibration and 

validation Nash-Sutcliffe efficiencies (NSE) were 51% and 90% respectively. The calibrated 

model had a slight over prediction bias of 0.48% as the validated model was under-predicted by 

10.2% with RMSE values of 0.45 and 3.6 respectively. Simulated average surface flow rate for 

the baseline scenario as determined at the sub-basin outlet was 3.83 m
3
s

-1
. Figure 1 shows the 

hydrographs for the total-flow, base-flow and surface-flow components.  

The study examined flow reductions between baseline and BMP scenarios. With the introduction 

of grassed waterways, simulated surface flow (storm water flow) reduced from the baseline 

scenario value of 3.83 m
3
s

-1 
to 3.47 m

3
s

-1
. This represents a grassed waterways BMP 

effectiveness of 9% for storm water flow during the study period (2000 to 2009). This simulation 

result was obtained by modifying the manning’s “n” value for the main channel from a baseline 

value of 0.014 to 0.3 in order to represent the effect of introducing a dense cover grassed 

waterways.  However the generated storm water flow is the flow contributed by all the other land 

cover categories (agriculture, forest, transportation, well pads, etc). Table 2 shows the baseline 

and adjusted scenario values of parameters used for the simulation of the respective BMPs.   

To account for the change in flow rate impacted by the presence of well-pads, a separate model 

was calibrated and validated with well-pads cover type replaced with mixed forest cover. This 

was done with the assumption that the natural undisturbed land area occupied by well-pads was 

hitherto most likely occupied by mixed forest land-cover.  The model evaluation or efficiency 

criteria values for both the calibration and validation periods are presented in table 3 for both 
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models. Also table 4 shows the baseline flow rates and the respective BMP effectiveness for each 

scenario.  

 

Table 15: Model Efficiency criteria for calibration and validation simulation 

Calibration 

Criteria 

Model with Well-

Pads 

Model without Well-

Pads 

NSE 0.51 0.52 

PBIAS -0.48 1.57 

RMSE 0.45 0.45 

R2 0.51 0.51 

RSR 0.26 0.29 

Validation 

NSE 0.90 0.89 

PBIAS 10.20 11.12 

RMSE 3.55 3.65 

R2 0.95 0.94 

RSR 0.44 0.45 

 



 
 

 
 

1
3
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Table 16: Model effectiveness for the respective BMP 

Scenario 
Model with Well-

Pad
[a]

 

Model without  Well-

Pad
[a]

 

BMP 

Effectiveness
[b]

 

BMP Effectiveness on Well-

Pad
[c]

  

Baseline 3.83 3.6     

Grassed 

Waterways 
3.47 3.26 9 91 

Check Dams 3.67 3.44 16 100 

Wetlands 2.7 2.59 30 48 
[a]

 Flow rate measured in m
3
s

-1
 at sub-basin outlet, 

[b] 
BMP effectiveness measured with all land-cover types expressed as percentage 

[c]
 Effectiveness of respective BMPs at reducing flow attributable to well-pads expressed as a percentage 
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Table 17: Default and adjusted values of BMP parameters for respective BMP scenarios 

  BMP   

Parameter* Grassed Waterways Check Dams Wetlands Units 

  
Default 

Adjusted 

Value 
Default 

Adjusted 

Value 
Default 

Adjusted 

Value   

CH_N(1) 0.014 0.3 

     PND_FR 

  

0 0.026 

   PND_PSA 

  

0 1000 

  

ha 

PND_PVOL 

  

0 100 

  

10
4
 m

3
  

PND_ESA 

  

0 200 

  

ha 

PND_EVOL 

  

0 200 

  

10
4
 m

3
  

PND_VOL 

  

0 0 

  

10
4
 m

3
  

WET_FR 

    

0 0.26 

 WET_NSA 

    

0 1000 ha 

WET_NVOL 

    

0 100 10
4
 m

3
  

WET_MXSA 

    

0 200 ha 

WET_MXVOL 

   

0 200 10
4
 m

3
  

WET_VOL         0 0 10
4
 m

3 
 

*CH_N(1) Manning’s ‘n’ value for main channel; PDN_FR fraction of sub-basin that drains into ponds; PND_PSA principal spillway 

pond surface area; PND_PVOL principal spillway pond volume; PND_ESA emergency spillway pond surface area; PND_EVOL 

emergency spillway pond volume; PND_VOL initial volume of water in pond; WET_FR fraction of sub-basin that drains into 

wetlands; WET_NSA normal level wetland surface area; WET_NVOL normal level wetland volume; WET_MXSA maximum water 

level wetlands surface area; WET_MXVOL maximum water level wetlands volume; WET_VOL initial volume of water in wetlands. 
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The curve number for the second model (without well-pad) was adjusted for mixed forest land 

cover which ultimately decreased the average curve number for the entire sub-basin. This 

resulted in a reduction in the average flow rate and slightly better fit to the observation data as in 

shown in NSE of 0.52. The difference in flow rates between both models was determined to be 

0.23 m
3
s

-1 
(heretofore referred to as well-pad surface flow). Much as this value seem 

insignificant in comparison to the respective flow rate values as seen in table 3 it is important to 

note that this is the increase in flow rate that is attributable to the presence of well-pads in the 

sub-basin. Subsequently the effectiveness of the various BMPs at reducing this increase in flow 

rate was evaluated.  

Wetlands were most effective at reducing the general sub-basin flow rate; reducing it by 30%. To 

achieve this, 26% of the generated sub-basin surface flow has to be intercepted by the wetlands. 

The previous computations for the idealized (based on wetlands draining 10 km
2
 of sub-basin) 

essentially means that by using a slope threshold of 3% or less for wetland suitable HRUs, only 

1.9% of the generated sub-basin surface flow will be intercepted by the wetlands. Check dams 

were also suitable for reducing general sub-basin flow; effectively reducing surface flow rate by 

16%. Grassed waterways were least effective at reducing general sub-basin surface flow. On the 

contrary, the implementation of grassed waterways reduced 91% of the well-pad surface flow 

whiles wetlands reduced almost half (48%) of the well-pad flow. Albeit least effective at 

reducing the general sub-basin flow rate, check dams were most effective (100%) at mitigating 

well-pad flow.  

This study is however limited by the fact that the derived effectiveness values for the various 

BMPs are dependent on the simulation period (2000 to 2009) and can vary when evaluated over 

different periods. Another limitation is that model parameter sets obtained are subject to 



 
 

142 

 

equifinality (Beven and Binley, 1992).  Also, no specific BMPs implementation are stated in 

USFWS (2007) so the most closely related SWAT BMPs were selected from the SWAT BMP 

manual to meet the measures meant to control storm water flow as presented in USFWS (2007).  

 

 

 

 

(a) 

 

(b) 
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(c) 

Figure 27: Total-flow (a), Base-flow (b) and Surface-flow (c) hydrographs for the baseline 

Scenario with well-pads 

 

5.4 Conclusion 

The United States Environmental Protection Agency (USEPA) under the Clean Water Act 

regulates the discharge of storm water from industrial activities through the issuance of permits 

under the National Pollutant Discharge Elimination System (NPDES). The oil and gas industry is 

however exempt from this regulatory provision. Nonetheless, oil and gas activities do impact 

storm water flow generation and this has prompted agencies such as the United States Fish and 

Wildlife Services (USFWS) to develop guidelines and encourage operators to voluntarily 

implement.  This study applied a modeling approach to evaluate the effectiveness of storm water 

control Best Management Practices in a sub-watershed with predominant shale-gas activities. 

Using the Soil and Water Assessment Tool (SWAT) model, three storm water control BMPs 

were evaluated in the South Fork of the Red River sub-watershed of the Little Red River 

Watershed (a sub-basin that sees a majority of shale-gas activities in the Fayetteville Shale Play 

(Funkhouser, 2012)).  
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This study found that SWAT model could adequately be employed to represent baseline and 

various scenarios involving the implementation of BMPs in the sub-basin and evaluate their 

respective storm water control impacts at the sub-basin outlet. Based on the model simulations 

the BMPs were estimated to reduce storm water flow in the sub-basin by an average of 18%. An 

even higher average BMP effectiveness of 80% was achieved on the differential storm water 

flow attributable to well-pads alone. Among the BMPs, grassed waterways was least effective 

with the general sub-basin flow rates but was very effective (91%) with flow rates attributable to 

well-pad land-cover.  

Perhaps the most important finding of this study is that much as a BMP might appear less 

effective at controlling flow from the overall land-cover of the sub-basin, it is highly likely that it 

will certain have a significant effectiveness on flow generated as a result of the presence of well-

pads. This leads to the implication that the implementing appropriate BMPs will most likely have 

effective impacts on the flow generating components.  With awareness of the stated limitation of 

the model in this study, it is the conclusion of this study that the suggested BMPs do have 

positive impacts on flow mitigation measures. When implemented along with well-pad 

construction activities as suggested by USFWS (2007), significant changes can be made on the 

negative effects of storm water generation attributable to shale-gas activities.  
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CHAPTER 6: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.0 Summary 

Unconventional energy resources have in recent years been the focus of various discussions and 

initiatives aimed at exploring alternative sources of energy in response to climate change 

challenges. In the United States, perhaps the most popular energy resource that has received 

significant attention and subsequent increase in exploration and production is natural gas from 

unconventional sources; particularly shale formations.  The overall goal of this study was to 

investigate the complex dynamics that exist between human interactions with the environment 

specifically with regards to shale gas exploration and production.  

In this study, human interactions were defined in terms of changes in land-cover as a result of 

increase exploration activities and the attendant potential impacts on runoff and stream-flow 

generation. A key component of the study is the evaluation of the predictive reliability of the 

modeling paradigm on stream-flow; primarily based on choice of land-cover data and method of 

classification in determining the suitability of the chosen hydrologic model for the study. 

Suggested methods of Best Management Practices (BMPs) aimed at mitigating the identified 

potential impacts are also evaluated using a modeling approach. The study used methods in 

hydrologic modeling, geographic information science and remote sensing to address specific 

objectives.  

This dissertation comprises three main objectives. The first objective was to evaluate and 

determine the stream-flow predictive reliability of the ubiquitous Soil and Water Assessment 

Tool (SWAT) based on input land-use land-cover (LULC) method of classification and data 
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spatial resolution. Essentially the goal was to determine if the high-resolution land-cover data 

classified with the object-oriented image analysis technique presents any advantage in terms of 

model flow predictive reliability over low-resolution land-cover data classified with the pixel-

based maximum likelihood method.   

The second objective was to develop a classification rule-set based on the object-oriented image 

analysis technique to quantify land-cover changes with particular attention to shale-gas related 

infrastructure in a watershed which has seen increased activities related to shale-gas exploration 

and production. The classified land-use change data was then used as input LULC data to 

determine effect of shale-gas activities on stream-flow generation in the watershed. The third and 

final objective was to use hydrologic modeling to evaluate the effectiveness of suggested BMPs 

in mitigating the identified runoff and stream-flow impacts on the watershed.  

The study area for the first objective was the Little Red River Watershed (LRRW) with an 

approximate area of close to 4700km
2
 and located in the north-central portion of Arkansas within 

the Fayetteville Shale Play.  

6.1 Objective 1 

To evaluate the predictive reliability of a calibrated SWAT stream-flow model set-up with high-

resolution (1 m) NAIP LULC data classified with object-oriented image analysis technique and 

low-resolution (28.5 m) LULC data classified with pixel-based maximum likelihood method.  

Two main land-cover data were used. A high-resolution land-use land-cover data classified with 

objective oriented image analysis with an overall classification accuracy of 83% and a low-

resolution LULC data classified with maximum-likelihood method also with an overall 
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classification accuracy of 85%. The two LULC datasets were used to set-up two stream-flow 

models respectively. The calibration and validation periods were from 2000 to 2006 and 2007 to 

2009 respectively with a three-year model warm-up period from 1997 to 2000. Nash-Sutcliffe 

efficiency values after manual calibration and validation simulations were over 90% in both 

models. In general both low and high-resolution models under simulated total stream-flow by 

10.83% and 9.76% respectively.  

Due to the effect of equifinality in this study, the manual calibration stage was followed by auto-

calibration with the GLUE method. From this method, the p and r-factors (Abbaspour, 2011) 

were determined which were used to evaluate the predictive reliability of the models. The high-

resolution data model was able to bracket or capture 32% of the observation data as the low-

resolution data model accounted for 37% of the observed data out of seven thousand simulations.  

6.2 Objective 2 

To quantify the overall LULC change relative to shale-gas related infrastructure from 2006 and 

2010 using NAIP aerial imagery classified with Object-oriented image analysis and assess their 

contribution to the generation of the storm-water runoff and stream-flow in the most active (in 

terms of shale gas activities) 10-digit HUC sub-watershed of the Little Red River watershed.  

 

The object-oriented image analysis method was used to classify the data since the method is 

optimized for high resolution data (Baatz and Schape, 2000). The classified 1 m NAIP 2006 and 

2010 LULC datasets had overall accuracies of 83% and 84% respectively. Results showed that 

between 2006 and 2010, well-pads land-cover increased by approximately 78%. Albeit, land-

cover types such as agriculture and forest change were smaller, they still occupied a much higher 



 
 

151 
 
 

land area than the well-pads. Two SWAT stream-flow models were simulated to quantify the 

differential impact the increase in well-pads alone affected runoff and total stream-flow 

generation. With the effects of equifinality assumed to be at a minimum, the identified 78% 

change from 2006 to 2010 in well-pad land-cover was found to correspond to a 10% increase in 

storm water runoff depth. A 10-year (2010 to 2020) forecast simulation was also performed to 

determine the potential impact of well-pads alone on change in runoff depth (assuming all other 

land-cover changes are minimal); it was determined that for the forecast period and with all 

assumptions holding, runoff depth will increase by 10.3%.  

6.3 Objective 3 

Employ a modeling approach to evaluate the effectiveness of the implementation of storm-water 

BMPs in mitigating runoff generation identified in a high shale-gas activity watershed. 

 

Proposed runoff mitigation Best Management Practices (BMPs) were implemented in a SWAT 

runoff model calibrated for the South Fork Little Red River watershed (SFLRR). Three BMPs 

implementations were evaluated against an established baseline scenario; these BMPs were 

grassed waterways, wetlands and check dams. Results of BMP impact on the simulated runoff 

were divided by the baseline simulated runoff and expressed as a percentage. The evaluated 

BMP effectives were 9%, 16% and 30% for grassed waterways, wetlands and check dams 

respectively. However these figures were the evaluated effectiveness for the combined runoff 

generation of all the land-cover classes. The effectiveness of the BMPs in mitigating runoff 

determined to be generated as a result of the presence of well-pads alone, were 91%, 100% and 

48% respectively.  
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6.4 Further Studies 

1. This study did not account for the predictive reliability of the SWAT flow model  

calibrated with a high resolution LULC data with significantly higher classification 

accuracy. Several studies (Platt and Rapoza, 2008; Gao, 2003; Baatz and Schape, 2000) 

have reported significantly higher classification accuracy for high-resolution land-use 

data classified with the object-oriented image analysis technique. However, no study 

could be located that investigates whether the object-oriented image classified with its 

superior classification algorithm can be translated into similar gains for the reliability of 

hydrologic models.  Further work is thus important to fill this gap in literature as remote 

sensing techniques hold significant potential for hydrologic modeling.  

2. There is also the need to replicate the methodology in this study in other shale-gas 

activity-intensive watersheds throughout the United States to determine the respective 

outcomes. As economically viable and producing shale formations are being discovered 

on a rapid basis in the country, there is the need to develop predictive environmental 

technologies particularly with hydrologic resources so as to ensure a harmonized 

approach to exploration and production. The development of accurate and reliable 

hydrologic models could serve as back-end data source for the development of front-end 

decision support system based on geographic information science. Again, it is important 

to produce and maintain region-specific and accurate hydrologic models as the variations 

in the underlying input data, have been shown (White and Chaubey, 2005) to affect 

model output as well.  
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