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ABSTRACT 

 

The Edwards aquifer is one of the major regional karst aquifers in the United States, with 

an average withdrawal of 950 million liters per day (L/d). This investigation focuses on the 

connection between the Uvalde pool and the San Antonio pool of the Edwards aquifer, known as 

the Knippa Gap, west of the San Antonio metropolitan area in Uvalde County. This is a major 

zone of recharge to the Edwards aquifer and is approximately 6.4 km wide. The Knippa Gap is 

bounded by northeast trending faults of the Balcones Fault Zone (BFZ) on the north (specifically 

the Cooks and Trio Faults), and uplift from the Uvalde salient and igneous intrusive plugs to the 

south. Aspects of the hydrogeology in the Knippa Gap have been a topic of major interest among 

researchers in this area for numerous years, however, the exact location and nature of boundaries 

are undefined, and the discharge through this area is not accurately known. The input data from 

this investigation will allow for assessments of discharge, better water budget approximations for 

the San Antonio pool, and determination of accurate flow boundaries and budgets for Uvalde 

County. This investigation was limited to the transmissive (karstified) portion of the Edwards 

aquifer within the study area, and is based on previous studies, and newly collected data. The 

newly collected data include: 1) compilation of a complete table of wells within the study area; 

2) redefined placement of flow boundaries (faults) most of which appear to be structurally 

controlled; 3) hydrostratigraphic analysis of the Knippa Gap area based on drilling and wireline 

logs; 4) characterization of the depth of karstification within the Knippa Gap; and 5) analyses of 

water quality within and contiguous to the study area. These data constrain a revised conceptual 

model of the flow and karstification in this critical area of recharge to the Edwards aquifer, and 

provide specific lateral boundaries and vertical karstification zones which can be tested 

quantitatively. Although current interpretations are tentative, it appears this conceptual model 



will be readily convertible into a digital model that can test hypotheses relating to water levels 

and spring discharges. 
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INTRODUCTION 

 

The Edwards aquifer, located in south-central Texas (Figure 1), is one of the most prolific 

and important karst aquifers in the world. For the city of San Antonio alone, the aquifer provides 

an average of more than 950 million liters of water to more than 2 million people a day.  In 

addition, its ecological role is significant; it is home to more than 40 aquatic subterranean 

species, several of which are endangered, and one that is threatened 

(http://www.edwardsaquifer.org/).  The Edwards aquifer is exceedingly prolific; west and north 

of San Antonio the Edwards provides most of the agricultural, industrial, recreational, and 

domestic water needs, making it the largest sole groundwater supply in the United States 

(Welden and Reeves, 1962; Maclay, 1995; Hamilton et al., 2012).   

The Edwards aquifer is interconnected with the Balcones Fault Zone (BFZ) a series of 

normal en echelon strike faults (Maclay, 1995). This zone separates the Edwards Plateau from 

the Gulf Coastal Plain in south central Texas. The aquifer is composed of extensively faulted and 

fractured Early Cretaceous age limestones and dolomite.  The thickness of the aquifer is often 

affected by vertical displacement along fault segments in the BFZ, which often act as barriers to 

down gradient groundwater flow (Maclay, 1995). There are several prominent structural features 

present throughout the study area (Uvalde County, Figure 1).  One such feature, the Uvalde 

salient, a north trending ridge that is wider in the north and narrows and plunges to the south, 

results from crustal uplift and faulting (Green et al., 2006).  Activity associated with the Uvalde 

Salient and intrusive igneous plugs throughout the study area elevates the Edwards aquifer to the 

surface across the central region of the county.  The structural feature being assessed within this 

study, for boundary determination and hydrogeologic properties is the hydrogeologic 

constriction referred to as the Knippa Gap (Figure 2).   

http://www.edwardsaquifer.org/
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Edwards Aquifer Authority, (2005) Green et al., (2006) and Hamilton et al., (2011) 

estimated that approximately 46% of total average recharge to the San Antonio pool segment that 

flows through or is captured by stream-flow, can be attributed to recharge occurring in Uvalde 

County. Further understanding of water resources in Uvalde County will aid development of a 

refined conceptual model for groundwater flow, thereby producing more precise estimates for 

water budgets, model calibrations, and overall resource management.  
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Figure 1.  Location of the major hydrogeologic zones of the Edwards aquifer in south-central Texas, by county.   Expanded study area 

in Uvalde County, outlined in pink and the focused study area of the Knippa Gap outlined in Green.   [Modified from Edwards 

Aquifer Authority webpage]. 

 

 

 

 

Study Area 
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Problem Statement 

 

The hydrogeology of the Knippa Gap is central to understanding the hydrologic budget of 

the overall Edwards aquifer, specifically the inflow to the pools (regions surrounded by low-

permeability zones that restrict dynamic flow out of the region). The hydrologic budget is critical 

to hydrogeologic model calibration, which is essential for optimum aquifer management and 

maintenance of sustainable use. This budget term is currently poorly constrained, and the 

hydrogeology of the Knippa Gap is only generally known.  

The Knippa Gap in the Edwards aquifer (Figures 2 and 5) represents one of two major 

overflow zones.  Water discharges from the Uvalde Pool in the west into the San Antonio Pool in 

the east. A pool within an aquifer is a region surrounded by low-permeability zones that form a 

bowl that restricts dynamic flow out of the region.  Input exceeds output until water level in the 

pool (bowl) overflows the low points. In the study area, most water escapes through the Knippa 

Gap, and from springs along the Leona River in the city of Uvalde (Green et al., 2006). The 

southeastern margin of the Knippa Gap is caused by structural uplift from underlying igneous 

intrusions and the formation of the Uvalde Salient, resulting in little or no-flow and minimal well 

yields.  This part of the aquifer essentially creates "a zone of no flow along the southeastern edge 

of the Uvalde Pool” (Green, 2006).   

Green et al., (2006), Maclay and Land (1988) provide a refinement of the original 

structural geology, determining "the underlying structural premise to the Knippa Gap is . . . 

faulting associated with the Balcones Fault Zone and uplift along the Uvalde Salient have 

developed a constriction in flow through the Edwards aquifer near the City of Knippa" (Figure 5) 

(Green et al, 2006).  The amount of groundwater flow that discharges through the Knippa Gap is 

not well constrained, in part because a significant portion of outflow from the Uvalde pool 
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discharges to the south through subcrops to the Leona gravels. More refined flow estimates, 

along with a better understanding of how the Knippa Gap functions, would greatly refine the 

water budget for the San Antonio Pool and more accurately determine flow boundaries and 

budgets for the regional Edwards aquifer.  

Purpose and Scope 

 

The overarching purpose of this study is to refine hydrogeologic understanding of flow in 

the Edwards aquifer in the vicinity of the Knippa Gap between the Uvalde Pool and the San 

Antonio Pool through the assessment of structural geology, hydrology, geochemistry, and 

stratigraphy. This study incorporates the integrated results of previous studies with recently 

conducted field sampling and measurements. Secondary purposes of the study include 1) 

compilation of a complete table of wells within the study area (Appendix A); 2) redefined 

placement of flow boundaries (faults), most of which appear to be structurally controlled, based 

on (Maclay, 1988; Clark, 2003; Green et al., 2006); 3) hydrostratigraphic analysis of the Knippa 

Gap area based on water levels, wireline logs interpretation, cross-sectional interpretations, and 

water quality records; 4) characterization of the depth of karstification within the Knippa Gap 

based on well yields and wireline logs; 5) generation of water-quality analyses within and 

contiguous to the study area; and 6) construction of a conceptual model of the hydrogeology of 

the area, based hydrostratigraphy and geochemical analyses. The project is limited to the 

transmissive (karstified) portion of the Edwards aquifer within the study area, and the scope is 

essentially limited to the subsurface and to reaches of streams that flow across the surface.  

Although, it is important to note that significant quantities of surface recharge and discharge are 

present within the study area. Supplemental studies outside hydrologic boundaries are included 

to test the veracity of the conceptual model. This study focuses primarily on groundwater 
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resources relating to the Knippa Gap, however the study area has been expanded to include 

hydrologic boundaries and areas that contributed to the overall understanding and interpretation 

of the hydrogeology and structural geology within the study area (Green et al., 2006; Clark, 

2003). 
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Figure 2. Location of key components and structural interpretation of the Knippa Gap, the major study area, the expanded study area, 

and other relevant hydrogeologic features in Uvalde County.   [Modified from Green, 2010].

Expanded area of this study, including Uvalde pool on west, and SanAntonio Pool on the east.. 
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Study Area 

 

 The primary study area for this research is depicted by the red-dashed rectangle in 

(Figure 2). An expanded but secondary area of interest surrounds the primary study area, 

encompassing contiguous portions of the integrated Edwards aquifer flow system.  The primary 

study area (Figure 3) is approximately 13.25 kilometers [Km] north to south and 14.38 Km east 

to west whereas the expanded study area is approximately 58.4 Km north to south and 67.8 Km 

east to west [measurements extracted from location points in Google Earth software]. Uvalde 

County is described as having a semi-arid climate, and like most of the Edwards aquifer region 

suffers highly variable precipitation levels. In the Edwards aquifer region, precipitation ranges 

from 55.88 cm in the west, to approximately 86.36 cm in the east. The average precipitation for 

Uvalde County is 58.06 cm. Table 5 (modified from the Edwards Aquifer Authority Hydrologic 

Data Report 2011) synthesizes the annual precipitation from 1934-2011 for Uvalde County and 

the remaining Edwards Aquifer region (Edwards Aquifer Authority, 2011). There are several 

drainage basins present throughout the region. Uvalde County lies within the Nueces River-West 

Nueces River drainage basin (western portion), the Frio River-Dry Frio River basin (central), the 

Sabinal River drainage basin (eastern portion), and a small un-named basin somewhere between 

the Sabinal River and Medina River basins (northeast) (Green et al., 2006). The Edwards Group 

(Figure 8) in Uvalde County is predominantly composed of Lower Cretaceous carbonate 

(dolomitic limestone) of the Devils River Formation within the Devils River trend in the 

northeast, transitioning into the West Nueces, McKnight, and Salmon Peak Formations in the 

Maverick Basin in the southwest (Figure 3,4, and 5). These carbonate rocks were formed in 

evolving environments that ranged across a variety of tectonic and depositional conditions.  
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The Edwards Aquifer in Uvalde County is known to support high-volume irrigation 

wells, and is thus interpreted to have the capacity to transmit significant volumes of water (Green 

et al., 2006). The focus of this study, the Knippa Gap is a high-volume capacity channel of the 

Edwards aquifer in central Uvalde County. Preliminary interpretations of the Knippa Gap, 

indicate that it is a structural feature that acts as a barrier, separating the Uvalde pool from the 

San Antonio pool under Medina, Bexar, and Comal Counties. Previous investigations determined 

that the Knippa Gap was restricted to an east-trending narrow band or channel in the middle of 

Uvalde County approximately (i.e., 4–5-mi wide). The Methods and Approach section of this 

report in combination with the results and discussion sections explain determinations for the 

increased boundaries of the Knippa Gap estimating it to be approximately 6.41km wide. The 

northern and southern limits of the Edwards aquifer far exceed the limited width of the channel. 

The contributing and recharge zones of the Edwards aquifer (where the saturated thickness is 

insufficient to transmit large volumes of groundwater) extend north of the channel. According to 

Green et al., 2006 the southern boundary of the Knippa Gap or the high-capacity flow channel of 

the Edwards aquifer is bound by either the saline-water (bad water) portion of the Edwards 

aquifer,  or igneous intrusions (where permeability is reduced), geologic structure, localized 

zones of reduced permeability, or some combination of these factors (Green et al., 2006)
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Figure 3.  GIS image displaying the study area with point boundaries of expanded and Primary study areas, JA identification 

referenced to Appendix A. 
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The Knippa Gap is located directly north of the city of Knippa, and forms the southern 

boundary of the Uvalde Salient, and has been described as being a narrow opening in an 

extensive system of barrier faults (Green et al., 2006; Maclay and Land, 1988). The BFZ is 

thought to delineate the northwestern boundary of the Knippa Gap as a series of faults that have 

been plugged by low-permeability, fine-grained sediments, and therefore act as no-flow 

boundaries (Mclay and Land, 1988), while igneous intrusions in conjunction with the Uvalde 

salient (structural uplift) define the southern boundaries for the Knippa Gap. Although 2.4 x 1011 

liters (200,000 acre-feet) are estimated to flow through the Knippa Gap annually, the constriction 

still contributes to water level build up in the Uvalde pool. Green et al. (2006; 2009a; 2009b) 

conclude that the Uvalde salient has several prominent structural high points that constrict the 

groundwater flow through "topographic saddles," low troughs between higher elevation points 

that are bounded by lower permeability boundaries that form the rim of the Uvalde pool. The 

Frio and Dry Frio Rivers contribute large amounts of recharge to the groundwater flow regime 

within the study area. The incoming captured surface stream-flow associated with these recharge 

features in combination with the constricted flow path of the Knippa Gap, cause a damming 

effect of the groundwater up-gradient and west of the Knippa Gap (Green et al., 2006).    
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Previous Investigations 

 

Several studies have been undertaken to aid in the understanding and management of the 

Edwards aquifer, all of which provide a foundation for the investigations of this study.  These 

studies can be assessed and grouped based on interpretations relating to hydrogeology, structural 

geology, geochemistry, stratigraphy, and other pertinent areas of interest relating to this 

investigation. Several of these studies are described below, and the majority have been 

synthesized in (Table 1) with short descriptions of their work. Table 1 and the discussions of 

previous work below, were completed based on interpretations by Green et al., (2006) 

“Evaluation of the Edwards Aquifer in Kinney and Uvalde Counties, Texas”; which provides an 

excellent summary of the previous research conducted in and or relating to the study area. Dr. 

Green’s extensive research expands on the knowledge of these previous studies relating to the 

study area as well as future studies.  The majority of the investigations pertaining to the study 

area were initiated in the 1950’s by the U. S. Geological Survey; few were conducted and or 

recorded prior to this. 

In the 1950's, the U.S. Geological Survey collected samples for Uvalde County that were 

later used in studies by Sayre (1962), Welder and Reeves (1962), and Holt (1956). These studies 

provided brief descriptions of water quality pertaining to potential irrigation and human 

consumption.  Welder and Reeves (1962) constructed a groundwater elevation map for Uvalde 

County for December 1957.  Maclay and Small (1984) addressed the initial storage and flow 

concepts in the Edwards aquifer and the influences controlling these systems, as they relate to the 

study area. These discussions produced a map of the regional groundwater flow pattern relating 

to the study area, which was later reproduced in reports by (Maclay and Land 1988).  Maclay 

and Land (1988) presented a groundwater contour map for the winter of 1973 that is "commonly 
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cited as representative elevations for "normal precipitation" periods in the San Antonio segment 

of the Edwards aquifer" (Green et al., 2006).   

Discussions by Ferril et. al (2004) constructed a three-dimensional digital geologic 

framework model using part of the recharge and confined zone of the Edwards aquifer. The 

model represents the segmented faulting of the Edwards aquifer and confining strata, and 

expands on potential structural controls relating to recharge, groundwater flow, and 

transmissivity within the aquifer. Hovorka (2004) utilized existing data from water-levels, 

structural information, cave maps, water-chemistry, and well hydrographs to better characterize 

the conduit system within the subsurface of the Edwards aquifer. 

Green (2006) evaluates the groundwater systems in Uvalde County and defines the 

hydraulic and hydrogeologic relationship between the Uvalde pool and the San Antonio pool of 

the Edwards Aquifer.  (Green, 2009) discusses the minor groundwater resources, or secondary 

aquifers, that are present within the study area, and their effect on the regional groundwater flow.  

Green (2010) presents a definition of the Uvalde pool, and he estimates approximately 55% of 

pumping from the Edwards Aquifer in Uvalde County is from the Uvalde Pool.  These and other 

studies serve as the foundation of this research.    

Rose (1972) provides the structural framework for the geology of the Edwards Aquifer, 

and suggests that the igneous intrusions present in the study area may affect groundwater flow. 

Interpretations relating to the igneous intrusions were reassessed in Green et al., (2006). Later 

studies by Clark (2003), Clark and Small (1997), Small (1986), and Hovorka ( 2004) improved 

upon the understanding of the geologic structure and lithology within the study area.  Rose 

(1972) also provides a regional compilation of the stratigraphy, and the depositional environment 
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of strata within the study area. This combined with later studies conducted by Hovorka et al. 

(1993, 1996) determine the effects of depositional environment on the hydraulic properties of the 

Edwards Aquifer.  Mosher et al., (2006) describes the major regional tectonic activity that 

occurred within the study area, detailing how the events bowed the overlying sediments, 

uplifting the formations to far shallower depths, and resulting in the structural features that are 

currently present in the study area such as the Uvalde salient of the Devils River Trend structural 

uplift.   
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Table 1  Selected studies previously completed that are directly relevant to this research.   [TWC 

(Texas Water Commission); USGS (U.S. Geological Survey; Journal of Hydrology; 

TWDB (Texas Water Development Board);San Antonio City Water Board; Texas Board 

of Water Engineers; BEG (Bureau of Economic Geology); Edwards Underground Water 

District or Edwards Aquifer Authority (EAA), Geology; Rotterdam, Netherlands, A.A. 

Balkema; Journal, Groundwater; Society of Petroleum Engineers Annual Conference; 

Proceedings of Aquifers of the Edwards Plateau Conference; SWRI (Southwest Research 

Institute); GSA (Geological Society of America); United States Department of the 

Interior, Geological Survey] 

Author/Date Major Topics Covered Publication Outlet 

Anaya and Jones, 

(2004) 

Groundwater availability model of the Edwards-

Trinity (Plateau) and the  Cenozoic alluvium 

aquifer systems, Texas. 

TWDB 

Bush et al., (1992) Historical piezometric surface of the Edwards-

Trinity aquifer system and contiguous hydraulically 

connected units, west-central Texas 

USGS 

Clark and 

Journey, (2005) 

Hydrological and geochemical identification of 

flow paths in the Edwards aquifer, northeastern 

Uvalde and northern Medina County 

USGS 

Clark and Small, 

(1997) 

Geologic framework and hydrogeologic 

characteristics of the Edwards Aquifer, Uvalde 

County, Texas 

USGS 

Clark, (2003) Geologic framework and hydrogeologic 

characteristics of the Edwards Aquifer, Uvalde 

County, Texas 

USGS 

Clement and 

Sharp, (1988) 

Hydrochemical facies of the bad-water zone of the 

Edwards aquifer, Central Texas 

National Water 

Well Association 

Edwards Aquifer 

Authority,  (2006) 

 

Synoptic Water Level Program - 1999-2004: Final 

Report May 2006 

EAA 

Esquilin et al., 

(2012) 

Edwards Aquifer Authority Synoptic Water Level 

Program 2005˝2009 Water Level Data 

EAA 

Garza (1962,1996) Groundwater resources of the Edwards and 

associated Limestones 

 

Texas Water 

Engineers 

Green et al., (2006) Evaluation of the Edwards Aquifer in Kinney and 

Uvalde Counties, Texas 

SWRI 

Green et al., (2012) Measure Floodplain Hydraulics of Seco Creek and 

Medina River where They Overlie the Edwards 

Aquifer 

SWRI 

Green et al., (2009) Analysis of the Water Resources of or Near Uvalde 

and Zavala Counties 

SWRI 
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Green et al., (2009) Investigating the Secondary Aquifers of the Uvalde 

County 

SWRI 

Green et al., (2009) Measuring Floodplain Hydraulics of the Frio River 

where it Overlies the Edwards Aquifer 

SWRI 

Groschen, (1996) Hydrogeologic factors that affect the flow path of 

water in selected zones of the Edwards Aquifer in 

the San Antonio region, Texas 

USGS 

Hamilton et al. 

(2010) 

Edwards Aquifer Authority Hydrologic Data 

Report for 2010 

EAA 

Hamilton et al. 

(2012) 

Edwards Aquifer Authority Hydrologic Data 

Report for 2011 

EAA 

Holt, 1956, 1959 6212 Bulletin: Geology and Ground-Water 

Resources in Medina County, Texas 

TWC-USGS 

Hovorka et al. 

(1993) 

Structural Geology and depositional environment 

in relation to hydraulic properties of the Edwards 

Aquifer 

Edwards 

Underground Water 

District; Bureau of 

Economic Geology 

Hovorka et al. 

(1995) 

Regional distribution of permeability in the 

Edwards Aquifer 

Edwards 

Underground Water 

District (EAA) 

Hovorka et al. 

(1996) 

Geologic controls on porosity development in 

platform carbonates, South Texas 

Bureau of 

Economic Geology 

Hovorka et al. 

(1997) 

Interplay of karst, fractures, and permeability in the 

Cretaceous Edwards aquifer: analogs for fractured 

carbonate reservoirs 

Society of 

Petroleum 

Engineers Annual 

Conference 

Hovorka et al. 

(1998) 

Permeability structure of the Edwards Aquifer Bureau of 

Economic Geology 

Hovorka et al. 

(2004) 

Analysis of conduit development in the Edwards 

Aquifer 

Bureau of 

Economic Geology: 

contracted to the 

EAA 

Klemt et al., 1979 Ground-water resources and model applications for 

the Edwards (BFZ) Aquifer in the San Antonio 

Regions 

Texas Department 

of Water Resources 

Kuniansky et 

al.(1994) 

Simulations of flow in the Edwards-Trinity Aquifer 

system and contiguous hydraulically connected 

units, west-central Texas 

USGS 

Lindgren et al., 

2004 

Conceptualization and simulation of the Edwards 

Aquifer, San Antonio Region, Texas 

USGS 
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Livingston et. al, 

1936 

Water Resources of the Edwards Limestone in the 

San Antonio Area, Texas 

United States 

Department of the 

Interior, Geological 

Survey 

Livingston, 1947 Relationship of ground water to the discharge of 

the Leona River in Uvalde and Zavala Counties, 

Texas 

Texas Board of 

Water Engineers 

Lowry, 1955 Recharge to the Edwards Aquifer San Antonio City 

Water Board 

Mace and Anya, 

2004 

Estimate of recharge to the Edwards (Blacones 

Fault Zone) and Edwards-Trinity (Plateau) aquifers 

in Kinney County, Texas 

Proceedings of 

Aquifers of the 

Edwards Plateau 

Conference 

Mace and 

Hovorka, 2000 

Estimating porosity and permeability in a karst 

aquifer 

Rotterdam, 

Netherlands: A.A. 

Balkema 

Mace, 2000 Transmissivity from specific capacity tests in a 

Karst aquifer 

Journal: 

Groundwater 

Maclay and Land, 

1988 

Assesment of flow and refinement of flow concepts 

in the Edwards Aquifer; Provides Groundwater 

elevation maps for Winter 1973 

 

USGS 

Maclay and Small, 

1983 

Hydrostratigraphic subdivisions and fault barriers 

of the Edwards Aquifer, south-central Texas 

Journal of 

Hydrology 

Maclay and Small, 

1986 

Carbonate geology and hydrology of the Edwards 

Aquifer in the San Antonio area 

TWDB 

Mclay et al. 1980 Hydrochemical data for the Edwards Aquifer Texas Department 

of Water Resources 

Mclay, 1995 Geology and hydrogeology of the Edwards Aquifer 

in the San Antonio area, Texas 

USGS 

Mosher, (2007) Mesoproterozoic plate tectonics: A collisional 

model for the Grenville-aged orogenic belt in the 

Llano uplift, central Texas 

Geological Society 

of America 

Painter et al. 

(2002) 

Geostatistical assessment of the transmissivity of 

the San Antonio segment of the Edwards Aquifer 

South West 

Research Institute 

Pearson and 

Rettman, 1976 

Geochemical and isotopic analyses of waters 

associated with the Edwards Limestone aquifer 

Edwards 

Underground Water 

District (EAA) 

Petite and George, 

1956 

Recharge to the Edwards Aquifer Texas Board of 

Water Engineers 

Puente (1975, 

1976, 1978) 

Groundwater Recharge in the Edwards Aquifer USGS 
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Raye et al., (2011) Composition of the mantle lithosphere beneath 

south-central Laurentia, Evidence from peridotite 

xenoliths, Knippa, Texas 

Geological Society 

of America 

Rose,1972 Structural Geology, Stratigraphy and depositional 

environment in relation to hydraulic properties of 

the Edwards Aquifer 

Bureau of 

Economic Geology 

Sayre, 1936; Sayre 

and Bennet,1942 

;Bennet and Sayre, 

1962 

6212 Bulletin: Geology and Ground-Water 

Resources in Kinny County, Texas; 1962 Provide 

maps of Groundwater elevation Contours (1930-

1940, January 1952, and August 1956) 

TWC-USGS 

Schindel et al., 

(2002) 

Groundwater chemistry changes during a recharge 

event in the karstic Edwards Aquifer, San Antonio, 

TX 

Geological Society 

of America 

Small, 1986 Hydrogeologic sections of the Edwards aquifer and 

its confining units in the San Antonio area, Texas 

USGS 

Smith et al., 2002 Aeromagnetic survey of Medina and Uvalde 

counties, Texas 

USGS 

TWDB, 2005 Well Information/Groundwater Data TWDB 

Welder and 

Reeves, 1962 

6212 Bulletin: Geology and Ground-Water 

Resources in Uvalde County, Texas; Provides 

Groundwater Contour map for December, 1957 

TWC-USGS 

Worthington 

(2004) 

Analysis of conduit development in the Edwards 

Aquifer 

EAA 
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SETTING 

 

Tectonics and Regional Structural Characteristics 

 

 Uvalde County is described as having a semi-arid climate, and like most of the region 

underlain by the Edwards aquifer experiences highly variable precipitation levels. In the 

Edwards aquifer region, precipitation ranges from 56 cm in the west, to approximately 86 cm in 

the east. The average annual precipitation for Uvalde County is 58 cm. [Table 5 (modified from 

the Edwards Aquifer Authority Hydrologic Data Report, 2011)] which synthesizes the annual 

precipitation from 1934-2011 for Uvalde County and the remaining Edwards aquifer region 

(Edwards Aquifer Authority, 2011). There are several drainage basins present throughout the 

region; Uvalde County lies within the Nueces River-West Nueces River drainage basin (western 

portion), the Frio River-Dry Frio River basin (central), the Sabinal River drainage basin (eastern 

portion). A small unnamed basin also sits between the Sabinal River and Medina River basins 

northeast of the study area (Green et al., 2006). The Edwards Group Formation (Figure 8) in 

Uvalde County is predominantly composed of Lower Cretaceous carbonate (dolomitic 

limestone) of the Devils River Formation within the Devils River trend in the northeast, 

transitioning into the West Nueces, McKnight, and Salmon Peak Formations in the Maverick 

Basin in the southwest (Figures 5, 7, and 8). These carbonate rocks were formed in evolving 

environments that ranged across a variety of tectonic and depositional conditions. As indicated 

by Clark, (2003), the lower Cretaceous rocks in this region were deposited onto a continental 

shelf-margin platform. The platform was sheltered from storm waves and deep ocean currents 

associated with the ancestral Gulf of Mexico by the Stuart City reef.  The transgression and 

regression periods occurring across the tectonic hinge line (located near the southern margin of 
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this carbonate shelf) kept parts of Kinney, Uvalde, and Medina counties submerged in a 

semicircular depression previously referred to as the Maverick Basin (Figure 5).  

 Increased subsidence rates south of the tectonic hinge line led to different facies of rocks 

deposited along the hinge line and those deposited elsewhere on the Comanche Shelf. 

Superseding zones of reef growth, known as the Devils River Trend (Figures 5) isolated the 

depositional environments inside the basin, and bound the basin on three sides; north, east, and 

west, composing the Devils River Formation seen today. The Devils River Formation (Figure 8) 

was deposited in an open, shallow-marine environment of high current energy, whereas the West 

Nueces, McKnight, and Salmon Peak Formations were restricted to open marine, deep-basinal 

environments (Rose, 1973; Clark, 2003).  Regionally, several noteworthy structural features have 

been studied throughout Uvalde County, such as the Uvalde salient, a north trending ridge that is 

wider in the north and narrows, plunging to the south, ensuing from crustal uplift, faulting, and 

igneous activity that elevates the Edwards aquifer to the surface across the central region of 

county. The BFZ a tensional area of faulting aligned southwest to northeast across the study area 

is also a structurally significant feature impacting the study area (Green et al., 2006). The BFZ 

has an escarpment rising from an altitude of 182m to 274m along the sloping lowlands of the 

Gulf Coastal Plain to approximately 426m to 701m in the uplands of the Edwards Plateau 

(Maclay and Land, 1988). As a result of the structural features and there impacts, particularly the 

extensive faulting associated with the BFZ, within the Edwards aquifer the structure of the 

aquifer itself is exceedingly complex.  

 Most researchers attribute the BFZ to the long and varied sequence of continent-arc-

continent collision, subduction, uplift, and extension associated with the history of the southern 

margin of Laurentia, (the North American Craton) (Mosher et al., 2008; Mosher, 1998).  Much 



 

21 

 

of the BFZ in Uvalde, as well as Medina and Bexar counties is covered by widespread flat 

alluvial fans and terraces. The faulting in the BFZ is predominantly down to the southeast with 

primarily northeast-southwest trending en echelon normal faulting (Maclay, 1995; Clark, 2003; 

Barker and Ardis, 1996; Hovorka et al., 2004). The BFZ, specifically Cook's Fault, delineates the 

northwestern boundary of the Knippa Gap. The series of faults having been plugged by low-

permeability, fine-grained sediments, act as "no-flow boundaries" (Maclay and Land, 1988).  

South and east of the Knippa Gap, major regional tectonic activity occurred, including but not 

limited to igneous intrusions, uplift and folding.  This event bowed the overlying sediments, 

including the Edwards Group, uplifting the formations to much shallower depths (Mosher et al., 

2006), and resulted in the formation of the structural feature known as the Uvalde salient 

associated with the Devils River Trend.  The Uvalde Salient (Figure 5) dips toward the 

southwest, into the Maverick Basin.  

 The tectonic map for the state of Texas (Figure 4) provided by the Bureau of Economic 

Geology (BEG), summarizes the regional deformation history (plate tectonic processes) of 

Texas.  The map documents the movement history throughout the state, indicating structural 

relationships among the crust, and showing crustal patterns that indicate the sequence of tectonic 

events (Laubach, 1997).  Tectonics maps differ drastically from the more common Geologic 

maps, (Figure 7) that display the surface strata of the study area. Geologic maps are generally 

used to identify outcrop symmetry in distinct rock formations, whereas tectonic maps such as 

(Figure 4)  have a more simplified color pattern and identify the more basic map elements 

(tectonostratigraphic units), "sequences of sedimentary rock strata or groups of metamorphic and 

igneous rocks that share a common history of deformation" (Laubach, 1997). This lumping or 

combing effect of formations is depicted in Figure 4, in the Paleozoic formations between 
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Midland, Dallas, and Amarillo; which in combination with a thin veneer of younger Cretaceous, 

Tertiary, and Quaternary deposits at the surface were combined or lumped together (Laubach, 

1997).  Figure 4 also shows several tectonic fronts, indicated by crosscutting relations which 

distinguish relative ages. These tectonic fronts mark the edges of major basins and former 

orogenic belts. The tectonic Map of Texas (Figure 4), clearly displays the three principal tectonic 

cycles within the region as described by Laubach, (1997):  (1) Precambrian cycles recorded in 

the ancient rocks of the Llano region, and near Van Horn and El Paso. (2) The Paleozoic 

Ouachitan cycle; beginning with continental rifting around 550 mya, followed by the inundation 

of most of Texas by shallow seas, ending with the collision of the South and North American 

plates leading to the Ouachita mountain-building event, ending about 245 mya. The tectonic map 

(Figure 4) indicates that there are two primary features recorded in Texas during the Ouachita 

Orogeny; the foreland area of West Texas, seen in shades of blue, and the partially buried and 

eroded mountain belt to the southeast of the Ouachita tectonic front seen in shades of purple.  (3) 

The Gulf Coast cycle (current tectonic cycle in Texas), beginning with continental rifting in the 

Late Triassic approximately 220 mya, led to the creation of oceanic crust in the Gulf of Mexico 

(Laubach, 1997). The tectonic map of Texas (Figure 4) also specifies rocks  in green and brown 

(Gulf Coast Cretaceous and Tertiary strata), east of Dallas, Austin, and San Antonio, deposited 

during the creation of the Gulf of Mexico and Atlantic Ocean, and indicates  byproducts of basin 

formation, such as normal faults and salt diapirs.  In relation to the study area, between Del Rio 

and Dallas, the edge of the Gulf Coast Basin follows the older Ouachitan tectonic front, 

illustrating tendencies for localized deformation through time along preexisting fault zones 

(Laubach, 1997).  
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Figure 4.  Tectonic map of Texas with the approximate location of the Knippa Gap, study area 

indicated by the small black rectangle.   (Adapted from the Bureau of Economic Geology, 

University of Texas).  (http://www.lib.utexas.edu/geo/geologic_maps.html) 

  

Uvalde County Study Area 
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Figure 5.  Location of the Devils River Trend, Maverick Basin, Uvalde Salient, the San Marcos 

Platform and the Knippa Gap study area (Indicated by yellow circle and arrow)   

[Adapted from Green et a., 2006]. 
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Peridotite xenolith samples, collected by Raye and others in 2011, relative to the study 

area in the Knippa quarry, Knippa County, Texas, are among the few samples collected, that 

represent the southern margin of Laurentia.  The xenoliths are hosted by Cretaceous (~83 Ma) 

basinites that erupted along the lithospheric discontinuity separating Mesoproterozoic lithosphere 

of the Texas craton and the Jurassic transitional lithosphere of the NW Gulf of Mexico passive 

margin. Basinites are extrusive igneous rocks with aphanitic to porphyritic texture having 

common augite and olivine pheocrysts in the matrix and little or no silica generally associated 

with continental rifting and ocean island magmatism (Buchwald, 2003).  Raye and others (2011) 

were able to utilize petrographic, mineral, and major element data from 29 mantle xenoliths 

relative to the study area, specifically Knippa County Texas, to characterize and constrain the 

nature of the lithospheric mantle beneath south central Texas. These sample localities are in the 

Balcones Igneous province (BIP) (Figure 4). The BIP is described by the authors as "an 

association of Mesoproterozoic and transitional lithosphere of the Gulf Coastal plain, having 

been affected by the Mesoproterozoic accretion and subsequent Paleozoic tectonism representing 

the boundary between the Mesoproterozoic continental lithosphere and the transitional Gulf of 

Mexico Passive margin" (Raye et al., 2011). 
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Figure 6.  Location of Knippa mantle xenolith locality in south-central Texas, relative to the 

study area showing simplified crustal provinces.   The Ouachita orogeny approximates 

the boundary between the North American craton to the north and west and transitional 

crust to the east and south. APM—apparent plate motion; BIP—Balcones Igneous 

Province. According to the Raye (2011) Geophysical studies indicate that orientation and 

magnitude of splits correlate to crustal provinces (Gao et al.,2008). The rapid variation 

in splitting delay times from Llano uplift to southeastward might be either due to different 

degree of alignment of the crystals’ fast axes or to difference in thickness of the 

anisotropic layer (Satsukawa et al., 2010). APM—apparent plate motion; BIP—Balcones 

Igneous Province. (Adapted from Raye, 2011) 
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Lithology and Stratigraphy 

 

 The Edwards aquifer in the area of the San Antonio pool comprises as many as 8 

members and formations of the Edwards Group (Figure 8), predominantly carbonates and 

evaporates that were deposited in the latter part of the Early Cretaceous. Original sediments were 

composed of aragonite, calcite, dolomite, and gypsum, which have since been replaced by calcite 

to form the exceedingly porous and strongly heterogeneous limestone rock seen today (Clark, 

2003; Hvorka et al., 2004). At the surface along the Balcones Escarpment the Edwards Group 

dips toward the southeast occurring in an irregular band, exposing older rocks north and younger 

rocks south (Maclay and Land, 1988). Work by Hovorka et al., (2004) observes that lateral and 

vertical variability in response to Cretaceous depositional processes within fabrics of the rock 

has led to "distinct variations of depositional facies." (Hovorka et al., 2004) These variations led 

to the formation of beds with irregular solubility and mechanical properties, creating the 

regionally extensive stratigraphic intervals that are mapped as formations and hydrostratigraphic 

members within the study area (Figure 8) (Hovorka et al., 2004). The Major stratigraphic units 

referred to in this study include the Devils River Formation of the San Marcos Platform margin, 

and West Nueces, McKnight, and Salmon Peak Formations of the Maverick Basin; utilizing 

stratigraphic nomenclature and lithologic descriptions of Lozo and Smith (1964) and Clark, 

2003) (Figures 5 and 8). The upper units of the Devils River Trend along with the upper unit of 

the Salmon Peak Formation are the most prolific water bearing units in the study area.  As 

previously discussed, the Devils River Formation was an open, shallow-marine environment of 

high current energy; it is also described as having subtidal and supratidal facies (Clark, 2003; 

Hovorka et al., 2004).  According to despriptions in Clark, (2003) the West Nueces Formation is 

nodular, and contains burrows (in-filled with dark insoluble material) and possesses low porisity 
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and permeability.  Similarly these descriptions from Clark, (2003) indicate that the McKnight 

Formation has low porosity and permeability, is dark, fine-grained, laminated, and argillaceous 

carbonate containing massive anhydrite beds.  The Salmon Peak Formation (the most prolific 

formation within the Edwards group) has a high porosity and permeability and consists of light 

colored, homogeneous wackestone, packstone, and grainstone [Clark, 2003; Hovorka et al., 

(1993, 19964); Green et al., 2006].  

 The permeable strata are hydraulically interconnected by open inclined fractures 

associated with the BFZ.  These high-angle normal faults often displace the entire thickness of 

the Edwards Limestone creating discontinuity, within the "lateral continuity of the strata" 

(Maclay and Land, 1988).  According to reports by Green (2009) and Hovorka et al., (2004) 

voids within the Edwards Group (Figure8) vary in size, shape, and degree of interconnectivity 

relating to the textural and diagenetic history of the rock.  Primary porosity within the Edwards 

Group results from small voids within and between the particle material compiling the rock 

matrix. Secondary porosity is attributed to solutioning and dedolomitization processes taking 

place below the substantial cover of confining rock (Green, 2009; Hovorka et al., 2004).  Pools 

within the Edwards aquifer are regions surrounded by low-permeability zones that restrict 

dynamic flow out of the region.  Most water escapes from the pool by overflowing at low points, 

such as the Knippa Gap (Figures 2 and 5), and springs along the Leona River (Green et al., 

2006).  In this area of transition in the Knippa Gap, that number decreases from 8 to 3 formations 

in the Maverick Basin, or 1 formation in the Devils River Trend of the Uvalde salient (Figures 5 

and 8) (Green, 2009). Hovorka et al., (2004) concludes that the widespread faulting in the region, 

associated with the BFZ, "has significantly increased hydrologic gradient" (Hovorka et al., 2004) 

and that uplift at the base of the Edwards Group level in the western portion of the aquifer is 
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occurring at elevations greater than 457.2 m above sea level, while the "maximum downdip 

extent of the freshwater aquifer" is at approximately 1036.32 m below sea level (Hovorka et al., 

2004).  
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Figure 7. Geologic Map of Texas, Modified from the University of Texas Libraries of the 

University of Texas at Austin.
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Stratigraphic Units of the Study Area in South Central Texas 
U
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er
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Stratigraphic Unit 

Hydrologic 

Unit 

Approx. 

Max 

Thickness 

(ft) 

Character of Rock Porosity-Permeability 
Cavern 

Development 

Maverick Basin 

Devils 

River 

Trend 

Escondido 

Formation 

Escondido 

Formation 
CU 285 

Fine-grained sandstone, with 

interbedded shale, clay, and 

pyroclastic material locally 

fossiliferous 

Low porosity/low 

permeability 
None 

Anacho Limestone 
Anacho 

Limestone 
CU 

Greater 

than 470 

Massive mudstone to 

packstone, with interbedded 

bentonitic clay 

Low porosity/low 

permeability 
None 

Austin Group 
Austin 

Group 

CU; AQ where 

connected to 

Edwards by 

faults/fractures 

300 
Massive, chalky to marly, 

fossiliferous mudstone 

Low to moderate porosity 

and permeability 

Minor along 

fracture/faults 

Eagle Ford Group 

Eagle 

Ford 

Group 

CU 130–150 
Brown, flaggy, sandy shale 

and argillaceous limestone 

Primary porosity lost/low 

permeability 
None 

Buda Limestone 
Buda 

Limestone 
CU 70-90 

Buff to light-gray, dense 

mudstone Porcelaneous 

limestone, nodular 

Low porosity/low 

permeability 
Minor surface karst 

Del Rio Clay 
Del Rio 

Clay 
CU 50-110 

Blue-green to yellow-brown 

clay; Fossiliferous 

Negligible; primary upper 

confining unit 
None 
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D
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R
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AQ 75 

Mudstone that grades upward 

into grainstone; Light-gray 

mudstone, with abundant 

fossil fragments 

Both fabric and non-fabric 

selective, low to high 

porosity/low to high 

permeability 

Minor karst, 

associated with 

solutioningmalong 

fractures 

L
o

w
er

 

U
n

it
 

AQ 310 

Thick, massive lime 

mudstone, grainstone, and 

chert; Massive, gray mudstone 

Mostly non-fabric selective; 

low porosity/ low 

permeability 

Minor karst, 

associated with 

solutioning along 

fractures 

M
cK

n
ig

h
t 

F
o
rm

a
ti

o
n

 

U
p

p
er

 

n
it

 

AQ 100-160 

Brownish, thin-bedded, 

pelleted, mudstone, 

wackestone, packstone, and 

grainstone; 

Mostly fabric selective; high 

porosity and permeability 

where evaporite dissolution 

has occurred 

Negligible 

M
id

d
le

 

U
n

it
 

CU 40 

Dark, laminated mudstone, 

fissile Mudstone; Petroliferous 

odor; vegetative band on aerial  

Mostly non-fabric selective; 

low porosity/ low 

permeability 

None 

L
o

w
er

 

U
n

it
 

Cu; AQ in 

evaporates 
60-80 

Thin-bedded mudstone to 

grainstone 

Mostly fabric selective; low 

to high porosity/low 

permeability 

Negligible 

W
es

t 
N

u
ec

es
 

F
o

rm
a
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o
n

 

U
n

d
iv

id
ed

 

CU 120-260 

Gray, thick-bedded, burrowed, 

shell-fragment wackestone, 
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Figure 8. Summary of the lithologic and hydrologic properties of the stratigraphic units of the Devils River Trend and the Maverick 

basin, Uvalde County, Texas;   [Groups, formations and table modified from Clark (2003), Gary (2013), Welder and Reeves 

(1962), Lozo and Smith (1964), Rose (1972), Humphreys (1984), Miller (1984), and Ewing and Barker (1986); lithology 

modified from Dunham (1962); and porosity type modified from Choquette and Pray (1970). CU, confining unit; AQ, Edwards 

aquifer. 
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Hydrogeology 

 

 Water use in the San Antonio pool of the aquifer is significant, owing to close proximity 

to the cities of San Antonio, New Braunfels, and San Marcos.  Recharge of the eastern part of the 

aquifer is greatly impacted by periodic droughts.  Water in the aquifer is primarily recharged by 

entryways stemming predominantly from the faults of the BFZ, and major inputs are point and 

line sources where streams and rivers cut across this zone of faulting.  Water flow in the 

subsurface of the aquifer is generally from west to east through the artesian (confined) zone of 

the aquifer.  Potentiometric contour maps from previous studies relating to the study area such as 

Hovorka et al., 2004; Green et al., 2006; Maclay and Land, 1988; and others, illustrate the 

general paths and patterns of groundwater flow within the study area.  Uvalde County contains 

multiple minor groundwater resources from a thick sequence of sedimentary rocks.  The 

Edwards is by far the most significant of these aquifers, spanning the central portion of the 

county from west to east.  The Buda, Austin Chalk, gravels of the Leona River, and the Trinity 

aquifers are the major secondary aquifers that are present in Uvalde County (Green et al., 2006).  

Throughout the study area there are several Upper Cretaceous or Lower Tertiary igneous rocks 

that intrude through the stratigraphic units (Figures 2, 3, 8, and 23) composing the Edwards 

aquifer (Rose, 1973, Clark, 2003). Green et al., 2006 (Table 1) investigated the previous 

hypothesis (Rose, 1972), suggesting that the concentration of igneous intrusions in the study area 

could affect the groundwater flow in the area.  After assessing the aeromagnetic survey map of 

Uvalde county (Smith et al., 2002), inspection of well logs, and the synoptic water-elevation 

survey for Kinney and Uvalde counties; the authors found no indication that the igneous 

intrusions affect the groundwater flow regime in the study area.  The authors do concede that it is 

probable that the individual intrusions could affect local flow paths by either direct effect, or 
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through indirect contact metamorphism relating to aquifer properties, in correlation primarily 

with the decreased number of drilled wells, and lower well yields associated with these 

intrusions (Green et al., 2006). These interpretations and their affects relating to the boundaries 

of the Knippa Gap are discussed further in the results section of this report.    
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Figure 9.  Diagrammatic north-northwest-to-south-southeast section showing hydrogeologic 

framework and generalized groundwater flow directions, Edwards Plateau to Gulf 

Coastal Plain, San Antonio region, Texas. Approximate study area outlined in red.   

(modified from Musgrove et al., 2011; Barker and Ardis, 1996, plates 1 and 3).  
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 The Edwards aquifer is made up of three zones, the recharge zone, the contributing 

(catchment) zone, and the artesian zone (Figures1, 9, and 10). The contributing zone lies between 

two physiographic provinces-the Edwards Plateau and the Gulf coastal plain (Figure 9) (Maclay 

and Land, 1988).  The contributing zone captures infiltrated precipitation and allows run off into 

streams or infiltration to the water-table aquifer to occur.  This zone is also where contamination 

of the aquifer is most likely to occur, primarily as a result of shallow water tables, intense 

karstification, and thin to no soil cover.  The recharge zone is dominated by vertical faulting 

associated with the BFZ, and is the part of the aquifer where major recharge occurs to the 

artesian zone (Figures 1 and 9).  Entryways for the aquifer are predominantly faults of the BFZ, 

and major inputs are point and line sources where streams and rivers cut across this zone of 

faulting (Maclay and Land, 1988).  The artesian zone occurs in the southern and easternmost part 

of the aquifer, where water is confined. The confining layers for the Edwards are the Glen Rose 

Formation below and the Del Rio Clay above (Figure 8). Reports by the Edwards Aquifer 

Authority (2005, 2006, 2010, 2011) determine that the artesian zone (confined) of the Edwards 

aquifer typically occurs at depths ranging from 150 to 300 m, with potable (non-saline) water at 

depths extending up to 1,000 m.   

 The north – south extent of the aquifer ranges between 10 to 60 kilometers, and the east – 

west extent is approximately 240 kilometers (Figures 1, 9, and 10). Down towards the southern 

end of the of the artesian zone, the aquifer makes a transition from freshwater to saline water 

(Edwards Aquifer Authority 2005, 2006, 2011, 2012).  Reports by the Edwards Aquifer 

Authority (2005, 2006, 2011, 2012) also indicate the transition is abrupt on the order of a mile or 

less; this is known as the "bad-water line."  The freshwater zone within the aquifer occurs at 

shallower depths, has high permeability from more intensified dissolution, and increased 
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transmissivity allows the water to move through relatively quickly. In comparison the saline–

water zone of the aquifer occurs at greater depths and gradient, has lower permeability, less 

dissolution, and less flow.  These conditions, plus the chemically-closed nature of the system 

result in higher residence time, decreased transmissivity, and increased salinity (Edwards 

Aquifer Authority; 2005, 2006, 2011, 2012).  

 The ability of the aquifer to supply water during extended droughts depends upon aquifer 

storage, transmissivity, and relation of the recharge zone to the overall extent of the unconfined 

zones of the aquifer.  The unconfined zone of the aquifer (Figures 1,9, and 10 recharge, and 

discharge zones) has a storage coefficient, about four orders of magnitude greater than the 

confined zone. The high transmissivity of the confined zone aids in the distribution of the water 

movement between the confined and unconfined zones of the aquifer (Maclay and Land, 1988; 

Edwards Aquifer Authority 2012).  Recharge to the Edwards aquifer (Table 2) originates as 

precipitation within the outcrop of the Edwards and associated limestones, occurring from the 

capture of surface water on the contributing zone (allogenic recharge), as direct precipitation into 

the recharge zone (autogenic recharge), and inter-formational flow from adjoining formations, 

both above and below the Edwards aquifer (Edwards Aquifer Authority 2005, 2006, 2011, 

2012).  Recharge measurements compiled by the Edwards Aquifer Authority (Table 2) show the 

estimated annual recharge by drainage basin from 1934 through 2011 are based on United States 

Geological Survey (USGS) calculations and are estimated using a water-balance method that 

relies on precipitation records and stream-flow measurements across the region (Maclay and 

Land, 1988; Edwards Aquifer Authority 2012).  

 The Edwards Aquifer Authority, in conjunction with the USGS, provides recharge 

estimates by drainage basin (Figure 10).  According to the hydrologic data report (Edwards 
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Aquifer Authority, 2012), the USGS estimates that annual recharge for the period of record 

(1934–2011) in Table 2 ranged from a minimum of 43,700 acre-feet in 1956 during the drought 

of record to 2,486,000 acre-feet in 1992, during a very wet year.  Recharge was estimated to be 

112,000 acre-feet in 2011well below the maximum.  The median annual recharge was estimated 

to be 559,400 acre-feet (Table 2, most recent published calculation), these estimates exclude 

flow from the Guadalupe River, (Edwards Aquifer Authority, 2011)
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Figure 10.  Major drainage basins in the Edwards aquifer.   (Modified From Edwards Aquifer Authority, 2011) 

The current method of estimation 
does not 
attribute any net recharge to this 

basin. 

The current method of estimation 
does not 
attribute any net recharge to this 
basin. 

 

Study Area 



 

40 

 

Table 2.  Estimated annual groundwater recharge to the Edwards aquifer by drainage basin, 

1934-2011 (in units of thousands of acre-feet),   Modified from Edwards Aquifer 

Authority, 2011. 
Year Nueces 

River/ 

West 

Nueces 

River 

Basin 

(acre-ft 

/year) 

Frio 

River/ 

Dry 

Frio 

River 

Basin  

(acre-

ft 

/year) 

Sabinal 

River 

Basin 

(acre-ft 

/year) 

Area 

Between 

Sabinal 

River 

and 

Medina 

River 

Basins 

(acre-ft 

/year) 

Medina 

River 

Basin 

(acre-ft 

/year) 

Area 

Between 

Medina 

River and 

Cibolo 

Creek/ Dry 

Comal 

Creek 

Basins 

(acre-ft 

/year) 

Cibolo 

Creek/ 

Dry 

Comal 

Creek 

Basin 

(acre-ft 

/year) 

Blanco 

River 

Basin 

(acre-ft 

/year) 

Total* 

(acre-ft 

/year) 

1934 8.6 27.9 7.5 19.9 46.5 21.0 28.4 19.8 179.6 

1935 411.3 192.3 56.6 166.2 71.1 138.2 182.7 39.8 1258.2 

1936 176.5 157.4 43.5 142.9 91.6 108.9 146.1 42.7 909.6 

1937 28.8 75.7 21.5 61.3 80.5 47.8 63.9 21.2 400.7 

1938 63.5 69.3 20.9 54.1 65.5 46.2 76.8 36.4 432.7 

1939 227.0 49.5 17.0 33.1 42.4 9.3 9.6 11.1 399.0 

1940 50.4 60.3 23.8 56.6 38.8 29.3 30.8 18.8 308.8 

1941 89.9 151.8 50.6 139.0 54.1 116.3 191.2 57.8 850.7 

1942 103.5 95.1 34.0 84.4 51.7 66.9 93.6 28.6 557.8 

1943 36.5 42.3 11.1 33.8 41.5 29.5 58.3 20.1 273.1 

1944 64.1 76.0 24.8 74.3 50.5 72.5 152.5 46.2 560.9 

1945 47.3 71.1 30.8 78.6 54.8 79.6 129.9 35.7 527.8 

1946 80.9 54.2 16.5 52.0 51.4 105.1 155.3 40.7 556.1 

1947 72.4 77.7 16.7 45.2 44.0 55.5 79.5 31.6 422.6 

1948 41.1 25.6 26.0 20.2 14.8 17.5 19.9 13.2 178.3 

1949 166.0 86.1 31.5 70.3 33.0 41.8 55.9 23.5 508.1 

1950 41.5 35.5 13.3 27.0 23.6 17.3 24.6 17.4 200.2 

1951 18.3 28.4 7.3 26.4 21.1 15.3 12.5 10.6 139.9 

1952 27.9 15.7 3.2 30.2 25.4 50.1 102.3 20.7 275.5 

1953 21.4 15.1 3.2 4.4 36.2 20.1 42.3 24.9 167.6 

1954 61.3 31.6 7.1 11.9 25.3 4.2 10.0 10.7 162.1 

1955 128.0 22.1 0.6 7.7 16.5 4.3 3.3 9.5 192.0 

1956 15.6 4.2 1.6 3.6 6.3 2.0 2.2 8.2 43.7 

1957 108.6 133.6 65.4 129.5 55.6 175.6 397.9 76.4 1142.6 

1958 266.7 300.0 223.8 294.9 95.5 190.9 268.7 70.7 1711.2 

1959 109.6 158.9 61.6 96.7 94.7 57.4 77.9 33.6 690.4 

1960 88.7 128.1 64.9 127.0 104.0 89.7 160.0 62.4 824.8 

1961 85.2 151.3 57.4 105.4 88.3 69.3 110.8 49.4 717.1 

1962 47.4 46.6 4.3 23.5 57.3 16.7 24.7 18.9 239.4 

1963 39.7 27.0 5.0 10.3 41.9 9.3 21.3 16.2 170.7 

1964 126.1 57.1 16.3 61.3 43.3 35.8 51.1 22.2 413.2 

1965 97.9 83.0 23.2 104.0 54.6 78.8 115.3 66.7 623.5 

1966 169.2 134.0 37.7 78.2 50.5 44.5 66.5 34.6 615.2 

1967 82.2 137.9 30.4 64.8 44.7 30.2 57.3 19.0 466.5 

1968 130.8 176.0 66.4 198.7 59.9 83.1 120.5 49.3 884.7 

1969 119.7 113.8 30.7 84.2 55.4 60.2 99.9 46.6 610.5 

1970 112.6 141.9 35.4 81.6 68.0 68.8 113.8 39.5 661.6 

1971 263.4 212.4 39.2 155.6 68.7 81.4 82.4 22.2 925.3 
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1972 108.4 144.6 49.0 154.6 87.9 74.3 104.2 33.4 756.4 

1973 190.6 256.9 123.9 286.4 97.6 237.2 211.7 82.2 1486.5 

1974 91.1 135.7 36.1 115.3 96.2 68.1 76.9 39.1 658.5 

1975 71.8 143.6 47.9 195.9 93.4 138.8 195.7 85.9 973.0 

1976 150.7 238.6 68.2 182.0 94.5 47.9 54.3 57.9 894.1 

1977 102.9 193.0 62.7 159.5 77.7 97.9 191.6 66.7 952.0 

1978 69.8 73.1 30.9 103.7 76.7 49.6 72.4 26.3 502.5 

1979 128.4 201.4 68.6 203.1 89.4 85.4 266.3 75.2 1117.8 

1980 58.6 85.6 42.6 25.3 88.3 18.8 55.4 31.8 406.4 

1981 205.0 365.2 105.6 252.1 91.3 165.0 196.8 67.3 1448.3 

1982 19.4 123.4 21.0 90.9 76.8 22.6 44.8 23.5 422.4 

1983 79.2 85.9 20.1 42.9 74.4 31.9 62.5 23.2 420.1 

1984 32.4 40.4 8.8 18.1 43.9 11.3 16.9 25.9 197.7 

1985 105.9 186.9 50.7 148.5 64.7 136.7 259.2 50.7 1003.3 

1986 188.4 192.8 42.2 173.6 74.7 170.2 267.4 44.5 1153.8 

1987 308.5 473.3 110.7 405.5 90.4 229.3 270.9 114.9 2003.5 

1988 59.2 117.9 17.0 24.9 69.9 12.6 28.5 25.5 355.5 

1989 52.6 52.6 8.4 13.5 46.9 4.6 12.3 23.6 214.5 

1990 479.3 255.0 54.6 131.2 54.0 35.9 71.8 41.3 1123.1 

1991 325.2 421.0 103.1 315.2 52.8 84.5 109.7 96.9 1508.4 

1992 234.1 586.9 201.1 566.1 91.4 290.6 286.6 226.9 2483.7 

1993 32.6 78.5 29.6 60.8 78.5 38.9 90.9 37.8 447.6 

1994 124.6 151.5 29.5 45.1 61.1 34.1 55.6 36.6 538.1 

1995 107.1 147.6 34.7 62.4 61.7 36.2 51.1 30.6 531.4 

1996 130.0 92.0 11.4 9.4 42.3 10.6 14.7 13.9 324.3 

1997 176.9 209.1 57.0 208.4 63.3 193.4 144.2 82.3 1134.6 

1998 141.5 214.8 72.5 201.4 80.3 86.2 240.9 104.7 1142.3 

1999 101.4 136.8 30.8 57.2 77.1 21.2 27.9 21.0 473.4 

2000 238.4 123.0 33.1 55.2 53.4 28.6 48.6 34.1 614.4 

2001 297.5 126.7 66.2 124.1 90.0 101.5 173.7 89.7 1069.4 

2002 83.6 207.3 70.6 345.2 93.7 175.5 447.8 150.0 1573.7 

2003 149.8 112.2 31.7 67.4 86.6 56.2 105.0 59.9 668.8 

2004 481.9 424.5 116.0 343.9 95.5 213.4 315.0 185.8 2176.0 

2005 105.5 147.2 50.1 79.1 82.8 84.8 140.4 74.1 764.0 

2006 45.5 60.2 9.0 5.0 47.7 5.1 11.2 17.9 201.6 

2007 471.8 474.4 104.0 406.4 75.2 227.6 306.1 96.9 2162.4 

2008 48.2 44.5 5.9 9.8 53.6 9.6 22.8 18.5 212.9 

2009 58.5 30.3 1.8 13.5 45.6 7.3 26.4 27.5 210.9 

2010 135.4 104.9 31.5 186.3 68.2 81.4 148.2 57.5 813.4 

2011 15.3 13.7 1.0 2.0 43.3 3.0 15.3 18.3 111.9 

Recharge for the Period of Record 1934-2011: 

Median 102.2 120.5 31.5 78.4 61.4 52.8 78.7 35.2 559.4 

Mean 126.1 136.0 42.2 112.2 62.8 72.0 110.0 46.6 711 

Recharge for the Period of Record 2001-2011: 

Median 94.6 108.6 31.6 73.3 71.7 68.8 122.7 58.7 716.5 

Mean 159.6 161.9 42.2 145.9 69.2 86.4 153.8 70.6 889.6 

Data Source Used by Edwards Aquifer Authority: USGS Unpublished Report (April 2012) 
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Green et al., (2006) determined the calculations for recharge in Uvalde County based on 

assumptions that the two major sources of recharge to the Edwards aquifer are from the Nueces 

River-West Nueces River basin and the Frio River-Dry Frio River basin (Edwards Aquifer 

Authority, 2005). This report estimates the average and median annual recharge for the Nueces 

River-West Nueces River basin is approximately 119,594 and 106,000 acre-ft/yr (predicted 

values assume all recharge from the West Nueces River recharges the Uvalde pool of the 

Edwards aquifer). Section nine of Green et al., (2006) also determines that most of the recharge 

from the West Nueces River basin primarily recharges the Kinney County pool of the aquifer not 

the Uvalde pool, however recharge from the Nueces River and the Frio River-Dry Frio River 

basins do in fact recharge the Uvalde pool of the Edwards aquifer.  The Sabinal River basin also 

recharges the Edwards aquifer in Uvalde County, however based on these reports it is believed to 

recharge the aquifer only to the east of the Knippa Gap into the San Antonio pool of the Edwards 

Aquifer (Green et al., 2006).  

 Discharge in the Edwards aquifer most often occurs by spring-flow, pumping, and inter-

formational flow to down-gradient aquifers.  Numerous wells are drilled throughout the Edwards 

aquifer to provide water for uses such as irrigation, municipal water supplies, industrial 

applications, as well as domestic and/or livestock consumption.  However, even with the 

substantial number of wells drilled within the aquifer, the amount of groundwater discharge from 

spring-flow has historically been greater than that through wells.  Estimates of annual total 

groundwater discharge from spring-flow and pumping for the Edwards aquifer are depicted by 

county in Table 3, for the period of record (1934–2011).  The 2011 Hydrologic Report provided 

by the Edwards Aquifer Authority, estimates ranges from a low of 388,800 acre-feet in 1955 to a 

high of 1,130,000 acre-feet in 1992.  The total groundwater discharged from the Edwards aquifer 
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from wells and springs for 2011, was estimated to be approximately 692,870 acre-feet, (well 

discharge 427,653 acre-feet, and spring discharge 265,217 acre-feet) (Edwards Aquifer 

Authority, 2012).  Table 3 indicates spring-flow from 1934 through 2011 has varied from a 1956 

low of 69,800 acre-feet to a high of 802,800 acre-feet in 1992.  Regional flow systems in the 

Edwards aquifer resurge as large springs where groundwater is returned to the surface from 

depth, such as the Leona Springs in Uvalde County, and San Marcos Springs in Hays county 

(Esquilin 2012; Hamiltion, 2006,2012; Green et al, 2012).  These springs issue from faults 

forming in open cracks and solution channels (Maclay and Land, 1988).  The aquifer within the 

study area exhibits variable hydraulic properties that have been attributed to a variety of regional 

and local activities, including but not limited to lithofacies, faulting, karst features, and igneous 

intrusions (Green et al., 2006; Hovorka et al., 2004; Rose 1972; Worthington, 1999, 2004).  
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Table 3.  Estimated annual groundwater discharge to the Edwards aquifer by county, 1934-2011 

(In units of thousands of acre-feet),   Modified from Edwards Aquifer Authority, 2011. 
Year Uvalde 

County 

Medina 

County 

Bexar 

County 

Comal 

County 

Hays 

County 

Total 

Wells 

Total 

Springs 

Total 

1934 12.6 1.3 109.3 229.1 85.6 101.9 336.0 437.9 

1935 12.2 1.5 171.8 237.2 96.9 103.7 415.9 519.6 

1936 26.6 1.5 215.2 261.7 93.2 112.7 485.5 598.2 

1937 28.3 1.5 201.8 252.5 87.1 120.2 451.0 571.2 

1938 25.2 1.6 187.6 250.0 93.4 120.1 437.7 557.8 

1939 18.2 1.6 122.5 219.4 71.1 118.9 313.9 432.8 

1940 16.1 1.6 116.7 203.8 78.4 120.1 296.5 416.6 

1941 17.9 1.6 197.4 250.0 134.3 136.8 464.4 601.2 

1942 22.5 1.7 203.2 255.1 112.2 144.6 450.1 594.7 

1943 19.2 1.7 172.0 249.2 97.2 149.1 390.2 539.3 

1944 11.6 1.7 166.3 252.5 135.3 147.3 420.1 567.4 

1945 12.4 1.7 199.8 263.1 137.8 153.3 461.5 614.8 

1946 6.2 1.7 180.1 261.9 134.0 155.0 428.9 583.9 

1947 13.8 2.0 193.3 256.8 127.6 167.0 426.5 593.5 

1948 9.2 1.9 159.2 203.0 77.3 168.7 281.9 450.6 

1949 13.2 2.0 165.3 209.5 89.8 179.4 300.4 479.8 

1950 17.8 2.2 177.3 191.1 78.3 193.8 272.9 466.7 

1951 16.9 2.2 186.9 150.5 69.1 209.7 215.9 425.6 

1952 22.7 3.1 187.1 133.2 78.8 215.4 209.5 424.9 

1953 27.5 4.0 193.7 141.7 101.4 229.8 238.5 468.3 

1954 26.6 6.3 208.9 101.0 81.5 246.2 178.1 424.3 

1955 28.3 11.1 215.2 70.1 64.1 261.0 127.8 388.8 

1956 59.6 17.7 229.6 33.6 50.4 321.1 69.8 390.9 

1957 29.0 11.9 189.4 113.2 113.0 237.3 219.2 456.5 

1958 23.7 6.6 199.5 231.8 155.9 219.3 398.2 617.5 

1959 43.0 8.3 217.5 231.7 118.5 234.5 384.5 619.0 

1960 53.7 7.6 215.4 235.2 143.5 227.1 428.3 655.4 

1961 56.5 6.4 230.3 249.5 140.8 228.2 455.3 683.5 

1962 64.6 8.1 220.0 197.5 98.8 267.9 321.1 589.0 

1963 51.4 9.7 217.3 155.7 81.9 276.4 239.6 516.0 

1964 49.3 8.6 201.0 141.8 73.3 260.2 213.8 474.0 

1965 46.8 10.0 201.1 194.7 126.3 256.1 322.8 578.9 

1966 48.5 10.4 198.0 198.9 115.4 255.9 315.3 571.2 

1967 81.1 15.2 239.7 139.1 82.3 341.3 216.1 557.4 

1968 58.0 9.9 207.1 238.2 146.8 251.7 408.3 660.0 

1969 88.5 13.6 216.3 218.2 122.1 307.5 351.2 658.7 

1970 100.9 16.5 230.6 229.2 149.9 329.4 397.7 727.1 

1971 117.0 32.4 262.8 168.2 99.1 406.8 272.7 679.5 

1972 112.6 28.8 247.7 234.3 123.7 371.3 375.8 747.1 

1973 96.5 14.9 273.0 289.3 164.3 310.4 527.6 838.0 

1974 133.3 28.6 272.1 286.1 141.1 377.4 483.8 861.2 

1975 112.0 22.6 259.0 296.0 178.6 327.8 540.4 868.2 

1976 136.4 19.4 253.2 279.7 164.7 349.5 503.9 853.4 

1977 156.5 19.9 317.5 295.0 172.0 380.6 580.3 960.9 

1978 154.3 38.7 269.5 245.7 99.1 431.8 375.5 807.3 

1979 130.1 32.9 294.5 300.0 157.0 391.5 523.0 914.5 

1980 151.0 39.9 300.3 220.3 107.9 491.1 328.3 819.4 
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Year Uvalde 

County 

Medina 

County 

Bexar 

County 

Comal 

County 

Hays 

County 

Total 

Wells 

Total 

Springs 

Total 

1981 104.2 26.1 280.7 241.8 141.6 387.1 407.3 794.4 

1982 129.2 33.4 305.1 213.2 105.5 453.1 333.3 786.4 

1983 107.7 29.7 277.6 186.6 118.5 418.5 301.6 720.1 

1984 156.9 46.9 309.7 108.9 85.7 529.8 178.3 708.1 

1985 156.9 59.2 295.5 200.0 144.9 522.5 334.0 856.5 

1986 91.7 41.9 294.0 229.3 160.4 429.3 388.0 817.3 

1987 94.9 15.9 326.6 286.2 198.4 364.1 557.9 922.0 

1988 156.7 82.2 317.4 236.5 116.9 540.0 369.7 909.7 

1989 156.9 70.5 305.6 147.9 85.6 542.4 224.1 766.5 

1990 118.1 69.7 276.8 171.3 94.1 489.4 240.6 730.0 

1991 76.6 25.6 315.5 221.9 151.0 436.0 354.6 790.6 

1992 76.5 9.3 370.5 412.4 261.3 327.2 802.8 1130.0 

1993 107.5 17.8 371.0 349.5 151.0 407.3 589.4 996.7 

1994 95.5 41.1 297.7 269.8 110.6 424.6 390.2 814.8 

1995 90.8 35.2 272.1 235.0 127.8 399.6 361.3 760.9 

1996 117.6 66.3 286.8 150.2 84.7 493.6 212.0 705.6 

1997 77.0 31.4 260.2 243.3 149.2 377.1 383.9 761.0 

1998 113.1 51.3 312.4 271.8 168.8 453.5 464.1 917.6 

1999 104.0 49.2 307.1 295.5 143.0 442.7 456.1 898.8 

2000 89.1 45.1 283.6 226.1 108.4 414.8 337.5 752.3 

2001 68.6 33.9 291.6 327.7 175.4 367.7 529.6 897.3 

2002 76.2 40.6 311.9 350.4 202.1 371.3 609.9 981.2 

2003 89.4 34.8 331.7 344.7 176.3 362.1 621.5 976.9 

2004 91.3 22.5 331.9 341.4 153.1 317.4 622.9 940.3 

2005 107.4 37.3 366.1 349.3 175.6 388.5 647.1 1035.6 

2006 107.5 64.9 289.5 216.7 87.9 454.5 312.0 766.5 

2007 64.1 18.4 330.2 331.7 196.0 319.9 621.0 940.9 

2008 102.0 48.8 320.4 266.6 108.0 428.6 417.1 845.7 

2009 76.9 47.3 265.2 206.6 87.8 395.7 287.9 683.6 

2010 53.1 36.6 298.5 312.1 162.5 372.8 490.0 862.8 

2011 79.6 57.4 277.2 187.7 91.0 427.7 265.2 692.9 

 

For period of record 1934-2011: 

Median 76.6 17.1 256.1 234.7 117.7 327.5 384.2 699.2 

Mean 73.1 22.9 248.4 230.7 123.1 313.7 384.2 697.7 

 

For period of record 2001-2011 (last ten years): 

Median 84.5 39.0 316.2 321.9 164.4 380.7 550.0 901.6 

Mean 85.0 40.9 312.3 290.7 147.0 383.8 489.5 872.7 

Data source: USGS and Edwards Aquifer Authority files (2012). 

A = As of 2008, no longer includes Kinney County discharge; perio years include 1,900 acre-feet of discharge for 

Kinney County 

B = Includes reports of Edwards aquifer irrigators in Alascosa County 

C = Includes reports of Edwards aquifer industrial and municipal users in Guadalupe County 

Differences in totals may occur as a result of rounding 
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 Since deposition, rocks of the Edwards Group have experienced a complex history, 

including surface exposure to earth's atmosphere, burial (middle Cretaceous), faulting, uplift, 

erosion, and intense karstification (Rose, 1973).  Karstification within the region has produced 

sinkholes, caves, sinking streams, and an extensive subsurface drainage system, characterizing 

the Edwards aquifer as a “karst aquifer” (Esquilin 2012; Hamiltion, 2006,2012)..  

Dedolomitization and solutioning processses within the Edwards Group are "often accelerated by 

intermittenet movement along active faults" (Maclay, 1988) associated with the BFZ.  

Movement along these faults increases the amount of contact between the permeable dolomites 

and circulating groundwater having increased ratios of dissolved calcium to magnesium 

concentrations (Maclay, 1988; Maclay and Small, 1984).  In the catchment area of the aquifer 

(Figures 1, 9, and 10), dominant karst processes are epigenic, meaning dissolution is produced 

primarily by descending recharge and horizontal groundwater movement (Schindel et al., 2008).  

However, based on the cave structure and morphological forms such as vertical shafts, scallops, 

and cupolas, many researchers conclude that hypogenic speleogenesis (deep regional upward 

flow) has played an essential role in the karst development of the Edwards aquifer (Klimchouk, 

2007; Schindel et al., 2008). Schindel et al., (2008) concluded that the permeability derived by 

this upward water flow plays an integral part in the aquifer development as well as hydrocarbon 

storage within the rock units (Schindel et al., 2008).  My Jennay Sinkhole (Figures 11, 12, 20, 

23; and Table 4) is a karst feature (a paleo-hypogenic spring) located within the study area 

during karst inventory (Figure 13 and Table 4), resulting from deep regional upward flow such as 

that discussed in Schindel et al., (2008) and Klimchouk et al., (2007).  Syndepositional karst 

developed on top and within the Edwards Group (Figures 8 and 22) throughout the study area, 

creating zones of high permeability at the top of the aquifer, particularly the Salmon Peak 
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Formation of the Edwards Group (Figures 8 and 22).  According to Palmer, (1991) the 

incorporation of freshwater into these permeable carbonate rocks formed an “extensive aquifer”, 

and led to the formation of interconnected dissolved conduits.  During investigations regarding 

the simulation of flow in the Edwards aquifer, authors Maclay and Land, (1988) noted the 

presence of "live blind catfish."  These catfish were netted from the surface discharge of flowing 

wells near the "bad-water line", from wells reaching depths of approximately 1,500 feet.  These 

catfish differ significantly from the "cave fish" located in other aquifers and cave systems 

throughout the world.  Maclay and Land, (1988) also infer that the "presence of these catfish 

suggests there are interconnected cavernous openings occurring at great depths within the buried 

carbonate aquifer."  These conduits are thought to be associated with paleokarst (ancient karst 

features having been fossilized or preserved) developed during the Cretaceous Period (Palmer, 

1991, 2007; Maclay and Land, 1988).  Paleo subsurface flow-paths such as these, with 

significantly increased hydraulic conductivities within the study area are also associated with 

karst development, and are the foundation for the large volumes of groundwater associated with 

the Knippa Gap (Green et al., 2006).  
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Figure 11.  Google Earth image location of My Jennay (sinkhole) located during the karst 

inventory of the study area. 
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Figure 12.  Field images of My Jennay Sinkhole located during the karst inventory of the study 

area.   This feature is thought to have formed hypogenically ( upwelling of water pressure 

from below), representing a paleo-abandoned spring outflow. If this is the case, My 

Jennay sinkhole represents an excellent site for dye injection to determine flow  rates and 

direction. 
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Figure 13.  Index of U.S. Geological Survey 7.5 minute topographic quadrangles.   The study 

area is approximately in the northwest quadrant of the Knippa 7.5 minute topographic 

quadrangle. Quadrangle maps are referenced to Table 4. 
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Table 4.  Karst-Hydrogeologic Inventory of study area, Keyed to (Figure 13). 

Feature 

Number 
Karst Feature 

Topographic 

Map 

Lat 

(Decimal 

Degrees) 

Long 

(Decimal 

Degrees) 

Comments 

1 My Jennay 

sinkhole 

Knippa 7.5 29.32325 -99.702111 On Salt Creek- Hypogenic- 

near flow line, good location 

for dye injection 

2 Un-named 

sinkhole 

Knippa 7.5  29.349278 -99.706861 Head of Salt Creek ID from 

topo_20ft relief 

3 Un-named 

sinkhole 

Knippa 7.5 29.360472 -99.704611 20 ft total relief no surface 

water nearby: ID from topo-

map 

4 Un- named 

sinkhole 

Knippa 7.5 29.337444 -99.723583 Small, near road, discharge 

point taylor slough: ID from 

topo- Map 

5 Frio River Down-

stream flow lost 

Concan 7.5 29.430167 -99.655778 ID from topo-Map 

6 Un-named cave Concan 7.5 29.429611 -99.658306 ID from topo-map 

7 Eight Mile 

waterhole 

Sevenmile Hill 

7.5 

29.295360 -99.769611 WL estimated 985 in (1971) 

ID from topo-Map 

8 Resurgence of 

Leona River 

Uvalde 7.5 29.194889 -99.771944 Major Flow belt estimated at 

890 (1971) ID from topo-Map 

9 Two Mile 

waterhole on 

Leona River 

Uvalde 7.5 29.233967 -99.784090 WL estimated at 905 (1971) 

outside of flow zone ID from 

topo-Map 

10 Resurgence of 

cooks slough 

Uvalde 7.5 29.185612 -99.794413 WL estimate at 875 (1971) ID 

from topo-Map 

11 Dry Frio River 

loses flow up-

gradient  

Deep Creek 7.5 29.469306 -99.7735 WL estimated (1971) 

1330_outside study area ID 

from topo-Map 

12 Gauging station 

flow loss from 

Leona River 

Garner Field 

7.5 

29.154467 -99.743202 WL estimated 845 ID from 

topo-Map 

13 Resurgence Leona 

River 

Garner 

Field7.5 

29.148959 -99.733486 WL estimated 827 ID from 

topo-Map 

14 Resurgence of 

Frio River 

Garner Field 

7.5 

29.173554 -99.628937 WL estimated 793 ID from 

topo-Map 

15 Toadstool water 

hole on Frio River 

Garner Field 

7.5 

29.194926 -99.669265 WL estimated at 835 (1971) 

ID from topo-Map 

16 Cypress 

Waterhole or Frio 

River 

Garner Field 

7.5 

29.216738 -99.677601 WL estimated at 807 (1971) 

ID from topo-Map 

17 Blanco River goes 

dry downstream 

Garner Field 

NE 7.5 

29.115668 -99.518353 WL estimated at 769 (1971) 

ID from topo-Map 
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Figure 14.  Map of the Kinney County, Uvalde, and San Antonio pools of the Edwards aquifer.   The Kinney County and Uvalde pools 

are separated by a transition zone of low permeability. The Uvalde and San Antonio pools are separated by the Knippa 

Gap(Shown in Pink, with extended boundaries outlined in yellow, a constriction in the Edwards Aquifer. A groundwater divide 

defines the western limit of the Kinney County pool. Map projection is UTM Zone 14, NAD83. Modified from (Green et al., 

2006). 

 

San Antonio Pool 
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Table 5.  Index of Previous Synoptic Water-Level Maps relative to the study area and the BFZ 

Edwards Aquifer   [Modified From (Edwards Aquifer Authority, 2010)] 

Date of Map Area Covered Source of Information 

1930 Uvalde and Medina Counties Sayer (1936) 

October 1934 Bexar County and portions of 

Medina and Comal Counties 

Livingston et al. (1936) 

January 1947 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

Klemt et al. (1975) 

January 1951 Medina County Holt (1959) 

January 1952 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

Petitt and George (1956) 

August 1952 Medina, Bexar, and Comal 

Counties 

Lang(1954) 

August 1954 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

Petitt and George (1956) 

August 1956 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

Garza (1962) 

March 1958 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

Garza (1962) 

January 1961 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

Garza (1966) 

January 1972 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

Klemt et al. (1975) 

February 1972 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

USGS Files_San Antonio 

Subdistrict 

June 1972 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

USGS Files_San Antonio 

Subdistrict 

February 1973 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

USGS Files_San Antonio 

Subdistrict 

July 1973 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

USGS Files_San Antonio 

Subdistrict 

February 1974 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

USGS Files_San Antonio 

Subdistrict 
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Date of Map Area Covered Source of Information 

July 1974 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

USGS Files_San Antonio 

Subdistrict 

July 1975 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

USGS Files_San Antonio 

Subdistrict 

February 1976 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties 

USGS Files_San Antonio 

Subdistrict 

August 1976 Kinney, Uvalde, Medina, Bexar, 

Comal, and Hays Counties  

USGS Files_San Antonio 

Subdistrict 

July 17-July 25, 2000 Groundwater Elevation at Uvalde 

County Index Well J-27 

Edwards Aquifer Authority 

SWLP 1999-2004 Report 

October 29-November 2, 2001 Groundwater Elevation at Uvalde 

County Index Well J-27 

Edwards Aquifer Authority 

SWLP 1999-2004 Report 

November 12-19, 2002 Groundwater Elevation at Uvalde 

County Index Well J-27 

Edwards Aquifer Authority 

SWLP 1999-2004 Report 

July 19-30, 2004 Groundwater Elevation at Uvalde 

County Index Well J-27 

Edwards Aquifer Authority 

SWLP 1999-2004 Report 

December 6 -13, 2004 Groundwater Elevation at Uvalde 

County  Index Well J-27 

Edwards Aquifer Authority 

SWLP 1999-2004 Report 
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METHODS AND APPROACH 

 

 It has been estimated that approximately 46% of the total average recharge to the San 

Antonio pool segment that flows through or is captured by stream-flow, can be attributed to the 

recharge occurring in Uvalde County (Esquilin, 2012; Hamilton et al., 2008; Green et al., 2006). 

Reports by Green et al., (2006) conclude that in order to interpret accurate groundwater flow 

regimes in the Uvalde pool analyses using the integrated results of the water chemistry, geologic 

structure, stratigraphy, and hydrogeological investigations had to be interpreted and assessed.  

Well information was included with those data collected for the study, and were used to identify 

the Knippa Gap, a high-volume capacity channel of the Edwards Aquifer in central Uvalde 

County (Green et al.,2006).  The compilation of wells relating to this study was limited and 

required further interpretation.  Previous investigations leading into this project are numerous 

including a complex conceptual model that has been through several iterations, and the 

assessment of the existing literature on geologic structure, water chemistry, and hydrogeologic 

properties of the study area.  The methodology for this study is based on the utilization of 

existing data from the Edwards aquifer, as well as the integration of newly collected data.  The 

newly collected data sets include water levels, hydrostratigraphic analysis (geophysical logs), 

and water chemistry.  These data were used to fill in the gaps of understanding and improve the 

resolution and scope of the study (Green et al., 2006), drawing specifically from the following 

sources: The Texas Water Development Board online well database for Uvalde County; USGS 

files for Uvalde County; Edwards Aquifer Authority geophysical logs and files for Uvalde 

County; South West Research Institute; Published sources include (Collins and Hovorka, 1997), 

Welder and Reeves (1962), and the Uvalde County Underground Water Conservation District 

well records.  
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Water-Level Collection 

 

 The Edwards aquifer is a karst aquifer, containing a highly permeable and porous 

subsurface accompanied by the presence of sinkholes, caves, sinking streams, springs, and well 

integrated subsurface drainage (Esquilin 2012; Hamiltion, 2006,2012).  The aquifer supplies 

extremely productive water wells and increasingly high spring discharges, and transmits large 

volumes of water, allowing groundwater to rapidly respond to recharge events (Esquilin 2012; 

Hamiltion, 2006,2012). The synoptic water level interpretations for this study took place in both 

the recharge (unconfined) and artesian (confined) zones of the Edwards aquifer; the contributing 

well locations are indicated in (Figures 15 and 16).  Synoptic groundwater-levels (in wells) such 

as those used for this study are measured over a short period of time under similar or nearly 

identical hydrologic conditions.  Water levels were taken through manual measurements using a 

steel tape/tape down (graduated in feet, tenths and hundredths of feet), or electronic tapes 

(whistler) and recorded in feet above mean sea level (ftamsl) (Appendix F).  Each well was 

measured during the designated survey period (July 17-23, 2012).  Many of the wells used for 

this study have partial historical records dating back to the 1930s (Esquilin 2012; Hamiltion, 

2006,2012).  

In order to increase the accuracy of the synoptic water-level study, survey-grade global 

positioning system (GPS) coordinate and elevation data were collected during August 2012 for 

twenty-eight wells, utilizing resources from both the Edwards Aquifer Authority and the 

University of Arkansas (U of A).  This survey improves the quality of the data set by providing 

sub-centimeter-scale location data and plus or minus 7 cm elevation accuracy with respect to 

both location and groundwater elevation.  Twenty-eight wells were surveyed using the survey-

grade GPS, a Leica model provided by the U of A, and operated by the Edwards Aquifer 
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Authority.  Anastacio Mondaca with the Edwards Aquifer Authority was the project professional 

in charge of aiding in these GPS surveys.  The location data are reported in Appendix F, with 

results reported in decimal-degrees in the WGS84 or NAD83 horizontal coordinate system, and 

the WGS84 vertical coordinate system.  Each of the wells for the synoptic water-level study is 

identified in Appendix F with coordinating information for each well found in the complete well 

inventory Appendices A-C relating to coordinating JA ID, but may also be identified within the 

well inventory by one or more aliases including; Well Owner, Texas Water Development Board 

(TWDB) well numbering identification system (state-ID, or tracking number), or Edwards 

Aquifer Authority pseudo-number ((Esquilin 2012; Hamiltion, 2006,2012). 

Water Quality (QW) Sample Collection 

 

 The hydrologic properties of eleven wells from the study area (Table 6 and Figures 18, 

19, and 20) were sampled for field parameters of water quality: temperature, conductivity, pH, 

dissolved oxygen (DO), and turbidity.  Calibration of conductivity meters was performed using 

standards of known concentrations appropriate to the anticipated range of conductivity of the 

sampled water, and major-element geochemistry to evaluate areal distribution of water quality 

and indicate flow path geometry within the aquifer.  PH was calibrated according to the 

manufacturer’s requirements, using a two or three point calibration with buffers of known 

concentration.  DO is the amount of dissolved oxygen in a sample and varies with depth, 

temperature, and biological demand.  DO measurements are accurately obtained by placing the 

probe within a "closed flow cell", excluding atmospheric contact with the water.  Turbidity 

measures the quantity of suspended material in a water body.   



 

58 

 

The sampled wells were selected to incorporate their close proximity to the igneous 

intrusions within the study area, and their ability to reflect the potential flow-path of the Knippa 

Gap as determined by Green, 2006.  The geochemical samples for this study were collected and 

analyzed by the Edwards Aquifer Authority, following their observed protocols and sampling 

standards.  To ensure the reliability and interpretability of the collected data and locations, 

appropriate documentation was incorporated.  Appropriate chain-of-custody information for 

collected samples was followed as stipulated by the Edwards Aquifer Authority, with the 

completion of the sampling report.  Initial sampling reports contained the following information: 

location (and name) of well with coordinates, date and time of sampling, sampler name, and 

other relevant information pertaining to the well, such as depth, screened interval, casing 

condition, volume of water purged from the well, and duration and rate of pumping prior to 

sampling.  Once collected, samples were stored and transported properly so as to prevent damage 

to containers or labels, minimize or eliminate degradation of the sample, and prevent 

contamination of the sample.  Upon delivery to the analytical laboratory, information relating to 

the time between sample receipt and analysis, storage and preservation methodology employed 

at the laboratory, and analytical techniques used were documented (Department of Mines and 

Energy, 2009).  The collected QW data were plotted and interpreted using both Stiff and Piper 

diagrams (Figures 18 and 19), which were then used to construct a conceptual model (Figure 19).  

This refined conceptual model allows the visualization of flow and karstification in the Knippa 

Gap area of the Edwards aquifer, and describes the dominant water chemistry which can be used 

to qualitatively assess the overall understanding of the system.  
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Hydrostratigraphic Methodology 

 Refined structural interpretation of the study area was assessed through the utilization of 

wireline and drilling logs, fault locations (shape file USGS), and previous structural 

interpretations.  Digital images of geophysical logs were obtained from John Meyer (Texas 

Water Development Board Personal Contact), and "hard-copy" geophysical logs were provided 

by the Edwards Aquifer Authority.  These logs were utilized to create "Top-Picks", for the top of 

the stratigraphic Edwards Group Formation (Figure 8) in the study area.  The primary 

geophysical log types utilized were gamma ray, spontaneous potential, and resistivity; secondary 

log types used for comparison include porosity, neutron density, and caliper.  The determination 

of the elevation of the top of the formations of the Edwards Group was synthesized into 

Appendix B, for easy access and incorporation between software.  The geophysical logs in the 

table were also supplemented with drillers reports from the TWDB website 

(http://wiid.twdb.texas.gov/).  These data were used to construct cross-sections within the 

Knippa Gap area, which will aid in a refined assessment of structural and stratigraphic controls 

on permeability, constrain a revised conceptual model (Figure 10) of the flow and karstification 

in this critical area of recharge to the Edwards aquifer, provide specific lateral boundaries, and 

vertical karstification zones which can be tested quantitatively.
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RESULTS AND DISCUSSION  

 

Water Level Interpretation 

 

 Synoptic groundwater-levels (in wells) are measured within a short period of time (hours 

or days) under near-identical hydrologic conditions.  Groundwater level measurements are 

exceedingly important in assessing groundwater flow, as they describe the hydraulic head 

(energy distribution) of the water in the aquifer in three dimensions.  The water-level data for 

this study was measured during the interval of July 17-July 23, 2012; a period of little 

precipitation and low water levels.  In conjunction with previous water-level maps, the data 

(Appendix F) was used to assess the elevation of the potentiometric surface, determine hydraulic 

gradients, assess flow directions within the study area, and aid in delineation of aquifer 

boundaries (Esquilin 2012; Hamiltion, 2006,2012). 

 The water levels that were measured for the July 2012 synoptic study are included in 

database (Appendix F) containing location information and well data, and were plotted in 

ArcGIS (ArcMap 10.1) (Figures 15 and 16).  These figures were overlain on a base map showing 

county lines, aquifer boundaries, faults, and surface geology to interpret the general 

potentiometric surface at the time of the synoptic-data collection.  Interpretation of the water 

levels (Figures 15 and 16) was difficult, owing to the highly variable areal distribution of 

hydraulic heads.  Even with supporting historical data (Hovorka et al., 2004; Esquilin 2012; 

Hamiltion, 2006, 2012), attempted contouring of the water level elevations for the wells in this 

area by hand and through computerization techniques using ArcMap 10.1 proved to be 

inconsistent.  In a dominantly two-dimensional flow field down gradient, water-levels should be 

consistently lower however, the wells for this study showed no such pattern.  The computer 
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generated potentiometric surfaces did not show a consistent two-dimensional trend in flow 

directions, nor did the hand-contoured surfaces, honoring faults and surface geology. All maps 

had "dimples" and "peaks", consistent with a complex flow system, and can be explained by the 

following factors, or most likely a combination that varies aerially within the Knippa Gap study 

area: 1) vertical flow (three dimensional) along major faults, fractures, or karst conduits; 2) 

intense pumping from nearby irrigation wells; 3) well completion in different zones of varying 

secondary karstification; 4) variation in vertical recharge from linear line sources such as the Frio 

and Dry Frio Rivers; 5) variation in vertical recharge from overlying or underlying formations, 

and well-developed secondary karst flow zones near faults and fractures.  These suggest point-

and line-source flow (both confined and unconfined) in three dimensions with high variability 

within the system.  Although these data were collected during the "off" season for farming there 

is still significant water withdrawal within the region creating unsteady three dimensional flow, 

and the variation of fault impacts in close proximity to wells (some faults act as short circuit 

pathways and allow water movement, while others act as barriers).  These variances within the 

water-levels resulted in a non-planar surface and a highly un-reliable map from which to 

generalize regional flow trends, but were extremely beneficial in assessments of the overall 

system.  These data in combination with the geochemistry, hydrostratigraphy, structural data, 

well yields, and water-levels from the synoptic study, indicate the uplifted area to the south of 

the Knippa Gap (Figures 3, 5, 15, and 16)are consistent with much less flow (and dissolution of 

the highly soluble evaporites).  High well yields in the Knippa Gap area indicate increased flow 

through the region (Dr. Van Brahana Written and Verbal communication, 2013).  
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Figure 15.  Data points for synoptic water level survey July 2012, and plotted water level elevation (low period), Referenced to 

Appendices A, B, C and F. Shape file data Provided by Edwards Aquifer Authority. 
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Figure 16  Close view of synoptic water level results for study area, showing varying water-levels and the resulting complex 

potentiometic surface and plotted water level elevation.   Locations are referenced in Figure 16 and data for each well are 

provided in Appendix F . Shape file data provided by Edwards Aquifer Authority.  
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Table 6.  Highest and Lowest recorded water levels for Uvalde County monitoring well (J27- 

YP69-50-302), 1934-2011: Modified from Edwards Aquifer Authority Hydrologic Data 

Report 2011. 
Year  High Low  Year  High Low  Year  High Low 

1934 - -  1962 878.3 867.7  1990 872.9 861.6 

1935 - -  1963 869.7 860.9  1991 873.8 865.4 

1936 876.6 876.5  1964 860.9 849.0  1992 885.2 872.9 

1937 878.1 877.1  1965 865.8 860.3  1993 884.9 877.3 

1938 875.8 874.0  1966 867.2 860.2  1994 - - 

1939 873.4 869.6  1967 867.4 856.4  1995 877.2 871.1 

1940 872.3 868.5  1968 873.3 864.8  1996 874.2 859.0 

1941 875.7 867.7  1969 875.0 866.5  1997 882.3 868.2 

1942 875.8 871.9  1970 876.1 871.3  1998 880.6 868.7 

1943 874.4 868.0  1971 877.7 864.0  1999 880.7 876.8 

1944 869.3 866.8  1972 877.8 874.6  2000 878.3 868.0 

1945 870.1 865.2  1973 881.6 874.5  2001 877.2 872.7 

1946 867.1 862.9  1974 881.4 876.0  2002 883.2 876.3 

1947 870.7 867.1  1975 882.1 879.4  2003 883.3 877.9 

1948 868.4 860.5  1976 884.9 876.0  2004 884.9 879.2 

1949 871.2 859.1  1977 886.2 881.3  2005 885.6 880.2 

1950 871.2 861.8  1978 882.6 875.6  2006 879.3 868.6 

1951 861.8 846.8  1979 882.0 876.1  2007 882.7 867.8 

1952 846.8 834.9  1980 879.1 868.0  2008 882.6 873.4 

1953 835.2 817.8  1981 881.8 867.9  2009 873.3 860.1 

1954 836.7 823.1  1982 881.8 876.4  2010 867.0 862.2 

1955 834.3 824.1  1983 877.1 871.3  2011 864.3 847.4 

1956 834.2 814.2  1984 873.3 856.9     

1957 840.9 811.0  1985 876.9 862.2     

1958 866.1 840.8  1986 877.8 872.2     

1959 876.1 866.2  1987 889.1 877.9     

1960 876.9 873.1  1988 887.0 878.0     

1961 878.5 875.6  1989 879.0 866.6     

           

         High Low 

        Mean 873.4 864.4 

        Median 876.6 868 

    Record Level 889.1 811 

        Month June April 

        Year 1987 1957 
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Figure 17.  Comparison of historical daily mean water level for the period of record 1936 –2011 

and the daily high water level at the uvalde county index well, J-27 YP-69-50-302, JA 

144 referenced in Appendix A, B, C, and D:   (Modified from Edwards Aquifer Authority 

Hydrologic data Report for 2011) 
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Geochemical Analyses 

 

The hydrogeologic properties of eleven wells sampled for this research (Table 7, Figures 

18, 19 and 20) were analyzed for field parameters and major-element geochemistry to evaluate 

areal distribution of water quality and to redefine flow boundaries in the conceptual model.  The 

conceptual model (Figure 19) incorporates samples contiguous to the study area, displaying the 

major ion compositions of these samples.  These data allow visualization of geochemically 

related waters and the determination of flow paths within the Knippa Gap.  The location of high-

capacity flow channels in the Edwards aquifer is consistent with other data describing the fresh-

water channel identified using water-chemistry data.  "Karst dominated flow systems are likely 

to have a complex variation in calcite saturation depending on the location of conduits and the 

scale of conduit flow" (Palmer, 1991).  These data also facilitate an understanding of the 

geochemical processes acting in the flow system, and help to characterize evolution of water 

type in the aquifer.  These should not be used alone to delineate the gap, but they are a good 

conceptual start to test alternative hypotheses.   

Considering the complex faulting in the immediate area, they are consistent with 

structural and hydrostratigraphic basis for constructing the boundaries of the Knippa Gap.  The 

resulting geochemical analyses from the study area indicate an increasingly high-flow zone of 

fresh water flowing through the Knippa Gap constriction.  These analyses are consistent with 

observations from previous investigations regarding hydrochemical studies of the aquifer (e.g., 

Green et al., 2006; Maclay et al., 1980; Groschen, 1996).  Table 7 shows the water quality and 

dissolved constituents in water from wells sampled within the study area.  The Well ID in Table 

7 is referenced to the QW Sites in Figure 20.  Figure 20 includes 2 sample sites (QW site JA 293, 

and JA 003) that were excluded from the study owing to cation/anion imbalances outside the 
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range of 5% error, these wells are also listed in Table 7 with NA representing excluded variables.  

Table 7 and Figures 18 and 19 indicate the presence of high sulfate and high chloride waters with 

higher specific conductance (701 to 1605 µS/cm) and higher temperatures (26.6 to 24.7 oC) that 

occur in wells within the Uvalde salient (QW Sites JA 288, JA 002, JA 290).  Waters west (QW 

Sites JA 001, JA 317, JA 291, JA 064, JA 292, and JA 003) and east (QW Sites JA 289 and JA 

063) of the salient are calcium-magnesium bicarbonate waters with lower dissolved solids (428 

to 601 µS/cm) and slightly lower temperatures (23.5 to 25.1 oC).  QW Site JA 291 represents the 

least mineralized of all wells sampled, not only in terms of specific conductance, but also in 

terms of the lowest concentrations of dissolved chloride and dissolved sulfate.  Various degrees 

of mixing of waters from different sources are present in these latter wells, reflecting variations 

in lithologies along the flow path.   

The average total dissolved solids (TDS) for Edwards water lies in the range of 200 to 

500 mg/L (Hovorka et al., 2004), and are generally indicative of longer residence time and a 

longer flow-path, both of which result in increased dissolution.  The TDS in the sample water 

can be calculated to an accuracy of plus or minus 2% from the electrical conductivity (EC) using 

the following formula: 0.70 * EC = TDS (Personal Communication Dr. Brahana, 2013).  

Groundwater geochemistry can be affected by a variety of geochemical processes including 

mineral-solution reactions, mixing with saline waters from other hydrostratigraphic units, and 

interaction with overlying soils and sediment (Musgrove et al., 2011).  Data from the QW sites 

designated as Knippa Gap wells have Stiff diagrams representing the fresh fast-flow zones with 

dissolution acting as the main geochemical process.  Knippa Gap QW sites plot within the 

carbonate dissolution field of the Piper diagram, and have calculated TDS values less than 

400mg/L, supporting the high flow of the constricted flow path of the Knippa Gap.  The QW 
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sites with high specific-conductance, and higher concentrations of chloride and sulfate do not 

contain rapid groundwater flow zones and major karst development. Wells with these attributes 

overlie the Uvalde salient and or igneous intrusive region of the study area, suggesting greatly 

restricted flow.  Well yields in this uplifted area are consistent with much less flow (and 

dissolution of the highly soluble evaporites) through this part of the aquifer, while high well 

yields in the Knippa Gap area indicate increased flow.   
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Table 7.  Selected water quality and dissolved constituents in water from wells in the study area. QW Site number is referenced to 

Figure 4.  Chemical parameters are in mg/L. [QW, water quality; TDS, total dissolved solids, in mg/L; Cond, specific 

conductance, in µs/cm] 

Water Quality Used To Assess the Knippa Gap within the Study Area 

JA ID TDS Temp C Cond pH Ca2+ Mg2+ Na+ K+ ALK HCO3- Cl- So4- Cations Anions %error 

JA 001 340 23.9 477 7.49 86.8 9.28 11.1 1.1 203 248 20.2 11.7 5.60  4.87  1.37  

JA 002 877 24.7 1274 7.24 168 21.9 77.8 5.62 241 294 158 196 10.44  13.34  2.63  

JA 003 NA NA NA NA NA NA NA NA NA NA NA NA 5.44  4.88  1.09  

JA 063 303 23.5 481 7.20 82.1 10.4 10.8 1.07 203 248 19.9 12.3 5.21  5.14  .078  

JA 064 303 23.6 502 7.21 80.3 8.22 11.7 0.973 199 243 33.5 10.6 6.51  5.75  1.22  

JA 110 365 23.8 448 7.19 93.2 9.57 24 1.09 215 262 51.1 19.2 17.33  18.54  -2.05 

JA 288 1210 26.6 1605 6.98 277 27 28.1 2.91 169 206 72.9 630 5.29  4.56  1.47  

JA 289 260 

24.6 

23.2 

23.6 

485 

465 

471 

7.23 

7.30 

7.27 

(7.25) 

79.9 10.3 9.93 0.974 188 229 20.6 11 7.28  7.55  -.09  

JA 290 376 24.7 701 7.16 93.1 17.8 25.6 2.36 200 244 555 55.9 4.58  4.20  4.8  

JA 291 238 25.1 428 7.36 63.9 13 6.9 0.0971 179 218 14.1 11.5 6.14  5.82  .515  

JA 292 344 23.2 601 7.37 88.8 9.19 21.3 0.962 212 259 42.8 18 5.48  5.03  .830  

JA 293 NA NA NA NA NA NA NA NA NA NA NA NA 5.60  4.87  1.37  

JA 317 353 24 502 7.27 85.3 8.33 11.7 1.03 206 251 23.8 12 10.44  13.34  2.63  
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Figure 18.  Piper diagram of groundwater in the study area.   The diagram shows quality types 

ranging from waters within the Knippa Gap (within black circle) to waters derived from 

mixing of high sulfate and chloride waters associated with residual evaporites in less 

dynamic flow zones  (see wells 2, 5, and 7 in Table 3). 
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Figure 19.  Conceptual model of Edwards aquifer in the study area with Stiff diagrams.   Stiff 

diagrams reflecting major element concentrations dissolved in groundwater (in green), 

approximate locations of boundaries of flow through the Knippa Gap (curved blue lines), 

major flow directions through the Knippa Gap constriction (blue arrows), subsurface 

overflow  from the Uvalde Pool to the Leona gravels (black arrow), and exposures of 

igneous intrusives associated with the Devils River Trend of the Uvalde salient (in red).  

Sampling sites of wells for which chemical analyses are reported are shown by black 

dots: the numbers refer to the sampled wells discussed in table 3.  [JA 063-QW 1, JA 

288-QW 2, JA 289-QW 3, JA 001-QW 4, JA 002-QW 5, JA 317-QW 6, JA 290-QW 7, JA 

291-QW 8, JA 064-QW 9, JA 292-QW 10, JA 003-QW 11]  
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Figure 20.  Geology of the Edwards aquifer in the study area.   The geology includes areal 

geology, faulting associated with the BFZ (red lines), exposures of igneous intrusives 

associated with the Devils River Trend of the Uvalde salient (in red), and sampling sites 

of wells used to measure water levels and collect groundwater samples.  The numbers 

refer to the sampled wells discussed in Appendix A.  [Map modified from multiple 

sources, including Clark, 2003; Green, 2006, and personal communications with Vic 

Hilderbran, Uvalde County Water Conservation District and Rob Esquilin, Edwards 

Aquifer Authority].Shape file Data provided by Edwards Aquifer Authority. 
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Hydrostratigraphic Analysis. 

 

As Maclay and Land (1988), Maclay (1995), and Green et al. (2006) have previously 

indicated, the Knippa Gap is the most dominant geologic feature that affects groundwater flow in 

the study area between the Uvalde pool and the San Antonio pool of the Edwards aquifer.  This 

study reinforces that interpretation.  The combination of structural deformation and karstification 

has juxtaposed soluble rocks in a dynamic flow system such that secondary permeability has 

been greatly enhanced in the rocks of the Salmon Peak Formation to intervals as deep as the 

McKnight Formation (Figures 22 and 23). 

Figure 22 summarizes a suite of wireline logs of well JA-289, which reflects the vertical 

complexity of eight identifiable flow zones aligned along bedding planes within rocks of the 

Edwards aquifer.   It is thought that these flow zones and the faults contribute to three-

dimensional flow that is extremely complex, as reflected by the water-level measurements 

determined during the synoptic potentiometric run discussed previously.  Based on flowmeter 

results (Figure 22), the Salmon Peak Formation has a well-developed flow zone from 342 to 350 

feet depth (immediately below the base of the casing) that receives flow under conditions at well 

JA-289 during the time period January 27-28, 2012.  Sequentially downward, the next high-

permeability zone yields water to the well from 366 to 374 feet depth, the third zone loses water 

to the aquifer from 391 to 395 feet below land surface, the fourth zone gains water from the 

interval 412 to 422 feet below land surface, the fifth zone yields water to the well from 450 to 

458 feet below land surface, the sixth zone loses water from the well to the aquifer at a depth of 

504 to 512 feet below land surface, the seventh zone provides water from the aquifer to the well 

at a depth of 814 to 818 feet below land surface, and the final zone gains significant water from 

the aquifer to the well at a depth of 824 to 833 feet below land surface.  It should be mentioned 
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that these high-permeability flow zones can reverse flow directions based on stresses in the 

immediate vicinity of the high-permeability zone and the proximity to and hydraulic 

characteristics of nearby faults.  Other factors that affect flow and interconnection of high-

permeability within this stratigraphic sequence (Figure 8)  are; degree of hydraulic sealing, 

nearby pumping, and nearby point- and line-sources of recharge from surface streams. 
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Figure 21.  Location of Wells used for hydrostratigraphic analyses within the Knippa Gap, labled with JA ID

Surface Geology of 
Uvalde 

 

 
   Fault USGS 

Igneous 
Intrusions 

Logged Wells used for Hydro-
stratigraphic analysis  
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Figure 22.  Wireline logs of caliper, ambient fluid temperature, and electromagnetic 

flowmeter from well JA 289 showing eight separate flow zones and directions of 

flow in open borehole in the study area.  In general, flow is hypogenic in this 

part of the Knippa Gap, from deeper to shallower flow zones 
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Most of the flow through the Knippa Gap is in the Salmon Peak (the upper unit of the 

Edwards Formation), although deeper flow zones are present as indicated in Figure 22. The 

stratigraphy is significantly simpler in Uvalde County with only three distinct formations, while 

the area of Bexar County and San Antonio, has as many as eight individual zones reported for 

the Edwards aquifer (Hauwert, 2009; Maclay and Small, 1988; Hvorka et al., 2004).  In the 

Knippa Gap study area, there is significant flow being contributed to the Edwards aquifer from 

the Frio and Dry Frio Rivers.  Utilizing the existing models of the aquifer, in conjunction with 

the pumping data and water levels for the aquifer, and flow loss studies from the surface streams, 

one should be able to gain an approximate stage/discharge relation of the aquifer in the Knippa 

Gap constriction.  

According to Green et al. (2006), the high-capacity zone of the Edwards aquifer is 

restricted to “an east-trending, narrow (i.e., 4–5-mi wide) band or channel in the middle of 

Uvalde County.”  The location of this high-capacity flow channel is consistent with the fresh-

water channel identified using water-chemistry data. "The northern and southern limits of the 

Edwards aquifer extend over a much broader area than the limited width of the channel. The 

contributing and recharge zones of the Edwards aquifer extend north of the channel where the 

saturated thickness of the Edwards aquifer is insufficient to transmit significant volumes of 

groundwater. To the south, the high-capacity flow channel of the Edwards aquifer is bordered 

either by the saline-water portion of the Edwards aquifer, where permeability is reduced by 

igneous intrusions, geologic structure, localized zones of reduced permeability, or some 

combination of these factors.”  An analysis of geologic structure establishes the foundation for 

the interpretation of the high-capacity flow channels in Uvalde County. Maclay and Land (1988) 

identified geologic barriers that restrict groundwater flow, and geologic gaps and channels that 
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convey groundwater flow in Uvalde County. The most notable of these geologic features 

affecting the  groundwater flow regime in Uvalde County is the Knippa Gap (Maclay and Land, 

1988; Maclay, 1995). Maclay and Land (1988) describe the Knippa Gap as "a narrow opening 

within an extensive, complex barrier system" that includes the combination of the Uvalde and 

Sabinal horsts and the Medina Lake Fault. 

Green et al. (2006) also concludes that examination of the more detailed geological 

structure maps provided refinement to the structural geologic interpretation inherent in the 

Maclay and Land (1988) conceptual model. Geologic structural features that define the Knippa 

Gap and the associated high-capacity flow channel in Uvalde County are the Uvalde salient, 

Cooks Fault, a graben located due east of Knippa, and a deepening of the Edwards aquifer to the 

east of Knippa. This list of geologic features differs somewhat from the list by Maclay and Land 

(1988), but the underlying structural premise to the Knippa Gap is the same. That is, faulting 

associated with the BFZ and uplift identified as the Uvalde salient have developed a constriction 

in flow through the Edwards aquifer near the City of Knippa. The constriction is bounded to the 

north by Cooks Fault, north of which is the recharge zone. The east-northeast trending Cooks 

Fault is located approximately 4 miles north of the City of Uvalde and about 6 miles north of the 

City of Knippa.  Cooks Fault effectively defines the northern limit of high-capacity Edwards 

aquifer irrigation wells, which in turn define the high capacity flow channel (the Knippa Gap) in 

Uvalde County. A continuation of Cooks Fault to the east where it crosses the Frio River is 

referred to as the Trio Fault by Blome et al. (2005). The northern boundary of the constriction 

and the high-capacity flow channel is referred to in this report as Cooks Fault for simplicity and 

because of uncertainty in the precise northern location of these features. Irrigation wells are not 
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prevalent north of Cooks Fault (or Trio Fault), mostly because of the limited saturated thickness 

of the Edwards aquifer in the recharge zone (Green et al., 2006).   

Final structural interpretation of the study area was assessed using wireline logs, drilling 

logs, fault locations based on shape files provided by the USGS (Allen Clark, written 

communication., 2012), and previous structural interpretations (Maclay, 1995; Clark, 2003; 

Hvorka et al., 2004, Green et al., 2006).  Utilizing these interpretations, it was determined that 

the previous boundary dimensions as assessed in Green et al., (2006) approximating 4.02 km 

wide (2.5 mi) can be expanded to 6.4 km wide (3.98 mi).  All information, especially Maclay 

(1995) and Clark (2003), led to the conclusion that the northwest boundary for the Knippa Gap is 

the Cooks Fault and Trio Faults, while the southeast boundary is determined by the uplifted zone 

associated with the igneous intrusions of the Uvalde salient (Figure 20).  
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Figure 23.  Refined hydrostratigraphic model and cross-section, using wells JA 5, 139, 19, 194, and 239 (Appendix E) picks from 

geophysical and drillers report logs. Indicating the Edwards Group Formations in blue, karst feature (My Jennay Sinkhole) in 

green, and Igneous intrusive plugs outlined in red below.  [Kau – Austin Chalk Formation; Kef – Eagle Ford Shale 

Formation; Kbu – Buda Formation; Kdr – Del Rio Clay (upper confining unit); Kea – Top of Edwards Formation; My Jennay 

Sinkhole -     ; Igneous Inrusive plugs      .] 
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Figure 24 Google Earth image displaying well locations for cross-sectional area used to create the refined hydrostratigraphic model 

and cross-section (Figure 23), wells included in cross section are as follows: JA 5, 139, 19, 194, and 239 as referenced in 

(Appendix A).   These wells as well as the other logged wells used for the hydrostratigraphic assessments of the Knippa Gap 

are indicated in pink, and refer to (Appendix E). The associated water-levels for this study collected during July, 2012 are also 

indicated in blue with associated water-levels listed, referenced in (Appendix F).
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CONCLUSIONS 

 

 The objective of this report was to expand understanding of groundwater storage, 

structural constraints, and flow concepts of the Edwards aquifer in the area of the Knippa Gap, in 

Uvalde County Texas. Optimization of use of this heavily subscribed aquifer requires accurate 

quantification and realistic mapping of the relationships between the limestone matrix which 

stores most of the water, and the conduit system which transmits water into, through, and out of 

the aquifer. This balance between storage and drainage is a key variable needed for predicting 

sustainability of flow during periods of low recharge and heavy use  (Hovorka, 2004). Because 

aquifers transmit water from sources of input to outflow (pipeline function), a water budget is 

essential in quantitatively understanding the amount of water that is available, including all 

additions, all losses, and change in storage (Fetter, 2001). It has been estimated that 

approximately 46% of the total average recharge to the San Antonio pool segment that flows 

through or is captured by stream-flow, can be attributed to recharge occurring in Uvalde County 

(Esquilin, 2012; Hamilton  et al., 2008; Green et al., 2006). Further understanding of the water 

resources in Uvalde County will aid in the development of a refined conceptual model for 

groundwater flow, thereby producing more precise estimates for the water budget, for model 

calibrations, and for overall resource management. Aspects of the hydrogeology in the Knippa 

Gap have been a topic of major interest among researchers in this area for numerous years, 

however, the exact location and nature of boundaries are undefined, and the discharge through 

this area is not accurately known.  The input data from this investigation will allow for these 

assessments to be made, as well as aid in the approximation of a water budget for the San 

Antonio Pool of the Edwards aquifer, and in the determination of accurate flow boundaries and 
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budgets for Uvalde County.  Construction of refined conceptual models of the flow-path and 

karstification in the Knippa Gap area of the Edwards aquifer (Figures 19 and 23) provide specific 

lateral boundaries and vertical karstification zones, and depict dominant water chemistry which 

can be used to qualitatively assess our overall understanding of the system. The results of this 

study were able to expand on previous interpretations and assumptions relating to the Knippa 

Gap. Determining Cooks fault and the Trio fault combine to create the northwest boundary of the 

Knippa Gap, while the southern boundary is determined by the uplifted zone of igneous intrusive 

plugs and the Uvalde salient to the southeast. Based on hydrostratigraphic analysis and log 

interpretations associated with this study and other previous interpretations by the Edwards 

Aquifer Authority,  it can be concluded that although the majority of the flow through the 

Knippa Gap is in the Salmon Peak (upper Edwards formation), there are deeper flow zones 

present (Figures 22 and 23).  

Water quality analysis within the Knippa Gap indicate water that is fresh and dominantly 

calcium bicarbonate. The conceptual modeling of the QW (Figure 19) allows visualization of 

water type, major flow directions, and defines flow boundaries for the Knippa Gap. Stiff 

diagrams within the Knippa Gap indicate fresh fast-flow zones with dissolution as the primary 

geochemical process. The Knippa Gap QW sites also plot within the carbonate dissolution field 

of the Piper diagram, with calculated TDS values less than 400 mg/L. Both of these methods are 

demonstrated within the geochemical conceptual model (Figure 19) and are supporting evidence 

for the constricted flow path of the Knippa Gap.  The resulting hydrostratigraphic data, water-

quality data, and water-level data collected for this study constrain  revised conceptual models 

that interpret the flow and water-quality in this critical area of recharge to the San Antonio pool, 

and provide specific lateral boundaries and vertical karstification zones. Well yields in this 
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uplifted portion of the study area associated with igneous intrusive plugs and the Uvalde Salient 

are consistent.  Whereas much less flow (and dissolution of the highly soluble evaporites) 

through the southern portion of the aquifer, and high well yields in the Knippa Gap area indicate 

increased flow and less mineralized fresh water.  In order to determine accurate stage discharge 

relations within the Knippa Gap an accurate velocity must be obtained via dye trace injection and 

analysis. Hopefully this type of study will be undertaken as the next step in ascertaining a 

complete understanding of the of the Knippa Gap constriction.  
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Appendix A: Correlated agency tracking numbers and study designations JA #. 

[Appendix A abbreviations are as follows:  JA ID – Jennifer Adkins Identifier; Owner – last reported owner to agencies searched; 

State Well – number assigned by Texas Water Development Board; State Tracker – number assigned by ; TWDB API – Texas Water 

Development Board American Petroleum Institute unique oil well number; TWDB Q NUM – Texas Water Development Board Q  

Number;  USGS ID – United States Geological Survey Identifier; EAA ID – Edwards Aquifer Authority Identifier; SWRI ID – South 

West Research Institute Identifier; Historic ID – Historic Records Identifier in the TX database] 

JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 001 
Box K, Limited, 

Jane Kennedy-Dure 
6942903 

       

JA 002 
Box K, Limited, 

Jane Kennedy-Dure 
6943701 

       

JA 003 Briscoe Ranch, Inc. 6950310 
       

JA 004 
Repeated entry.  

Deleted 
        

JA 005 Clifford Gee 6943101 
       

JA 006 Clyde Watkins 6942912 
      

H-5-188 

JA 007 Frank Speir 6942706 
      

H-4-121 

JA 009 Dolph Briscoe Jr. 6942716 
       

JA 010 Bobby De Rusha 6942710 
       

JA 011 Pete Stoy 6942606 
       

JA 012 Pete Stoy 6943406 
       

JA 013 Jane Kennedy-Dure 6942901 
       

JA 014 
TPWD_Garner State 

Park 
6927108 

       

JA 015 
Edwards 

Underground 
6936402 
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 016 
Edwards Aquifer 

Authority 
6942709 

       

JA 017 SAWS 6952202 
       

JA 018 
G. C. Magruder 

Gulf Oil Corp. 
6927601 

 
42000000050000 Q-30 

    

JA 019 John Brigman 6943203 
       

JA 020 Maurice Rimkus 69433304 
       

JA 021 
SAWS Turner 

Johnson 
6952404 

    

S.A. Water 

System  
H-6-93 

JA 022 Boyer Chisum 7040901 
    

Edwards Aquifer 

Authority. 

Nueces River 
 

G-3-19 

JA 020 Maurice Rimkus 69433304 
       

JA 023 Susie White 6945402 
   

YP-69-45-402 
   

JA 024 City of Sabinal 6945405 
      

I-4-34 

JA 025 City of Sabinal 6945406 
   

YP-69-45-406 
   

JA 026 L.R. Cole 6945103 
   

TD-69-45-103 
   

JA 027 Lester Matheney 6945203 
   

TD-69-45-203 
   

JA 028 Lloyd Brown 6951204 
   

YP-69-51-204 
   

JA 029 Lloyd H. Brown, Jr 6951205 
   

YP-69-51-205 
   

JA 030 Eddie Koch 6944109 
      

H-3-67 

JA 031 Smith Brothers 6944203 
   

YP-69-44-203 
   

JA 032 Jess Ward 6944204 
   

YP-69-44-204 
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 033 Eddie Faulkenberg 6944402 
   

YP-69-44-402 
   

JA 034 T. M. Woodley, Jr. 6944405 
   

YP-69-44-405 
   

JA 035 Harold Henkel 6943902 
      

H-6-92 

JA 036 Eddy Carnes 6943917 
   

YP-69-43-917 
   

JA 037 John Dodson 6944101 
   

YP-69-44-101 
   

JA 038 Maurice Rimkus 6943302 
   

YP-69-43-302 
   

JA 039 Maurice Rimkus 6943303 
   

YP-69-43-303 Rimkus02 
  

JA 040 Marvin Verstuyft 6943306 
   

YP-69-43-306 
   

JA 041 Bruce Gilleland 6943503 
   

YP-69-43-503 
   

JA 042 H. O. Niemeyer 6943601 
   

YP-69-43-601 
   

JA 043 T. M. Woodley 6953701 
 

42463001010000 Q-20 
   

I-7-15 

JA 038 Maurice Rimkus 6943302 
   

YP-69-43-302 
   

JA 044 Dolph Briscoe 6952201 
      

H-6-95 

JA 045 Pat Johnson 6952403 
   

YP-69-52-403 
   

JA 046 SAWS 6944902 
   

YP-69-44-902 
   

JA 047 B.J. McCombs 6954602 
   

TD-69-54-602 
   

JA 048 Cecil Reagan 6944806 
   

YP-69-44-806a 
   

JA 049 Leslie Pepper 6945701 
   

YP-69-45-701a 
   

JA 050 SAWS 6951606 
   

YP-69-51-606 
   



 

 

 

9
5
 

JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 051 Hubert Waldrip 6944301 
   

YP-69-44-301 
   

JA 052 Darlene Schaefer 6944302 
   

YP-69-44-302 
   

JA 053 Mack Woodley, Jr. 6944601 
   

YP-69-44-601 
   

JA 054 Charles Wooten 6944808 
   

YP-69-44-808a 
   

JA 055 Thelma Thompson 6951301a 
   

YP-69-51-301a 
   

JA 056 
Edwards Aquifer 

Authority 
6937402 

   
YP-69-37-402 

   

JA 057 E. W. Knippa 6943804 
   

YP-69-43-804 
   

JA 058 John Miyakawa 6943916 
   

YP-69-43-916 
   

JA 059 Dick Swartz 6954201 
   

TD-69-54-201 
   

JA 060 Mechler Bros. 6936602 
   

YP-69-36-602 
   

JA 061 Henry Brothers 6936904 
   

YP-69-36-904 
   

JA 062 Elmer Knippa 6943605 
   

YP-69-43-605 
   

JA 063 Knippa WSC 6943606 
   

YP-69-43-606 
   

JA 064 J. Allen Carnes 6942606 
    

W101-586 
 

H-5-109 

JA 056 
Edwards Aquifer 

Authority 
6937402 

   
YP-69-37-402 

   

JA 065 Ray Carnes 6951408 
   

YP-69-51-408 
   

JA 066 Bobby De Rusha 6943403 
   

YP-69-43-403 
   

JA 067 Jane Kennedy 6942902 
   

YP-69-42-902 
   

JA 068 Homer Hargrove 6942911 
      

H-5-185 
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 069 
Ms. T. R. 

Hutcherson 
6943106 

      
H-2-32 

JA 070 H. H. Toone 6950309 
   

YP-69-50-309 
   

JA 071 City of Uvalde 6951104 
   

YP-69-51-104 
   

JA 072 La Moca Ranch 6951602 
      

H-5-72A 

JA 073 Sam Henderson 6945802 
      

I-4-54 

JA 074 Southwest Texas Jr. 6951102 
   

YP-69-51-102 
   

JA 075 Agape Ranch 6951203 
   

YP-69-51-203 
   

JA 076 Peyton & Roberts 6945501 
      

I-4-51 

JA 077 Russell Rehm 6945504 
      

I-4-53 

JA 078 Leslie Pepper 6945701 
   

YP-69-45-701b 
   

JA 079 James Braden 6945702 
      

I-4-52 

JA 080 James J. Braden 6945703 
   

YP-69-45-703 
   

JA 081 Werner Wiebolt 6945704 
      

I-4-55 

JA 082 Dolph Briscoe 6944703 
   

YP-69-44-703 
   

JA 083 
Linda 

Lively_Herndon 
6944704a 

      
H-6-89 

JA 084 Cecil Reagan 6944806 
   

YP-69-44-806b 
   

JA 085 Cecil Reagan 6944807 
   

YP-69-44-807 
   

JA 074 Southwest Texas Jr. 6951102 
   

YP-69-51-102 
   

JA 086 Ed Knippa 6943802 
   

YP-69-43-802 
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 087 E.W. Knippa 6943803 
   

YP-69-43-803 
   

JA 088 E. W. Knippa 6943908 
   

YP-69-43-908 
   

JA 089 Clint Bratcher 6943909 
   

YP-69-43-909 
   

JA 090 Rickey Gimbler 6943912 
   

YP-69-43-912 
   

JA 091 F. W. Langer 6944102 
   

YP-69-44-102 
   

JA 092 Bruce Bishop 6944103 
      

H-3-65 

JA 093 Don Alspaugh 6944105 
   

YP-69-44-105 
   

JA 094 Bruce Bishop 6944106 
   

YP-69-44-106 
   

JA 095 Carl Mueke 6944110 
   

YP-69-44-110 
   

JA 096 Jim Bediger 6944201 
   

YP-69-44-201 
   

JA 097 H.C. Tindall 6944303 
   

YP-69-44-303 
   

JA 098 Carson Wells 6944304 
   

YP-69-44-304 
   

JA 099 J.V. Ranch 6944305 
   

YP-69-44-305 
   

JA 100 George Knippa 6944401 
   

YP-69-44-401 
   

JA 101 Sammy Newman 6944404 
   

YP-69-44-404 
   

JA 102 T. M. Woodley, Jr 6944406 
   

YP-69-44-406 
   

JA 103 Alvin Dornbush 6944407 
   

YP-69-44-407 
   

JA 104 Eddie Faulkenberg 6944502 
   

YP-69-44-502 
   

JA 105 Paul Dornbush 6944503 
      

H-6-91 
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 106 Lester Gilleland 6943502 
   

YP-69-43-502 
   

JA 092 Bruce Bishop 6944103 
      

H-3-65 

JA 107 Knippa WSC 6943603 
      

H-6-87 

JA 108 Bobby De Rusha 6943402 
   

YP-69-43-402 
   

JA 109 Julia J. Kennedy 6943408 
   

YP-69-43-408 
   

JA 110 Dolph Briscoe 6943103 
   

YP-69-43-103 
   

JA 111 Robert Buchanan 6943202 
      

H-2-30 

JA 112 Weldon Gilleland 6943205 
   

YP-69-43-205 
   

JA 113 A. C. Sanderlin 6943301 
   

YP-69-43-301b Sanderlin 
  

JA 114 Roger and Marvin 6943305 
   

YP-69-43-305 
   

JA 115 Marvin Verstuyft 6943307 
   

YP-69-43-307 
   

JA 116 Maurice Rimkus 6943308 
   

YP-69-43-308 
   

JA 117 Pete Stoy 6942606 
      

H-5-109 

JA 118 Senesa Ranch 6955701 
   

TD-69-55-701 
   

JA 119 Cleary Farms 6946404 
   

TD-69-46-404 
   

JA 120 Wimpy Wismer 6946405 
   

TD-69-46-405 
   

JA 121 Edgar Kincaid 6945101 
      

I-1-19 

JA 122 

George 

Driskill_Driskill 

Feed Yard 

6945102 
   

TD-69-45-102 
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 123 L.R. Cole 6945104 
   

TD-69-45-104 
   

JA 124 L.R. Cole & Sons 6945105 
   

TD-69-45-105 
   

JA 125 M. S. Oliver 6945108 
   

TD-69-45-108 
   

JA 126 Frederick McIntosh 6945109 
   

TD-69-45-109 
   

JA 127 Dan Saunders 6945201 
   

TD-69-45-201 
   

JA 128 Dan Saunders 6945202    TD-69-45-202    

JA 129 Fred Anderson 6945301 
   

TD-69-45-301 
   

JA 131 Fred C. Anderson 6945303 
   

TD-69-45-303 
   

JA 132 Ernen Haby 6946101 
   

TD-69-46-101 
   

JA 133 Woodrow Glasscock 6946102 
   

YP-69-46-102 
   

JA 134 
Robert R. 

Woodwward 
6938101 

   
TD-69-38-101 

   

JA 135 Retamco Inc. 6938103 
   

TD-69-38-103 
   

JA 136 Oscar Nester 6946902 
      

I-5-76 

JA 137 James E. Amberson 693890 
   

TD-69-38-905a 
   

JA 138 Lucian Ward 6955501 
      

I-5-86 

JA 139 T.R. Hutcherson 6943109 
   

YP-69-43-109 
   

JA 140 Toni Hull 6943410 
   

YP-69-43-410 
   

JA 141 Dolph Briscoe 6943105 
   

YP-69-43-105 
   

JA 142 Gerald Haby 6943108 
   

YP-69-43-108 
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 143 
James Ray Carnes, 

Jr. 
6951401 

    

Edwards Aquifer 

Authority Carnes 

Farm 
  

JA 144 

Edwards Aquifer 

Authority - City of 

Uvalde 

6950302 
    

City of Uvalde 
 

H-5-1 

JA 145 
Edwards Aquifer 

Authority 
6943607 

    

Edwards Aquifer 

Authority-Knippa   

JA 146 
Edwards Aquifer 

Authority 
6943409 

   
YP-69-43-409 

Edwards Aquifer 

Authority_North 

Uvalde Well 
  

JA 147 West Medina WSC 6938906 
   

TD-69-38-906 
   

JA 148 Charley Zinsmeister 6943905       H-6-96 

JA 149 Jo Ann Poerner 6938603 
   

TD-69-38-603 
   

JA 150 Hugo A. Saathoff 6946602 
   

TD-69-46-602 
   

JA 151 Frank Alderson 6946302 
   

TD-69-46-302 
   

JA 152 Earl Rowe 6946301 
   

TD-69-46-301 
   

JA 153 T.W. Wheeler 6947701 
      

I-5-78 

JA 154 Freddie Gruff 69389xxa 151050 
  

TD-69-38-9xxa 
   

JA 155 West Medina WSC 69389xxb 165292 
  

TD-69-38-9xxb 
   

JA 156 Edwind Dulin 69469xx 37192 
  

TD-69-46-9xx 
PERMIT 

2004064   

JA 157 Philip Jung 68311xxa 48742 
  

TD-68-31-1xxa 
   

JA 158 
JAMES 

DUROW,JR. 
68311xxb 74790 

  
TD-68-31-1xxb 

PERMIT C102-

124   

JA 159 
JAMES P. DOROW 

JR. 
68311xx 78737 

  
TD-68-31-1xxc 

PERMIT C102-

162 LOT 14   
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 160 
GARY 

MONTGOMERY 
69381xxa 136381 

  
TD-69-38-1xxa 

PERMIT C102-

814   

JA 161 
JOHN B. 

HOWDESHELL 
69381xxb 190610 

  
TD-69-38-1xxb 

   

JA 162 Frank L. Lester 69461xx 226714 
  

TD-69-46-1xx 
   

JA 163 
HERMINA A 

SITTRE TRUST 
69466xx 35476 

  
TD-69-46-6xx 

   

JA 164 
William and Kreg 

Bedinghaus 
69468xxa 123352 

  
TD-69-46-8xxa 

   

JA 165 Townes Pressler 69468xxb 215447 
  

TD-69-46-8xxb 
   

JA 167 Maurice Rimkus 69433xxc 248583 
  

YP-69-43-3xxc 
PERMIT C103-

514   

JA 168 Emie Lara 69434xxa 14637 
  

YP-69-43-4xxa 
   

JA 169 Curtis Nelson 69434xxb 17993   YP-69-43-4xxb    

JA 170 Curtis Nelson 69434xxd 4947   YP-69-43-4xxd    

JA 166 Mark Huffstedler 69429xx 21680   YP-69-42-9xx    

JA 171 THOMAS HUPP 69434xxe 179224   YP-69-43-4xxe 
PERMIT C103-

171 
  

JA 172 
Linda Lively 

Herndon 
69434xxf 2033   YP-69-43-4xxf    

JA 173 
ROY 

ANGERMILLER 
69436xx 178797   YP-69-43-6xx    

JA 174 
Linda Lively 

Herndon 
69437xxa 2031   YP-69-43-7xxa    

JA 175 
Linda Lively 

Herndon 
69437xxb 4946   YP-69-43-7xxb    

JA 176 
NUNLEY BROS. 

RANCHES 
69445xx 144874   YP-69-44-5xx    

JA 177 
BOBBY 

McINTOSH 
69454xx 136377   YP-69-45-4xx    
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 178 
KENNETH 

SPENCE 
69457xx 66703   YP-69-45-7xx    

JA 179 BILL MARLIN 69512xxa 166168   YP-69-51-2xxa    

JA 180 JOEL GOODE III 69512xxb 60982   YP-69-51-2xxb    

JA 181 
RICHARD 

MARLIN 
69512xxc 97714   YP-69-51-2xxc    

JA 182 RUSSELL JAMES 69512xxe 157588   YP-69-51-2xxe    

JA 183 Thompson Ranch 69516xxa 252566   YP-69-51-6xxa    

JA 184 
Bob Willoughby 

and Cecil Atkisson 
69515xx 143198   YP-69-51-5xx    

JA 185 
Bob Willoughby 

and Cecil Atkisson 
69516xxc 143196   YP-69-51-6xxc    

JA 186 
SPANISH 

DAGGER 
69437xxc 90203   YP-69-43-7xxc    

JA 187 RAY DABNEY 69511xxb 240315   YP-69-51-1xxb 
PERMIT C103-

476 
  

JA 188 ROY HERNDON 69444xxa 249420   YP-69-44-4xxa    

JA 189 MARK BIELSTEIN 69512xxd 140280   YP-69-51-2xxd    

JA 190 KENNETH COLE 69449xx 217466   YP-69-44-9xx    

JA 191 ROY HERNDON 69444xxb 249419   YP-69-44-4xxb    

JA 184 
Bob Willoughby 

and Cecil Atkisson 
69515xx 143198   YP-69-51-5xx    

JA 192 MARK BIELSTEIN 69512xxd 140280   YP-69-51-2xxd    

JA 193 
Willis Lucas and 

Ryan Lucas 
 293705 42000000220000      

JA 194 Van L. Crapps  186172 42000000230000   
PERMIT C102-

293 
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 195 Vicky Hagen  295625 42000000260000      

JA 196 A.M. RIMKUS  143491 42000000270000   
PERMIT C102-

854 
  

JA 197 CAROL MURPH  256860 42000000300000      

JA 198 Curtis Nelson  5759 42000000310000      

JA 199        Fry #2  

JA 200        Fry #1  

JA 201        Fry #7  

JA 202        Fry  

JA 203        Roberts  

JA 204        Ware  

JA 205 Emie Lara       Spurgeon  

JA 206        Ware  

JA 207 B. Kingston         

JA 208 Bob Willoughby         

JA 209 
Torres Ready-Mix, 

Inc 
        

JA 210 Briscoe Ranch         

JA 211 
Texas Ag. Research  

Extension 
        

JA 212 John D. Smith         

JA 213      TD69477xx    
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 214      TD69555xxa    

JA 215      TD69555xxb    

JA 216      TD69631xx    

JA 217      YP69601xx    

JA 218      YP69612xx    

JA 219      YP69511xxc    

JA 220 
     

YP69511xxa 
   

JA 221      YP69529xx    

JA 222 Alvin M. Rimkus     YP69433xxa    

JA 223      TD69536xx    

JA 224      YP69369xx    

JA 225      YP69455xx    

JA 226      YP69458xx    

JA 227      YP69532xx    

JA 228      TD69546xx    

JA 229      YP69432xx    

JA 230      YP69448xx    

JA 231      YP69516xxb    

JA 232      YP69527xx    
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 233      YP69538xx    

JA 234 Briscoe Ranch      69503BB   

JA 235 
Lawrance 

Freisenhan 
  42000000190000      

JA 236 Mr Boehme   42000000200000      

JA 237 Don Batot   42000000220000      

JA 238 Mr Thomas   42000000230000      

JA 239 
South Texas 

Aggregates(A1) 
  42000000240000      

JA 240 
South Texas 

Aggregates(A2) 
  42000000250000      

JA 241 Vicky Jean Hagen   42000000270000      

JA 242 Bruce Gilleland   42000000290000      

JA 243 Gorman Drilling Co   42000000020000 Q-12     

JA 244 Gorman Drilling Co.   42000000040000 Q-23a     

JA 245 B and S Drilling Co   42000000070000 Q-40     

JA 246 Skidmore Energy   42463303000000 Q-45     

JA 247 GORMAN, G. W.   42463001140000 Q-16     

JA 248 GULF OIL CORP   42463000060000      

JA 249 
Pan American 

Petroleum Corp 
  42463000550000 Q-36     

JA 250 
Pan American 

Petroleum Corp 
  42463000500000      

JA 251 Pan American   42463000400000 Q-35     
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

Petroleum Corp 

JA 252 W.J. STEEEGER   42463000630000 Q-14     

JA 253 

GREAT WESTERN 

DRILLING 

COMPANY 

  42463302990000      

JA 254 
GREAT WESTERN 

DRILLING CO. 
  42463302980000      

JA 255 IKE HOWETH   42463000560000 Q-4     

JA 256 
GORMAN 

DRILLING CO 
  42463001020000 Q-2     

JA 257 
GORMAN 

DRILLING CO 
  42463001040000 Q-18     

JA 258 
GORMAN 

DRILLING CO 
  42463001050000 Q-20     

JA 259 
GORMAN 

DRILLING CO 
  42463001090000 Q-5     

JA 260 
GORMAN 

DRILLING CO 
  42463001100000 Q-6     

JA 261 
GORMAN 

DRILLING CO 
  42463001110000 Q-7     

JA 262 
GORMAN 

DRILLING CO 
  42463000670000 Q-34     

JA 263 
GENERAL CRUDE 

OIL CO 
  42463302880000 Q-24     

JA 264 
TIGER OIL & GAS 

CO 
  42463000710000      

JA 265 IKE HOWETH   42463001300000 Q-9     

JA 266 

TENNECO OIL CO 

& PENNZOIL 

UNITED INC 

  42463000100000      

JA 267 TIGER OIL & GAS   42463000240000      
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 268 
E.A. BRANHAM, 

ET AL 
  42463000530000 Q-22     

JA 269 W.J. STEEGER   42463000700000      

JA 270 
TIGER OIL & GAS 

CO 
  42463000730000      

JA 271 
BENNETT & 

SORRELLS 
  42463000980000      

JA 272 
TIGER OIL & GAS 

CO 
  42463001060000      

JA 273 
TIGER OIL & GAS 

CO 
  42463001070000      

JA 274 
GORMAN 

DRILLING CO 
  42463001180000 Q-23     

JA 275 
GORMAN 

DRILLINGCO 
  42463001190000 Q-19     

JA 276 
GORMAN 

DRILLING CO 
  42463001220000 Q-17     

JA 277 
TIGER OIL & GAS 

CO 
  42463001230000      

JA 278 
ROBERT 

BEAMON 
  42463000470000      

JA 279 
GENERAL CRUDE 

OIL CO 
   Q-25     

JA 280 
TIGER OIL & GAS 

CO 
  42463000750000      

JA 281 
GORMAN Drilling 

Co 
   Q-29     

JA 282 
GORMAN 

DRILLING CO 
  42463001170000 Q-28     

JA 283 
GORMAN 

DRILLING CO 
  42463001200000 Q-21a     

JA 284 
TIGER OIL & GAS 

CO 
  42463001260000      

JA 285 
GORMAN 

DRILLING CO 
  42463001280000      
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 286 
WESTERN OIL 

DEV CO 
  42463001330000      

JA 287 
INTERNATIONAL 

NUCLEAR CORP 
  42463001360000      

JA 288 
Jerry V. Allen and 

wife, Vicki K. Allen 
6943919     W101-416   

JA 289 
Alvin M. Rimkus 

(Junk Yard Well) 
     W101-394   

JA 290 
Malvern Benke and 

Deborah Benke 
     W101-594   

JA 291 Justin Speer      W102-432   

JA 292 Briscoe Ranch, Inc. 6950311     W101-699   

JA 293 Stanstell     YP-69-43-1AS    

JA 294 Bobbie Parten       UV56  

JA 295 ME (Jerry)  Walker       UV97  

JA 296 
Sandy Murrey 

(spurgeon) 
      UV101  

JA 297 O.E. Robinson       UV115  

JA 298 
Uvalde Memorial 

Golf Course 
      UV125  

JA 299 
Uvalde Auction/ 

Lewis or Earl Capt 
      UV134  

JA 300 Leeroy Rummel       UV142  

JA 301 
(Steve) C.M. 

Dishman 
     Dishman02 UV144  

JA 302 Raul Perez       UV153  

JA 303 John Jacobs       UV160  
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JA ID Owner 
State 

Well 

State 

Tracker 

TWDB API 

NUM 

TWDB Q 

NUM 
USGS ID EAA ID SWRI ID 

Historic  

ID 

JA 304 
Bob Willoughby 

and Cecil Atkisson 
      UV161  

JA 305 
Bob Willoughby 

and Cecil Atkisson 
      UV162  

JA 306 Tom Eckbomb(?)       UV181  

JA 307 Toni Hull Collins  18464       

JA 308 
(Steve) C.M. 

Dishman 
     Dishman01   

JA 309 Jimmy Neutze      Neutz   

JA 310 Marvin Verstuyft      Verstuft   

JA 311 Jim Willingham      Sutherland   

JA 312 
Justin Speer (Albert 

Foster Nelson) 
        

JA 313 Richie Aguero      Aguero   

JA 314 Arman Martinez      Martinez   

JA 315 Un-Known      Across 1434   

JA 316 
Elroy and Margarita 

Guerra 
     Elroy   

JA 317 

Bruce Gilleland and 

wife, Linda 

Gilleland 

     W101-470   
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Appendix B:  Well Inventory latitude, longitude, elevation, and sourcing. 

[Appendix B includes previous abbreviations and new ones as follows:  Latitude DD – Latitude Decimal Degrees; Longitude DD – 

Longitude Decimal Degrees; TWDB WIID System – Texas Water Development Board Water Information Integration and 

Dissemination, an online searchable database for Texas wells; Aquifer Code – number assigned by  

JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 001 29.265555 -99.762777 TWDB_WIID System 985 TWDB_Interpolated From Topo Map 218EBFZA 

JA 002 29.261944 -99.737221 TWDB_WIID System 983 TWDB_Interpolated From Topo Map 218EBFZA 

JA 004 Repeated Entry.  Deleted      

JA 003 29.246944 -99.756666 TWDB_WIID System 965 TWDB_Interpolated From Topo Map 218EBFZA 

JA 005 29.370277 -99.719166 TWDB_WIID System 1110 TWDB 218EBFZA 

JA 006 29.266388 -99.77611 TWDB_WIID System 977 TWDB_Interpolated From Topo Map 218EDRDA 

JA 007 29.280277 -99.855555 TWDB_WIID System 1004 TWDB_Interpolated From Topo Map 218EBFZA 

JA 009 29.277777 -99.869166 TWDB_WIID System 1040 TWDB_Interpolated From Topo Map 218EDRDA 

JA 010 29.283888 -99.862777 TWDB_WIID System 1018 TWDB_Interpolated From Topo Map 218EBFZA 

JA 011 29.293888 -99.7525 TWDB_WIID System 1013 TWDB_Interpolated From Topo Map 218EBFZA 

JA 012 29.308611 -99.749721 TWDB_WIID System 1012 TWDB_Interpolated From Topo Map 218EBFZA 

JA 013 29.254722 -99.758888 TWDB_WIID System 987 TWDB_GPS 218EBFZA 

JA 014 29.59111 -99.739166 TWDB_WIID System 1412 TWDB_Interpolated From Topo Map 217HSTN 

JA 015 29.419443 -99.610277 TWDB_WIID System 1095 TWDB_Interpolated From Topo Map 218EBFZA 

JA 016 29.275277 -99.862222 TWDB_WIID System 1005 TWDB_Interpolated From Topo Map 218EBFZA 

JA 017 29.245555 -99.55 TWDB_WIID System 882 TWDB_Interpolated From Topo Map 218EBFZA 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 018 29.555277 -99.642221 TWDB_WIID System 1849 TWDB_Digital Elevation Model N/A 

JA 019 29.33583 -99.69444 TWDB_WIID System 1047 Geophysical Log 218EBFZA 

JA 020 29.33861 -99.645833 TWDB_WIID System 1034 Edwards Aquifer Authority 218EDRDA 

JA 021 29.198888 -99.623888 TWDB_WIID System 877 TWDB_Interpolated From Topo Map 218EBFZA 

JA 022 29.394721 -100.002222 TWDB_WIID System 1120 TWDB 218EDRDA 

JA 023 29.311388 -99.483054 TWDB_WIID System 933 TWDB_Interpolated From Topo Map 218EBFZA 

JA 024 29.327221 -99.46861 TWDB_WIID System 953 TWDB_Interpolated From Topo Map 218EDRDA 

JA 025 29.319443 -99.469999 TWDB_WIID System 948 TWDB_Interpolated From Topo Map 218EDRDA 

JA 026 29.345833 -99.464722 TWDB_WIID System 975 TWDB_Interpolated From Topo Map 218EDRDA 

JA 027 29.362777 -99.455555 TWDB_WIID System 983 TWDB_Interpolated From Topo Map 218EBFZA 

JA 028 29.213611 -99.695277 TWDB_WIID System 965 TWDB_Interpolated From Topo Map 218EDRDA 

JA 029 29.215833 -99.693055 TWDB_WIID System 955 TWDB_Interpolated From Topo Map 112LEON 

JA 030 29.337777 -99.586388 TWDB_WIID System 998 TWDB_Interpolated From Topo Map 218EBFZA 

JA 031 29.365833 -99.571388 TWDB_WIID System 1012 TWDB_Interpolated From Topo Map 218EDRDA 

JA 032 29.345555 -99.580277 TWDB_WIID System 1004 TWDB_GPS 218EDRDA 

JA 033 29.329999 -99.59361 TWDB_WIID System 998 TWDB_Level or Other Surveying Method 218EBFZA 

JA 034 29.310833 -99.610833 TWDB_WIID System 994 TWDB_Interpolated From Topo Map 218EBFZA 

JA 035 29.276389 -99.633611 TWDB_WIID System 955 TWDB_Interpolated From Topo Map 218EDRDA 

JA 036 29.25079261 -99.64532925 TWDB_WIID System 936 TWDB_GPS 218EDRDA 

JA 037 29.371666 -99.620832 TWDB_WIID System 1053 TWDB_Interpolated From Topo Map 218EBFZA 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 038 29.347221 -99.638888 TWDB_WIID System 1034 TWDB_Interpolated From Topo Map 218EBFZA 

JA 039 29.35089 -99.63411 Leica Survey Grade 959.8812315 Leica Survey Grade 218EBFZA 

JA 040 29.358611 -99.628054 TWDB_WIID System 1033 TWDB_Interpolated From Topo Map 218EDRDA 

JA 041 29.291944 -99.689721 TWDB_WIID System 987 TWDB_GPS 218EBFZA 

JA 042 29.32111 -99.663333 TWDB_WIID System 1019 TWDB_Interpolated From Topo Map 218EBFZA 

JA 043 29.14746327 -99.47838039 TWDB_WIID System 746 TWDB_Interpolated From Topo Map 218EBFZA 

JA 044 29.21912745 -99.57838369 TWDB_WIID System 882 TWDB_Interpolated From Topo Map 218EBFZA 

JA 045 29.1985727 -99.6164404 TWDB_WIID System 875 TWDB_Interpolated From Topo Map Pat Johnson 

JA 046 29.269999 -99.505555 TWDB_WIID System 892 TWDB_Interpolated From Topo Map 218EBFZA 

JA 047 29.182777 -99.27111 TWDB_WIID System 855 TWDB_Interpolated From Topo Map 218EDRDA 

JA 048 29.25995929 -99.5425492 TWDB_WIID System 895 TWDB_Interpolated From Topo Map 218EBFZA 

JA 049 29.28495849 -99.4786582 TWDB_WIID System 912 TWDB_Interpolated From Topo Map 218EBFZA 

JA 050 29.193333 -99.632499 TWDB_WIID System 876 TWDB_Interpolated From Topo Map SAWS 

JA 051 29.353333 -99.513611 TWDB_WIID System 1003 TWDB_Interpolated From Topo Map 218EBFZA 

JA 052 29.339999 -99.519721 TWDB_WIID System 988 Level or Other Surveying Method 218EBFZA 

JA 053 29.314722 -99.529721 TWDB_WIID System 1002 TWDB_Interpolated From Topo Map 218EDRDA 

JA 054 29.275277 -99.572499 TWDB_WIID System 936 TWDB_Interpolated From Topo Map 218EDRDA 

JA 055 29.22551627 -99.64838589 TWDB_WIID System 905 TWDB_GPS 218EBFZA 

JA 056 29.45328754 -99.4731015 TWDB_WIID System 1158 TWDB_Interpolated From Topo Map 218EDRDA 

JA 057 29.2760704 -99.6933872 TWDB_WIID System 974 TWDB_GPS 218EBFZA 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 058 29.281666 -99.647499 TWDB_WIID System 971 TWDB_Interpolated From Topo Map 218EDRDA 

JA 059 29.212738 -99.2983744 TWDB_WIID System 871 TWDB_Interpolated From Topo Map 218EDRD 

JA 060 29.4216218 -99.5281034 TWDB_WIID System 1096 TWDB_Interpolated From Topo Map 218EBFZA 

JA 061 29.408611 -99.523332 TWDB_WIID System 1074 TWDB_GPS 218EDRDA 

JA 062 29.29218096 -99.6347742 TWDB_WIID System 978 TWDB_Interpolated From Topo Map 218EBFZA 

JA 063 29.3111111 -99.6405556 TWDB_WIID System 1006 TWDB_GPS 218EBFZA 

JA 064 29.293888 -99.7525 TWDB_WIID System 1013 TWDB_Interpolated From Topo Map 218EBFZA 

JA 065 29.18274011 -99.73699976 TWDB_WIID System 890 TWDB_Interpolated From Topo Map 218EBFZA 

JA 066 29.3224582 -99.733666 TWDB_WIID System 1052 TWDB_Interpolated From Topo Map UNKNOWN 

JA 067 29.254444 -99.751944 TWDB_WIID System 994 TWDB_GPS 218EBFZA 

JA 068 29.28861 -99.761666 TWDB_WIID System 997 TWDB_Interpolated From Topo Map 218EDRDA 

JA 069 29.35551294 -99.740055 TWDB_WIID System 1084 TWDB_Interpolated From Topo Map 218EDRDA 

JA 070 29.2485713 -99.7547781 TWDB_WIID System 972 TWDB_Interpolated From Topo Map 218EBFZA 

JA 071 29.23634948 -99.74727787 TWDB_WIID System 943 TWDB_Interpolated From Topo Map 218EBFZA 

JA 072 29.175518 -99.6356077 TWDB_WIID System 866 TWDB_Interpolated From Topo Map 218EBFZA 

JA 073 29.288055 -99.455833 TWDB_WIID System 903 TWDB_Interpolated From Topo Map 218EDRDA 

JA 074 29.222499 -99.731666 TWDB_WIID System 955 TWDB_Interpolated From Topo Map 218EBFZA 

JA 075 29.213055 -99.685833 TWDB_WIID System 950 TWDB_Interpolated From Topo Map 218EDRDA 

JA 076 29.312777 -99.451388 TWDB_WIID System 932 TWDB_Interpolated From Topo Map 218EBFZA 

JA 077 29.293888 -99.456666 TWDB_WIID System 914 TWDB_Level or Other Surveying Method 218EBFZA 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 078 29.284999 -99.47861 TWDB_WIID System 912 TWDB_Interpolated From Topo Map 218EBFZA 

JA 079 29.267499 -99.49111 TWDB_WIID System 893 TWDB_Interpolated From Topo Map 218EBFZA 

JA 080 29.264444 -99.47861 TWDB_WIID System 882 TWDB_Interpolated From Topo Map 218EDRDA 

JA 081 29.287778 -99.466389 TWDB_WIID System 901 TWDB_Interpolated From Topo Map 218EBFZA 

JA 082 29.2575 -99.586388 TWDB_WIID System 936 TWDB_Interpolated From Topo Map 218EBFZA 

JA 083 29.2549596 -99.6111625 TWDB_WIID System 922 TWDB_Interpolated From Topo Map 218EBFZA 

JA 084 29.26 -99.542499 TWDB_WIID System 895 TWDB_Interpolated From Topo Map 218EBFZA 

JA 085 29.268332 -99.564444 TWDB_WIID System 926 TWDB_Interpolated From Topo Map 218EDRDA 

JA 086 29.262777 -99.682221 TWDB_WIID System 952 TWDB_Interpolated From Topo Map 218EBFZA 

JA 087 29.267499 -99.675832 TWDB_WIID System 903 TWDB_Interpolated From Topo Map 218EBFZA 

JA 088 29.263888 -99.649444 TWDB_WIID System 948 TWDB_Interpolated From Topo Map 218EBFZA 

JA 089 29.253611 -99.648888 TWDB_WIID System 941 TWDB_Interpolated From Topo Map 218EBFZA 

JA 090 29.267499 -99.628054 TWDB_WIID System 950 TWDB_Interpolated From Topo Map 218EDRDA 

JA 091 29.361666 -99.616666 TWDB_WIID System 1040 TWDB_Interpolated From Topo Map 218EBFZA 

JA 092 29.346944 -99.622221 TWDB_WIID System 1020 TWDB_Interpolated From Topo Map 218EDRDA 

JA 093 29.335833 -99.624999 TWDB_WIID System 1012 TWDB_Interpolated From Topo Map 218EBFZA 

JA 094 29.350833 -99.611666 TWDB_WIID System 1013 TWDB_Interpolated From Topo Map 218EBFZA 

JA 095 29.334721 -99.596944 TWDB_WIID System 1007 Digital Elevation Model 211BUDA 

JA 096 29.361111 -99.58361 TWDB_WIID System 1020 TWDB_Interpolated From Topo Map 218EBFZA 

JA 097 29.353333 -99.521666 TWDB_WIID System 1002 TWDB_Interpolated From Topo Map 218EDRDA 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 098 29.338055 -99.529443 TWDB_WIID System 985 TWDB_Interpolated From Topo Map 218EDRDA 

JA 099 29.364444 -99.522777 TWDB_WIID System 1010 TWDB_Interpolated From Topo Map 218EDRDA 

JA 100 29.32611 -99.591666 TWDB_WIID System 993 TWDB_Interpolated From Topo Map 218EBFZA 

JA 101 29.329166 -99.611944 TWDB_WIID System 1006 TWDB_Interpolated From Topo Map 218EBFZA 

JA 102 29.31861 -99.615277 TWDB_WIID System 1000 TWDB_Interpolated From Topo Map 218EBFZA 

JA 103 29.307222 -99.587777 TWDB_WIID System 977 TWDB_Interpolated From Topo Map 211ASTN 

JA 104 29.314444 -99.574999 TWDB_WIID System 973 TWDB_Interpolated From Topo Map 218EBFZA 

JA 105 29.312777 -99.582777 TWDB_WIID System 972 TWDB_Interpolated From Topo Map 218EBFZA 

JA 106 29.329999 -99.685277 TWDB_WIID System 1031 TWDB_Interpolated From Topo Map 218EDRDA 

JA 107 29.295833 -99.636666 TWDB_WIID System 985 TWDB_Interpolated From Topo Map 218EBFZA 

JA 108 29.319443 -99.744999 TWDB_WIID System 1042 TWDB_Interpolated From Topo Map 218EBFZA 

JA 109 29.328888 -99.713888 TWDB_WIID System 1073 TWDB_Interpolated From Topo Map 218EDRDA 

JA 110 29.34801305 -99.7103319 TWDB_WIID System 1089 TWDB_Interpolated From Topo Map 218EBFZA 

JA 111 29.3585683 -99.6953314 TWDB_WIID System 1068 TWDB_Level or Other Surveying Method 218EBFZA 

JA 112 29.351388 -99.679166 TWDB_WIID System 1063 TWDB_Interpolated From Topo Map 218EDRDA 

JA 113 29.37021 -99.6517 Leica Survey Grade 1011.390387 Leica Survey Grade 218EBFZA 

JA 114 29.361388 -99.64611 TWDB_WIID System 1059 TWDB_Interpolated From Topo Map 218EBFZA 

JA 115 29.344721 -99.630277 TWDB_WIID System 1026 TWDB_Interpolated From Topo Map 218EDRDA 

JA 116 29.349721 -99.655833 TWDB_WIID System 1037 TWDB_Interpolated From Topo Map 218EDRDA 

JA 117 29.293888 -99.7525 TWDB_WIID System 1013 TWDB_Interpolated From Topo Map 218EBFZA 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 118 29.1519066 -99.2280937 TWDB_WIID System 710 TWDB_Interpolated From Topo Map 218EDRDA 

JA 119 29.33329075 -99.36059887 TWDB_WIID System 1033 TWDB_Interpolated From Topo Map 218EDRDA 

JA 120 29.29495771 -99.34920962 TWDB_WIID System 980 TWDB_Interpolated From Topo Map 218EDRDA 

JA 121 29.368888 -99.468332 TWDB_WIID System 1005 TWDB_Interpolated From Topo Map 218EBFZA 

JA 122 29.356111 -99.497499 TWDB_WIID System 1005 TWDB_Interpolated From Topo Map 218EBFZA 

JA 123 29.335277 -99.461944 TWDB_WIID System 960 TWDB_Interpolated from Topo Map 218EDRDA 

JA 124 29.367499 -99.463055 TWDB_WIID System 998 TWDB_Interpolated from Topo Map 218EDRDA 

JA 125 29.359722 -99.467221 TWDB_WIID System 986 TWDB_Interpolated from Topo Map 211ANCC 

JA 126 29.360277 -99.467221 TWDB_WIID System 985 TWDB_Interpolated from Topo Map 211ANCC 

JA 127 29.373888 -99.430554 TWDB_WIID System 1002 TWDB_ (GPS) 218EDRDA 

JA 128 29.359444 -99.421943 TWDB_WIID System 1022 TWDB_Interpolated from Topo Map 218EBFZA 

JA 129 29.36861 -99.390833 TWDB_WIID System 985 TWDB_Interpolated from Topo Map 218EDRD 

JA 131 29.359444 -99.382499 TWDB_WIID System 1005 TWDB_Interpolated from Topo Map 218EDRDA 

JA 132 29.33440169 -99.34615341 TWDB_WIID System 1052 TWDB_Interpolated from Topo Map 218EDRDA 

JA 133 29.363611 -99.344166 TWDB_WIID System 1079 TWDB_Interpolated from Topo Map 218EDRDA 

JA 134 29.46912022 -99.33837582 TWDB_WIID System 1140 TWDB_Interpolated from Topo Map 218EDRD 

JA 135 29.47273118 -99.35837638 TWDB_WIID System 1190 TWDB_Interpolated from Topo Map 218EDRDA 

JA 136 29.275832 -99.282777 TWDB_WIID System 833 TWDB_Interpolated from Topo Map 218EDRD 

JA 137 29.4013439 -99.280596 TWDB_WIID System 977 TWDB_Interpolated from Topo Map 218EBFZA 

JA 138 29.176628 -99.1992041 TWDB_WIID System 736 TWDB_Interpolated from Topo Map 218EBFZA 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 139 29.350555 -99.741944 TWDB_WIID System 1081 TWDB_(GPS) 218EDRDA 

JA 140 29.324721 -99.732499 TWDB_WIID System 1055 TWDB_(GPS) 218EDRDA 

JA 141 29.33611 -99.72111 TWDB_WIID System 1075 TWDB_Interpolated from Topo Map 218EBFZA 

JA 142 29.345833 -99.744166 TWDB_WIID System 1062 TWDB_Interpolated from Topo Map 218EDRDA 

JA 143 29.178888 -99.734999 TWDB_WIID System 893 Interpolated from Topo Map 218EBFZA 

JA 144 29.208611 -99.783888 TWDB_WIID System 905 TWDB_Level or Other Surveying Method 218EBFZA 

JA 145 29.326388 -99.63861 TWDB_WIID System 1007 TWDB_Interpolated from Topo Map 218EDRDA 

JA 146 29.32412484 -99.7300548 TWDB_WIID System 1054 TWDB_Interpolated from Topo Map 218EDRDA 

JA 147 29.38884409 -99.2647618 TWDB_WIID System 950 TWDB_Interpolated from Topo Map 218EDRDA 

JA 148 29.268888 -99.657777 TWDB_WIID System 960 TWDB_Interpolated from Topo Map 218EBFZA 

JA 149 29.42273225 -99.27837416 TWDB_WIID System 990 TWDB_Interpolated from Topo Map 218EDRDA 

JA 150 29.31773491 -99.26031774 TWDB_WIID System 909 TWDB_Interpolated From Topo Map 218EDRD 

JA 151 29.34717819 -99.27448515 TWDB_WIID System 900 TWDB_Interpolated From Topo Map 218EDRDA 

JA 152 29.37356653 -99.28420741 TWDB_WIID System 931 TWDB_Interpolated From Topo Map 218EDRD 

JA 153 29.2575 -99.24833333 TWDB_WIID System 810 TWDB_Interpolated From Topo Map 218EDRD 

JA 154 29.40861111 -99.26777778 TWDB_WIID System 
 

Google Earth 
 

JA 155 29.38888889 -99.26472222 TWDB_WIID System 
 

Google Earth 
 

JA 156 29.27944444 -99.27944444 TWDB_WIID System 
 

Google Earth 
 

JA 157 29.46388889 -99.34527778 TWDB_WIID System 1335 TWDB_Garmin GPS 72 
 

JA 158 29.46805556 -99.37194444 TWDB_WIID System 
 

Google Earth 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 159 29.46888889 -99.37222222 TWDB_WIID System 
 

Google Earth 
 

JA 160 29.47111111 -99.37388889 TWDB_WIID System 
 

Google Earth 
 

JA 161 29.46888889 -99.36722222 TWDB_WIID System 
 

Google Earth 
 

JA 162 29.372778 -99.349167 TWDB_WIID System 
 

Google Earth 
 

JA 163 29.31301287 -99.28670747 TWDB_WIID System 
 

Google Earth 
 

JA 164 29.25944444 -99.33111111 TWDB_WIID System 945 TWDB_Garmin etrex 
 

JA 165 29.27166667 -99.3325 TWDB_WIID System 
 

Google Earth 
 

JA 166 29.260833 -99.755278 TWDB_WIID System 
 

Google Earth 
 

JA 167 29.348611 -99.656111 TWDB_WIID System 
 

Google Earth 
 

JA 168 29.331389 -99.743889 TWDB_WIID System 
 

Google Earth 
 

JA 169 29.329722 -99.735278 TWDB_WIID System 940 TWDB_Magellan GPS 
 

JA 170 29.325278 -99.733889 TWDB_WIID System 
 

Google Earth 
 

JA 171 29.306667 -99.748333 TWDB_WIID System 1034 TWDB_Magellan GPS 
 

JA 172 29.300278 -99.725833 TWDB_WIID System 
 

Google Earth 
 

JA 173 29.318333 -99.640556 TWDB_WIID System 
 

Google Earth 
 

JA 174 29.288611 -99.725833 TWDB_WIID System 
 

Google Earth 
 

JA 175 29.277778 -99.744167 TWDB_WIID System 
 

Google Earth 
 

JA 176 29.324444 -99.569444 TWDB_WIID System 
 

Google Earth 
 

JA 177 29.306667 -99.465278 TWDB_WIID System 
 

Google Earth 
 

JA 178 29.285833 -99.481667 TWDB_WIID System 
 

Google Earth 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 179 29.241389 -99.685278 TWDB_WIID System 900 TWDB_Magellan GPS 
 

JA 180 29.237222 -99.685556 TWDB_WIID System 965 TWDB_Magellan GPS 
 

JA 181 29.236111 -99.685 TWDB_WIID System 964 TWDB_Magellan GPS 
 

JA 182 29.213611 -99.674444 TWDB_WIID System 
 

Google Earth 
 

JA 183 29.203889 -99.635 TWDB_WIID System 876 TWDB_Garmin GPS 
 

JA 184 29.198611 -99.671667 TWDB_WIID System 850 TWDB_Garmin etrex 
 

JA 185 29.203611 -99.666944 TWDB_WIID System 884 TWDB_Garmin etrex 
 

JA 186 29.265833 -99.711667 TWDB_WIID System 975 TWDB_Magellan GPS 
 

JA 187 29.243333 -99.734722 TWDB_WIID System 
 

Google Earth 
 

JA 188 29.2925 -99.623333 TWDB_WIID System 
 

Google Earth 
 

JA 189 29.230556 -99.681111 TWDB_WIID System 920 TWDB_Magellan GPS 
 

JA 190 29.279167 -99.501111 TWDB_WIID System 
 

Google Earth 
 

JA 191 29.296389 -99.620833 TWDB_WIID System 
 

Google Earth 
 

JA 192 29.230556 -99.681111 TWDB_WIID System 920 TWDB_Magellan GPS 
 

JA 193 29.298889 -99.691111 TWDB_WIID System 1007 Google Earth 
 

JA 194 29.317222 -99.6875 TWDB_WIID System 1062 Google Earth 
 

JA 195 29.271667 -99.759722 TWDB_WIID System 995 Google Earth 
 

JA 196 29.288056 -99.762778 TWDB_WIID System 1004 Google Earth 
 

JA 197 29.286944 -99.878889 TWDB_WIID System 1023 Google Earth 
 

JA 198 29.329167 -99.728611 TWDB_WIID System 1057 Google Earth 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 199 29.361944 -99.745556 SWRI 1090 SWRI 
 

JA 200 29.361667 -99.745556 SWRI 1090 SWRI 
 

JA 201 29.36 -99.745833 SWRI 1083 SWRI 
 

JA 202 29.36 -99.745556 SWRI 1087 SWRI 
 

JA 203 29.746944 -99.746944 SWRI 1054 SWRI 
 

JA 204 29.3225 -99.731667 SWRI 1052 SWRI 
 

JA 205 29.369167 -99.750278 SWRI 1120 SWRI 
 

JA 206 29.3325 -99.765833 SWRI 1057 SWRI 
 

JA 207 29.24166 -99.81707 SWRI 882 Static_Elevation SWRI 
 

JA 208 29.23691 -99.82745 SWRI 881 Static_Elevation SWRI 
 

JA 209 29.24579 -99.79076 SWRI 878 Static_Elevation SWRI 
 

JA 210 29.24693 -99.75681 SWRI 869 Static_Elevation SWRI 
 

JA 211 29.2167 -99.75534 SWRI 870 Static_Elevation SWRI 
 

JA 212 29.23925 -99.83805 SWRI 886 Static_Elevation SWRI 
 

JA 213 29.27523599 -99.24337278 
    

JA 214 29.18218338 -99.20614883 USGS 762.1591187 USGS_DEMelev 
 

JA 215 29.19718289 -99.19753756 
 

759.3258667 USGS_DEMelev 
 

JA 216 29.11107464 -99.21892647 
    

JA 217 29.0985763 -99.60338439 USGS 848.1691895 USGS_DEMelev 
 

JA 218 29.11857531 -99.44393462 USGS 720.300354 USGS_DEMelev 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 219 29.21412796 -99.73255518 USGS 939.5228272 USGS_DEMelev 
 

JA 220 29.23301625 -99.74172214 USGS 967.9953003 USGS_DEMelev 
 

JA 221 29.15940738 -99.53949353 USGS 812.8804932 USGS_DEMelev 
 

JA 222 29.33551321 -99.64782995 USGS 1031.518311 USGS_DEMelev 
 

JA 223 29.18412823 -99.38948845 USGS 891.3668213 USGS_DEMelev 
 

JA 224 29.41384424 -99.53032577 USGS 1083.56897 USGS_DEMelev 
 

JA 225 29.30162467 -99.45282391 USGS 920.394165 USGS_DEMelev 
 

JA 226 29.26995877 -99.4361569 USGS 885.5553589 USGS_DEMelev 
 

JA 227 29.2357931 -99.4189341 USGS 823.6846314 USGS_DEMelev 
 

JA 228 29.17357267 -99.2889293 USGS 776.4664917 USGS_DEMelev 
 

JA 229 29.33606888 -99.6947759 USGS 1047.220093 USGS_DEMelev 
 

JA 230 29.29051414 -99.56699427 USGS 943.0649414 USGS_DEMelev 
 

JA 231 29.19385069 -99.63199647 USGS 873.4643555 USGS_DEMelev 
 

JA 232 29.13690825 -99.59060624 USGS 833.0015259 USGS_DEMelev 
 

JA 233 29.13885224 -99.4228228 USGS 798.458252 USGS_DEMelev 
 

JA 234 29.24693 -99.75681 
    

JA 235 29.26583 -99.63639 
 

948 
  

JA 236 29.34222 -99.67389 
 

1045 
  

JA 237 29.36667 -99.63472 
 

1055 
  

JA 238 29.32389 -99.73167 
 

1058 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 239 29.29444 -99.64500 
 

982 
  

JA 240 29.29806 -99.64556 
 

950 
  

JA 241 29.27267 -99.76272 
 

996 
  

JA 242 29.28108 -99.70011 
 

980 
  

JA 243 29.105502 -99.454067 
 

718 
  

JA 244 29.124888 -99.431754 
 

841 
  

JA 245 29.147588 -99.704935 
 

858 
  

JA 246 29.09139294 -99.43367305 
 

701 
  

JA 247 29.12194183 -99.43836332 
 

786 
  

JA 248 29.56509913 -99.64862004 
 

858 
  

JA 249 29.20970914 -99.69676184 
 

948 
  

JA 250 29.24696793 -99.71248234 
 

947.5 
  

JA 251 29.13342159 -99.97511022 
 

875 
  

JA 252 29.12600198 -99.62021939 
 

896 
  

JA 253 29.28762676 -100.0456032 
 

1082 
  

JA 254 29.28039683 -100.1029851 
 

1102 
  

JA 255 29.231802 -99.676199 
 

915 
  

JA 256 29.14680109 -99.48190496 
 

747 
  

JA 257 29.14265124 -99.4803949 
 

745 
  

JA 258 29.14265124 -99.4803949 
 

753 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 259 29.13242145 -99.44093344 
 

777 
  

JA 260 29.13837121 -99.43823336 
 

807 
  

JA 261 29.12990155 -99.44233348 
 

777 
  

JA 262 29.15012104 -99.50201568 
 

795 
  

JA 263 29.10271283 -99.57396791 
 

890.03 
  

JA 264 29.09663305 -99.58221816 
 

886.3 
  

JA 265 29.10246263 -99.45419385 
 

718 
  

JA 266 29.38262376 -99.46786398 
 

801 
  

JA 267 29.10274282 -99.5926985 
 

847.4 
  

JA 268 29.200198 -99.76886 
 

984.4 
  

JA 269 29.1032128 -99.60489889 
 

880 
  

JA 270 29.10274282 -99.5926985 
 

881 
  

JA 271 29.23647752 -99.41936301 
 

827 
  

JA 272 29.13230168 -99.49031524 
 

758 
  

JA 273 29.12628187 -99.48294496 
 

732 
  

JA 274 29.1237117 -99.42659289 
 

823 
  

JA 275 29.11412202 -99.41921259 
 

769 
  

JA 276 29.11204228 -99.45555393 
 

752 
  

JA 277 29.10580254 -99.46022409 
 

960 
  

JA 278 29.09119305 -99.8630868 
 

806.53 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 279 29.12339207 -99.62248946 
 

823.47 
  

JA 280 29.098033 -99.57648798 
 

894.85 
  

JA 281 
   

746 
  

JA 282 29.13147141 -99.4261129 
 

762 
  

JA 283 29.11566202 -99.43140304 
 

807 
  

JA 284 29.10992257 -99.49670545 
 

754 
  

JA 285 29.09988291 -99.48870514 
 

572 
  

JA 286 29.09515298 -99.46812436 
 

723 
  

JA 287 29.125282 -99.53005654 
 

781 
  

JA 288 29.258333 -99.648611 
    

JA 289 29.336111 -99.6475 Garmin Handheld GPS 1034 Geophysical Log 
 

JA 290 29.266389 -99.648889 
    

JA 291 29.328944 -99.691278 
    

JA 292 29.237778 -99.7625 
    

JA 293 29.508889 -99.718694 Garmin 1279.53 Google Earth 
 

JA 294 29.329831 -99.690752 
 

1037.2 874.02 
 

JA 295 29.3387 -99.74927 
 

963.627918 Leica Survey Grade 
 

JA 296 29.368608 -99.746844 
 

1109 1011.7 
 

JA 297 29.379184 -99.744839 
 

1134.5 1017.9 
 

JA 298 29.204355 -99.774753 
 

888.408 864.41 
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JA ID Latitude DD Longitude DD Coordinate Source Elevation Elevation Source Aquifer Code 

JA 299 29.232692 -99.790704 
 

917.911 869.61 
 

JA 300 29.242318 -99.8155 
 

942.272 891.07 
 

JA 301 29.36378 -99.70422 Leica Survey Grade 1021.449409 Leica Survey Grade 
 

JA 302 29.211446 -99.769312 
 

922.867 885.42 
 

JA 303 29.199918 -99.833933 
 

912.817 860.92 
 

JA 304 29.202115 -99.682768 
 

886.909 837.51 
 

JA 305 29.198696 -99.671813 
 

873.28 824.88 
 

JA 306 29.380184 -99.622867 
 

1052.299 788.3 
 

JA 307 29.32422222 -99.73097222 Garmin 1059 Garmin 218EDRDA 

JA 308 29.36363 -99.7059 Leica Survey Grade 1028.402789 Leica Survey Grade 
 

JA 309 29.27033 -99.76647 Leica Survey Grade 925.5119063 Leica Survey Grade 
 

JA 310 29.35688 -99.63496 Leica Survey Grade 971.0779838 Leica Survey Grade 
 

JA 311 29.34013 -99.74011 Leica Survey Grade 985.983693 Leica Survey Grade 
 

JA 312 29.32883333 -99.69141667 Garmin 1041 Garmin 
 

JA 313 29.33576 -99.75476 Leica Survey Grade 969.039762 Leica Survey Grade 218EDRDA 

JA 314 29.33529 -99.78434 Leica Survey Grade 1001.400098 Leica Survey Grade 
 

JA 315 29.32731 -99.76767 Leica Survey Grade 949.0883506 Leica Survey Grade 
 

JA 316 29.32444 -99.74705 Leica Survey Grade 978.7864486 Leica Survey Grade 
 

JA 317 29.321306 -99.699528 Garmin 1026.9 Google Earth 
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Appendix C:  Well Inventory driller, depth, and construction 

[Appendix C includes previous abbreviations and new ones as follows:  Date Drilled – MM/DD/YYYY format, 0’s act as place 

holders for unknown exact dates.  Read date from right to left for easiest decrypting.] 

JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 001 9011973 James (Ted) A. 430 TWDB 
   

JA 002 1101973 Ted Letsilnger 560 Driller's Log Air Rotary Open Hole Steel 

JA 004 Repeated entry. Deleted.       

JA 003 1001974 Brooks Drilling 550 Driller's Log Cable-tool Open Hole Steel 

JA 005 1001968 Pepper Irrigation 673 TWDB Cable-tool Open Hole Steel 

JA 006 9001956 Tex King 389 TWDB 
   

JA 007 1964 J. R. Johnson 480 Driller's Log Hydraulic Rotary 
 

Steel 

JA 009 4151985 Sprugeon Drilling Co. 270 Driller's Log Cable-tool Open Hole Steel 

JA 010 4251972 Sprugeon Drilling Co. 280 Driller's Log Cable-tool Open Hole Steel 

JA 011 7001952 Sprugeon Drilling Co. 525 TWDB 
 

Open Hole 
 

JA 012 1955 N_A 518 TWDB Hydraulic Rotary 
  

JA 013 8081973 James (Ted) A. 510 Driller's Log Air Rotary 
  

JA 014 5001992 
L & J Construction and 

Properties Inc. 
1080 Driller's Log Air Rotary Open Hole Steel 

JA 015 8081993 Cenizo Drilling 620 TWDB 
  

Steel 

JA 016 6211973 TWDB 721 Geophysical Log Hydraulic Rotary Open Hole Steel 

JA 017 12101998 TWDB 1500 Geophysical Log Hydraulic Rotary Open Hole Steel 

JA 018 5001962 Gulf Oil Corporation 7596 Geophysical Log 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 019 1966 A.C. Sanderlin 758 Geophysical Log Cable-tool Open Hole Steel 

JA 020 6001974 A.C. Sanderlin 833 Edwards Aquifer Authority 
 

Open Hole Steel 

JA 021 9001966 Pepper Irrigation Co 1262 Driller's Log Cable-tool Open Hole Steel 

JA 022 4001957 A. Smith 140 TWDB 
   

JA 023 3081965 J. Roberts 1161 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 024 00001953 J. Roberts 1211 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 025 10001987 Davenport Drilling 1500 Driller's Log Cable-tool Open Hole Steel 

JA 026 1171979 Johnson Brothers 1402 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 027 2001968 Pepper Irrigation Co 1248 Driller's Log Cable-tool Open Hole Steel 

JA 028 08301979 Letsinger 630 TWDB 
   

JA 029 11141978 R. G. Wilson 62 TWDB 
   

JA 030 00001966 A. C. Sanderlin 1000 Driller's Log Cable-tool Open Hole Steel 

JA 031 12211985 Davenport Well 913 Driller's Log Cable-tool Open Hole Steel 

JA 032 03241984 Stricker Drilling 982 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 033 11261969 Box Drilling Co. 943 Driller's Log Cable-tool Open Hole Steel 

JA 034 10221977 Johnson Drilling 1322 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 035 11211964 J. R. Johnson 1476 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 036 06141986 Stricker Drilling 1196 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 037 05311966 A. C. Sanderlin 561 Driller's Log Cable-tool Open Hole Steel 

JA 038 05001968 Brooks Drilling 630 Driller's Log Cable-tool Open Hole Steel 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 039 07001970 A. C. Sanderlin 750 Driller's Log Cable-tool Open Hole Steel 

JA 040 01241986 Davenport Well 915 Driller's Log Cable-tool Open Hole Steel 

JA 041 03111999 Wilson Drilling 402 Driller's Log Air Percussion 
Explained in 

Remarks 
Steel 

JA 042 00001967 A. C. Sanderlin 850 Driller's Log Cable-tool Open Hole Steel 

JA 043 00001960 Gorman Drilling 2575 Owner Hydraulic Rotary 
Perforated or 

Slotted 
Steel 

JA 044 04041966 Johnson Drilling & 1556 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 045 10001973 Henry Brooks 1400 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 046 03151999 TWDB 1560 Geophysical Log Hydraulic Rotary Open Hole Steel 

JA 047 08091978 Johnson Brothers 2465 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 048 12001972 King Drilling Co. 1650 Driller's Log Cable-Tool Open Hole Steel 

JA 049 04001967 Pepper Irrigation 1706 Driller's Log Cable-Tool Open Hole Steel 

JA 050 04171999 TWDB 1400 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 051 05001968 KTM Drilling Co. 1317 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 052 05001968 KTM Drilling Co. 1299 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 053 11151971 Bolin Well Service 1550 Driller's Log 
   

JA 054 00001974 A.C. Sanderlin 
  

Cable-Tool Open Hole Steel 

JA 055 00001968 Ted Letsinger 1050 Driller's Log Cable-tool Open Hole Steel 

JA 056 01001974 Texas Water 694 
Another Government 

Agency 
Hydraulic Rotary Open Hole Steel 

JA 057 12001970 A.C. Sanderlin 987 Driller's Log Cable-Tool Open Hole Steel 

JA 058 04181974 J.R. Johnson 1408 Driller's Log 
 

Open Hole Steel 



 

 

 

1
2
9
 

JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 059 03251963 Gulf Oil 2230 Driller's Log 
   

JA 060 
 

Pennington 700 TWDB 
   

JA 061 11001981 A.C. Sanderlin 750 Driller's Log Cable-tool Open Hole Steel 

JA 062 08001973 Henry Brooks 1302 TWDB Hydraulic Rotary Open Hole Steel 

JA 063 03101978 A. C. Sanderlin 698 TWDB Cable-tool Open Hole Steel 

JA 064 7001952 Lynn Spurgeon 525 TWDB 
 

Open Hole 
 

JA 065 03001978 Letsinger & Sons 630 Geophysical Log 
 

Open Hole 
 

JA 066 01001968 K.T.M. Drilling Co. 
    

Steel 

JA 067 06151973 James (Ted) A. 585 Driller's Log Air Rotary Open Hole 
 

JA 068 02001956 Spurgeon Drilling 800 TWDB 
   

JA 069 00001952 U. Serber 560 Geophysical Log Hydraulic Rotary Open Hole 
 

JA 070 07011973 Letsinger & Sons 580 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 071 11001974 Wright Drilling Co. 430 Driller's Log Air Rotary Open Hole Steel 

JA 072 05001962 J. Roberts 2309 Driller's Log 
 

Open Hole Steel 

JA 073 00001966 Billie Wright Taylor 1280 TWDB Hydraulic Rotary Open Hole Steel 

JA 074 08201970 Sonora Drilling Co. 391 Driller's Log Cable-Tool Open Hole Steel 

JA 075 04221980 Sonora Drilling Co. 750 Driller's Log Air Rotary Open Hole Steel 

JA 076 11001963 J. R. Johnson 1384 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 077 10001965 T & H Drilling Co. 1510 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 078 04001967 Pepper Irrigation 1706 Driller's Log Cable-Tool Open Hole Steel 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 079 07071965 J. R. Johnson 1685 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 080 05071967 Johnson & Johnson 1675 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 081 00001966 Bill Taylor 1655 TWDB Hydraulic Rotary Open Hole Steel 

JA 082 09001967 KTM Drilling Co. 1685 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 083 00001964 J. Roberts 1794 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 084 12001972 King Drilling Co. 1650 Driller's Log Cable-Tool Open Hole Steel 

JA 085 06091986 Roy L. Stricker 1200 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 086 00001965 A. C. Sanderlin 916 Driller's Log Cable-tool Open Hole Steel 

JA 087 07001969 A. C. Sanderlin 1072 Driller's Log Cable-tool Open Hole Steel 

JA 088 08001967 K T M Drilling, Inc. 1010 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 089 08001967 K T M Drilling, Inc. 1305 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 090 03121969 Johnson & Johnson 1246 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 091 05001967 A. C. Sanderlin 659 
Another Government 

Agency 
Cable-tool Open Hole Steel 

JA 092 08001966 A. C. Sanderlin 675 Driller's Log Cable-tool Open Hole Steel 

JA 093 06231969 Box Drilling Co. 880 Driller's Log Cable-tool Open Hole Steel 

JA 094 12001971 A. C. Sanderlin 815 Driller's Log Cable-tool Open Hole Steel 

JA 095 00001905 Tyler 516 TWDB 
   

JA 096 07051966 A. C. Sanderlin 1128 Driller's Log Cable-tool Open Hole Steel 

JA 097 07291977 J.R. Johnson 1200 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 098 10251979 Johnson Brothers 1398 Driller's Log Hydraulic Rotary Open Hole Steel 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 099 09221982 Haskin Pump service, 1040 Driller's Log Air Rotary Open Hole Steel 

JA 100 00001968 A. C. Sanderlin 862 Driller's Log Cable-tool Open Hole Steel 

JA 101 07001969 A. C. Sanderlin 1081 Driller's Log Cable-tool Open Hole Steel 

JA 102 08101978 Johnson Bros. Well 1165 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 103 03261985 Spurgeon Drilling 100 Driller's Log Air Rotary 
Perforated or 

Slotted 

PVC, 

Fiberglass, 

other 

Plastic 
JA 104 04001965 J. W. Roberts 1380 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 105 00001964 J. Roberts 1500 TWDB_Owner 
   

JA 106 05141971 King Drilling Co. 888 Driller's Log Cable-tool Open Hole Steel 

JA 107 08151962 Bob Johnson 1376 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 108 08001967 K.T.M. Drilling, Inc 640 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 109 08251976 J.A. Letsinger 730 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 110 08001967 K.T.M. Drilling Co. 740 Geophysical Log Hydraulic Rotary Open Hole Steel 

JA 111 08001957 R. V. Raney 721 Driller's Log 
 

Open Hole Steel 

JA 112 02001969 Henry Brooks 700 Driller's Log Cable-tool Open Hole Steel 

JA 113 00001967 A.C. Sanderlin 730 Driller's Log Cable-Tool Open Hole Steel 

JA 114 05001976 A. C. Sanderlin 784 Geophysical Log Cable-tool Open Hole Steel 

JA 115 01001986 Davenport Drilling 834 Driller's Log Cable-tool Open Hole Steel 

JA 116 10001978 A.C. Sanderlin 754 Driller's Log Cable-tool Open Hole Steel 

JA 117 07001952 Lynn Spurgeon 525 TWDB 
 

Open Hole 
 

JA 118 00001975 J.R. Johnson 2861 Driller's Log Hydraulic Rotary Open Hole Steel 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 119 01221980 Johnson Brothers 1640 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 120 09131984 Johnson Brothers 1785 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 121 01001967 Pepper Irrigation Co 1248 Driller's Log Cable-tool Open Hole Steel 

JA 122 00001968 A. C. Sanderlin 1595 Driller's Log Cable-tool Open Hole Steel 

JA 123 07131979 Johnson Brothers 1815 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 124 07301983 Stricker Drilling 1170 Driller's Log Hydraulic Rotary Open Hole Concrete 

JA 125 01291982 W. R. Kellner 100 TWDB 
   

JA 126 02171981 Doyle Ely 120 TWDB 
   

JA 127 02001967 Pepper Irrigation Co 1365 Driller's Log Cable-tool Open Hole Steel 

JA 128 01001967 Pepper Irrigation Co 1252 Driller's Log Cable-tool Open Hole Steel 

JA 129 01101972 Crawford Gordon 1600 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 131 08101984 Johnson Brothers 1410 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 132 05001979 Johnson Brothers 1428 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 133 01011980 Johnson Brothers 1369 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 134 12301968 Spurgeon Drilling Co 625 Driller's Log Cable-tool Open Hole Steel 

JA 135 07011982 Wilson Drilling Co. 478 Driller's Log Cable-tool Open Hole Steel 

JA 136 03001955 Johnny Roberts 1313 TWDB_Owner Hydraulic Rotary Open Hole Steel 

JA 137 03021972 Brooks Drilling Co. 997 Driller's Log Cable-Tool Open Hole Steel 

JA 138 00001965 Pan American Oil Co 2550 Geophysical Log Hydraulic Rotary 
Perforated or 

Slotted 
Steel 

JA 139 00001987 T. R. Hutcherson 434 Driller's Log 
 

Open Hole Steel 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 140 03192003 Spurgeon Drilling Co 340 Driller's Log Air Rotary Open Hole 
PVC, 

Fiberglass, 

other 

Plastic 
JA 141 10011967 King Drilling Co. 756 Driller's Log Cable-tool Open Hole Steel 

JA 142 10011969 Spurgeon Drilling 425 Driller's Log Cable-tool Open Hole Steel 

JA 143 1961 Garmon Brothers 400 Driller's Log Cable-tool Open Hole Steel 

JA 144 
  

287 TWDB Dug Open Hole Steel 

JA 145 9001989 Davenport Drilling 902 TWDB_Owner Air Rotary open Hole Steel 

JA 146 09001989 Davenport 882 TWDB Air Rotary Open Hole Steel 

JA 147 06001985 Meadows Drilling. 940 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 148 11151965 King Drilling Co. 1298 Driller's Log Cable-tool Open Hole Steel 

JA 149 05011977 Brooks Drilling 713 Driller's Log Cable-tool Open Hole Steel 

JA 150 07101971 Brooks Drilling 1685 Driller's Log Cable-tool Open Hole Steel 

JA 151 07301976 J.R. Johnson 1406 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 152 03001968 J.R. Johnson 1000 Driller's Log Hydraulic Rotary Open Hole Steel 

JA 153 00001955 J.E. Hillier 1999 Geophysical Log 
 

Open Hole Steel 

JA 154 
 

Stewart Shepherd 480 Driller's Log Air Rotary Straight wall 
 

JA 155 12192008 
James Forehand / Kevin 

Kerry 
985 Driller's Log Mud Rotary Open Hole 

 

JA 156 
 

Cary Spurgeon 220 Driller's Log Air Hammer Straight wall 
 

JA 157 9302004 Randy Roberts 380 Driller's Log Air Rotary 
  

JA 158 1182006 Cary Spurgeon 320 Driller's Log Air Hammer Straight wall 
 

JA 159 332006 Cary Spurgeon 400 Driller's Log Air Hammer Straight wall 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 160 2272008 Cary Spurgeon 350 Driller's Log Air Hammer Straight wall 
 

JA 161 8122009 Cary Spurgeon 400 Driller's Log Air Hammer Straight wall 
 

JA 162 3272009 John Shepherd 80 Driller's Log Air Hammer Straight wall 
 

JA 163 2232004 Stewart Shepherd 60 Driller's Log Mud Rotary 
  

JA 164 7232007 Clifton E. Wilson 1350 Driller's Log Air Rotary Open Hole 
 

JA 165 2102007 Larry Dennis 1650 Driller's Log Mud Rotary Open Hole 
 

JA 166 5252003 Robert G. Wilson 120 Driller's Log Air Rotary Open Hole 
 

JA 167 3232011 Cary Spurgeon 460 Driller's Log Air Hammer Straight wall 
 

JA 168 9262002 Cary Spurgeon 300 Driller's Log Air Rotary Straight wall 
 

JA 169 3112003 Cary Spurgeon 300 Driller's Log Air Rotary Straight wall 
 

JA 170 1282002 Cary Spurgeon 440 Driller's Log Air Rotary Straight wall 
 

JA 171 5202009 Cary Spurgeon 300 Driller's Log Air Hammer Straight wall 
 

JA 172 7242001 Cary Spurgeon 290 Driller's Log Air Rotary Straight wall 
 

JA 173 5152009 Cary Spurgeon 300 Driller's Log Air Rotary Open Hole 
 

JA 174 752001 Cary Spurgeon 420 Driller's Log Air Rotary Open Hole 
 

JA 175 1262002 Cary Spurgeon 240 Driller's Log Air Rotary Straight wall 
 

JA 176 6172008 Cary Spurgeon 220 Driller's Log Air Hammer Straight wall 
 

JA 177 2292008 Cary Spurgeon 200 Driller's Log Air Hammer Straight wall 
 

JA 178 972005 Cary Spurgeon 160 Driller's Log Air Hammer Straight wall 
 

JA 179 1202009 Cary Spurgeon 260 Driller's Log Air Hammer Straight wall 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 180 5252005 Cary Spurgeon 240 Driller's Log Air Hammer Straight wall 
 

JA 181 1182006 Cary Spurgeon 260 Driller's Log Air Hammer Straight wall 
 

JA 182 10222008 Cary Spurgeon 115 Driller's Log Air Hammer Straight wall 
 

JA 183 3102011 Jimmy Duane Wilson Jr. 200 Driller's Log Air Hammer Straight wall 
 

JA 184 5172008 Clifton E. Wilson 740 Driller's Log Air Rotary Open Hole 
 

JA 185 5152008 Clifton E. Wilson 140 Driller's Log Air Rotary Open Hole 
 

JA 186 8122006 Cary Spurgeon 220 Driller's Log Air Hammer Straight wall 
 

JA 187 152011 Cary Spurgeon 243 Driller's Log Air Hammer Straight wall 
 

JA 188 472011 Cary Spurgeon 200 Driller's Log Air Hammer Straight wall 
 

JA 189 3172008 Cary Spurgeon 200 Driller's Log Air Hammer Straight wall 
 

JA 190 482010 Thomas Wright 1480 Driller's Log Air Rotary Open Hole 
 

JA 191 452011 Cary Spurgeon 180 Driller's Log Air Hammer Straight wall 
 

JA 192 3172008 Cary Spurgeon 200 Driller's Log Air Hammer Straight wall 
 

JA 193 7272012 Clifton E. Wilson 660 Driller's Log Air Hammer 
  

JA 194 822006 Adam Cruz 460 Driller's Log Air Rotary Straight wall 
 

JA 195 8162012 Donnie Davenport 460 Driller's Log Air Rotary Open Hole 
 

JA 196 5242008 Sprugeon Drilling Co. 295 Driller's Log Air Hammer Straight wall 
 

JA 197 682011 Sprugeon Drilling Co. 300 Driller's Log Air Hammer Straight wall 
 

JA 198 382002 Cary Spurgeon 500 Driller's Log Air Rotary Open Hole 
 

JA 199 
       



 

 

 

1
3
6
 

JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 200 
       

JA 201 
       

JA 202 
       

JA 203 
       

JA 204 
       

JA 205 
       

JA 206 
       

JA 207 
       

JA 208 
       

JA 209 
       

JA 210 
       

JA 211 
       

JA 212 
       

JA 213 
 

USGS 
     

JA 214 
 

USGS 
 

Geophysical Log 
   

JA 215 
       

JA 216 
 

EAA 
     

JA 217 
 

W.J.Steeger 
 

Geophysical Log 
   

JA 218 
 

Gorman Drilling 
     

JA 219 
 

Pan American Pet. 
 

Geophysical Log 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 220 
 

Shell 
 

Geophysical Log 
   

JA 221 
 

USGS 
 

Geophysical Log 
   

JA 222 
   

Geophysical Log 
   

JA 223 
 

Edward J. Ford 
 

Geophysical Log 
   

JA 224 
   

Geophysical Log 
   

JA 225 
 

EAA 
 

Geophysical Log 
   

JA 226 
 

S.G.Nelson 
 

Geophysical Log 
   

JA 227 
 

Bennet 
 

Geophysical Log 
   

JA 228 
 

Ginter & Warren 
 

Geophysical Log 
   

JA 229 
   

Geophysical Log 
   

JA 230 
   

Geophysical Log 
   

JA 231 
 

Douglas Downing 
 

Geophysical Log 
   

JA 232 
 

International Nuc. 
 

Geophysical Log 
   

JA 233 
 

Gorman Drilling 
 

Geophysical Log 
   

JA 234 
       

JA 235 
 

EAA 
     

JA 236 
 

EAA 
     

JA 237 
 

EAA 
     

JA 238 
 

EAA 
     

JA 239 
 

EAA 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 240 
 

EAA 
     

JA 241 
 

EAA 
     

JA 242 
 

EAA 
     

JA 243 
 

TWDB 
     

JA 244 
 

TWDB 
     

JA 245 
 

TWDB 
     

JA 246 
 

TWDB 
     

JA 247 
 

TWDB 
     

JA 248 
 

TWDB 
     

JA 249 
 

TWDB 
     

JA 250 
 

TWDB 
     

JA 251 
 

TWDB 
     

JA 252 
 

TWDB 
     

JA 253 
 

TWDB 
     

JA 254 
 

TWDB 
     

JA 255 
 

TWDB 
     

JA 256 
 

TWDB 
     

JA 257 
 

TWDB 
     

JA 258 
 

TWDB 
     

JA 259 
 

TWDB 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 260 
 

TWDB 
     

JA 261 
 

TWDB 
     

JA 262 
 

TWDB 
     

JA 263 
 

TWDB 
     

JA 264 
 

TWDB 1116 
    

JA 265 
 

TWDB 5627 
    

JA 266 
 

TWDB 4560 
    

JA 267 
 

TWDB 805 
    

JA 268 
 

TWDB 3015 
    

JA 269 
 

TWDB 4015 
    

JA 270 
 

TWDB 1380 
    

JA 271 
 

TWDB 4505 
    

JA 272 
 

TWDB 1104 
    

JA 273 
 

TWDB 1200 
    

JA 274 
 

TWDB 2430 
    

JA 275 
 

TWDB 2175 
    

JA 276 
 

TWDB 1300 
    

JA 277 
 

TWDB 1127 
    

JA 278 
 

TWDB 2610 
    

JA 279 
 

TWDB 1366 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 280 
 

TWDB 1153 
    

JA 281 
 

TWDB 720 
    

JA 282 
 

TWDB 2405 
    

JA 283 
 

TWDB 1324 
    

JA 284 
 

TWDB 1495 
    

JA 285 
 

TWDB 1200 
    

JA 286 
 

TWDB 1510 
    

JA 287 
 

TWDB 4890 
    

JA 288 
       

JA 289 
       

JA 290 
       

JA 291 
       

JA 292 
       

JA 293 
       

JA 294 
       

JA 295 
       

JA 296 
       

JA 297 
       

JA 298 
       

JA 299 
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JA_ID Date Drilled Driller 
Well Depth 

(feet) 
Source Of Depth Construct Method Completion 

Casing 

Material 

JA 300 
       

JA 301 
 

Cary Spurgeon 
     

JA 302 
       

JA 303 
       

JA 304 
       

JA 305 
       

JA 306 
       

JA 307 3/24/2003 Cary Spurgeon 340 Driller's Log Air Rotary Straight Wall 
 

JA 308 
 

Cary Spurgeon 
     

JA 309 
       

JA 310 
       

JA 311 
       

JA 312 
       

JA 313 
       

JA 314 
       

JA 315 
       

JA 316 
       

JA 317 
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Appendix D: Well Inventory type, owner contact, and comments 

[Appendix D includes previous abbreviations and new ones as follows:  WL – Water Level; QW – Water Quality;  

JA ID Well Type Owner Contact Comments Source 

JA 001 Irrigation 
 

WL and QW tables in this study 
EAA_TWDB WIID, 

http://wiid.twdb.state.tx.us/ 

JA 002 Irrigation 
 

WL and QW tables in this study 
EAA_TWDB WIID, 

http://wiid.twdb.state.tx.us/ 

JA 004 
Repeated entry. 

Deleted. 
   

JA 003 Irrigation 
  

EAA_TWDB WIID, 

http://wiid.twdb.state.tx.us/ 

JA 005 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 006 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 007 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 009 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 010 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 011 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 012 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 013 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 014 Public Supply 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 015 Observation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 016 Observation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 017 Observation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 018 Oil or Gas 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 019 Irrigation 
  

EAA_TWDB WIID, 

http://wiid.twdb.state.tx.us/ 
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JA ID Well Type Owner Contact Comments Source 

JA 020 
Domestic 

Irrigation  
WL and QW tables in this study 

EAA_TWDB WIID, 

http://wiid.twdb.state.tx.us/ 

JA 021 Irrigation TWDB 
 

EAA_TWDB WIID, 

http://wiid.twdb.state.tx.us/ 

JA 022 Observation A. Smith 
 

EAA_TWDB WIID, 

http://wiid.twdb.state.tx.us/ 

JA 023 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 024 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 025 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 026 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 027 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 028 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 029 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 030 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 031 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 032 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 033 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 034 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 035 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 036 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 037 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 038 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 039 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ : 

Synoptic Water Level Study_Table 3 
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JA ID Well Type Owner Contact Comments Source 

JA 040 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 041 Domestic 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 042 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 043 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 044 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 045 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 046 Observation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 047 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 048 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 049 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 050 Observation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 051 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 052 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 053 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 054 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 055 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 056 Observation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 057 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 058 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 059 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 
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JA ID Well Type Owner Contact Comments Source 

JA 060 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 061 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 062 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 063 Public Supply 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 064 Irrigation 
(830) 591-3351_P.O. Box 1418, Uvalde, 

TX, 78802-1418  
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 065 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 066 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 067 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 068 Oil or Gas 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 069 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 070 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 071 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 072 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 073 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 074 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 075 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 076 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 077 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 078 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 079 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 
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JA ID Well Type Owner Contact Comments Source 

JA 080 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 081 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 082 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 083 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 084 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 085 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 086 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 087 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 088 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 089 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 090 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 091 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 092 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 093 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 094 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 095 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 096 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 097 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 098 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 099 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 
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JA ID Well Type Owner Contact Comments Source 

JA 100 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 101 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 102 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 103 Domestic 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 104 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 105 
Plugged 

Destroyed   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 106 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 107 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 108 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 109 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 110 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 111 Stock 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 112 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 113 Domestic_Stock 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 114 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 115 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 116 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 117 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 118 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 119 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 
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JA ID Well Type Owner Contact Comments Source 

JA 120 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 121 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 122 Irrigation_Stock 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 123 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 124 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 125 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 126 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 127 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 128 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 129 Domestic 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 131 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 132 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 133 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 134 
Withdrawal of 

Water  
Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 135 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 136 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 137 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 138 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 139 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 140 Domestic 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 
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JA ID Well Type Owner Contact Comments Source 

JA 141 
Withdrawal of 

Water   
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 142 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 143 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 144 Observation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 145 Observation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 146 Observation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 147 Pump Supply 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 148 Irrigation 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 149 Domestic Stock 
  

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 150 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 151 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 152 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 153 Irrigation 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 154 Domestic 
 

Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 155 Public Supply PO BOX 365  D; Hanis, TX 78850 Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 156 Domestic PO Box 1688 Uvalde, TX 78802 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 157 Domestic 8144 F M 1796 D' Hanis, TX 78850 Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 158 Domestic 8485 C.R. 311 D' Hanis, TX 78850 Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 159 Domestic 8485 C.R. 311 D' Hanis, TX 78850 Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 160 Domestic 
13703 TURTLE CROSS San Antonio, TX 

78253 
Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 
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JA ID Well Type Owner Contact Comments Source 

JA 161 Domestic 103 NOPAL COVE Buda, TX 78610 Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 162 Stock 
13023 Country Ledge San Antonio, TX 

78216 
Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 163 Irrigation PO BOX 83 Hondo, TX 78861 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 164 Domestic 2203 Cr 520 D' Hanis, TX 78850 Medina County TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 165 Irrigation 
500 Dallas Street Ste 2920 Houston, TX 

77002  
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 166 Irrigation 112 Cottonwood Uvalde , Tx  78801 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 167 Domestic 
6 LEONA HEIGHTS DR. Uvalde, TX 

78801  
TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 168 Domestic P.O. BOX 5501 Uvalde, TX 78802 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 169 Domestic P.O.BOX 46 Uvalde, TX 78802 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 170 Domestic P.O.BOX 46 Uvalde, TX 78802 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 171 Stock P.O. BOX 169 Uvalde, TX 78802 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 172 Domestic 801 CHERRY ST UVALDE , TX  78801 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 173 Stock P.O. BOX 1905 Uvalde, TX 78802 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 174 Domestic 801 CHERRY ST UVALDE , TX  78801 
George Herndon died & daughter 

Linda Lively Herndon now owns 

well. 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 175 Domestic 801 CHERRY ST UVALDE , TX  78801 
George Herndon died & daughter 

Linda Lively Herndon now owns 

well. 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 176 Stock P.O. BOX 308 SABINAL , TX  78881 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 177 Domestic P.O. BOX 805 SABINAL , TX  78881 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 178 Stock P.O. BOX 1164 SABINAL , TX  78881 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 179 Stock 5730 F.M. 1023 UVALDE , TX  78801 
 

TWDB WIID, http://wiid.twdb.state.tx.us/ 

JA 180 Domestic 
2612 GARNER FIELD RD. UVALDE , 

TX  78801  
TWDB WIID, http://wiid.twdb.state.tx.us/ 
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JA ID Well Type Owner Contact Comments Source 

JA 181 Domestic 
2670 GARNER FIELD RD. UVALDE , 

TX  7880   

JA 182 Stock 
2663 GARNER FIELD RD. UVALDE , 

TX  78801   

JA 183 Domestic P.O. Box 1576 Uvalde , TX  78802 
  

JA 184 Stock P.O.Box 986 Uvalde , TX  78802 
  

JA 185 Stock P.O.Box 986 Uvalde , TX  78802 
  

JA 186 Domestic P.O. BOX 1589 UVALDE , TX  78802 
  

JA 187 Domestic P.O. BOX1629 UVALDE , TX  78802 
  

JA 188 Stock 12179 HWY 90 E. KNIPPA , TX  78870 
  

JA 189 Stock 91 GARDINER ST. DARIEN , CT  06820 
  

JA 190 Irrigation 18325 FM 471 S NATALIA , TX  78059 
  

JA 191 Domestic 12179 HWY 90 E. KNIPPA , TX  78870 
  

JA 192 Stock 91 GARDINER ST. DARIEN , CT  06820 
  

JA 193 Domestic 
551 Link Rd.,STE C League City , TX  

77573   

JA 194 Domestic P.O. Box 337 Hondo , TX  78661 
  

JA 195 Irrigation 5180 HWY 83 North Uvalde , TX  78801 
  

JA 196 Domestic 
6 LEONA HEIGHTS DR. Uvalde, TX 

78801   

JA 197 Stock 133 C.R. 404 UVALDE , TX  78801 
  

JA 198 Domestic P. O. BOX 46 UVALDE , TX  78801 
  

JA 199 
  

Wells used to define the Knippa 

Gap (Hydrology of the Uvalde 

Pool_Green, 2010) 

SWRI 

JA 200 
  

Wells used to define the Knippa 

Gap (Hydrology of the Uvalde 

Pool_Green, 2010) 

SWRI 
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JA ID Well Type Owner Contact Comments Source 

JA 201 
  

Wells used to define the Knippa 

Gap (Hydrology of the Uvalde 

Pool_Green, 2010) 

SWRI 

JA 202 
  

Wells used to define the Knippa 

Gap (Hydrology of the Uvalde 

Pool_Green, 2010) 

SWRI 

JA 203 
  

Wells used to define the Knippa 

Gap (Hydrology of the Uvalde 

Pool_Green, 2010) 

SWRI 

JA 204 
  

Wells used to define the Knippa 

Gap (Hydrology of the Uvalde 

Pool_Green, 2010) 

SWRI 

JA 205 
  

Wells used to define the Knippa 

Gap (Hydrology of the Uvalde 

Pool_Green, 2010) 

SWRI 

JA 206 
  

Wells used to define the Knippa 

Gap (Hydrology of the Uvalde 

Pool_Green, 2010) 

SWRI 

JA 207 
   

SWRI 

JA 208 
   

SWRI 

JA 209 
   

SWRI 

JA 210 
   

SWRI 

JA 211 
   

SWRI 

JA 212 
   

SWRI 

JA 213 
   

SWRI 

JA 214 
   

USGS 

JA 215 
   

EAA 

JA 216 
   

USGS 

JA 217 
   

USGS 

JA 218 
   

USGS 

JA 219 
   

USGS 

JA 220 
   

USGS 
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JA ID Well Type Owner Contact Comments Source 

JA 221 
   

USGS 

JA 222 
   

USGS 

JA 223 
   

USGS 

JA 224 
   

USGS_EAA 

JA 225 
   

USGS_EAA 

JA 226 
   

USGS 

JA 227 
   

USGS 

JA 228 
   

USGS 

JA 229 
   

USGS_EAA 

JA 230 
   

USGS_EAA 

JA 231 
   

USGS_EAA 

JA 232 
   

USGS 

JA 233 
   

USGS 

JA 234 
   

USGS 

JA 235 Residential 
  

USGS 

JA 236 
   

USGS 

JA 237 Irrigation 
  

USGS 

JA 238 
   

USGS 

JA 239 
   

USGS 

JA 240 
   

USGS 
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JA ID Well Type Owner Contact Comments Source 

JA 241 
   

USGS 

JA 242 Monitoring 
  

USGS 

JA 243 Oil or Gas 
  

USGS 

JA 244 Oil or Gas 
  

USGS 

JA 245 Oil or Gas 
   

JA 246 Oil or Gas 
   

JA 247 Oil or Gas 
   

JA 248 Oil or Gas 
   

JA 249 Oil or Gas 
   

JA 250 Oil or Gas 
   

JA 251 Oil or Gas 
   

JA 252 Oil or Gas 
   

JA 253 Oil or Gas 
   

JA 254 Oil or Gas 
   

JA 255 Oil or Gas 
   

JA 256 Oil or Gas 
   

JA 257 Oil or Gas 
   

JA 258 Oil or Gas 
   

JA 259 Oil or Gas 
   

JA 260 Oil or Gas 
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JA ID Well Type Owner Contact Comments Source 

JA 261 Oil or Gas 
   

JA 262 Oil or Gas 
   

JA 263 Oil or Gas 
   

JA 264 Oil or Gas 
   

JA 265 Oil or Gas 
   

JA 266 Oil or Gas 
   

JA 267 Oil or Gas 
   

JA 268 Oil or Gas 
   

JA 269 Oil or Gas 
   

JA 270 Oil or Gas 
   

JA 271 Oil or Gas 
   

JA 272 Oil or Gas 
   

JA 273 Oil or Gas 
   

JA 274 Oil or Gas 
   

JA 275 Oil or Gas 
   

JA 276 Oil or Gas 
   

JA 277 Oil or Gas 
   

JA 278 Oil or Gas 
   

JA 279 Oil or Gas 
   

JA 280 Oil or Gas 
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JA ID Well Type Owner Contact Comments Source 

JA 281 Oil or Gas 
   

JA 282 Oil or Gas 
   

JA 283 Oil or Gas 
   

JA 284 Oil or Gas 
   

JA 285 Oil or Gas 
   

JA 286 Oil or Gas 
   

JA 287 Oil or Gas 
   

JA 288 Irrigation 
(830) 591-7879: P.O. Box 1532, Uvalde, 

TX, 78802 

  

JA 289 Livestock 
(830) 278-3305: 6 Leona Heights Drive, 

Uvalde, TX, 78801  

  

JA 290 Irrigation 
830) 363-7537: 341 CR 515, D'Hanis, TX 

78850 

  

JA 291 Irrigation 
(830) 591-8036:2182 FM 117, Uvalde, 

TX, 78801 

  

JA 292 Irrigation 
(830) 278-9171: 200 E. Nopal Street, 

Uvalde, TX, 78802  

  

JA 293 Livestock 
 

Two wells close together one for 

Geochemical sample, one for 

waterlevel 

Synoptic Water Level Study_Table; 

Geochemical Samples_Table 

JA 294 
    

JA 295 Domestic 
  

Synoptic Water Level Study_Table 3 

JA 296 
    

JA 297 
    

JA 298 
    

JA 299 
    

JA 300 
    

tel:%28830%29%20591-7879
tel:%28830%29%20591-7879
tel:%28830%29%20278-3305
tel:%28830%29%20278-3305
tel:830%29%20363-7537
tel:830%29%20363-7537
tel:%28830%29%20591-8036
tel:%28830%29%20591-8036
tel:%28830%29%20278-9171
tel:%28830%29%20278-9171
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JA ID Well Type Owner Contact Comments Source 

JA 301 Domestic 
  

Synoptic Water Level Study_Table 3 

JA 302 
    

JA 303 
    

JA 304 
    

JA 305 
    

JA 306 
    

JA 307 Domestic F.M. 2690 UVALDE , TX  78801 
  

JA 308 Domestic Stock 
   

JA 309 Domestic 
 

Old Irrigation Synoptic Water Level Study_Table 3 

JA 310 Domestic 
 

Hard to get Water Level (Lost E-

line) 
Synoptic Water Level Study_Table 3 

JA 311 Domestic 
  

Synoptic Water Level Study_Table 3 

JA 312 Irrigation 
 

Hard to get Water Level (Hang up) Synoptic Water Level Study_Table 3 

JA 313 Domestic 
  

Synoptic Water Level Study_Table 3 

JA 314 Domestic 
  

Synoptic Water Level Study_Table 3 

JA 315 Domestic 
 

Abandoned Across the street from 

house 1434 (Lonesome Dove Rd) 
Synoptic Water Level Study_Table 3 

JA 316 Domestic 
 

New well/house Synoptic Water Level Study_Table 3 

JA 317 Irrigation 
  

Geochemical Samples_Table 4 
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Appendix E:  Geophysical Log Interpretations for Top of Edwards Formation 

[Appendix E includes previous abbreviations and new ones as follows:  Elevation GL – Elevation Ground Level; Accuracy 1-10 – Log 

interpretation accuracy 1 being worst, 10 being best.] 

JA ID Latitude DD Longitude DD 
Elevation 

GL 

Well 

Depth 

Elevation Relative 

Sea Level 

Top of 

Edwards (ft) 

Bottom of 

Edwards (ft) 

Accuracy 1-

10 

JA 005 29.370277 -99.719166 1110 673 952 158 673 9 

JA 006 29.266388 -99.77611 977 389 742 235 389 9 

JA 007 29.280277 -99.855555 1004 480 898 106 480 9 

JA 008 29.243055 -99.755555 958 230 833 125 230 8 

JA 009 29.277777 -99.869166 1040 270 995 45 270 10 

JA 010 29.283888 -99.862777 1018 280 968 50 280 10 

JA 012 29.308611 -99.749721 1012 518 779 233 518 9 

JA 013 29.254722 -99.758888 987 510 617 370 510 8 

JA 014 29.59111 -99.739166 1402 1080 355 1047 1080 7 

JA 016 29.273332 -99.862777 1005 721 358 647 721 6 

JA 017 29.245555 -99.55 880 1500 -90 970 1171 9 

JA 018 29.555277 -99.642221 1849 7596 -173 2022 3052 6 

JA 019 29.33583 -99.69444 1047 758 928 119 
 

10 

JA 020 29.33639 -99.64750 1034 833 743.45 290.55 810 10 

JA 043 29.147221 -99.478054 750 2483 -1160 1910 2483 2 

JA 046 29.269999 -99.505555 898 1560 -172 1070 1560 9 

JA 050 29.193333 -99.632499 876 1400 119 757 1043 9 
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JA ID Latitude DD Longitude DD 
Elevation 

GL 

Well 

Depth 

Elevation Relative 

Sea Level 

Top of 

Edwards (ft) 

Bottom of 

Edwards (ft) 

Accuracy 1-

10 

JA 057 29.27611 -99.692499 974 987 614 360 887 9 

JA 062 29.29417 -99.63111 978 1302 298 680 
 

10 

JA 068 29.28861 -99.761666 996.6 800 811.6 185 620 10 

JA 117 29.293888 -99.7525 1013 525 733 280 525 10 

JA 139 29.350556 -99.708611 1081 434 936 145 620* 9 

JA 140 29.324722 -99.7325 1055 340 777 278 - 9 

JA 141 29.335278 -99.719444 1074 756 829 245 - 9 

JA 142 29.345 -99.743889 1061 425 1001 60 
 

9 

JA 144 29.208611 -99.783888 904.9 287 646.9 258 
 

10 

JA 146 29.32417 -99.73000 1055 881.3 810 245 
 

10 

JA 168 29.331389 -99.743889 1046 300 892 154 - 9 

JA 169 29.329722 -99.735278 1046 300 871 175 - 9 

JA 170 29.325278 -99.733889 1046 440 826 220 - 9 

JA 174 29.288611 -99.725833 1079 420 849 230 420 10 

JA 175 29.277778 -99.744167 1018 240 872 146 240 8 

JA 193 29.298889 -99.691111 1007 660 767 240 660 8 

JA 194 29.317222 -99.6875 1062 460 971 91 460 7 

JA 195 29.271667 -99.759722 995 460 810 185 460 9 

JA 196 29.288056 -99.762778 1004 295 784 220 295 10 

JA 197 29.286944 -99.878889 1023 300 903 120 300 10 
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JA ID Latitude DD Longitude DD 
Elevation 

GL 

Well 

Depth 

Elevation Relative 

Sea Level 

Top of 

Edwards (ft) 

Bottom of 

Edwards (ft) 

Accuracy 1-

10 

JA 198 29.329167 -99.728611 1057 500 832 225 - 9 

JA 199 29.361944 -99.745556 1090 
 

790 300 - 9 

JA 200 29.361667 -99.745556 1090 
 

1058 32 - 9 

JA 201 29.36 -99.745833 1083 
 

1083 1083 - 9 

JA 202 29.36 -99.745556 1087 
 

1072 15 - 9 

JA 203 29.746944 -99.746944 1054 
 

979 75 616 9 

JA 204 29.3225 -99.731667 1052 
 

782 270 - 9 

JA 205 29.369167 -99.750278 1120 
 

1120 1120 820 9 

JA 206 29.3325 -99.765833 1057 
 

857 200 507* 9 

JA 235 29.26583 -99.63639 948 1076 147 801 
 

10 

JA 236 29.34222 -99.67389 1045 740 1008 37 
 

10 

JA 237 29.36667 -99.63472 1055 658 866 189 
 

10 

JA 238 29.32389 -99.73167 1058 900 803 255 
 

10 

JA 239 29.29444 -99.64500 982 1152 425 557 
 

10 

JA 240 29.29806 -99.64556 950 915 432 518 
 

10 

JA 241 29.27267 -99.76272 996 330 689 307 
 

10 

JA 242 29.28108 -99.70011 980 345 720 260 
 

10 

JA 243 29.105502 -99.454067 718 1199 -272 990 1199 9 

JA 244 29.124888 -99.431754 841 2430 -1482 2323 2430 5 

JA 245 29.147588 -99.704935 858 1711 250 608 1711 3 



 

 

 

1
6
1
 

JA ID Latitude DD Longitude DD 
Elevation 

GL 

Well 

Depth 

Elevation Relative 

Sea Level 

Top of 

Edwards (ft) 

Bottom of 

Edwards (ft) 

Accuracy 1-

10 

JA 246 29.09139294 -99.43367305 701 1209 -372 1073 1209 3 

JA 247 29.12194183 -99.43836332 786 2990 -377 1163 1756 7 

JA 248 29.56509913 -99.64862004 858 1711 -502 1360 1711 2 

JA 249 29.20970914 -99.69676184 948 2602 -167 1115 2602 7 

JA 250 29.24696793 -99.71248234 947.5 3000 -395.5 1343 2135 5 

JA 251 29.13342159 -99.97511022 875 3464 -607 1482 2412 7 

JA 252 29.12600198 -99.62021939 896 4000 -931 1827 2625 6 

JA 253 29.28762676 -100.0456032 1058 6000 129 929 990 3 

JA 254 29.28039683 -100.1029851 1102 3843 636 466 1500 3 

JA 255 29.231802 -99.676199 915 3688 353 562 1210 10 

JA 256 29.14680109 -99.48190496 747 3694 -291 1038 1630 3 

JA 257 29.14265124 -99.4803949 745 1599 -575 1320 1599 7 

JA 258 29.14265124 -99.4803949 753 1541 -643 1396 1541 8 

JA 259 29.13242145 -99.44093344 777 2292 -236 1013 1364 3 

JA 260 29.13837121 -99.43823336 807 4545 -276 1083 1835 3 

JA 261 29.12990155 -99.44233348 777 950 -77 854 950 3 

JA 262 29.15012104 -99.50201568 795 1500 -410 1205 1500 6 

JA 263 29.10271283 -99.57396791 890.03 1380 -241.97 1132 1380 8 

JA 264 29.09663305 -99.58221816 886.3 1116 -163.7 1050 1116 10 

JA 265 29.10246263 -99.45419385 718 5627 -1647 2365 2600 8 
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JA ID Latitude DD Longitude DD 
Elevation 

GL 

Well 

Depth 

Elevation Relative 

Sea Level 

Top of 

Edwards (ft) 

Bottom of 

Edwards (ft) 

Accuracy 1-

10 

JA 266 29.38262376 -99.46786398 801 4560 -1074 1875 2640 6 

JA 268 29.200198 -99.76886 984.4 3015 -200.6 1185 1861 7 

JA 269 29.1032128 -99.60489889 880 4015 -1318 2198 2900 9 

JA 270 29.10274282 -99.5926985 881 1380 -301 1182 1384 8 

JA 271 29.23647752 -99.41936301 827 4505 -281 1108 1800 8 

JA 272 29.13230168 -99.49031524 758 1104 -215 973 1107 9 

JA 273 29.12628187 -99.48294496 732 1200 -358 1090 1200 8 

JA 274 29.1237117 -99.42659289 823 2430 -440 1263 2057 6 

JA 275 29.11412202 -99.41921259 769 2175 -571 1340 1817 9 

JA 276 29.11204228 -99.45555393 752 1300 -310 1062 1300 8 

JA 277 29.10580254 -99.46022409 960 1127 -132 1092 1127 7 

JA 278 29.09119305 -99.8630868 806.53 2610 -1125.47 1932 2610 9 

JA 279 29.12339207 -99.62248946 823.47 1366 -96.53 920 1366 9 

JA 280 29.098033 -99.57648798 894.85 1153 -167.15 1062 1153 9 

JA 282 29.13147141 -99.4261129 762 2405 -492 1254 1705 9 

JA 283 29.11566202 -99.43140304 807 1324 -285 1092 1324 8 

JA 284 29.10992257 -99.49670545 754 1495 -368 1122 1495 9 

JA 285 29.09988291 -99.48870514 572 1200 -420 992 1200 9 

JA 286 29.09515298 -99.46812436 723 1510 -285 1008 1512 7 

JA 287 29.125282 -99.53005654 781 4890 -1551 2332 2332 6 
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Appendix F: Water Levels Relating to the Knippa Gap Study Area July 2011 

[Appendix F includes previous abbreviations and new ones as follows:  Point Class –   ; Point ID – Point identifier within GPS; 

WGS84 Elev – Datum WGS84 Elevation; ELEV Ftamsl – Elevation in feet above mean sea level; MSL WL – Mean Sea Level Water 

Level.] 

JA ID Date Time Point Class Point ID WGS84 Elev(m) 
ELEV 

Ftamsl 
Elev Source 

Depth Water 

(ft) 

Top Casing 

(ft) 
MSL WL(ft) 

JA 002 
8/8/2012 

12:30 
NAV 1224 277.08134 909.06 

Leica Survey 

Grade 
155.64 0.38 753.80 

JA 013 
8/8/2012 

12:43 
NAV 1225 268.41774 880.64 

Leica Survey 

Grade 
110.13 1.25 771.76 

JA 019 Aug-12   320.7317073 1052.00 GoogleEarth 234.27 1.41 819.14 

JA 039 
8/6/2012 

15:22 
NAV 1207 292.57179 959.88 

Leica Survey 

Grade 
310.04 2.00 651.84 

JA 063 Aug-12   306.7073171 1006.00 TWDB 273.63 1.41 733.78 

JA 064 
8/6/2012 

11:21 
NAV 1201 282.99367 928.46 

Leica Survey 

Grade 
181.22 1.67 748.90 

JA 065 
8/6/2012 

11:04 
NAV 1200 288.55414 946.70 

Leica Survey 

Grade 
65.20 1.67 883.17 

JA 067 
8/8/2012 

13:14 
NAV 1227 275.75132 904.70 

Leica Survey 

Grade 
155.96 1.17 749.90 

JA 109 
8/7/2012 

9:29 
NAV 1212 304.67437 999.59 

Leica Survey 

Grade 
259.36 1.17 741.39 

JA 113 
8/7/2012 

15:43 
NAV 1219 308.27178 1011.39 

Leica Survey 

Grade 
298.15 0.00 713.24 

JA 140 
8/7/2012 

8:41 
NAV 1211 299.52089 982.68 

Leica Survey 

Grade 
227.30 1.00 756.38 

JA 167 Aug-12   317.0731707 1040.00 GoogleEarth 303.27 1.29 738.02 

JA 168 
8/6/2012 

11:51 
NAV 1202 318.83224 1046.04 

Leica Survey 

Grade 
151.83 0.54 894.75 

JA 172 
8/8/2012 

9:43 
NAV 1221 293.14666 961.77 

Leica Survey 

Grade 
218.64 0.67 743.79 
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JA ID Date Time Point Class Point ID WGS84 Elev(m) 
ELEV 

Ftamsl 
Elev Source 

Depth Water 

(ft) 

Top Casing 

(ft) 
MSL WL(ft) 

JA 174 Aug-12   305.7926829 1003.00 GoogleEarth 168.51 0.75 835.24 

JA 175 Aug-12   316.7682927 1039.00 Garmin 187.21 1.25 853.04 

JA 289 Aug-12   315.2439024 1034.00 Geophysical Log 298.40 0.50 736.10 

JA 293 8/0/2012   353.6585366 1160.00 Garmin 173.48 0.00 986.52 

JA 295 
8/6/2012 

13:46 
NAV 1204 293.71378 963.63 

Leica Survey 

Grade 
192.05 0.00 771.58 

JA 301 
8/7/2012 

12:08 
NAV 1215 311.33777 1021.45 

Leica Survey 

Grade 
211.88 9.04 818.61 

JA 307 
8/7/2012 

8:41 
  322.8658537 1059.00 Garmin 234.19 0.67 825.48 

JA 308 
8/7/2012 

11:57 
NAV 1214 313.45716 1028.40 

Leica Survey 

Grade 
225.75 1.25 803.90 

JA 309 
8/8/2012 

10:03 
NAV 1222 282.09602 925.51 

Leica Survey 

Grade 
154.66 1.04 771.90 

JA 310 
8/7/2012 

15:27 
NAV 1218 295.98456 971.08 

Leica Survey 

Grade 
314.47 0.83 657.44 

JA 311 
8/7/2012 

12:32 
NAV 1216 300.52782 985.98 

Leica Survey 

Grade 
208.04 0.00 777.95 

JA 312 Aug-12   317.3780488 1041.00 Garmin 239.77 0.00 801.23 

JA 313 
8/6/2012 

14:01 
NAV 1205 295.36331 969.04 

Leica Survey 

Grade 
194.83 0.17 774.37 

JA 314 
8/6/2012 

16:31 
NAV 1208 305.22674 1001.40 

Leica Survey 

Grade 
211.97 0.17 789.59 

JA 315 
8/6/2012 

17:58 
NAV 1209 289.28212 949.09 

Leica Survey 

Grade 
188.11 0.83 761.81 

JA 316 
8/7/2012 

8:17 
NAV 1210 298.3341 978.79 

Leica Survey 

Grade 
212.74 2.00 768.05 
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