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ABSTRACT 

CiteSeerx is a digital library for scientific publications by computer science researchers. It 

also functions as a search engine with several features including autonomous citation indexing, 

automatic metadata extraction, full-text indexing and reference linking. Users are able to retrieve 

relevant documents from the CiteSeerx database directly using search queries and will further 

benefit if the system suggests document recommendations to the user based on their preferences 

and search history. Therefore, recommender systems were initially developed and continue to 

evolve to recommend more relevant documents to the CiteSeerx users.  In this thesis, we 

introduce the Conceptual, Impact-Based Recommender (CIBR), a hybrid recommender system, 

derived from the previously implemented conceptual recommender system in CiteSeerx. The 

Conceptual recommender system utilized the user’s top weighted concepts to recommend 

relevant documents to the users.  Our hybrid recommender system, CIBR, considers the impact 

factor in addition to the top weighted concepts for generating recommendations for the user. The 

impact factor of a document is determined by using the author’s h-index of the publication. A 

survey was conducted to evaluate the efficiency of our hybrid system and this study shows that 

the CIBR system generates more relevant documents as compared to those recommended by the 

conceptual recommender system. 
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1. INTRODUCTION 

1.1. Motivation 

One time or the other, all Internet users have come across recommender systems. If a user 

browses or purchases items from an e-commerce website such as Amazon, one might have 

encountered with listing “Customers who bought this item also bought the following items”. The 

system suggesting items to users is a recommender system. Recommender systems (RS) may be 

defined as software agents that provide suggestions or recommendations for items or documents 

to the user based on their interests and preferences. In brief, RS make recommendations of 

unknown items that users might prefer. The recommendations ease the information overload for 

the user by proactively suggesting relevant items to the users, moving the burden of discovery 

from the user to the system. Items and documents are used interchangeably throughout the thesis 

to define objects that are recommended by different RS. Different recommender systems have 

difference criteria for success that may vary based on the retrieval, recommendation, prediction, 

or interaction perspective.  Recommender systems may be developed to retrieve accurate 

recommendations, to reduce the ‘cost’ of searching, to predict the ‘likeness’ to an item, to 

evaluate an item, to inform the users existence of certain items in the database or even to attract 

users to a domain. To improve the recommendations in future, the quality of the 

recommendations is evaluated by different methods classified as experimental, quasi-

experimental, or non-experimental research designs [1-3]. 

The design of a recommender system can vary based on the domain characteristics, nature of 

user feedback and availability of usable data. Multiple techniques may be used to build 

recommender systems however there are primarily two different approaches - collaborative 

filtering (CF) and content-based recommender systems. The CF recommender approach is used 
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by major e-commerce websites and is a prominent well-known method that could be adopted in 

different systems. Here, the community helps the user to obtain recommendations for items. This 

approach is particularly applicable when the items being recommended do not have much 

semantic information available.  In that case, recommendations are made based on patterns of 

selection across a wide variety of users rather than based on features of the items themselves.  

The disadvantages of this system include requirement of integration with other informational 

database and the availability of a large, active user community.  

In contrast, content-based recommender systems do not require a user community and they 

employ a much transparent approach. In these systems, features of the items themselves 

(keywords typically) are extracted and used to recommend items to users based on similarities 

between the items.  However, content-based systems also have their disadvantages since the 

recommendations do not consider external features such as popularity among other customers. 

It is always important to evaluate a recommender system to improve future recommendations 

to the user [3]. With the CiteSeerx digital library, our objective was to improve the existing 

conceptual content-based recommender system to provide better recommendations to the users. 

For this, we developed a recommender system that recommended papers based on the paper 

authors’ impact.  We evaluated the conceptual recommender, impact factor recommender, and a 

hybrid system that combined the two sources of evidence in different proportions.   Our specific 

objective was to determine the combination of the recommender systems that would provide the 

best recommendations to the user. 

1.2. Organization of this Thesis 

Chapter two of this thesis provides an overview of the literature review on the main 

premise of this work. Chapter three discusses the architecture and implementation of the newly 
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designed recommender system. Chapter four discusses the experimental materials, procedures 

and analysis of our research project. Chapter five provides a brief conclusion discussing the 

scope of the research and possible avenues of research exploration in the future. 
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2. REVIEW OF RELATED LITERATURE 

This section provides an overview of the different types of recommender systems and a 

description of the impact factor of authors. 

2.1 Impact Factor 

As there is a huge repository of publications by numerous authors in different fields, 

various measures have been developed to rate the importance of each author and their 

contributions to a particular field.  The most commonly used measure is called the h-index, 

however there have been many variations of this measure developed since it was first introduced.  

2.1.1 H-index 

Jorge E. Hirsh proposed the h-index to measure the relevance of authors in a particular 

scientific field by taking into consideration the number of papers the author published and the 

number of times these papers were cited by other authors [4]. The h-index is not dependent on 

the amount of contribution the author contributes to a paper. The h-index of an author can be 

impacted positively by being the co-author of the paper. Every time the paper is cited, the co-

authors h-index also increases. The h-index ignores self-citation, as these do not indicate a 

significant impact to the field. The h-index is a monotonically increasing measure; it never 

decreases. Even if the authors were to stop publishing, the h-index may continue to increase as 

previously published papers accrue more citations.    
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Fig 2.1.1: h-index representation [4] 

Fig 2.1.1 is an example of the number of citations received versus the number of papers 

the author published. The intersection of the 45-degree line with the curve gives h. As per Jorge 

E. Hirsh, the h-index is explained as follows, ‘A scientist has an index h if h of his/her Np papers 

have at least h citations each, and the other (Np - h) papers have no more than h citations each 

[4]. Consider the following example: An h-index of 20 means the researcher has 20 papers each 

of which has been cited 20+ times. The typical h values can vary in different area of application. 

The factors that affect h are the number of authors on a typical paper, the number of publication 

venues for the field, and the typical number of references for a paper in that field. The H-index 

was intended to evaluate researchers in the same stage in their careers and it is not meant for 

historical comparison.  

There are several drawbacks to the h-index.  Since it never decreases, it does not 

distinguish between currently active authors and those whose contributions are essentially 

historical.  It is also not applicable to new authors in a field who may be publishing excellent 

work but whose papers have not been around long enough to attract large numbers of citations.  

To address these issues there have been various variants of the h-index such as g-index, c-index, 

e-index [5-7].  However, in spite of these issues, the h-index is the most widely used measure of 

an author’s index and it is the feature that we extract and use in our impact based recommender 

system. 

2.2 Recommender Systems 

Today, the World Wide Web and the Internet make it possible for us to access unlimited 

amounts of information from nearly infinite sources just a click away. The deep web contains 

about 550 billion individual documents and an additional 2.5 billion documents are estimated to 
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be on the surface web, growing every day at the rate of 7.5 million documents [8]. If the 

availability of infinite information is not managed effectively, it can lead to an information 

overload and ultimately result in a reduction of user productivity and decision-making ability [9]. 

Therefore, it becomes important that new systems are developed to retrieve relevant information 

with minimal burden on the user.  

The desire to help users find relevant information from a sea of web pages led to the 

advent of major search engines such as Yahoo [10], Google [11], and Bing [12]. The algorithms 

used in these search engines helped the user to retrieve documents that are ranked based on 

keyword input. The first “all-text” crawler-based search engine, WebCrawler, was developed in 

1994 to allow users to search for any word in any webpage [13].  This content-based approach 

has become the standard for many major search engines along with the speed of information 

retrieval.  

With the continued growth of the Internet, a keyword query alone may not give the most 

appropriate result for the user. At times, the user may be unsure about the required keyword for 

yielding the interested results or the user may welcome reading suggestions based on the user’s 

past queries. This privileged demand by the user has led to the development of recommender 

systems. Here, based on the user’s search patterns or/and the search pattern similarity with other 

users, documents or products are recommended to the user.  Thus, recommender systems can be 

defined as “software tools and techniques providing suggestions for items to be of use to a user” 

[14]. The different types of recommender systems include collaborative filtering (discussed 

further in Section 2.2.1), content-based recommendations (discussed further in Section 2.2.2), 

demographic, utility-based, knowledge-based, hybrid recommender system and of lately, there 

has been development in mobile recommender systems [14-16]. Recommender systems have 
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become an active area of research since the first papers on collaborative filtering in the mid-

1990s [17]. 

2.2.1 Collaborative Filtering Recommender System 

In a collaborative filtering recommender system (CF recommender system), a user is 

given recommendations based on his/her interests in the past compared to others in the user 

community. For example, if users A and B have shown strong overlapping interests in 

publications in the past, then this system will make recommendations to user B based on the new 

publications chosen by user A. Online retailers such as Amazon, iTunes, Netflix use 

collaborative filtering as a method to provide recommendations to users; if a user purchases 

product A, B, C, then other users who purchased product B will also be shown products A and C 

as recommendations for future purchase.  

These recommender systems have several challenges for their implementation:   (1) 

selection of criteria that should be considered to determine overlap between the users; (2) 

identification of users with overlapping interests; (3) recommending new items that have not 

generated sufficient user interest in the past but might be very relevant to the user; (4) deciding 

whether or not overlapping interest on one topic indicates a similarity in interest on another. 

Therefore, a single method of recommender system might not provide the user with utmost 

utility to retrieve items of his/her interest with user’s minimal effort [2]. Figure 2.2.1 shows the 

architecture of a prototypical CF recommender system for research articles. 
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Fig 2.2.1. Collaborative filtering recommender system - “Tell me what is popular among 

my fellow researchers”. Figure modified from [3] 

CF recommender system may use different types of inputs for evaluating user 

preferences. Ratings can be further classified as implicit and explicit ratings; for the latter, the 

users have to actively rate a document or item. Even though this burdens the user with the 

additional trouble of rating items, this may prove to be more accurate. For implicit ratings, the 

user’s action is simply taken into account and interpreted as rating. For example, if the user 

searches and observes a document, the system monitors and logs this activity as a positive 

response by the user. To provide active users with recommendations for documents or products, 

CF recommender systems use two different entities – users and items [2, 18].    

There are multiple approaches for providing recommendations through the collaborative 

system. In the ‘user-based nearest neighbor recommendation system’, ratings of products or 

documents by a user is used to provide recommendations to peer or neighboring users. However, 

this approach assumes that if the users had overlapping preferences in the past, then they will 

have identical preferences in future, and that the user taste will remain stable overtime. This is a 
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problem when the number of users is very large because this also increases the number of items 

that needs to be catalogued and the number of neighbors that needs to be monitored to obtain real 

time predictions for the active user. The selection of the neighbor for the user is also an 

important step of the process before suitable recommendations can be provided. Only those 

neighbors that exhibit a positive correlation with the active users past preferences and those who 

have rated the publications should be selected for the study. The selection is further refined by a 

threshold where a definite number of nearest neighbors are chosen, considering that the selection 

should not be too small or too large. Different problems associated with the limit thresholds are 

discussed in previous studies [19, 20]. 

Another approach for the collaborative recommender system is the ‘item-based nearest 

neighbor recommendation’ used in large-scale e-commerce websites such as Amazon. This is 

particularly suited for large databases and allows offline processing making it possible to provide 

real time recommendations even for large rating matrices [21].  Here, predictions are computed 

based on the overlap between the items and not the users. For this approach, an item similarity 

matrix is constructed with up to N2 entries to describe pairwise similarity of the different 

catalogued items. Similar to the previous approach, a limit can be established for the ratings and 

neighbors. This approach may be used to make a prediction for an item ‘p’ for a user ‘u’ by 

ratings items that are similar to item ‘p’ and by computing the weighted sum of the user’s ratings 

for similar items.  

𝑝𝑟𝑒𝑑(𝑢,𝑝) =  
∑ 𝑠𝑖𝑚(𝑖,𝑝)∗𝑟𝑢,𝑖𝑖 ∈𝑟𝑎𝑡𝑒𝑑𝐼𝑡𝑒𝑚𝑠 (𝑢)

∑ 𝑠𝑖𝑚(𝑖,𝑝)𝑖 ∈𝑟𝑎𝑡𝑒𝑑𝐼𝑡𝑒𝑚𝑠 (𝑢)
   (1) 

The above equation may be used to predict the rating for the user ‘u’ for an item ‘p’ [2, 21]. As 

explained here, the user-based and item-based approaches primarily use the neighborhood 

method, which emphasize on relationships between items and users.  
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 Although CF systems were primarily developed to recommend items that did not have 

semantically-based features available, McNee et al. [22] has explored the CF system for 

recommending research papers by creating the ratings matrix using citation web between the 

research papers.  The authors compared six different algorithms for obtaining additional 

references for citing in a target manuscript. In this project, the reference citations were selected 

from a database of 186,000 documents in ResearchIndex using offline and online experiments. 

The six approaches used included co-citation matching, user-item collaborative filtering, item-

item collaborative filtering, naïve Bayesian classifier, localized citation graph search and 

keyword search. Results from the online study suggested that the users were enthusiastic about 

receiving recommendations from the domain and felt that the recommendations were of high 

quality. The offline experiment indicated that there were large differences in accuracy in 

recommending citations for the different algorithms, especially for citation coverage.  

Recent approaches for the collaborative filtering recommendation systems include less 

mathematically complex methods such as the Slope One prediction scheme that provide 

recommendations with reasonable reliability [23]. Google news personalizes news for each user 

by a slightly different method; here, a combination of model and memory based approach is used 

[2]. Several examples of model based, memory based and hybrid recommenders used in CF 

recommender systems are discussed with their advantages and shortcomings in previous 

literature [24].  

Overall, collaborative recommender systems are reasonably robust; however, this cannot 

be applied to every system. For example, CF recommender system may not be used when a 

system is recently developed because these systems do not have any history of user preferences 

and thus cannot provide reliable ratings. Specifically, without many users there are fewer ratings 
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and with fewer ratings, recommendations are not generated effectively. Therefore, collaborative 

filtering is used with preexisting data is available to generate reliable ratings and nothing other 

than the ratings are required for the CF recommender systems. This is a well-known “cold-start” 

problem experienced by all CF recommender systems. 

2.2.2 Content-based Recommender Systems 

If we know that the user A prefers item ‘p’, then it would be easy for us to recommend 

items similar to ‘p’ to user A without requiring information about what other users are interested 

in.  This, in a nutshell, is how a content-based recommender system differs from collaborative 

filtering recommender systems. A content-based recommender system recommends items by 

primarily tracking two specifics - the user profile based on his/her past preferences and the 

characteristics of the items that the user likes. There are different steps adopted to categorize 

items based on their characteristics and to automatically learn the user profile for making 

recommendations [1, 2]. 
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Fig 2.2.2. A general architecture of a content-based recommender system - “Show me 

similar documents to what I have liked before”. Figure adapted from [25] 

The general architecture of a content-based system, as shown in Figure 2.2.2, includes 

multiple components. The primary components are: (1) A content analyzer that extracts relevant 

keyword information from its information source, i.e., unstructured data in documents as a pre-

processing step and prepares the document for subsequent steps such as learning and filtering; 

(2) a Profile learner module that extracts information from previous user preference data i.e., 

feedback from the user, and generalizes it through machine learning techniques to construct a 

user profile; (3) a Filtering component module that examines the user profile and compares the 

user preferences with the information from the document pool to make relevant 

recommendations to the active user. The feedback from the user about the recommendations can 

also be further used to improve the user profile to generate better recommendations in future.  

The content of the represented items in a processed document may vary depending on 

how the attributes are assigned to unprocessed data and how information is retrieved. The 

unprocessed documents must be structured to reduce ambiguity caused by polysemy and 

synonymy, where a single word may have different meanings and multiple words may have 

similar meanings. These ambiguities may lead to the omission of relevant information or 

assigning relevance to non-relevant items. Using semantic analysis, these errors are mitigated to 

some extent by simply cataloging item characteristics in detail through content representation. 

For example, for a research paper recommender, publication characteristics such as author name, 

title, publisher, keywords, category etc. could be stored in the database to be used later to provide 

recommendations to the user. Keywords are assigned to represent documents using lexicons, 
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ontologies or knowledge bases. Therefore, the content analyzer step processes the documents to 

a structured form that could be readily and efficiently accepted by the filtering component.  

For the filtering component to provide recommendations it needs a robust and evolving 

user profile that is created after the profile learner assesses the feedback from the user based on 

their previous experiences. Initially, it is not essential that the user profile be created using the 

feedback; rather, it could be created simply by direct user input, i.e., if the user provides 

‘preferences’ or ‘areas of research interest’ while setting up the profile. However, if this is not 

the case, the user may provide two types of feedback based on their previous choices– explicit or 

implicit feedback. Explicit feedback includes like/dislike statements, ratings provided by the user 

and/or text comments. Implicit feedback may include the monitoring of user behavior such as 

their search activity and/or clicking of documents. Based on this feedback, the profile learner 

creates new categories for the user and/or adds or reduces weight to keywords to develop a 

machine learned user profile. Feedback from the user may change over time, so this information 

is continuously updated to the profile learner and further allows understanding of the user 

preference dynamics. 

If new items are available from the information source or document pool, the filtering 

component will compare the new documents with that of the available information in the user 

profile to assess if they should be recommended to the user. If there are numerous new items 

available, the filtering component uses an appropriate strategy to rank these items based on 

relevance. The filtering component assesses and categorizes the newly available documents using 

either basic keyword matching or by building vector space models (VSM) with TF-IDF (term 

frequency inverse document frequency) weighting.  

13 
 



For keyword matching, the user rates the items he/she likes and prepares a set of 

keywords based on this. Keywords used to compare the documents may not be specifically 

assigned ‘keywords’; they could be the document titles, contents of the documents, or any other 

characteristic. From the structured document pool, the system retrieves keywords to compare 

between the known and unknown documents. In the commonly used vector space approach, 

keywords extracted from the documents are weighted using the TF-IDF method (term frequency 

times inverse document frequency). The vector space model represents text documents as vectors 

of keyword weights in a multidimensional space, with one dimension for every unique keyword 

in the document collection. Term frequency assesses the importance of words in a document by 

measuring how often they appear in the document after considering appropriate normalizations 

to account for variability in document length. For example, the normalization for the frequency 

of terms is calculated through the equation as described in [26] as,  

𝑇𝐹 (𝑖, 𝑗) =  
𝑓𝑟𝑒𝑞 (𝑖, 𝑗)

𝑚𝑎𝑥𝑂𝑡ℎ𝑒𝑟𝑠 (𝑖, 𝑗)
 

Here, freq(i,j) is the total frequency of the keyword ‘i’ in document ‘j’ and maxOthers is the 

maximum frequency of the other keywords. Another parameter, inverse document frequency 

(IDF) is also calculated for the TF-IDF approach. This second section reduces weight on those 

keywords that commonly occur across several documents and this helps to remove the non-

specific keywords for document retrieval. The IDF is calculated as,  

𝐼𝐷𝐹 (𝑖) = log
𝑁
𝑛(𝑖)

 

 Here, N is the number of all documents that could be recommended and n(i) is the number of 

documents among the N documents that has the keyword ‘i’. The final TF-IDF equation used to 

estimate the weight of a keyword ‘i’ in a document ‘j’ is as follows, 
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𝑇𝐹 − 𝐼𝐷𝐹 (𝑖, 𝑗) = 𝑇𝐹(𝑖, 𝑗) ∗  𝐼𝐷𝐹(𝑖) 

After correctly representing the content and characterizing the keywords for assessing 

similarity in several documents or items, the system needs to retrieve or recommend documents 

based on this similarity. This is known as Similarity Based Retrieval. For the system to make 

recommendations, it should now evaluate how much an unknown document or item relates to the 

documents that the user has liked in the past. This similarity or likeness of the known document 

to the unknown document is estimated by different methods. For example, the Cosine similarity 

method measures the similarity and the cosine of two vectors can be estimated as follows: 

𝑇ℎ𝑒 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦,𝐶𝑜𝑠 𝜃 =  
𝐴 .𝐵

∥ 𝐴 ∥ ∥ 𝐵 ∥
 

Here, A and B are vectors of two attributes. A cosine similarity of -1 represents completely 

dissimilar value, whereas, 0 and 1 represents fully independent and completely similar values 

respectively. For information retrieval, the cosine similarity values may vary between 0 and 1, 

because the TF-IDF values are always positive.  

Keyword-based methods for content-based recommendations  

Once the user has provided implicit or explicit feedback in the form of a set of documents 

with indications of whether or not each document is interesting to them, the system must 

recommend new documents to the user based on the information provided. As mentioned 

previously, the user can directly provide sets of liked documents through a survey (explicit 

feedback) or they could be automatically deduced by the system by observing user behavior. 

From these documents, a user profile is created.  Thus, the user’s interests are represented as a 

set of keyword vectors, one per document in which the user has previously expressed interest. 

Several popular approaches to recommend documents based on the user profile are summarized 

below. 
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a) Nearest neighbors: In this approach, all document vectors in the collection are compared to all 

document vectors in the user profile vector using an appropriate similarity calculation function. 

[27].  The collection documents are then ranked by their maximum similarity to any document in 

the profile and the most similar k documents are recommended to the user.  This is known as the 

k nearest neighbor method (kNN) and can be completed with different variations such as 

changing the size of k, weighting the profile documents differently based on user rating values, 

and considering thresholds for similarities. Based on the type of data, the similarity function used 

by kNN can differ. If the data is structured, a Euclidian distance metric is used and a cosine 

similarity measure is used if the data is unstructured [17, 28, 29]. The kNN method is used in 

Daily Learner [30] and Quickstep [31] systems. The Daily Learner is a learning agent for 

wireless news access devices that recommend relevant daily news stories to users based on user 

feedback. Quickstep uses an ontological approach to recommend academic research papers after 

creating a user profile and obtaining relevant user feedback.  

b) Rocchio’s algorithm: Rocchio’s algorithm [32] is similar to kNN with the key difference 

being how the user profile is represented.  In Rocchio’s algorithm, the user profile keyword 

vectors are combined, typically by simple addition, to create a single profile that represents the 

user profile.  Essentially, this profile vector represents the aggregate of all user interests. With 

this approach, each document in the collection need only be compared to one vector of user 

interests, so it is much more efficient.  The documents are then ranked by similarity and the most 

similar documents are recommended to the user.   This relevance feedback algorithm is used in 

several content-based recommender systems [1]. For example, Fab [33] is a recommendation 

system for the web and represents files with words having the greatest TF-IDF weights and with 

these words appearing frequently in a single file, but infrequently in the whole document pool. 
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The TF-IDF vector of the files with the greatest weights is detected by Fab using Rocchio’s 

algorithm. Another example is YourNews [34], an adaptive personalized news delivery system 

that allows the users to view and edit their profiles for relevant news recommendations.  

c) Probabilistic methods and Naïve Bayes: Some recommender systems base their 

recommendations on probabilistic, rather than vector space, models. This leads to a slight 

modification in both the term weighting scheme and the similarity calculation function.  As in 

the vector space model, users interests and documents in the collection are represented by a set 

of weighted keywords, but the similarity function between these keyword sets is calculated using 

the Naïve Bayes model wherein the probability that a document ‘d’ belongs to class ‘c’, P (c|d) is 

calculated as, 

𝑃(𝑐|𝑑) =  
𝑃(𝑐) 𝑃(𝑑|𝑐)

𝑃(𝑑)
 

 Here, P(c) is the probability of observing a document in class ‘c’; P(d|c) is the probability 

of observing document ‘d’ when ‘c’ class is present; and P(d) is the probability of observing the 

document ‘d’. The document ‘d’ is categorized in the class with the highest probability and is 

chosen by using the equation, 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑗  
𝑃�𝑐𝑗� 𝑃 (𝑑|𝑐𝑗)

𝑃 (𝑑)
 

The naïve Bayes method is used in different content-based recommender systems [1]. For 

example, Syskill & Webert [35] is a software agent that rates websites and provides 

recommendations to the user based on the three point rating system by the user and the webpages 

the user clicks.  A study evaluated six different algorithms for Syskill & Webert and determined 

that the naïve Bayesian classifier provides the best option for the system [35]. Another example 

is News Dude [36], an intelligent personal news agent that compiles daily news and tailors it to 
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user preference based on their feedback. News Dude computes predictions for news stories for 

the user based on a long-term model that uses the probabilistic learning algorithm, the naïve 

Bayesian classifier.  

Conceptual methods for content-based recommendations  

In conceptual approaches, the user profile and the documents are represented as vectors 

of weighted concepts rather than vectors of raw keywords.  This approach has the advantage of 

creating vectors with much lower dimensionality (the number of concepts in the ontology rather 

than the number of unique words in the collection).  It also is able to handle problems with 

synonymy much better since multiple word forms all map to the same concept. 

A conceptual content-based recommender system was recently developed to recommend 

research papers based on the user profile and the CiteSeerx classified documents [37]. CiteSeerx 

is a scientific digital library and search engine that has a collection of technical papers focused 

primarily on computer science. CiteSeerx provides citation indexing and links using a method of 

autonomous citation indexing [38]. The current project is an extension of previous research by 

Puthiyaveetil [39] and is focused to improve the recommendations given to the user by 

considering an additional parameter, the author’s h-index for documents.  A brief summary of 

the conceptual content-based recommender system previously published is provided below. 

The ACM (Association for Computer Machinery) classification tree, consisting of 369 categories 

in three levels, was used to represent the 1,834,852 documents in the University of Arkansas’s 

CiteSeerx collection.  There were 55,526 documents that had been explicitly tagged by the 

authors with ACM concepts identifiers. These were used to train a kNN classifier for the ACM 

concepts and the remaining untagged documents were then automatically classified to identify 

the appropriate ACM concepts for those documents. The documents and their associated 
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concepts and concept weights are stored in the CiteSeerx database to be used for browsing, 

building the user profiles, and making recommendations.   

The user creates a profile by creating an account, logging in, and searching for papers to 

read.  The ACM concepts associated with the user-viewed documents were accumulated to 

create the user profile.  Essentially, this is a Rocchio approach but, instead of accumulating 

keyword vectors to build a user profile, we accumulate concept vectors to create a single, 

conceptual, user profile vector.  Based on empirical results by Puthiyaveetil [39], the 

recommender system uses only the most highly weighted three concepts from each document’s 

vector when calculating the profile/document similarity in order to make content-based 

recommendations.  The rationale is that most documents are closely related to no more than three 

ACM concepts and that the other non-zero concepts in the document vector are more likely to 

introduce noise. The most similar documents to the user profile, based on the cosine similarity 

measure, are recommended to the user. 

Chandrasekaran et al. [40] developed an algorithm to recommend documents for authors 

having publications in CiteSeerx. A study conducted using eight of the authors suggested that 

majority of the preferred recommendations used 10 concepts from their user profiles. Another 

more recent study, focused on recommending documents to all CiteSeerx users who were not 

published authors. This study by Puthiyaveetil et al. [37] conducted a series of experiments to 

determine the number of concepts from the user profile to use during the similarity calculation to 

produce the best recommendations. Document recommendations were generated for the top 3, 6, 

9, and 12 concepts of the user profile, with the top 5 documents recommended for each approach 

presented to the user for evaluation. Using a subset of 1,000,000 documents and seven volunteer 

users, the results confirmed that conceptual content-based recommender system generated 
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preferred results using only three concepts from the user profile and three concepts from the 

document vector [37]. 

2.2.3 Hybrid Recommender Systems 

There are several advantages of using content-based recommender system rather than a 

collaborative filtering recommender system, where possible. The former has user independence, 

allowing the active user to develop their own user profile based on their preferences; whereas, 

CF recommender system require ratings from the community to generate recommendations. The 

CF recommender system has numerous ‘black boxes’ - the unknown users based on which 

recommendations are provided to the user. In contrast, a content-based system is much more 

transparent since it is clear which documents and attributes are used to generate the list of 

recommendations. Another limitation of the CF recommenders is that the system needs previous 

information from the community, but this is a problem if the item is new; content-based systems 

are able to overcome this limitation by the user’s preference for similar items.  

 Content-based recommender systems also have certain disadvantages when compared to 

CF recommender systems. Content-based recommender systems can become over-specialized, 

recommending similar items over and over again, with no innate method of retrieving something 

that is completely unexpected; this is called the serendipity problem. Also, if the user is new and 

has not provided sufficient information to form a robust user profile, the content-based system 

may not be able to provide accurate recommendations.  

To address the limitations of each of the two approaches, it is possible to combine them 

to form a hybrid recommender system. For example, in the content-boosted collaborative 

filtering hybrid approach developed by Melville et al., the content based recommendations are 

used to enhance the user profile and after the user data boost, collaborative filtering is used to 
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create personalized recommendations [41]. REFEREE, developed by Cosley et al., is an open 

framework for building hybrid recommender systems and testing them using the ResearchIndex 

database [42]. Here, the content-based system is used to retrieve a set of documents from which 

recommendations are generated and ranked based on CF system. A third recommender system 

example is the use of Boltzmann machine proposed by Gunawardana and Meek, a probabilistic 

model that combine both content-based and CF information coherently [43]. Information from 

both systems are coherently encoded as features and uniformly used to assign weights to the 

features to learn how correctly these features predict user actions. They have applied this 

approach to recommending entertainment and shopping items with improved success over 

collaborative or content-based recommendation alone.  

Several of these examples suggest that based on the study system under consideration, the 

information retrieval and recommendation system adopted can be customized as required. Our 

work can be considered a type of hybrid system.  The original conceptual recommender system 

builds user profiles based on the contents of the documents; it is a content-based recommender 

system.  However, the impact factor calculation is based on citations to other authors.  One can 

consider citations to documents as a form of community feedback and, by exploiting that 

information; we are incorporating a collaborative filtering recommender, ultimately ending up 

with a hybrid system. 
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3. RESEARCH DESIGN 

The Conceptual, Impact-Based Recommender System is a combination of the Conceptual 

Recommender System and the Impact-Based Recommender System. The Conceptual 

Recommender System is a model based system because it initially creates a user profile and then 

recommends papers to the user based on their user profile [37]. The documents recommended to 

the user are conceptually correct, but from the user’s perspective the documents are not always 

relevant. Our aim is to consider the importance of the document and combine it with the 

conceptual recommendations to help improve the relevance of the documents recommended to 

the user. 

The user can search for specific documents in CiteSeerx and select the documents that are 

relevant to the user. This selection of documents is tracked and used to create a profile for the 

user. The user profile displays the concepts in a hierarchical structure based on the relevance of 

the document. The user can modify the profile to remove those concepts that are of no further 

interest to the user. This functionality aids to improve the user profile. 

 

 Figure 3: System Architecture of CiteSeerx   
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The diagrammatic representation above is an extension of the Conceptual Recommender 

System, developed by Ajith Kodakateri Pudhiyaveetil, as part of his MS thesis [39]. The original 

system consists of two major components: 

1)      Profile Subsystem 

2)      Recommender 

This work was extended to include the components of Impact-Based Recommender and 

Conceptual, Impact-Based Recommender. 

3.1 Profile Subsystem 

In this section we explain how the user profile is generated in CiteSeerx by using the 

Classifier and Profiler components. 

 

 

Figure 3.1: Profile Subsystem of CiteSeerx  

3.1.1 Classifier 

Documents in the CiteSeerx database are classified into a set of predefined concepts. 

These concepts are obtained from the ACM’s Computing Classification System (CCS). This 3-

level deep hierarchical set of concepts contains a total of 369 concepts. In Figure 3.1.1, we show 
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the ACM Taxonomy with a subset of the concepts.  The concept ‘Data’ is further described, and 

used, in section 3.1.2. 

 

Figure 3.1.1: ACM Taxonomy 

The classification of the documents is done in two stages. 

1. Training stage: From our collection of documents, we parsed 1,834,852 text documents and 

found that 55,526 of these documents have author-assigned ACM tags. These documents were 

used as training data for the KNN classifier. For each concept in the CCS, we randomly selected 

18 documents tagged by the authors as belonging to a concept. Concepts that had fewer than 18 

candidate documents were ignored by the training algorithm and left us with a classifier that 

trained on 291 total concepts. 

2. Classification stage:  The non-tagged documents were then classified using the k-nearest 

neighbor algorithm. The top 10 concept matches and their similarity weights returned by the 

KNN classifier for each document in the collection are stored in the CiteSeerx database. Both 

non-tagged and tagged documents are stored to the database. This database is used for the user 

profile and the recommender system.  
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3.1.2 Profiler 

The main objective of the Profiler module is to create a user profile for the users in 

CiteSeerx. The inputs to the Profiler module are the ACM taxonomy (refer to section 3.1.1), 

classified documents (refer to section 3.1.1) and the user activity. Each user’s activity is 

represented by the documents the user viewed/clicked and the amount of time the user spent on 

the respective documents.  These documents are displayed based on the queries that the user 

enters in the CiteSeerx search engine. Consider the expansion of the “Data” concept from the 

ACM taxonomy in Figure 3.1.1 shown in Fig 3.1.2.a.  

 

Figure 3.1.2.a: Concept ‘Data’ and sub levels 

Assuming the user clicked on three documents, ‘Ease of Coding’, ‘Types of Storage of 

Data’ and ‘Programming Languages pros and cons’ respectively. The weights of the concepts for 

each of the documents are displayed in the table below (Figure 3.1.2.b) and the aggregated 

weights are derived as follows. 

Concepts Doc1: Ease 
of Coding 

Doc2: Types and 
storage of Data 

Doc3: Programming 
Languages pros and cons 

Aggregated Weight 

Data   0.16  1.23 
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Structure 0.1   0.1 

Storage  0.06  0.16 

Drive  0.04  0.04 

CD  0.05  0.05 

DVD  0.01  0.01 

Files  0.12  0.12 

Encryption  0.11   0.11 

Coding 0.09 0.03 0.06 0.48 (0.18+0.14+0.16) 

Perl 0.04  0.1 0.14 

Database   0.12 0.16 (0.12+0.03+0.01) 

SQL   0.03 0.03 

Oracle   0.01 0.01 

 

Table 3.1.2.b: User’s Aggregated Concept Weights 

Here, the concept ‘Coding’ is in all three documents with different weights. These 

weights are accumulated to calculate the final weight associated with the concept ‘Coding’. The 

above table shows that the user is interested in the category ‘Data’ and more specifically into the 

concept ‘Coding’ which has 48% of the total. Thus, the final output of the Profiler module is a 

weighted tree of the list of ACM concepts. These concepts represent the user’s areas of interest. 

Figure 3.1.2.c shows a snippet of a user’s profile.  
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Figure 3.1.2.c: Conceptual User Profile  

We recommend papers to the users using this profile. The user can improve their profile 

by modifying the relevance of the concepts and by deleting irrelevant concepts. The user can also 

view their profile in a hierarchical structure to view other related concepts in their area of 

interest. 

3.2 Recommender Systems 

This module recommends documents to the user using the Conceptual, Impact-Based 

Recommender System (CIBR). The CIBR system is developed by analyzing the data from both 

the Conceptual Recommender System and Impact-based Recommender System. 

3.2.1 Conceptual Recommender System 

The user profile and the classified documents are used to generate the Conceptual 

Recommender System. This recommender system categorizes documents based on the user’s 
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area of interest. 

 

Figure 3.2.1: Conceptual Recommender System of CiteSeerx 

 
 

In the Profiler module (refer section 3.1.2), we calculated the user’s areas of interest with 

respect to the ACM CCS concepts. In the recommender module, the user’s top three concepts are 

used to retrieve relevant documents from the CiteSeerx database. Figure 3.2.1.a shows the weight 

of the concepts ‘Coding’, ‘Storage’ and ‘Files’ for the documents ‘Science Digital Library’ 

‘Structures of video storage’ and ‘Tool for engineering privacy’ in the CiteSeerx database. 

  
Documents Coding Storage Files 
Science Digital Library 0.54 - 0.45 
Structure of video storage 0.23 0.12 - 
Tools for software privacy 0.63 0.11 0.45 

 
Table 3.2.1.a Document Concept Weights in the CiteSeerx Database 

 
The weights of the retrieved documents are multiplied with the weights of the user’s 

profile concepts to get the weight WtDoc as per, Speretta, M. and S. Gauch (2005).  The 

conceptual match between the document concepts and the user concepts are calculated by using 

the cosine similarity function [44] 

WtDoc(useri, docj) = cwtik * cwtjk 

where, 

cwtik = weight of conceptk in userprofilei 

cwtjk = weight of conceptk in documentj 
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N = 3 (Number of concepts) 

SumDoc =� WtDoc(user, doc)𝑁
𝑘=1  

The retrieved documents and weight WtDoc are added to a collection set RecList. The 

weights of duplicate documents are aggregated to get SumDoc. The documents in RecList are 

sorted in descending order of weight. Figure 3.2.1.b shows the multiplied weights (WtDoc) and 

the aggregated weights (SumDoc) of the documents from the CiteSeerx Database. 

RecList → Science Digital 
Library 

Structure of video 
storage 

Tools for 
software privacy Concepts↓ 

Coding 0.26 (0.54*0.48) 0.11 (0.23*0.48) 0.30 (0.63*0.48) 
Storage - 0.02 (0.12*0.16) 0.02 (0.11*0.16) 
Files 0.05 (0.45*0.12) - - 
SumDoc → 0.31 0.13 0.32 

 
Table 3.2.1.b Document Weights WtDoc and SumDoc 

 
The above documents will be displayed to the user in their decreasing weights. The document 

‘Tools for software privacy’ would be the top recommended document to the user followed by 

the document ‘Science Digital Library’ and ‘Structure of video storage’ respectively. 

3.2.2 Impact-Based Recommender System 

The user profile, the classified documents, and the document’s impact factor are used by 

the Impact-Based Recommender System. This recommender system ranks documents based on 

the reputation of the document’s authors as measured by the authors’ h-index values.  An author 

has an index h if h of his/her Np documents have at least h citations each, and the other (Np – h) 

documents have no more than h citations each [4].  The impact factor for a document is 

calculated by finding the h-index value for all the authors of the document and then choosing the 

highest h-index value.  Thus, a document’s h-index is set to that of its most-cited author. 
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The CiteSeerx database has a large set of static documents. The impact factor was pre-

calculated for all the documents in the database and stored the values into the CiteSeerx database.  

 

Figure 3.2.2: Impact-Based Recommender System of CiteSeerx 
 

Continuing with our example, in the Profiler module (refer section 3.1.2), we saw that the 

user’s top 3 concepts were ‘Coding’, ‘Storage’ and ‘Files’. Based on the top 3 concepts, we 

retrieve documents from the CiteSeerx database and add them to the collection set RecList. We 

find the impact factor of all the documents in RecList and sort them in descending order. These 

documents are added to the collection set ImpactList. In the conceptual recommender module 

(refer section 3.2.1) we saw that the concepts returned documents ‘Science Digital Library’, 

‘Structures of video storage’ and ‘Tools for engineering privacy’. In this module, we find the 

impact factor of these 3 documents.  

Science Digital Library  
Luke James Maria N. 
Publications #Cited Publication #Cited 

PaperXYZ 40 PaperRST 0 
PaperSDE 13   
PaperRST 0   
H-index 2 H-index 0 

 
Table 3.2.2.a. Publications and Citations of the Authors of ‘Science Digital Library’ 

 
In Figure 3.2.2.a, ‘Luke James’ has 3 publications (PaperXYZ, PaperSDE and PaperRST) . As 

per Jorge E. Hirsch [4], A scientist has index h if h of his/her N papers have at least h citations 
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each, and the other (N - h) papers have no more than h citations each. Since ‘Luke James’ has 2 

publications with citations more than and equal to 2, the h-index of “Luke James” is 2. Since 

Maria N. has a publication but no citation, her h-index is 0. Thus, we consider the highest h-

index author, ‘Luke James’, and so the paper ‘Science Digital Library’ has an impact factor of 2.  

Tools for software privacy 
Dianne L. Sarah Tim Lee Henry Tobit 
Publications #Cited Publication #Cited Publications #Cited 
PaperABC 2 PaperABC 2 PaperEE 54 
PaperMNO 2   PaperHH 3 
    PaperGG 4 
H-index 2 H-index 1 H-index 3 

 
Table 3.2.2.b Publications and Citations of the Authors of ‘Tools for software privacy’ 

 
In Figure 3.2.2.b. the h-index of ‘Dianne L.’ is 2 because the author has 2 publications with at 

least two citations each. The h-index of ‘Sarah Tim Lee’ is 1. The h-index of ‘Henry Tobit’ is 3. 

Thus, the impact factor for “Tools for software privacy” is 3.  

Structure of video storage 
Timothy Prescent 
Publications #Cited 
PaperA1 30 
PaperB2 27 
PaperC3 15 
PaperD4 14 
PaperE5 14 
PaperF6 10 
PaperF7 9 
PaperF8 3 
H-index 7 

 
Table 3.2.2.c Publications and Citations of the Author of ‘Structure of Video Storage’ 

 
In Figure 3.2.2.c. the impact factor of ‘Timothy Prescent’ is 7 because the author has 8 

publications of which 7 publications have at least seven citations each.  

 
 Coding Storage Files Impact 
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Factor 
Science Digital Library 0.54 - 0.45 2 
Structure of video storage 0.23 0.12 - 7 
Tools for software privacy 0.63 0.11 0.45 3 

 
Table 3.2.2.d Documents with Category ‘coding’ in the CiteSeerx Database and the Impact 

Factor 
 
In Figure 3.2.2.d shows the impact factor for the documents. The weights of the categories in the 

documents are not considered. The documents are sorted in descending order of impact factor 

and displayed to the user. Here the document “Structure of video storage” would be the top 

recommended document to the user followed by ‘Tools for software privacy” and “Science 

Digital Library”.  

3.2.3 Conceptual, Impact-Based Recommender System 

The Conceptual Recommender System and the Impact-Based Recommender System are 

combined together to generate the Conceptual, Impact-based Recommender System. In this 

system, the conceptual documents are generated and re-arranged as per the impact factor to get 

documents that are more relevant and that are from prominent authors.  

 

  

Figure 3.5: Conceptual, Impact-Based Recommender System of CiteSeerx 

In the evaluation section, we generate the conceptual and impact factor documents. We rank the 

conceptual documents as per concept weight and add them to a collection set ConceptList. We 
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rank the impact-based documents as per impact factor and add them to a collection set 

ImpactList. Both ConceptList and ImpactList will have normalized values that vary from 0 to 1.  

The Conceptual, Impact-Based Recommender System (CIBR) uses the ConceptList and 

ImpactList and is determined by the formula below   

CIBR = α * ConceptList + (1- α) * ImpactList  

We calculated CIBR, by varying α from 0 to 1. With α=0 being a purely impact based 

recommender system and α=1 being a purely Conceptual Recommender System. When α is 0.5, 

the concept match and the impact match count equally. 

 

33 
 



4. EXPERIMENTAL EVALUATION 

The objective of the study was to compare the effectiveness of the impact-based 

recommendations versus the Conceptual Recommender System verus combining the two 

approaches. The survey included a total of 15 volunteers including student and faculty members 

from the computer science and computer engineering department of the University of Arkansas, 

Fayetteville. The survey participants interacted with the CiteSeerx, conducting searches and 

reviewing results related to their research interests.  Thes actions created a user profile for them 

that was then used to generate a mixture of impact-based and concept-based recommended 

documents.  The participants rated the relavance of the recommended documents, presented in 

random order, based on their respective interests.  The data collected from the participants was 

then analyzed to determine the best combination of impact-based versus concept-based factors in 

generating recommendations. 

In order to complete the survey, users were requested to create a username and password. 

The user information was used to record the search history and track the users profile concepts 

such as Data, Storage, Files etc as explained in section 3.1.2,. Figure 4.a shows the login 

webpage of CiteSeerx. 
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Figure 4.a: CiteSeerx Registration and Login Webpage [45] 

The survey participants were instructed to log in with their credentials and to search for 

topics that are of interest to them (single or multiple topics).  The participants were requested to 

read 10 or more documents generated from the search. If the survey participant spends more than 

10 sec on a specific document, then the recommender system assumes that the user is ‘reading’ 

the document. The time-limit is included for our recommender system to mark the concepts of 

these documents as relevant to the user and subsequently for the survey link to appear in the 

profile page.  Fig 4.b shows the users top concepts and the link ‘Evaluation Survey’. 
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Figure 4.b: CiteSeerx User Profile Webpage [45] 

After the user clicks on the survey link, the participant is led to a webpage where all the 

recommended documents are displayed. The recommended documents is assumed to ‘portray’ 

the user’s research interests and is based on the recorded concepts from all of his/her previous 

search. 

Using the CIBR formula described in section 3.2.3, each user evaluated 11 sets of 

documents generated by varying α from 0 to 1 in increments of 0.1.  The results contained 

documents recommended based solely on the impact factor (CIBR calcualtions with  α=0) as 

well as some recommended soley based on conceptual matches (CIBR calcualtions with α=1).  

The documents from all 11 results sets were merged and presented to the user in random order 

The maximum number of displayed documents possible for a user is 110 (11 sets * 10 

documents per set). However, some documents in a set may overlap with other sets and 

therefore, in reality, each survey participant was asked to judge approximately 30 to 50 
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documents. The title, author and abstract were displayed for each of the recommended 

documents along with three rating options. The rating options were:  

1. Very Relevant : The recommended document is very closely related to the user’s search 

interests in CiteSeerX. 

2. Relevant : The recommended document is somewhat close to the user’s search interest. 

3. Irrelevant : The recommended document is not related to the user’s search interest. 

After reading the documents, the user is required to rate all the documents based on their 

relevance to user’s research interest. The user selects one of three options for each document and 

concludes by submitting the survey.  Figure 4.c shows the webpage with the list of recommended 

document list as displayed to the user. 

 

Figure 4.c: CiteSeerx Survey Webpage for Rating the Recommended List of Documents [45] 

4.1 Data Analysis 
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Once the user ratings for all recommended documents was collected, we analyzed the 

data to determine which recommender system performed the best, i.e., impact-based, conceptual, 

or the hybrid recommender that combined inputs from the other two.  

 

Figure 4.1: Survey Feedback of User1 

Figure 4.1 is a snapshot of a single user’s feedback results for the sets of documents they rated 

and also that data broken out by various values of α. Values 0, 1, 2 are assigned to the options 

irrelevant, relevant and very relevant and subsequently, the recorded data are analyzed using the 

following four metrics: 

4.1.1 Average Rating 

We calculate average ratings of each α value for all the users. The average ratings is 

calculated first by accumulating the ratings for individual documents for each α value for each 

user and then by taking an average for all the documents in a set that belongs to each α value.  
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The ratings for individual documents are based on the user ratings of irrelevant, relevant and 

very relevant. Figure 4.1.1 shows the average rating of the documents for the various values of 

α. The graph shows that, averaged over all users,  the highest average rating occurs with an α 

value  of 0.1. This means that the users preferred recommended documents that were generated 

using  a rating based 90% on the impact factor and 10% based on conceptual match with their 

profile. Since average rating does not take into consideration the rank order of the highly-rated 

documents within the set of 10 documents presented, we chose to explore better metrics for our 

analysis.  

  

Figure 4.1.1: Average Rating of the Users for Different α Parameters. 

4.1.2 Cumulative Rating 

Cumulative rating is determined by the addition of previous ratings in a specific α value   

document set, where the documents are arranged in a particular rank order. The rank order of the 
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descending order of weights.  The cumulative rating was calculated for each α value for 

individual users. For example, the cumultive sum for user 1 at α=0 is calculated as given in Table 

4.1.2 a. The cumulative sum is determined for the different α values for all users and the average 

cumulative rating for each α value is estimated for all users as explained for α=0 in Table 4.1.2 b.  

In Table 4.1.2.a, we show an example of  the cumulative calculation for α=0 for User1. The 

cumulative sum for User1 when α=0 is 81.  

α=0 for User1 
Rank 
Order Documents Ratings Cumulative 

1 10.1.1.3.4782 2 2 
2 10.1.1.127.1166 2 4 
3 10.1.1.106.2360 2 6 
4 10.1.1.161.5709 2 8 
5 10.1.1.192.64 0 8 
6 10.1.1.142.5101 2 10 
7 10.1.1.128.5918 0 10 
8 10.1.1.150.4460 1 11 
9 10.1.1.161.46 0 11 
10 10.1.1.93.7302 0 11 
 Sum → 11 81 

 

Table 4.1.2.a: Cumulative sum of α=0 for user1 

Documents α = 0 
User1 81 
User2 49 
User3 34 
User4 46 
User5 51 
User6 28 
User7 52 
User8 7 
User9 6 
User10 68 
User11 92 
User12 85 
User13 23 
User14 19 
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User15 74 
Sum → 715 
Cumulative Rating → 47.7 

 

Table 4.1.2.b: Cumulative rating for α=0 

In Table 4.1.2.b, we use the cumulative sum of different users at α=0 to find the cumulative 

rating. For the experiment, similar calculations were made for all α values. Figure 4.1.2 shows 

the cumulative rating of the documents for all the users. Based on this more sensitive metric, 

users perfomed best at α value= 0.6.    

 

Figure 4.1.2: Cumulative Average Rating of the Users for Different α Parameters 

4.1.3 Mean Average Precision 

Mean Average precision (MAP) is the standard  metric to evaluate search engines such as 

CiteSeerx. Similar to Cumulative Rating, MAP takes the rank order of the recommended 

documents into account.  MAP, however, only takes into account binary relevance judgments 

(relevant, non-relevant).  To calculate it for our results, we treat both ‘relevant’ and ‘very 

relevant’ document ratings as relevant. As per [46], the MAP metric determines precision at each 
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point when a new relevant document gets retrieved. After estimating the average for each query, 

the MAP then estimates average over queries as given in the equation, 

𝑀𝐴𝑃 =
1
𝑁�

1
𝑄𝑗
�𝑃(𝑑𝑜𝑐𝑖)

𝑄𝑗

𝑖=1

𝑁

𝑗=1

 

where,  

Qj = number of relevant documents for query j  

N = number of queries  

P(doci) = precision at ith relevant document.  

Figure 4.1.3 shows the Mean Average Precision (MAP) of the recommender systems for all the 

users.  Using this metric, we get very similar results to the Cumulative Rating and suggests that 

an α value of 0.6 provides the the best result. 

 

Figure 4.1.3: MAP for different α values for all users 
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4.1.4 Mean Average Weighted Precision 

Mean Average Weighted Precision (MAWP) is essentially MAP modified to handle the 

distinction between ‘relevant’ and ‘very relevant’ documents.  It takes relevance judgment 

weight into consideration rather than just counting the number and rankings of the relevant 

documents. Figure 4.1.4 shows the MAWP of the recommender systems for all the users. These 

results confirm those of the Cumulative Rating and MAP; the users best result is generated at an 

α value of 0.6. All three of the latter metrics reveal that a similar combined contribution of the 

impact and conceptual recommendations performs the best. 

  

Figure 4.1.4: MAWP for Different α Parameters 

4.2 Discussion 
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 Figure 4.2.a: Comparison of the Pure Recommender Systems 

Figure 4.2.a measures the users preference for a pure Impact-Based Recommender System (α=0) 

versus a pure Conceptual Recommender System (α=1). A comparison of pure Impact vs. 

Conceptual Recommender across all four metrics – Average, Cumulative Average, MAP and 

MAWP, suggest that the users preferred the documents returned by the pure Impact-Based 

Recommender System than the latter. The graph also suggests that the users preferred the hybrid 

recommender system of α = 0.6 than either of the pure recommender systems. 
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Figure 4.2.b: User Preference of the Pure Recommender Systems 

Figure 4.2.b shows average ratings of both pure Impact vs. Conceptual Recommender Systems 

for individual users. A comparison of the individual user’s average document rating suggest that 

an overall 50% of the users’ preferred Impact-based recommended documents and the remaining 

50% of the users preferred Conceptually recommended documents. The graph also shows that 

over 80% of the users preferred the hybrid recommender system when α is 0.6. 

In conclusion, our results show that the Impact-Based Recommender outperformed the 

Conceptual Recommender, but that the hybrid system which combined the two approaches 

performed the best overall.  In particular, the α value 0.6 which has a nearly equal combination 

of the two, produced the best overall performance.
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5. CONCLUSIONS 

5.1 Summary 

The thesis discusses the development and evaluation of a new hybrid recommender 

system to recommend relevant documents to a CiteSeerx user. The first part of the research 

included the development of an impact based recommender system that recommended papers to 

users based on the h-indexes of the authors of publications the users preferred.  Subsequently, we 

developed a hybrid system that combined the impact-based recommender with an existing 

Conceptual Recommender System.  The hybrid system was further evaluated using a survey 

experiment to determine the best ratio for generating the most relevant recommendations for the 

user. The final result is our Conceptual, Impact-Based Recommender System (CIBR). 

Specifically, the CIBR system was implemented by combining the document weights 

produced by the Conceptual Recommender System with those produced by the Impact-Based 

Recommender System. Documents generated using the Conceptual Recommender System was 

represented by concept vectors containing non-zero weights for only the three highest-weighted 

concepts.  The document-concept weights are calculated using a kNN classifier, trained on 

documents manually tagged with ACM CCS concepts by their authors. Authors are represented 

by user profiles automatically created as they examine search results and these profiles are also 

represented as weighted concept vectors and the top three concepts are selected to generate 

recommendations. The Conceptual Recommender System weights documents using the cosine 

similarity measure calculated on these abbreviated document and profile vectors. 

In contrast, the Impact-Based Recommender System weights documents based on the 

impact factors of the document authors. The impact factor for a document was calculated using 

the highest h-index value of any author of the paper.  The hybrid CBIR system normalizes these 
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two scores so that each is in the range between 0 and 1 and further combines the weights in a 

relative contribution determined by a tunable parameter to produce a single weighting.  After 

ranking the documents in decreasing order of their weight, the top 10 are presented to the user as 

recommendation for further reading. 

The CIBR system for generating recommendations from the CiteSeerx database was 

implemented and evaluated by a user study including 15 student and faculty participants from 

within the Computer Science and Computer Engineering department at the University of 

Arkansas. The survey participants each created a user profile and entered search queries to 

retrieve documents based on their research interest. The CIBR system generated 

recommendations for each user by providing a list of documents. Each document in the 

recommended list was retrieved either by using a pure conceptual based system, an impact based 

system or using different ratios of the two recommender systems.  Results from the survey 

suggested that the users preferred documents returned by a combination of the Conceptual and 

Impact-Based Recommender Systems. 

Specific contributions include: 

1. The development of an Impact-Based Recommender System for CiteSeerx based on the 

h-index values of authors. 

2. The development of the CIBR hybrid system that uses a combination of impact and 

conceptual based systems to recommend documents. 

3. Demonstration that Impact-Based Recommender System is effective than the previously 

implemented Conceptual Recommender System in CiteSeerx. 

4. Demonstration that our CIBR hybrid system is more effective than either, producing 

more accurate recommendations than either recommender system alone. 
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The documents generated from our study confirmed that our CIBR hybrid system were a 

more accurate match to the user profiles. However, future research should focus on refining 

the recommender system to improve reading suggestions for CiteSeerx users.  

5.2 Future work 

The CIBR system is a definite improvement over the Conceptual Recommender System; 

however, further research should identify and resolve compromises in system components and 

provide better recommendations to users. In particular, the algorithm should be modified to 

reduce document ties in the CIBR system.  

A user inputs multiple search strings and the CIBR system uses keywords from the user-

read documents to retrieve documents from the CiteSeerx database. The documents are retrieved 

based on concept weight, h-index values or a combination of both. However, if there is a list of 

documents that have similar weights or h-index values, the CIBR system randomly picks from 

this list to provide recommendation that are displayed to the users. If this list of ‘tied’ documents 

is long, that in turn increases the randomness of the selected document. This introduces more 

noise to the process and ultimately generates less accurate recommendations to the user. 

Therefore, research should explore strategies to mitigate erroneous recommendations arising 

from ties and subsequently implement the algorithm to test the different methods to understand 

the best strategy.  

Documents that have the same value can be differentiated using multiple methods to give 

priority for those documents that are more relevant.  For example, one method to rank the tied 

documents is to increase the number of concepts (currently, three) considered from the user 

profile and from the CiteSeerx database. A preliminary study was conducted using a single user 

to observe if varying the number of concepts reduced document ties. Results suggested that if 15 
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concepts were used from the user profile and were matched to the top six concepts from the 

documents in the CiteSeerx database, the document ties reduced by ca.10 fold, decreasing the 

number of tied documents from 316 to 29 for the impact-based recommender system. The 

conceptual recommender system originally had lesser document ties (3 documents) and using the 

modified number of concepts, it further reduced (2 documents) by 1.5 fold with the current 

system that uses 3 concepts only from both the document and user profile vectors.  For this case, 

the pure impact–based recommender system actually outperformed even the CIBR system, 

producing 7 very relevant documents in the top 10 versus 3 with the CIBR system with the more 

complete vectors and 5 with the CIBR system using only 3 concepts from each vector.  With 

only one user being studied, these results are preliminary and merely illustrative.  However, they 

indicate that we need further study on how to make the best use of the document and user profile 

vectors.   

There is also information from previous literature that lists several other methods to 

overcome the document tie limitation. Rousseau (2008a) suggested that tied documents can 

further be ranked based on impact factor of the journals or by considering the year of 

publication, with the most recent publication having the highest rank among the tied documents 

[47]. Another proposal by Rousseau (2008b) suggests that if multiple researchers had the same 

h-index at a time duration T and the same number of citations, then the similar h-indices are re-

ranked based on a measure of increase in productivity of the researchers [48]. Specifically, a 

‘convex’ productivity increase is preferred over a ‘linear’ increase, which in turn is superior to a 

‘concave’ h-function change in research productivity over time. This is based on the contents and 

size of the all publications in the h-index list, number of citations for each publication in the list, 

and finally the recent variations in h-index of the authors. 
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Another approach is to consider different variants of the h-index to address authors with 

the same h-index.  For example, Zhang (2009) introduced the e-index and this variation 

complements h-index and handles noisy citation information and the low resolution of the h-

index. This is specifically useful to increase ranking for highly cited scientists [49]. Garcia-Perez 

(2009) suggested the use of a multidimensional extension to h-index that handles authors with 

the same h-index, particularly, when the tied documents have low h-indices. Here, multiple 

components are used to calculate the h-index. When the h-indices calculated using one 

component is tied, other components help to differentiate documents with the same h-index [50]. 

Future research should focus to evaluate the above-mentioned strategies and determine an 

optimum method for generating more relevant recommendations. 
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