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ABSTRACT 

Data-driven decisions have become an important aspect of supply chain management.  Demand 

planners are tasked with analyzing volumes of data that are being collected at a torrential pace 

from myriad sources in order to translate them into actionable business intelligence.  In 

particular, demand volatilities and planning are vital for effective and efficient decisions.  Yet, 

the accuracy of these metrics is dependent on the proper specification and parameterization of 

models and measurements.  Thus, demand planners need to step away from a “black box” 

approach to supply chain data science.  Utilizing paired weekly point-of-sale (POS) and order 

data collected at retail distribution centers, this dissertation attempts to resolve three conflicts in 

supply chain data science.  First, a hierarchical linear model is used to empirically investigate the 

conflicting observation of the magnitude and prevalence of demand distortion in supply chains.  

Results corroborate with the theoretical literature and find that data aggregation obscure the true 

underlying magnitude of demand distortion while seasonality dampens it.  Second, a quasi-

experiment in forecasting is performed to analyze the effect of temporal aggregation on forecast 

accuracy using two different sources of demand signals.  Results suggest that while temporal 

aggregation can be used to mitigate demand distortion’s harmful effect on forecast accuracy in 

lieu of shared downstream demand signal, its overall effect is governed by the autocorrelation 

factor of the forecast input.  Lastly, a demand forecast competition is used to investigate the 

complex interaction among demand distortion, signal and characteristics on seasonal forecasting 

model selection as well as accuracy. The third essay finds that demand distortion and demand 

characteristics are important drivers for both signal and model selection.  In particular, contrary 

to conventional wisdom, the multiplicative seasonal model is often outperformed by the additive 

model.  Altogether, this dissertation advances both theory and practice in data science in supply 

chain management by peeking into the “black box” to identify several levers that managers may 



 
 

control to improve demand planning.  Having greater awareness over model and parameter 

specifications offers greater control over their influence on statistical outcomes and data-driven 

decisions.  
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I. INTRODUCTION 

 

A. Background 

Since the creation of decision support systems in the 1960s, data-driven decisions have become a 

key capability for obtaining and sustaining competitive advantage. Today, every transaction at 

many levels is collected in some form and stored in a database for decision-making purposes. By 

2021, firms are expected to have accumulated over 35 zettabytes of data generated from 

activities throughout the supply chain (Cognizant, 2012).  Processing and storing such high 

volumes of data can command high levels of resources within an organization.  Wal-Mart, for 

example, collects detailed data on every single transaction receipt for every single customer.  

Their data can be detailed down to the exact stock-keeping unit (SKU), its quantity purchased 

and price, store location, register, and time.  Over the course of a day, Wal-Mart collects as many 

as 24 million transactions to be stored in its database of 2.5+ petabytes (McCarthy, 2012).   

Streams of literature in various fields have proposed that the process of collecting and 

analyzing business data to formulate and disseminate actionable intelligence is vital to firm 

competitive advantage.  In marketing, for example, successful firms tend to be more adept at 

generating, disseminating, and responding to market intelligence (Kohli & Jaworski, 1990).  In a 

supply chain, data transmitted through interorganizational information systems such as electronic 

data interchange (EDI) is the language through which firms communicate and coordinate joint 

actions (Hill & Scudder, 2002).  Reliance on such firm strategies has only increased with 

technological advances, such as radio-frequency identification (RFID) and geo-cache data 

generated through global positioning systems (GPS) embedded in consumer electronic devices.  

Anecdotal exemplars such as Amazon.com’s successful customer segmentation efforts only give 
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companies greater incentive to install even more sensors throughout the supply chain to amass 

data with ever-increasing greater levels of detail and volume.   

With greater volumes of data collected at finer levels, resource intensity and automation 

required for data storage, processing and analysis also increases.  As a result, companies need to 

clearly specify parameters for data input prior to automated analyses and joint decision-making.  

Moreover, firms facing rapid gains in data detail and volume remain largely without guidance 

with regard to the proper use of data.  For example, suppliers may gain visibility to both 

customer and downstream demand signals through highly costly investments.  These data can be 

analyzed on many levels of aggregation using a diverse set of quantitative models.  Clearly, 

understanding the complex relationship among demand signals, data aggregation, and seasonal 

forecasting models is an important factor in maximizing the value of both the capital and 

relational investment made to enable information sharing. 

In the retail supply chain, many firms engage in strategies such as sales and operations 

planning (S&OP) and collaborative planning, forecasting, and replenishment (CPFR) through 

information sharing (Yao & Dresner, 2008).  For example, Wal-Mart leverages its transaction 

data to formulate myriad decisions ranging from predicting consumer sentiments to arranging 

both internal distribution and coordinated replenishment with external suppliers (Bollier, 2010).  

Yet, while synchronized decisions can improve integration (Olivia & Watson, 2011) and 

operational performance (Barratt & Barratt, 2011), supply chain partners often encounter 

difficulties in demand planning.  Facing multiple sources of demand signals, demand planners 

are often at a loss in selecting the appropriate source and format of the demand signal used to 

forecast customer demand. 
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First, different functions within each firm operate under varying levels of aggregation 

(Pauwels et al., 2004).  As a result, dominant functions within each firm tend to set the level of 

aggregation for analyses such as forecasting (McCarthy et al., 2004).  Misguided attempts at 

remediating conflicting levels of aggregation, such as decentralized demand planning systems, 

can result in more harm than good (McCarthy et al., 2004).  Those firms that adopt one-number 

forecasting would either utilize disaggregated data to make decisions at the aggregate level (i.e., 

bottom-up approach) or utilize aggregate data to make decisions at the disaggregate level (i.e., 

top-down approach).  The degree of complexity is exacerbated when functions from different 

firms attempt to collaborate and share information taken from different levels and time buckets.  

The impact of misaligned data aggregation and levels of decision can result in inaccurate 

measurements and suboptimal decisions (Zotteri & Kalchschmidt, 2007), thereby compromising 

information relevancy as well as the effectiveness of resource utilization. 

Second, the need to automate data processing rises along with the volume of data.  

Specific to forecasting, myriad quantitative models exist for seasonal and non-seasonal data 

(Makridakis et al., 1982; Makridakis & Hibon, 2000).  Whereas it is fairly simple for firms to 

identify a priori a data series is seasonal or non-seasonal (Chatfield and Yar, 1988), the decision 

to use the proper seasonal forecasting model is much more ambiguous.  Furthermore, with 

increased adoption of POS-sharing in the retail supply chain, suppliers have to consider not only 

the proper seasonal forecasting model but also whether or not to use POS to forecast customer 

orders.  Considering the roles of bullwhip and the mathematical differences in the additive and 

multiplicative seasonal factors, choosing the wrong combination of information source and 

seasonal forecasting model can inflate forecast error to lead to demand planning conundrums.  
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To obtain a greater understanding of the effective use of supply chain data to generate 

actionable business intelligence, the goal of this dissertation is to diagnose the effect of data 

aggregation in supply chain management to facilitate greater accuracy in measuring and 

forecasting supply chain outcomes.  Furthermore, this dissertation also attempts to gain 

additional insight to the effect of demand signal distortion on the accuracy and model selection 

for seasonal customer demand forecast. 

B. Theoretical Background 

Information sharing is an important tool for supply chain integration toward improved 

performance (Christopher 1997; Frohlich & Westbrook 2001; Allred et al. 2011).  Considering 

that supply chain partners expend significant time and resources to establish both formal and 

informal linkages to facilitate collaborative efforts, many firms struggle to reap fruits of their 

investment (Jin et al. 2013).  Even as firms continuously invest in information-heavy strategies 

(Ravichandran & Liu, 2011), substantial disconnect remains between collecting and utilizing 

information collected and shared by supply chain partners.  This may be partly attributed to 

differences in the way firms aggregate their data due to a combination of mistaken beliefs as well 

as functional and practical constraints. 

Data can be aggregated by product-location and by time (temporal).  Under product-

location aggregation, two distinct demand series defined either by product or by location are 

combined to form a single series.  Under temporal aggregation, one demand series for one 

product is aggregated from a lower level of consecutive time units (e.g., weekly) to a higher level 

(e.g., monthly).  Managerially, the motivation to aggregate such data can be either to reduce the 

overall amount of data for ease of use by a desktop workstation, or to match a level of analysis as 



 

6 
 

needed by another business unit or firm.  As a result, aggregation can benefit a firm by 

expediting data processing time for rapid decision-making and lessening the firm’s IT hardware 

requirement for capital savings.  On the other hand, aggregation can also obscure data’s true 

underlying statistical process to present a skewed view on supply chain performance and 

customer demand. 

Under both forms of aggregation, certain statistical properties are transformed (e.g., 

Amemiya & Wu 1972) to result in a statistical masking effect (e.g., Chen & Lee 2012).  This 

effect occurs primarily due to different levels of stochastic variance in each disaggregated data 

series that offset when aggregated.  Rossana & Seater (1995) study the effect of temporal 

aggregation and conclude that aggregation results in altered cyclical properties of subsets of time 

series data.  In addition, Chen and Lee (2012) study the effect of both product-location and 

temporal aggregation on the measurement of the bullwhip effect and find that the aggregated 

view masks the true degree of demand distortion at disaggregated levels.   

The consequences of statistical aggregation can result in conflicting conclusions.  For 

example, the prevalence of the bullwhip effect is questioned in recent empirical literature (e.g., 

Cachon et al., 2007).  Bray and Mendelson (2012) explain that product-location aggregation 

results in casting stochastic amplification and seasonal smoothing as two opposing forces 

simultaneously pulling the bullwhip ratio. Aggregation tends to result in greater emphasis on the 

seasonal variance, which can be easily smoothed to dampen the overall magnitude of the 

bullwhip effect.   

In forecasting, Amemiya and Wu (1972) and Rossana and Seater (1995) analytically 

identified various transformative properties of the temporal aggregation process that results in 
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altered and rogue statistical effects (i.e., information loss effect).  They contend that forecast 

accuracy can be substantially compromised as a result.  A subsequent body of analytical 

literature further expanded the list of statistical processes covered by the information loss effect.  

In contrast, Hotta et al. (2005) argue that temporal aggregation is instead beneficial to forecast 

accuracy due to the overall variance reduction effect, as extreme highs and lows become offset, 

to provide a time series that is less susceptible to outliers’ effects.   

Finally, while the use of downstream demand signal for forecasting is a widely-

prescribed strategy for improving customer demand planning, Williams and Waller (2010) found 

that POS is beneficial only 65% of the time for retail order forecasts.  Downstream demand 

signals benefit customer demand planning because it is free of the distortionary effect due to 

managerial and behavioral idiosyncrasies (Lee et al., 1997; Metters, 1997).  On the other hand, 

while some idiosyncratic behaviors are unpredictable, retail inventory management policies 

associated with seasonal smoothing result in ordering patterns that possess cyclical variance that 

deviate from consumer behavior (Parkany, 1961).  Therefore, different sources of demand 

signals also have consequences on the choice of two typical seasonal forecasting methods: Holt-

Winter’s additive and multiplicative models.  Whereas the additive model assumes seasonality to 

be relatively constant, the multiplicative model assumes it to be proportional to mean demand 

(Chatfield & Yar, 1988). 

Given the above theoretical conflicts, this dissertation attempts to reconcile the following: 

1) What is the role of data aggregation in the conflicting empirical observance in the magnitude 

of the bullwhip effect? 2) Under what conditions is temporal aggregation beneficial or harmful to 

customer demand forecasts? 3) What are the drivers of seasonal forecasting accuracy and model 

selection?  Furthermore, this dissertation will examine demand planning topics with a particular 



 

8 
 

emphasis on two ubiquitous issues in supply chain management: Information-sharing and 

demand distortion. 

C. Business Applications 

The data from this study are collected from a large national consumer packaged-goods company.  

Data are collected for twenty-four products in three categories from ten DCs of a leading retailer.  

All three categories are frequently shopped and each in a different stage of category life cycle.  

In addition, each category has distinct shelf life (short, medium, and long), with one category 

being seasonal.  Altogether, these three categories may be considered representative of most 

category demand characteristics for generalizability. 

Each retailer DCs serves approximately one-hundred stores.  As transactions occur at the 

store level, point-of-sale demand data are electronically transmitted to the DC for replenishment 

and operations purposes.  Each week, DCs would generate orders based on the collective point-

of-sale demand for all stores served.  The orders are transmitted to the supplier for fulfillment.  

Delivery time generally had minimal impact on ordering policy.  In addition, the retailer also 

shares with its supplier the point-of-sale data to assist them with capacity planning decisions. 

A key research question is the effect of data aggregation.  With greater data volume, data 

processing and analysis have become increasingly more difficult on the typical computer 

workstation.  Thus, companies face the choice of either investing in greater information 

technology equipment to expand their capabilities, or to aggregate data and “shrink” the total 

size of the data down to a more manageable size.  Moreover, functions and firms operating under 

conflicting time buckets and organizational hierarchies require different levels of analyses as 

well.  Thus, this dissertation first examines the statistical effect of data aggregation on supply 

chain metrics. 



 

9 
 

Specifically, demand planning requires accurate assessment of demand uncertainty.  

Statistical effects of aggregation result in the offsetting of the highs and lows of data at the 

disaggregate level.  As a result, the supplier’s view on the true underlying demand volatility 

becomes obscured.  Without an accurate view on demand uncertainty, it is likely that the supplier 

will be unable to make optimal decisions in anticipation of future demand and necessary capacity 

to fulfill customer requirements. 

In addition, demand planning also relies on accurate demand forecast.  Collaborative 

demand planning strategies such as sales and operations planning (S&OP) tend to follow one-

number forecasting (Finn, 2004).  That is, collaborating partners jointly decide on a single 

forecast for synchronized activities for efficient and effective replenishment and distribution.  

But not all companies operate on the same levels of aggregation.  Whereas the supplier in this 

study replenishes its retail customer’s DCs on a weekly basis, the retailer often makes decisions 

on a daily basis.  Thus, this dissertation attempts to analyze and empirically test the impact of 

temporally aggregation on forecast accuracy. 

Lastly, despite that POS-sharing is viewed as a vital method to improve forecasting, 

evidence indicates that suppliers should not always use POS as their forecast basis.  In particular, 

seasonal products tend to have significant demand spikes during peak selling season.  As a result, 

retail order policies for seasonal products emphasize operations smoothing rather than quickly 

responding to seasonal demand fluctuations.  To further complicate seasonal demand forecasting, 

suppliers are largely without guidance as to which of the two commonly utilized seasonal 

forecasting models—Holt Winter’s additive and multiplicative models—to use for each demand 

signal.  Thus, demand signal and seasonal forecasting model selection is the third business 

problem this dissertation attempts to investigate. 
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D. Contributions 

Christopher (1997) argued that competition is shifting from between companies to between 

supply chains.  With increased information flow, supply chain partners are tasked with utilizing 

increasingly larger volume of data to obtain superior performance.  Yet companies are also 

subject to resource and process constraints.  Information technology is costly to acquire 

(Ravichandra & Liu, 2011) and difficult to deploy (Yao et al., 2012).  Mismatched levels of 

temporal aggregation and methods for supply chain performance measurement and demand 

forecasting can potentially limit the effectiveness and returns on such costly projects. 

Results from the first study suggest that data aggregation can obscure managers’ view on 

bullwhip’s prevalence and magnitude within the supply chain.  Specifically, statistical effects of 

the aggregation process can mask the bullwhip effect at lower levels of aggregation.  As a result, 

managers are left with a highly optimistic view of the underlying supply chain volatility.  

Considering the importance of accurately assessing bullwhip in demand planning, the level of 

measurement in terms of both product-location as well as temporal dimensions should be 

carefully considered to match the level of decision (Zotteri & Kalchschmidt, 2007).  Moreover, 

the first study also demonstrates that substantial differences exist among bullwhip measures.  

While the ratios of coefficient of variation (Fransoo and Wouters, 2000) and variance (Lee et al., 

1997) are relatively similar, the fractional growth rate (Cachon et al., 2007) shows significant 

potential to present a distorted view of bullwhip at disaggregate levels of analysis. 

The second study investigates the effect of temporal aggregation on forecast accuracy.  

The study begins by exploring a body of literature that analyzes the statistical effects of temporal 

aggregation.  The analytical stream argues that temporal aggregation is detrimental to forecasting 
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due to information loss (e.g., Amemiya & Wu, 1972; Rossana & Seater, 1995).  But a substantial 

stream of empirical literature concludes that temporal aggregation is actually beneficial to 

forecast accuracy due to variance reduction (e.g., Hotta et al., 2005).  By conducting a quasi-

experiment on forecast accuracy, study 2 finds that both statistical effects exist concurrently in 

temporal aggregation.  Therefore, temporal aggregation can be selectively deployed as a tool to 

improve forecast accuracy.  However, change to forecast accuracy due to temporal aggregation 

can be either positive or negative depending on the availability of downstream demand signals 

and the autocorrelation factor of the forecast input.   

Study three utilizes seasonal POS and order data, to examine two issues in statistical 

forecast for seasonal demand.  The first issue explored is the impact of demand signal selection 

on forecast error.  Contrary to conventional belief, shared demand signals from downstream 

along the supply chain are not always superior to those readily observed by the supplier.  A main 

reason for this is because seasonal products require substantial retailer intervention in order to 

smooth operations needs associated with seasonal demand spikes.  Therefore, suppliers 

forecasting future customer (e.g., the retailer) demand should incorporate past retail ordering 

patterns as predictors of future replenishment needs.  However, bullwhip once again distorts this 

finding.  Due to heightened stochastic variance, retail orders suffering from increased levels of 

bullwhip can induce substantial forecast error, thereby making POS data a potentially superior 

source of demand signal.  The second issue explored is associated with the various conditions 

that determine the appropriate seasonal forecast model to be utilized.  Notably, results indicate 

that the likelihood of the multiplicative model outperforming additive increases with heightened 

bullwhip, the reverse is true if demand planners were to utilize POS as the forecast input. 
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Altogether, this dissertation investigates common practices in the specification and 

utilization of supply chain data to advance both theoretical and managerial understanding of best 

practices in generating actionable business intelligence.  The dissertation finds that the data 

science in supply chain management for demand planning rely on recognizing demand distortion 

and characteristics, and selecting the optimal level of data aggregation.  

E. Structure of the Dissertation 

Moving forward, the rest of this dissertation will be structured as follows.  First, a literature 

review will be presented to summarize three streams of research relevant to the dissertation: the 

theoretical and empirical literature on the bullwhip effect; the analytical and empirical literature 

on data aggregation; and finally, the modern demand forecasting environment in the retail supply 

chain.  Immediately following literature review, study 1 will show that data aggregation has a 

direct impact on the measurement of bullwhip.  We then move to study 2, in which the specific 

impact of temporal aggregation on forecast error is examined through a quasi-experiment in 

forecasting.  Next, study 3 tests the impact of both demand signal and distortion on seasonal 

forecast accuracy and also conducts an exploratory analysis on their impact on seasonal 

forecasting model choice.  Finally, the dissertation ends with an overarching conclusion as well 

as future opportunities for research.  
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II. LITERATURE REVIEW 

 

A. THE BULLWHIP EFFECT  

Causes of Bullwhip 

The bullwhip effect is defined as “the amplification of demand variability from a downstream 

site to an upstream site” (Lee et al. 2004, p. 1887).  It can result in substantial degrees of 

operations inefficiencies in supply chain management, thereby driving up costs to erode profits 

and service level (Lee et al., 1997).  Due to increased variance, demand planners have to dedicate 

more production and transportation capacity, inventory, storage space, and other firm capital 

investments in anticipation of demand spikes, often paying premium prices (Haughton, 2009).  

When demand hits its deeper troughs, resources previously dedicated to fulfilling high demand 

simply sits idle.  Moreover, rogue frequencies can induce pseudo-seasonality in demand patterns 

to mask the true market demand signal (Towill et al., 2007).  Thus, bullwhip is a major 

contributor to inefficiencies, costs, and uncertainty within the supply chain that can result in 

lower levels of customer service (Lee et al., 1997).  In order to mitigate the bullwhip effect and 

its associated costs, managers must accurately measure demand distortion in order to formulate 

appropriate responses.  

The bullwhip effect gained substantial attention with Lee et al. (1997), which illustrated 

several causes of bullwhip based on managerial and behavioral idiosyncrasies at the retailer-

supplier node of the supply chain.  However, Forrester (1961) initially observed the existence of 

demand variance amplification in industrial dynamics. He identified that manufacturers in 

general seem to experience far greater demand fluctuations compared to lower echelons of the 

supply chain, particularly at the consumer level.  Often, a 10% fluctuation in demand can be 

amplified to over 50% upstream along the supply chain. Based on this observation, he theorized 
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that the observed amplification effect at every echelon of the supply chain is caused by the 

bounded rationality of managers.  The principle reason is that the system complexity of multi-

echelon demand exceeds the managerial intuition and capability required for its accurate 

assessment.  As a result, managers responding to demand shocks cause amplified variance 

(Naish, 1994).  Building on the “Forrester Effect”, a “beer distribution game” was developed 

(Sterman, 1989; Senge & Sterman, 1992; Paich & Sterman, 1993).  In the game, participants 

emulate decision makers of a multi-echelon supply chain.  The experiment demonstrated how 

small changes at the consumer level eventually developed into dramatic swings in demand at 

upper echelons of the supply chain.  As managers attempt to avoid stock-outs, they tend to order 

more than is necessary (Kahn, 1987). 

A separate line of theoretical cause of bullwhip is examined by Burbidge (1981).  

Burbidge elucidates that while demand can be amplified due to unintentional errors made by 

managers due to bounded rationality (i.e., Forrester Effect), rational managerial policies based on 

deliberate localized optimization can also amplify demand variability.  Specifically, as managers 

attempt to reap scale economies associated with production and transportation system, they may 

intentionally produce in amounts greater than necessary to spread fixed costs across a higher 

number of units (Eichenbaum, 1989).  Although the immediate financial impact is overall 

decreased average cost, increased quantities produced and transported result in longer time in 

between batches to heighten demand variability as well.  Thus, increase in demand variability 

attributed to order-batching is known as “Burbidge Effect.” 

Operationally, bullwhip can be amplified by shortened review intervals and increased 

minimum order size (Cachon, 1999), the adoption of continuous review policy (Chen and 

Samroengraja, 2004), and increased lead time variability (Chatfield et al., 2004) and the total 
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cycle time of a supply chain (Gilbert, 2005).  Behaviorally, Lee et al. (1997) identified several 

additional causes.  First, demand signal is processed at each echelon of the supply chain.  Due to 

both deliberate and unintentional actions, processed demand signals such as derived orders 

become distorted to amplify demand variance.  Second, greater lead time induces uncertainty 

over time, so that demand forecast is less accurate.  As a result, demand becomes distorted as 

buyers attempt to increase orders to quantities greater than true demand due to prior shortage.  

Alternatively, buyers may order at quantities less than true demand due to prior surplus.  Third, 

during times of perceived shortage, buyers may deliberately order more under the belief that 

suppliers intend to only fulfill a fraction of demand, thereby corrupting true demand signal 

(Houlihan, 1987).  And lastly, pricing variations tend to either increase or decrease short term 

demand, thereby further inducing demand volatility (Butman, 2003). 

In addition to operational and behavioral causes, natural limitations of production 

technology may also result in the bullwhip effect.  As materials and information flow through 

multiple echelons of the supply chain, delays between supply chain links contributes to increased 

variance due to less accurate forecasts (Blackburn, 1991).  In general, communication and 

coordination are required to dampen the impact of bullwhip (Wu & Katok, 2006).  To address 

bullwhip caused by information delays, systems such as electronic data interchange (EDI) 

(Disney & Towill, 2003; Machuca & Barajas, 2004) and vendor-managed inventory (VMI) 

(Waller et al., 1999) can simplify the decision hierarchy within the supply chain to improve 

information flow (Cantor & Katok, 2012).  For physical distribution, substantial reduction to the 

bullwhip effect may be achieved through shortening lead times (Zhang, 2004) and controlled 

order-batching (Potter & Disney, 2006; Towill et al., 2007). 
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Empirical Evidence of Bullwhip 

Since Forrester (1961) first noticed the tendency for demand variance to increase between 

industries, this phenomenon was observed in many industries at several levels (Table 1).  At the 

industry level, Blanchard (1983) identified at the aggregate level that the American automobile 

industry exhibited strong evidence of bullwhip.  Expanding upon this empirical observation, 

Blinder (1986), West (1986), and Krane and Braun (1991) all identified similar relationships 

between shipment and demand for various resource extraction, manufacturing, wholesaling, and 

manufacturing industries.  More specifically, bullwhip can be readily observed in many 

industries, such as automotive (Blanchard, 1983; Lee et al., 1997; Cachon et al., 2007), 

computers and electronics (Blackburn 1991; Lee et al., 1997; Kaipia et al., 2006), both dry 

(Hammond, 1994; McKenney & Clark, 1995; Holstrom, 1997; Williams & Waller, 2010; 2011) 

and perishable groceries (Fransoo & Wouters, 2000; Lehtonen et al., 1999), personal care (Lee et 

al., 1997), and mechanical parts (McCullen & Towill, 2001).   

Although overwhelming evidence supports the ubiquity of the bullwhip effect in supply 

chain, various studies indicated the opposite.  Krane and Braun (1991) identified that 

approximately two-thirds of industries in their sample exhibited evidence of production 

smoothing.  That is, the variance ratio of production and shipment to demand is less than one.  

More recently, empirical bullwhip literature also presented mixed findings on the presence and 

prevalence of bullwhip (Cachon et al., 2007; Bray & Mendelson, 2012; Chen & Lee, 2012).  

Cachon et al. (2007) concluded that the only retail sector to exhibit bullwhip is automobile.  

Dooley et al. (2009) attributes the lack of bullwhip in retail to the retailers’ managerial use of 

inventory as a buffer to blunt the impact of demand uncertainty at the consumer level.  However, 

when the level of analysis is taken from industry-monthly to firm-quarterly, Bray and Mendelson 
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(2012) concluded that over half of all firms in their sample showed bullwhip.  Chen and Lee 

(2012) attribute this to the statistical masking effect of aggregation at both product-location and 

temporal dimensions.   

B. DATA AGGREGATION 

Forms and Rationale for Aggregation 

Data aggregation can occur along two fronts.  First, data can be aggregated across products 

and/or locations.  For example, sales of single stock keeping unit (SKU) at multiple locations can 

be aggregated for predetermined purposes such as centralized distribution planning and 

forecasting.  In inventory management, the reduction in system inventory due to managerial 

decisions to aggregate products based on location have been termed portfolio effect (Zinn et al., 

1989).  A principle statistical effect of product-location aggregation is risk-pooling (Gerchak & 

He, 2003).  As long as demand histories for multiple products or multiple locations are not 

perfectly correlated, their variance of the aggregated series tends be less than the total variance of 

the two disaggregated series (Sucky, 2009). 

Data can also be aggregated by time.  Under temporal (time) aggregation, consecutive 

observations over time are aggregated into non-overlapping series at a greater time bucket.  For 

example, most retailers make replenishment decisions on a weekly basis and therefore aggregate 

daily sales into weekly time buckets.  Temporal aggregation’s statistical effect is similar to that 

of product-location aggregation.  Stochastic variance over time can be reduced as the highs and 

lows offset each other (Hotta & Cardoso Neto, 1993).  Similar to product-location aggregation, 

the degree of variance reduced in temporal aggregation is dependent on the nature and magnitude 

of a time series’ autocorrelation.  As long as a time series is not perfectly positively 

autocorrelated, temporal aggregation will result in reduced variance.   



 

21 
 

Firms may choose to aggregate data for many reasons.  First, different functions within 

each firm tend to measure performance at different levels and intervals.  At the most basic level, 

a department within a retail establishment may keep track of its demand throughout the course of 

a day to replenish on-shelf inventory during less busy hours.  However, the store as a whole may 

instead track demand in longer intervals to order from its warehouse or supplier.  Alternatively, 

whereas a department manager may take keen interest in the highest performing individual SKUs, 

at the store level analysis tends to be performed based on category sales.   

Second, whereas retail replenishment tends to operate on a weekly basis, marketing 

functions generally plan at the monthly level (Pauwels et al., 2004).  Therefore, as cross-

functional and inter-firm collaboration occurs, conflicts in levels of data aggregation tend to 

result.  As industries move toward one-number forecasting (Finn, 2004), data aggregation 

becomes necessary to synchronize activities among functions and firms. 

A third prominent reason for data aggregation to occur is to reduce data variance (Finn, 

2004; Nikolopoulos et al., 2011).  Due to statistical risk-pooling, data aggregation reduces the 

overall variance to assist firms with decisions such as inventory consolidation (Zinn et al., 1989; 

Ronen, 1990; Mahmoud, 1992; Evers, 1997; Ballou, 2005) and forecast efficiency (Hotta et al., 

2005). 

Negative Consequences of Aggregation 

While variance reduction suggests reduction in volatility, it has substantial consequences in 

supply chain management.  Variance in various logistics factors such as demand and lead time 

are principle determinants of inventory policies (e.g., safety stock).  Both product-location and 

temporal aggregation may result in a masking effect on variance visibility (Chen & Lee, 2012).  

Further, aggregation can fundamentally transform a data series’ statistical properties (Amemiya 
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& Wu, 1972; Rossana & Seater, 1995), thereby further complicating supply chain decisions that 

often rely on statistical results. 

Data aggregation can have substantial effects the bullwhip effect.  Mathematically, 

scholars caution that data aggregation can potentially result in masking the true degree of the 

bullwhip effect (Chen & Lee, 2012).  Due to the statistical risk-pooling effect, in which highs 

and lows are offset as data become aggregated, the resultant variance ratio can present a distorted 

and overly-optimistic view of the magnitude of demand volatility to managers. In managing 

demand, efforts directed at controlling costs associated with demand volatilities should be based 

on demand patterns and peculiarities of each individual case (Disney et al., 2006).  Therefore, 

planners that estimate aggregate bullwhip may see a biased level of variability.   

Data aggregation can also affect statistical forecasting.  For example, Williams and 

Waller (2011) identified that aggregation plays a definite role in the selection of demand signal 

input for forecasting.   They find the risk-pooling property of product-location aggregation to be 

especially beneficial to suppliers in account-level demand planning.  As the number of ship-to 

locations (e.g., DCs) increase, aggregation results in decreased stochastic variance to transform 

potentially volatile demand signals to become relatively stable.  This benefit is expected to 

increase along with the number of locations being aggregated.  While it is easy to assume that the 

risk-pooling property carries over to temporal aggregation to benefit suppliers as well, statistical 

properties of temporal aggregation presents a theoretical conflict.  Namely, temporal aggregation 

can result in both information loss (e.g., Amemiya & Wu, 1972) and variance reduction (Hotta et 

al., 2005). 
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Three particularly transformative properties exist for temporal aggregation that can 

mislead demand planners.  First, temporal aggregation can induce additional statistical properties 

such as moving-average residual structures 
1
(Amemiya & Wu, 1972; Brewer, 1973), two-way 

causality (Weiss, 1982), and previously unobserved error terms (Silvestrini & Veredas, 2008).  

Second, statistical properties at the disaggregate level may be lost or transformed, such as 

seasonality patterns (Wei, 1978; Drost & Nijman, 1993), autoregressive order 
2
(Stram & Wei, 

1986), short-term cyclical variations (Rossana & Seater, 1995), and other general parameters 

(Silvestrini & Veredas, 2008).  Both of these transformative effects can introduce substantial 

uncertainty to the forecast.  However, a third statistical effect can potentially benefit forecast 

accuracy.  Hotta et al. (2005) found that the variance reduction effect in data aggregation can 

result in the extreme highs and lows offsetting each other.  As a result of reduced data variance, 

statistical forecast can be relatively more stable as well. 

C. CUSTOMER DEMAND FORECASTING 

Forecasting Practice 

A prominent activity for demand planners is forecasting (Moon et al., 2003).  Through the 

selective use of demand signals and forecasting model, a demand planner formulates a prediction 

for a future state of demand.  With accurate predictions of future demand, planners may then 

allocate resources necessary to provide production, storage, transportation, and labor services 

necessary to fulfill anticipated orders.  As a result, suppliers can determine the necessary 

                                                           
1
 Amemiya and Wu (1972) show that, for a variable that follows an AR model of order p, its 

aggregated variable also follows an AR model or order p, but with a MA residuals structure. 

2
 Stram and Wei (1986) find that temporal aggregation can reduce the autoregressive order of 

ARIMA models.  
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inventory levels throughout its distribution network in anticipation of short term changes to 

demand (Mentzer & Cox, 1984). 

Forecasting is considered an important firm function for various reasons.  Accurate 

demand forecast allows firms to efficiently and effectively distribute resources to maximize 

service while minimizing costs.  In particular, forecasting has substantial impact on the bullwhip 

effect.  Naish (1994) argue that if accurate foreknowledge of demand changes are incorporated in 

to the planning process, demand volatilities can be successfully smoothed to determine 

production and capacity with greater ease.  On the other hand, unreliable forecast contributes to 

downstream stockouts, which in turn may be met with over-ordering from buyers (Terwiesch et 

al., 2005). To increase forecast accuracy, scholars have developed myriad qualitative and 

quantitative forecasting methods designed to utilize demand signals amassed from many sources.  

Among most commonly utilized sources of forecast input are quantitative data such as historic 

transactions and macroeconomic variables. 

Given today’s volume of input data, demand forecasting is typically automated through a 

variety of software packages.  Although the forecasting process had become substantially more 

user-friendly due to advances in software packages, the overall industry understanding of each 

method had not increased (McCarthy et al., 2004).  While the vast majority of the most popular 

quantitative forecasting methods tend to be simplistic, users of forecasting packages continue to 

utilize a “black box” approach to forecasting (McCarthy et al., 2004, p. 322).  That is, users do 

not always understand the various quantitative methods and simply assume that the software 

package always provides the optimal forecast.   
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Quantitative forecasting methods offered in today’s software packages are highly diverse.  

Among all quantitative models, those based on exponential smoothing can provide forecast 

accuracy that rivals many other more complex models (Makridakis et al., 1982; Makridakis & 

Hibon, 2000).  At the most basic level, users need to determine if a data series is classified as 

seasonal or non-seasonal (Chatfield & Yar, 1988).  Subsequently, the appropriate forecasting 

model (e.g., seasonal or trend-adjusted) and its associated smoothing parameters must be 

specified a priori, such as trend, level, and seasonality.  Although all smoothing parameters are 

continuous and may range between zero and one, a specific set of recommended ranges of value 

for each parameter is available (Silver et al., 1998).  And finally, the appropriate demand signal 

will need to be selected for optimal demand forecast. 

Forecasting in Retail   

In the retail supply chain, large retailers generally depend on a network of regional distribution 

centers (DCs) to replenish stores.  Retail stores both transmit aggregated point-of-sale (POS) and 

place orders to a single DC.  In turn, the DC processes the store-level demand signal to place 

periodic orders to the supplier.  To the supplier, orders from retail DCs signify their customer 

demand, which is different from demand signals at the market level (e.g., consumer demand).  

Therefore, suppliers most often rely on past DC orders to forecast future demand (Agarwal & 

Holt, 2005).  However, retail orders tend to have amplified variance due to various causes (Lee 

et al., 1997).  As a result, distorted demand can result in decreased forecast accuracy (Lee et al., 

2000). 

One way for demand planners to increase forecast accuracy is through incorporating 

shared information in to the forecasting process (Kiely, 1999; Romanow et al., 2004; Lapide, 

1999; 2005).  Recent advances to information technology had increasingly enabled real-time 
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sharing of downstream demand signals.  Because POS data more closely represents consumer 

demand, it is relatively free of the bullwhip effect.  While companies such as Campbell Soup 

(Clark, 1994) and Barilla SpA (Hammond, 1994) reported substantial success through the use of 

shared consumer demand data, empirical evidence also indicates that the use of POS data 

frequently result in superior forecast accuracy for suppliers in the consumer-packaged goods 

(CPG) industry (Williams & Waller, 2010; 2011).  Furthermore, this benefit increases along with 

logistics network complexity.   

On the other hand, using POS data does not always lead to increased forecast accuracy.  

Since consumer demand signals are subject to retail managerial effects such as warehouse 

management systems (Autry et al., 2005), replenishment processes such as postponement (Zinn 

& Bowersox, 1988), and inventory management policies such as inventory consolidation (Evers 

& Beier, 1998), resulting patterns reflective of these factors are often embedded in retail orders.  

Therefore, if suppliers believe that future customer demand will likely follow past order patterns 

rather than POS demand, using DC orders as forecast input may yield superior forecast accuracy 

(Williams & Waller, 2010).  

The importance of factoring retail ordering practice into forecasting is especially relevant 

to seasonal categories.  For many industries, sales tend to occur in concentrated selling seasons 

(Fisher et al., 1994).  As a result of anticipating demand spikes, retailers tend to build their 

inventories steadily during times of low demand, thereby avoiding potential capacity and 

inventory shortage (Cachon et al., 2007; Bray & Mendelson, 2012).  This practice of seasonal 

smoothing often results in retail orders that tend to follow a “rhythmic” and predictable pattern 

that deviates from the consumer demand (Parkany, 1961). Thus, suppliers would more likely 
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benefit from using past retail orders as indicators of future customer demand rather than 

incorporating demand signals from downstream along the supply chain. 
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Table 1 – Empirical literature on the presence of bullwhip among industries 

Author Industry 

Product-

Location  Temporal Bullwhip Measure BW/PS 

Blanchard, 1983 Automotive Brand / 

Division 

 

Monthly Sales variance ratio BW 

Blinder, 1986 Various 

 

Industry Monthly Sales variance ratio BW 

West, 1986 Two-digit SIC Sub-Industry Monthly Variance of change 

ratio 

 

BW 

Eichenbaum, 1989 Tobacco Industry Monthly Unit variance ratio BW 

 Rubber Industry Monthly Unit variance ratio BW 

 Food Industry Monthly Unit variance ratio BW 

 Petroleum Industry Monthly Unit variance ratio BW 

 Chemicals Industry Monthly Unit variance ratio BW 

 Apparel Industry Monthly Unit variance ratio BW 

 

Krane & Braun, 1991 Two-digit SIC Sub-Industry Monthly Variance of change 

ratio 

 

Both 

 

Hammond, 1994 Dry Grocery Firm, DC Weekly Unit variance ratio BW 

      

McKenney & Clark, 

1995 

Dry Grocery Firm, Product Not Specified Unit variance ratio BW 

      

Leet et al. 1997a; 1997b Automotive Product Not Specified Unit variance ratio BW 

 Computers Product Not Specified Unit variance ratio BW 

 CPG Product Not Specified Unit variance ratio BW 

      

2
8
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Lehtonen et al. 1999 Confectionery Firm Weekly Coefficient of 

variation 

BW 

 Paper goods Firm Irregular Coefficient of 

variation 

BW 

      

Fransoo & Wouters, 2000 Fresh Produce Multiple Multiple Coefficient of 

variation 

BW 

Refrigerated Multiple Multiple Coefficient of 

variation 

BW 

      

McCullen & Towill, 

2002 

Mechanical 

parts 

Firm Non-specified Coefficient of 

variation 

BW 

      

El-Beheiry et al. 2004 Toys Firm Weekly Coefficient of 

variation 

BW 

      

Terwiesch et al. 2005 Semiconductor Firm Quarterly Unit orders BW 

      

Kaipia et al., 2006 Electronics Firm Weekly Unit comparison BW 

      

Cachon, Randall, & 

Schmidt, 2007 

Retail Industry Monthly Growth rate Variance PS 

Wholesale Industry Monthly Growth rate Variance BW 

Manufacturing Industry Monthly Growth rate Variance Weak 

      

Waller, Williams, & 

Eroglu, 2008 

Retail Product ½/4 Weeks Unit variance BW 

      

Bray & Mendelson, 2012 

  

Retail Firm Quarterly Unit variance BW 

Wholesale Firm Quarterly Unit variance BW 

Manufacturing Firm Quarterly Unit variance BW 

Resource 

Extraction 

Firm Quarterly Unit variance BW 

2
9
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III. THE EFFECT OF DATA AGGREGATION ON BULLWHIP 

 

A. INTRODUCTION 

The bullwhip effect is defined by Lee et al. (1997) as “the phenomenon where orders to the 

supplier tend to have larger variance than sales to the buyer (i.e., demand distortion), and the 

distortion propagates upstream in an amplified form (i.e., variance amplification)” (p.546).  

Empirical research has found evidence of the bullwhip effect in many industries, including 

automotive (Blanchard, 1983; Blackburn, 1991; Lee et al. 1997; Cachon et al. 2007), apparel 

(Blackburn 1991), computers and electronics (Blackburn 1991; Lee et al. 1997; Kaipia, 

Korhonen, & Hartiala, 2006), both dry (Hammond, 1994; McKenney and Clark, 1995; Holstrom, 

1997) and perishable groceries (Fransoo & Wouters, 2000), personal care (Lee et al. 1997), and 

mechanical parts (McCullen & Towill, 2002).  Recent empirical studies have called these 

findings into question.  In particular, Cachon et al. (2007) found that bullwhip is largely absent in 

many industries, most notably the retail industry.  In fact, five of the six retail industries studied 

by these authors did not exhibit bullwhip, and the authors conclude that, in general, retailers are 

production smoothers.  Production smoothing, developed in the economics literature, explains 

that a firm can smooth its production relative to sales by buffering with inventory.  To further the 

empirical investigation for the bullwhip effect, Bray and Mendelson (2012) studied bullwhip at 

the firm level and found mixed results within retail segments.  That is, some segments exhibited 

bullwhip behavior while others indicated a proclivity to smooth. 

While literature yields inconsistent conclusions regarding the presence and prevalence of 

bullwhip in the retail industry, both Cachon et al (2007) and Bray and Mendelson (2012) cite 

data aggregation as a potential confounding factor to their findings.  Cachon et al. (2007) utilized 

quarterly, industry-level data and indicated that bullwhip may be more prevalent if measured at 
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lower levels of aggregation.  Bray and Mendelson (2012) elucidated a need to use high frequency 

product-level order and demand data to gain further understanding of bullwhip’s existence, 

rather than firm- and industry-level data.   

In this research, we claim that whether retailers bullwhip or production smooth may have 

significant planning implications. Thus, our primary objective is to empirically test the effect of 

data aggregation on the observation of a retailer’s bullwhip measurement.  We operationalize this 

research by using retailer sales and order data taken from three consumer product categories, 

obtained at the product-weekly level.  We follow Bray and Mendelson (2012) and Cachon et al. 

(2007) and classify bullwhip as when the demand variability at an upstream echelon (e.g., order) 

is greater than at a downstream echelon (e.g., sales).  In addition, we not only calculate bullwhip 

by log differencing (Cachon et al. 2007) and with coefficient of variation (Fransoo & Wouters 

2000), we also calculate it as the unit variance ratio as originally conceptualized by Lee at al. 

(1997) and utilized by Bray and Mendelson (2012).  By examining data aggregation’s effect on 

the retailer’s bullwhip measurement, we are also able to discuss the effect that the different 

measurement methods may have on findings throughout the extant literature . 

Chen and Lee (2012) recently analyzed data aggregation’s influence on bullwhip under 

assumptions of specific demand processes, seasonality, and spatial independence.  Using actual 

sales data and an empirical model that accounts for the various assumptions above, we find that 

both product-location (e.g., product to category) and temporal (e.g., week-to-month) aggregation 

have a significant masking effect on bullwhip measurement. 

In the following section, we briefly discuss how bullwhip is measured.  Subsequently in 

§3, we briefly discuss the literature and conceptual basis of our study.  We then present in §4 
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details of our data.  In §5, we take a cursory look at the nature of the amplification ratio as it is 

compared across the three methods of calculation, and proceed to discuss our method of analysis 

to examine the effect of empirical data aggregation on the amplification ratio.  Finally, we 

present our conclusions. 

B. BULLWHIP MEASUREMENT 

We begin by considering a batch-order inventory system composed of a set of retail stores which 

are fulfilled by a single retail distribution centers (DC).  Store-level sales information for product 

I is transmitted to DC k, whose orders are fulfilled by the supplier.  Let      be the quantity 

ordered of product I by retailer DC k in period t and      be the sum of point-of-sale (POS) data 

at time t of product I for all stores served by DC k.  Thus order receipts and POS demand 

variance may be matched by product I, DC k, over a period of time t to create measures of 

bullwhip.  The current empirical bullwhip literature primarily measures the variance ratio in 

three ways.  Cachon et al. (2007) estimates bullwhip with the fractional growth rate method. 

Bray and Mendelson (2012) utilizes the coefficient of variation method (c.f., Fransoo & Wouters 

2000).  Lastly, Chen and Lee (2012) uses the unit variance ratio method as originally 

conceptualized in Lee et al. (1997).   

Using the fractional growth rate measure denoted as       , (Cachon et al. 2007), sales 

and order variance are estimated by first differencing the natural log of both series.  This 

approach detrends the data in order to account for the time-dependent portion of total variance 

(c.f., Cachon et al. 2007, p. 463, footnotes 6, 7, & 8).   

        
 [  (    )    (      )]

 [  (    )    (      )]
 



 

40 
 

Next, we review the coefficient of variation measure (  ).  This measure (e.g., Fransoo 

& Wouters 2000) and other variations of it (e.g., Dooley et al. 2009) are commonly utilized when 

data does not contain explicit buyer-seller relationships (c.f., Bray & Mendelson 2012, p. 2) and 

is also among the most popular measures used in the empirical bullwhip literature (e.g., Fransoo 

and Wouters 2000; McCullen and Towill 2002; El-Beheiry et al. 2004).   

   
 (    ) ∑ (    )  
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Finally, we review the unit variance (   ) approach to bullwhip measurement (e.g., Chen 

& Lee 2012; Torres and Maltz 2008; Dejonckheere et al. 2003; Lee et al. 1997; Sterman 1989).  

Although the unit variance measure is similar to the coefficient of variation measure, the 

following distinctions should be noted: (1) variance and standard deviation are not collinear; and 

(2) the coefficient of variation ratio is a normalized measure, which may further reduce the 

degree of correlation between these two measures.  Further, the supply chain bullwhip effect is 

described consistently as an increase in total variability from sales to the buyer to orders to the 

supplier (e.g., Lee et al. 1997; Cachon et al. 2007; Bray & Mendelson 2012).  Therefore our third 

amplification ratio is measured as: 

    
 (    )

 (    )
 

C. AGGREGATION AND SEASONALITY 

Aggregation Effect 

Data aggregation results in lower aggregated variance as extreme highs and lows are offset 

(Amemiya & Wu 1975; Rossana & Seater 1995).  Utilizing the unit variance measure, Chen and 

Lee (2012) analytically show that product and location aggregation results in a smoothing effect 

to mask the bullwhip effect due to batch-ordering.  That is, data aggregation leads to variance 
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reduction which may disguise the magnitude of the bullwhip effect. In fact, under assumptions of 

no capacity limit, no batch-ordering, and spatial independence, aggregation of products with 

common seasonality or an AR(1) demand process results in a monotonically decreasing unit 

variance ratio (Chen & Lee 2012).  For a complete derivation, we refer readers to propositions 8 

& 9 of Chen & Lee (2012). That is, product-location aggregation decreases observed bullwhip 

for products with common seasonality and AR(1) demand process. 

In addition to product-location aggregation, temporal aggregation may exhibit a similar 

masking effect (Chen & Lee 2012).  In the econometrics literature, studies have shown that 

temporal aggregation results in loss of variance when data is the result of an autoregressive 

process (Amemiya & Wu 1972), autoregressive moving average models with exogenous 

variables (Brewer 1973), seasonal structures (Wei 1978) and nonstationary models (Tiao 1972).  

Under the assumption of no capacity limit and no batch-ordering, with a constant lead time and 

an ARMA(1,1) demand process, Chen and Lee (2012) show that the unit variance ratio also 

monotonically decreases toward unity as temporal aggregation increases.  We refer readers to 

proposition 7 of Chen and Lee (2012) for a more detailed explanation of this effect.  Therefore 

like product-location aggregation, temporal aggregation also results in a “masking” effect of 

observed bullwhip. 

Seasonal Effect 

The literature recognizes that demand variance is generally composed of seasonal and stochastic 

components (e.g., Sobel 1969).  While seasonal variance is due to recognizable and predictable 

demand patterns, stochastic variance is due to randomness.  As Bray and Mendelson (2012) 

argue, firms competing in the same industry are likely to be affected by similar seasonal signals.  

Therefore as product-location aggregation occurs, seasonal variance is preserved due to highly 
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correlated seasonal effects while firm-specific (in our case, product-specific) shocks are 

attenuated.       

In propositions 2 and 3, Chen and Lee (2012) demonstrate the inclusion of seasonality in 

bullwhip measurement will have a stabilizing effect on observed bullwhip.  Indeed, the extant 

empirical literature seems to confirm this notion.  Ghali (1987) observes lowered upstream 

demand variance when using seasonally unadjusted data from the cement industry.  In a more 

comprehensive examination at the industry level, Cachon et al. (2007) find similar results also 

using seasonally unadjusted data.  Chen and Lee (2012) further demonstrate that when there is no 

capacity limit or batch-ordering, the bullwhip ratio tends to decrease as the variance component 

of seasonality dominates the stochastic component.  In decomposing seasonality and stochastic 

variance components, Bray and Mendelson (2012) conclude that whereas firms’ ordering 

behavior can smooth the predictable seasonal variations, they instead amplify stochastic shocks.  

Further, the reduction in variance amplification due to seasonality is different from reduction due 

to aggregation.  Whereas aggregation reduces the bullwhip ratio through a “masking” effect, 

seasonality may induce smoothing of orders, leading to dampended bullwhip measures. 

Therefore we expect to observe that those products with higher seasonal variance will likely to 

exhibit lower observed bullwhip. 

Controls 

In addition to aggregation and seasonal effects described above, autocorrelated demand can 

potentially influence bullwhip measurement (Cachon et al. 2007).  Kahn (1987) 42ehavior42s 

that a positive association exists between the autocorrelation in demand and observed bullwhip. 

Therefore, like Cachon et al. (2007), we account for potential effects of autocorrelation to more 

accurately assess the effects of aggregation and seasonality on bullwhip measurement. 
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D. ESTIMATION PROCEDURE 

Data Collection 

To conduct our analyses, we collected data from a consumer packaged goods (CPG) 

manufacturer which produces and markets a wide variety of product lines.  The sample contains 

both sales and order data. The data was collected on a weekly basis across 10 customer 

distribution centers (DC) which are located throughout the United States for 9 non-seasonal, dry 

grocery products, 7 non-seasonal, perishable products and 7 seasonal, dry grocery products over 

a two-year period.  In Table 1, we compare and contrast these product categories across several 

dimensions. 

Variable Specification 

We begin by pairing sales and order data at the product-weekly level.  We then aggregate 

products based on their respective categories to create category-weekly series.  A binary variable 

     is used to denote product-location aggregation where the product-level and category-level 

observations are coded as      [   ], respectively.  Further, we temporally aggregate the 

product and category series from the weekly to the monthly level.  Thus, a second binary variable 

     is created to denote temporal aggregation where the weekly-level and monthly-level 

observations are coded as      [   ], respectively.   

 To account for seasonality we use sales data to derive the variance of the underlying 

seasonal index (SEAS) for weekly unit sales over the two-year period at each DC.  To calculate 

the seasonal index (Gaynor & Kirkpatrick 1993), let      denote sales for product I at DC k at 

time t,         is thus calculated as the variance of the ratio of each observation to the average 

over       periods: 
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 In addition to seasonality, we also obtain the first order autocorrelation factor (AF) for 

each product for their weekly unit sales at each DC through a simple AR(1) regression for each 

product I and DC k over the two-year period (t = 104):   

                

The estimated coefficient   is recorded as a continuous variable.   

E. ANALYSIS 

Observed Bullwhip 

All three bullwhip measures calculated at the weekly and monthly levels exhibit bullwhip 

behavior for both the product and category levels. We report these means in Table 2.  We first 

compare the average bullwhip for the three measures at the product level.  For       , the 

average bullwhip ratio decreased from 331.963 at the weekly level to 17.447 at the monthly level.  

For    and    , the observed decreases are from 3.117 to 1.713 and 12.913 to 3.780, 

respectively.  At the category level, similar decreases are observed for the three measures.  They 

are 64.820 to 6.357, 2.397 to 1.540, and 7.250 to 3.130, for       ,   , and    , respectively.  

Further, we observe decreased bullwhip ratios for all three measures from the product level to the 

category level at both weekly and monthly levels of temporal aggregation as well.  All 

differences are statistically significant at the 0.01 level. 

 While examining the bullwhip means offers potential support for both aggregation effects, 

seasonality’s effect on bullwhip warrants a more detailed examination.  Table 3 reports the 

estimated bullwhip means at both product and category levels and at both the weekly and 
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monthly levels, for all three measurement methods.  Recall that we have three distinct categories, 

each with its own set of characteristics (seasonality, product life cycle, and shelf-life).  Similar to 

Table 2, we observe a similar pattern in measured bullwhip, where both temporal and product-

location aggregation decrease bullwhip. 

 Comparing the bullwhip measures reveal several noticeable differences.  First, it appears 

that the fractional growth rate measure results in higher observed bullwhip at the lowest levels of 

aggregation.  Second, though the seasonal product category tends to yield the lowest bullwhip for 

both the coefficient of variation and the unit variance measures, it actually yields the highest 

when estimated with fractional growth rate.  Third, evaluating all minimums, means and 

maximums indicate that product-location aggregation has a “compression” effect which raises 

the minimum bullwhip and substantially lowers the maximum bullwhip, while simultaneously 

reducing the mean bullwhip.  Further, the bullwhip means for all three measures and all product-

location and temporal aggregation combinations suggest bullwhip is present.   

In terms of the prevalence of bullwhip in the retail industry, Cachon et al. (2007) found 

bullwhip only in the automotive retail segment at the industry level of analysis.  At the firm level, 

Bray and Mendelson (2012) found bullwhip in general merchandise, furniture, and other non-

categorized retailers.  In our sample, we find bullwhip for all product-location and temporal 

aggregation levels for the fractional growth rate measure.  For the coefficient of variation 

bullwhip measure, we find negative bullwhips for 6.5% and 3.3% of the product-monthly and 

category-monthly observations, respectively. For the unit variance measure we find negative 

bullwhips for 20.28% and 6.67% of the product-monthly and category-monthly observations, 

respectively.   
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Estimating the Masking and Dampening Effects on Bullwhip Measurement 

In our empirical investigation of the effects of data aggregation on bullwhip measurement, we 

have three dependent variables of interest, one for each method of measurement 

(                            ).  As Bray and Mendelson (2012, p.15) indicate that “the effect [is] 

idiosyncratic, as the bullwhip varies greatly across firms.”  Instead of the firm level, our product-

DC observations are nested in category and DC levels.  We expect that there are idiosyncratic 

effects across both categories and DCs, and thus, to account for these unobservable effects, we 

use hierarchical linear modeling (HLM).  HLM allows observations to be nested within higher-

level categories and accounts for the lack of independence among observations due to the multi-

level structure of the data (Raudenbush & Bryk 2002).  For example, observations of products 

taken from the same category or a particular DC cannot be assumed to be independent, thus 

HLM allows variance to be parceled out at these higher-level structures.  We estimate the model 

using full maximum likelihood similar to Ang et al. (2002), DeHoratius and Raman (2008), and 

Liao and Chuang (2004).   

Null Model 

   

First, we partition the dependent variables into the variance across products I (I = 

1,…,26),categories j (j=1,2,3), DCs k (k=1,…,10), and temporal aggregation levels m (m = 0,1), 

where 1 indicates temporal aggregation to the monthly level.  We specify the null model as, 

                                  , 

                              , 

                               , 
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where Θ0 is the fixed intercept parameter, while the random effect parameter of category j is 

        and the random effect parameter of DC k is       .  Finally, the random effect 

parameter of product I is      .  Note that       ,        and       are each normally 

distributed with a zero mean and variances of τCAT00, τDC00, and   , respectively. 

Conditional Model 

 

We then include our independent variables of interest in the model.                    

           and        are the predictor variables.  The first two variables test the effect of 

temporal and product-location aggregation on the bullwhip measures as proposed by Chen and 

Lee (2012).  The latter two variables are included to examine non-aggregation influences on the 

bullwhip measurements.  In this model design, we assume that aggregation’s effect is fixed 

across categories and DCs, rather than randomly varying (Raudenbush & Bryk 2002).  In 

addition, we assess model significance by examining the difference in negative log-likelihood 

between models and report the   value of model change, as well as the associated statistical 

significance.   Our full model is specified as, 

                                   

                                                 

                         , 

                                

                                                    

       , 
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              , 

 

where β1 and β2 are the fixed effects for temporal and product-location aggregation levels, 

         and         , respectively.  Β3 is the estimated fixed effect for each product’s 

seasonality factor          at the weekly-DC-product level. And finally, β4 is the estimated 

fixed effect for the first order autocorrelation coefficient for each product-DC series over the 104 

week period,       .  

Prior to model estimation, we transformed all dependent variables and         into their 

natural log form.  This transformation provides two benefits.  Analysis of the raw data suggests 

some nonlinearity in the relationships between the outcome variable and the predictors.  The 

natural log transformation process thus induces linearity in the regression model (Kleinbaum et 

al. 1998; DeHoratius & Raman, 2008).  In addition, the transformation also addresses the 

potential skewness in our dependent variables. 

F. HLM RESULTS 

Overall, the conditional models for all three dependent variables demonstrate superior fit to their 

respective null models, as indicated by the significant    values for all three measures.  In 

addition, the fixed effects in our conditional models explain 52.09%, 56.86%, and 60.03% of 

between-product variances for           ,        and        , respectively.  From the 

estimation results (Null Models, Table 4), we find that 91.97% of the variance for            

exists across products and 8.03% across product categories, with no significant variance across 

DCs.  In addition, we find that 50.25%, 40.89%, and 8.87% of the variance for        exists 

across products, product categories, and DCs, respectively.  The variance components for 
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        are 56.31%, 36.98%, and 6.71% across products, product categories, and DCs.  

Accounting for significant between-category and between-DC effects allows us to test whether 

the residual variance for our three dependent measures is associated with product-level 

measurements and aggregation effects.  In the following discussion, aggregation’s effect is fixed 

for all products at the DC level for        and        , and category level for           . 

Chen and Lee (2012) propose that product-location aggregation and temporal aggregation 

both result in dampened observation of bullwhip measurement, given that a particular set of 

assumptions are true.  Based on Chen and Lee’s propositions (2012), we systematically 

aggregate product-weekly observations to category-monthly and test aggregation’s effect on the 

bullwhip ratio based on three common industry measures.   

Across all three measures, we find that temporal (        ) and product-location 

(        ) aggregation mask bullwhip observation.  Temporally, aggregating weekly demand 

information to the monthly level resulted in negative effects on the bullwhip measurements 

(                                                                  ).  For 

product-location aggregation, product-level observations and category-level observations are 

compared through the parameter estimate for Pagg.  We find the parameter estimate to be 

negative and significant (                                                      

             ).    

Chen and Lee (2012) also proposed that the inclusion of seasonality results in dampened 

bullwhip measurement.  We find that          also significantly lowers bullwhip measurement 

for all three measures (                                                      

             ).  As Bray and Mendelson (2012) explain, a greater seasonal component of 

total variance leads to a dampening effect.  Chen and Lee (2012) also state that including 
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seasonality in bullwhip measurement tends to result in a stabilizing effect.  Further, these results 

are also consistent with Cachon et al. (2007)’s observation that when the amplification ratio is 

greater than one, the ratio measurement including seasonality is less than that excluding 

seasonality in most cases.   

Unlike Cachon et al. (2007), we find significant positive association between the 

autoregressive coefficient and the fractional growth rate measure (                       ) 

but not the coefficient of variation (                   )  and unit variance (       

              ) measures.   

G. CONCLUSIONS 

Cachon et al. (2007) conclude that retailers generally do not bullwhip but instead smooth 

demand.  This finding was later disputed by Bray and Mendelson (2012) through firm-level, 

rather than industry-level analyses. Chen and Lee (2012) contend that the observed discrepancy 

is likely caused by the effects of data aggregation and the dominance of seasonal variance.  The 

current research contributes to the literature by utilizing product-weekly level data to empirically 

examine the effect of product-location and temporal aggregation and seasonality on bullwhip 

measurement in a retail context.  Our results suggest that bullwhip measurement may in fact be 

masked by data aggregation effects and dampened by seasonality, yielding potentially 

confounding results when measuring bullwhip at the industry or firm level.  

 These empirical findings are particularly salient to retail suppliers, such as consumer 

packaged goods (CPG) manufacturers. Chen and Lee (2012) noted that bullwhip should be 

measured at the appropriate time unit for cost assessment purposes.  However, we conclude that 

the implications of the aggregation effects may be even more far reaching since it is common for 
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CPG manufacturers to plan at aggregate levels.  In recent years, customer demand planning has 

become increasingly popular (Lapide 2005), where demand planners create product-family 

demand plans specific to their highest volume customers, usually on a monthly basis.  Our 

results suggest that customer demand planning processes occurring at such levels of aggregation 

may be biased due to aggregation effects.  By measuring aggregate bullwhip or order variance, 

planners may be unable to ascertain the true level of variability experienced at operational levels 

of the organization (Chen & Lee 2012), creating a potential misalignment between future supply 

and demand.   

Additionally, planners may be unable to accurately assess the value of downstream 

demand signals.  That is, aggregate bullwhip measures may indicate that retail customers smooth 

demand, resulting in order variance that is lower than consumer sales variance.  Together, the 

analytical results of Chen and Lee (2012) along with the empirical results of this research, 

suggest that planners should make planning decisions at the level with which transactions 

between the retailer and supplier occur.    

Furthermore, planners must consider the effect of seasonality on bullwhip measures.  In 

accordance with Chen and Lee (2012), our results illustrate the dampening effect of seasonality.  

This is particularly relevant to suppliers seeking to plan based on point of sales data.  Since 

retailers generally attempt to smooth predictable demand fluctuations such as seasonality 

(Cachon et al. 2007; Bray and Mendelson 2012), order data for seasonal products reflects such 

smoothing policies and may be more valuable from a planning perspective.   

Our results also highlight the substantial difference between the fractional growth rate 

bullwhip measure and the coefficient of variation and the unit variance bullwhip measures. The 
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fractional growth rate differs from the other two measures in that both the coefficient of variation 

and unit variance measures are estimated in levels, rather than as percent change.  In our data, the 

percent change in weekly sales is relatively stable while the percent change in orders is usually 

much larger.  In many periods, the percent change in sales is less than one percent, causing 

instability in the measures.  While we note that this issue is likely not relevant to industry- and 

possibly firm-level analyses, it may cause instability in a measure in the more disaggregate 

analyses.  
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Table 1 – Product category dimensions 

Category   Annual Sales Seasonality Life Cycle Stage Shelf Life 

Non-seasonal Dry  $6 billion None Mature Medium 

Seasonal Dry  $4 billion High Decline Long 

Refrigerated   $2.5 billion None Growth Short 
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Table 2 – Descriptive statistics 

      

Fractional 

Growth Rate   

Coefficient of 

Variation   Unit Variance 

Product             

  Weekly   331.963 

 

3.117 

 

12.913 

  Monthly   17.447 

 

1.713 

 

3.780 

      

     Category   

       Weekly   64.820 

 

2.397 

 

7.250 

  Monthly   6.357 

 

1.540 

 

3.130 
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Table 3 – Mean bullwhip comparison 

 

Fractional Growth Rate (e.g., Cachon et al. 2007) 

Product-level Weekly 

 

Four-week 

 

Minimum Mean Maximum 

 

Minimum Mean Maximum 

Non-Seasonal  39.86 216.35 725.46 

 
2.37 21.76 143.76 

Seasonal  83.04 262.26 501.06 

 
2.95 23.35 115.05 

Perishable 8.84 517.28 1205.80 

 

2.38 7.23 22.53 

Category-level Weekly 

 

Four-week 

 

Minimum Mean Maximum 

 

Minimum Mean Maximum 

Non-Seasonal 23.81 41.55 73.96 

 

4.64 10.35 23.44 

Seasonal  55.61 100.85 171.18 

 
2.10 4.59 9.32 

Perishable 19.96 52.06 125.02 
 

2.52 4.13 7.54 

 

Coefficient of Variation (e.g., Fransoo and Wouters 2000) 

Product-level Weekly 

 

Four-week 

 

Minimum Mean Maximum 

 

Minimum Mean Maximum 

Non-Seasonal  1.69 3.85 7.82 

 
0.96 2.29 4.61 

Seasonal  1.36 2.23 4.39 

 
0.86 1.29 2.11 

Perishable 1.21 3.27 5.63 

 

0.91 1.56 3.75 

Category-level Weekly 

 

Four-week 

 

Minimum Mean Maximum 

 

Minimum Mean Maximum 

Non-Seasonal  1.84 3.29 4.28 

 
1.11 2.18 2.94 

Seasonal  1.40 1.78 3.48 

 
1.02 1.27 2.61 

Perishable 1.46 2.12 3.30 
 

0.87 1.17 1.44 

 

Unit Variance Ratio (e.g., Torres and Maltz 2008; Chen and Lee 2012) 

Product-level Weekly 

 

Four-week 

 

Minimum Mean Maximum 

 

Minimum Mean Maximum 

Non-Seasonal  3.30 18.13 57.04 

 
0.48 5.73 29.47 

Seasonal  2.23 5.93 17.00 

 

0.07 1.93 10.90 

Perishable 1.59 14.68 46.17 

 

0.47 3.68 14.10 

Category-level Weekly 

 

Four-week 

 

Minimum Mean Maximum 

 

Minimum Mean Maximum 

Non-Seasonal  3.50 11.71 18.48 

 
1.27 5.44 12.34 

Seasonal  1.92 2.84 5.52 

 
0.93 1.40 2.08 

Perishable 2.53 7.20 17.95 
 

0.83 2.55 10.09 
All differences in bullwhip means for product-location and temporal levels are significant at p<0.01 

  
  



 
 

Table 4 – Hierarchical linear modeling results for three measures of bullwhip ratios 

  
Fractional Growth Rate 

 
Coefficient of Variation   Unit Variance 

Variable   Null   Conditional   Null   Conditional   Null   Conditional   

Fixed effects                           

  Intercept   3.788 *** 2.349 *** 0.754 *** 0.153   1.55 *** 0.601 *** 

      0.104   0.395   0.06   0.118   0.134   0.255   

  Tagg       -2.107 ***     -0.410 ***     -1.087 *** 

          0.081       0.017       0.040   

  Pagg       -1.339 ***     -0.260 **     -0.439 ** 

          0.264       0.115       0.201   

  SEAS       -0.258 ***     -0.258 ***     -0.529 *** 

          0.065       0.023       0.047   

  AF       2.086 ***     0.031       -0.223   

          0.335       0.087       0.204   

Random effects                         

  DC   -   -   0.018 *** 0.021 *** 0.076 *** 0.109 *** 

              0.005   0.004   0.03   0.020   

  Category   0.194 ** 0.148 ** 0.083 *** 0.031 *** 0.419 *** 0.087 *** 

      0.076   0.065   0.025   0.011   0.127   0.032   

  Residual   2.221 *** 1.064 *** 0.102 *** 0.044 *** 0.638 *** 0.255 *** 

      0.117   0.057   0.006   0.003   0.04   0.017   

-2 Log 

Likelihood 
2726.215   2189.763   587.535   65.114   1911.59   1337.950   

𝑥2
     536.452 ***   522.421 ***   573.640 *** 

Notes: Standard errors are shown in parentheses.  All dependent variables and SEAS are transformed into their natural log form. 

*p<0.1, **p<0.05, ***p<0.01. 
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Table 5 – Results summary 

Influencing factors Fractional Growth Rate 

 

Coefficient of Variation 

 

Unit Variance 

Product-Location Aggregation Masking 

 

Masking 

 

Masking 

Temporal Aggregation Masking 

 

Masking 

 

Masking 

Seasonality Dampening 

 

Dampening 

 

Dampening 
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Chapter 4 – TEMPORAL AGGREGATION AND ITS MODERATING EFFECT ON 

THE VALUE OF POINT-OF-SALE INFORMATION IN FORECAST ACCURACY 
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IV. TEMPORAL AGGREGATION AND ITS MODERATING EFFECT ON THE 

VALUE OF POINT-OF-SALE INFORMATION IN FORECAST ACCURACY 

A. INTRODUCTION 

Accurate demand forecasts are vital to achieving supply chain efficiency and effectiveness given 

that many operational decisions are based on such forecasts.  To reduce forecast error, firms 

often invest significant resources in sophisticated information systems (Ravichandran & Liu, 

2011) designed to generate statistical forecasts (Rexhausen et al., 2012) and facilitate 

information sharing between supply chain partners (Schoenherr & Swink, 2012).  In the retail 

supply chain, the sharing of consumer sales data (i.e., point-of-sale data) has become 

increasingly commonplace between retailers and their suppliers. While these firms have invested 

heavily in systems to improve forecast performance, evidence suggests that the challenge may be 

only increasing.  By 2021, companies will have access to over 35 zettabytes of data generated 

from supply chain activities (Cognizant, 2012).  Of course, utilizing this wealth of data to 

anticipate future demand is a high priority (Cecere, 2012).  Wal-Mart, for example, collects more 

than 2.5 petabytes of data every hour from its customer transactions (McAfee & Brynjolfsson, 

2012), which is in turn shared with suppliers to improve supply chain planning. 

Clearly, forecasting with such a high volume of data requires automated processes to 

generate statistical forecasts; however, for these processes to function effectively, managers must 

properly design them in light of existing theory.  One critical decision is the determination of the 

level of temporal aggregation at which statistical forecasts should be generated.  Temporal 

aggregation is the process where a high frequency time series (e.g., weekly) is aggregated to a 

lower frequency time series (e.g., monthly) (Nikolopoulos et al., 2011).  Many manufacturers in 

the retail supply chain face the conundrum of whether to forecast retailer requirements in weekly 
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or monthly increments.  The conundrum results from the fact that corporate planning processes, 

such as sales and operations planning (S&OP), recur monthly (Olivia & Watson 2011), yet 

operational decisions, such as scheduling outbound logistics activities are often made on a 

weekly basis.  

In this study, we draw on analytical models based on statistical theories to inform the 

consequences of using temporally aggregated data to generate demand forecasts in the context of 

a retail supply chain.  We find that countervailing effects of temporal aggregation may exist, 

namely information loss and variance reduction.  Under statistical theory of information loss 

(Amemiya & Wu, 1972; Marcellino, 1999), time series properties that inform the underlying data 

generating process of the time series become altered and lost during the temporal aggregation 

process.  On the other hand, following the premise underlying risk pooling, where random errors 

are canceled via aggregation, forecasters often assume that temporal aggregation will likely 

provide more stable and accurate forecasts and thus prefer to create statistical forecasts using 

temporally aggregated data (Finn, 2004; Hotta et al., 2005).   

To reconcile these competing notions, both based on established statistical concepts, we 

hypothesize that the dominant effect of temporal aggregation likely depends on the information 

source being used by the supplier to create the demand forecasts.  That is, the decision of 

whether to temporally aggregate data should be dependent on if the supplier uses shared retail 

sales information or historical order information to forecast future retailer requirements.  We 

suggest that this is due to the relative levels of randomness and the degree of autocorrelation 

inherent in these information types. To test our hypotheses, we design a quasi-experiment based 

on data from two highly shopped grocery categories where both the level of temporal 

aggregation and the information type utilized are manipulated.  To analyze the quasi-
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experimental results, we utilize a hierarchical linear model (HLM) due the multi-level nature of 

the data.   

Moving forward, we review the forecasting and information sharing literature to set the 

context for our study.  Next, we develop our hypotheses using both the supply chain and 

econometrics literatures and analytically show how temporal aggregation may transform 

statistical properties of a time series but also reduce its variance.  We then utilize weekly 

observations of paired order and POS data over a period of two years to design a quasi-

experiment to generate competing forecast for conditions of temporal aggregation and 

information type.  Section 4 outlines our empirical method to test our hypotheses.  Following the 

description of our data and analysis, we present our results, draw conclusions from the study, and 

offer managerial implications.  

B. THEORY AND HYPOTHESES DEVELOPMENT 

Retail Forecasting and Replenishment 

In the retail supply chain, retailers amass an incredible amount of data captured through 

customer transactions.  These data serve as the basis for vital decisions associated with inventory, 

storage, and replenishment (Schmarzo, 2012) through timely demand forecasts and planning 

(McAfee & Brynjolfsson, 2012).  Over time, advancement in supply chain management 

strategies gave rise to increasingly collaborative demand forecast and planning practices such as 

S&OP that place particular emphasis on information sharing to drive operational efficiencies 

(e.g., Cachon & Fisher, 2000).   

The replenishment process to retail stores is typically accomplished through either direct-

to-store delivery (DSD) or through the retailer’s network of distribution centers (DCs).  If retail 

DCs are utilized, the process generally follows a model where a set of individual retail stores 
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place orders to a single regional DC.  The DC, in turn, places orders on a periodic basis to a 

supplier DC.  The supplier is then responsible for replenishing a specified set of retail DCs.  For 

suppliers, the orders placed by the retail DCs, (DC orders), are of particular interest as they 

represent its customer (not consumer) demand.  DC orders, as compared to POS, are difficult to 

forecast accurately.  This is due to the fact that the variance of DC orders is most often greater 

than the variance aggregate sales recorded by the stores replenished by the DC (i.e., the bullwhip 

effect).   

It is easy to assume that a DC’s orders might be easily predicted by summing the sales of 

the stores replenished by the particular DC. Yet, “store replenishment and execution processes, 

retailer distribution center (DC) replenishment and operating procedures (Vogt, 2010; Kum, 

Balakrishnan, & Chun, 2010), warehouse management system idiosyncrasies (Autry et al., 2005), 

and other supply chain processes, such as postponement (Zinn & Bowersox, 1988), inventory 

centralization (Evers, 1995; 1996; 1997; Evers & Beier, 1993; 1998; Mahmoud, 1992; Ronen, 

1990; Tallon 1993; Zinn et al. 1989) and lean practices (Goldsby, Griffis & Roath, 2006) 

introduce complexity into the retailer’s ordering processes” (Williams & Waller 2010, pg. 1), 

making DC orders more variable and difficult to predict than retail sales.  

To forecast DC orders, consumer packaged goods (CPG) suppliers generally use a 

simplistic process. Time series forecasting methods, like exponential smoothing forecast future 

customer demand based on the archived order data (Williams & Waller 2010). Very often, 

customer demand forecasts predict each retail DC’s requirements in weekly intervals for each 

DC in order to make operational decisions.  In order to quickly respond to short-term market 

conditions, retailers typically order from suppliers on a weekly basis (Nijs et al. 2007).  
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Therefore, suppliers often base transportation and labor capacity decisions on these weekly 

customer demand forecasts (e.g., Cachon & Fisher 1997).  

Recent developments in point-of-sale (POS) sharing have increased interest in whether 

POS might improve the ability of the supplier to forecast customer demand. Williams and Waller 

(2010) compare the forecast accuracy of customer demand forecasts based on POS history with 

those based on order history and find that POS-based forecasts outperform those based on order 

history in approximately 65% of the cases; however, order history outperforms POS in the 

remaining 35%, indicating POS and order history may have unique information that can help 

predict future customer ordering behavior.  

Temporal Aggregation and Information Loss 

The effect of temporal aggregation on time series has been studied for decades, beginning with 

the seminal work of Amemiya and Wu (1972), which investigates the issue of information loss. 

Amemiya and Wu study temporal aggregation where the data is an autoregressive (AR) process 

of order p.  The literature later generalizes the effect of temporal aggregation to include 

autoregressive moving average models with exogenous variables (ARMAX) (Brewer 1973), 

seasonal structures (Wei 1978) and nonstationary models (Tiao 1972).  For a complete overview 

of temporal aggregation techniques, we refer the reader to Silvestrini and Veredas (2008).   

Information loss refers to a loss of information about the underlying data generating 

process of the time series.  To illustrate how temporal aggregation may result in such information 

loss, we model the effect of temporal aggregation where a time series (𝑥 ) is a first-order 

autoregressive process,𝑥    ( ), which can be expressed as, 

𝑥    𝑥        , where      (    
 )                                                                                        (1) 

The expected value and variance of the above expression are known to be: 
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 [𝑥 ]  
  

    
, and    [𝑥 ]  

  
 

    
                                                                                                (2) 

Temporal aggregation occurs when demand observed at two consecutive, non-

overlapping periods are summed.  Therefore, the summation of 𝑥  and 𝑥    may be expressed in 

an aggregated time series   , where        (   )and can be defined such that
3
: 

               , where      (    
 )                                                                                    (3) 

Therefore, 

 [  ]  
  

    
, and    [  ]  

  
 (         )

    
 .                                                                              (4) 

From this simple model
4
, we find that the aggregated time series (  ) has a different underlying 

data generating process than the disaggregate time series (𝑥 ).   

In a retail supply chain context, aggregation of demand signal data from weekly to 

monthly eliminates information such as paycheck cycles.  For example, many firms in the U.S., 

including the government, pay their employees on a bi-weekly basis.  As a result, retail sales 

tend to follow a similar pattern.   Thus, weekly patterns in weekly customer requirements can be 

masked as weekly demand signal data gets aggregated into monthly data.  Therefore, practical 

evidence suggests and statistical theory predicts that the temporal aggregation of a time series 

results in information loss about the underlying data process which may have severe negative 

implications for prediction of future observations of the time series (Rosanna & Seater 1995).  

Temporal Aggregation and Variance Reduction 

While it seems that temporally aggregated time series cannot be better predictors than 

disaggregate predictors (Amemiya & Wu 1972), practitioners often tend to prefer using 

                                                           
3 We refer readers to Brewer (1973) for its derivation. 
4 According to Tiao (1972),   ,   , and   are independent of each other. 
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temporally aggregated data to forecast at disaggregated levels for reasons such as simplicity 

(Finn, 2004). Despite the mounting analytical evidence that temporal aggregation results in 

substantial loss in information in high frequency data (e.g., Amemiya & Wu, 1972; Brewer, 1973; 

Wei, 1978; Nijman and Palm, 1990), we note that statistical theory “may not be definitive 

because some of the results are asymptotic and leave open the question of what happens with 

actual data” (Rossana & Seater 1995, p. 443).    

In fact, we argue that a countervailing effect to the information loss effect of temporal 

aggregation exists, namely, variance reduction. A major contributing factor to forecast error 

throughout the retail supply chain is the bullwhip effect.  The bullwhip effect is defined as the 

amplification of order variance as orders move from the retail echelon to the manufacturing 

echelon of the supply chain (Lee et al., 1997).  As retail sales translate into orders placed by 

stores to the supplying distribution center (DC), and then on to a supplier’s DC, the variance of 

orders is amplified at each echelon, resulting in a more “noisy” demand signal.  Often, the causes 

of the increased variability are not related to demand factors but managerial and behavioral 

idiosyncrasies that are not useful information for forecasters when predicting future retailer 

inventory requirements (Lee et al. 1997).  For example, a retailer that stockpiles inventory will 

likely place future order of zero as the stockpiled inventory sells down.   

To deal with the increased variability, forecasters often temporally aggregate demand 

signal data to reduce the data’s variance (Finn, 2004; Nikolopoulos et al., 2011).  This practice is 

based in the statistical concept of risk pooling which underlies the portfolio effect in the supply 

chain management literature.  Similar to variance reduction achieved by consolidation of 

inventory holding locations (Zinn et al.1989; Ronen 1990; Mahmoud 1992; Evers & Beier 

1993,1998; Tallon 1993; Evers 1995, 1996, 1997; Das & Tyagi 1999; Ballou 2005) and product 
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aggregation (Williams & Waller 2011), the temporal aggregation of demand signal data partially 

cancels the random errors in the time series. To model the variance reduction due to temporal 

aggregation, we again consider the effect where a time series (𝑥 ) is a first-order autoregressive 

process,𝑥    ( ), which can be expressed as, 

𝑥   𝑥      , where    (    
 )                                                                                              (5) 

Note that    represents the standard deviation of the time series at time   while      represents 

the standard deviation of the time series at    .  We assume that errors are homoscedastic, thus    

    . 

We define {   (   )} as a non-overlapping aggregated demand series, where    (   )     

    .  To examine whether variability is reduced through temporal aggregation, i.e., whether    (   )  

   , we express the standard deviation of    (   ) as, 

   (   )  √  
      

                                                                                                                               (6) 

Since           due to constant variance, equation 6 can be rewritten as, 

   (   )  √  
    

                                                                                                                         (7) 

 Equation 7 can be further simplified algebraically, expressed as, 

   (   )    √ (   )                                                                                                                            (8) 

 From equation 8, we can observe that if     (i.e., perfect positive autocorrelation), then 

   (   )     .  Otherwise, for all    ,    (   )     .  In addition, we may also observe the 

following properties for equation 8:  

         (   )        

Otherwise,    (   )                                  (9) 
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 That is, we observe that temporal aggregation results in reduced variance as long as the time 

series is not perfectly, positively autocorrelated, and the degree of variance reduction is 

dependent upon the degree of autocorrelation in the time series.  

Temporal Aggregation and Information Source  

While aggregation is a method to deal with the amplified variance in upstream demand signals, 

another method is to utilize a downstream demand signal to forecast customer requirements.  

Information sharing is an important enabler of collaboration in the retail supply chain (Barratt & 

Barratt, 2011; Schoenherr & Swink, 2012).  Recent advances in information technology 

increased the sharing of retail POS to provide to suppliers the option of forecasting customer 

demand, using either POS or order history.  As shown by Williams and Waller (2010), POS is 

generally the preferred data, because of the lower levels of variance, relative to order data.  

Since a key distinction between POS and DC order data is the associated variance, we 

argue that the effect of temporal aggregation on these demand signals may differ given 

countervailing effects of temporal aggregation. Given that order data tend to have high levels of 

variance due to the bullwhip effect, we expect that the variance reduction due to the pooling of 

observations may be the dominant statistical effect when temporally aggregating order data and, 

as the random errors are canceled,, forecast error is likely to decrease.  

On the contrary, POS data is not subject to the bullwhip effect and tends to have lower 

variance than order data.  Therefore, the potential benefit of variance reduction due to temporal 

aggregation is much less.  In fact, we contend that the information loss effect may be dominant 

when temporally aggregating POS data.  That is, as POS data is temporally aggregated, the loss 

of information about the underlying nature of consumer sales has a negative effect on the ability 

to forecast customer demand and overshadows any potential benefit of variance reduction. 
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Given the countervailing statistical effects of temporal aggregation on these demand 

signals, we hypothesize that the effect of temporal aggregation on order forecast error differs 

upon whether the supplier utilizes order or POS data to forecast customer demand.  Therefore, 

we hypothesize an interaction effect between temporal aggregation of the demand signal data 

and whether POS or order data is used to generate the statistical forecast, such that: 

H1a: Temporal aggregation is positively associated with customer demand 

forecast error, when POS data is utilized to generate statistical forecasts. 

 

H1b: Temporal aggregation is negatively associated with customer demand 

forecast error, when order data is utilized to generate statistical forecasts. 

 

Autocorrelation and Temporal Aggregation 

While we anticipate that temporal aggregation compromises the benefit of using POS data to 

generate customer demand forecast (as indicated in H1a), this effect can be potentially amplified 

by the POS data’s autocorrelation factor.  Since the countervailing effects of information loss 

and variance reduction are contemporaneous, temporal aggregation is likely to have both effects 

on POS data.  Specifically, as shown in equation 8, the autocorrelation factor plays an important 

role in governing the statistical effect of variance reduction: As the autocorrelation factor of POS 

data at the disaggregate level (i.e., weekly) approaches perfect autocorrelation (i.e.,    ), the 

variance reduction effect will be minimized at the temporally aggregated level (i.e., monthly).  

 In addition, the autocorrelation factor’s role in variance reduction will also impact 

temporal aggregation’s effect on forecast error utilizing DC order data.  In this instance, while 

we anticipate that variance reduction is a principle benefit of temporally aggregating DC order 

data, thereby reducing forecast error (as indicated in H1b), this effect is further moderated by the 

DC order data’s autocorrelation factor.  Similar to its effect on POS data, as the autocorrelation 

factor of DC order data at the disaggregate level approaches perfect autocorrelation, the variance 

reduction effect in this instance will also be minimized  
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Thus, the autocorrelation factor of both POS and DC order data may influence the impact 

on forecast error due to the interaction effect of temporal aggregation and information source.    

As shown above, temporal aggregation results in both altering the statistical properties of POS 

and DC order data to cause information loss (e.g., Amemiya & Wu, 1972; equation 4) as well as 

variance reduction (equation 8). For both POS and DC order data, diminishing variance 

reduction effect due to increasingly positive autocorrelation factor will result in higher forecast 

errors.  Alternatively, for POS and DC order data that have increasingly negative autocorrelation, 

the heightened variance reduction effect will result in lower forecast errors. 

 To summarize, autocorrelation factor determines the magnitude of the variance reduction 

effect.  For both POS and DC order data, variance reduced through temporal aggregation is 

moderated by each data series’ autocorrelation factor at the disaggregate level.  In both instances, 

an increasingly positive autocorrelation factor results in diminishing variance reduction effect, 

thereby increasing forecast error. Formally stated: 

H2a: Autocorrelation factor is positively associated with customer demand 

forecast error, when POS data is temporally aggregated prior to generating 

statistical forecast. 

 

H2b: Autocorrelation factor is positively associated with customer demand forecast error, 

when DC order data is temporally aggregated prior to generating statistical forecast. 

 

C. METHODS AND MEASURES 

Quasi-Experimental Design 

To test our hypotheses, we design a quasi-experiment for forecast accuracy based on two years 

of weekly DC order and POS data obtained from a large consumer packaged goods supplier. The 

forecast experiment compares weekly order forecasts using DC order and POS data at weekly 

and monthly levels of temporal aggregation.  
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For short and mid-horizon forecasts of fast-moving items, exponential smoothing 

techniques are the most commonly utilized in industry (Mentzer & Kahn 1995; McCarthy et al. 

2006) and generally offer forecast accuracy competitive against other approaches that are 

substantially more complex (Makridakis et al., 1982; Makridakis & Hibon 2000).  Considering 

that trend is likely present in the data, for which exponential smoothing alone is not sufficient, 

we utilize Holt’s exponential smoothing with trend.    

To setup the quasi-experiment, we first aggregate an initial 88 weekly observations of DC 

order and POS data to 22 monthly observations.  Next, we estimate for each SKU-DC 

combination the smoothed components for the level and trend for order and POS data at both 

weekly and monthly levels of temporal aggregation.  For our forecasting parameters, we chose 

three values for α and β (α=0.51; α=0.19; α=0.02; β=0.176; β=0.053; β=0.005) based upon the 

range of reasonable values (Silver, Pyke and Peterson 1998, p. 108).  In addition, not all 

combinations of forecasting parameters were used.  For stability purposes, the value of β should 

be well below that of α (McClain & Thomas 1973).  Thus, we utilize a total of six combinations 

out of a possible total of nine (0.51, 0.176; 0.51, 0.053; 0.51, 0.005; 0.19, 0.053; 0.19, 0.005; 

0.02, 0.005).  Further, an initialization of the forecast for the first period is required for the single 

exponential smoothing method.  For the OF-competition, the initial forecast was set to the value 

of the actual order for the first period (Hanke & Wichern 2005, p. 118). 

We next utilize the estimated level and trend components to generate customer demand 

forecasts for each SKU-DC combination over a 13-week out-of-sample forecast horizon (i.e., 

fiscal quarter).  The calculation for weekly forecast error is straight-forward for order forecast 

generated using weekly order and POS data.  Since order forecast generated using monthly data 

contains expected orders over four weeks, we divide monthly order forecasts by four to obtain 
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their weekly-equivalent values before proceeding to calculate the weekly forecast error.  Thus, 

our quasi-experiment is in a two-by-two design (Figure 1) for two sources of information for 

forecast input (DC orders and POS) and two levels of temporal aggregation (weekly and 

monthly). 

Data Collection and Measures 

Our data includes DC order and POS data for two grocery categories. The first category is a 

mature, dry grocery product category and is one of the highest volume grocery categories in a 

typical supermarket retail format. The second category features fresh, refrigerated products that 

have short shelf-lives and thus flow through the distribution network relatively quickly. 

Our sample includes weekly data for nine dry grocery SKUs and five refrigerated SKUs.  

The weekly data were collected over a period of two years at six regional U.S. DCs owned by 

one of the manufacturer’s largest retail customers, for a total of 82 unique SKU-DC 

combinations.  DC orders are defined as the weekly orders placed by a particular retail DC to the 

manufacturer while POS is the cumulative weekly sales of the retail stores replenished by the 

particular DC.  

To evaluate the out-of-sample forecast performance, we measure customer demand 

forecast error with mean absolute deviation (MAD).  MAD measures forecast error by averaging 

the absolute value of the DC order forecast errors, which is calculated as the difference between 

actual weekly orders (A) and weekly order forecast ( ̂), and is a measure of the magnitude of 

forecast error. The calculation of          using weekly level of aggregation is shown: 

         
∑ |        ̂     

| 
   

 
 , 
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where n is the number of periods over which the MAD is calculated, I denotes the 14 products 

across j categories stocked in k DCs, and m indicates the 13 weeks of forecast horizon.  In 

addition, the calculation of          using monthly order forecast ( ̂) is shown: 

         
∑ |       (

 ̂

 
)
     

| 
   

 
  

In our quasi-experiment, the variables of interest are binary variables AGG and POS, 

where AGG = 1 if demand is aggregated at the monthly level and 0 otherwise, and POS = 1 if 

the forecast input is POS data and 0 if order data. 

Controls 

We code each DC in accordance to its location as DC.  Our aim is to control for any unmeasured 

differences among DCs due to managerial or regional idiosyncrasies that might exist.  In addition, 

our products come from two categories each with its unique demand characteristics such as shelf 

life.  Therefore we also code these categories accordingly as variable CAT.    As previously 

mentioned, we generated customer demand forecasts using six pairs of reasonable smoothing 

parameters.  Thus, we code a third control variable, FP, for each combination of the smoothing 

parameters (see footnote 2).  All of these variables are to be used to control for the potential lack 

of independence within our dependent variable.   

 In addition, we include two additional variables that may potentially affect forecast error.  

First, forecast error tends to be affected by average demand (Mentzer & Cox 1984).  Therefore, 

we include the average weekly demand volume for each product, coded as Mean.  In addition, 

autocorrelation can also affect forecast accuracy.  Therefore we derive the autocorrelation factor 

for each product as well, coded as AR. 

D. ESTIMATION AND RESULTS 
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Average MAD and Autocorrelation Factor 

We present in Figure 2 an evaluation of average MAD broken down by temporal aggregation as 

well as data source.    Initial evaluation of average MAD supports the notion that POS is 

generally superior to DC orders in forecast accuracy (Williams & Waller, 2010) due to benefits 

of information sharing (Cachon & Fisher, 2000).   However, the difference between DC order-

based and POS-based order forecast diminishes as level of temporal aggregation moves from 

weekly to monthly.  Using weekly data, POS-based order forecast demonstrates statistically 

significant improvement in order forecast error (F = 38.47, p<0.01) over DC order-based forecast.    

However, when using monthly data, while POS-based order forecast is still nominally lower than 

DC order-based forecast, the difference is no longer statistically significant (F = 0.028, p>0.10).    

In comparing mean MAD difference between levels of temporal aggregation, results 

initially suggest that while the improvement to DC order-based forecast is not statistically 

significant (F = 0.767, p>0.10), the increase in POS-based forecast is indeed significant (F = 3.84, 

p<0.05).  Thus, evaluation of mean forecast error yielded by different cells of our quasi-

experiment appears to provide initial support for our hypotheses.  Lastly, we note an interesting 

observation in the average autocorrelation factor for DC orders and POS.  While POS exhibits 

positive autocorrelation (ARPOS = 0.73), DC orders are instead negatively autocorrelated (AROrder 

= -0.18). 

Hierarchical Linear Modeling 

Since our data for the 14 products are nested in two categories and six distribution centers, the 

assumption of independence as required for ordinary least squares (OLS) estimation is violated.  

Further, our forecast uses six different combinations of forecast parameters based on three levels 

of alpha and beta values, which results in systematic influence on the calculation of forecast 
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errors.  Therefore the traditional ANOVA-based analysis is not appropriate.  In order to account 

for the unobservable, idiosyncratic effects on forecast error, we use hierarchical linear modeling 

(HLM) to model the multi-level structure of the data (Raudenbush & Bryk 2002).  Specifically, 

HLM parcels out variance components based on higher levels of groups that may exert influence 

on measurement of the dependent variable. 

Hypothesis Testing 

We test our hypotheses regarding the interaction of effect of temporal aggregation and the use of 

POS and order data to forecast customer demand in multiple steps. Similar to the approach of 

Ang et al. (2002), DeHoratius and Raman (2008), and Liao and Chuang (2004), we estimate our 

model using full maximum likelihood in three stages.  First, we estimate a null model where no 

control or predictor variables are included.  In Model 1, we add the previously described control 

variables, and in Model 2, the experimental factors and their interaction are included. The HLM 

results are presented in Table 2.  

 Null Model   

To adequately account for all three potential influences, we begin our empirical investigation by 

partitioning the dependent variable into the variance across products I (I = 1, …, 14), categories j 

(j=1,2), DCs k (k=1, … 6) and combinations of forecast parameter f (f=1, … 6).  We estimate the 

model using full maximum likelihood similar to Ang et al. (2002), DeHoratius and Raman 

(2008), and Liao and Chuang (2004).  Thus our null model is: 

                                        

where θ0 is the fixed intercept parameter, while the random effect parameter of category j is 

CAT000j, the random effect parameter of DC k is DC000k, and the random effect parameter of 

combinations f is FP000f.  Finally, the random effect parameter of product I is eijkf.  Note that 
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CAT000j , DC000k, FP000f and eijkf are each normally distributed with a zero mean and variances of 

τCAT000, τDC000, τFP000, and   , respectively.   

In this estimation, results indicate statistical significance for all three potential sources of 

structural influence.  Category’s covariance parameter indicates that it accounted for 72% of the 

overall variance in MAD (τCAT000 = 13,607.57, p < .05).  DC effects accounted for an additional 

19% of the variance (τDC000 = 3,583.58, p < .01).  Forecast parameters accounted for a small but 

statistically significant 1% of the total variance (τFP000 = 166.61, p < .01).  The remaining 8% of 

the variance in MAD may thus be attributed to product level effects. 

Conditional Models   

For our conditional models, we add the fixed effects for our independent variables to our model 

hierarchically by entering the control fixed effects first, then our variables of interest and their 

interaction effect.  In Model 1, we enter our control variables to the null model. They include 

        ,       ,          and        . We then enter to Model 2 our two-way interaction of 

interest to the model,        𝑥        .  With the inclusion of this interaction term, we may 

obtain the estimated marginal means to test effect of temporal aggregation on order forecast error 

when DC order data is used (H1b) as well as when POS data is used (H1a).   Finally, we enter in 

Model 3 the full factorial of two-way interaction effects for                 and         as well 

as their three-way interaction in order to test the moderating influence of autocorrelation factor 

on the interaction effect of temporal aggregation and the use of POS data.    Thus, our full 

conditional model is specified as, 
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where β1 and β2 are the fixed effects on         due to the mean and underlying autocorrelation 

factor of POS demand, respectively. Β3 and β4 are the fixed effects across products for temporal 

aggregation and the use of POS history as forecast input, respectively.   Β5 to β7 are the fixed 

effects across products for the two-way interaction effects among                 and        .  

Finally, β8 is the estimated three-way interaction effect.    

Results 

As expected, an analysis reveals a significant interaction (          ,          ; see Table 2, 

Model 2) between the demand signal used to forecast and temporal aggregation from weekly to 

monthly observations. The simple effect analyses from the HLM results indicate that aggregation 

from weekly to monthly when using POS data to generate statistical forecasts significantly 

increases MAD from to 135.548 to 144.685 (        ,        ), providing support for H1a.  

On the contrary, the HLM results indicate that aggregation from weekly to monthly when using 

order data to forecast significantly decreases MAD from 150.872 to 143.349 (        , 

       ), providing support for H1b.   

H2a concerned the three-way interaction between temporal aggregation, the use of POS 

data, and autocorrelation factor.  Model 3 shows the estimated coefficients β7 and β8, which is 

the estimated effect of autocorrelation factor on forecast error when temporally aggregated DC 

order data is utilized (       𝑥       ) and when temporally aggregated POS data is utilized 

(       𝑥       𝑥      ), respectively. We find that       significantly increases forecast 

error in both instances: When temporally aggregated DC order data is used, forecast error 

increases if autocorrelation is positive (                ); Similarly, when temporally 
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aggregated POS data is used, forecast error also increases if autocorrelation is (             

     ).  Thus, Model 3 offers support for both H2a and H2b. 

E. DISCUSSIONS OF MANAGERIAL AND THEORETICAL IMPLICATIONS 

Our findings confirm the existence of countervailing statistical effects due to temporal 

aggregation in the context of customer demand forecasting using different demand signals.  By 

plotting the interaction effect (Figure 3) between temporal aggregation and the information type 

used to generate the customer demand forecasts, we gain further insight into this issue.  The plot 

clearly reveals that utilizing temporally aggregated data to forecast at the disaggregated level (i.e., 

a temporally top-down approach) has opposing effects on customer demand forecast error 

depending upon which information type is utilized.  That is, a temporally top-down approach to 

forecasting increases forecast error when POS data is utilized, but decreases forecast error when 

DC order data is utilized.  

In addition, we further find that the above temporal aggregation-information type 

interaction effect is moderated by the underlying autocorrelation factor of the information, as 

illustrated by Figures 4 and 5.  For both POS and DC orders, as the autocorrelation factor 

becomes increasingly negative, the temporally top-down forecasting approach decreases forecast 

error as the variance reduction effect is increased.  However, as the autocorrelation factor 

becomes increasingly positive, the temporally top-down forecasting approach increases forecast 

error as adverse effects from information loss overtakes the benefit of variance reduction.   

Finally, Figure 6 illustrates the full picture of the three-way interaction, which reveals 

two significant findings.  First, the superior information content embedded in POS makes it the 

preferred demand signal for forecasting.  However, while monthly POS is the preferred forecast 

input at low levels of autocorrelation, weekly POS instead offers superior forecast accuracy 
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when autocorrelation is strongly positive.  Second, variance reduction effect of temporal 

aggregation reduces forecast error regardless of information source. 

Managerial Implications 

Suppliers require accurate and timely forecasting to properly position inventory throughout its 

distribution network and schedule outbound logistics transportation operations.   Often, suppliers 

may choose to temporally aggregate input data under the belief that it improves forecast accuracy.  

Our results indicate that temporal aggregation has two countervailing effects, namely variance 

reduction and information loss.  Whereas the variance reduction effect reduces forecast error, 

information loss increases it.  Their collective effect on forecast error then depends on the 

autocorrelation factor of the forecast input.  As autocorrelation factor becomes increasingly 

positive, information loss effect overtakes variance reduction effect to increase forecast error.  

As a result, temporal aggregation can either improve or harm forecast accuracy.  Our findings 

have a clear managerial implication that is relevant to most suppliers in the retail supply chain. 

Recent industry consolidation had left only a small number of customers who account for 

increasingly large portions of suppliers’ total volumes (Hofer et al., 2012).  As a result, suppliers 

are becoming increasingly reliant on utilizing key customer account forecasts (Lapide 2007).  

The most readily observed customer demand signal from the suppliers’ perspective is the order 

data of their customers (i.e., the retailers), and as a result contains potentially valuable 

information indicating customer order behavior (Williams and Waller, 2010).  But these orders 

are prone to high degrees of fluctuation as due to the bullwhip effect (Lee et al. 1997).  Our 

results suggest that suppliers may counter this phenomenon through selective use of temporally 

top-down forecasting approach.  If a customer’s demand signal is negatively autocorrelated, 

greater variance reduction effect will result in superior demand forecast.  Conversely, variance 

reduction effect will diminish to yield less accurate forecast. 
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On the other hand, increasing number of retailers is sharing their POS data with suppliers.  

As a result, suppliers have visibility to demand signals from both their retail customers as well as 

consumers.  Our results once again show that POS data can be a superior source of information.  

Specifically, POS data tends to have less variance and provide suppliers with a more accurate 

view of consumer demand (Williams & Waller, 2010).  However, effective utilization of POS for 

forecasting is dependent on the tactical use of temporally top-down forecasting approach.  If 

POS is negatively autocorrelated, then suppliers should aggregate their data prior to forecasting 

to take advantage of the substantial benefit associated with variance reduction effect despite 

potential loss of information.  If POS is positively correlated, then suppliers should avoid 

temporal aggregation, since doing so will result in substantial loss in information that is not 

outweighed by the benefit from variance reduction.  Lastly, suppliers should be particularly 

cautious with the use of negatively autocorrelated POS data.  Our results indicate that if such 

data is not temporally aggregated, forecast errors can be higher than those obtained with DC 

order data.  

Theoretical Implications 

A long line of analytical literature on temporal aggregation argues that aggregation results in 

information loss to lead to decreased forecast accuracy (Amemiya & Wu, 1972; Rossana & 

Seater, 1995).  Yet empirical studies frequently concluded to the contrary (e.g., Hotta et al., 

2005).  We contribute to this discussion by showing that both variance reduction and information 

loss exist simultaneously in the temporal aggregation process.  While temporal aggregation can 

improve forecast accuracy through variance reduction, this effect is dependent on the 

autocorrelation factor of the data series—as data becomes increasingly positively correlated over 

time, the effect of variance reduction diminishes.  On the other hand, while information loss also 
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occurs, if data is sufficiently negatively autocorrelated, the benefit of variance reduction effect 

can outweigh information loss to improve forecast accuracy. 

In the context of the greater information sharing and supply chain management literature, 

this study has broader implications.  Data is being generated at increasingly higher volumes 

(McAfee & Brynjolfsson, 2012).  As a result, firms invest significant resources in sophisticated 

inter-organizational information systems (Ravichandran & Liu, 2011) to automate the collection, 

utilization, and dissemination process.  This study demonstrates that a key to the efficient and 

effective use of data is the proper specification of temporal aggregation prior to the forecasting 

process.  In particular, a chief benefit of information sharing is to enable firms to collaborate 

with supply chain partners (Allred et al., 2011) by adopting one-number forecasting (Finn, 2004) 

to synchronize supply chain activities (Cao & Zhang, 2011).  Whereas the extant literature 

emphasizes how data is collected and shared, our results indicate that how such information is 

technically processed can have impact on their utility. 

One of the keys to the efficient and effective use of shared data is to carefully consider 

the interaction between temporal aggregation and information source: While temporal 

aggregation can lower variance to improve forecast accuracy, it can also mask valuable 

information such as consumer demand patterns.  In the collaboration process, operations 

planning idiosyncrasies among firms and functions frequently result in conflicting levels of 

temporal aggregation at which data is collected and utilized (Pauwels et al., 2004).  Thus, as 

firms engage in collaborative demand planning to generate statistical forecasts (Rexhausen et al., 

2012), the proper selection of forecast parameters such as level of temporal aggregation and 

information source can result in improved forecast accuracy.   

F. CONCLUSIONS, LIMITATIONS, AND FUTURE RESEARCH 
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In this study, we reconciled two conflicting effects of temporal aggregation on forecast accuracy 

by utilizing paired order and POS data collected for a large number of SKU-DC combinations.  

Whereas analytical literature generally argue that temporal aggregation results in less accurate 

forecast, a large number of empirical studies and evidence from industry point to the contrary.  

We find that temporal aggregation’s effect on forecast accuracy in the retail supply chain is 

dependent on the source of the input data.  However, we note some limiting factors that should 

be pursued.  First, our data come from two high volume, non-seasonal categories.  Further 

research should address our research questions in both seasonal as well as low-volume categories.  

In addition, since our data come from one single retailer, we are unable to assess the potential 

differences between retail formats as well as pricing strategies. 

 Additional research could also examine additional types of forecast methods.  While we 

used the most commonly-utilized time series forecast methods given our category characteristics, 

other more complex (and simpler) quantitative and qualitative forecast methods can yield 

additional insight in collaborative demand planning in the supply chain.  For example, bullwhip 

can result from both deliberate as well as random managerial and behavioral idiosyncrasies (Lee 

et al., 1997).  Future research can attempt to parcel out the incremental variance due to deliberate 

managerial policies that are predictable (e.g., planned inventory build-up) from those that are 

random (e.g., gaming for fear of shortage).  Alternatively, category growth implies a moving 

average.  Hence, an increasing mean with corresponding increase in variance may give 

companies additional incentive to use the multiplicative model.  Otherwise a data series with 

predominant growth in mean without matching increase in variance may instead yield lower 

forecast error through the use of the additive model. 
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Table 1 – MAD by category, temporal aggregation, and demand signal 

   
Temporal Aggregation 

Category 1 

 

Weekly 

 

Tagg4 

 
Order 

 

66.161 

 

61.240 

 
POS 

 

56.334 

 

59.384 

Category 2 

    

 
Order 

 

331.690 

 

322.460 

  POS   325.954   349.450 

  

9
0
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Table 2 – Hierarchical linear modeling results 

Variable   Null   Model 1   Model 2   Model 3 

Fixed effects                 

  Intercept   142.97 (35.41)***   23.88 (17.97)   18.78 (18.00)   32.53 (18.08)* 

 β1 Mean       0.35 (0.03)***   0.35 (0.03)***   0.35 (0.03)*** 

 β2 AR       -3.53 (2.62)   -2.05 (2.61)   -11.09 (4.90)** 

β3 Agg       0.79 (0.68)   9.14 (0.96)***   -30.47 (1.38)*** 

β4 POS       -5.67 (2.44)**   -15.32 (2.56)***   13.23 (4.29)*** 

β5 Agg x POS         16.66 (1.36)***   -26.35 (5.00)*** 

β6 POS x AR               -27.86 (7.57)*** 

β7 Agg x AR               54.80 (5.64)*** 

β8 Agg x POS x AR               35.56 (8.62)*** 

                    

Random effects               

  CAT 16648.14 (6624.82)**   2080.27 (1343.01)   2089.04 (1347.71)   2148.16 (1374.25) 

  DC   4913.48 (844.04)***   3362.99 (615.60)***   3362.95 (615.64)***   3357.18 (614.36)*** 

  FP 326.18 (56.80)***   326.26 (56.80)***   326.31 (56.80)***   326.35 (56.80)*** 

  Residual   2995.91 (26.57)***   2975.92 (26.39)***   2958.50 (26.24)***   2948.89 (26.15)*** 

-2 Log Likelihood 278204.13   277982.05   277832.8   277750.171 

      222.08   149.25   82.629 

Notes: Standard errors are shown in parentheses.   

 *p<0.1, **p<0.05, ***p<0.01. 

   

9
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Figure 1 – Quasi-experimental design 
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Figure 2 – MAD and autocorrelation factor 
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 Figure 3: Interaction plot of temporal aggregation and retail demand signal 
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Figure 4 – Autocorrelation’s impact on MAD for weekly and monthly POS demand 
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Figure 5 – Autocorrelation’s impact on MAD for weekly and monthly DC demand 
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Figure 6 – Autocorrelation’s impact on MAD for weekly and monthly POS and DC 

demand 
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V. DEMAND SIGNAL AND MODEL SELECTION FOR SEASONAL 

FORECASTING—THE MODERATING ROLE OF BULLWHIP 

A. INTRODUCTION 

Bullwhip is defined as the amplification of demand variance as demand signal travels upstream 

along the supply chain (Lee et al., 1997) to obscure visibility to true demand.  Increased demand 

variance can command higher than necessary inventory due to poor customer demand forecast 

(Agarwal & Holt, 2005) and lead to significant write-downs (Hanssens, 1998).  Although 

conventional literature prescribes information sharing by downstream firms as a key remedy to 

assist suppliers with demand planning (Lapide, 1999; Lee et al., 1997; Cachon & Fisher, 2000), 

the actual value of this practice for forecasting purposes had come under doubt (Williams & 

Waller, 2010).  

Demand signals shared by firms downstream along the supply chain are relatively free of 

idiosyncratic distortions.  With a more accurate view of consumer demand, suppliers are 

believed to be able to reduce uncertainty in the supply chain (Cachon & Fisher, 2000; Lee et al., 

2000).  However, in forecasting short term customer demand, suppliers are not necessarily 

preoccupied with predicting consumer demand.  Instead, their immediate customers are the 

retailers, whose ordering patterns may or may not be directly in response to short term consumer 

demand (Parkany, 1961).  Determining the appropriate forecast input is particularly important for 

seasonal products for both suppliers and retailers.  Compressed selling season means that too 

much inventory leads to increased discounts while too little results in lost sales.   

Because of their significant spike in short-term demand, seasonal products command 

greater flexible transportation, storage, and labor capacities.  In response, retailers often engage 

in ordering patterns that deviate from consumer demand in an attempt to smooth seasonal 
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demand spikes, thereby alleviating retail operations constraints (Bray & Mendelson, 2012). 

Thus, shared consumer demand signal is not necessarily the most appropriate forecast input for 

retail orders.  Along the lines of this principle, Williams and Waller (2010) found that POS data 

may not always be the optimal forecast input for suppliers.  However, bullwhip increases both 

variance components of a demand series.  Therefore its influence on the use of downstream 

demand signal for customer demand forecasting warrants investigation. 

In addition to demand signal selection, model selection is equally ambiguous in seasonal 

forecasting.  For time series data which are known a priori to be seasonal, the seasonal effect 

may be either additive or multiplicative (Chatfield, 1978).  Although theoretical literature 

indicates an overall preference for the multiplicative model (Chatfield & Yar, 1988), there is 

little empirical evidence to provide guidance for the model selection process.  Furthermore, most 

software packages utilized by companies today do not offer diagnostics to assist planners with 

model selection.  Considering that bullwhip alters the cyclicality and variance properties of 

demand signals (e.g., Thornhill & Naim, 2006), its effect on the seasonal forecast model 

selection warrants exploration as well. 

Using a large sample of demand signals, point-of-sale (POS) and order data, for products 

from a high volume seasonal category, this study contributes to the body of literature on data 

science in supply chain management in two folds.  First, our findings corroborate with Williams 

and Waller (2010), POS is not appropriate for suppliers to use for demand planning.  However, 

bullwhip’s distortionary effect closes the forecast performance gap between POS and order.  

Second, our exploratory analysis in forecast model preference reveals that when POS is the 

demand signal utilized, multiplicative generally outperforms the additive forecast model.  But as 

bullwhip increases, the additive model begins to outperform multiplicative model. 
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B. Literature and Hypotheses 

Demand Signal and Bullwhip 

Recent advancement in supply chain management strategies gave rise to collaborative 

forecasting practices that place a particular emphasis on information sharing as firms positions 

downstream along the supply chain share their observed demand with their partners upstream 

(e.g., Cachon & Fisher, 2000).  By sharing relevant and meaningful information (Kaipia & 

Hartiala, 2006), companies may improve both inter-functional and inter-company linkages 

(Schoenherr & Swink, 2012), empower collaboration capabilities (Allred et al., 2011), and tame 

the bullwhip effect (Lee et al., 1997) to generate superior statistical forecasts (Rexhausen et al., 

2012).  In turn, superior statistical forecasts may be used to synchronize supply chain activities 

across both the company (Olivia & Watson, 2011) the supply chain (Cao & Zhang, 2011).   

In the retail supply chain, suppliers may either replenish stores directly or through a 

retailer’s distribution centers (DC).  Often, large retailers follow a centralized distribution 

process where retail stores are replenished by regional DCs.  Electronically-transmitted point-of-

sale (POS) data along with retail orders are then aggregated at the DC level.  Based on data 

collected from retail stores, DCs place periodic orders with the suppliers.  These orders, in turn, 

become suppliers’ most readily observed customer demand and often serve as the principle 

demand signal suppliers utilize for forecasting future customer demand.   

Based on the myriad advantages associated with information sharing, a logical conclusion 

may be drawn that downstream demand signals are always superior.  Yet, recent research 

indicates that POS data does not always outperform DC orders in forecast accuracy (Williams & 

Waller, 2010).  As retail sales accumulate at the store level, replenishment and execution 

processes at various nodes of a retailer’s internal distribution network (Vogt, 2010) influence DC 
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orders placed with its suppliers.  In addition, idiosyncratic effects such as warehouse 

management systems (Autry et al., 2005), and supply chain processes such as postponement 

(Zinn & Bowersox, 1988) and inventory management policies (Evers & Beier, 1998; Goldsby et 

al., 2006) may all impact retail orders.   

Retailers frequently utilize inventory and order management strategies to mitigate short-

term demand variability and alleviate operations planning difficulties (Dooley et al., 2010).  For 

seasonal products in particular, retailers can reduce operational strains placed on its distribution 

network through smoothing spikes in seasonal demand (Cachon et al., 2007; Bray & Mendelson, 

2012).  A frequent result of such demand signal processing is altered cyclicality, because the 

retailer tends to steadily build inventory during low demand seasons for rapid depletion when 

seasonal demand peaks.  Thus, both historic and future DC orders associated with seasonal 

products tend to reflect the retailer’s systematic ordering patterns and less so consumer demand.   

Under collaborative forecasting practices, suppliers often have access to both demand 

signals concurrently.  Whereas the POS offers a more accurate view of consumer demand, order 

data possesses demand variance entails retail inventory and order management policies.  Thus, 

while the supplier may leverage POS data to forecast future consumer demand and gain market 

insight in the long term, its immediate short term concerns remain fulfilling retail customer 

demand in the near term.  Since future DC orders will likely continue to follow past ordering 

patterns, we expect the use of POS data as the forecast input to increase forecast error. 

H1: The use of POS demand signal as the forecast input is positively 

associated with forecast error. 
 

The bullwhip effect (e.g., Lee et al., 1997) is a major contributor to forecast error.  The 

reason is simple and compelling: additional demand variance introduced by managerial and 
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behavioral idiosyncrasies result in unpredictable alteration to demand pattern.  However, Bray 

and Mendelson (2012) identified two main components of bullwhip in seasonal and stochastic 

variance.  Whereas the seasonal smoothing effect lowers the magnitude of the bullwhip effect 

(Cachon et al., 2007; Bray & Mendelson, 2012), stochastic influences amplify it.  

In addition to retail ordering and inventory management policies, DC orders also reflect 

idiosyncratic effects such as behavioral factors (Lee et al., 1997; Kaipia et al., 2006), which tend 

to amplify demand variance.  While changes due to seasonal inventory management policies can 

be expected to recur with each cycle, behavioral factors are far less predictable.  Moreover, 

seasonal and stochastic variance components are hard to distinguish and even more difficult to 

separate.  Further, whereas the seasonal component of demand variance can be interpreted as 

constant or a function of mean demand (Chatfield & Yar, 1988), unpredictable behaviors’ 

inflates demand variance at random.  

As characterized by Bray and Mendelson (2012), the “tug-of-war” between seasonal 

smoothing and stochastic influence often results in net increase in demand variability upstream 

along the supply chain.  Heightened bullwhip reflects greater influence from stochastic 

amplification on order variability over deliberate and recurring seasonal smoothing.  As a result 

of increased bullwhip, forecast accuracy deteriorates.  Forecasters may mitigate the detrimental 

effect of high bullwhip on forecast accuracy by utilizing downstream demand signals (Lee et al., 

2000).  Thus, the use of POS data for seasonal products that exhibit high degree of bullwhip 

should lead to more accurate customer demand forecast.  Hence: 

H2: The use of POS demand signal as the forecast input negatively moderates 

the positive effect of bullwhip on customer demand forecast error. 

C. Methodology 

Demand Forecast Competition 
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To test our hypotheses, we develop a demand forecast competition (DF-Competition) by using 

monthly data collected by a large national retailer.  The design of this competition builds on 

Williams and Waller (2011), which develops customer demand forecast utilizing two sources of 

demand signals, namely POS and DC orders.  POS is defined as the cumulative number of units 

sold during each month at all stores served by a specific DC; each DC may serve up to 

approximately one-hundred stores.  All DCs experience similar volumes of aggregate retail 

demand.  Additionally, an order is defined as the cumulative number of units ordered by the 

particular retailer DC during the same month.  Since the particular retailer in our sample only 

purchases each SKU by cases, POS and orders are therefore measured in cases as well. 

To generate customer demand forecast, we utilize two types of commonly-used seasonal 

models: Holt-Winter’s additive and multiplicative.  The additive model assumes that the seasonal 

effect is constant over time.  The multiplicative model assumes that the seasonal effects are 

proportional to the deseasonalized mean level.  Note that the deseasonalized mean level may be 

modified by an additive trend term (Chatfield, 1978).  While additive and multiplicative models 

provide distinct treatment to calculate smoothed components, the additive model procedure for 

estimating future demand can be described by: 

 ̂    (      )      

where  ̂ and S are the estimated demand and smoothed seasonal factor at time t, for m periods 

into the future, respectively.    and   are the smoothed level demand and trend at time t.  

According to McKenzie (1976), the additive model is optimal for only a particular ARIMA 

process, therefore it is not considered to be a flexible description of possible seasonal processes.  

The multiplicative model procedure can be described by: 

 ̂    (      )     
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The smoothed components for each forecast model must be estimated with three 

smoothing parameters (alpha, beta, & gamma).  To ensure the level of rigor in our forecast 

competition, we utilize twenty-seven different combinations of the three smoothing parameters.  

The specific levels were chosen based on extant forecast literature (Silver, Pyke, & Peterson 

1998), which prescribes the recommended maximum, optimal, and minimum levels for each 

parameter.  The specific levels can be seen in Appendix I.  For each SKU-DC combination, we 

generate separate forecasts based on each combination of smoothing parameters for both additive 

and multiplicative models. 

First, we utilize two years of monthly observation for in-sample model estimation to 

obtain components of level, trend, and seasonal components of demand forecast.  Next, we 

compare the monthly forecast with out-of-sample monthly demand to measure forecast 

performance.  Forecast performance is measured as mean absolute percentage error (MAPE), 

which is a commonly-used forecast error metric (McCarthy et al. 2006; Mentzer & Kahn 1995).  

To construct the additive versus multiplicative forecast experiment, we create a two-by-two 

forecast design to reflect common supplier forecast settings, resulting in four distinct groups.   

Figure 1 illustrates our DF-competition setup.  We estimate for each SKU-DC 

combination the smoothed components for level, trend, and seasonality for order and POS data 

using both additive and multiplicative Holt-Winters seasonal forecasting models.  We next 

utilize the estimated forecast components to generate DC orders for each SKU-DC combination 

over a 6 months out-of-sample forecast horizon.  Next, we calculate for each SKU-DC 

combination their DC order forecast error using estimated demand from POS and order data. 

Model Specification 

 



 

106 
 

Demand forecast requires forecasters to first consider demand variance (D) and forecasting 

method (M).  Therefore, forecast error (MAPE) is a basic function of D and M: 

MAPE = f(D,M) 

 

A common measure of demand uncertainty is simply the variance of demand.  However, 

variance alone cannot adequately inform probability distributions.  Dekimpe and Hanssens 

(1995) conducted a meta-analysis of 44 studies that include 180 sales series and found that 68% 

of the sales series are nonstationary.  Thus, a trend component should be included to account for 

change in mean demand.  Ideally, demand variance for seasonal products should be separated as 

different components reflecting exogenous factors that induce demand variability such as 

calendar, length of seasonal cycle, and in-season factors such as weather and holidays.  However, 

many of these variance components are stochastic and cannot be estimated.  Therefore, we define 

demand variance (D) as a function of the variance (Var) and trend (Trend): 

D = f(Var,Trend) 

 

Our demand forecast is generated with two commonly-utilized seasonal forecasting 

models—Holt-Winter’s additive and multiplicative models.  Both models incorporate a set of 

three smoothing parameters to place desired emphasis on level, trend, and seasonality for 

generating new statistical forecasts.  Therefore the smoothing parameters alpha, beta, and 

gamma, all leverage unique influence on the demand forecast.  Once the model and parameters 

are selected, forecasters need to further determine the forecast horizon (Horizon).  Thus, we 

define forecasting method as the function below: 

M = f(Additive, Multiplicative, alpha, beta, gamma, Horizon) 

 

Therefore, we define the forecast error of seasonal products as: 

 

MAPE = f(Var, Trend, Additive, Multiplicative, alpha, beta, gamma, Horizon). 

 



 

107 
 

Although the above function is complete for a typical seasonal forecasting setting, this 

study tests the effect of the demand signal utilized in seasonal forecasting as well.  Specifically, 

the forecast experiment pits two sources of demand signals in a DF-Competition from the 

perspective of a supplier.  One demand signal is the retail order history (Order).  The second 

demand signal is the POS history (POS) that is visible to suppliers in a collaborative forecast 

setting.  A primary statistical distinction between the two demand signals is that retail order 

history is more susceptible to the bullwhip effect.  Amplified variance (i.e., bullwhip) induces 

randomness to adversely impact forecast performance.  Therefore, we further add Bullwhip to the 

function as outlined above: 

MAPE = f(var, trend, Additive, Multiplicative, alpha, beta, gamma, Horizon, POS, 

Order, Bullwhip) 

In transforming the above definition of forecast error in the context of this study to a testable 

model, we make the following adjustments.  First, initial tests (Durbin-Watson = 2.81) indicated 

that the dependent variable possesses significant first order autocorrelation, therefore we include 

its lagged term to account for potential biases.  Second, most seasonal factors are assumed to be 

multiplicative (Chatfield & Yar, 1988).  Therefore, we code Additive as a binary variable to 

account for its influence, for which 1 indicates a forecast error that is generated with the additive 

model and 0 if multiplicative.  Third, a focal variable of this study is the effect of utilizing shared 

consumer demand signal—POS, from the retailer (H1).  We code POS as a binary variable as 

well.  Hence, we drop Multiplicative and Order in our regression equation below.  Lastly, H2 

concerns the moderating influence of Bullwhip on the effect of POS.  Thus, an interaction term, 

Bullwhip*POS, is included in our full model, presented below: 
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Where subscripts i, d, and m designate the product (i = 1, …, 6), DC (d = 1, …, 6), and time 

period (m = 1, …, 6), respectively. 

Data Collection and Measures 

Our data comes from a high volume and highly seasonal grocery category that is one of the most 

commonly-shopped categories in a typical grocery retail format.  Specifically, our sample 

includes two-and-a-half years of monthly data for six SKUs from six regional U.S. retail DCs.  

These DCs are operated by one of the supplier’s largest retail customers. In all, our sample 

contains thirty-six unique SKU-DC combinations of thirty monthly DC order and POS sales 

series.  DC orders are defined as the total monthly cases of a product ordered by a particular DC 

to the supplier while POS is the cumulative monthly sales of the retail stores served by the 

particular DC. 

The objective of our DF-Competition is to compare the customer demand forecast errors, 

from the supplier’s perspective, based on combinations of demand signal and forecast model 

utilized.  Of the thirty monthly demand observations, we utilize the first twenty-four months for 

in-sample estimation of forecast parameters, which are then used to forecast demand and 

calculate out-of-sample forecast errors for the remaining six months. 

Dependent variable and variables of interest 

 

As mentioned previously, forecast error is measured as MAPE.  It is also our dependent variable 

for the regression model.  MAPE measures forecast error by averaging the absolute value of the 

percent error for each forecast.  It is calculated by first taking the absolute value of the actual 
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monthly orders (A) less the order forecast ( ̂).  Next, the absolute value of the difference is 

divided by A.  Finally, the average of the cumulative total percent error is calculated at each 

forecast horizon.  The calculation for         for customer demand forecast is shown: 

        (
 

 
) ∑ |

(      ̂   )

    
 |

 

   

 

In addition, our variables of interest include            ,       , and            .  

            and        are both binary variables so no further calculation is needed.  The 

bullwhip effect is consistently defined as the amplification of demand variability due to 

managerial and behavioral activities such as demand signal processing (e.g., Lee et al., 1997; 

Sterman, 1989; Dejonckheere et al., 2003; Chen & Lee, 2012).  Thus, following the established 

definition,             is calculated as: 

           
   (   )

   (   )
 

Control variables 

 

Our control variables include        and         , which are specific to each SKU-DC 

combination, and forecasting parameters         ,        ,         , and           .  

Because the retailer processes demand signals from the consumers to generate orders, therefore 

       is calculated simply as the variance of POS for each SKU-DC combination over the in-

sample estimation period of twenty-four months.  Similarly,          is also calculated for the 

in-sample estimation period by simply regressing monthly POS for each SKU-DC combination 

against time, i.e.,                     , in which   is the linear trend coefficient for each 

time series.  Recall that we utilize three different values for each of the forecast parameters 

        ,        , and          (Appendix I).  They are included as continuous variables to 
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control for potential systematic influence on forecast error.  Lastly,            is the forecast 

horizon associated with each forecast, and it ranges from 1 to 6.   

D. Descriptive Statistics 

We present, in Table 1, the descriptive statistics and correlations for MAPE along with the 

various measures of demand distribution characteristics.  The overall average MAPE over a six 

period forecast horizon is approximately 78%, which once again highlights the difficulty 

associated with forecasting seasonal orders.  The median MAPE is about 49%, indicating that the 

distribution of MAPE is somewhat skewed by a small number of observations that have large 

magnitude of forecast error.  Our sample demonstrates substantial bullwhip effect with the 

average variance ratio being 1.27.  In addition, demand for SKUs in this study demonstrated a 

positive trend, with 19.27, during our data collection period  

Figure 2 shows comparison of MAPE by forecasting method, for each demand signal.  As 

expected, the multiplicative forecast model significantly outperforms the additive model for both 

demand signals by approximately thirty percentage points.  While Figure 2 suggests that there is 

no difference between the two demand signals with respect to average MAPE, Table 2 presents a 

more detailed view.  We first segment MAPE by forecast models and then by demand signal to 

compare the forecast performance of demand signals within each model.  Despite the relatively 

similar average MAPE, POS outperforms order approximately 62% of the time.  However, when 

order outperforms, the average improvement to forecast error is much higher. Therefore, demand 

signal input can significantly impact forecast performance for both models.   

In addition, we also segment MAPE by demand signal and then by forecast model to 

compare difference between models within each demand signal.  Pair-wise comparison revealed 

that while the multiplicative model outperforms additive 56% of the time, the resultant 
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improvement to MAPE is 75 percentage points when the demand signal utilized is POS, and 62 

percentage points for order.  For the other 44% of pair-wise comparisons when additive 

outperforms multiplicative, their difference in MAPE is 18 percentages points for when forecast 

input is POS, and 13 percentages points for order.  Thus, while multiplicative outperforms 

additive a small majority of the time, the resulting improvement is much higher than when the 

reverse is true.  On the other hand, additive still outperforms multiplicative on many occasions, 

and yield sizeable improvement to forecast error.  To better assist forecasters with model 

selection, we conduct an exploratory analysis to examine the influence of demand characteristics 

on model superiority after we test our hypotheses. 

E. Hypothesis Testing and Results 

We hierarchically enter our variables into our model.  First, all control variables are 

entered into Model 1 (Table 3).  Coefficients for all control variables are significant at the 0.01 

level and are of the expected signs.  Durbin-Watson statistic is 2.16, which alleviates 

autocorrelation concerns with MAPE.  The control variables collectively explain 32.9% of the 

total variance in MAPE.   

Next, we enter our direct effects of interest.  Total variance explained increased to 33.6%, 

while Akaike’s Information Criterion decreased from 3.752 to 3.742.  Results show that bullwhip 

is positively associated with MAPE (               ), which supports the notion that 

demand signal distortion leads to less accurate forecast.  H1 argues that for seasonal products, 

the use of POS increases customer demand forecast error.  Statistical evidence supports H1 

(                ), indicating that the use of POS is positively associated with MAPE.  In 

Model 3, we enter the interaction term for POS and Bullwhip.  Results show a significant 
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interaction (                 ) to lend support for H2.  The use of POS data as forecast 

input can mitigate bullwhip’s inflationary effect on forecast error.  

Lastly, models indicate that additive positively influences MAPE (               ), 

which supports the belief that multiplicative, in general, is the preferred seasonal forecast model 

(Chatfield & Yar, 1988).  However, recall in Table 2 that the additive model does outperform the 

multiplicative 44% of the time, often to sizeable improvements between 13 to 18 percentage 

points.  Clearly, a generalized statement in broad support of multiplicative over additive is not 

appropriate.  Together, the descriptive statistics and regression results further call an exploratory 

analysis to examine determinants of model choice between the two Holt-Winters seasonal 

forecast models. 

Model Robustness 

Although we controlled for demand characteristics associated with each SKU, as well as 

forecasting parameters, there may be additional idiosyncratic difference exist among different 

SKUs due to consumer preference.  Thus, to verify that these potential idiosyncratic effects do 

not adversely impact conclusions that may be drawn from our statistical model, we performed an 

additional model (Alt. Model, Table 3) to include product fixed effects.  As shown, all 

parameters estimates of interest remained qualitatively the same, with the lone exception of the 

direct effect of bullwhip is no longer significant with the inclusion of its interaction effect with 

POS.  However, this is expected since the bullwhip ratio in this study is operationalized at the 

product level. 

F. Exploratory Analysis 

Seasonal Forecasting Model Selection 

While most seasonal factors are considered multiplicative in nature (Chatfield & Yar, 1988), our 

initial comparison of between-model forecast error indicates that additive outperforms 
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multiplicative 44% of the time.  Considering that the multiplicative is most commonly applied, 

substantial opportunities remain in increasing seasonal forecast accuracy by diagnosing demand 

characteristics that can be used to make the optimal model choice.   

Exploratory Logistic Regression  

First, we code        as a binary variable that represents when the multiplicative model 

outperforms the additive (        ) for SKU I, DC d, and time m.   We utilize all demand 

characteristics from the regression model,       ,         ,           , and            .  

In addition, we include the binary variable,       , to indicate when POS is utilized as the 

demand signal for forecasting customer demand.  Finally, to perform a thorough examination of 

how the demand characteristics of different demand signals influence model selection, we also 

include all of          two-way interaction with demand characteristics.   

Since our dependent variable,       , is a binary variable, parameters should not be 

estimated with OLS (Greene, 2011).  Therefore we estimate our model with logistic regression to 

obtain the change in the probability that our dependent variable is 1, with change in each 

independent variable.  We enter the direct and interaction effects in blocks.  In Table 4, we 

present the logistic regression results. 

We enter the direct and interaction effects hierarchically.  Direct effects (Model 1, Table 

4) suggest that variance, forecast horizon, bullwhip, and the use of POS demand signal all result 

in increased likelihood of the multiplicative model outperforming the additive model.  In 

addition, trend is the only direct effect that decreases the likelihood of the multiplicative 

outperforming the additive, which suggests that the additive model’s relatively conservative 

treatment of the seasonal factor may be preferred for demand forecasts farther into the future.  
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The interaction effects of logistic regression (Model 2, Table 4) provides a more detailed 

examination of seasonal forecasting model selection given two demand signals.  All interaction 

terms are between POS and the four demand distribution characteristics variables.  The 

McFadden R-Squared increased to 47.5% to match a drop in both the negative log of likelihood 

and Akaike’s Information Criterion.  We find that POS negatively moderates bullwhip and trend 

in their respective influence on the likelihood of multiplicative outperforming additive.  In 

addition, POS positively moderates variance and horizon in their respective influence.   

G. Discussion and Implications 

In the retail supply chain, retailers engage suppliers in collaborative demand planning by sharing 

POS data, which are demand signals observed at the consumer level.  While information sharing 

is only one part of a broader supply chain integration effort, it has significant impact on 

operational, and thereby, financial performance (Germain & Iyer, 2006).  The value in utilizing 

POS data for forecasting customer demand is well recognized (e.g., Williams & Waller, 2010).  

However, POS’s value in seasonal forecasting is less clear.  In particular, POS and order data 

have unique information.  Whereas the former more closely reflects consumer demand, order 

data contains potential indicators of retailer inventory management policies.  Further 

complicating seasonal forecasting is the existence of two competing models, namely Holt-

Winters multiplicative and additive model.  We attempt to diagnose the effect of demand 

distortion and selection on both forecast performance and model choice. 

Results from this study corroborate with Williams and Waller (2010), and show that 

using POS for forecasting seasonal customer demand can increase forecast error.  That is not to 

say that there is no inherent value in the information provided by POS.  Rather, a primary benefit 

of POS data is visibility to consumer demand without demand distortion.  Due to retailers’ 
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propensity to smooth seasonal consumer demand (Bray & Mendelson, 2012), future retail orders 

for seasonal products are more likely to follow past order patterns.  POS therefore is not the 

optimal demand signal for seasonal forecasting, because it reflects only consumer demand and 

not retail ordering policies. 

However, the performance gap between POS and order decreases as the degree of 

bullwhip increases. As illustrated in Figure 2, order-based forecast accuracy decreases as 

bullwhip increases, while the opposite is true for when forecast utilizes POS data.  As retailers 

engage in seasonal smoothing policies, “rhythmic” ordering can result in cyclical properties (e.g., 

McCullen & Towill, 2002) that future orders likely follow (Parkany, 1961).  From a supplier’s 

perspective, POS provides clarity to consumer demand patterns but not insight into retail 

ordering policies.  With increased bullwhip, stochastic variance component of order data 

becomes amplified due to unpredictable behavioral factors to negatively impact forecast 

accuracy in two ways.  First, unpredictable behavioral factors generally do not follow any 

statistical patterns.  Second, inflated variance has a destabilizing effect on the overall demand 

forecast.  Thus, when bullwhip is low, order history may allow suppliers to anticipate future 

customer orders by incorporating statistical properties due to retail ordering policies.  However, 

as bullwhip increases, the resultant noise may obscure actionable intelligence derived from order 

history.  Thus, while order may be preferable to POS in seasonal forecast, bullwhip tends to 

equalize their forecast performance. 

Although the choice of demand signal with consideration to bullwhip is important, 

forecast model can influence forecast error as well.  Results from our regression analysis suggest 

that the additive model tends to increase forecast error.  However, the additive model still 

outperformed multiplicative 44% of the time, often with significant improvement to forecast 
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error.  Our exploratory logistic regression analysis provides more insight on factors that 

contribute to selecting one model over the other. 

Two key differences demarcate the two forecast models.  Whereas the additive model’s 

calculation weighs the difference between observed demand and forecasted components, the 

multiplicative model weighs the ratio of observed demand and forecasted components.  Thus, 

the multiplicative model is more responsive to increased variance while the additive model is 

less so.  In our logistic regression model, the only factor to negatively impact the likelihood of 

multiplicative model outperforming additive is trend.  This is expected, as an increase in trend, 

all else equal, decreases the emphasis on variance, which compromises the value in using the 

multiplicative model.  Particularly interesting is the positive association between POS and the 

preference for multiplicative model.  This result seemingly suggests that POS’s seasonal factor is 

more closely associated with multiplicative seasonal factor.  In addition, bullwhip increases 

variance, for which the multiplicative model is well-equipped to address. 

In consideration of both sets of regression results, we argue that while order data is often 

the preferred forecast input for suppliers attempting to forecast customer demand, POS’s value in 

mitigating the destabilizing effect of bullwhip increases as demand variance becomes amplified.  

In addition, the preferred model is no longer multiplicative if POS were utilized.  Overall, a two-

step decision in the selection of demand signal and seasonal forecasting model can be 

formulated.  First, the demand signal of choice should be decided based upon the degree of 

bullwhip.  If the bullwhip effect is high, then POS can potentially result in more accurate 

forecast; otherwise order data should be utilized.  The next decision would be the appropriate 

seasonal forecasting model.  If POS data is utilized due to high degree of bullwhip, then the 
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additive model should be selected.  However, the multiplicative model is more likely to yield 

superior forecast performance in all other seasonal forecast settings. 

H. Conclusions, Limitations, and Future Research 

In this study, we attempt to examine the influence of demand signal and bullwhip on forecast 

accuracy and model choice for forecasting seasonal customer demand.  While the value of 

downstream demand signal had been called into question, our results provide a clearer view to 

the picture.  POS can remain an appropriate and effective demand signal when the bullwhip 

effect is significant.  In addition, considering that the calculation of bullwhip requires visibility to 

downstream demand signals, information sharing in the retail industry has innate value even if 

POS is not utilized as a forecast basis. 

Although results from this study are drawn from thirty-six distinct time series, they are all 

similar products competing in the same category, and sold through one retail format.  

Considering the diverse range of retail management policies that may impose influence on order 

variance, further studies are warranted with other seasonal categories, from other retailers and 

retail formats, with different demand signal both from the consumer level and the retail orders. 
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Table 1 – Descriptive statistics 

 

Mean Median Stand. Dev. MAPE Bullwhip Var 

MAPE 0.78 0.49 1.93 

   Bullwhip 1.27 1.28 0.24 0.10 

  VAR 189912.81 43826.29 342834.90 0.001 -0.30 

 Trend 19.27 12.17 20.22 -0.08 -0.49 0.87 
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Table 2 – Differences in forecast performance 

Method Multiplicative   Additive 

  

POS Order 

 

POS Order 

% Superior 62% 38% 

 

63% 37% 

% Difference 19% 22% 

 

22% 43% 

Demand 

Signal POS 

 

Order 

  

Multiplicative Additive 

 

Multiplicative Additive 

% Superior 56% 44% 

 

56% 44% 

% Difference 75% 18% 

 

62% 13% 
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Table 3 – Regression results for MAPE 

 

DV = MAPE Model 1   Model 2   Model 3   Alt. Model
a
   

Control Variables 

        

 

Var 0.001 (0.000) * 0.001 (0.000) * 0.001 (0.000) * 0.001 (0.000) * 

 

Trend -0.024 (0.002) * -0.029 (0.002) * -0.035 (0.002) * -0.049 (0.006) * 

 

Horizon 0.094 (0.008) * -0.039 (0.013) * -0.054 (0.013) * -0.056 (0.013) * 

 

Alpha 1.181 (0.080) * 0.928 (0.081) * 0.898 (0.081) * 0.894 (0.081) * 

 

Beta 1.070 (0.163) * 0.752 (0.164) * 0.712 (0.164) * 0.709 (0.164) * 

 

Gamma 0.422 (0.037) * 0.376 (0.037) * 0.370 (0.037) * 0.369 (0.038) * 

  AR(1) 0.565 (0.005) * 0.552 (0.005) * 0.552 (0.005) * 0.544 (0.006) * 

Effects of Interest 

        
 

Additive 
  

0.345 (0.038) * 0.331 (0.038) * 0.329 (0.038) * 

 

Bullwhip 

  

0.429 (0.050) * 0.558 (0.055) * 0.054 (0.150) 

   POS     0.211 (0.049) * 1.437 (0.209) * 0.934 (0.248) * 

Interaction 

          POS*Bullwhip         -0.963 (0.160) *  -0.668 (0.188) * 

Durbin-Watson 2.16 

 

2.15 

 

2.15 

 

2.14 

 R-Squared 0.329 

 

0.336 

 

0.338 

 

0.342 

 AIC 3.752 
 

3.742 
 

3.74 
 

3.734   
a
specified with product fixed effects 

*indicates variable significant at 0.01 level. 

     

1
2
3
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Table 4 – Exploratory logistic regression for model selection  

DV = AMM Model 1   Model 2   

Direct Effects 

    

 

C -4.386 (0.091) ** -3.573 (0.137) ** 

 

Var 0.001 (0.000) ** 0.001 (0.000) ** 

 

Trend -0.102 (0.002) ** -0.148 (0.004) ** 

 

Horizon 0.214 (0.006) ** 0.209 (0.009) ** 

 

Bullwhip 3.366 (0.061) ** 0.314 (0.091) ** 

  POS 0.360 (0.022) ** 0.479 (0.193) * 

Interaction Effects 

    

 

POS*Bullwhip 

  

-0.251 (0.126) * 

 

POS*Trend 

  

-0.050 (0.006) ** 

 

POS*Var 

  

0.001 (0.000) ** 

  POS*Horizon     0.054 (0.014) ** 

McFadden R-Squared 0.425 

 

0.475 

 -Log Likelihood 9291.083 

 

8486.294 

 AIC 0.797   0.728   

**p<0.01; *p<0.05 
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Figure 1 – DF-competition design 
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Figure 2 – Average MAPE comparison by forecast method 

 

 

  

94.69% 92.86% 

62.53% 61.79% 

POS Order

Additive

Multiplicative



 

127 
 

Figure 3 – Two-way interaction plot for demand signal and bullwhip 
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Appendix I – DF-competition design 

Parameter Name # of Parameters Parameters 

Forecast Models 2 Additive, Multiplicative 

Demand Signals 2 POS, Order 

Alpha Levels 3 0.51, 0.19, 0.02 

Beta Levels 3 0.176, 0.053, 0.005 

Gamma Levels 3 0.5, 0.1, 0.05 

DCs 6 

 Products 6 

 Out of Sample Forecasts 6 

 Total Observations (N) 23,328  
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Chapter 6 – CONCLUDING DISCUSSION 
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VI. CONCLUDING DISCUSSION 

With the rise of “the internet of things” (Chui et al., 2010), data-driven decisions are expected to 

become an even more important way through which companies may obtain and sustain 

competitive advantage over their rivals.  Already, companies such as Wal-Mart and 

Amazon.com have reaped tremendous benefit from possessing a greater understanding of how to 

leverage data to formulate and execute supply chain decisions (Bollier, 2010).  In turn, many 

suppliers in the CPG industry also sought to obtain similar benefits through collaborative supply 

chain management with their key retail customers (Hofer et al., 2012).  Through expensive IT 

investments (Ravichandran & Liu, 2011), suppliers are able to minimize waste and raise their 

service levels to generate greater revenue without proportionate increase in cost (Baker, 2008).  

Today, suppliers such as ConAgra Foods and Coca Cola continue to actively explore ways to 

further utilize supply chain data for increased effectiveness in demand planning.  Achieving such 

goals require companies to step away from a “black box” approach and instead become more 

methodical in supply chain data science. 

 This dissertation examined various countervailing statistical effects that may confound 

supply chain performance metrics as well as demand planning.  Considering the degree of 

importance placed by most companies on these statistical outcomes (Rexhausen et al., 2012), the 

potential negative impact from misguided actions can be particularly damaging to the supply 

chain.  Therefore, a primary goal of this dissertation was to examine how these statistical effects 

influence a key measure of supply chain volatility, namely the bullwhip effect, and customer 

demand forecasting.  Accurate measurement of volatility allows companies to better gauge the 

value of various sources of information and formulate superior capacity planning.  In addition, 

this dissertation also explored the potential for these statistical effects to be leveraged as tools for 
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planners to achieve superior demand forecasts, which enables companies to more efficiently 

position inventory throughout their distribution networks.   

In particular, three topics were examined by the three essays in this dissertation.  Essay 1 

examined data aggregation as an explanation for the conflicting empirical literature on the 

prevalence of the bullwhip effect.  Next, essay 2 explored two countervailing statistical effects of 

temporal aggregation on forecast accuracy, as well as their moderating effects on the relationship 

between demand signal and forecast accuracy. Finally, essay 3 first challenged the conventional 

notion that downstream demand signal is always superior as a forecast input, and then examined 

factors that determine selecting between two seasonal forecasting models.  A summary of each 

essay will be discussed below. 

In essay 1 (Figure 1), it was noted that Cachon et al. (2007) and Bray and Mendelson 

(2012) arrived at conflicting conclusions regarding the magnitude and prevalence of the bullwhip 

effect at the industry and firm levels, respectively.  In response, Chen and Lee (2012) 

analytically demonstrated how both product-location and temporal aggregation may mask the 

bullwhip effect.  Utilizing a large set of order and POS data for three categories of products, 

collected from regional DCs operated by a large national retailer, essay 1 first empirically 

validated Chen and Lee’s (2012) propositions on the effects of data aggregation.  Furthermore, 

essay 1 also corroborated with Bray and Mendelson (2012), which stated that seasonality is an 

important determinant of the bullwhip effect as well.  Overall, essay 1 showed that the 

conflicting observations made by Cachon et al. (2007) and Bray and Mendelson (2012) is 

primarily due to their different levels of analysis and the degree of seasonality within product 

categories.  Finally, essay 1 noted that fundamental differences exist among the three widely-

accepted measures of bullwhip. 
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Essay 2 (Figure 2) further examined temporal aggregation’s effect in the context of 

forecasting.  In particular, two effects of temporal aggregation—information loss and variance 

reduction—were hypothesized to affect forecast accuracy.  Whereas the information loss effect 

(e.g., Amemiya & Wu, 1972; Rossana & Seater, 1995) argues that temporal aggregation results 

in altered statistical properties to increase forecast error, the variance reduction effect (Hotta et 

la., 2005) posits that temporal aggregation enhances data stability to decrease forecast error.  The 

two countervailing arguments were tested through a quasi-experiment by generating customer 

demand forecast with both order and POS data for products from two non-seasonal categories.  

Results suggest that depending on the demand signal and its degree of autocorrelation, either 

statistical effect can dominate the other to determine the temporal aggregation’s overall effect on 

forecast error.  Specifically, while the information loss effect is dominant when POS data is 

utilized, it is eclipsed by the variance reduction effect when order data is used.  Furthermore, the 

variance reduction effect is amplified as autocorrelation becomes increasingly perfectly negative.  

Essay 3 built on essay 2 in two ways (Figure 3).  First, the conventional wisdom, that 

downstream demand signals are generally preferred forecast input (e.g., Lee et al., 1997), is 

tested in seasonal forecasting.  Results showed that forecasting customer demand for seasonal 

products should generally utilize order, rather than POS data.  However, forecast performance 

gap between order and POS data diminishes as bullwhip increases.  Second, essay 3 also 

examined the factors that may help forecasters to choose between additive and multiplicative 

forecasting models.  Results suggested that while the multiplicative model is generally preferred 

for downstream demand signals, this relationship is influenced by bullwhip.  Increased demand 

distortion destabilizes forecast, therefore the additive model, which tends to yield a more 
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conservative estimate of the seasonal factor, may be preferred over the multiplicative model for 

downstream demand signals. 

Overall (Figure 4), the dissertation showed that as supply chain management becomes 

increasingly driven by data, countervailing statistical effects can impact both demand distortion 

metrics and demand forecasts.  Therefore, a scientific approach to utilizing supply chain data is 

necessary for performance gains.  This dissertation identified and reconciled three key statistical 

effects to reach the following conclusions.  First, the level of analysis can have substantial 

influence on the observance of demand distortion in the supply chain.  Findings corroborate with 

both Zotteri and Kalchschmidt (2009) and Chen and Lee (2012) to reinforce the importance of 

alignment between the level of analysis and the level of decision.  In addition, temporal 

aggregation is a double-edged sword in forecasting.  While temporal aggregation can benefit 

demand forecasting by reducing data volume and stochastic variance, it can also have the 

opposite effect due to information loss.  Although both statistical effects are concurrent, the 

overall impact on statistical forecast accuracy is determined by a combination of demand signal 

selection and its autocorrelation factor.  And lastly, while POS may not be the best forecast input 

for forecasting seasonal retail orders, the advantage of order data becomes increasingly dubious 

as bullwhip increases.  This effect can impact both forecast model choice and forecast accuracy. 

A. THEORETICAL CONTRIBUTIONS 

Companies invest a tremendous amount of resources in hopes of planning and managing a 

superior supply chain.  Yet, empirical and anecdotal evidence show that supply chain integration 

and collaboration are both difficult to establish and even harder to translate to expected 

performance gains (Fawcett & Magnan, 2002; Jin et al., 2013).  Enabled by various industry 
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initiatives and alliances between supply chain partners, collaborative demand management 

strategies rapidly increased the upstream flow of downstream demand signals (e.g., Waller et al., 

1999; Frankel et al., 2002).  If properly utilized, theses data can allow firms to anticipate and 

mitigate market uncertainties (Ravichandran & Liu, 2011; Rexhausen et al., 2012), improve 

dynamic collaboration capabilities (Allred et al., 2012), and forge more enduring and fruitful 

supply chain integration efforts (Schoenherr & Swink, 2012).  Furthermore, when relevant data 

is systematically shared and collaboratively utilized, benefits such as reduced purchasing, 

inventory and distribution costs (Williamson et al., 1990; Baker, 2008) can increase firm 

performance (Bower, 2006; Muzumdar & Fontanella, 2006). While much of the current literature 

on supply chain management emphasizes how data should be shared (e.g., Tohamy, 2008; 

Atkinson, 2009), only a few studies exist on supply chain data science—how shared data should 

be scientifically utilized (e.g., Williams & Waller, 2010; 2011).   

 This dissertation makes several contributions to the theoretical literature on supply chain 

management, specifically in the burgeoning literature on supply chain data science (e.g., 

Williams & Waller, 2010; 2011).  First, it was found that conflicting empirical observations of 

bullwhip is explained by both product-location and temporal aggregation.  Reconciling this 

conflict revealed insight into how statistical aggregation may influence measures of supply chain 

volatility.  Particularly pertinent to supply chain management is that bullwhip has significant cost 

implications (Lee et al., 2000), and a first step toward mitigating bullwhip is accurate 

measurement.  Therefore, the lack of alignment between the level of measurement and the level 

decision will lead to suboptimal decisions regarding capacity and supply.  Results from this 

study complement the existing supply chain literature on relational and process integration by 

demonstrating that statistical influences may either lead or hinder supply chain performance. 
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 According to Croxton et al. (2002), successful demand planning in the supply chain 

requires accurate forecasting to synchronize supply and demand.  When substantial bullwhip 

exists in the supply chain, “grossly inaccurate demand forecasts” can lead to “low capacity 

utilization, excessive inventory, and poor customer service” (Lee et al., 2000, p. 626).  Although 

the use of downstream demand signals can help suppliers to mitigate bullwhip’s negative 

influence (Lee et al., 1997; Cachon & Fisher, 2000), results from this dissertation suggest that 

selective use of temporal aggregation may be a viable alternative.  Specifically, while temporal 

aggregation can reduce variance that was amplified by demand distortion, this benefit may not 

exceed the harm caused by information loss.  

 Lastly, one of the less explored aspects of demand planning is seasonal forecasting.  

Although downstream demand signals are generally believed to be a superior source of 

information for forecasting customer demand (Cachon & Fisher, 2000; Lee et al., 2000), their 

advantage may not hold true when seasonality exists (Williams & Waller, 2010).  Results from 

this dissertation suggest that seasonal forecast accuracy depends on a complex mix of factors 

including the choice of demand signal, the degree of demand distortion, both of which determine 

the optimal forecast model.  For seasonal forecasting, while customer order data tend to 

outperform downstream demand signal, their difference diminishes as demand distortion 

increases.  In addition, while the multiplicative forecast model generally outperforms the additive, 

if downstream demand signal is favored due to demand distortion, then the additive model is 

preferred over the multiplicative. 

B. MANAGERIAL IMPLICATIONS 
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Several findings from this dissertation may assist firms in applying data science to supply chain 

demand management.  Obtaining the necessary resources and capabilities to access and utilize 

downstream demand signals can be costly for both suppliers and retailers.  Therefore, a 

methodical approach to analyzing supply chain data allows companies to maximize the value of 

shared information.  To begin, the level at which to measure demand distortion should be 

considered in conjunction with the level of the decision.  Although aggregation results in fewer 

data points to reduce computational and resource intensity, it may result in underestimating 

demand distortion.   

For the product-location level of data, analysis should be conducted for the level at which 

replenishment occurs.  For example, if a supplier is replenishing two different DCs, estimating 

demand distortion using their aggregated data would result in masking the underlying demand 

volatilities at each location individually.  In other words, statistically aggregating data series 

from both locations in effect treats two points of demand as a single consolidated location, at 

which point risk-pooling occurs (e.g., Zinn et al., 1989) to mask true underlying volatility (Chen 

& Lee, 2012).  From a demand planning standpoint, the supplier might be misled into 

underestimating both the capacity necessary for achieving desired service levels at both locations 

as well as the potential improvement to demand forecast using POS data. 

Temporal aggregation can also mislead suppliers as outlined above.  But from a 

forecasting perspective, it may also be selectively used as a tool for mitigating bullwhip.  As 

demand signals are processed and formulated into orders, managerial and behavioral influences 

can induce variance to mislead future forecast.  Many smaller suppliers and retailers lack the 

resources and capability to share information and engage in collaborative replenishment and 

distribution activities.  In lieu of such resource intensive strategies, temporal aggregation may be 
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used to minimize demand distortion’s destabilizing effect on future forecasts.  This statistical 

method can be especially beneficial to those data series that are highly negatively autocorrelated.  

This benefit may also extend to downstream demand signals, but only when the autocorrelation 

factor of the data series is highly negative.  That is because downstream demand signal’s 

principle value is its reflection of consumer demand (e.g., Lee et al., 2000).  Therefore the net 

impact of temporal aggregation, when forecast input is the downstream demand signal, can be 

positive only when the detrimental impact of information loss is offset by the benefit of variance 

reduction.  Moreover, results also show a common misconception among theorists and 

practitioners.  Contrary to the belief that downstream demand signal is always superior, both 

temporally aggregated and disaggregated order data outperform disaggregated POS data when it 

is highly negatively autocorrelated. 

Taking customer demand forecasting to a seasonal product setting, our results once again 

show that downstream demand signal is not always the superior forecast input.  Demand 

planners should be cognizant of whether the retail customer’s ordering policies are relatively 

stable over time.  If so, then historic order data would likely show recurring patterns that reflect 

the “rhythms” established by previous retail seasonal smoothing processes.  These patterns can 

be utilized by planners to forecast future orders.  Furthermore, multiplicative model is more 

responsive to changes to seasonality, which makes it ideal for short-term seasonal demand 

forecasts.  However, if the retail customer’s policies are relatively idiosyncratic, then stochastic 

variance amplification results in heightened bullwhip effect.  To obtain a more conservative 

estimate of the seasonal demand and avoid overreaction to idiosyncratic fluctuations, planners 

may utilize POS data and the additive model. 
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Finally, as outlined in Figure 4, the process of translating business data to actionable 

intelligence is highly complex and requires a methodical approach.  In general, supply chain 

partners would be prudent to share data.  Retailers can empower suppliers by sharing 

downstream demand data.  Correct levels of analysis enable accurate assessment of both demand 

distortion and demand characteristics, which in turn determine the proper forecast model.  

Finally, all of these factors—level of analysis, demand characteristics, and forecast model—

collectively assist suppliers in stepping away from the “black box” approach and leverage supply 

chain data science to plan for future retail demand.    
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Figure 1 – Essay 1 diagram 
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Figure 2 – Essay 2 diagram 
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Figure 3 – Essay 3 diagram 
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Figure 4 – Overall dissertation diagram 
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VII. FUTURE RESEARCH 

A. DATA SCIENCE 1 – LOSS INTEGRAL 

The concluding figures in this dissertation point to potentially greater streams of research in 

supply chain data science.  Throughout the dissertation, data aggregation took a central role as a 

primary influence on various metrics of supply chain managements.  While improving metrics 

such as demand distortion and forecast error through proper specifications of data and model 

parameters can result in increased service levels, stock-outs may still occur.  Each time when 

stock-out occurs, several negative outcomes may have ripple effects to further distort demand in 

the supply chain.  

First, substitute purchases inflate expected future demand for that product.  As a result, 

demand variance for the substitute product also increases.  Since retailers set inventory based on 

expected demand, greater variance will result in lower service levels without greater inventory.  

If stock-out occurs for the substitute product, a contagion effect may result to spread to other 

substitute products as well.  This is a potentially serious consequence, since demand variance for 

other products may increase to result in greater supply chain costs.  However, if the retailer 

attempts to anticipate this effect by increasing inventory for the substitute product in advance, 

overstock may potentially occur.  The major costs incurred are thus inventory costs at the retailer 

level and inflated bullwhip to the suppliers.  If no structural changes occur to the demand series 

for the substitute product, then it can be argued that several periods later, this problem will 

correct itself as demand and ordering both return to their normal state. 

Second, lost sales hinder visibility to true underlying demand.  If the consumer chooses to 

either purchase a substitute product or skip this purchase cycle altogether, then observed demand 
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for the focal product is likely not sufficient to generate accurate forecast for the next period. In 

turn, demand planners are likely to generate inadequate levels of future demand forecast, thereby 

increasing the likelihood of future stock-outs.  The consumer would then likely to purchase 

products elsewhere, leading to entirely new shopping habits and cause the retailer to lose out not 

only on a single item worth of sales, but an entire basket as well.  Alternatively, if the consumer 

continues to purchase substitute products, then the first consequence would likely to become 

even worse. 

The third point has interesting implications.  While POS data is believed to be largely 

free of the bullwhip effect, stock-outs may delay purchases to force cyclicality and other data 

distribution properties that would not otherwise exist.  For example, for many retailers that rely 

on price promotions, sales tend to track retail operations in two ways.  First, retailers such as 

drugstores receive weekly or bi-weekly replenishment from their warehouses.  As a result, their 

sales for many products tend to follow this schedule: stock-out occurs one or two days before 

replenishment, causing customers to delay their purchases.  In addition, price promoters use loss 

leaders to draw store traffic.  Hence, their sales tend to follow their promotions as well.  Further 

complicating the matter is the practice of giving “rain checks” to consumers.  When a stock-out 

occurs for promoted items, many hi-lo retailers give coupons to consumers to honor their sale 

price in the future when replenishment stock arrives.  This is problematic in several ways.  First, 

it induces bullwhip even at the store level.  Second, many suppliers give price breaks to the 

retailer for such promotions.  Replenishment stock is not likely purchased under price breaks, 

thereby causing the retailer to incur a loss when consumers return to purchase the product at the 

sale price.  Third, because most hi-lo retailers repeat annual sales events on similar products, 

their systems would continue to order at quantities below the true expected demand since they do 
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not account for rain check sales past the promotional period.  Therefore, of vital importance to 

the retail supply chain is the capability for a retailer to measure lost sales. 

Loss Integral Background 

The loss integral approximates the expected loss based on any given continuous distribution.  It 

is a widely applied function across many fields, such as finance, learning, forecasting, and policy 

making.  In supply chain management, the loss integral has been commonly used to investigate 

optimal inventory levels given various conditions and assumptions (e.g., Nahmias & Smith, 1994; 

Huh et al., 2009). 

The principle function of inventory is to satisfy fluctuating demands.  Retailers attempt to 

set inventory levels they deem appropriate for desired in-stock probabilities.  In order to 

calculate in-stock probabilities, retailers must first forecast estimated demand based on time-

series models of historical sales data.  The vast majority of retailers forecast demand with such 

assumptions as spatial independence using simplistic statistical techniques based on normally 

distributed historical sales.  Yet, historical retail sales are observed demand that is subject to 

truncation and censoring when stock-out occurs (Conrad, 1976).  Thus, inventory policies based 

purely on censored demand is likely suboptimal and result in continued underestimation of true 

demand.    

We model a retail store selling a single SKU where demand is continuous, stationary and 

nonnegative.  The store uses (r, Q) continuous review model to replenish the SKU 

Assumptions:  

1. A continuous review system is used for replenishment with reorder point   

2. Demand is stochastic and stationary 
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3. Demand during lead time is a continuous random variable, , that is nonnegative   

4. The probability density function is  given by  (𝑥), the cumulative distribution function is 

given by  (𝑥), and the expected value is  given by  ( ) 

Proposition.  The loss integral can be written as  
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  ( )  ∫ 𝑥

 

   

 (𝑥) 𝑥   (   ( ))        

 ( )   ( )  ∫ 𝑥
 

   
 (𝑥) 𝑥   (   ( )) can be used to estimate the expected number of 

units out from a historical perspective.  Here is the process: 

Step 1. Use the forecast of demand during the lead time as an estimate of  ( ). 

Step 2. Calculate the average number of units sold during the previous lead times as an 

estimate of ∫ 𝑥
 

   
 (𝑥) 𝑥. 

Step 3. Calculate the percentage of times no stockouts occurred during the lead times as 

an estimate of  ( ). 

Since   is known, use the three estimates above to estimate  ( ), by taking the forecast of 

demand during lead time in Step 1 and subtracting the estimate of average units sold during the 

lead time  from Step 2.  Then multiply the reorder point by the frequency of stockouts. 

B. DATA SCIENCE 2 – CUSTOMER DEMAND FORECAST FOR PRODUCT LINE 

EXTENSIONS 

In many disciplines, strategic management requires firms to assess both internal and external 

forces for decisions.  A major component of strategic management in retail is segmentation, in 

which firms attempt to expand their consumer base.  Often, new products are introduced with no 

prior sales history.  As a result, demand planners have little to no guidance with regard to 

potential demand for the new product.  Moreover, most demand forecast techniques are variants 

of simplistic exponential smoothing processes.  Without sales history, such quantitative models 

require alternate data to approximate anticipated demand.  In practice, demand planners 

frequently use sales history of a similar product, along with some component of qualitative 

reasoning, to form an estimated demand for the new product. 
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Segmentation may be achieved in several ways.  A firm may adopt a completely new 

entity, or brand, to be marketed toward their targeted segment.  One such example is Gap’s high 

end Banana Republic stores.  On the other hand, a firm may wish to leverage its existing core 

brand value in order to have a more evolutionary approach in its extension.  The counterpart to 

Gap’s Banana Republic may be Donna Karan’s DKNY extension.  However, regardless of the 

type of extension, marketers continue to grapple with potential pitfalls of inadequately planned 

extensions.  One such result is cannibalization, when an extension usurps market share away 

from the incumbent brand. 

However, firms rarely expand in to a completely foreign segment.  Thus, segmentation 

strategies are implemented based on some original brand or product line that is already being 

marketed.  In the segmentation process, inevitably some characteristic is carried over (Moorthy, 

1984).  As a result, it would be reasonable to anticipate the sales of specific segment to at least 

somewhat resemble demand patterns of the established product line or brand.  Yet in the process 

of planning the distribution of a new extension, forecast basis for these products are often made 

by relying on a combination of arbitrary decisions, educated beliefs, and historical precedence of 

established brands.  Evaluating the effectiveness of such a forecast approach is often done 

several periods after product launch.  However, the uncertainty surrounding a new product’s 

initial sales period command significant costs that are avoidable with improved demand planning.  

Therefore, it is important to explore how to incorporate past demand patterns from an established 

brand or product line through more sophisticated statistical techniques. 

Product Lines and Extensions 

A product line can be define as a group of products that are closely related, marketed through 

similar channels, fall within similar price ranges or sold to similar customer groups (Armstrong 
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& Kotler, 2006).  Within these lines, products can be differentiated either vertically or 

horizontally (Randall et al., 1998).  Vertical differentiation refers to variation within quality 

levels of products and horizontal differentiation refers to variation with the function or category 

of the product; this can also be referred to as quality-based segmentation (Desai, 2001).  Hilton 

Worldwide is an expansive example of vertical differentiation in the hotel industry; their brands 

(e.g., Waldorft Astoria, Hilton, Embassy Suites, Hilton Garden Inn, Hampton, & Double Tree) 

intentionally differ in perceived quality.   Although each hotel has the same function, they all 

differ in eminence.  

Horizontal differentiation refers to variation with certain product characteristics to appeal 

to different target markets (Randall et al., 1998).  An example of horizontal differentiation is 

Dove’s deodorant product line that not only has several different types of deodorants (i.e., solids, 

aerosols, roll-ons & body mists), but each type of deodorant comes in different scents (e.g., 

original clean, fresh burst, wild rose, smooth cashmere); these products are all positioned as 

being of equal quality, and differ in terms of packaging, formulations, and applications.  Thus, a 

horizontally-differentiated product tends to have a target segment of consumers that will 

otherwise not purchase the original product. 

A product line extension occurs when a company adds more brands or models to its 

current product line (Solomon et al., 2009).  According to Meyer et al. (1997) there are two 

criteria for a product to be considered a product line extension.  First, the novel product must 

embody the core features on the already existing products.  That is, the extension must be related 

to its predecessors.   Second, the new product must target new customer segments than the 

existing products.  When new products take away market share of existing products, 
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cannibalization occurs; that is, competition among a firm’s product line (Moorthy, 1984).  These 

thoughts all resonate from the theory of segmentation.   

Under the theory of segmentation, the overall market (e.g., the ready-to-eat cereal market) 

is viewed as heterogeneous, with several homogenous market segments or “wedge shaped pieces” 

within (Smith, 1956 pg. 5).  Marketers then, are encouraged to create and position different 

products for each important market segment (Smith, 1956).  Promotion is used heavily to inform 

each segment of the products that have been created to specifically meet their needs or wants 

(Smith, 1956).  Ideally, products will not cannibalize each other because each product targets a 

different segment, and each segment will not be interested in other segments’ products (Frank et 

al., 1972).  

Although firms would enjoy perfect segmentation, it has been shown to be unrealistic 

(Moorthy, 1984).  Often, horizontally-differentiated products do not perfectly establish a separate 

segment, which results in cross-segment consumption, i.e. product cannibalization.  Due to the 

associated negative consequences (Solomon et al., 2009), cannibalization thus carries a heavily 

negative connotation and is simultaneously viewed as unavoidable (Moorthy, 1984).  Therefore, 

while demand for the established product affect the demand for its extension due to shared 

product characteristics, the reverse is true as well.  That is, due to the cannibalization effect, 

demand for the established product is also affected by the demand for its extension. 

Information Content of Product Variant Demand Signals 

Every data series for a demand signal contains information pertaining to customer demand as 

reflected by data variance.  A long line of literature in demand forecasting supports the notion 

that demand signals observed at point-of-sale (POS) and distribution center (DC) levels each 

contain unique information (Williams and Waller, 2010; 2011).  At the POS level, demand 
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signals reflect consumer demand patterns such as paycheck cycles and seasonality.  At the DC 

level, demand signals instead reflect warehouse management idiosyncrasies as well as other 

supply chain processes. 

 Forecasting demand for new product extensions is especially difficult.  First, new 

products tend to have less demand due to a lack of market penetration.  As a result, low sales 

volumes can potentially take the form of intermittent demand signals, which are notoriously 

difficult to forecast.  Second, new products tend to have trend components to their demand 

characteristic that may not be present in demand signals for other more established products.  As 

a result, demand planners may only formulate their best guess at potential trend. 

 Building on the product line extension line of literature, we argue that demand signals for 

established products at the POS level contains consumer purchase patterns specific to that 

product.  Factors such as shelf-life, package size and purpose all determine the frequency and 

quantity at which consumers purchase the established product.  Since a product line extension 

embodies the core features of the original product as well as share substantial similarities (Meyer 

et al., 1997), similar consumer purchase habits may be anticipated.  Therefore, the demand signal 

for the established product can assist in forecasting sales of its extension. 

 Many companies tend to extend product lines that already have multiple iterations of the 

same base product.  For example, Proctor and Gamble uses its Crest toothpaste as the established 

product for many extensions in mouthwash products instead of its lesser-known Scope brand.  

However, not all products in the same line have identical demand patterns.  Since segmentation 

occurs in “wedges” (Smith, 1956), new product extensions likely appeal to consumers of the 

more established products as well.  Therefore, demand signals from multiple products within the 

same product line can be beneficial for forecasting demand for new product extensions.   
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Information Content of Downstream Demand Signal 

Downstream demand signals can be leveraged for superior customer demand forecast (Williams 

& Waller, 2010; 2011).  More specifically, for non-seasonal product demand, POS data tends to 

outperform order data because bullwhip amplifies order data variance to destabilize order 

forecast.  Principle statistical effect of bullwhip is amplified demand variance (Lee et al., 1997), 

which distorts two main components of demand signals—stochastic and seasonal variance 

(Metters, 1997; Bray & Mendelson, 2012).  For both variance components, retail ordering 

policies may induce additional seasonality effects (Towill et al., 2007).  While order-batching 

policies (e.g., Burbidge, 1987) may induce cyclical ordering patterns, retail seasonal smoothing 

policies may reflect a “rhythm” that is likely to repeat with each seasonal cycle (Parkany, 1961).   

 All of the above factors affect forecast accuracy of a new product extension as well.  First, 

the bullwhip effect remains a significant influence on demand distortion between POS and order 

data.  Utilizing order data as forecast basis incorporates potentially misleading information due 

to amplified variance.  Second, suppliers must take into account of past retail order “rhythms” as 

well.  It is highly unlikely for the retailer to order new product extensions in a similar pattern as 

other more well-established products within the same family.  Therefore, the order “rhythms” 

might yield misleading customer demand forecast for new products.  

However, certain product categories have clear seasonal peaks.  For product lines 

competing under such categories, retail orders tend to reflect “rhythms” based on seasonal 

ordering policies, rather than idiosyncratic effects based on localized optimization in response to 

consumer demand.  For example, to alleviate operational and capacity constraints, retailers tend 

to build inventory by placing steady orders with suppliers during low seasonal demand periods 

for rapid depletion when seasonal demand peaks.  This retail ordering behavior is not likely to 
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vary between seasonal products with similar consumer demand characteristics due to operational 

necessity.  Thus, for seasonal products, order data for well-established products will likely be in 

a better position than its POS counterpart to assist suppliers in forecasting customer demand for 

new product extensions.  

C. Data Science 3 – Incorporating the Marketing Mix in Forecasting 

Extant marketing theory asserts that increased demand due to promotional activities related to a 

product tends to be short-lived and that increased demand will eventually revert back to a pre-

shock level (Lautman & Pauwels 2009; Vakratsas & Ambler 1999).  This notion had been 

further supported through similar studies.  Wieringa & Horvath (2005) found that promotions in 

general provide only a short term increase in sales, which dissipate rapidly in the post-

promotional period.  Since most demand planning is performed for short term horizons, 

incorporating various factors of the marketing mix as variables exogenous to time series-based 

forecasting techniques can potentially increase forecast accuracy.  In addition, this is likely to 

also allow marketers to evaluate the effectiveness of various marketing tools for certain products 

and product categories. 

 The logistics-marketing interface has a long stream of literature.  The majority of this 

literature examines the cross-functional and cross-boundary impact of integrating logistics and 

marketing processes.  Most frequently, measurements of antecedents to and effects of logistics-

marketing integration are done in survey format.  Although the literature recognizes many 

benefits, such as more effectively matching supply with demand, in incorporating marketing 

factors into logistics processes, very few studies validated these results using sales data. 

 In demand forecasting, a significant body of knowledge is built on specific 

methodologies and forecast models.  They typically explore and examine performance 
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differences among various forecast specifications and parameters.  More recently, Williams and 

Waller (2010; 2011) introduce shared downstream demand signals as a forecast basis for retail 

orders.  They show that downstream demand signals can significantly outperform retail order 

history in forecast accuracy.  Main reason for the improvement is due to lower stochastic 

variance and superior information content of the downstream demand signal.  Therefore, 

determinant of forecast accuracy include factors include the statistical properties of the forecast 

input, the specified forecast model, as well as any relevant forecast parameters. 

 Improved demand forecasts may be expected with the inclusion of the marketing mix.  

While downstream demand signals contain information that may potentially reveal consumer 

demand patterns, these patterns cannot be attributed to any specific causes.  This is problematic 

because consumer response to marketing factors may change over time.  The total demand 

variance can be segregated into stochastic and seasonal components.  While the seasonal 

variance may be considered deterministic, the stochastic variance can be the result of exogenous 

causes.  For example, the bullwhip literature notes that external influences such as managerial 

gaming behavior amplify stochastic demand variance (Lee et al., 1997).  Since consumer demand 

is typically composed of base and marketing components (Lautman & Pauwels, 2009), 

incorporating exogenous variables such as the marketing mix may allow demand planners to 

utilize their estimated effects on consumer response to forecast future demand. 

D. DATA SCIENCE 4 – BIG DATA IN SUPPLY CHAIN 

In the retail supply chain, firms have been collecting massive amount of transaction data for the 

last several decades.  Only recently did supply chain companies begin to truly leverage data to 

make decisions with increased precision and at a faster pace.  Aided by rapid improvement to 

information technology, companies have further begun to amass other forms of data, ranging 
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from consumer demographics, to social media, to geo-cache locations, all of which are 

collectively coined “Big Data”.  Unlike the traditional transaction-based data, which can be 

conveniently structured based on location, category, time, and even customer, most forms of Big 

Data are unstructured.  Without models specified a priori, some industry executives declared the 

death of traditional forms of strategic business leadership and advocated for correlation-driven 

decisions. 

 In an Aspen Institute conference on business applications of Big Data, participants noted 

that while many businesses are formed to cater to correlation-driven opportunities, many 

statistical oddities have resulted.  The inherent danger in such an approach to business is that 

spurious relationships can be identified to mislead companies into devoting large amount of 

resources to business opportunities that really aren’t there.  Furthermore, the expenses of 

processing such volumes of data tend to be quite high.  Companies such as Amazon.com choose 

to automate this correlation-driven process, which resulted in unintentionally comical 

consequences, such as the “my TiVO thinks I’m gay” phenomenon (Bollier, 2010, p. 23). 

 Thus, in order for supply chain companies to leverage Big Data for greater decision-

making, several questions must be answered.  First, given that some pioneering companies such 

as Wal-Mart and Amazon had long utilized data to drive business decisions, how is the current 

movement of Big Data different from what managers traditionally had known?  Second, despite 

statisticians’ warnings on spurious correlations, limited business successes can be readily 

observed.  Thus, research should be undertaken to differentiate when correlation-driven 

decisions are appropriate as opposed to deductive reasoning, because clearly both methods of 

analysis can have positive impact on firm performance.  And lastly, despite the benefits of data-

driven decisions, it remains unclear as to what will ultimately be the main drivers of Big Data 
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adoption.  Identifying the internal and external drivers of Big Data’s adoption and proper use can 

define a company’s success. 

E. SUPPLY CHAIN FINANCE 1 – EMPIRICAL EFFECT ON PERFORMANCE AND 

VALUATION 

Supply chain performance had been positively linked with many business outcomes.  They 

include measures ranging from operations to profitability.  While empirical linkage between 

operations and profitability performance is well documented among various streams of literature, 

the supply chain literature relies primarily on surveys and interviews to document these linkages.  

However, few studies exist to verify that these linkages materialize into positive market response. 

 Publicly-traded companies may see their market values appreciate for various reasons.  

Most commonly, past performance measures such as sales growth, profitability, market share, 

and future performance factors such as product pipeline, pending patents, and expected market 

expansions.  Considering the various documented positive impact of supply chain competence, 

market valuation should also reflect, to a degree, investors’ understanding of a firm’s supply 

chain capabilities.  Corroborating with this intuition, Hendricks and Singhal (2005) found that 

supply chain disruptions can result in substantial harm to a firm’s stock price.   

 Supply chain management is viewed by many scholars as a vital firm resource.  For 

example, supply chain management is found to be a source of competitive advantage due to the 

value it adds to growth in the firm’s top-line sales as well as bottom-line profit.  Furthermore, it 

may also be considered sustainable and not substitutable because its success hinges on a 

tremendous amount of investment as well as top management commitment (Jin et al., 2013).  

Even after firms purchase the necessary physical assets for managing its supply chain, their 

effective and efficient use is often described as a capability (Allred et al., 2012), which is 
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intangible and develops over time (Teece et al., 1997).  Therefore, a firm’s supply chain 

capabilities are not only dependent upon possessing the necessary assets, but also the ability to 

deploy them and to maximize their utility.  Indeed, streams of literature exploring supply chain 

collaboration and integration treat these concepts as largely dynamic capabilities rather than 

tangible assets.  But aside from Hendricks and Singhal (2005) and Ellinger et al. (2011), few 

studies explore the supply chain-finance interface. 

 Thus, while the SCM literature frequently identifies various benefits to firm performance, 

whether the market rewards firms for supply chain excellence is far less clear.  For example, 

although Amazon.com is almost universally championed for its logistics and supply chain 

innovations today, during its early days the market frequently hammered it for incurring too 

much R&D expenses while depressing profitability.  While limited research exists in examining 

supply chain ranking’s impact on firm default risk (Ellinger et al., 2011) and supply chain 

disruption’s effect on stock prices (Hendricks & Singhal, 2005), little evidence exists that the 

market actively recognizes and rewards firms for supply chain excellence. 

 A study can be developed through a combination of several sources of data.  First, 

Gartner ranks the world’s top supply chains annually.  Although only the top 25 are ranked each 

year, rankings are available from 2004 to 2012 (except for 2007), which provides a small but 

decently-sized panel of observations to accommodate some control variables and effects.  Many 

of these companies are publicly traded.   

 In terms of variables of interest, several supply chain-related variables have been 

developed over time.  Rumyantsev and Netessine (2007) used several proxy variables based on 

financial data to examine classic inventory systems.  Eroglu and Hofer (2011) developed an 
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empirical leanness indicator to reflect lean inventory management strategies.  Further, companies 

also use variables constructed using various financial data to represent factors such as cash-to-

cash conversion cycle, gross margins return on inventory and others to capture supply chain 

management’s impact on firm operations. 

 To measure market reaction, stock price is not entirely appropriate.  A primary reason is 

because stock price is not a perfect measure of the overall investor sentiment on a firm’s future 

performance.  While a firm’s stock price may fluctuate due to past and future performance 

factors, changes to the firm’s assets may also influence stock price.  Tobin (1969) argued that a 

firm’s market value should be about equal to their replacement if only tangible assets were 

concerned.  Any premium the market places over the total firm physical asset reflects investors’ 

view on the value of the firm’s intangible assets and capabilities.  Since supply chain 

management is not usually explicitly measured as a form of firm asset nor can it be quantified as 

a firm capability, its impact can therefore be reflected in the firm’s market value to total assets 

ratio, or Tobin’s Q (Tobin, 1969). 

 Therefore, a research study could be formed to measure the various impacts of supply 

chain outcomes, as measured by variables representing operational performance, on the market 

value premium placed on the firm’s physical assets, as measured by Tobin’s Q, part of which 

may be theorized as a reflection of supply chain management premium. 

Financial Crisis Extension 

A primary function of supply chain capability is to grant firms the capability in mitigating 

negative market influences.  Various theories, such as organizational modularity and 

ambidexterity also support the notion that firm flexibility and agility, which may be enhanced by 

supply chain management, allowing firms to quickly and effectively react to market shocks.  The 
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financial crises presented unprecedented degree of market uncertainty.  Most companies were 

caught off guard by the sudden drop in demand.  Therefore, the performance of supply chain 

leaders in the financial crisis is interesting to be examined as well using similar data. 

F. SUPPLY CHAIN FINANCE 2 – EMPIRICAL EFFECT ON EXECUTIVE 

COMPENSATION 

In the finance and accounting literature, a large stream of research exists on executive 

compensation.  Often grounded in agency theory, firm performance should determine executive 

compensation because stock options and bonus incentives for senior management should align 

their interest with the shareholders’ interest—outcome-based contracts.   

 In practice, executive compensation may be divided in to several categories.  They 

typically include salaries, short-term bonuses based on performance, long-term incentive systems 

such as stock options, fringe benefits.  In addition, many executives negotiate “golden 

parachutes,” which are pre-negotiated severance pay, often in exceedingly high amounts, in the 

event the executive is forced to resign from the company.   

 Salaries are the immediate and set amount of compensation paid to executives for their 

services rendered to the company.  Short-term bonuses are often based on immediate company 

performance goals and are driven by formula reflective of financial performance for the previous 

fiscal period.  Long-term incentive systems are more complex and by far the most studied 

compensation scheme in finance, accounting, and management fields.  Jensen and Murphy (1990) 

theorized and empirically supported that restricted stock options (i.e., cannot be exercised until 3 

to 5 years after issuance) aligns managers’ interest in the company’s long term performance in 

maximizing shareholder wealth, thereby mitigating agency costs.  On the other hand, empirical 

evidence also suggest that long term stock options contributed to managerial incentive to 
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accounting manipulation scandals as well as initiating stock buyback programs just before 

exercising vested options (Bebchuk & Fried, 2006).  Yet little literature exists on the relationship 

between operational performance and executive compensation. 

In the supply chain literature, executive compensation studies are almost non-existent, 

though some studies tangentially related to this topic have explored incentive systems and non-

financial performance measures.  Banker, Potter, and Srinivasan (2000) examined how the 

inclusion of nonfinancial performance measures in an incentive plan impact firm financial 

performance.  They find that nonfinancial measures such as customer satisfaction and capacity 

utilization are significant contributors to financial performance.  Furthermore, the inclusion of 

these nonfinancial measures as part of managerial incentive system also improved financial 

performance.   

Based on survey research, an abundance of case studies as well as survey research 

indicates that supply chain excellence positively contributes to firm performance.  Moreover, 

executive commitment to dedicating adequate amount of resources toward developing robust 

supply chain directives is a vital component of efficient and effective supply chain management 

(Jin et al., 2013).  While abundant survey research and case studies exist to support supply chain 

management’s benefit to firm performance, executive commitment is first and foremost 

motivated by the proper incentive structure.  Considering the role of incentives as a tool to drive 

executive decisions, insight into whether superior supply chain performance contributes to 

executive compensation can provide substantial justification to command greater executive 

commitment to dedicate resources to improve supply chain management.   
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Yet, little knowledge exists in supply chain management with regard to how the 

purported firm performance benefits translate to executive rewards.  This is partly due to an 

overall lack of acknowledgement in industry that supply chain management warrants its own 

executive oversight.  Often, supply chain managers are grouped under operations or marketing.  

While a current trend among board structure is to assign supply chain, transportation, and 

logistics functions to a dedicated executive, much is unknown if current executives are already 

seeing financial benefits from supply chain performance. 

In extant literature, supply chain management is positively linked with firm financial 

performance by increasing sales, lowering costs, improving customer satisfaction and operational 

performance, and employee satisfaction.  All of these factors are also linked to overall financial 

performance benefits.  Since executive compensation is based on a combination of both short 

term and long term firm performance factors, a logical extension can be made that supply chain 

management may also increase executive compensation by improving the above factors.  Thus, a 

highly relevant question central to bringing executive attention to recognize the importance of 

supply chain excellence is to examine how nonfinancial performance factors that are often linked 

to supply chain excellence affect executive compensation. 

Specifically, the question could be answered in several stages.  First, what aspect of firm 

operational performance is directly influenced by supply chain excellence?  Inventory 

management is certainly a highly relevant factor.  Perhaps asset utilization in certain industries 

may also be particularly influenced by supply chain excellence.  A thorough literature review 

may yield more insight.  Second, a list of top supply chain companies may be identified from 

Gartner’s Top 25 Supply Chain Companies report.  Third, public financial data from CompuStat 

may be used to construct measurements of operational performance based on the factors 
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identified based on literature review.  Lastly, executive compensation data can be obtained 

through Execucomp.  Empirical models could then be developed based on the nonfinancial 

factors.   

Data analysis can be conducted in several ways.  First, since Gartner’s list spans many 

different industries, therefore comparing between companies might not be valid.  Second, the list 

was initiated in 2004.  The most recently available list is for 2012.  Furthermore, not all listed 

companies are publicly traded.  Therefore, limited degrees of freedom also substantially limit the 

statistical power of the model as well as the ability to accommodate statistical controls.  Perhaps 

a prudent analysis would be to identify the six digit NAICS code for each of the publicly-traded 

company for each year, and obtain financial statistics for all of the company’s competitors to 

calculate necessary operational performance proxy variables.  Finally, each company’s 

operational performance variables can be normalized to its respective industry in order to make 

measures comparable across all companies in the sample. 

G. STRATEGIC RETAIL 1 – EDLP VERSUS HI-LO PRICE MANAGEMENT 

Retailers generally use one of two pricing models: everyday low price (EDLP) and high-low (Hi-

Lo).  For those retailers competing under EDLP, they tend to avoid heavy price reductions with 

which to draw customers.  Instead, most of their products are priced at levels below most of their 

competitors in similar retail formats.  EDLP advocates claim that such a pricing approach 

alleviates price anxieties among customers and provides reassurance that on average, they will 

spend less money than shopping at a competing retailer.  On the other hand, Hi-Lo retailers are 

generally not concerned with having predominantly low prices.  Instead, they rely on short-term 

temporary price reductions, typically on a weekly basis, to draw consumers in.  The discounted 

items are usually sold for little gross profit, if not as loss leaders altogether.  In turn, these 
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retailers hope that the consumers would purchase higher margined items for either convenience 

or impulse to make up for the price promotions. 

 Recently, JCPenney became the latest high profile retailer to experience a failed 

transition from a Hi-Lo model to EDLP.  Though many reasons have been speculated as 

contributors to this failed transition, there is one common criticism from among all analysts and 

industry experts.  JCPenney’s customers simply did not respond to the value proposition offered 

by the EDLP model.  While its ex-CEO who initiated this transition process clearly stated that 

the EDLP model offers no gimmicks, just honest pricing, consumers appear to be less enthused.  

In addition, any potential cost benefit due to the transition away from significant price variations 

was masked by unsold inventories of merchandise. 

 From a retail operations perspective, EDLP offers substantial benefits.  Without price 

variation, demand variance becomes significantly lower (Lee et al., 1997).  With lower demand 

variance, retail operations-planning also becomes easier as forecasting is likely to be more 

accurate.  The smoothed demand brings benefits associated with lowered contingent resources 

such as transportation, storage, and labor capacities.  Furthermore, due to lowered variance of 

demand, future forecast is likely to be more accurate as well.   

 However, consumer behavior theories argue that price promotions offers incentive for 

consumers to make the immediate purchase.  Literature had also shown that more frequent 

purchases translate readily into more frequent consumption, thereby increasing both immediate 

and future consumption altogether.  In addition, Hi-Lo retailers can also create significant 

enthusiasm among shoppers with attention-grabbing prices.  The downside to Hi-Lo retailing, of 

course, is the fact that demand due to price promotion is very difficult to forecast.  Inadequate 
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inventory levels lead to out-of-stock, which in turn causes delayed purchase, consumer ill-will, 

and potential loss of not only the immediate sale but also an entire basket.  In worst cases, the 

jilted consumer may decide to not return to the retailer altogether. 

 Given the many advantages and disadvantage associated with both pricing models, the 

literature remains unclear as to which format is more appropriate.  On the one hand, retailers 

such as Wal-Mart and Costco built significant competitive advantage on the market by offering 

EDLP.  On the other hand, highly successful stories among Hi-Lo retailers further reinforced the 

perception that price promotion is a valuable tool for retail sales.  Furthermore, the transition 

from Hi-Lo to EDLP appears to be fraught with difficulties and anticipated consequences.  

Therefore, greater understanding of drivers of EDLP and Hi-Lo pricing models as well as their 

advantages can have substantial impact on retail operations management. 

H. STRATEGIC RETAIL 2 – PRODUCT VARIETY AND RETAIL PERFORMANCE 

In Wal-Mart’s relentless drive to lower supply chain costs, consequences of its recent SKU 

reduction (Roberts & Berg, 2012) suggest that its consumers have grown so accustomed to a 

wide variety of choices at low prices that they were unwilling to accept tradeoffs—lower prices 

but fewer choices.  The press literature documents many stories of how Wal-Mart is being 

squeezed by retailers that emphasize smaller selection but cheaper prices.  These retailers run the 

gamut from big warehouse clubs such as Costco to small stores such as Dollar General.  On the 

other hand, stores such as HEB carry a tremendous variety with a heavy emphasis on grocery—

traditionally the retail segment with the lowest margins—and manage to remain profitable at 

competitive prices.  Thus it appears that Wal-Mart, having been dominant for so long, is being 

squeezed from both ends of the competitive spectrum. 
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 Two competing theories in product variety exist from two fields.  In logistics, an 

optimization approach argues that an optimal product variety provides the greatest firm 

performance.  With a single product, demand can be highly variable and random.  As product 

variety increases, demand peaks and troughs may be smoothed depending on the degree of 

correlation between products.  As a result, demand planning for transportation, storage, and labor 

capacities become easier due to reduced overall variance relative to the mean.  However, 

increase in product variety also results in greater coordination costs. Even as demand planning 

for capacity becomes easier with increased product variety, increased coordination costs can 

ultimately erode product variety’s benefits.  As a result, the logistics perspective argues that the 

relationship between product variety and performance is in an inverted-U shape. 

On the other hand, the marketing literature argues that product variety should be either 

very low or very high.  That is, the relationship between product variety and firm performance is 

U-shaped.  At the lowest end, low product variety allows simpler operations and replenishment 

as well as bulk purchase discounts.  With bulk discounts as well as overall lower operations costs, 

retailers can position themselves as cost leaders.  Considering that much of the cost benefits are 

due to this particular operating format, its price advantage is likely persistent against competitors 

that do not attempt to replicate this strategy.  Notable examples of success under this format 

include discount grocers such as Aldi, as well as most discount warehouse clubs such as Costco.  

At the highest end, high product variety provides greater service to draw customers into the store.  

By providing choice, retailers are able to provide superior choices to consumers by holding 

multiple SKUs that serve similar functionality, often with only minor differences such as color, 

taste, and scent.  Due to the complexity involved in making such arrangements, costs are often 

high for these retailers.  Therefore they cannot always compete on price against retailers that 
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provide limited selections.  On the other hand, these retailers are also relatively insulated from 

competitors that cannot compete on selection. 

In retail management, many retailers often attempt to re-tool their product selection to 

balance the need for providing consumers with the choices that they want, while holding costs 

low.  Only rare exceptions such as Wal-Mart compete on both variety and price.  Yet even Wal-

Mart’s failed SKU rationalization program suggests that the relationship among variety, price, 

and performance is often delicate and not very well defined.  Furthermore, two competing 

theories on the functional form between SKU variety and retail performance indicates that 

further understanding is required.   Therefore, determining the strategic benefit of SKU variety 

has important implications for retail management.  Is SKU-optimization ultimately a myopic or 

strategically competitive goal? 

I. MISCELLENEOUS 1 – AGENCY IN SUPPLY CHAIN 

In the classic agency theory, two actors establish a relationship in which one is the agent and the 

other is the principal.  The agent is charged with acting in the best interest of the principal, who 

in turn rewards the agent for the services rendered.  Supply chain partners are unique in that both 

actors carry dual-roles of the principle and the agent.   

In a typical retail supply chain partnership, the retailer may be viewed as the agent for the 

supplier in a sense that the retailer sells the products for its suppliers.  With greater retail market 

penetration, the supplier can enjoy greater sales.  Thus, a revenue and profit incentive had 

traditionally aligned the goals of both suppliers and the retailers.  However, as the supplier 

becomes increasingly dependent on the retailer for purposes other than a simple sales-based 

relationship, agency conflicts begin to arise. 
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Recent advances in information technology had enabled suppliers to adopt increasingly 

more sophisticated demand management tactics.  Whereas supply chain management prior to the 

internet era generally emphasized efficient downstream physical distribution, the current 

dominant strategies include information flow back upstream as well.  A primary benefit to bi-

directional flow is that suppliers can generate more accurate demand forecast to further increase 

the efficiency and effectiveness of downstream physical distribution.  In addition to improved 

service levels, retailers may also expect the suppliers to pass certain supply chain savings down.  

In that sense, the previous principal-agent relationship had also become effectively bi-directional.  

The supplier depends on the retailer for executing store-level sales while the retailer depends on 

suppliers to properly utilize sales information and at the same time not using it to help other 

competing retailers. 

J. MISCELLANEOUS 2 – EMPATHETIC CONCERN AND MACHIAVELLIANISM IN 

SUPPLY CHAIN ORIENTATION 

Modern supply chain management strategies often calls for supply chain partners to make 

decisions based on shared demand and supply information for synchronized activities.  These 

strategies are seldom unstructured and informal.  Instead, industry initiatives such as CPFR, 

S&OP, VMI, and other programs (e.g., Waller et al., 1999; Lapide, 2007) provide blueprints for 

such endeavors.  As part of these strategies, sensitive information are frequently passed between 

supply chain partners through automated processes, which are enabled by interorganizational 

systems that provide a common platform (Bendoly & Cotteleer, 2008).  Under this framework, 

the buyer, who typically occupies a position downstream along the supply chain, would transmit 

demand signals upstream to its supplier.  The supplier, in turn, would leverage the additional 

information for demand planning purposes (Williams & Waller, 2010; 2011).  Many benefits 

associated with such integrated supply chain management programs have been anecdotally 
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described by participants and also empirically validated by scholars (e.g., Lee et al., 1997; Wu 

and Katok, 2006; Allred et al., 2011). 

 Despite the widely publicized benefits, stories of failures remain abundant as well.  

Collaborative management efforts had been repeatedly criticized as being more rhetoric than 

reality (Fawcett & Magnan, 2002), that its results are frequently disappointing (Sabbath and 

Fontanella, 2002).  While many firms attempted to reap the benefits proposed by information 

sharing as a form of integration, results are not universally positive (Daugherty et al., 2006).  

Furthermore, the relationship between information sharing and performance is not universally 

positive (Fabbes-Costes & Jahre, 2007) and may instead be linearly positive and has an optimum 

level, beyond which performance begins to decrease (Fabbes-Costes & Jahre, 2008).  More 

recently, Jin et al. (2013) found that while many firms continued to advance information sharing 

and integration with supply chain partners, others regressed with some dropping such efforts 

altogether. 

 Many attempts have been made by scholars to identify specific determinants of 

information sharing’s success.  Specifically, information sharing improves managerial decision-

making through greater visibility (Barratt & Oke, 2007).  As a result, information sharing 

improves both internal and external coordination efforts (Mentzer et al., 2004), customer service 

quality (Lee and Whang, 2000), increase forecast accuracy (Williams & Waller, 2010; 2011), 

and lower agency conflicts (Nyaga et al., 2007) as well as overall supply chain costs (Datta et al., 

2007).  In order for the above benefits to materialize, the shared information should be timely 

and relevant (Kaipia & Hartiala, 2006).  However, most of the shared information is considered 

trade secrets that can be used against firms that shared it.  As a result, many firms remain reticent 

to share data exactly as needed by the supplier to make effective decisions. 
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Supply chain orientation is frequently cited as an antecedent for successful integration 

efforts to coordinate and synchronize activities (Min & Mentzer, 2004).  In order for firms to 

acquire a supply chain orientation, psychometric qualities such as trust and commitment are vital.  

Although interfirm relations in the supply chain literature are typically measured at the 

organizational level, specific transactions occur and relationships are built between individual 

company representatives.  Moreover, reliance on individual relationships affects both 

interfunctional as well as interfirm integration efforts (Fawcett & Magnan, 2002; Barratt & Oke, 

2007; Cousins et al., 2006).  Therefore, the road that firms expect to take directly from 

integration to supply chain performance benefits is more frequently serpentine rather than direct 

as agency conflicts abound (Rungtusanatham et al., 2007). 

 Agency conflicts exist partially due to misaligned incentive systems as well as 

information asymmetry between two parties both seeking self-interest (Jensen & Meckling, 

1976).  For example, Lee et al. (1997) illustrated a prominent example of misaligned incentive 

systems in the supply chain, in which a supplier wants to ensure broad geographic reach while a 

buyer wants to maximize sales.  As a result, the supplier attempts to ration quantities of shipment 

while the buyer orders at quantities higher than forecasted in order to secure more products.  A 

prominent consequence of these actions, distorted demand signals, can be observed in a wide 

range of industries empirically (e.g., Forrester, 1961; Blanchard, 1983; Eichenbaum, 1989; 

Fransoo & Wouters, 2000; Waller et al., 2008; Bray & Mendelson, 2012) and also replicated in a 

number of behavioral experiments (e.g., Sterman, 1989; Sterman, 1992; Cantor & Katok, 2012; 

Tokar et al., 2012).  

While behavioral conflicts may be ameliorated through contract designs, effective supply 

chain relationships should be based on relational integration rather than explicitly governing 
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contingent outcomes.  Hence, having confidence in the partner’s propensity in making the 

optimal decision based on mutual rather than self-interest is a vital building block to mitigate 

conflicts due to information asymmetry and misaligned incentive systems. 

 Reliance on the partnering manager to “do the right thing” on behalf of both firms makes 

an inherent humanist assumption.  By making such an assumption, managers may believe that 

their counterpart at a partnering supply chain firm would act based on the core values of their 

joint partnership and not engage in actions based solely on self-interest.  Indeed, many scale 

items in supply chain literature place specific emphasis on the degree of trust placed by survey 

respondents on partnering firm to make decisions that are mutually beneficial (e.g., Zaheer et al., 

1998; Cai et al., 2010).  Under this assumption, results from surveys largely support the 

contention that trust and commitment both lead to supply chain orientation, which in turn enables 

superior supply chain performance as measured by various outcomes. 

 However, anecdotal stories of the opposite are pervasive in case studies as well as the 

press literature.  For example, many suppliers to major retailers elucidate a coercive dependence 

relationship (e.g., Bloom & Perry, 2001).  Classic cases such as Vlasic Pickles failure (Fishman, 

2006) demonstrate how a humanist assumption in supply chain management is not necessarily 

appropriate.  More recently, a highly publicized lawsuit over alleged breach of contract involving 

executive leaderships from Macy’s, JCPenney, and Martha Stewart (D’Innocenzio, 2013), who 

was counted by Terry Lundgren, the CEO of Macy’s, as a personal friend (Tuttle, 2013), further 

highlight the tenuous relationship between representatives from supply chain partners. 

 Clearly, a humanist assumption in supply chain management does not necessarily provide 

the entire picture of antecedents to supply chain collaboration.  Therefore, while information 
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sharing may be considered to be positively related to supply chain performance, personal 

characteristics of individual company representatives contributes to the ultimate effectiveness of 

such linkages.   

 Following the humanist perspective, a principle component of trust and commitment is 

empathetic concern.  Empathetic concern describes the capability for an individual to have a 

positive regard or a non-fleeting concern for the other party (Chismar, 1988).  Greater empathetic 

concern allows individual managers to take the position of their business partner, to recognize 

the value proposition as well as needs and incorporate their partner’s concerns into their own 

decision-making process.  In supply chain management, collaborative tactics such as information 

sharing is often described as being beneficial primarily to firms residing upstream along the 

supply chain (Dukes et al., 2009).  Under such unevenly distributed value appropriation, the 

humanist manager from the firm downstream would empathetically recognize that there is 

substantial gain to be had by his counterpart from the firm upstream, and vice versa.  When both 

partners have the same realization, the humanist perspective suggests that despite the uneven 

distribution of benefits, both partners would seek to make the ideal decision to realize maximum 

value for the supply chain. 

 On the other hand, recent studies had found that many managers—especially those 

residing the upper echelons of organizations—tend to display psychopathic traits (e.g., Newby, 

2005) that prevent empathetic concerns (Howard & McCullagh, 2007).  Under such conditions, 

value maximization shifts from the system-level to individual-level.  As a result, classic gaming 

behaviors would occur, as described by the negative consequences on supply chain performance 

due to self-interest (Lee et al., 1997; Rungtusanatham et al., 2007). 
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