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Abstract

Population growth in rural areas has led to new interest in rail transportation. Planning

a passenger rail system involves numerous difficult decisions, most representing a trade-off

between customer service and cost. In this work, we attempt to integrate many of these

planning decisions. We consider strategic decisions such as station location and vehicle

procurement, as well as tactical issues that include vehicle scheduling. Our integrated model

exploits the linear network structure that best suits many rural American communities,

including Northwest Arkansas. Due to the intractability of the integrated rail planning

problem, we have developed a customized heuristic approach to solve real world instances. In

our case study, we have applied our model and solution methodology to study the possibility

of implementing a passenger rail system in Northwest Arkansas. Our work represents the

first steps in a passenger rail feasibility study for Northwest Arkansas, while providing new

mathematical modeling and solution methodology contributions to the area of transportation

research.
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1 Introduction

Rising fuel prices (see Figure 1) and growing populations in rural areas have led to interest

in rail transportation as an environmentally conscious alternative to highway expansion for

the alleviation of traffic congestion. Northwest Arkansas (NWA) is a prime example of this

phenomenon. In fact, NWA was the sixth-fastest growing metropolitan area from 1990-

2000 with a growth rate of 47.5% [27]. Though the growth rate has decreased slightly since

2000, the NWA population could surpass 1 million within 25 years if current growth rates

continue 1. Further evidence suggesting NWA as a natural candidate for passenger rail is the

advantageous distribution of the area’s population. Furthermore, a study by the University

of Arkansas Community Design Center [8] points out that two-thirds of all current NWA

residents live within one mile of existing rail right-of-way.

Passenger rail systems of differing sizes and capabilities are available to city planners.

Common amongst alternatives are Light Rail, Heavy Rail and Commuter rail systems. Ac-

cording to the American Public Transportation Association (APTA), Light Rail systems

(also known as streetcar, tramway, or trolley systems) typically feature electrically driven

vehicles with power drawn from an overhead electric line. The APTA defines Heavy Rail

systems (also known as metros or subways) to be those operating on an electric railway

with the capacity for heavy volume of traffic. Finally, the APTA states that Commuter

Rail systems are usually located along routes of current or former freight railroad, that their

trains may be electric or diesel driven, and that they typically connect a metropolitan area

to its suburbs [16]. The methods we describe in this work could be applied to any of these

system types. However, given the existing rail right-of-way through the heart of the area,

the Commuter Rail model is most applicable to Northwest Arkansas.

In addition to rail systems differing by type and purpose, the configuration of any system

plays a key role in determining its operational capabilities and challenges. Figure 2 depicts

two such passenger rail configurations. Radial networks are common in urban settings, where

populations are spread over vast areas, and throughout Europe and Asia, where rail systems

connect cities in all directions. Because of the complexity of most urban/regional radial rail

1Recent growth rates based on data from the U.S. Census Bureau 2012 Statistical Abstract
[6].
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Figure 1: Historical Gasoline Prices in the U.S.
Source: U.S. Energy Information Administration [5]

networks, researchers have historically approached the rail planning problem hierarchically

for the sake of tractability [11]. Any passenger rail system requires an extensive planning

process that includes strategic, tactical, and operational decisions. Operational decisions

typically concern day-to-day activities and schedule disruptions, tactical decisions are those

with a 1-5 year impact (i.e. resource allocation), and strategic decisions are those with

implications reaching beyond 5 years (i.e. resource procurement) [11]. Within each of these

planning stages, numerous problems must be considered, as shown in Table 1. Authorities

in the field have commented that the hierarchical planning approach fails to guarantee an

optimal system, due to its inability to capture all interactions between various planning

stages [10].

Some rural communities, especially those that have developed along a river, roadway, or

historical rail line, lend themselves to the development of a passenger rail system that follows

a single path, however. We will refer to these as linear networks (see Figure 2). Simpler

networks with fewer required decisions may allow for the use of an alternative integrated

planning process that simultaneously considers the set of all required decisions, yielding

system-optimal solutions. Rural areas that naturally permit a linear network are prime

candidates for this type of approach. In this work, we introduce a mixed integer programming

model that integrates many of the strategic and tactical decisions outlined in Table 1. Since

2



Figure 2: Radial versus Linear network

Table 1: Rail Planning Decisions

Strategic

Number of Stations

Station Locations

Track Location

Number of Vehicles

Tactical

Days & Times of Operation

Vehicle Routes

Projected Demand

Vehicle Schedules

Operational

Crew Composition

Crew Assignment

Train Dispatching

Delay Management
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this integrated problem is difficult to solve using currently available computer hardware and

software, we have developed a customized heuristic process to generate quality solutions for

realistically-sized instances. Finally, we have applied our model and solution methods to

study the possibility of implementing a passenger rail system in Northwest Arkansas.

2 Literature review

Rail planning has been studied extensively within the operations research community. How-

ever, the existing literature is limited in its applicability to rural settings. The method

adopted by most researchers consists of separating rail planning decisions into subproblems

and solving each individually [11]. The following well-studied subproblems result: network

planning [24], line planning [10, 17], station location [25, 28], timetabling [12, 21, 22], vehicle

scheduling [29], and vehicle routing [31]. Though many of these problems are studied from

a deterministic standpoint, some researchers have developed models that incorporate the

uncertainty involved in rail systems. For example, Kroon et al. develop train timetables

that minimize the average delay associated with stochastic disturbances in [22] and [21]. In

[23], List et al. consider uncertainty of future demand and operating conditions in their

model meant to optimize fleet sizes. Researchers have attempted to solve these problems

exactly in rare cases. In [14, 15] a modified branch-and-bound technique is employed to

solve certain rail and bus scheduling problems. The authors exploit the structure of the

problems LP in a way that would not extend to our integrated problem, however. Much of

the literature focuses on heuristic development since these problems are often applied to very

large systems. Various heuristic approaches have been applied to these problems including

Lagrangian Relaxation [9, 26], Tabu Search [18, 19, 26], Neighborhood Searches [19, 26], and

Genetic Algorithms [18, 19]. In these works, heuristics have been shown to be successful in

generating quality solutions for many rail planning problems. No single heuristic has been

applied to all of the problems that we have integrated, however. For an extended review of

passenger rail research see [11, 13]. More recent research shows a continued interest in this

area, but no serious work has been done to integrate these various subproblems. Instead,

researchers have continued to assume that the rail planning process will follow a hierarchical

structure. This hierarchical approach to rail planning is unavoidable when the network to

4



be constructed is more complex, as is the case with most Asian and European networks.

However, due to subproblem interactions, it is in the planners’ best interest to integrate de-

cisions when possible [10]. Our investigation found that integration of this type is not present

in the existing literature. However, we contend that the configuration and reduced size of

many rural communities, including the NWA region, open the door to a partial integration

of the rail planning process. In this work, we have taken the first steps toward an improved

planning tool for rural rail transportation over the methods currently found in the literature.

We have integrated many of the problems outlined above by exploiting the linear network

structure that is best-suited for many rural settings. Since this integrated problem is difficult

to solve to optimality, we have developed a heuristic motivated by the neighborhood search

concept. Neighborhood search heuristics and their variants are ubiquitous in the Operations

Research literature. For a review of local search techniques, see [30].

3 Problem description

Our model is meant to assist planners as they make important strategic and tactical deci-

sions about potential passenger rail systems. We assume that a rail right-of-way has been

determined, and that a finite number of potential station locations have been identified along

this right-of-way. This right-of-way features one track for each direction of travel, and forms

a linear network as defined in Section 1. Two of the potential stations form the static end-

points for the potential system. One endpoint serves as the depot for the trains, where all

trains begin and end each of their loops (see definition below). The opposite endpoint serves

as the location where trains reverse their direction of travel.

Loop When a train departs the first station, traverses the entire track in one direction, trav-

els the entire track in the opposite direction, and then returns to its original location,

we will say that it has completed one loop.

Furthermore, we assume that origin, destination, and scheduling information is known or can

be estimated for all potential customers. In this initial work, we have assumed deterministic

customer demand. However, possibilities for stochastic variants of our problem are discussed

in Section 7. Using this information, along with station and vehicle cost information, we have
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Figure 3: An Example Where |L| = 10

developed a model to identify the station configuration, vehicle fleet size, and set of train

schedules that will maximize the daily profit for the system. We focus on a single-day horizon,

with time measured in minutes. To normalize costs, daily values for item procurement costs

are estimated (in current dollars) using the item’s purchase cost and estimated life of the

item. For example, if it costs $2,000,000 to procure a train that should remain in service for

20 years for 250 working days each year, the estimated daily cost for each train is $400. Costs

associated with installing any necessary track are not considered, because the right-of-way

is assumed to exist in our scenario.

To model our problem, we consider a passenger rail network consisting of two parallel

tracks, one for each direction of travel, connecting two fixed stations (endpoints of the linear

network) where trains turn around and depart in the opposite direction. The set L contains

two elements for each possible station location along the track, corresponding to the two

directions of travel. Letting L = |L|, station 1 and L both correspond to the first possible

location, 2 and L−1 to the second possible location, and so on until the last possible station

location, represented by L
2

and L
2

+ 1. The cost of procuring a station at location ` ∈ L is f`,

where f` > 0 for l = 1 . . . L
2

and 0 otherwise. Figure 3 provides an illustrative example. In

this example, five potential stations have been identified, including the two fixed endpoints.

Therefore, L = 10 and the first station location is represented by 1 and 10 depending on

direction of travel, the second by 2 and 9, and so on.

The set of trains that may potentially serve customers is denoted by T , where |T | = T .

Associated with each train τ ∈ T is a procurement cost cτ , a per-loop operating cost vτ ,

and a capacity uτ . The time required for a train to travel from location `− 1 to ` is denoted

6



t`. The speed of a train as it travels between locations is assumed to be constant, thus t` is

proportional to the length of the track between ` − 1 and `. In addition, we must account

for the time required for a train to stop at location `, denoted δ`, in the event that a station

exists there. The set K, where |K| = K, consists of the loops that a train may take around

the linear rail network. Here, K is a calculated upper bound on the possible number of loops

that any train may need to take during the time horizon.

The set G is comprised of the set of potential passenger groups in the rail system. The

number of passengers in group g ∈ G is denoted by Pg. The origin and destination for

group g are denoted og and dg, respectively. Each passenger group g has an arrival window

[ag − bg, ag] associated with their destination, where ag specifies the latest acceptable arrival

time at destination dg, and bg specifies the maximum acceptable waiting time (where waiting

occurs when a passenger arrives at their destination early). Thus, any train arriving at dg

within the arrival window of group g is eligible to serve all or some of the passengers in

group g. We restrict passenger groups from being split between multiple trains. Finally, the

system earns a daily revenue of rg for serving a passenger in group g. Our system is assumed

to operate H minutes per day.

The decision variables included in the model formulation representing our problem are

defined in Table 2. The model follows.
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maximize
∑
k∈K

∑
τ∈T

∑
g∈G

rgρ
k
g,τ −

∑
`=1...L

2

f`z` −
∑
τ∈T

cτyτ −
∑
k∈K

∑
τ∈T

vτq
k
τ

subject to

z` ≤ z1 ` = 2 . . . (L/2)− 1 (1)

z` ≤ zL/2 ` = 2 . . . (L/2)− 1 (2)

xkg,τ ≤ zI(og) τ ∈ T ; k ∈ K; g ∈ G (3)

xkg,τ ≤ zI(dg) τ ∈ T ; k ∈ K; g ∈ G (4)

qkτ ≤ yτ τ ∈ T ; k ∈ K (5)

yτ+1 ≤ yτ τ ∈ T \ {T} (6)

xkg,τ ≤ qkτ τ ∈ T ; k ∈ K; g ∈ G (7)

ρkg,τ ≤ Pgx
k
g,τ τ ∈ T ; k ∈ K; g ∈ G (8)∑

τ∈T

∑
k∈K

xkg,τ ≤ 1 g ∈ G (9)

wk+1
1,τ = wkL,τ τ ∈ T ; k ∈ K\ {K} (10)

wk`+1,τ = wk`,τ + δ`zI(`) + t`+1 τ ∈ T ; k ∈ K; ` ∈ L\ {L} . (11)

(ag − bg)xkg,τ ≤ wk`,τ τ ∈ T ; k ∈ K; g ∈ G (12)

(W − ag)(xkg,τ − 1) ≤ ag − wk`,τ τ ∈ T ; k ∈ K; g ∈ G (13)

nk`,τ − nk`−1,τ =
∑

g∈G;og=`

ρkg,τ −
∑

g∈G;dg=`

ρkg,τ τ ∈ T ; k ∈ K; ` ∈ L\ {1} (14)

nk1,τ =
∑

g∈G;og=1

ρkg,τ τ ∈ T ; k ∈ K (15)

nk`,τ ≤ uτ τ ∈ T ; k ∈ K; ` ∈ L (16)

z` ∈ {0, 1} ` = 1 . . . L/2 (17)

xkg,τ ∈ {0, 1} τ ∈ T ; k ∈ K; g ∈ G (18)

ρkg,τ ∈ Z+ τ ∈ T ; k ∈ K; g ∈ G (19)

yτ ∈ [0, 1] τ ∈ T (20)

qkτ ∈ [0, 1] τ ∈ T ; k ∈ K (21)

9



nk`,τ ≥ 0 τ ∈ T ; k ∈ K; ` ∈ L (22)

wτ ≥ 0 τ ∈ T (23)

where

I(`) =

 ` if ` ≤ L
2

L− `+ 1 otherwise.

In this formulation, constraints (1) and (2) force stations to be opened at the first and

last (physical) locations if stations are opened at any other locations. This does assume

that planners know where the system must begin and end. Since the endpoints of a rail

system serve as depots to store, maintain and repair trains, we do not treat the locations

of these two important facilities as separate decisions in this work. Constraints (3) and (4)

ensure that a group cannot be served unless a station exists at its origin location and its

destination location. Constraints (5) enforce the relationship between the q variables and

the y variable for each train. Constraints (6) break symmetry by forcing trains to be used

in order. Constraints (7) prohibit the assignment of groups to inactive trains. Constraints

(8) establish the relationship between the x variables and the ρ variables for each group.

Constraints (9) ensure that groups are served by at most one train, on exactly one of its

loops. Constraints (10) and (11) enforce the train schedule based on the station configuration.

Constraints (12) and (13) enforce destination arrival windows for customer assignments. The

constant W , used in Constraints (13) and defined as W = K
∑

`∈L(δ` + t`) +H, is a logical

upper bound for wk`,τ . Constraints (14)-(16) enforce the capacity limitation for each train as

it departs each location on each of its loops. Finally, (17)-(23) define the decision variables.

Note that variables y, q, and n are continuous, but will take on integer values in any feasible

solution due to the problem structure.

The w variables in the above formulation make it simple to understand and model the

movement of trains in the system. Due to the network structure assumed above, however,

it is possible to eliminate many of the w variables using a simple substitution. Once a train

enters the system, its movement is implicitly controlled by the configuration of the stations

10



and the time spent at each station. Therefore, a single variable wτ , representing the time

train τ enters the system, can replace wk`,τ using the following substitution:

wk`,τ = wτ + k
∑
`′∈L

(δ`′zI(`′) + t`′)−
∑

`′∈L:`′>`

(δ`′zI(`′) + t`′)− δ`zI(`). (24)

We will adopt notation to simplify this substitution. By letting

S(`, k) = k
∑
`′∈L

(δ`′zI(`′) + t`′)−
∑

`′∈L:`′>`

(δ`′zI(`′) + t`′)− δ`zI(`), (25)

the substitution becomes

wk`,τ = wτ + S(`, k). (26)

This substitution eliminates the need for constraints (10) and (11). This more compact

representation will be used in the computational testing discussed in Section 5. However,

before considering computational issues, we explore an alternative approach for efficiently

generating solutions to our problem in the following section.

4 Solution methodology

Despite the linear structure of the rail network considered in this work, experimentation

has shown that our integrated problem requires a prohibitive amount of time and computer

memory to solve using commercial optimization software. To illustrate this point, Table 3

reports typical computational times2 for four instances generated randomly based on real

data gathered during this project. Note that this table is strongly indicative of results seen

across all experiments considered in this project. For more information on the construction

of these instances, see Section 5.

As Table 3 shows, our problem is difficult to solve even for very small test instances and

larger instances exhaust the available memory on our test machine very quickly. Furthermore,

we have found the problem to be difficult to solve even when many of the decisions are fixed.

For example, Table 4 shows the computational results for our problem when the station

2All experiments were performed using CPLEX 12 on an Apple R© iMac R© computer with
an Intel R© Core 2

TM
2.66 GHz processor and 4 GB of RAM.
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Table 3: CPLEX Results
Instance |G| L T H K Runtime (s) Best Soln. Best Bnd. Opt. Gap

1 200 8 10 500 8 36,000 125 1305.05 944.04%

2 300 14 20 500 6 36,000 2484 5890.27 137.13%

3 1000 30 25 700 9 -∗ -∗ -∗ -∗

4 2500 44 40 900 10 -∗ -∗ -∗ -∗

∗ Indicates that the memory on our test machine was exhausted

procurement decisions and the vehicle procurement decisions have been fixed (i.e. we assume

that we know which stations should be opened and which trains are utilized).

Table 4: CPLEX Results with Fixed Station Configuration and Train Procurement
Instance Runtime (s) Best Soln. Best Bnd. Opt. Gap

1 18000 239 1025.74 329.18%

2 18000 4172 5039 20.78%

3 -∗ -∗ -∗ -∗

4 -∗ -∗ -∗ -∗

∗ Indicates that the memory on our test machine was exhausted

Since CPLEX has such difficulty solving the train scheduling and customer assignment

subproblems, it was apparent that any solution methodology for the problem should rely

very little, if at all, on exact approaches to solve portions of the problem. With this in

mind, and because none of the heuristic techniques present in the literature could be easily

adapted to our model, we developed a customized heuristic solution methodology to solve

the problem described in the previous section. An overview of this procedure is described

in the remainder of this section. More information regarding the detailed mechanics of the

heuristic can be found in the Appendix.

Our heuristic is neighborhood search-based, but features both segmented routines and a

nested structure within each of these routines. To clarify, our heuristic follows the high-level

process outlined in Figure 4, where portions of the best found solution are carried over be-

tween each segment. The routines included in Figure 4 are described as follows.

Initial Solution Construction Routine

In the Initial Construction and Improvement routine, a starting station configuration is

generated by exhaustively considering all possible station configurations and choosing the
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Close/Open
(Multiple)
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Solution

Figure 4: Heuristic Outline

station configuration that maximizes the “potential profit” associated with station costs and

passenger revenue. That is, if a passenger’s origin and destination locations each possess

a station, then his ticket revenue will be counted towards the “potential profit.” At this

point, any costs associated with serving that passenger other than station construction are

ignored (i.e. train procurement, operational costs). Once a configuration has been identi-

fied, a greedy method is used to construct an initial solution. In this greedy method, each

train is assigned a schedule that allows it to serve the largest unserved group at the time.

Other unserved groups are added if this schedule allows them to be served. After all possible

groups are added, the train is checked for profitability (i.e. Does the customer revenue on

that train at least cover the costs associated with the train?). If the train is profitable, it is

kept, otherwise its passengers are removed and the process starts over with the next-largest

unserved group as a “seed.” This repeats until all trains are active and profitable or until

all unserved groups have been used as a schedule “seed.” This solution is used to establish

a baseline fleet size. Next, a user-defined range of fleet sizes, (number of trains) around this

baseline will be considered. In our implementation, a fleet size range of 5 is used. For each

fleet size in this range, a solution is greedily constructed that utilizes the specified number of
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vehicles (i.e. vehicles are given schedules and passengers are assigned to vehicles that could

feasibly serve them). Finally, we attempt to improve this constructed solution by modifying

the train schedules and customer assignments through the so-called improvement routine

described below.

Solution Improvement Procedure

Repeatedly during the heuristic, solutions are constructed for a particular station configu-

ration and fleet size, and then they are passed to our Solution Improvement Procedure. In

this procedure, a solution obtained via construction during one of the routines (e.g. Initial

Construction, Close, Open, etc.) is taken as an input and serves as the basis for our improve-

ment scheme. Given the current constructed solution, a user-defined number of train pairs

are randomly selected, each train having an equal likelihood of being selected, for additional

consideration. The number of train pairs allowed in our implementation is 200. Amongst the

trains available for random selection is a dummy train to which all unserved customers are

assigned. For each train pair considered, “group moves” and “group swaps” are attempted.

A group move consists of moving a group served on one randomly selected train to the other

randomly selected train. Similarly, a group swap consists of randomly choosing a group,

where each group has an equal probability of being chosen, from each randomly chosen train

and forcing each of these groups to be served by the train to which they are not currently

assigned. In each of these cases, an attempt is made to serve the group or groups in question

on the opposite train by allowing the number of people served within a group to be modified

in order to satisfy train capacity. Next, an attempt is made to alter the train schedule so that

any newly considered customers might be served. This step is done via a straightforward

modification of the train arrival windows. However, it is important to note that while the

train schedules can be altered to serve a new customer, no currently served customers may

become unserved in this process. The sequence of group moves and swaps are repeated until

a user-defined number of iterations have passed without improvement, at which point the

next train pair is considered and the process is repeated. In our implementation, the limit

on consecutive iterations without improvement is taken to be 25. The improvement routine

stops when all randomly selected train pairs have been considered.

Close Routine
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The Close routine begins with the best station configuration identified in the Initial Solution

Construction. From this configuration, we explore a portion of the neighborhood of solu-

tions defined to be those with one fewer station than the current best solution. In the first

Close routine iteration, we consider all station configurations achieved by closing exactly one

station that is open in the current candidate solution. For each of these new configurations,

the process outlined in the previous routines is performed (Set Configuration → Construct

to Find Baseline Fleet Size →Set Fleet Size → Construct Solution → Improve Solution).

After this iteration, the solution with the highest objective among those considered is stored,

even if it does not improve upon the overall best solution. This process is repeated with

the stored solution’s configuration (not necessary the configuration from the overall best

solution) serving as the starting configuration for the next Close iteration. The iterations

continue until no improvement has occurred for a user-defined number of Close iterations,

or until all stations are closed. In our implementation the allowed number of consecutive

iterations without an improvement is 2 for this routine.

Open Routine

A similar process as that found the Close routine is used to define Open routine. In this

case, we partially explore the neighborhood of solutions that can be found by opening exactly

one additional station in the configuration associated with the overall best solution found to

this point. All configurations that feature one more open station than the current best are

considered and the solution among these with the highest objective is stored as the input to

the next Open iteration. This process repeats until a user-defined number of iterations have

occurred with no improvement, or until all of the stations are open. In our implementation

the allowed number of consecutive iterations without an improvement is 2 for this routine.

Swap Routine

In the swap routine, one currently opened station is closed, and one currently closed station

is opened. We start with the configuration that produced the overall best solution up to

this point. All possible pairs of stations consisting of one open and one closed station are

considered and follow the same process to produce and improve solutions as detailed in the

Improvement routine. After all possible pairs are considered, the best of these solutions is

stored and its configuration is the starting point for the next Swap iteration. This process
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repeats until a user-defined number of iterations is reached, or until no improving solution

is found for a defined number of consecutive iterations. In our implementation the overall

limit on iterations is 15 for this routine, and we halted the routine after a single iteration

with no improving solution.

Modified Close/Open Routine

In this routine, we revisit the Close and Open concept using a modified search scheme.

Specifically, in an attempt to uncover complex interactions between multiple stations, we

now allow up to 5 stations3 to be opened or closed at once. Starting with the configuration

from the best overall solution, we randomly decide whether to open or close stations, and

how many. A user-defined number of these configurations are considered (i.e. solutions are

created and improved for each configuration paired with a range of fleet sizes) and the best

of these solutions is stored. Our implementation allows for 50 of these configurations to be

considered. This process is repeated with the stored configuration as a starting point for the

next iteration until a pre-set number of iterations are completed without improvement. For

our implementation, we require improvement after at most 2 consecutive iterations in order

to continue this routine.

Polishing Routine

In our final routine, we attempt to polish the best solution found using the previous sequence

of routines. In this segment of the heuristic, we no longer consider configuration changes, but

instead focus on the train schedules and passenger assignments. We do this by performing

an extended version of the schedule improvement process outlined above and by removing

passengers from trains and train loops with very light ridership. That is, if the passengers

assigned to a train loop do not cover the operational cost of that loop (vτ ) or if the total

ridership for a train does not cover the procurement and operational costs for that train,

then the customers are removed from the loop or train, respectively. An attempt is made

to serve these customers on other trains if train passenger capacity is available and train

schedules allow for the customers to travel within their desired time windows. However, it is

important to note that the overall system profit will increase from removing customers that

3The limit of 5 was put in place due to the increased computational cost incurred by
considering multiple stations beyond this level.
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do not generate revenue exceeding a loop cost even if these customers remain unserved.

The values we chose for each user-defined parameter stemmed from the need to solve

realistically sized instances in reasonable time frames. We weighed this need against the

affect these parameters had on the solution quality for smaller instances to settle on these

values. Notice that each routine found in Figure 4, except the final solution polishing, follows

the general steps outlined in Figure 5 in some way. The nested structure of the heuristic

follows the natural hierarchy of rail planning decisions outlined above. Our heuristic, like

our model, considers the interaction between these decisions in a way that is not currently

present in the literature. Again, a more detailed outline of the heuristic process is given in

Appendix B.

Set Station Configuration

Set Vehicle Fleet Size

Construct Solution

Improve Constructed Solution

Figure 5: Nested Heuristic Structure

5 Computational study

In this section we investigate the performance of the solution methodology presented in Sec-

tion 4 on a broad range of test instances. Before presenting our results, we discuss motivation

and mechanics behind the scheme utilized to generate each of our random instances. Then

we provide numerical results that offer insights into the capabilities of the proposed heuristic

procedure.
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5.1 Experimental design

Using information regarding existing rail systems and commuter patterns, we developed a

procedure for randomly generating experiments intended to resemble real-world instances.

The generation of our instances can be broken into: (i) determining potential station lo-

cations, (ii) assigning passenger demand time windows, (iii) identifying each potential cus-

tomer’s origin and destination and (iv) defining the appropriate rail system operational

parameters. The following subsections describe how we handle the generation of each of

these problem components.

Station Locations

The potential station locations were randomly generated in a manner consistent with the

variation of available locations in Northwest Arkansas, where we hope to apply our model.

That is, we assume an ordered number of possible locations along a single line. Note that

the line might be representative of an existing rail bed, as is the case in Northwest Arkansas.

For each consecutive pair of potential station locations, the number of miles between each

location is a uniform random variable with range [0.5, β] miles, where β ∈ [5, 15] miles,

depending on the instance.

Passenger Time Windows

The time in which passenger demand occurs was generated in such a way that two

distinct “peaks” were present in the planning horizon in order to represent “rush hour”

demand caused by commuter traffic to and from work. Specifically, we generate customer

demand so that 60-80% of demand occurs during two “peak” periods during the horizon.

For a full-day horizon, these “peaks” may fall between 7:00-9:00 AM and 4:00-6:00 PM, for

example. Note that for the instances studied in this section, the horizon length is 500 minutes,

leaving the full-length horizon to be studied in Section 6. Accurately modeling peaks and

valleys in customer demand throughout this horizon was accomplished by classifying our

customers as one of three types: commuters, students, or others. Then, arrival deadlines

were generated according to a uniform distribution bounded by the preset windows shown

in Table 5 that are specific to each customer type. Recall that each customer has both an

originating and return trip 4, therefore separate bounds are given for each trip. In addition,

4Note that we do not “link” these trips at this time.
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since customers classified as “others” are assumed to travel anytime throughout the day

with equal likelihood, the deadline associated with this category’s outgoing trip is generated

uniformly between time 0 and the end of the horizon (500 minutes). The deadline for the

return trip of the “other” customers occurs with equal likelihood at anytime between the

deadline of the originating trip, which we refer to as ō, and the end of the horizon. Passenger

Table 5: Customer Arrival Deadlines By Type
Customer Type/Trip Classification Arrival Deadline Bounds (min)

Commuters Outgoing Trip [100,175]

Commuters Return Trip [375,450]

Students Outgoing Trip [100,175]

Students Return Trip [375,450]

Others Outgoing Trip [0,500]

Others Return Trip [ō,500]

arrival window lengths were fixed at 15 or 30 minutes for the instances used for computational

testing. For our case study, passenger arrival windows are randomly generated for each group

and are equally likely to be 30 or 60 minutes. This was done simply to account for the various

levels of flexibility that passengers might have.

Passenger Origins and Destinations

Passenger origins and destination were determined in a uniform manner (i.e. stations be-

ing equally likely to be an origin or destination) in some cases and with higher variability (i.e.

stations weighted based on popularity) in others in order to model differing population and

attraction distributions. To model increased variability in customer/destination location,

we relied on the characterization of customer demand as being baseline, variable or more

variable. In the baseline case, customers were randomly assigned an origin station5 from the

set of randomly generated potential station locations, followed by a destination randomly

chosen from the locations down-track of the assigned origin station. In the variable and more

variable scenarios, the likelihoods of locations being chosen as destinations were varied with

increasing intensity as we moved from the variable to more variable scenarios. Specifically,

in the variable instances, the overall likelihood that a station serves as a customer origin or

5Each origin was equally likely.
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destination ranges between 7% and 23%, with the sum of the probabilities associated with

each potential station is 1. For more variable instances, a wider range of 6-30% of customer

demand per station is possible. Here again, the sum of the probabilities associated with each

potential station must be 1. This scheme allowed us to represent the realistic situation in

which one location is primarily residential and would be a likely customer origin in the morn-

ing whereas another location may be located in an industrial area where many customers

work, but few live. Therefore, morning traffic would be heavy outbound from the residential

area and inbound to the industrial area, while afternoon demand would follow the opposite

pattern.

Rail Operations

With regard to more specific operations of the rail system, we assumed a cruising train

speed of 35 miles per hour based on various existing rail systems found in the literature

[1]. Furthermore, we assumed train costs between $500,000 and $2 million and 15-20 year

operational lives depending on the instance. These values are consistent with the values

presented in [1]. For randomly generated instances, station procurement costs were set

between $2.5 million and $15 million with an assumed life of 50 years. These values are

slightly lower than many station costs for existing systems [1, 2] since we assume that stations

in rural settings would be cheaper due to lower construction and real estate costs.

5.2 Numerical results

In this section, we provide a comparison of the performance of the heuristic approach de-

scribed in Section 4 and that of a commercial optimization solver. We also present compu-

tational results for a comprehensive set of test instances. All experiments were performed

using CPLEX 12 on an Apple R© iMac R© computer with an Intel R© Core 2
TM

2.66 GHz pro-

cessor and 4 GB of RAM. All instances considered in this section feature 14 locations, 20

potential trains, 8 potential loops, and were generated using the procedures and definitions

presented in Section 5.1. Unless indicated otherwise, daily station costs for these instances

are uniformly generated between $600 and $900 and the customer arrival window length,

b, is selected to be 30 minutes. The default capacity for trains in these instances is 175

passengers unless otherwise specified in the naming convention presented in the following
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subsection. The revenue associated with serving a single customer, r, is $2.75 for all of these

instances.

5.2.1 Instance naming convention

To describe the characteristics of each instance tested, a four-part naming convention is

adopted. The computational instances are named according to the following convention.

• First Character of Instance Name: All instances begin with the letter B, V, or M.

These letters are used to indicate baseline, variable, or more variable customer demand

variability, respectively. Each of these levels were described in Section 5.1 and reflect

the likelihood that a particular station is chosen as a customer’s origin/destination.

• Second Character of Instance Name: The second character in all instance names is

either a 3 or a 5. A value of 3 (5) indicates that there were 300 (500) groups considered

in that specific instance.

• Third Character of Instance Name (optional): In some instances, we’ve investigated

the impact of varying certain default parameters (e.g. station cost, train capacity or

passenger arrival window). For instances in which this additional consideration was

made, a “special” character appears as the third character in the instance name. The

optional third character may be an S, C or W, indicating a change in station cost,

train capacity or passenger arrival windows, respectively. The details of the changes

associated with each of these special characters is as follows:

– S indicates that the station costs considered in that instance are more variable

than those considered in a default instance. Specifically, the station costs are now

generated according to the following scheme, where the percentage represents the

likelihood that a single station’s cost will follow the specified distribution.

∗ 20% - uniform between $300 and $600

∗ 70% - uniform between $600 and $900

∗ 10% - uniform between $1400 and $2000

– C indicates that the train capacity for that instance is reduced from the default

of 175 passengers per train to 75 passengers per train.
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– W indicates that passenger arrival windows are shorter than the default of 30

minutes. For that instance, the passenger arrival windows are reduced to 15

minutes.

• Last Characters of Instance Name: For each combination of problem characteristics,

five random instances were generated. Different instances generated using the same

parameter values are differentiated by an underscore ( ) followed by a replicate num-

ber.

To illustrate this naming convention, consider an instance named V5W 2. From the name,

we know that the instance has variable customer demand with 500 groups and a reduced

customer window length. The “ 2” indicates that this is the second instance of type V5W.

In the following section, we analyze the computational performance of our approach on

instances identified using this naming convention.

5.2.2 Heuristic versus CPLEX

The instances presented in Table 6 were randomly generated simply to assess the value of

our heuristic versus that found by CPLEX. Note that in each of these instances can be

identified by the naming convention and default parameter values discussed in Section 5.2.1.

In the results associated with 14 of the 15 instances shown in Table 6, the heuristic obtains a

solution with an objective notably better than that obtained by CPLEX in the allotted time

of 2 hours. In fact, in 14 of the 15 instances, CPLEX failed to find a solution that improved

upon a plan that “does nothing” (i.e. open no stations, serve no customers). The heuristic,

on the other hand, produced a profitable solution for all but 1 of the instances. The ability

of our heuristic to obtain improved solutions over a commercial solver is amplified by the

fact that CPLEX was given 2 hours to provide its solutions, while the heuristic, on average,

required only 341 seconds. These results were very much indicative of all our attempts to

use commercial optimization software to identify solutions to our rail planning problem.

Consistently, the commercial optimization tool failed to obtain a solution that located any

stations or served any customers. Fortunately, the heuristic approach described in Section

4 provided profitable solutions in 14 of 15 cases. However, further analysis is needed to
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assess the value of the proposed heuristic approach. Therefore, a broader set of tests will

be considered in the next section that will assist us in understanding the effectiveness of the

different phases of our heuristic in obtaining improved solutions to our problem.
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5.2.3 Heuristic performance

A more comprehensive set of results used to assess the performance of our heuristic is pre-

sented through the expanded set of instances shown in Tables 7 through 18 below.

To measure the effectiveness of the heuristic outlined in Section 4, four “classes” of

instances have been created. Within each class, six specific instance types are considered,

with five replicates for each type. Note that each of these instances complies with the naming

scheme outlined earlier in this section. Tables 7 through 9 describe the heuristic results for

the first class of instances, which we refer to as the base experiments. Tables 10 through

12 describe the results for the second class, which we call the capacity experiments. Tables

13 thought 15 describe the results for the third class, the station cost experiments. Finally,

Tables 16 through 18 describe the fourth class of instances, the passenger arrival window

experiments. Recall from Section 4 that our heuristic proceeds through three phases: (i)

Construction; (ii) Improvement and (iii) Polishing. The first table for each class serves

to evaluate the impact of these three phases on the objective. The second table for each

class breaks down the computational time according to the three phases. Finally, solution

statistics are presented for the instances in each class. The results of these experiments are

summarized in Tables 19 and 20 below.

The percentage shown in the Improvement column is calculated as follows:

zFinal − zConstruction

zConstruction
.

Improvement results marked by a ‘-’ indicate that the original construction solution was no

better than the “do nothing” option. Therefore, while the final polished objective has im-

proved, the percent of improvement cannot be compared with the results in which the initial

construction heuristic had a positive objective. Note that some of our heuristic solutions

have a negative objective. In these cases, the “do nothing” option is clearly preferable, but

our heuristic did not reach this solution. The “Groups Served” statistic presented for each

instance includes any group that was partially or fully served in the final solution.
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Table 7: Heuristic Results: Base Experiments
Instance Runtime (s) Init. Constr. Obj. Obj. After Impr. Obj. After Polishing Improvement

B3 1 70 212.5 1419.5 1419.5 568%

B3 2 224 -642.5 924.75 968.75 -

B3 3 51 33 1259.5 1259.5 3717%

B3 4 524 -373 455.75 455.75 -

B3 5 132 592.25 1248.25 1248.25 111%

V3 1 208 -594.25 0 0 -

V3 2 522 677 1198.5 1198.5 77%

V3 3 62 653.5 1624.5 1646.5 152%

V3 4 624 398.5 1906 1994 400%

V3 5 419 649.25 2970.5 2973.25 358%

M3 1 469 132 2471 2471 1772%

M3 2 671 1213 2488.5 2488.5 105%

M3 3 739 462.25 1382.5 1393.5 201%

M3 4 208 1351.25 2459.25 2459.25 82%

M3 5 186 19.5 1597.25 1597.25 8091%

B5 1 702 4919.5 5880.5 5883.25 20%

B5 2 303 4592.75 6073 6103.25 33%

B5 3 44 5407.5 5795.25 5795.25 7%

B5 4 48 4652.25 6331.5 6331.5 36%

B5 5 66 4517.25 5396 5530.75 22%

V5 1 1021 3605 4912.5 5176.5 44%

V5 2 565 2735.75 4518.5 4716.5 72%

V5 3 349 2268 3883 4023.25 77%

V5 4 515 3591.5 4456 4662.25 30%

V5 5 85 4071.5 4666.75 4886.75 20%

M5 1 1474 4345.25 6211.5 6379.25 47%

M5 2 315 4678.25 5814 6009.25 28%

M5 3 228 4043.75 6627.25 6764.75 67%

M5 4 1542 4201.25 5760.75 5837.75 39%

M5 5 384 2323.25 4197.75 4951.25 113%
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Table 8: Heuristic Results: Base Experiment Timing
Instance Init. Constr. Time (s) Improvement Time (s) Polishing Time (s)

B3 1 <1 67 3

B3 2 <1 221 3

B3 3 <1 48 3

B3 4 <1 520 3

B3 5 <1 129 3

V3 1 <1 208 <1

V3 2 <1 519 3

V3 3 <1 59 3

V3 4 <1 620 4

V3 5 <1 415 4

M3 1 <1 466 3

M3 2 <1 668 3

M3 3 <1 735 4

M3 4 <1 206 2

M3 5 <1 183 3

B5 1 <1 697 5

B5 2 <1 297 5

B5 3 <1 40 4

B5 4 <1 44 5

B5 5 <1 59 7

V5 1 <1 1013 8

V5 2 <1 555 10

V5 3 <1 341 8

V5 4 <1 506 9

V5 5 <1 80 5

M5 1 <1 1466 8

M5 2 <1 308 7

M5 3 <1 221 7

M5 4 <1 1537 5

M5 5 <1 373 11
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Table 9: Heuristic Results: Base Experiment Solutions
Instance Stations Open Fleet Size Groups Served Passengers Served

B3 1 7 2 277 2978/3171

B3 2 7 4 293 3037/3141

B3 3 7 3 295 3142/3202

B3 4 7 4 277 2825/3079

B3 5 7 3 295 3147/3208

V3 1 0 0 0 0/3063

V3 2 7 3 292 3042/3164

V3 3 7 3 283 2950/3173

V3 4 5 4 273 2988/3285

V3 5 5 4 286 3123/3278

M3 1 6 3 276 2844/3131

M3 2 4 3 229 2314/3064

M3 3 6 4 252 2686/3168

M3 4 7 2 270 2867/3215

M3 5 5 3 238 2415/3173

B5 1 7 4 470 4951/5307

B5 2 7 4 465 4923/5339

B5 3 7 3 463 4779/5133

B5 4 7 3 479 4846/5117

B5 5 7 5 473 4825/5167

V5 1 7 6 479 4966/5232

V5 2 7 8 460 4874/5328

V5 3 7 6 438 4627/5373

V5 4 7 7 470 4803/5184

V5 5 7 4 477 4701/4981

M5 1 7 6 439 4711/5434

M5 2 7 5 448 4511/5096

M5 3 7 5 450 4681/5391

M5 4 6 3 404 4041/5024

M5 5 7 8 456 4935/5449
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Table 10: Heuristic Results: Capacity Experiments
Instance Runtime (s) Init. Constr. Obj. Obj. After Impr. Obj. After Polishing Improvement

B3C 1 178 -729 0 0 -

B3C 2 271 -307.25 573 625.25 -

B3C 3 165 -934 0 0 -

B3C 4 654 140.75 531.5 561.75 299%

B3C 5 527 -932.75 -252 -199.75 -

V3C 1 182 -2275.5 0 0 -

V3C 2 1197 -1753.25 519.25 651.25 -

V3C 3 474 -2229.75 0 0 -

V3C 4 400 -1833.75 0 0 -

V3C 5 369 -1586.75 0 0 -

M3C 1 643 -488.25 458 458 -

M3C 2 858 -1194.75 1178.5 1305 -

M3C 3 773 -1766 671.25 943.5 -

M3C 4 996 -257 1281.75 1406.75 -

M3C 5 521 437.5 1546.5 1574 260%

B5C 1 206 2686.75 3289.25 3613.75 35%

B5C 2 624 1845.75 2863 3209.5 74%

B5C 3 296 2185.75 2405.25 2471.25 13%

B5C 4 959 2334.25 3017.5 3320 42%

B5C 5 1158 2038.75 3709.25 3940.25 93%

V5C 1 1624 464.25 1160.5 1193.5 157%

V5C 2 1432 -469 937.5 1223.5 -

V5C 3 580 949.25 1900.5 2932.75 209%

V5C 4 371 312.25 1700 1782.5 471%

V5C 5 1428 250.25 1195.25 1255.75 402%

M5C 1 1301 2371.5 3288 4448.5 88%

M5C 2 742 2014.75 3508.25 3593.5 78%

M5C 3 1505 1854 3277.5 3566.25 92%

M5C 4 1482 1537 1967.25 2272.5 48%

M5C 5 1796 1262.5 2242 2352 86%
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Table 11: Heuristic Results: Capacity Experiment Timing
Instance Init. Constr. Time (s) Improvement Time (s) Polishing Time (s)

B3C 1 <1 178 <1

B3C 2 <1 268 3

B3C 3 <1 165 <1

B3C 4 <1 651 3

B3C 5 <1 525 3

V3C 1 <1 182 <1

V3C 2 <1 1192 4

V3C 3 <1 474 <1

V3C 4 <1 400 <1

V3C 5 <1 369 <1

M3C 1 <1 640 3

M3C 2 <1 854 4

M3C 3 <1 768 5

M3C 4 <1 993 4

M3C 5 <1 517 4

B5C 1 <1 199 7

B5C 2 <1 615 9

B5C 3 <1 289 7

B5C 4 <1 950 9

B5C 5 <1 1151 7

V5C 1 <1 1615 8

V5C 2 <1 1424 8

V5C 3 <1 560 20

V5C 4 <1 363 8

V5C 5 <1 1421 7

M5C 1 <1 1290 11

M5C 2 <1 735 7

M5C 3 <1 1496 9

M5C 4 <1 1472 10

M5C 5 <1 1786 10
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Table 12: Heuristic Results: Capacity Experiment Solutions
Instance Stations Open Fleet Size Groups Served Passengers Served

B3C 1 0 0 0 0/3266

B3C 2 7 3 268 2763/3260

B3C 3 0 0 0 0/2993

B3C 4 7 4 261 2917/3390

B3C 5 7 3 252 2511/3083

V3C 1 0 0 0 0/3000

V3C 2 5 5 254 2591/3186

V3C 3 0 0 0 0/3163

V3C 4 0 0 0 0/3017

V3C 5 0 0 0 0/3105

M3C 1 4 3 179 1720/2982

M3C 2 4 4 216 2144/3140

M3C 3 5 5 243 2298/2981

M3C 4 4 4 228 2265/3104

M3C 5 7 4 239 2528/3214

B5C 1 7 5 433 4417/5213

B5C 2 7 6 412 4230/5878

B5C 3 7 5 379 3671/5118

B5C 4 7 6 417 4256/5236

B5C 5 7 5 435 4355/5191

V5C 1 6 5 313 3074/5336

V5C 2 6 5 321 3218/5198

V5C 3 7 8 446 4533/5390

V5C 4 6 5 307 3254/5377

V5C 5 6 4 305 3097/5296

M5C 1 6 5 358 3526/5246

M5C 2 5 4 316 3042/5185

M5C 3 6 5 350 3643/5200

M5C 4 7 5 306 3114/5450

M5C 5 5 5 276 2952/5454
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Table 13: Heuristic Results: Station Cost Experiments
Instance Runtime (s) Init. Constr. Obj. Obj. After Impr. Obj. After Polishing Improvement

B3S 1 56 -144.75 680.5 680.5 -

B3S 2 57 -438.25 835.25 835.25 -

B3S 3 88 126.5 435.75 457.75 262%

B3S 4 488 -775.5 -28 24.25 -

B3S 5 415 439.5 600.5 600.5 37%

V3S 1 138 1271 1650.5 1716.5 35%

V3S 2 500 519.75 1729.5 1773.5 241%

V3S 3 128 -923.75 0 0 -

V3S 4 320 87.5 1504.25 1504.25 1619%

V3S 5 462 -1559.75 1059 1114 -

M3S 1 591 -382 1491.5 1552 -

M3S 2 593 1188.25 1980.5 1994.25 68%

M3S 3 701 150 2121.75 2121.75 1315%

M3S 4 198 -1169.75 0 0 -

M3S 5 563 -696.25 554.5 557.25 -

B5S 1 73 5902.25 6610.25 6662.5 13%

B5S 2 55 4524 5918.75 5951.75 32%

B5S 3 627 4029.5 5143.5 5154.5 28%

B5S 4 40 6174.5 6305.25 6341 3%

B5S 5 115 5751.25 7052.25 7121 24%

V5S 1 370 3265.75 4577.75 4668.5 43%

V5S 2 1030 3787.75 4937.752 4976.25 31%

V5S 3 818 396 2717 2934.25 641%

V5S 4 2697 733 2748.25 2778.5 279%

V5S 5 781 3382.25 3885.75 4345 28%

M5S 1 757 2820 4739.75 4743.75 68%

M5S 2 705 1933.25 5486.75 5530.75 186%

M5S 3 906 3555.25 4611 4723.75 33%

M5S 4 766 2374.5 3383.25 3842.5 62%

M5S 5 841 5111.5 6207.25 6273.25 23%
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Table 14: Heuristic Results: Station Cost Experiment Timing
Instance Init. Constr. Time (s) Improvement Time (s) Polishing Time (s)

B3S 1 <1 53 3

B3S 2 <1 54 3

B3S 3 <1 86 2

B3S 4 <1 484 4

B3S 5 <1 411 4

V3S 1 <1 135 3

V3S 2 <1 496 4

V3S 3 <1 128 <1

V3S 4 <1 317 3

V3S 5 <1 458 4

M3S 1 <1 587 4

M3S 2 <1 589 4

M3S 3 <1 698 3

M3S 4 <1 198 <1

M3S 5 <1 561 2

B5S 1 <1 67 6

B5S 2 <1 49 6

B5S 3 <1 621 6

B5S 4 <1 36 4

B5S 5 <1 108 7

V5S 1 <1 361 9

V5S 2 <1 1024 6

V5S 3 <1 813 5

V5S 4 <1 2689 8

V5S 5 <1 774 7

M5S 1 <1 751 6

M5S 2 <1 700 5

M5S 3 <1 899 7

M5S 4 <1 757 9

M5S 5 <1 837 4
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Table 15: Heuristic Results: Station Cost Experiment Solutions
Instance Stations Open Fleet Size Groups Served Passengers Served

B3S 1 7 3 293 2990/3067

B3S 2 7 3 289 3055/3148

B3S 3 7 2 282 2969/3154

B3S 4 7 4 269 2827/3135

B3S 5 7 4 292 3050/3179

V3S 1 7 3 284 3066/3280

V3S 2 6 4 285 2942/3128

V3S 3 0 0 0 0/3193

V3S 4 6 3 251 2463/3005

V3S 5 5 4 241 2436/3115

M3S 1 5 4 241 2600/3197

M3S 2 7 4 277 2847/3186

M3S 3 5 4 285 3021/3218

M3S 4 0 0 0 0/3176

M3S 5 6 2 265 2703/3083

B5S 1 7 4 475 4978/5298

B5S 2 7 4 480 4889/5132

B5S 3 7 4 472 4970/5246

B5S 4 7 3 487 5044/5202

B5S 5 7 4 485 5036/5224

V5S 1 7 6 449 4678/5327

V5S 2 6 3 389 4131/5308

V5S 3 6 3 397 4095/5238

V5S 4 6 5 389 4002/5255

V5S 5 7 5 449 4592/5224

M5S 1 6 4 413 4225/5121

M5S 2 5 3 427 4517/5338

M5S 3 7 5 459 4645/5166

M5S 4 7 7 443 4474/5065

M5S 5 7 3 457 4711/5276
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Table 16: Heuristic Results: Arrival Window Experiments
Instance Runtime (s) Init. Constr. Obj. Obj. After Impr. Obj. After Polishing Improvement

B3W 1 1280 -1131 263 351 -

B3W 2 241 -1157 0 0 -

B3W 3 201 288 288 288 0%

B3W 4 231 -2307.75 0 0 -

B3W 5 292 -917.75 25.25 63.75 -

V3W 1 612 -2782.5 0 0 -

V3W 2 1078 -1815.25 -533.25 -489.5 -

V3W 3 293 -1502.5 0 0 -

V3W 4 987 -1210 451.25 473.25 -

V3W 5 459 -1332.5 0 0 -

M3W 1 655 -1530.5 205.5 304.5 -

M3W 2 807 120 1539.25 1544.75 1187%

M3W 3 872 872.25 2181.5 2181.5 150%

M3W 4 119 1087 1999.5 1999.5 84%

M3W 5 838 217.75 994 1112.25 411%

B5W 1 174 2725.25 3719.75 3719.75 36%

B5W 2 928 4136.75 4808 4843.75 17%

B5W 3 59 4316 6330.25 6357.75 47%

B5W 4 76 3709.25 4978.75 4978.75 34%

B5W 5 925 3282 4738.5 4738.5 44%

V5W 1 263 4950.5 5616 5657.25 14%

V5W 2 292 3233 4496.75 4555.75 41%

V5W 3 610 2320.25 3877 3910 69%

V5W 4 143 3518.75 4906.25 5038.25 43%

V5W 5 631 1763.25 2870 2937.25 67%

M5W 1 1043 3424 5385 5420.75 58%

M5W 2 496 3043.5 4684.25 4684.25 54%

M5W 3 1120 5063 6074.25 6115.5 21%

M5W 4 244 4129.75 5622.25 5664.75 37%

M5W 5 383 4572 6211.25 6302 38%
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Table 17: Heuristic Results: Arrival Window Experiment Timing
Instance Init. Constr. Time (s) Improvement Time (s) Polishing Time (s)

B3W 1 <1 1275 5

B3W 2 <1 241 <1

B3W 3 <1 198 3

B3W 4 <1 231 <1

B3W 5 <1 289 3

V3W 1 <1 612 <1

V3W 2 <1 1072 6

V3W 3 <1 293 <1

V3W 4 <1 982 5

V3W 5 <1 459 <1

M3W 1 <1 649 6

M3W 2 <1 802 5

M3W 3 <1 868 4

M3W 4 <1 115 4

M3W 5 <1 833 5

B5W 1 <1 162 12

B5W 2 <1 919 9

B5W 3 <1 54 5

B5W 4 <1 69 7

B5W 5 <1 917 8

V5W 1 <1 256 7

V5W 2 <1 283 9

V5W 3 <1 600 10

V5W 4 <1 135 8

V5W 5 1 611 20

M5W 1 <1 1037 6

M5W 2 1 484 12

M5W 3 <1 1114 6

M5W 4 <1 228 16

M5W 5 <1 374 9
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Table 18: Heuristic Results: Arrival Window Experiment Solutions
Instance Stations Open Fleet Size Groups Served Passengers Served

B3W 1 7 6 290 3160/3284

B3W 2 0 0 0 0/3167

B3W 3 7 4 283 2984/3168

B3W 4 0 0 0 0/2997

B3W 5 7 4 279 2949/3169

V3W 1 0 0 0 0/2986

V3W 2 6 7 283 2962/3105

V3W 3 0 0 0 0/3117

V3W 4 6 6 273 2947/3169

V3W 5 0 0 0 0/3169

M3W 1 6 7 280 2934/3082

M3W 2 6 6 290 2785/2896

M3W 3 6 5 288 3086/3237

M3W 4 7 5 295 3106/3152

M3W 5 7 6 293 3063/3153

B5W 1 7 9 457 4905/5358

B5W 2 7 7 460 4921/5319

B5W 3 7 4 492 5257/5356

B5W 4 7 6 485 5029/5200

B5W 5 7 6 472 4978/5280

V5W 1 7 5 474 5163/5445

V5W 2 7 6 473 4841/5198

V5W 3 7 8 462 4868/5270

V5W 4 7 6 482 5103/5322

V5W 5 7 9 464 4775/5237

M5W 1 7 5 465 4645/5054

M5W 2 7 9 431 4607/5400

M5W 3 7 5 455 4682/5224

M5W 4 7 7 455 5637/5172

M5W 5 7 7 467 5024/5426
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Profitable solutions were found for 29 out of the 30 base experiment instances. The

average runtime for these instances was 425 seconds. For instances with an improvement

percentage given, the average improvement from the initial constructed solution to the final

solution was 603%. For the base experiments, an average of 412 seconds were spent improving

upon the constructed solution. The average time spent polishing the solution was about 5

seconds. For the base experiments, 22 solutions featured 7 open stations, 3 had 6 stations,

3 had 5 stations, 1 had 4 stations, and 1 was a “do nothing” solution. The average fleet size

for these instances was 4.2 trains, when customers were served.

Profitable solutions were found for 23 out of the 30 capacity experiment instances. The

average runtime for these instances was 790 seconds. For instances with an improvement

percentage given, the average improvement from the initial constructed solution to the final

solution was 153%. For the capacity experiments, an average of 784 seconds were spent

improving upon the constructed solution. The average time spent polishing the solution was

5.7 seconds. For the capacity experiments, 11 solutions featured 7 open stations, 6 had 6

stations, 4 had 5 stations, 3 had 4 stations, and 6 were “do nothing” solutions 6. The average

fleet size for these instances was 4.7 trains, when customers were served.

Profitable solutions were found for 28 out of the 30 station cost experiment instances.

The average runtime for these instances was 529 seconds. For instances with an improvement

percentage given, the average improvement from the initial constructed solution to the final

solution was 231%. For the station cost experiments, an average of 524 seconds were spent

improving upon the constructed solution. The average time spent polishing the solution was

4.6 seconds. For the station cost experiments, 17 solutions featured 7 open stations, 7 had

6 stations, 4 had 5 stations, and 2 were “do nothing” solutions. The average fleet size for

these instances was 3.8 trains, when customers were served.

Profitable solutions were found for 24 out of the 30 passenger arrival window experiment

instances. The average runtime for these instances was 545 seconds. For instances with an

improvement percentage given, the average improvement from the initial constructed solution

to the final solution was 131%. For the passenger arrival window experiments, an average

6Note that one of the solutions with 7 open stations had a negative final objective,
meaning a “do nothing” solution would actually be preferable to the solution found by the
heuristic.
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of 538 seconds were spent improving upon the constructed solution. The average time spent

polishing the solution was 6.3 seconds. For the passenger arrival window experiments, 20

solutions featured 7 open stations, 5 had 6 stations, and 5 were “do nothing” solutions 7.

The average fleet size for these instances was 6.2 trains, when customers were served.

It is clear from Tables 7, 10, 13, and 16 that the improvement and polishing phases have

a significant impact on solution quality. On average, the percent improvement of the final

objective over the initially constructed objective is over 300%. This average does not include

instances for which the initial constructed solution was no better than the “do nothing” case.

The heuristic achieved significant absolute improvement for many of these instances as well.

All of these improved solutions were obtained in less than 45 minutes, with the average time

required being 572 seconds.

Tables 8, 11, 14, and 17 show the breakdown of time spent in each phase of the heuristic

for each instance. The time required to construct the initial solution was less than one second

for almost every instance. The bulk of the time was spend improving that solution, with an

average of 566 seconds spent per instance. The polishing routine only required about 5.5

seconds per instance, on average.

Tables 9, 12, 15, and 18 provide further insight into the actual characteristics of the final

rail system plan obtained for each instance considered. We can see that in over half of these

instances, all seven stations were chosen in the final solution. In about 12% of instances, the

heuristic identified the “do nothing” case as the best option. Interestingly, if stations were

opened, at least four stations were selected and a high percentage of customers were served.

Specifically, for instances in which at least one station was opened, 86% of total customer

demand is satisfied, on average. To serve these customers, only a relatively small fleet of

trains was required as only 4.7 of the 20 potential trains were actually utilized in the final

solutions, on average.

7Note that one of the solutions with 6 open stations had a negative final objective,
meaning a “do nothing” solution would actually be preferable to the solution found by the
heuristic.
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Table 20: Heuristic Solutions Summary
Instance Grp. Stations open Active trains % Served

Overall 6.6 4.7 86%

Base Exp. 6.6 4.2 91%

Cap. Exp. 6.0 4.7 71%

Cost Exp. 6.5 3.8 89%

Win Exp. 6.8 6.2 95%

Baseline 7 4.4 92%

Variable 6.4 5.2 85%

More Variable 6.1 4.7 83%

300 Groups 6.2 3.9 88%

500 Groups 6.7 5.3 85%

Tables 19 and 20 summarize the heuristic performance and the solution characteristics

for the instances in which passengers were served. The greatest improvement over the initial

solution occurred for the instances with default parameter values. Note that as the passenger

demand variability increased, the heuristic runtime also increased, as did the improvement

over the initial solution. The percentage of passengers served decreased as the variability

increased. As expected, the heuristic took longer to find solutions for instances with 500

groups than it did for instances with 300 groups. Interestingly, the heuristic improved upon

its initial solution more for instances with 300 groups than it did for instances with 500

groups. Also, more stations were open, on average, for instances with 500 groups than for

instances with 300 groups.

As evidenced in these experiments, many of the problem parameters affect the heuristic

performance and the solutions it produces. For example, when the train capacity or the

passenger arrival window length are reduced, the heuristic has a more difficult time finding

profitable solutions. Also, though the heuristic was able to produce profitable final solutions

for most of the station cost experiment instances, the initial constructed objective for those

instances was unprofitable in many cases. The station cost experiments indicate that the

station cost structure has only a slight impact on the number of stations open in the final

solution. Specifically, the average number of open stations for the base experiments was 6.5,

when any customers are served, and the average number of open stations for the station cost
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experiments was 6.4, when customers were served. Perhaps the most striking result shown in

these experiments is that the passenger arrival window strongly impacts the final fleet size.

Our results indicate that systems with shorter passenger arrival windows require more trains

to serve customers. The relationships outlined above provide valuable insight for planning

purposes, since they allow rail system planners to better understand the implications of their

assumptions and input data.

Unfortunately, we are unable to comment on the performance of our heuristic in relation

to the optimal solution for any non-trivial instances since we have been unable to prove

optimality for any such instance to date.

6 Case study: Northwest Arkansas

The University of Arkansas Community Design Center (CDC) publication, Visioning Rail

Transit in Northwest Arkansas [8] is credited with the original inspiration for this work. In

the study, city planners and University of Arkansas students made a case for rail transit

in the Northwest Arkansas (NWA) region, which includes communities such as Fayetteville,

Lowell, Springdale, Rogers, and Bentonville. The arguments presented in the report for

developing a rail system in NWA were primarily qualitative in nature. Analytical planning

tools were not used to select the station locations that were proposed, illustrated in Figure

6.

Northwest Arkansas is home to multiple post-secondary schools, including the University

of Arkansas, attended by over 20,000 graduate and undergraduate students. Numerous

companies also have their headquarters or regional offices in NWA, including Walmart Stores

Inc., J.B. Hunt Transport, Inc. and Tyson Foods, Inc. Due to heavy inter- and intra-city

commuting to these and other destinations, traffic congestion is an ever-present issue in

the region. Rail transportation is one option available to city planners hoping to reduce

congestion.

Using actual NWA commuter, geographical, and real estate data, along with information

gleaned from existing rail systems in the U.S., we constructed an instance for the rail planning

model that is representative of the NWA region. A formal feasibility study would require

resources unavailable to us, but the instance we have generated mirrors the typical size and
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Figure 6: Map of NWA with CDC’s Proposed System
Source: Visioning Rail Transit in Northwest Arkansas [8]
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structure of any rail system that might be proposed in the area. In creating the instance,

we explicitly accounted for different classes of passengers: (i) commuters, (ii) university

passengers (e.g. students and teachers) and (iii) others (e.g. citizens going shopping or to

visit others in the community). Instance details are given in Table 22 and described in the

remainder of this section. Importantly, we show that the heuristic outlined in Section 4 is

applicable to instances representative of growing rural areas and produces solutions in an

acceptable amount of time, considering the integrated nature of our planning model. This is

important because the NWA instance exhausts computer memory almost immediately when

commercial optimization software attempts to solve it.

A list of potential station locations were generated for the NWA instance utilizing our

knowledge of the region, locations of large employers, residential areas, busy highways,

schools, and other attractions. These locations, which all lie along an existing rail right-of-

way, are listed in Table 21. The costs of building stations at these locations were estimated

using publicly available assessed property values [3, 7] and costs for existing rail systems

[1, 2]. We assume station costs in NWA would be lower than those in more urban areas due

to the availability of lower cost land and labor, and our estimates reflect this assumption.

Train procurement costs, operational costs, speed, and capacity were estimated using infor-

mation available from existing systems [1]. We assume the time required for a train to stop

at a station to unload and load passengers is 2 minutes and is independent of the station and

number of passengers. A revenue per customer of $2.50 is assumed for all customers served

regardless of their trip length. Trains are assumed to operate for 15 hours (900 minutes)

per day, beginning at 6:00 am. To estimate zip code-to-zip code commuter volume, we used

data from [4] compiled by [20] along with data from [27]. We assumed a 10% adoption

level for most commuter lanes. This was reduced to 5% for passengers commuting between

adjacent zip codes, and also for park-and-ride commuters. Adoption level was reduced to

1% for travel within a single zip code. Using data provided by the University of Arkansas

and The Northwest Arkansas Community College (NWACC) outlining student commuter

numbers by zip code, we used similar methods to estimate student demand. For each poten-

tial customer group, an original trip (usually morning) and a return trip were generated. If

multiple potential stations existed in a single zip code, we assumed customers were equally
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likely to originate from any of these stations with two exceptions:

1. The station nearest a highway was selected as the origin for all park-and-ride customers.

2. Locations identified as light origins (e.g., Fayetteville Drake Field) were half as likely

to serve as a customer origin than other locations in the same zip code.

When multiple potential stations existed within a zip code, destination selection was weighted

by the size of employers located near the potential stations. For example, between the two

stations in Bentonville, commuters were twice as likely to be destined for the Walmart HQ

location over the alternate Bentonville location because Walmart employs a large percentage

of Bentonville workers. Destinations were limited to school locations for students, and were

randomly generated for other customers, though some locations were designated as attraction

locations and more likely to be selected. Customer arrival deadlines were assigned uniformly

within the ranges given in Table 23, and arrival window lengths were equally likely to be 30

or 60 minutes.
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Table 21: NWA Instance Proposed Stations and Distances
` Station Name `− 1 to ` (miles) Zip

1 Fay - Drake Field 0.0 72701

2 Fay - 15th St 3.1 72701

3 Fay - MLKJR Blvd 0.7 72701

4 Fay - Dickson St 1.0 72701

5 Fay - Maple Ave 0.4 72701

6 Fay - Cleveland St 0.4 72701

7 Fay - North St 0.4 72703

8 Fay - Sycamore St 0.7 72703

9 Fay - Township St 0.9 72703

10 Fay - Drake St 0.6 72703

11 Fay - Wash. Reg. Med. Cntr. 0.5 72703

12 Fay - Joyce St 1.1 72704

13 Johnson 0.8 72704

14 Spring - Tyson 1.8 72762

15 Spring - Robinson Ave 1.5 72764

16 Spring - Sunset Ave 0.6 72764

17 Spring - Emma Ave 0.7 72764

18 Lowell 5.0 72745

19 Rogers - New Hope Rd 3.5 72758

20 Rogers - Walnut St 2.0 72756

21 Benton - NWACC 4.2 72712

22 Benton - Walmart HQ 2.6 72712

Table 22: NWA Instance Overview
Groups 2830

Total Potential Passengers 14368

Locations 44

Potential Trains 40

Horizon (min) 900

K 10

System Length (miles) 32.5
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Table 23: NWA Parameter Details
Parameter Values

ag

60-180 (morning commuters)

660-780 (evening commuters)

120-360 (morning students)

420-680 (evening students)

0-900 others

bg 30/60

cτ $290

f` $323-1933 (based on land price and station type)

H 900

Pg 1-9

rg $2.50

t` 0.7-8.6 (based on geography)

uτ 150

vτ $100

Table 24: NWA Instance Computational Results
Runtime (s) 32334

Initial Constructed Objective -434.5

Pre-Polish Objective 2987.5

Final Objective 3645

Table 24 outlines the results of our computational testing for the NWA instance. It

demonstrates that our heuristic improved upon its initial constructed solution dramatically.

Importantly, given that the objective of our problem is to maximize profit, it is interesting

to learn that results from this experiment suggest that a profitable rail system may be

attainable. Table 25 provides some interesting details regarding the characteristics of a

possible NWA rail system. For the instance considered, the system would use 20 of the

22 possible station locations, omitting only the locations at Martin Luther King Blvd and

Drake St in Fayetteville, AR. While we allowed for up to 40 trains to be included in the

system, our solution suggests that only 7 trains are needed to attain a daily profit of $3,645.

Finally, it is interesting that almost 67% of potential passenger demand would be satisfied

using the plan produced by the heuristic.
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Table 25: NWA Instance Final Solution Statistics
Stations Open 20/22

Fleet Size 7/40

Groups Served 1983/2830

Passengers Served 9620/14368

Table 26: NWA Instance Heuristic Solution Station Configuration
` Station Name Status

1 Fay - Drake Field Open

2 Fay - 15th St Open

3 Fay - MLKJR Blvd Closed

4 Fay - Dickson St Open

5 Fay - Maple Ave Open

6 Fay - Cleveland St Open

7 Fay - North St Open

8 Fay - Sycamore St Open

9 Fay - Township St Open

10 Fay - Drake St Closed

11 Fay - Wash. Reg. Med. Cntr. Open

12 Fay - Joyce St Open

13 Johnson Open

14 Spring - Tyson Open

15 Spring - Robinson Ave Open

16 Spring - Sunset Ave Open

17 Spring - Emma Ave Open

18 Lowell Open

19 Rogers - New Hope Rd Open

20 Rogers - Walnut St Open

21 Benton - NWACC Open

22 Benton - Walmart HQ Open
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The number of trains in the system throughout the planning horizon is plotted in Figure

7. As shown in the plot, the number of active trains increases steadily with demand in the

beginning of the horizon and remains at 7 trains until after the second peak in demand,

when trains start to exit the system. In our final solution, an average of two trains per hour

stop at each station during the horizon. Despite the fact that all 7 active trains reached their

ridership capacity at some point in the horizon, only 27% of total available train capacity

was utilized throughout the horizon.

Figure 7: Active Trains Throughout the Horizon

As a comparison, our NWA solution includes 20 stations, while the solution proposed by

the CDC features only 9 stations. The CDC also recommends a 10th passenger location to

be connected by shuttle, however. All 9 stations proposed by the CDC were included in our

final NWA solution. The CDC did not propose a specific fleet size, nor did they attempt to

determine train schedules.

The strength of conclusions drawn from this experiment are limited by the strength of

data available. Clearly, the approach proposed in this paper is most useful when reliable

data obtained from a formal feasibility study is used to populate the model. Based on our

investigation, there is evidence to suggest that a rail system is worth investigating further. In

a future study conducted in partnership with city officials and financial experts, the heuristic

described in this paper can effectively evaluate the feasibility of a NWA rail system.
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7 Future work

Our efforts revealed a number of future research directions stemming from this work. First,

we realize the importance of allowing trains to enter and leave the system to accommodate

peaks in demand. This reduces costs by cutting out operational costs for some trains during

periods with low demand. The model that we presented in this work does allow trains to “sit

out” loops as a cost-saving measure, but the times that trains can possibly re-enter the system

after leaving are mandated by the rigid train movement constraints. One resolution would

be the development of an alternative model that requires a new non-negative continuous

variable, ∆k
τ , representing the delay time that train τ spends at the depot between loops

k−1 and k (defined for k ∈ K\ {1}). This allows trains to delay for any non-negative amount

of time between each loop. These changes would result in the following model:

maximize
∑
k∈K

∑
τ∈T

∑
g∈G

rgρ
k
g,τ −

∑
`∈L

f`zI(`) −
∑
τ∈T

cτyτ −
∑
k∈K

∑
τ∈T

vτq
k
τ

subject to

xkg,τ ≤ zI(og) τ ∈ T ; k ∈ K; g ∈ G (27)

xkg,τ ≤ zI(dg) τ ∈ T ; k ∈ K; g ∈ G (28)

z` ≤ z1 ` = 2 . . . (L/2)− 1 (29)

z` ≤ zL/2 ` = 2 . . . (L/2)− 1 (30)

qkτ ≤ yτ τ ∈ T ; k ∈ K (31)

yτ+1 ≤ yτ τ ∈ T \ {T} (32)

qk+1
τ ≤ qkτ τ ∈ T ; k ∈ K\ {K} (33)

xkg,τ ≤ qkτ τ ∈ T ; k ∈ K; g ∈ G (34)

ρkg,τ ≤ Pgx
k
g,τ τ ∈ T ; k ∈ K; g ∈ G (35)∑

τ∈T

∑
k∈K

ρkg,τ ≤ Pg g ∈ G (36)

(ag − bg)xkg,τ ≤ wτ + S̄(dg, k, τ) τ ∈ T ; k ∈ K; g ∈ G (37)
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(W − ap)(xkp,τ − 1) ≤ ap − wτ − S̄(dg, k, τ) τ ∈ T ; k ∈ K; g ∈ G (38)

∆k
τ ≤ Hqkτ τ ∈ T ; k ∈ K\ {1} (39)

nk`,τ − nk`−1,τ =
∑

g∈G;og=`

ρkg,τ −
∑

g∈G;dg=`

ρkg,τ τ ∈ T ; k ∈ K; ` ∈ L\ {1} (40)

nk1,τ =
∑

g∈G;og=1

ρkg,τ τ ∈ T ; k ∈ K (41)

nk`,τ ≤ uτ τ ∈ T ; k ∈ K; ` ∈ L (42)

z` ∈ {0, 1} ` = 1 . . . L/2 (43)

xkg,τ ∈ {0, 1} τ ∈ T ; k ∈ K; g ∈ G (44)

ρkg,τ ∈ Z+ τ ∈ T ; k ∈ K; g ∈ G (45)

yτ ∈ [0, 1] τ ∈ T (46)

qkτ ∈ [0, 1] τ ∈ T ; k ∈ K (47)

nk`,τ ≥ 0 τ ∈ T ; k ∈ K; ` ∈ L (48)

wτ ≥ 0 τ ∈ T (49)

∆k
τ ∈ [0, H] τ ∈ T ; k ∈ K\{1} (50)

where

S̄(`, k, τ) = S(`, k) +
∑

2≤k′≤k

∆k′

τ . (51)

Another important avenue for future research involves comparing our methods to the

existing hierarchical planning methods. In order to compare these two approaches, it is

first necessary to adapt existing hierarchical methods to our rural setting. After reconciling

any differences in assumptions between our model and the hierarchical models, it should be

possible to apply both techniques for a case study such as the one included in this work.

Once a solution has been constructing using hierarchical methods, its profitability could be

assessed according to the measures outlined in our objective in order to provide a quantitative

comparison between the two techniques.

It should be noted that certain alternate objectives for our problem could be consid-
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ered using our customized solution methodology. For example, changing cost parameters to

zero alters our model to maximize total passengers served, regardless of cost. To maximize

passengers served, all passenger revenue values should equal one. Slight modifications to

our solution methodology could then accommodate for a budget constraint while maximiz-

ing passengers served. Specifically, cost-tracking measures could be added throughout the

heuristic to ensure that changes to the solution do not result in a violation of the budget

constraint. It would also be relatively simple to minimize the number of trains used or the

train and station costs needed to reach a prescribed service level. For this problem, our

methods could be used to serve the required number of passengers by adding as many trains

as necessary, and then a slight modification of the solution improvement routine could be

used to ensure that this ridership level is maintained while the solution is improved. Sim-

ilarly, it is possible to include additional values in the objective, such as minimizing the

passenger delay time.

It would also be interesting to investigate how to allow customers to be served by multiple

potential stations, while capturing their preference of one station over another. This is

relevant when multiple “park & ride” facilities could serve an intermodal customer or in

very densely populated areas where multiple potential station locations are being considered

in a relatively small area.

Finally, the inclusion of the stochastic nature of passenger demand, train schedules,

and/or future population growth is needed to assist planners in accounting for the uncer-

tainty associated with community growth. We are especially interested in modeling the

phenomenon that has been observed after many passenger rail systems are implemented in

which the rail system itself causes a shift in population growth trends.

8 Conclusions

The model we have proposed is a first step at integrating many decisions faced by rail system

planners. It is important to point out that we consider only a portion of the costs associated

with an operational commuter rail system. In fact, we have focused on a subset of the overall

process required to design a new rail system. We have, however, integrated portions of the

planning process that have typically been considered separately in the planning process.
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Despite the fact that we were forced to resort to a heuristic to solve our problem, our

heuristic continues to exploit the characteristics of a rural rail setting, including simpler

networks and train movement. Specifically, our assumption that the rail system will follow

a “linear” network allows us to efficiently model train movements due to the single feasi-

ble path for vehicles to follow. This method of modeling train movements is particularly

important in determining whether a train can feasibly serve a passenger group within the

heuristic. These factors allow for a solution methodology that more accurately models the

interactions between the problems we have integrated than traditional hierarchical methods.

Our heuristic is motivated by concepts that are mature in the operations research commu-

nity. However, the neighborhood considered in our heuristic is unique from those considered

in single-stage planning problems. The model that we developed is complex, and the strong

interaction between continuous and discrete decisions made it difficult to apply common

heuristic methods without extensive customization. In real-world applications, complex side

constraints and interactions are common, and heuristic techniques are often necessary to

produce suitable solutions. We feel that our customized approach can serve as to assist

others faced with problems not easily solved by “out of the box” heuristics.

Finally, our case study provides a glimpse into the real world applicability of integrated

rail planning models. Our results for NWA indicate that a passenger rail system may, in

fact, be a good option for planners in the area to pursue further. Our objective value should

not be interpreted to mean such a system would operate with large daily profits since many

costs were not considered here (e.g. administrative overhead, track construction). We have

merely shown that such a system could potentially be an operational success with modest

adoption levels.

With further development, and with technological advances in computing, integrated

methods should eventually become a reality for rail planners in rural settings and later in

larger systems.
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9 Appendix A: Notation and decision variables

Sets

Table 27: Sets

G
G, indexed by g, represents the set of potential passenger groups
in the rail system (members of the same passenger group share
origins, destinations, and arrival deadlines)

K

K = {1 . . . K}, indexed by k, represents the number of loops that
a train may make around the network where K is a calculated
upper bound on the possible number of loops (A loop is defined
to be leaving the first station and visiting each open station in
the network before returning to the first station)

L

L = {1 . . . |L|}, indexed by `, contains all possible station lo-
cations along the track with one element of L corresponding to
each location for each direction of travel. That is, station 1 and
L both correspond to the first station, 2 and |L| − 1 to the sec-
ond possible station, and so on until the last station, which is
represented by |L|

2
and |L|

2
+ 1.

T T = {1 . . . T}, indexed by τ , represents the set of trains that
could potentially serve customers on the network
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Parameters

Table 28: Parameters

ag
The latest possible arrival time for group g (defined for g ∈ G,
0 ≤ ag ≤ H)

bg

The maximum amount of time that passenger group g may ar-
rive before its arrival deadline, ag (defined for g ∈ G, any train
that arrives at dg before ag but after ag − bg is eligible to serve
all or some of the passengers in group g

cτ The cost of procuring train τ (defined for τ ∈ T )

dg The destination location for group g (defined for g ∈ G, dg ∈ L)

f`
The cost of procuring a station at location ` ∈ L (defined for
` = 1 . . . L/2)

H The length of the service horizon, in minutes

og The origin location for group g (defined for g ∈ G, og ∈ L)

Pg The total number of passengers in group g (defined for g ∈ G)

rg
The revenue for serving one passenger from group g a single time
(defined for g ∈ G)

t`

The time required for any train to traverse the distance from
location ` − 1 to location ` at cruise speed (defined for ` ∈ L,
for ` = 1 this value should be zero or should represent the delay
between arriving at location |L| on loop k and starting loop
k + 1)

uτ The capacity of train τ , in customers (defined for τ ∈ T )

vτ The cost of operating train τ for one loop (defined for τ ∈ T )

W
W = |K|

∑
`∈L(δ`+ t`)+H) is a logical upper bound for the wk`,τ

variables

δ`

The additional time required to stop at location ` in the even
that a station exists there, including the delay associated with
deceleration and acceleration (defined for ` ∈ L)
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Decision Variables

Table 29: Decision Variables

nk`,τ

A non-negative, continuous variable representing the number of
passengers on train τ leaving location ` for the kth time (defined
for ` ∈ L; τ ∈ T ; k ∈ K, may be a continuous nonnegative
variable but will take on integer values due to problem structure)

qkτ

A continuous variable on [0, 1] that takes a value of 1 if train τ
is active for loop k and 0 otherwise (defined for τ ∈ T ; k ∈ K,
may be continuous on [0, 1] but will take on integer values due
to problem structure)

wk`,τ

A continuous non-negative variable that represents the time that
has elapsed from the beginning of the horizon to the time that
train τ arrives at location ` for the kth time (defined for ` ∈
L; τ ∈ T ; k ∈ K)

wτ

After the variable-space reduction, the nonnegative continuous
variable wτ represents the time that train τ enters the system
(defined for τ ∈ T )

xkg,τ

A binary variable with a value of 1 if group g is assigned to train
τ on its kth loop and 0 otherwise (defined for g ∈ G; τ ∈ T ; k ∈
K)

yτ

A continuous variable on [0, 1] that takes a value of 1 if train τ
is active for any loop and 0 otherwise (defined for τ ∈ T , may
be continuous on [0, 1] but will take on integer values due to
problem structure)

z`
A binary variable with value 1 if a station is procured at location
` and 0 otherwise (defined for ` = 1 . . . |L|/2)

∆k
τ

A continuous non-negative variable that represents the delay
time for train τ between loops k − 1 and k (defined for k ∈
K\{1})
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10 Appendix B: Detailed heuristic outline

The outline below describes our heuristic in moderate detail. Simple or self-explanatory

functions have not been outlined completely, but some of the more complicated functions

have been described below the heuristic. The file instance.dat contains values for all instance

parameters. The file parameters.txt contains values for user-defined heuristic settings. At

various points, solution information is saved in four different global “bins:” cand, best, hold,

and tsih. These “bins” store some or all of the values for problem variables and the objective

value.

Main(instance.dat, parameters.txt)

// create necessary instance data structures and read values from instance.dat
Initialize(instance.dat)
// read heuristic parameters from parameters.txt
ReadParams(parameters.txt)
// return the station configuration with the greatest potential profit,
// ignoring scheduling issues and train costs
candZ = GetStartingConfig()
// construct fleet size and solution from scratch
ConstructSolution()
// store new best solution
ReplaceBestWithCand()
activeTrains = Sum(candY )
holdObj = −10000
for i = 0 to fleetRange− 1

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

// construct solution for specific fleet size using method j
ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

// improve cand solution by manipulation customer
// assignments and train scheduling
ImproveCandSolution(fleetSize,tCutoff,gCutoff)

if candObj > holdObj
ReplaceHoldWithCand()

if holdObj > bestObj
ReplaceBestWithHold()
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Main Cont’d

stepZ = bestZ
holdObj = −10000
noImpr = 0
numOpen = Sum(bestZ)
for i = 0 to numOpen − 3

candZ = stepZ
for ` = 1 to L/2− 2

if candZ [`] == 1
candZ [`] = 0
ConstructSolution()
activeTrains = Sum(candY )
for i = 0 to fleetRange

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
if candObj > holdObj

ReplaceHoldWithCand()

stepZ = holdZ
if holdObj > bestObj

ReplaceBestWithHold()
noImpr = 0

else
noImpr+ = 1
if noImpr > closeCutoff

Break
if bestObj < 0

ReplaceBestWithZero()
stepZ = bestZ
holdObj = −10000
noImpr = 0
numClosed = L/2− Sum(bestZ)
if numClosed == L/2

stepZ [0 ] = 1
stepZ [L/2 -1 ] = 1
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Main Cont’d

for i = 1 to numClosed − 3
candZ = stepZ
for ` = 1 to L/2− 2

if candZ [`] == 0
candZ [`] = 1
ConstructSolution()
activeTrains = Sum(candY )
for i = 0 to fleetRange− 1

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
if candObj > holdObj

ReplaceHoldWithCand()
stepZ = holdZ
if holdObj > bestObj

ReplaceBestWithHold()
noImpr = 0

else
noImpr+ = 1
if noImpr > openCutoff

Break
stepZ = bestZ
holdObj = −10000
noImpr = 0
numOpen = Sum(bestZ)
numClosed = L/2− numOpen
for i = 0 to swapSteps− 1

for j = 0 to numClosed − 1
for m = 0 to numOpen − 1
// open jth closed station and close mth open station
candZ = SwapOpenClosed(j,m)
ConstructSolution()
activeTrains = Sum(candY )
for i = 0 to fleetRange− 1

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
if candObj > holdObj

ReplaceHoldWithCand()
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Main Cont’d

stepZ = holdZ
if holdObj > bestObj

ReplaceBestWithHold()
noImpr = 0

else
noImpr+ = 1
if noImpr > swapCutoff

Break
stepZ = bestZ
holdObj = −10000
noImpr = 0
for i = 0 to revisitSteps− 1

for j = 0 to revisitStepSize− 1
// randomly choose whether to open or close stations
if RandomU() < 0.5 // open stations

numClosed = L/2− Sum(StepZ)
toOpen = RandomIntBetween(1,min(5, numClosed))
candZ = OpenStations(toOpen)
ConstructSolution()
activeTrains = Sum(candY )
for i = 0 to fleetRange− 1

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
if candObj > holdObj

ReplaceHoldWithCand()
else // close stations

numOpen = Sum(StepZ)
toClose = RandomIntBetween(1,min(5, numOpen− 2))
candZ = CloseStations(toClose)
ConstructSolution()
activeTrains = Sum(candY )
for i = 0 to fleetRange− 1

fleetSize = activeTrains − Floor(fleetRange/2) + i
for j = 0 to 1

ConstructFleetSolution(fleetSize, j )
if candObj > bestObj − tiThreshold

ImproveCandSolution(fleetSize,tCutoff,gCutoff)
if candObj > holdObj

ReplaceHoldWithCand()
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Main Cont’d

stepZ = holdZ
if holdObj > bestObj

ReplaceBestWithHold()
noImpr = 0

else
noImpr+ = 1
if noImpr > revisitCutoff

Break
ReplaceCandWithBest()
fleetSize = Sum(candY )
// try to serve any remaining unserved customers
PolishPartOne()
// extended version of ImpoveCandSolution()
ImproveCandSolution(fleetSize,polishTCutoff, polishGCutoff)
// shut down trains that aren’t even covering own cost, shut down loops that arent covering v
// attempt to serve customers from these trains elsewhere
ClearLightRunsAndLoops()
if candObj > bestObj

ReplaceBestWithCand()
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ConstructSolution()

for τ = 0 to T − 1
seedGroup = −1
// only returns groups that have not served as a seed, if none returns -1
seedGroup = GetLargestUnservedGroup()
if seedGroup == −1

Break // all groups tried
// return w so that train τ can serve seedGroup in the middle of its window
wτ = ScheduleTrainToServeG(seedGroup)
// attempt to add all unserved groups to train τ & update x variable
// train schedule can flex to serve new customers but cannot uncover others to do so
ServeAllPossibleGroups(wtau)
// call CPLEX to solve MIP - maximize revenue subject to capacity constraint
// also updates n and q variables based on ridership
SolveRhoMIP()
// check if newly scheduled train is profitable
if CheckTrainProfitability(τ) == 0
// remove customers assigned to train τ reset associated variables

ClearTrain(τ)
τ− = 1

else
candY [τ ] = 1

ConstructFleetSolution(fleetSize,method)

if method == 0 // largest group
for τ = 0 to fleetSize− 1

candY [τ ] = 1
seedGroup = −1
seedGroup = GetLargestUnservedGroup()
if seedGroup == −1

Break
wτ = ScheduleTrainToServeG(seedGroup)
ServeAllPossibleGroups(wtau)
SolveRhoMIP()

else // equidistant starting schedules
buffer = GetLengthOfLoop()/fleetSize
for τ = 0 to fleetSize− 1
wτ = τ ∗ buffer
ServeAllPossibleGroups(wtau)
SolveRhoMIP()
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ImproveCandSolution(fleetSize,tCutoff,gCutoff)

for i = 0 to impTrainLoops −1
// choose two trains using RandomIntBetween() with uniqueness check
// train -1 serves as dummy train for unserved passengers
train1 , train2 = ChooseTrainPair()
for j = 0 to impGroupLoops− 1

ReplaceTsihWithCand()
// choose one group from each train selected above
group1 , group2 = ChooseGroupFromEachTrain(train1 , train2 )
temp = RandomU()
if temp < probGroupSwap// swap two groups

// serve group on train if possible and update variables
// set ρ as large as possible for newly served group
serve1 = ServeGroupOnTrain(group1 , train2 )
serve2 = ServeGroupOnTrain(group2 , train1 )
if serve1 + serve2 == 2

if tsihObj > candObj
ReplaceCandWithTsih()
gNoImpr = 0
tNoImpr = −1

else
gNoImpr+ = 1
if gNoImpr > gCutoff

Break
tNoImpr+ = 1
if tNoImpr > tCutoff

Break
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