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ABSTRACT 

 The purpose of this study was to determine the effects of chronic estrogen 

supplementation on NPY neurotransmission in gastrocnemius first-order arterioles (G1A) 

of adult female rats.  Female rats (4 mo; n = 30) were ovariectomized (OVX) with a 

subset (n = 15) receiving an estrogen pellet (OVE; 17β-estradiol (4μg / day)).  Following 

conclusion of the treatment phase (8 weeks), red G1A were excised, placed in a 

physiological saline solution (PSS) bath, and cannulated with micropipettes connected to 

albumin reservoirs.  A sampling port was placed immediately below the vessel to assess 

NPY overflow.  The contralateral red G1A was homogenized in PSS for dipeptidyl 

peptidase IV (DPPIV) assay.  NPY-mediated vasoconstriction via a Y1-agonist, 

[Leu31Pro34]NPY, decreased vessel diameter 44.54 ± 3.95% as compared to baseline; 

however, there were no group differences in EC50 (OVE: -8.97 ± 0.36; OVX: -8.72 ± 

0.20 log M [Leu31Pro34]NPY) or slope (OVE: -1.37 ± 0.38; OVX: -1.64 ± 0.31 % 

baseline / log M [Leu31Pro34]NPY).  NPY did not potentiate norepinephrine-mediated 

vasoconstriction.  NPY overflow experienced a slight increase following field 

stimulation, and significantly increased (p < 0.05) over control conditions in the presence 

of a DPPIV inhibitor (diprotin A).  Estrogen status did not affect DPPIV activity.  These 

data suggest that NPY can induce a moderate decrease in vessel diameter in skeletal 

muscle G1A, and DPPIV is active in mitigating NPY overflow in young adult female 

rats.  Chronic estrogen supplementation did not influence NPY vasoconstriction, 

overflow, or its enzymatic breakdown in skeletal muscle G1A.   
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INTRODUCTION 

The regulation of blood flow throughout the body is a process that utilizes local 

and systemic control mechanisms to ensure that metabolic demands are fulfilled while, at 

the same time, maintaining adequate blood pressure for the greater cardiovascular 

system.  The local control mechanisms of the vasculature consist of a finely tuned 

network of chemical processes that originate primarily from within the endothelium, 

whereas the systemic control lies within sympathetic innervations in addition to the 

endocrine stimuli in the blood.  It is a coordinated response between these loci that 

produces constant change in blood vessel diameter, which ensures normal function of 

biological processes. 

The neural control of blood vessel diameter is attributed to the sympathetic 

nervous system.  These sympathetic nerves arise from the spinal cord as pre-junctional 

nerves, synapse to the post-junctional nerve, and traverse across the blood vessel’s 

adventitial surface (Guyton & Hall, 2006).  Norepinephrine, adenosine triphosphate 

(ATP), and neuropeptide Y (NPY) are the primary neurotransmitters responsible for 

propagating the neural response from the sympathetic end terminal to the blood vessel.  

These neurotransmitters work in a coordinated fashion, each possessing their own degree 

of direct influence on the vessel while also modulating other chemical processes 

simultaneously.  There is evidence to suggest that sympathetic neurotransmission is not 

uniform between the sexes (Jackson, Milne, Noble, & Shoemaker, 2005a, 2005b).  

Females may possess more, or less, responsiveness to specific chemical mediators within 

the sympathetic triad.  These differences can be observed in neurotransmitter release, 

receptor function/activity, enzymatic activity, and cellular signaling. 
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Neuropeptide Y is found in vascular beds throughout the body, and it possesses 

many of the same direct and indirect actions as norepinephrine and ATP.  Neuropeptide 

Y is a potent vasoconstrictor, yet its role in vasoconstriction may be more relevant in 

small caliber vessels such as arterioles (Joshua, 1991; Kim, Duran, Kobayashi, Daniels, 

& Duran, 1994; Macho, Perez, Huidobro-Toro, & Domenech, 1989; Pernow, 1989) as 

opposed to large conduit vessels, which exhibit little to no responsiveness to NPY 

(Grundemar & Hogestatt, 1992; Tsurumaki, Honglan, & Higuchi, 2003; Wahlestedt, 

Yanaihara, & Hakanson, 1986).  Neuropeptide Y can elicit a 2- to 4-fold potentiation of 

vasoconstriction to norepinephrine in most vascular beds (Abel & Han, 1989; Prieto, 

Benedito, Simonsen, & Nyborg, 1991).  It is plausible that this mechanism is involved 

during low levels of sympathetic activation as potentiation is observed at nanomolar 

concentrations of both NPY and norepinephrine.  Neuropeptide Y autoregulates its own 

release as well as modulates the release of norepinephrine and ATP (Lundberg & Stjarne, 

1984; Ohhashi & Jacobowitz, 1983; Stjarne, Lundberg, & Astrand, 1986), thus NPY is 

intimately involved in all facets of sympathetic vasocontrol. 

 The beneficial effects of 17β-estradiol, herein referred to as estrogen, have been 

well documented with the most notable being the activation of endothelial nitric oxide 

synthase (eNOS) (Moriarty, Kim, & Bender, 2006).  This provides a secondary stimulus 

for the generation of nitric oxide, the first being luminal shear stress, which is a direct 

stimulus for vasodilation.  Estrogen modulates sympathetic neurite branching in uterine 

arteries, possibly due to direct actions on nerve growth factors such as brain derived 

neurotrophic factor (Krizsan-Agbas, Pedchenko, Hasan, & Smith, 2003).  A decrease in 

neurite density across the blood vessel would mitigate the degree of sympathetic 
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influence.  The cyclical neuritogenesis and neurite degeneration as influenced by estrogen 

throughout estrous is an example of how estrogen can impact the resultant magnitude of 

sympathetic neurotransmission.  A recent study found postmenopausal women to have 

higher concentrations of NPY within uterine arteries as compared to premenopausal 

women (Di Carlo, et al., 2007).  This information along with increased protease activity 

in young females as compared to males (Jackson, et al., 2005b) suggests that estrogen 

may play a role in sympathetic neurotransmission, but the full scope of that role remains 

to be fully understood. 

There is a disparity in the vascular responses to NPY between males and females 

with much of the differences attributed to total NPY content, the type of receptor 

expressed, and the activity of enzymes that breakdown NPY (Jackson, et al., 2005a, 

2005b).  Estrogen may be the underlying mechanism in the increase in NPY content in 

the reproductive vasculature following menopause, and it may be responsible, in part, to 

the differences observed in NPY neurotransmission in large conduit vessels.  There is a 

paucity of literature examining the actions of NPY in sympathetic neurotransmission of 

skeletal muscle, small caliber resistance vessels.  This level of the vasculature is of 

greater significance as it is at this level where the majority of regulatory control occurs 

with respect to systemic blood pressure (Segal, 2005).  The resistance vasculature is also 

affected in pathophysiological conditions such as peripheral arterial disease and diabetes 

(Cersosimo & DeFronzo, 2006), therefore the need for further study is clearly indicated. 

The specific aim of the proposed study is to examine the influence of estrogen on 

NPY release, post-junctional receptor activity, and enzymatic activity of proteases that 

degrade NPY.  It is my belief that estrogen will mitigate the overall stimulus of NPY in 
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the resistance vessels.  These results may explain a portion of the vascular changes that 

occur in response to the disruption of normal estrogen concentrations during menopause 

and beyond.  In addition, these results may elucidate yet another mechanism of estrogen’s 

cardioprotective function in the vasculature. 

Primary Aim:  To determine the effects of chronic estrogen supplementation on NPY 

release, receptor activity, and breakdown in gastrocnemius first-order arterioles. 

Hypotheses 

1. NPY release following field stimulation will decrease with chronic estrogen 

supplementation in gastrocnemius first-order arterioles. 

2. Chronic estrogen supplementation will decrease the amount of vasoconstriction in 

response to NPY administration in gastrocnemius first-order arterioles. 

3. Chronic estrogen supplementation will decrease the extent at which NPY potentiates 

adrenergic vasoconstriction in gastrocnemius first-order arterioles. 

4. DPPIV activity will be greater in gastrocnemius first-order arterioles with chronic 

estrogen supplementation. 

Limitations 

1. Arteriole size was not included in the statistical analysis of the DPPIV activity assay 

due to the sample medium’s interference with the kit components of the protein assay. 

 

 

 

 

 

 



 

5 
 

REVIEW OF LITERATURE 

Neuropeptide Y (NPY) is a 36-amino acid polypeptide that is widely expressed 

throughout the central and peripheral nervous systems.  Neuropeptide Y exhibits 

neuroendocrine function in the pituitary and hypothalamus, possessing various levels of 

influence on releasing hormones involved in satiety, reproduction, and development.  

Neuropeptide Y also acts as a neurotransmitter in central and peripheral nervous tissue 

owing to its functional duality in the body, and it is in this latter role that NPY exerts a 

level of influence over vascular regulation. 

NPY Structure and Synthesis 

 A family of polypeptides characterized by a tyrosine residue at the C-terminus 

was discovered in 1980 by Tatemoto and Mutt (1980).  Peptide YY and peptide histidine 

isoleucine were observed in the gut region with putative influence on pancreatic secretion 

(Jensen, Tatemoto, Mutt, Lemp, & Gardner, 1981; Tatemoto, 1982a).  A polypeptide was 

also observed in the brain, but it was thought to be peptide YY due to its characteristic N- 

and C-terminus tyrosine residues (Tatemoto, 1982a).  However, while sharing substantial 

sequence homology with peptide YY, the brain polypeptide was not identical (Tatemoto, 

1982b).  Thus, the brain polypeptide was designated as a novel neuropeptide, 

neuropeptide Y (Tatemoto, Carlquist, & Mutt, 1982).  In addition to sequence homology 

with peptide YY (67%), NPY is structurally similar to another gut peptide, pancreatic 

polypeptide (50%) (see Table 1) (Takeuchi & Yamada, 1985; Tatemoto, 1982b; 

Tatemoto, et al., 1988).  The gene that encodes NPY is found on chromosome 7 (7pter-

q22) (Takeuchi, et al., 1986), while the gene for pancreatic polypeptide is located on 
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chromosome 17.  The difference in chromosomal location for peptides of the same family 

could be attributed to evolutionary genetic translocation (Takeuchi, et al., 1986). 
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Table 1 
Amino Acid Sequences of NPY, Peptide YY, and Pancreatic Polypeptide 

 
Peptide 

 
Amino Acid Sequence 

 
NPY 

 
Tyr-Pro-Ser-Lys-Pro-Asp-Asn-Pro-Gly-Glu-Asp-Ala-Pro-
Ala-Glu- 
Asp-Met-Ala-Arg-Tyr-Tyr-Ser-Ala-Leu-Arg-His-Tyr-Ile-
Asn-Leu- 
Ile-Thr-Arg-Gln-Arg-Tyr-NH2 
 

 
Peptide YY 

 
Tyr-Pro-Ile-Lys-Pro-Glu-Ala-Pro-Gly-Glu-Asp-Ala-Ser-
Pro-Glu- 
Glu-Leu-Asn-Arg-Tyr-Tyr-Ala-Ser-Leu-Arg-His-Tyr-Leu-
Asn- 
Leu-Val-Thr-Arg-Gln-Arg-Tyr-NH2 

 
 
Pancreatic Polypeptide 

 
Ala-Pro-Leu-Glu-Pro-Val-Tyr-Pro-Gly-Asp-Asn-Ala-Thr-
Pro- 
Glu-Gln-Met-Ala-Gln-Tyr-Ala-Ala-Asp-Leu-Arg-Arg-Tyr-
Ile- 
Asn-Met-Leu-Thr-Arg-Pro-Arg-Tyr-NH2 
 

Note. Amino acids underlined are in the same sequential position as the corresponding 
amino acid in NPY; amino acids in bold are unique to that specific peptide. 
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Transcription and translation.  Prepro-NPY consists of a 97 amino-acid chain 

with a 28 amino acid signal peptide, followed by the expressed 36 amino acid peptide 

(NPY) (Minth, Bloom, Polak, & Dixon, 1984).  A polymorphism in the signal peptide 

(Leu7Pro) may influence translocation of prepro-NPY to the endoplasmic reticulum, 

post-translational modifications, and the expression of mature NPY (Kallio, et al., 2001).  

This polymorphism has been linked to hypercholesteremia and atherosclerosis in some 

populations (Karvonen, et al., 2000; Niskanen, et al., 2000).  Kaipio, Kallio, and Pesonen 

(2009) observed premature apoptosis and decreased angiogenesis in response to vascular 

endothelial growth factor in human umbilical vascular endothelial cells that possessed 

this polymorphism, which would be an indicator of endothelial dysfunction.  However, 

this polymorphism has also been associated with decreased free fatty acids and insulin 

concentrations during exercise (Kallio, et al., 2001).  While the increase in NPY appears 

to accompany this polymorphism, it is difficult to surmise a negative or positive 

relationship in cardiovascular profile.  The amino acid chain that follows expressed NPY, 

C-flanking Peptide Of Neuropeptide Y (CPON), may have physiological function (Allen, 

Polak, & Bloom, 1985).  Immunoreactivity to CPON was detected in the heart, adrenal 

glands, and kidney.  In the brain, CPON immunoreactivity was detected in the 

hypothalamus, striatum, hippocampus, frontal cortex, and the brain stem.  While CPON 

immunoreactivity appears to mirror NPY concentrations in certain tissues, a 

physiologically relevant function for CPON has not been identified.   

NPY Locations 

 Brain.  NPY is the most abundant peptide of the brain (Adrian, et al., 1983) with 

NPY immunoreactivity detected at greatest concentrations in the deep layers of the brain 
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and brain stem (Y. S. Allen, et al., 1983; Sawchenko, et al., 1985).  In the limbic system, 

NPY immunoreactivity was present in the arcuate and paraventricular nuclei of the 

hypothalamus (Lundberg, Terenius, Hokfelt, & Tatemoto, 1984), the pineal gland, and 

the pituitary gland (Chronwall, et al., 1985).  Neuropeptide Y immunoreactivity was also 

found in the hippocampus and the dentate gyrus.  In the brain stem, cell bodies with NPY 

immunoreactivity were observed in the periaqueductal gray region, and to a lesser extent, 

the locus coeruleus, the nuclei of the tractus solitarius (Lundberg, Terenius, et al., 1984), 

and the superficial laminae of the trigeminal nucleus.  In the medulla oblongata, NPY 

immunoreactivity was abundant in the raphe nuclei of the reticular formation and the 

dorsal motor nucleus of the vagus (Hokfelt, et al., 1983).  In the basal ganglia, high 

concentrations of NPY immunoreactivity were found in the caudate nucleus and putamen 

(Adrian, et al., 1983).  Hypothalamic NPY is released at circadian intervals with the 

greatest release occurring in the morning (7:00am) followed by a gradual decline 

throughout the day (Nicholson, et al., 1983).   

 Neuropeptide Y can be found in NPYergic (Bai, et al., 1985), adrenergic, and 

GABAergic (Hendry, et al., 1984) neurons within the brain.  The NPYergic neurons 

arising from the arcuate nucleus contain a rich supply of NPY (Bai, et al., 1985).  

Removal of the arcuate nucleus resulted in a steep decline in NPY immunoreactivity 

suggesting that this is the primary origin of NPY immunoreactivity found in the brain.  

Neuropeptide Y is transported in A1-3 (Bai, et al., 1985; Everitt, et al., 1984), A4-8, A10, 

A12, A14-15 (Everitt, et al., 1984), and C1-3 (Everitt, et al., 1984; Sawchenko, et al., 1985) 

adrenergic neurons.  Neuropeptide Y immunoreactivity co-localizes with norepinephrine 

(A1-2, A4, A6) and epinephrine (C1-2) in adrenergic neurons, however trace amounts of 
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NPY immunoreactivity have been observed in the absence of catecholamines (A5, A7, A8-

10, A12, A14-15) (Everitt, et al., 1984).  Since GABAergic (λ-aminobutyric acid) neurons 

participate in inhibitory stimuli, NPY found in GABAergic neurons may play a role in 

facilitating the actions of this neuronal type (Hendry, et al., 1984). 

 In the brain, NPY exhibits neuroendocrine behavior by modulating the release of 

hormones involved in protein synthesis, cell growth, reproduction, and eating behavior 

(Clark, Kalra, Crowley, & Kalra, 1984; J. K. McDonald, Lumpkin, Samson, & McCann, 

1985).  NPY also has cerebrovascular actions, however this will be discussed in 

subsequent sections and will receive no further mention here.  Neuropeptide Y is a potent 

stimulus for the feeding response in animal models.  Intraventricular injection of NPY 

resulted in an increased feeding response, and this response was 3-fold greater than the 

response elicited by pancreatic polypeptide (Clark, et al., 1984).  In a separate study by 

Stanley, Daniel, Chin, and Leibowitz (1985), carbohydrate was the preferred 

macronutrient following intraventricular injection with smaller differences between 

control and experimental trials in fat and protein consumption. 

 Neuropeptide Y possesses stimulatory effects on pituitary release of luteinizing 

hormone (Kalra & Crowley, 1984; Kerkerian, Guy, Lefevre, & Pelletier, 1985; J. K. 

McDonald, et al., 1985).  In ovariectomized rats with estrogen/progesterone 

supplementation, intraventricular injection of low concentrations of NPY (0.1-2.0μg) 

resulted in a marked increase in luteinizing hormone concentrations 10 minutes following 

application (Kalra & Crowley, 1984).  Luteinizing hormone-releasing hormone 

concentrations tend to rise and fall in concert with NPY concentrations, suggesting a 

modulatory effect for NPY on luteinizing hormone-releasing hormone (Crowley, Tessel, 
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O'Donohue, Adler, & Kalra, 1985).  Progesterone administration causes a substantial, yet 

transient, increase in NPY and luteinizing hormone-releasing hormone within the median 

eminence followed by a gradual decline with a concurrent rise in luteinizing hormone 

concentrations (Crowley, et al., 1985; Kalra & Crowley, 1984).  This suggests that NPY 

release within the hypothalamus is sensitive to progesterone, and that NPY may possibly 

modulate the effects of luteinizing hormone-releasing hormone and subsequent 

luteinizing hormone release (Crowley, et al., 1985).  Neuropeptide Y may act directly on 

the anterior pituitary to stimulate the release of luteinizing hormone and follicle-

stimulating hormone (FSH) (J. K. McDonald, et al., 1985), however the significance of 

this mechanism in vivo is unknown.  Progressively larger concentrations of NPY (2-5μg) 

depressed circulating concentrations of growth hormone (GH) (J. K. McDonald, et al., 

1985). 

 Adrenal gland.  Neuropeptide Y is found in the adrenal glands of many animals 

with the greatest proportion found in the adrenal medulla (Varndell, Polak, Allen, 

Terenghi, & Bloom, 1984).  There is considerable variability across species in adrenal 

NPY content with some animals such as mice expressing significant amounts 

(1244pM/g) and other animals such as dogs expressing very little (68pM/g) (Allen, 

Adrian, Polak, & Bloom, 1983).  In the adrenal cortex, NPY immunoreactivity exists in 

the varicose nerve fibers that span the zona reticularis and the subcapsular cortical area 

(Varndell, et al., 1984).  In the adrenal medulla, NPY co-localizes with norepinephrine, 

but not epinephrine, in small (90-120nm) chromaffin granules. 

 Peripheral vasculature and smooth muscle.  Neuropeptide Y is widely 

expressed in perivascular nerve fibers that form plexuses across blood vessels (Grasby, 



 

12 
 

Morris, & Segal, 1999) and terminate at the adventitial-tunica media border (Fleming, 

Gibbins, Morris, & Gannon, 1989).  Neuropeptide Y or NPY immunoreactivity has been 

detected in the gut (Ekblad, Ekelund, Graffner, Hakanson, & Sundler, 1985; Lundberg, 

Terenius, Hokfelt, & Goldstein, 1983; Sundler, Moghimzadeh, Hakanson, Ekelund, & 

Emson, 1983), ear (Hieble, Ruffolo, & Daly, 1988), uvea (Terenghi, et al., 1983), 

throughout the female and male reproductive anatomy (Lundberg, et al., 1983; Owman, 

et al., 1986; Stjernquist, et al., 1983), kidney (Ballesta, Polak, Allen, & Bloom, 1984), 

respiratory tract (Uddman, Sundler, & Emson, 1984), heart (Gu, et al., 1984), thyroid 

gland (Grunditz, Hakanson, Rerup, Sundler, & Uddman, 1984), spleen (Lundberg, et al., 

1983), omentum (Edvinsson, et al., 1985), skin (Lundberg, et al., 1983), and sweat glands 

(Tainio, Vaalasti, & Rechardt, 1986).  Neuropeptide Y is found in a variety of 

nonvascular smooth muscle such as vas deferens (Fried, Terenius, Hokfelt, & Goldstein, 

1985; Lundberg, et al., 1983), intestine (Sundler, et al., 1983), lung (Lundberg, et al., 

1983), and eye (J. M. Allen, G. P. McGregor, et al., 1983). 

 Other nonvascular sites.  Neuropeptide Y is also found in the submucosal layers 

of the stomach (Ekblad, et al., 1985), prostate gland, submandibular gland (Lundberg, et 

al., 1983), fallopian tube, uterus (Owman, et al., 1986), and thyroid gland (Grunditz, et 

al., 1984). 

NPY Storage and Transport 

 Neuropeptide Y is co-stored along with norepinephrine in the large dense-cored 

vesicles (80-120nm) of adrenergic neurons (Ekblad, et al., 1984; Fleming, et al., 1989; 

Fried, Terenius, et al., 1985; Grasby, et al., 1999; Lundberg, et al., 1983; Tainio, et al., 

1986).  A 50:1 ratio of norepinephrine to NPY exists in these large vesicles, while no 
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NPY immunoreactivity is observed in the small-type (50nm) vesicles (Fried, Lundberg, 

& Theodorsson-Norheim, 1985; Fried, Terenius, et al., 1985).  Unlike norepinephrine, in 

which neurons have the enzymatic capability (tyrosine hydroxylase, dopamine  β-

hydroxylase) for synthesis within the sympathetic end terminal (Fried, Lundberg, et al., 

1985), NPY depends (9mm/hour) on axonal transport for reconstitution.  Therefore, the 

discrepancy in norepinephrine:NPY ratios can become more pronounced in distal 

sympathetic end terminals (Fried, Lundberg, et al., 1985).  Reserpine experiments, which 

deplete the neurotransmitter content of sympathetic end terminals, produced a rebound 

supracompensation of norepinephrine and dopamine  β-hydroxylase (160% and 140%, 

resp.) that was observed four days following reserpine administration (Dahlstrom, et al., 

1986).  In comparison, NPY experienced a slight decrease over time in addition to the 

acute decline (50%) that occurred following reserpine treatment (Dahlstrom, et al., 1986; 

Morris, Murphy, Furness, & Costa, 1986).  The disparity in reconstitution between NPY 

and norepinephrine supports the putative differences in neurotransmitter synthesis and 

transport. 

 Neuropeptide Y is also stored and released from chromaffin granules within the 

adrenal medulla, thus participating in the systemic pressor response along with 

norepinephrine and epinephrine (Lundberg, Fried, Pernow, & Theodorsson-Norheim, 

1986).  Upon adrenal activation, systemic concentrations of NPY can increase 2-fold over 

normal resting concentrations, while norepinephrine and epinephrine experience a greater 

increase in circulating concentrations (Lundberg, Fried, Pernow, & Theodorsson-

Norheim, 1986).  The larger increase in circulating catecholamines is, in part, attributed 

to larger stored concentrations within the adrenal medulla.  In the adrenal medulla of the 
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cat, NPY storage is 1:2000 to norepinephrine and 1:1500 to epinephrine (Lundberg, 

Fried, Pernow, & Theodorsson-Norheim, 1986).  However, NPY remains elevated in the 

circulation for a longer duration as compared to norepinephrine and epinephrine 

following a pressor stimulus. 

NPY Release from Peripheral Sympathetic Nerves 

 Action potentials propagated from the proximal post-junctional nerve result in 

fusion of the neurotransmitter-containing vesicles to the neural membrane at the synapse 

and neurotransmitter release via exocytosis.  As NPY is co-stored with norepinephrine in 

large dense-cored vesicles, NPY is also co-released with norepinephrine during the neural 

action potential (Lundberg, Martinsson, et al., 1985; Pernow, 1988).   

NPY Receptors and Vascular Actions 

  There are six known receptors for NPY, Y1-6 (Balasubramaniam, 1997), although 

only a few possess vascular actions (Wahlestedt, et al., 1990).  In vascular smooth 

muscle, the Y1 receptor is located at the cell membrane where it binds with complete 

NPY(1-36).  The Y1 receptor belongs to a class of G-protein coupled receptors, whereby it 

creates the cellular conditions for vasoconstriction.  The Y2 receptor is primarily located 

on the sympathetic end terminal although it can be found on vascular smooth muscle in 

some vascular beds (Tessel, Miller, Misse, Dong, & Doughty, 1993a, 1993b).  However, 

unlike the Y1 receptor, the Y2 receptor is capable of binding C-truncated fragments of 

NPY in addition to binding the full-length peptide. 

 Y1 receptor mechanisms.  The binding of NPY(1-36) to the Y1 receptor results in 

the dissociation of an inhibitory G protein, Gi, which inhibits adenylate cyclase activity 

and subsequent cyclic AMP (cAMP) production (Lobaugh & Blackshear, 1990; Reynolds 
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& Yokota, 1988).  Pertussis toxin, which blocks Gi signaling, abrogates the decrease in 

adenylate cyclase activity and subsequent vasoconstriction following NPY administration 

(Andriantsitohaina, Andre, & Stoclet, 1990; Morris, 1991).  The fact that pertussis toxin 

does not effect the contractile mechanisms of vascular smooth muscle suggests that Gi 

signaling is a primary mechanism behind NPY vasoconstriction (Morris, 1991).  While 

pertussis toxin virtually blocks vasoconstriction in small arterioles (Andriantsitohaina, et 

al., 1990), there is still vasoconstriction to NPY in larger vessels (Morris, 1991) even in 

the presence of pertussis toxin.  This would suggest that other cellular signaling 

mechanisms are involved following activation of the Y1 receptor.  Indeed, an increase in 

intracellular calcium follows Y1 activation in many vascular beds (Oshita, Kigoshi, & 

Muramatsu, 1989; Pernow & Lundberg, 1986; Shigeri & Fujimoto, 1993; Tessel, et al., 

1993b; Xiong, Bolzon, & Cheung, 1993).  Nifedipine, an L-type calcium channel 

blocker, is successful in blocking a portion of vasoconstriction caused through Y1 

activation (Tessel, et al., 1993b).  The L-type calcium channel is voltage sensitive, and is 

the primary mechanism behind calcium influx in response to cell depolarization of 

vascular smooth muscle.  In cerebral and internal carotid arteries, NPY increased vascular 

smooth muscle membrane potential 15mV above baseline values (Abel & Han, 1989).  

Neild (1987) observed depolarization (+16mV over baseline) of rat tail artery similar to 

the values observed by Abel and Han (1989).  The onset of depolarization was slow (5-10 

minutes post-application), and a correlation was observed between vasoconstriction and 

depolarization.  The depolarizing effect of NPY is independent of endothelial influences 

as endothelium removal did not alter the increases in membrane potential following NPY 

administration (Gustafsson & Nilsson, 1990). 
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 Vascular smooth muscle contraction can also be influenced by the release of 

calcium from intracellular storage sites.  The second messenger that is most associated 

with the release of intracellular calcium stores is inositol 1,4,5-triphosphate (IP3).  

Neurotransmitters that utilize IP3 as a second messenger (e.g. norepinephrine) are capable 

of producing substantial vasoconstriction.  In porcine aortic vascular smooth muscle, 

NPY administration did not directly increase IP, IP2, or IP3 concentrations, but NPY did 

potentiate angiotensin II-mediated vasoconstriction (Lobaugh & Blackshear, 1990).  NPY 

also increased norepinephrine-stimulated IP3 production in rat tail artery (Duckles & 

Buxton, 1994).  The ability of NPY to stimulate or influence the upstream enzyme for IP3 

production, phospholipase C, is equivocal.  Lobaugh and Blackshear (1990) concluded 

that phospholipase C activity was unaffected by NPY administration in cultured porcine 

aortic vascular smooth muscle cells.  The absence of changes in phospholipase C activity 

and IP3 production was unexpected as NPY increased intracellular calcium in an 

environment void of extracellular calcium.  This would suggest an internal store of 

calcium susceptible to NPY activation.  Shigeri, Nakajima, and Fujimoto (1995) observed 

nonsignificant increases in IP3 production in cultured porcine aortic smooth muscle cells.  

However, their experiments included inhibitors for the various phospholipase C isoforms 

to determine what, if any, isoforms were susceptible to NPY stimulation.  Experiments 

that inhibited phospholipase C-β abolished the increase in intracellular calcium following 

NPY administration.  Therefore, NPY likely potentiates IP3 production via activation of 

phospholipase C-β.  While a subsequent increase in IP3 production following NPY 

administration is not substantial, it would appear that this pathway is involved in NPY-

mediated vasoconstriction via release of calcium from intracellular stores. 
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 ATP-activated potassium channel currents decreased by 43% with NPY 

administration in rabbit mesenteric artery (Bonev & Nelson, 1996).  These channels are 

inhibited by protein kinase C , which is a downstream signal of phospholipase C.  Bonev 

and Nelson (1996) noted increases in ATP-activated potassium channel currents 

following inhibition of protein kinase C and phospholipase C activity during NPY 

stimulation, which would support the notion of phospholipase C activation following Y1 

stimulation.  The conglomeration of active second messengers in some tissues could be 

the result of heterodimeric complexes comprised of multiple receptor subtypes (Pons, et 

al., 2008).  These complexes consist of Y1 and Y5 subtypes, and have been classified as 

Gi/o subtype receptors.  This heterodimeric complex inhibits adenylate cyclase activity 

and stimulates phospholipase C activity, which inhibits (cAMP (protein kinase A)) and 

promotes (IP3, diacylglycerol (protein kinase C)) the respective second messengers 

associated with each enzyme.  Certainly, there is still debate as to the functional 

significance of such multi-receptor complexes in producing meaningful concentrations of 

IP3.  Regardless, the Y1 receptor is recognized as the post-junctional receptor for NPY 

responsible for stimulating vasoconstriction via activation of L-type and R-type (Pons, et 

al., 2008) calcium channels. 

 Y2 receptor mechanisms.  The Y2 receptor is primarily located on the 

sympathetic end terminal where it acts to inhibit NPY release in addition to the inhibition 

of adrenergic and purinergic neurotransmitters (Lundberg, Torssell, et al., 1985).  There 

are vascular beds, however, where Y2 receptors are expressed on the vascular smooth 

muscle (McAuley & Westfall, 1992).  As a pre-junctional receptor, Y2 is a Gi-protein 

coupled receptor where it exerts influence on cellular signaling by inhibiting both 
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adenylate cyclase activity and N-type calcium channels (R. L. McDonald, Vaughan, 

Beck-Sickinger, & Peers, 1995; Wahlestedt, et al., 1990).  Y2 receptors have a high 

affinity for the full length peptide (NPY(1-36)) in addition to the cleavage products, NPY(2-

36) and NPY(3-36), of aminopeptidase P and dipeptidyl peptidase IV, respectively.  Y2 

receptors also exhibit binding affinity for the full-length and truncated fragments of 

peptide YY and pancreatic polypeptide (Wahlestedt, et al., 1990). 

 Vascular actions.  Neuropeptide Y stimulates vasoconstriction in many vascular 

beds through Y1 and Y2 receptor mechanisms previously discussed.  In the cat spleen, 

NPY caused a dose-dependent increase in perfusion pressure (Lundberg, Anggard, 

Theodorsson-Norheim, & Pernow, 1984; Lundberg, Fried, Pernow, Theodorsson-

Norheim, & Anggard, 1986).  The vascular response had a slow onset with the increase in 

perfusion pressure manifesting 2-5 minutes following NPY administration.  The 

vasoconstriction to NPY can linger over time.  In this tissue, the increase in perfusion 

pressure persisted for 10 minutes following the initial increase (Lundberg, Anggard, et 

al., 1984).  Furthermore, the increase in perfusion pressure was impervious to α- or β-

adrenoceptor blockade.  In porcine spleen, an increase in NPY-like immunoreactivity 

following transmural stimulation occurred 2-5 minutes post-stimulation, and the 

concentration was 4-5 times greater with larger frequencies (20Hz) as compared to small 

frequencies (2Hz) (Lundberg, Rudehill, Sollevi, Theodorsson-Norheim, & Hamberger, 

1986).  In rabbit cerebral and internal carotid arteries, NPY produced vasoconstriction 

that was 21% and 79% to vasoconstriction produced by histamine and norepinephrine 

(Abel & Han, 1989).  Minute vasoconstriction following NPY administration was 

observed in internal maxillary artery (Lacroix, Stjarne, Anggard, & Lundberg, 1988).  In 
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human studies, forearm blood flow decreased during NPY administration in a dose-

dependent fashion.  A similar lag in response was observed in these studies (2 minutes 

between time of administration and changes in blow flow) as was the long-lasting effect 

(~15 minutes of vasoconstriction) (Clarke, et al., 1991).  In human saphenous vein, NPY 

produced a small amount of vasoconstriction (~ 28% of maximum contraction) (Luu, 

Chester, O'Neil, Tadjkarimi, & Yacoub, 1992).  Neuropeptide Y, along with 

norepinephrine, is an important neurotransmitter involved in stimulating reflex 

vasoconstrictor mechanisms in humans (Stephens, Saad, Bennett, Kosiba, & Johnson, 

2004).  During whole body cooling, Y1 receptor blockade significantly decreased reflex 

vasoconstriction, while Y1 plus α-adrenoceptor blockade abrogated reflex 

vasoconstriction entirely. 

 In some vascular beds, NPY fails to cause direct vasoconstriction, but it can 

potentiate the vasoconstriction caused by other neurotransmitters.  In rat tail artery, NPY 

had no direct vasoconstriction, but did potentiate vasoconstriction to transmural nerve 

stimulation (Vu, Budai, & Duckles, 1989).  Interestingly, NPY did not potentiate 

vasoconstriction to norepinephrine in this vessel, although it did increase the rate of 

contraction to norepinephrine as well as transmural nerve stimulation.  In rabbit cerebral 

and internal carotid arteries, NPY was capable of potentiating vasoconstriction to 

norepinephrine with no change in maximum vasoconstriction (Abel & Han, 1989).  In the 

perfused mesenteric vascular bed, NPY administration produced little vasoconstriction, 

but potentiated vasoconstriction to norepinephrine and α,β-methylene ATP (Han, et al., 

1998).  It was concluded that NPY is involved in 30% of the vasoconstriction to 
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sympathetic nerve stimulation at this level of the vasculature when taking into account 

the potentiation of vasoconstriction to other neurotransmitters. 

 The ability of NPY to stimulate vasoconstriction appears to increase as vessel 

diameter decreases, thus becoming more relevant at the level of the resistance 

vasculature.  In rabbit tenuissimus muscle arterioles, NPY was 10-fold more potent on a 

molar basis as compared to norepinephrine (Pernow, Ohlen, Hokfelt, Nilsson, & 

Lundberg, 1987).  The magnitude of vasoconstriction was identical (65% and 64%) 

between NPY and norepinephrine, respectively, in these vessels.  As was seen in the 

perfused spleen, vasoconstriction was long-lasting with constriction observed five 

minutes following application.  There was also a 2-3 minute lag in response between the 

initial time of administration and the first signs of vasoconstriction.  In rat cremaster 

muscle, NPY-mediated vasoconstriction was approximately 61%, 54%, and 18% of 

resting diameter in first-, second-, and third-order arterioles (Joshua, 1991).  In hamster 

cheek pouch microvessels, NPY decreased resting vessel diameter by 50% with a lag 

time of 5 minutes between administration and response, and a long-lasting response up to 

20 minutes (Kim, et al., 1994).  Neuropeptide Y-mediated vasoconstriction was 

unaffected by α-adrenoceptor blockade.  In human small arteries, NPY was capable of 

eliciting vasoconstriction equal in magnitude to that of norepinephrine (Pernow, 1989).  

While the effects of NPY in skeletal muscle arterioles are unknown, the present literature 

suggests a larger overall response to NPY at the arteriole level. 

Proteolytic Enzymes 

 Dipeptidyl peptidase IV.  Dipeptidyl peptidase IV is a proteolytic enzyme that 

cleaves off the tyrosine-proline residue yielding a C-truncated product, NPY(3-36) 
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(Mentlein, Dahms, Grandt, & Kruger, 1993; Mentlein & Roos, 1996).  Dipeptidyl 

peptidase IV has been identified in human umbilical vascular endothelial cells 

(Zukowska-Grojec, et al., 1998) and it also exists in a soluble form (CD26) (Durinx, et 

al., 2000).  Dipeptidyl peptidase IV activity plays a significant role in modulating NPY 

neurotransmission in females as inhibition results in a significant decrease in blood flow 

and vascular conductance in external iliac arteries (Jackson, et al., 2005b).  Similar 

results were observed in vasoconstriction experiments of the rat tail artery using 

peptidase inhibitors (Glenn, Krause, & Duckles, 1997).  Alternative pathways such as 

angiogenesis are directly influenced by dipeptidyl peptidase IV activity as NPY-mediated 

angiogenesis depends on the activation of Y2 receptors, which have binding affinity for 

C-truncated fragments of NPY.  While dipeptidyl peptidase IV appears to possess a 

greater role in female NPY neurotransmission, the mechanisms that underlie this larger 

role have yet to be elucidated. 

Vascular Effects of Estrogen 

 Estrogen has many direct and indirect effects on local blood flow and blood 

pressure with most effects pertaining to vessel dilation.  The primary mechanism is 

activation of endothelial nitric oxide synthase, which produces nitric oxide (cyclic GMP) 

resulting in vasodilation (Moriarty, et al., 2006).  Estrogen also ameliorates the 

accumulation of free radicals through increased activity of dismutases and peroxidases 

(Duckles, Krause, Stirone, & Procaccio, 2006; Vina, Borras, Gomez-Cabrera, & Orr, 

2006).  In addition to the vasodilating effects, estrogen attenuates endothelium-dependent 

mechanisms involved in vasoconstriction.  Cyclooxygenase products such as 

prostaglandin H that arise from endothelial cells can be depressed in arteries with 
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estrogen (Davidge & Zhang, 1998).  Other endothelium-derived vasoconstrictive 

products such as endothelin 1 and angiotensin II, through estrogen’s influence on 

angiotensin converting enzyme, decrease with estrogen (Miller & Duckles, 2008).   

 Estrogen receptors (ERα, ERβ) are expressed on adrenergic, cholinergic, and 

serotenergic  nerves (Vanderhorst, Gustafsson, & Ulfhake, 2005).  Removal of estrogen 

can lead to increases in circulating norepinephrine concentrations and increases in 

vascular resistance (Miller & Duckles, 2008).  Estrogen decreases both the expression of 

α-adrenergic receptors and the enzymes (tyrosine hydroxylase) responsible for the 

production of precursors to norepinephrine (Kaur, Janik, Isaacson, & Callahan, 2007; 

Miller & Duckles, 2008).  In rat tail artery segments, estrogen supplementation resulted 

in decreased force production to norepinephrine (Stice, Eiserich, & Knowlton, 2009).  

Krizsan-Agbas, Pedchenko, Hasan, and Smith (2003) concluded that estrogen modulates 

sympathetic activity in uterine tissue by influencing the expression of brain derived 

neurotrophic factor, which modulates neuritogenesis and neurite degradation.  This 

modulatory influence was recently extended to vascular tissue with estrogen 

supplementation decreasing nerve growth factor expression in extracerebral blood vessels 

in addition to the superior cervical ganglia (Kaur, et al., 2007).  The effects of estrogen on 

NPY neurotransmission in the vasculature have not been determined. 

 The effects of sex on NPY neurotransmission have received attention in large 

conduit vessels.  Females possess less Y1 receptor expression and total NPY content in 

the gastrocnemius muscle (whole tissue) than their male counterparts (Jackson, et al., 

2005a).  Females also experience little change in blood flow to Y1 receptor blockade in 

external iliac arteries as compared to males (Jackson, et al., 2005a).  A follow-up study 
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by this same group found Y2 receptor expression to be greater in the gastrocnemius 

muscle of females (Jackson, et al., 2005b).  Females had a decrease in vascular 

conductance and blood flow during Y2 blockade with a return to baseline levels following 

combined Y1-Y2 blockade.  In a separate group of females, inhibition of the proteolytic 

enzymes that target N-terminal amino acid residues of NPY (Tyr and Tyr-Pro) resulted in 

a decrease in blood flow and vascular conductance, which suggests that these enzymes 

are intimately involved in the modulation of NPY neurotransmission in females (Jackson, 

et al., 2005b).  This research lends credence to a sex difference in NPY 

neurotransmission, but the underlying mechanism or mechanisms responsible for these 

differences cannot be answered with the present data.  The work of Glenn, Krause, and 

Duckles (1997) suggests that sex steroids, in general, modulate NPY neurotransmission 

in females.  However, there was more potentiation of vasoconstriction to transmural 

nerve stimulation following NPY administration in control females as compared to 

ovariectomized animals.   This would run counter to what Jackson, Milne, Noble, and 

Shoemaker (2005b) observed with the decreased Y1 receptor activity in females as 

compared to males.  However, Glenn, Krause, and Duckles (1997) did note a greater 

inhibition in vasoconstriction to transmural nerve stimulation following Y2 receptor 

stimulation in control animals, which is consistent with the greater expression of Y2 

receptors observed in females (Jackson, et al., 2005b).  A weakness of the Glenn, Krause, 

and Duckles (1997) study was the inability to control estrogen concentrations.  While 

attempts were made to monitor the rat’s estrous cycle, the inherent fluctuation of estrogen 

in intact females increases the experimental variability (error).  Little research exists 

regarding estrogen’s impact on NPY neurotransmission in human subjects.  Di Carlo et 
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al. (2007) detected increases in total NPY content of uterine arteries from post-

menopausal women.  While estrogen was not controlled per se, these results would 

suggest a possible modulatory role for estrogen with regards to NPY neurotransmission. 

Purpose of Study 

 The purpose of this study is to examine the effects of chronic estrogen 

supplementation on NPY release, NPYergic receptor actions, modulation of adrenergic 

vasoconstriction, and proteolytic enzymes that act on NPY.  It is expected that chronic 

estrogen supplementation will decrease NPY release and Y1 receptor-mediated 

vasoconstriction.  The potentiation effect of NPY on adrenergic vasoconstriction is also 

expected to attenuate with chronic estrogen supplementation.  Lastly, normally active 

proteolytic enzymes that modulate NPY neurotransmission through enzymatic cleavage 

of N-terminal amino acid residues will become less active in animals without chronic 

estrogen supplementation.  The present results may possibly elucidate another 

mechanism of estrogen's direct effect on sympathetic neurotransmission via the 

modulation of NPY neurotransmission in skeletal muscle arterioles.  This would further 

substantiate estrogen's crucial role in maintaining normal cardiovascular dynamics within 

the peripheral circulation as well as revealing the physiological changes that occur in 

skeletal muscle arterioles in the absence of estrogen. 

Treatment and Experimental Rationale 

 Ovariectomy and chronic estrogen supplementation.  Estrogen impacts the 

cardiovascular system through acute (Moriarty, et al., 2006) and chronic mechanisms 

(LeBlanc, et al., 2009; Stice, et al., 2009).  Ovariectomy is a means to remove the 

variability caused by estrogen, but comparisons to intact animals are fraught with 



 

25 
 

potential errors pertaining to the estrous cycle.  The estrous cycle of a F344 rat is 4-5 

days in duration with estrogen fluctuation ranging from approximately 70pg/ml during 

proestrous to concentrations as low as 15-20pg/ml during estrous (Haim, Shakhar, 

Rossene, Taylor, & Ben-Eliyahu, 2003).  Efforts to 'time' the cycle in this animal model 

would be tremendously difficult, if not impossible, due to the variable nature of the 

estrous cycle in this particular breed.  The only valid experimental alternative is to 

control estrogen concentrations by means of a secondary source.  The use of estrogen 

pellets (Innovative Research of America) to maintain an internally controlled 

environment is a popular and convenient method for experimental control for this type of 

treatment.  While treatment (supplementation) times may vary (Davidge & Zhang, 1998; 

Kaur, et al., 2007; LeBlanc, et al., 2009; Robbins, Mebane, Ball, Shaffer, & Ness, 2010; 

Stice, et al., 2009; Yao, et al., 2005; Zhang, Stewart, & Davidge, 2000), chronic changes 

in the vasculature can be observed within two weeks (Kaur, et al., 2007).  Haim et al. 

(2003) determined that a daily dose of .27µg/day would result in an estrogen plasma 

concentration of 34.6pg/ml, and a daily dose of 1.11 µg /day would results in an estrogen 

plasma concentration of 137.8pg/ml in F344 rats.  The study by LeBlanc et al. (2009) on 

F344 rats used a daily dose of 1.67µg /day, which produced an estrogen plasma 

concentration of 41pg/ml.  This work was relevant to the proposed project in that it 

employed microvessel analyses of arterioles.  Most importantly, the dose and length of 

time (6-8 weeks) of the study was sufficient in observing not only changes in protein 

expression, but also changes in vascular response to agonist/antagonist treatments.  In the 

proposed study, a dose of .25 mg / 60 days, will be used for the estrogen supplementation 

group, which has a delivery rate of 4.17 µg /day.  The treatment time will range from no 
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earlier than 6 weeks to no later than 8 weeks.  The serum estrogen concentrations 

(Estradiol EIA kit, Oxford Biomedical, Oxford, MI) and uterine weight will be used to 

verify estrogen status for each animal at the time of terminal experiment. 

 Microvessel preparation.  In vitro microvessel preparations provide the means to 

study the microvasculature in isolation.  This is a form of technical control thereby 

limiting confounding elements that are difficult to control otherwise (e.g. systemic 

influences).  Furthermore, this preparation is one of few viable options for the study of 

microvascular contraction and relaxation in this animal model.  Flow probes, which are 

commonly used to measure blood flow, have yet to be designed for vessels of this size 

(100-300μm).  Therefore, this apparatus is a viable and effective tool in measuring 

microvascular contraction and relaxation.  In this study, the amount of contraction will be 

determined through measurement of the vessel’s diameter using video calipers (Colorado 

Video 307A Horizontal Video Calipers, Boulder, CO), which will be referenced against 

baseline diameter measurements.  While vessel diameter is the measurable event, this 

variable is synonymous with vasoconstriction. 

 Field stimulation.  Neuropeptide Y release to field stimulation typically occurs at 

large frequencies (>20Hz), with little to no release observed at small frequencies (2-

20Hz) (Lundberg, Rudehill, et al., 1986).  This frequency-dependent characteristic of 

NPY could be attributed, in part, to the large, dense-cored vesicles where NPY is stored 

(Ekblad, et al., 1984; Fleming, et al., 1989; Fried, Terenius, et al., 1985; Grasby, et al., 

1999; Lundberg, et al., 1983; Tainio, et al., 1986).  Therefore, a large frequency (60Hz) 

will be utilized in the present study.  While this is a large frequency of stimulation, 



 

27 
 

instantaneous frequencies that exceed 50Hz have been recorded in sympathetic 

vasoconstrictor nerves (Macefield, Wallin, & Vallbo, 1994). 

 Gastrocnemius first-order arteriole.  Two (red and white) gastrocnemius first-

order arterioles are downstream of the gastrocnemius feed artery.  The red arteriole 

supplies blood to the medial gastrocnemius, which is more oxidative than the lateral 

gastrocnemius.  Therefore, the red arteriole will be used in this study.  As a resistance 

vessel, the arteriole expresses a diverse array of adrenergic (Pernow, et al., 1987), 

NPYergic (Matsuda, Brumovsky, Kopp, Pedrazzini, & Hokfelt, 2002), and purinergic 

(Matsuura, Saino, & Satoh, 2004) receptors making it an ideal vessel for the study of 

sympathetic neurotransmission.  Furthermore, blood pressure is maintained at the level of 

the resistance vasculature, which is capable of accommodating a 100-fold increase in 

blood flow during periods of maximal oxygen demand (Segal, 2005). 

 Joshua (1991) observed increases in first-order arteriole vasoconstriction 

following NPY administration by approximately 39%.  Macho et al. (1989) concluded 

coronary resistance vessels (arterioles) to be highly responsive to NPY with regards to 

vasoconstriction while noting little responsiveness in large conduit vessels.  Neuropeptide 

Y was 250-fold more potent than norepinephrine in these coronary arterioles.  While this 

research pertained to coronary arterioles, the available literature suggests an inverse 

relationship between vessel diameter and vessel responsiveness to NPY.  Dipeptidyl 

peptidase IV is also more active in the gastrocnemius first-order arteriole as compared to 

the femoral artery (unpublished data). 

 Cumulative concentration response curves.  Arteriole vasoconstriction to NPY 

has been achieved at nanomolar concentrations (10-11-10-7M) (Joshua, 1991; Kim, et al., 
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1994; Pernow, et al., 1987).  Therefore, this concentration range for NPY will be 

encompassed in the NPY concentration response curve performed in this proposal (10-11-

10-5M).  The potentiation of norepinephrine vasoconstriction can be elicited at nanomolar 

concentrations of NPY (10-9-10-7M) (Abel & Han, 1989; Hieble, et al., 1988; Prieto, et 

al., 1991; Small, Bolzon, & Cheung, 1992).  The greatest concentration (10-7M) of NPY 

associated with potentiation of vasoconstriction to norepinephrine will be used as it is the 

most oft reported concentration with measureable effects (Vu, et al., 1989). 

Preliminary Data 

 Neuropeptide Y release has been successfully measured in the gastrocnemius 

first-order arteriole using the proposed peptide enzyme immunoassay.  Figure 1 is NPY 

release during α2-adrenoceptor stimulation and inhibition (n=2).  The increase in NPY 

release following idozoxan (α2-adrenoceptor antagonist) is consistent with synergistic 

effects of adrenergic and NPYergic neurotransmission. 
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Figure 1.  The effects of α2-adrenoceptor blockade on NPY release following field 
stimulation (n = 2). NPY release was detectable using the proposed peptide enzyme 
immunoassay.
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Dipeptidyl peptidase IV has been successfully measured in the gastrocnemius 

first-order arteriole using the synthetic substrate, glycyl-L-proline-4-methoxy-2-

naphthylamide.  Figure 2 represents dipeptidyl peptidase IV activity in the femoral artery 

and gastrocnemius first-order arteriole (n=16).  Dipeptidyl peptidase IV activity is greater 

in the arteriole.  Figure 3 represents dipeptidyl peptidase IV activity in male and female 

gastrocnemius first-order arterioles (n=8). 
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Figure 2.  DPPIV activity of gastrocnemius first-
order arterioles (G1A: n = 16) and femoral 
arteries (FEM: n = 16).  DPPIV activity was 
assessed using the substrate, glycyl-L-proline-4-
methoxy-2-naphthylamide. Bars indicate mean ±
S.E.M.  * Significant difference from OVX (p < 
0.05).
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Figure 3.  DPPIV activity of male (n = 8) and 
female (n = 8) gastrocnemius first-order arterioles.  
Bars indicate mean ± S.E.M..
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METHODS 

Animal Model 

 The Fischer 344 rat (F344) exhibits neutral vascular physiology and is void of 

hypertensive or other inherent vascular pathological conditions that would preclude 

detailed vascular study (Harlan Laboratories, n.d.).  All female F344 rats will be 

ovariectomized with 15 rats receiving an estrogen pellet (N=30) (Innovative Research of 

America, Sarasota, FL) at the time of ovariectomy in order to maintain experimental 

control over systemic estrogen concentrations.  Animal behavior, food and water intake, 

appearance, and surgical incisions will be monitored for 10 days post-operatively.  

Records will be kept regarding surgical comments, animal condition, and drug 

administration (name, dose, route of administration).  Animals will be housed in 17" X 

10" X 7.5" cages.  A 75%/25% mixture of hardwood chip/wood pulp bedding will be 

used as bedding material.  Food and water will be provided ad libitum. 

Apparatus and Procedure 

Ovariectomy and Pellet (17β-Estradiol) Implantation 

 Female F344 rats (3-4 months of age) were anesthetized using 40mg/kg IP, 

sodium pentobarbital.  A ventral midline incision was made in the skin caudal to the 

border of the ribs and cephalad to the pubic symphysis.  A subcutaneous tunnel was made 

lateral to the skin incision and the muscles of the abdominal wall separated to allow 

access to the abdominal cavity.  Using forceps, the periovarian fat was grasped in order to 

lift and exteriorize the ovary.  The fallopian tube and the uterine horn distal to the ovary 

were clamped and the ovary removed by cutting above the clamped area.  Following 

removal of the ovary, the uterine horn was returned to the abdomen and the process 
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repeated for the second ovary.  The skin incision was closed using one or two sutures or 

wound clips. 

 In the chronic estrogen supplementation group, estrogen pellets (.25mg; 60 days) 

were delivered subcutaneously immediately following ovariectomy.  The pellet was 

implanted in the dorsoscapular region just behind the left ear above the shoulder using a 

10-gauge trochar. 

 The rats were treated with a topical antibiotic when necessary to prevent 

infection.  External sutures were removed 7-10 days following surgery.  Animals were 

housed for 6-8 weeks following ovariectomy to allow for the chronic vascular adaptations 

associated with estrogen to occur (LeBlanc, et al., 2009). 

Terminal Experiment 

 Six to eight weeks post-ovariectomy, the rats were administered a single IP dose 

of 0.5-0.8cc of 42.5mg/ml (71mg/kg to 113mg/kg) pentobarbital sodium to induce a deep 

plane of anesthesia.  Depth of anesthesia was determined by lack of response to toe 

pinching.  Following induction, arterioles were dissected out and removed.  Arterioles 

were cannulated with glass pipettes to measure vessel diameter.  The process of removing 

the arterioles took approximately 20 minutes.  Blood (5ml) was collected via cardiac 

puncture.  Blood samples were centrifuged for 3 minutes, the supernatant removed, and 

the serum stored at -80C.  Immediately following removal of the vessels, an intracardiac 

dose of pentobarbital and a pneumothorax was administered.  The uterus was removed, 

trimmed of connective tissue, and weighed.  

 Vessel chamber.  Arterioles were isolated in a refrigerated vessel chamber 

containing cold (4°C) Krebs-Ringer physiological saline solution (119mM NaCl, 4.7mM 
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KCl, 2.5mM CaCl2, 1.2mM MgSO4, 25mM NaHCO3, 1.2mM KH2PO4, 5.5mM glucose, 

2mM glycerol) (Pourageaud & De Mey, 1998) bubbled with 30% O2, 10% CO2, 60% N.  

Using 11-0 opthalmic suture, the arterioles were tied securely to micropipettes in a vessel 

chamber (Living Systems, Inc., Burlington, VT) and filled with Krebs-Ringer 

physiological saline solution (described above) containing 1% albumin (pH 7.4, 37°C) 

(Pourageaud & De Mey, 1998).  The bath was filled with Krebs-Ringer physiological 

saline solution (pH 7.4, 37°C) and transferred to the stage of an inverted microscope 

(Olympus (CKX41), Melville, NY).  Luminal diameter was monitored during 

equilibration and viability testing (described below) using video calipers (Colorado video 

307A Horizontal video calipers, Boulder, CO) and recorded on a computer.  The bath 

was gradually warmed and maintained at 37°C for the equilibration period.  

Micropipettes were connected to independent reservoir systems.  Luminal pressure was 

initially set at 60cm H2O, which is a pressure similar to normal in vivo pressure in 1A 

arterioles (Williams & Segal, 1993).  The bath solution was replaced every 15 minutes 

during equilibration.  Arterioles were considered viable if they constricted to 

phenylephrine (10-5M) by at least 10% and dilated by at least 20% to acetylcholine (10-

6M ) (Schneider, et al., 1994).  Maximum vasoconstriction (μm) was assessed by the 

average vasoconstriction produced by potassium chloride (80mM) prior to, and 

immediately following, that day's experiments.  The arteriole was washed out 5 times, 

and a calcium-free buffer was added to the bath to measure maximum arteriole dilation 

(μm). 

 Field Stimulation.  The arteriole was field stimulated using two platinum 

electrodes connected to an electrically isolated, constant current stimulator (Digitimer 
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(DS3), Welwyn Garden City, Hertfordshire, UK).  In our lab’s experience, field 

stimulation can be repeated up to four times without a loss of vascular tone. 

 Randomization.  The following series described below were randomized to 

minimize variability due time effects (i.e. the length of time the vessel is maintained in 

the microvessel bath).  The cumulative concentration response curves within Series 3 

were randomized to reduce sequence effects. 

 Series 1: NPY release to field stimulation.  The vessel received field stimulation 

(60Hz, 9mA, 7 impulses), followed by extraluminal sampling (~200µl) immediately after 

stimulation and 30 seconds post-stimulation.  Samples were flash-frozen with liquid 

nitrogen and stored at -80C.  At the conclusion of the first set of experiments, the vessel 

chamber was washed five times and allowed to equilibrate for 30 minutes before 

proceeding to the next set of experiments. 

 Series 2: Y1 post-junctional receptor sensitivity.  A cumulative concentration 

response curve using the Y1 specific agonist, [Leu31Pro34]NPY (Bachem, King of 

Prussia, PA), was performed (10-11-10-5M).  Doses were administered at five minute 

intervals.  Data was expressed as a percentage of maximum contraction (µm), percentage 

of baseline tension, EC50, and slope.  Data were analyzed using EC50 and slope.  At the 

conclusion of the second set of experiments, the vessel chamber was washed five times 

and allowed to equilibrate for 30 minutes before proceeding to the next set of 

experiments to avoid possible residual effects from the previous experiment. 

 Series 3: NPY potentiation of adrenergic vasoconstriction.  A cumulative 

concentration response curve for the α-adrenoceptor agonist, norepinephrine (10-11-10-

6M), was performed to determine adrenergic responsiveness of the vessel.  A 
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concentration of NPY(1-36)  (10-7M) capable of eliciting potentiation of norepinephrine 

vasoconstriction was added to the bath and allowed to incubate for five minutes.  A 

second cumulative concentration response curve for norepinephrine was performed to 

examine the potentiation effect of NPY on adrenergic vasoconstriction.  Data were 

expressed as a percentage of maximum contraction (µm), percentage of baseline tension, 

EC50, and slope.  Data were analyzed using EC50 and slope.  The vessel bath was 

washed out and the arteriole allowed to equilibrate as described above. 

 Series 4: DPPIV activity in gastrocnemius first-order arterioles.  The DPPIV 

inhibitor, diprotin A (1μM), was added to the bath and allowed to incubate for 20 

minutes.  The arteriole received field stimulation (60Hz, 9mA, 7 impulses), which was 

followed by extraluminal sampling (~200µl) immediately after stimulation and 30 

seconds post-stimulation.  Samples were flash-frozen with liquid nitrogen and stored at -

80C.  Upon completion of all animal experiments, samples were analyzed for NPY 

content using a peptide enzyme immunoassay (Bachem, King of Prussia, PA). 

 Arterioles from the contralateral gastrocnemius were homogenized in Krebs-

Ringer buffer, centrifuged, and the supernatant removed for DPPIV analysis.  DPPIV 

samples were flash-frozen with liquid nitrogen and stored at -80C.  Upon completion of 

all animal experiments, samples were analyzed for DPPIV and total protein content 

(Thermo Scientific, Rockford, IL) using spectrophotometric assay.  Serum concentrations 

of 17β-estradiol were determined using an estradiol immunoassay (Estradiol EIA kit, 

Oxford Biomedical, Oxford, MI). 

 Peptide enzyme immunoassay (EIA).  Vessel bath samples and EIA kit 

components were brought to room temperature before proceeding with NPY analysis.  
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The samples were placed in an antibody-coated, 96-well plate with provided standards.  

Primary antiserum and biotinylated peptide solutions were added and incubated for two 

hours at room temperature.  The samples were washed with an assay buffer and treated 

with streptavidin HRP solution and incubated for 60 minutes at room temperature.  

Following a second wash cycle, the substrate was added and the absorbance read at 

450nm (Bio-Tek Instruments Inc., Winooski, VT).  The concentration of NPY was 

determined using a normal curve.  The assay’s minimum detectable NPY concentration is 

2 to 3 pg per well or 0.06ng/ml. 

 Dipeptidyl peptidase IV assay.  Whole vessel homogenate samples were brought 

to room temperature.  The samples were then transferred to a 96-well plate and glycyl-L-

proline-4-methoxy-2-naphthylamide added (37).  The samples were incubated for 20 

minutes at 37°C and the reaction stopped using a citrate solution (100mM).  The 

fluorescent signal was read at 340 and 425nm by a FLX800 microplate reader.  DPPIV 

activity was defined as the activity that produces 1μM of 4-methoxy-2-napthalamine in 

one minute (Scharpe, et al., 1988). 

 Protein assay.  Whole vessel homogenate samples were brought to room 

temperature.  Samples (150µl) were transferred to a 96-well plate along with a working 

reagent (150 µl).  The plate was placed on a heating block (37°C) and allowed to incubate 

for 2 hours.  The plate was removed from the heating block to equilibrate to room 

temperature (~10min) before analysis.  Absorbance of a colorimetric signal was read at 

562nm.  Total protein content (µg/ml) was determined using a bovine serum albumin 

standard curve.  
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 17β-estradiol assay.   The organic phase was separated by vortexing the sample 

with ethyl ether.  The solvent was evaporated using a nitrogen stream, and the remaining 

residue was diluted in extraction buffer.  This sample was added to the microplate along 

with the enzyme conjugate, shaken, and incubated at room temperature for one hour.  

Following a wash cycle, the substrate was added with optimal color development 

(650nm) occurring within 30 minutes of administration.  Color development was 

inversely proportional to the concentration of estradiol. 

Statistical Design 

 It is prudent to minimize the number of statistical tests in order to decrease type I 

error rate.  Therefore, data of similar formats (e.g. cumulative concentration response 

curves and NPY release) were analyzed together when possible.  A multivariate analysis 

of variance (α=.05) was used to analyze the data from series 2 and 3.  The EC50 and 

slope were recorded for NPY, norepinephrine, and NPY+ norepinephrine cumulative 

concentration response curves.  A repeated measures design (α=.05) was used to assess 

differences in data from series 1 and 4.  NPY release (ng ml-1) with and without diprotin 

A (dipeptidyl peptidase IV inhibitor) was recorded at 0 seconds and 30 seconds post-field 

stimulation.  Greenhouse-Geisser’s epsilon was used as the criterion (O'Rourke, Hatcher, 

& Stepanski, 2005) for determining usage of either the univariate (ε > 0.75) or 

multivariate (ε < 0.75) case, where appropriate.  Dipeptidyl peptidase IV activity (second 

part of series 4) was analyzed using a one-way analysis of variance design (α=.05).   

 In our lab, we have previously detected differences in NPY release from 

gastrocnemius 1A arterioles.  Based on our prior work, we needed at least 12 animals to 

achieve power > .80 with α= .05 (Δ=1.83).  Previous analysis of dipeptidyl peptidase IV 
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activity in our lab did not include the vessel’s size in the determination of activity.  It was 

possible that total enzyme activity as determined by the amount of synthetic substrate 

converted to measureable product was a function of vessel size (i.e. there was more 

physical dipeptidyl peptidase IV protein in some experiments).  Consequently, the 

standard deviations were higher than desired, which for the present experiment, would 

have required a larger group size (n=21) in order to reach our desired power (>.80).  

Therefore, the protein assay was included in order to normalize the DPPIV activity with 

respect to the vessel’s size (total protein content).  Power calculations of subsequent 

enzyme assay (monoamine oxidase) results using protein quantification to normalize 

activity required a group size of 12 to meet a power of at least .80 with α= .05 (Δ=1.87).  

NPY-mediated vasoconstriction increases in magnitude as vessel diameter decreases.  

Joshua (1991) observed decreases of ~39±2% in first-order arteriole diameter following 

NPY administration.  This large effect yields a substantial degree of power (>.90).  Based 

on the aforementioned power calculations, this study utilized groups of 15 animals 

(N=30), which was deemed sufficient to detect group differences with power > .80; α= 

.05. 
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RESULTS AND DISCUSSION 

Results 

 Model assumptions for all statistical instruments were examined with follow-up 

measures performed when necessary.  Data considered essential for interpretation are 

included in the results.  Appendix A contains more detailed information regarding data 

organization, inclusion criteria for statistical analysis, and the handling of model 

assumptions. 

 A treatment duration of 8 weeks (56 days) was selected to allow for an adequate 

amount of exposure time to estrogen in order to detect the presence of physiological 

adaptations to chronic estrogen exposure.  The average treatment time (from OVX/OVE 

surgery to terminal experiment) was 55.76 ± 0.30 days, and the ages at the time of 

terminal experiment ranged from 158 days to 224 days.  The length of a terminal 

experiment was 6 hours; thus, a maximum of two experiments could be performed on any 

given day.  The small variation in treatment duration was due, in part, to conflicts that 

were either unavoidable or beyond control (meetings, equipment failure/damage).  A total 

of 35 rats were ovariectomized, while 17 rats also received the 17β-estradiol pellet.  The 

only death that occurred during the treatment phase was attributed to sodium 

pentobarbital overdose.  No rats exhibited signs or symptoms of surgical complications 

during the 10-day post-surgical observations, and there were no signs of infection or 

adverse conditions at the time of the terminal experiment.  

Animal Characteristics  

 Plasma estrogen concentrations were greater in rats with estrogen 

supplementation (OVE) as compared to rats without estrogen supplementation (OVX; 
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Figure 4: F (1, 9) = 7.67, p < 0.05).  The presence of estrogen can produce alterations in 

phenotype that are readily observable and easy to measure.  OVE exhibited less weight 

gain over the 8-week period (Figure 5: F (1, 32) = 47.05, p < 0.05) but had substantially 

larger uteri as opposed to OVX (Figure 6: F (1, 26) = 1812.17, p < 0.05).  Figure 7 

displays representative uteri from OVE (A and B) and OVX (C and D) rats.  The 

collective statistical effects of measurements related to estrogen supplementation were 

high (plasma estrogen: d = 1.68; body weight: d = 2.35; uterine weight: d = 16.09).  

These data suggest a significant difference in estrogen concentrations between OVE and 

OVX rats.   
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Figure 4.  Plasma estradiol concentration of 
OVX (n = 5) and OVE (n = 6) rats. Estrogen 
supplementation resulted  in an increase in plasma 
estradiol levels.  Bars indicate mean ± S.E.M.  
* Significant difference from OVX (p < 0.05).
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Figure 5.  Body weight of OVX (n = 17) and OVE 
(n = 17) rats. Estrogen supplementation resulted in 
significantly less body weight.  Bars indicate mean ±
S.E.M.  * Significant difference from OVX             
(p < 0.05).
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Figure 6.  Uterine weight of OVX (n = 14) and 
OVE (n = 14) rats. Estrogen supplementation 
resulted in significantly greater uterine weight.  Bars 
indicate mean ± S.E.M.  * Significant difference from 
OVX (p < 0.05).
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Figure 7.  Representative uteri from OVE (A and B) and OVX (C and D) rats.  
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Series 1: NPY release to field stimulation 

 Field stimulation at a high frequency is needed in order to facilitate the exocytosis 

of large dense-cored vesicles within the sympathetic nerve terminal (Lundberg, Pernow, 

Franco-Cereceda, & Rudehill, 1987).  NPY release increased from 0 to 30 seconds in 

OVX and OVE rats (Figure 8: F (1, 21) = 6.44, p < 0.05).  While OVX (n = 12) rats 

experienced slightly greater NPY release at 0 and 30 seconds, the release was not 

statistically different (F (1, 21) = 0.05, p < 0.83, D2 = 0.05) from OVE (n = 11). 
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Figure 8.  NPY release in gastrocnemius first-order arterioles of OVX (n 
= 12) and OVE (n = 11) rats.  NPY release was greater at 30s following field 
stimulation for all rats irrespective of estrogen status.  Bars indicate mean ±
S.E.M.  * Significant difference from 0s (p < 0.05).
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Series 2: Y1 post-junctional receptor sensitivity 

 This series was performed to determine the effects of long-term estrogen 

supplementation on Y1-receptor activity in skeletal muscle arterioles.  The Y1-receptor 

agonist, [Leu31Pro34]NPY, elicited a 45% decrease in vessel diameter of skeletal muscle 

arterioles.  Estrogen status did not affect the maximum amount of Y1-mediated 

vasoconstriction (F (1, 14) = 0.01, p = 0.91; d = 0.05) with OVE (55.07 ± 5.10%; n = 9) 

producing similar magnitudes of vasoconstriction to that observed in OVX (55.97 ± 

6.25%; n = 7).  The sensitivity of Y1-receptor actions to cumulative concentrations of 

[Leu31Pro34]NPY did not differ with respect to estrogen status (Figure 9: F (2, 13) = 

0.84, p = 0.45; D2 = 0.46). 
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Figure 9.  Cumulative concentration response curve 
for Y1-receptor agonist.  NPY-mediated 
vasoconstriction was similar in OVX (n = 7) and OVE 
(n = 9) rats.  Bars indicate mean ± S.E.M.
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Series 3: NPY potentiation of adrenergic vasoconstriction 

 NPY potentiates norepinephrine-mediated vasoconstriction through Y1-receptor 

activation.  This series was performed to assess the effects of estrogen on this Y1-

dependent mechanism.  OVE (n = 12) did not differ from OVX (n = 13) in 

norepinephrine-stimulated vasoconstriction (Figure 10: F (2, 22) = 0.19, p = 0.83; D2 = 

0.06).  Interestingly, neither OVE (n = 11) nor OVX (n = 10) exhibited NPY potentiation 

of norepinephrine-stimulated vasoconstriction (Figures 11: F (2, 18) = 1.23, p = 0.32; D2 

= 0.49). 
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Figure 10.  Cumulative concentration response 
curve for α-adrenergic-receptor agonist.  
Norepinephrine-mediated vasoconstriction was similar 
in OVX (n = 13) and OVE (n = 12) rats.  Bars indicate 
mean ± S.E.M.
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Figure 11.  Cumulative concentration response 
curve for NPY ([Leu31Pro34]NPY) potentiation of 
α-adrenergic-receptor agonist in OVX (A: n = 10) 
and OVE rats (B: n = 11).  NPY failed to potentiate 
norepinephrine-mediated vasoconstriction in OVX and 
OVE rats.  Bars indicate mean ± S.E.M.
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Series 4: DPPIV activity in gastrocnemius first-order arterioles 

 The enzymatic breakdown of NPY can impact the physiological response as only 

the full-length peptide stimulates vasoconstriction.  The DPPIV inhibitor, diprotin A, was 

added to the vessel bath to determine the effects of DPPIV activity on NPY 

bioavailability according to estrogen status.  DPPIV inhibition resulted in an increase in 

NPY bioavailability at 0s and 30s following field stimulation in OVX (n = 12) and OVE 

(n = 11) rats (Figure 12; F (3, 19) = 4.74, p < 0.05); however, there were no differences 

across groups (F (3, 19) = 1.10, p = 0.37, D2 = 0.74). 

 Whole vessel homogenates were analyzed to directly assess DPPIV activity.  

DPPIV activity (Figure 13: F (1, 26) = 0.01, p = 0.94, d = 0.03) did not differ between 

OVX (n = 13) and OVE rats (n = 15).  Follow-up protein assay was unable to determine 

differences in total vascular protein of OVX (n = 9) and OVE (n = 9) vessels (see 

Limitations).  DPPIV activity was similar between groups and the proteolytic actions of 

DPPIV played an integral role in modulating the bioavailability of NPY regardless of 

estrogen status in this young-adult cohort. 
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Figure 12.  Effects of DPPIV inhibition on NPY release in gastrocnemius
first-order arterioles of OVX (n = 12) and OVE (n = 11) rats.  NPY 
release was greater with DPPIV inhibition (diprotin A) at 0s and 30s 
following field stimulation for all rats regardless of estrogen status.  Bars 
indicate mean ± S.E.M.  * Significant difference from control conditions (0s 
and 30s, respectively; p < 0.05).
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Figure 13.  DPPIV activity of OVX (n = 13) and 
OVE (n = 15) first-order arterioles. Estrogen 
supplementation did not influence DPPIV activity.  
Bars indicate mean ± S.E.M.
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Discussion 

NPY Vasoconstriction 

 The efficacy of NPY as a vasoconstrictor depends on the level (artery, arteriole) 

and location (mesentery, brain, skeletal muscle) of the vasculature under study.  Very 

little is known as to the behavior of NPY in the skeletal muscle arterioles of females.  

Prior study (Joshua, 1991) of male skeletal muscle arterioles revealed an inverse 

relationship between the magnitude of vasoconstriction (vessel diameter changes) and 

vessel size (first-, second-, third-order arterioles).  The amount of vasoconstriction 

observed in female skeletal muscle first-order arterioles was similar to previous 

measurements of the same vessel type observed in males (Joshua, 1991).  The 

cornerstone of the study was the long-term effect of estrogen on NPY neurotransmission.  

The available studies on sex-differences (Jackson, et al., 2005a, 2005b) in NPY 

neurotransmission have suggested that sex hormone status is a likely cause underlying the 

differences between males and females.  The present data fail to support a link with 

respect to estrogen and Y1-receptor activity as there were no differences between OVX 

and OVE groups.  While the null hypothesis was not rejected, the results further 

demonstrate the complexities involved in identifying the factors of influence behind the 

sex-differences in vascular physiology. 

 An absence of an estrogen effect is not unprecedented with similar null results 

having been observed in adrenergic neurotransmission.  Stice et al. (2009) observed no 

differences in adrenergic responsiveness in female aortas of OVE and OVX rats.  The 

aortas of rats without estrogen possessed greater contractile force (developed tension) 

than rats with estrogen, but the receptor responsiveness according to the adrenergic dose-
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response curve did not differ between groups.  Females with compromised estrogen 

profiles may experience vascular smooth muscle thickening (Moreau, et al., 2002; 

Takahashi, et al., 2004), which is a common clinical sign for increased risk of 

cardiovascular disease.  The nature of microvessel diameter measurement does not allow 

for an inference as to the amount of contractile force a vessel possesses; therefore, it was 

unknown if OVX vessels possessed greater contractile force.  Y1-receptor protein was not 

quantified during the present study; thus, it is unknown if either of the groups 

experienced a change in receptor protein with a concurrent change in receptor sensitivity.  

A recent study by Jackson, Ellis, and Shoemaker (2010) detected estrogen-related 

differences in Y1-receptor expression in white vastus muscle of young mature (2mo) 

female rats.  The increase in post-junctional receptor expression in rats without estrogen 

was in conjunction with changes in hemodynamics of conduit vessels (external iliac 

artery) in response to Y1-receptor blockade.  However, there was a nonsignificant 

increase in Y1-receptor in red vastus of rats with estrogen.  These equivocal results may 

suggest that differences in Y1-receptor actions may occur in response to changes in 

estrogen status, but these changes may be predicated on the type of muscle (red or white) 

tissue and corresponding blood vessels under study.  The present results would support a 

part of this concept in that Y1-receptor actions were identical in the red first-order 

arterioles of young adult females irrespective of estrogen status.  It was concluded that 

NPY can induce a moderate amount of vasoconstriction in isolated first-order arterioles 

of young adult females, and estrogen does not impact Y1-receptor sensitivity in these 

vessels. 

NPY Potentiation of Adrenergic Vasoconstriction 
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 Neuropeptide Y is well known for its ability to potentiate norepinephrine-induced 

vasoconstriction at low concentrations (10-7 – 10-9 M) (Abel & Han, 1989; Han, et al., 

1998; Vu, et al., 1989).  The type of potentiation can refer to augmentation of the 

vascular response (vasoconstriction, increases in perfusion pressure) achieved following a 

neural stimulus (Glenn & Duckles, 1994; Han, et al., 1998), or it can refer to a leftward 

shift in the dose-response curve of norepinephrine indicating a greater sensitivity to 

norepinephrine (Abel & Han, 1989).  The ability of NPY to potentiate any facet of 

adrenergic vasoconstriction may depend on other factors such as vessel type and sex.  In 

the present study, OVX and OVE groups experienced a nonsignificant increase to 

norepinephrine-mediated vasoconstriction following NPY administration.  The 

concentration used, 9.8 X 10-8 M, is within the previously mentioned range of 

concentrations where NPY potentiates norepinephrine-mediated vasoconstriction.  

However, the vessels of both groups exhibited vasoconstriction to this concentration of 

NPY, which could have masked minor influences on adrenergic vasoconstriction. 

 There are many examples of NPY potentiation of norepinephrine effects on 

perfusion pressure of whole systems such as the mesentery (Han, et al., 1998; Westfall, et 

al., 1988).  Arterial beds provide a story as to a particular vascular system.  However, the 

potentiation cannot be accurately ascribed to any particular level within the system since 

the pressure changes represent a collective response to the stimulus (norepinephrine, 

norepinephrine + NPY).  Isolated vessel techniques circumvent the aggregate actions of 

whole vascular beds to allow for careful examination at specific levels of the vasculature.  

Thus, while potentiation may occur in some levels of the vasculature, it does not appear 

to occur in skeletal muscle first-order arterioles. 
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 The existence of multiple pathways for NPY-mediated vasoconstriction may 

explain the lack of potentiation in norepinephrine vasoconstriction.  NPY can influence 

both potassium and calcium flux via the inhibition of cAMP (Lobaugh & Blackshear, 

1990) and the production of IP3 (Duckles & Buxton, 1994), respectively.  Norepinephrine 

stimulates vasoconstriction through the production of IP3; therefore, the absence of NPY 

potentiation of norepinephrine would support the assertion that NPY does not cause a 

meaningful increase of IP3 in skeletal muscle arterioles.  This is consistent with other 

studies of arterioles that failed to observe a difference in vasoconstriction following the 

inhibition of cAMP production (Andriantsitohaina, et al., 1990).  It is certainly possible 

that the ability of NPY to potentiate the effect of norepinephrine is dependent on vessel 

size as some larger vessels experience increases in IP3 production following NPY 

administration (Duckles & Buxton, 1994).  It was surmised based on the present results 

that the cAMP inhibitory mechanism is the predominant mechanism through which NPY-

mediated vasoconstriction occurs in skeletal muscle arterioles of females, and that NPY 

does not elicit a meaningful amount of IP3 production to potentiate the vasoconstriction 

of norepinephrine.  The similarity of response to NPY in animals with and without 

estrogen suggests that the Y1-receptor mechanism was not influenced by estrogen 

supplementation.  NPY was a potent vasoconstrictor of skeletal muscle arterioles in both 

groups, but it does not affect the vascular response to norepinephrine. 

NPY Release 

 There is little information, if any, pertaining to NPY release from skeletal muscle 

arterioles.  Previous studies of whole skeletal muscle and conduit arteries have detected 

sex differences in total NPY content of the respective tissues.  It has been speculated that 
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estrogen could contribute to a portion of the differences observed between males and 

females.  In the present study, chronic estrogen supplementation did not affect NPY 

release at 0 or 30 seconds following field stimulation.  These data suggest that chronic 

estrogen does not influence NPY release in skeletal muscle first-order arterioles of young 

adult females. 

  Estrogen affects the expression of many vascular proteins (Miller & Duckles, 

2008); therefore, it was plausible that estrogen was an underlying mechanism behind the 

sex differences observed in total NPY content of various tissues.  A follow-up study into 

the effects of estrogen supplementation on NPY metabolism by Jackson et al. (2010) 

concluded that rats with estrogen had less NPY content in red and white vastus muscles.  

The differing results between the present study and the study by Jackson et al. could be 

attributed to several factors.  First, whole muscle homogenate does not discriminate 

between vessel type (arteries, veins, capillaries, venues); thus, it is difficult to pin down 

the source behind the differences in NPY content.  Whole muscle homogenate will also 

include blood elements that contain NPY originating from monaural sources (platelets, 

adrenal gland).  These sources may be sensitive to estrogen supplementation, which could 

affect the expression of NPY.  The present study possesses experimental control for 

extraneous sources of NPY such as those related to blood elements.  Therefore, the NPY 

content recorded is indicative of the NPY release characteristic of an isolated, skeletal 

muscle first-order arteriole, which appears to be independent of estrogen influence. 

 While this study was not directly concerned with age, age-related physiological 

issues in females often encompass dysfunctional release of sex steroids.  Recent work by 

Di Carlo et al. (2007) discovered increases in NPY content of human uterine arteries that 
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correlated with the different phases of menopause (pre- and post-menopause).  These data 

require a broader context for interpretation as other hormones (progesterone) may also 

influence vascular NPY content.  Ageing, as it relates to vascular physiology, also affects 

multiple aspects of the vasculature that involve alterations in function to both the 

endothelium and the vascular smooth muscle (Glenn & Duckles, 1994; Kitlinska, Lee, 

Movafagh, Pons, & Zukowska, 2002).  The present finding indicates that estrogen, in and 

of itself, does not contribute to a change in NPY release in isolated, skeletal muscle first-

order arterioles. 

DPPIV Activity 

 The actions of DPPIV can significantly impact the type and magnitude of 

response initiated by NPY.  Glenn et al. (1997) was one of the first to detect differences 

in vasoconstriction during peptidase inhibition between sham and ovariectomized 

females.  An elegant study by Jackson et al. (2005) proposed that females possessed a 

greater level of proteolytic activity than males in order to depress Y1-receptor-mediated 

vasoconstriction.  Thus, the hypothesis for estrogen’s involvement in the attenuation of 

NPY-mediated vasoconstriction was developed.  The present findings fail to support a 

link between estrogen and NPY metabolism in skeletal muscle arterioles.  While no effect 

was observed with estrogen supplementation, the results do reveal some interesting 

developments in our concept of NPY in the vasculature. 

 DPPIV activity plays a significant role in mitigating NPY availability in 

resistance vessels of young adult females regardless of estrogen status.  The physiological 

significance of an augmented role for DPPIV in the female resistance vasculature is that 

females would have less Y1-receptor actions, ergo less NPY-mediated vasoconstriction.  
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Systemic blood pressure is maintained, in part, through the actions of arterioles, which 

control blood flow into the capillary beds (Segal, 2005).  While it is difficult to determine 

the meaningfulness of DPPIV activity in influencing blood flow through the resistance 

vasculature, the present results do suggest a significant role for DPPIV in modulating the 

amount of available NPY. 

 The stark similarities of DPPIV activity through direct (enzymatic assay) and 

indirect (NPY assay following DPPIV inhibition) measurements provide evidence to 

support the idea that estrogen does not affect DPPIV mechanisms in first-order arterioles.  

Jackson et al. (2010) detected no difference in DPPIV activity with estrogen 

supplementation in whole tissue homogenate of red and white vastus muscles.  The 

strength of the present study was the DPPIV analysis of isolated first-order arterioles.  

Thus, DPPIV activity is independent of estrogen influences, and it is active in modulating 

NPY in first-order arterioles of young adult females. 

Practical Implications  

 The release and metabolism of NPY can have far reaching effects; thus, it is 

prudent to understand how and under what circumstances these mechanisms associated 

with NPY metabolism change in the vasculature.  A practical concern relevant to 

cardiovascular health is the increase in blood pressure that accompanies the ageing 

process (Narkiewicz, et al., 2005; Ng, Callister, Johnson, & Seals, 1993).  This is a 

multifaceted issue consisting of alterations in neurotransmitter release, receptor 

expression on the vascular smooth muscle, vascular smooth muscle cell proliferation, and 

endothelial cell function, to name a few.  The estrogen-independent conclusions of the 

present study are not unprecedented.  Stice et al. (2009) failed to detect estrogen-related 
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differences in adrenergic vasoconstriction; however, there were differences with age.  

Aged females were more sensitive to adrenergic agonists (phenylephrine) as compared to 

young adult females irrespective of estrogen status.  It should be noted that both young 

and old females without estrogen generated greater amounts of tension as compared to 

young and old females without estrogen.  A greater amount of vascular tension can be a 

function of vascular smooth muscle cell proliferation.  As stated above, vessel tension 

cannot be extrapolated from vessel diameter.  The inability to measure vessel tension 

along with the inconclusive measurements of total vascular protein makes it difficult to 

ascertain whether estrogen status influenced vascular smooth cell growth in the present 

study.  It is plausible, however, that estrogen-related differences in blood pressure with 

age are actually a product of small increases in vascular smooth muscle cell proliferation 

as opposed to increases in receptor actions of sympathetic neurotransmitters such as 

NPY. 

 Correlations between NPY content and menopause status have been observed in 

human uterine arteries.  Menopause marks an onset of dysfunctional release of sex 

steroids (estrogen, progestogen).  It is because of these interrelationships that sex 

steroids, specifically estrogen, are believed to be crucial in modulating NPY metabolism.  

The absence of an estrogen effect in the present study would run counter to an estrogen-

specific response on NPY metabolism.  Perhaps the previous relationships between 

hypoestrogenism and NPY content is dependent on progesterone or possibly on 

synergistic effects requiring both sex steroids.  Another caveat in the study of sex steroid 

influence in ‘intact’ females lies in the enzymatic milieu and form of estrogen present.  

Some vascular smooth muscle cells express steroid enzymes such as sulfatases and 
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sulfotransferases, which affect the amount of estrogen in conjugated form (Nakamura, et 

al., 2003).  These enzymes in addition to 17β-hydroxysteroid dehydrogenase-1 can affect 

the overall estrogen profile.  This profile necessitates careful consideration due to the 

variable potency of the different forms (estrone, estradiol) of estrogen in the vasculature.  

It is important to elucidate the underlying mechanisms behind menopause and NPY 

expression to expand our knowledge into factors related to ageing in females. 

 NPY is also an angiogenic peptide (Zukowska-Grojec, et al., 1998) with growth 

factor capabilities that are equivalent to that seen with vascular endothelial growth factor 

under certain conditions (Kurimoto, et al., 2004).  The angiogenic form of NPY is 

primarily associated with its fragmented metabolites that express an affinity for Y2 and 

Y5 receptors, although the Y1 receptor also initiates angiogenic mechanisms as well 

(Movafagh, Hobson, Spiegel, Kleinman, & Zukowska, 2006).  Since DPPIV produces 

these truncated forms of NPY (NPY3-36), increased activity of this enzyme at the local 

vascular level could produce pro-angiogenic processes.  Therefore, DPPIV has a dual role 

in NPY metabolism by decreasing the amount of vasoconstrictive NPY while 

concurrently increasing the amount of pro-angiogenic NPY.  This action could result in 

both beneficial and deleterious health effects.  On one hand, this function could serve to 

improve overall cardiovascular function by increasing the number of collateral branches 

from arterioles through angiogenesis and decreasing the amount of vasoconstriction via 

NPY mechanisms.  However, as a growth factor, increased proliferation of vascular 

smooth muscle cells could lead to changes in the tunica intima/media ratio under certain 

conditions, which is a risk factor for cardiovascular event. 
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 NPY and estrogen both possess pleiotropic actions in the vasculature.  It is this 

nature that necessitates thorough analysis from multiple angles in order to piece together 

possible interrelationships between NPY and estrogen.  Future studies should include 

progesterone supplementation in combination with estrogen to better mimic in vivo 

conditions, which would allow for the identification of possible synergistic effects 

between hormones.  Studies that include peptide/hormone expression (transcripts, 

prepro/prohormone) in addition to receptor expression along with subtypes would allow 

for a more comprehensive picture into sex steroid influences on NPY neurotransmission. 

Caveats 

 Ovariectomy of all animals was necessary to ensure experimental control over 

estrogen concentrations.  Surgery and long-term storage can create stress on the animals, 

which could affect normal physiology.  NPY release was elevated in both groups as 

compared to intact animals of the same age (unpublished data).  Therefore, caution 

should be used when comparing results from the present study to those found in intact 

females. 

 The age of animal selected (6 months) represents a young adult female (Turturro, 

et al., 1999).  While this was not an ageing study, some of the research into sex steroids 

and sympathetic neurotransmission utilize multiple age groups.  The present results 

suggest that long-term estrogen supplementation does not affect NPY release and 

degradation in young adult females.  However, the process of ageing may involve other 

mechanisms that, combined with estrogen, produce alterations in NPY metabolism that 

have been observed in other studies (Glenn & Duckles, 1994). 

Conclusions 
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 Long-term estrogen supplementation does not affect NPY metabolism in young 

adult females.  The Y1-receptor actions are uniform across estrogen and non-estrogen 

groups with maximal vasoconstriction approximately 55% of control diameter in skeletal 

muscle first-order arterioles.  Estrogen supplementation did not influence NPY release or 

DPPIV activity.  DPPIV plays an important role in attenuating the amount of bioavailable 

NPY in young adult females. 
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APPENDIX 

Data Analysis 

 The initial dissertation proposal called for a total of 30 rats (15 / group).  A total 

of 34 rats underwent surgery with half of those receiving the estrogen treatment.  While 

there were a sufficient number of animals for experimental purposes, not all of the 

animals were used in each experiment.  Reasons for animal exclusion on some 

experiments included equipment failure due to lab damage, drug costs (limited 

availability), and issues with vessel viability (for microvessel experiments).  Information 

relevant to specific series of experiments are listed below. 

 Model assumptions (α = 0.05) for both the univariate and multivariate case were 

considered for the respective statistical comparisons.  The assumption pertaining to 

independence of observations was addressed through uniform handling and storage of the 

animals.  Briefly, the animals were of the same strain (Fischer 344 rats) and were 

purchased from the same provider.  Animals were housed under 12:12 hour light:dark 

cycles, housed in the same facility and room, and consumed the same diet.  

Ovariectomized (OVX) and ovariectomized + estrogen (OVE) animals shared cages in 

order to minimize the possibility of ‘cage’ effects.  The previous steps were performed to 

ensure biological homogeneity with the exception being sex steroid profile, which was 

manipulated for experimental purposes.   

 Simple univariate descriptive statistics pertaining to distribution (Shapiro-Wilk, 

skewness, kurtosis) are provided for each dependent variable in addition to graphical 

representation (box-and-whisker plots).  The following sections provide information 

regarding the handling of data with regards to adherence to specific model assumptions.   
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Animal Characteristics 

 Plasma estradiol concentration.  Plasma estradiol was assayed for 11 rats 

(Figure A1: OVE [n = 6], OVX [n = 5]).  Estradiol was normally distributed (Table A1), 

and the variances were equal. 

 Body weight.  A total of 34 rats were ovariectomized with 17 rats receiving the 

estrogen treatment (Figure A2).  The body weights were normally distributed (Table A2), 

and the variances were equal. 

 Uterine weight.  The uterine weights were measured for all 34 rats.  The 

normality assumption did not hold due to a few extreme scores in an otherwise narrow 

distribution.  These extreme scores in both groups were attributed to surgical differences 

across rats.  Ovariectomy involves the removal of the ovaries, which requires two sutures 

for each ovary: one at the uterine horn and one at the adipose tissue on the other side of 

the uterine horn.  The uterine horn and ovary possess a significant amount of adiposity 

with a high degree of vascular supply to address.  Small openings are made in the 

surrounding adipose tissue to allow for careful suture of the uterine horn only with 

minimal adipose tissue involved.  A minimal amount of adipose tissue is desired when 

suturing as all tissue distal to the suture will become necrotic, so care is taken to prevent 

excessive amounts of necrosis.  All rats have varying amounts of fat to deal with in and 

around the reproductive organs, which influences the specific location of the suture 

around the ovary.  These small differences in suture location can affect the overall length 

of the uterine horn.  It was concluded that the small differences in suture location were 

responsible for the outliers seen in both groups, which caused the deviation away from a 

normal distribution.  Animals that comprised the outliers were removed from both groups 
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(OVX: # 22 (274 mg), # 27 (258 mg); OVE: # 2 (1330 mg), # 6 (1204 mg), # 12 (1174 

mg).  This addressed the normality assumption (Figure A3), but variances were not equal.  

In looking at the data and the magnitude of change in uterine weight with estrogen, it 

came as no surprise that the variances were not equal.  A decision was made to randomly 

select an observation from the group with the most observations (OVX: rat #31) and 

remove it from statistical consideration (Glass & Hopkins, 1996).  This step produced 

equal group sizes, which resulted in an analysis that was robust to the homogeneity of 

variances assumption (Glass & Hopkins, 1996). 
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Table A1 
Univariate Normality: Descriptive Statistics 
Variable Statistic OVE OVX 
Plasma Estradiol Concentration    
 Skewness 1.20 1.28 
 Kurtosis 1.30 2.89 
 Shapiro-Wilk 0.91 0.84 
Body Weight    
 Skewness -0.50 0.11 
 Kurtosis -0.55 0.03 
 Shapiro-Wilk 0.96 0.99 
Uterine Weight    
 Skewness -0.13 0.60 
 Kurtosis -1.01 -0.60 
 Shapiro-Wilk 0.94 0.93 
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Figure A1.  Plasma estradiol concentration box-
and-whisker plots for OVX (n = 5) and OVE (n = 
6) rats.
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Figure A2.  Body weight box-and-whisker plots for
OVX (n = 17) and OVE (n = 17) rats.
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Figure A3.  Uterine weight box-and-whisker plots 
for OVX (n = 14) and OVE (n = 14) rats.
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Cumulative Concentration Response Curves 

 The drug used to assess the activity of NPY’s post-junctional receptor, [Leu31-

Pro34]NPY, was in limited supply do to cost.  Therefore, a limited number of animals (N 

= 19) underwent cumulative concentration response curve testing for NPY with some 

observations excluded post hoc for various reasons (listed below).  The omnibus 

multivariate analysis of variance (F (6, 9) = 1.39, p = 0.32, D2 = 3.29) for the cumulative 

concentration response curves considered only complete observations, that is to say, only 

the observations that included the [Leu31Pro34]NPY experiments.  Since the omnibus 

MANOVA consisted of a low number of observations, post hoc MANOVAs were 

performed to include the observations where only norepinephrine or norepinephrine + 

NPY (NPY potentiation) curves were performed. 

 MANOVA requires similar assumptions to those associated with the univariate 

case.  Independence of observations was discussed above, which leaves the assumptions 

of multivariate normality and homogeneity of covariances to address.  Univariate 

normality does not ensure multivariate normality, but it is considered as a prerequisite for 

multivariate normality (Stevens, 2002).  Therefore, univariate normality was assessed for 

all observations.  While multivariate normality is an assumption for multivariate 

ANOVA, the effect on the alpha level for violation of this assumption may be negligible 

(Stevens, 2002).  The likelihood for violation of the homogeneity of covariances 

assumption increases with the number of variables included in the design.  However, the 

effects on alpha level with violations of this assumption are tempered when group sizes 

are similar (large to small: < 1.5) (Stevens, 2002). 
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 A cursory examination of the data revealed the presence of two influential 

outliers.  In the case of rat #16 (OVE), the vessel responded in an atypical fashion.  

Specifically, vasoconstriction following NPY or norepinephrine administration occurred 

at one concentration, which yielded high slope values.  This atypical response did not 

exclude the data by itself as there is always variability between vessels during dose 

response curves.  However, there were factors associated with the experimental 

preparation of this particular vessel that required consideration when interpreting the 

data.  Many of the vessels will have one or more collateral vessels, vessels that branch off 

of the arteriole, which require a suture in order to pressurize the vessel for experimental 

use.  Suturing the vessel is a trial-and-error process with additional sutures needed if 

leaks are detected during the equilibration period.  Moreover, the amount of branching 

differs between vessels, so some vessels require a great deal of attention (more sutures) 

during the preparatory phase of microvessel experimentation.  The vessel for rat #16 

required many sutures as there were many collateral branches to tie off.  Unfortunately, 

there were a number of leaks discovered during equilibration of this vessel, and the 

collateral branches were in a position that made tie-off difficult.  The leaks were 

successfully sutured, but the vessel was physically manipulated to a point where normal 

vascular response could have been compromised.  Following careful observation and 

consideration of the NPY and norepinephrine data, it was decided that this outlier 

occurred due to excessive manipulation of the vessel during experimentation.  The 

cumulative concentration response curve data from rat #16 was removed from analysis.  

The second outlier, rat #19 (OVX), had abnormally low resting vessel diameter values.  It 

was noted in the procedural notes that there were a number of bubbles present in the tips 
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of the vessel.  Bubbles near the entry ports of the vessel can interfere with the flow of 

albumin through the vessel.  This causes the vessel to collapse to a certain extent, which 

may potentially confound measurements of vascular response that utilize vessel diameter 

as the dependent variable.  As the percent of resting baseline values for this animal 

influenced the normal distribution of NPY and norepinephrine cumulative concentration 

response curves, it was decided that this outlier also occurred as a result of experimental 

manipulation and the data was subsequently removed from analysis (Table A2). 

 NPY cumulative concentration response curve.  The EC50 for rat #24 (OVE) 

was an outlier.  Graphpad software was able to obtain the curve fit; however, the curve 

possessed two concentrations that exhibited substantial responsiveness to NPY.  It was 

decided that a manual curve fit would capture a more accurate representation of the actual 

response to the drug, which in fact was the case (Graphpad fit: R2 = 0.97; manual fit: R2 = 

0.98).  The manual fit corrected the outlier, which produced a normal univariate 

distribution (Figure A4) for the EC50.  Rat #23 (OVE) failed to meet inclusion criteria 

(R2 > 0.90) and was summarily removed from analysis.  NPY slope (Figure A5) was 

normally distributed, and univariate variances were equal for EC50 and slope. 

 Norepinephrine cumulative concentration response curve.  The EC50 for 

norepinephrine was normally distributed for both groups (Figure A6).  The slope for 

OVE was normally distributed, but the slope for OVX failed to exhibit a normal 

distribution (Figure A7).  All observations were left in the analysis as no justification 

existed to warrant removal. 

 Norepinephrine + NPY cumulative concentration response curve.  EC50 for 

norepinephrine + NPY possessed a normal distribution for both groups (Figure A8).  
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Slope was normally distributed for OVX, but not for OVE (Figure A9).  Rat #14 (OVE) 

had a steep slope (outlier), but there was not sufficient evidence to remove it from 

analysis.  OVX rats #1, Blank, and 1B along with OVE rat # 2 did not undergo 

norepinephrine + NPY testing due to a shortage of [Leu31Pro34]NPY. 

 Effect sizes: meaningfulness of the differences.  The multivariate effect size for 

the omnibus MANOVA was large (D2 = 3.29), albeit statistically insignificant.  The 

omnibus MANOVA lacked power (< 0.80) to detect statistically significant differences 

due to the large number of dependent variables with a relatively small number of 

observations.  While the large effect size was intriguing, the post hoc MANOVAs for 

each drug (EC50 and slope), however, failed to further expose differences between the 

groups.  The moderate effect sizes observed in the NPY (D2 = 0.46) and NPY + 

norepinephrine (D2 = 0.46) cumulative concentration response curves would necessitate 

group sizes of approximately 40-50 observations to achieve reasonable statistical power 

(> 0.80) (Stevens, 2002).  The post hoc MANOVAs coupled with the graphical 

representation suggested that the groups were the same over the three cumulative 

concentration response curves. 
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Table A2 
Univariate Normality: Descriptive Statistics 
Variable Statistic OVE OVX 
NPY CCRC    

EC50    
 Skewness -1.01 0.59 
 Kurtosis -0.06 -1.32 

 Shapiro-Wilk 0.88 0.89 
Slope    

 Skewness -0.35 -0.20 
 Kurtosis -1.37 -0.96 
 Shapiro-Wilk 0.93 0.97 
NE CCRC    

EC50    
 Skewness -0.70 -0.64 
 Kurtosis -0.90 -0.25 
 Shapiro-Wilk 0.89 0.92 

Slope    
 Skewness -0.57 -0.55 
 Kurtosis -0.93 -1.55 
 Shapiro-Wilk 0.90 0.83 * 
NPY+NE CCRC    

EC50    
 Skewness -1.08 -0.28 
 Kurtosis 0.97 -1.63 
 Shapiro-Wilk 0.90 0.89 

Slope    
 Skewness -1.73 -0.94 
 Kurtosis 3.12 -0.42 
 Shapiro-Wilk 0.80 * 0.86 
*p < 0.05. 
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Figure A4.  N PY EC50 box-and-whisker plots for 
OVX (n = 7) and OVE (n = 9) rats.
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Figure A5.  NPY slope box-and-whisker plots for 
OVX (n = 7) and OVE (n = 9) rats.
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Figure A6.  Norepinephrine EC50 box-and-
whisker plots for OVX (n = 13) and OVE (n = 12) 
rats.
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Figure A7.  Norepinephrine slope box-and-whisker 
plots for OVX (n = 13) and OVE (n = 12) rats.
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Figure A8.  Norepinephrine + NPY EC50 box-and-
whisker plots for OVX (n = 10) and OVE (n = 11) 
rats.
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Figure A9.  Norepinephrine + NPY slope box-and-
whisker plots for OVX (n = 10) and OVE (n = 11) 
rats.
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NPY Release 

 A repeated measures design was used for the NPY release data.  The univariate 

case is a more powerful design when group sizes are small (Park, Cho, & Ki, 2009), and 

the assumptions are similar to the previous univariate assumptions with the exception of 

sphericity.  There will be some degree of violation of the sphericity assumption as it is a 

repeated measures design; thus, it would be expected to find correlations between 

dependent variables.  Severe violations can lead to inflated F values, and possibly, 

spurious conclusions.  Therefore, the Greenhouse-Geisser adjusted F-test was used to 

protect against type-I error. 

 It was noted during casual observation of the data that NPY release of both OVX 

and OVE groups was much higher than those observed in intact animals.  The 

significance of the high concentrations of NPY was that the assay had a maximum range 

of 10 ng ml-1, and the assay was most sensitive around 1 ng ml-1.  Some animals that were 

otherwise normal possessed NPY concentrations that were beyond the detectable range of 

the assay.  It was speculated that the higher concentrations of NPY were a product of the 

surgical procedure, long-term storage of the animals, or a combination of both. 

 Albino rats develop a reddish or pink appearance around their posterior neck and 

back during long-term storage.  It is believed that this color is associated with stress, 

which can be attributed to the close-quarters storage of the animals.  This coloring was 

not excessive, and there were no signs of abnormal behavior.  Animals were never kept in 

seclusion except following surgery (< 2 days), and the cage size was within acceptable 

guidelines for animals of this particular size.  Nevertheless, long-term storage could have 

played a role in the high NPY concentrations in both groups.  Another cause of the high 
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NPY concentrations could be due to the surgical procedure itself.  Surgery creates a stress 

on animals; thus, it would be plausible that a portion of the results were a product of the 

surgical procedure.  In either case, all animals received the same treatment, which 

preserved the veracity of the group comparisons.  However, some animals were excluded 

based off of NPY concentrations that exceeded the assay’s concentration range, or in 

cases where the vessel failed preliminary viability testing. 

 NPY release (Table A3) was normally distributed for OVX for all time points 

except the first (0 seconds).  OVX data (Figure A10) exhibited a tendency towards 

positive skewness with a flat distribution with the exception of the 3rd time point (0 

seconds with DPPIV inhibition), which was leptokurtic.  None of the measures of 

skewness or kurtosis were considered severe (> 2).  OVE data (Figure A11) failed to 

exhibit a normal distribution for the control time points (0 and 30 seconds) as well as the 

first time point with DPPIV inhibition (0 seconds).  The distributions consisted of a few 

outliers that positively skewed the mean.  Another feature of the OVE data was the 

narrow distribution, especially with the control time points.  Rats #13 and #15 were 

responsible for the high degree of skewness observed in the OVE group.  However, there 

was nothing about these observations or animal characteristics that merited their removal 

from the analysis.  It was decided, based off a lack of evidence to justify their exclusion, 

that the observations from rats #13 and #15 should remain in the analysis.   

 Similar to the cumulative concentration response curves, there was insufficient 

power to detect statistically significant differences in NPY release between the groups.  It 

would require approximately 35-45 observations per group in order to possess reasonable 

statistical power (> 0.80) to detect true differences in NPY release (Stevens, 2002) with 
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the magnitude of effect present (D2 = 0.74).  While statistical power was limited in this 

analysis, the present results do not support a difference in NPY release with respect to 

estrogen status. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

89 
 

Table A3 
Univariate Normality: Descriptive Statistics 
Variable Statistic OVE OVX 
0 Seconds (Control)    
 Skewness 2.14 1.03 
 Kurtosis 4.08 -0.06 
 Shapiro-Wilk 0.66 * 0.85 * 
30 Seconds (Control)    
 Skewness 1.50 0.16 
 Kurtosis 3.08 -1.29 
 Shapiro-Wilk 0.83 * 0.92 
0 Seconds (DPPIV Inhibition)    
 Skewness 0.94 1.33 
 Kurtosis -0.28 1.56 
 Shapiro-Wilk 0.85 * 0.86 
30 Seconds (DPPIV Inhibition)    
 Skewness 0.60 0.28 
 Kurtosis -0.98 -1.32 
 Shapiro-Wilk 0.89 0.90 
*p < 0.05. 
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Figure A10.  NPY release box-and-whisker plots at 
control and DPPIV inhibition conditions (OVX: n 
= 12)
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Figure A11.  NPY release box-and-whisker plots at 
control and DPPIV inhibition conditions (OVE: n 
= 11)
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DPPIV Activity 

 Differences in DPPIV activity were assessed through one-way analysis of 

variance.  OVE and OVX were similar in distribution (Figure A12); however, the OVX 

group possessed two outliers, which adversely affected normality.  Rats #1 and Blank 

registered substantially lower DPPIV values as compared to the other rats within the 

group.  These differences were attributed to the homogenate composition (saline) of the 

first two samples, which likely influenced the catalytic rate of the enzyme.  These two 

observations were removed from analysis yielding normal distributions (Table A4) and 

equal variances. 
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Table A4 
Univariate Normality: Descriptive Statistics 
Variable Statistic OVE OVX 
DPPIV Activity    
 Skewness -0.43 0.60 
 Kurtosis 0.06 0.11 
 Shapiro-Wilk 0.97 0.96 
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Figure A12.  DPPIV activity of whole vessel 
homogenate (first-order arteriole) box-and-
whisker plots for OVX (n = 13)and OVE (n = 15) 
rats.
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