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Abstract 

 

The Highland Mountains of southwestern Montana offer a unique view of the Archean 

igneous and metamorphic rocks within the Great Falls tectonic zone (GFTZ).  A 

Paleoproterozoic structural gneiss dome has been interpreted in the southern extent of the 

Highland Mountains.  The ~ 130km
2
 of exhumed metamorphic rocks and gneiss dome exposed 

in the Highland Mountains are the primary focus of this research.  The formation of the Highland 

Mountains gneiss dome is proposed to be directly related to a northwest-side down detachment 

(the Steels Pass shear zone) that formed during terrane collision along the GFTZ.   The field 

investigation determined foliation and lineation orientation measurements taken at 65 stations.  

Twenty-two field oriented samples were obtained from a variety of rock types distributed across 

the ~ 24 km
2
 field area.  Three field-based domains were established from the lithology, 

foliation, and lineation observations.  Full-section X-ray maps of three sample thin-sections were 

collected via EPMA to identify all monazite grains.  Twenty-eight grains were mapped at high-

spatial resolution (0.3–6.0 μm).  Thin section micro-structures observed show effects of a 

multistage deformation history with both dynamic and static recrystallization processes.  

Monazite geochronology of one thin section revealed two distinct populations of monazite 

grains; Archean (~ 2.5 Ga) and Mesoproterozoic (~ 1.5 Ga).  The older population represents the 

crystallization age of either, or both the Medicine Hat block and the Wyoming province terranes. 

The younger population is hypothesized to have grown during deformation/alteration associated 

with the formation of the Belt-Purcell Rift Basin. 
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I. Introduction 

 Gneiss dome development during (and after) orogeny remains a significant field of study 

in tectonics, e.g., the Himalayas (e.g. Beaumont et al., 2004).  Gneiss domes have been inferred 

to occur during both continental collision and extension (Beaumont et al., 2001; Andronicos et 

al., 2003).  Critical to understanding the tectonic significance of gneiss domes, is the study of 

well-exposed samples from the geologic record that can be linked to plate collision and/or 

extension.   

A Paleoproterozoic structural gneiss dome has been interpreted in the southern extent of 

the Highland Mountains, Montana, within the Great Falls tectonic zone (GFTZ) (O’Neill et al., 

1988; O’Neill et al., 1996; Figures 1A and 1B).  The GFTZ is a northeast-trending zone of 

geologic features that can be traced from the Idaho Batholith, across the Laramide thrust-belt and 

basement structures of southwestern Montana, through the cratonic rocks of central Montana and 

into southwestern Saskatchewan, Canada (O’Neill, 1985; Figure 2).  The GFTZ and the Vulcan 

structure ~ 800 km to the north, have both been proposed as sites of a Paleoproterozoic suture 

between the Archean Hearne and Wyoming provinces (Mueller et al. 2005; Figure 3). Virtually 

all of the Precambrian rocks composing the Vulcan structure and much of the GFTZ are buried 

beneath Phanerozoic cover.  The primary exceptions to this are igneous and metamorphic rocks 

of the Highland Mountains and the Little Belt Mountains of Montana (Mueller, 2002).  Thus the 

~ 130 km
2
 of exhumed metamorphic rocks and gneiss dome exposed in the Highland Mountains 

are a window into the structures of the GFTZ and are the primary focus of this research (Figures 

1A and 1B). 

The main objective of this project was to define the tectonic relationship between the 

Highland Mountains gneiss dome and the formation of the GFTZ of southwest Montana.  The 
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formation of the Highland Mountains gneiss dome is hypothesized to be directly related to a 

northwest-side down detachment (shear zone) that formed during terrane collision along the 

GFTZ.  Unfortunately, the exact boundaries and the timing and nature of dome formation are not 

well understood.  The primary purpose of this project was to determine if the Highland 

Mountains gneiss dome formed within the tectonic context of the Paleoproterozoic collision 

between the Wyoming and Hearne/Medicine Hat provinces along the GFTZ.  (e.g. O’Neill et al., 

1988; O’Neill, 1995; Foster et al., 2006; Harms et al. 2006) 

 

II. Geologic Setting 

 The Precambrian geology of North America is characterized by geochemically and 

geophysically distinct Archean cratonic blocks bounded by Proterozoic orogenic zones (and 

inferred suture zones) resulting from collisions with Paleoproterozoic terranes or other Archean 

cratons (Karlstrom and Houston, 1984; Chamberlain, 1998; Nelson et al., 1993; Dahl et al., 

1999).  The primary geologic components of the upper midwestern United States and 

southwestern Canada include the Superior province, the Hearne province, Wyoming province, 

and the Medicine Hat block terranes, as well as the Great Falls tectonic zone, the Trans-Hudson 

orogen, and the Vulcan structure orogenic zones (Figure 3; Mueller, 2002; Foster et al., 2006).  

The interaction between these blocks and provinces during collision of the Wyoming and Hearne 

provinces is not well constrained (Mueller, 2002).  Several models have been proposed to 

explain the suturing/interaction of these provinces.  Mueller (2002) suggested an “en-echelon” 

amalgamation of the Wyoming, Medicine Hat, and Hearne provinces.  He suggested that the 

collision between the Wyoming craton and Medicine Hat terrane occurred first in the Archean 

along the GFTZ, followed by suturing of the Wyoming-Medicine Hat composite block with the 
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Hearne province (Green et al., 1985; Hoffman, 1988; Boerner et al., 1998; Lemieux et al., 2000).  

An alternative model proposed by O’Neill and Lopez (1985) and O’Neill (1988) suggested that 

the Medicine Hat block docked first with the Hearne province along the Vulcan structure, 

followed by a later (pre-Mesoproterzoic) collision of the Medicine Hat/Hearne composite block 

with the Wyoming province along the GFTZ. 

 The Highland Mountains, situated within the GFTZ, include some of the westernmost 

exposures of metamorphic Archean basement in southwestern Montana and thus possible 

exposures of the orogen between the Wyoming and Medicine Hat/Hearne provinces (Harlan et 

al., 1996).  The rocks consist of a layered sequence of amphibolite-grade leucocratic gneiss, 

overlain by well-foliated quartz+feldspar+biotite gneiss (Harlan et al., 1996).  In general, the 

layered metamorphic rocks of the southern Highland Mountains define a large doubly-plunging 

antiform (O’Neill et al., 1988).  The antiform structure, called the Highland Mountains gneiss 

dome by O’Neill et al. (1988), was interpreted to have formed as a result of a poorly understood 

regional metamorphic event during penetrative deformation at ca. 1.8 Ga, which reset the K-Ar 

and Rb-Sr mineral systems in Archean basement rocks across much of southwestern Montana 

(Gilletti, 1966, 1971; Erslev and Sutter, 1990).  This was coincident with the Big Sky orogeny, 

as defined in the Tobacco Root Mountains to the northeast of the study area (Harms et al, 2004). 

 The rocks of primary importance to this study include leucogranite sills and dikes 

comprising the “sill complex” unit within the gneiss dome of the southern Highland Mountains 

as mapped by O’Neill et al. (1996) in the vicinity of Steels Pass (rectangle in Figure 1B).  

O’Neill et al. (1996) describe this unit as a “dense swarm of leucocratic quartz-feldspar sills 

intruded into crystalline metamorphic rocks.  The sills are present both as non-foliated, coarse-

grained pegmatite and as strongly sheared, lineated, and foliated mylonitic intrusions.”  The 
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metamorphic rocks of this sill complex unit are proposed to coincide with a detachment/shear 

zone that accommodated exhumation and formation of the Highland Mountains gneiss dome 

(O’Neill et al., 1988).  This detachment will be referred to as the Steels Pass shear zone.   

 

III. Background 

The age and origin of the Highland Mountains is only loosely constrained in the 

literature.  Harlan et al. (1996) found that 
40

Ar/
39

Ar dates for biotite and hornblende in basement 

gneiss from the southern Highland Mountains record cooling ages of 1820 – 1793 Ma.  This date 

was proposed to be the record of cooling of the Highland Mountains gneiss dome following 

high-grade metamorphism in early Proterozoic time (Harlan et al., 1996).  U-Pb 

geochronological constraints from the Highland Mountains are extremely limited. U-Pb dates 

from zircons sampled in gneisses of the southern Highland Mountains record two poorly 

constrained age populations, the first at 2.7 – 3.0 Ga and the second at 1.8 – 1.9 Ga (O’Neill et 

al., 1988).  The latest event was interpreted as the record of metamorphism and deformation of 

the Highland Mountains gneiss dome during the formation of the GFTZ (O’Neill and Lopez, 

1985).  The only other published U-Pb data from the Highland Mountains consists of a ca. 1.77 

Ga date for monazite from a cross-cutting leucogranite in the quartzofeldspathic host gneiss 

(Mueller et al., 2005).  The limited geochronological data are consistent with Paleoproterozoic 

tectonism affecting the Highland Mountain gneisses, but the accurate timing of gneiss dome 

formation and deformation along the GFTZ remain poorly understood.  
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IV. Methodology 

 This research addresses two major problems: 1) the relationship between the Highland 

Mountains gneiss dome and the GFTZ, and 2) the timing of leucogranite emplacement and 

deformation/alteration within the Highland Mountains gneiss dome.  Data were compiled from 

previous studies and a foliation trajectory map was constructed to help constrain the relationship 

between the Highlands gneiss dome and the northeast-trending GFTZ (Figure 1B).  Regional 

geologic mapping and structure contouring outline the extent and orientation of the Highland 

Mountains gneiss dome.  Stereonet analyses and cross-sections constrain the geometry of the 

dome in the focus area (rectangle in Figure 1B).  Mapping and in-situ analysis of syn-kinematic 

(grown during deformation) monazite in field-oriented tectonites (metamorphic rocks highly 

altered due to tectonic activity) constrains the timing and nature of the hypothesized 

Paleoproterozoic deformation. 

 

Field Methods 

The month-long field investigation focused on the NW-dipping Steels Pass shear zone 

first noted by O’Neill et al. (1988).  Observations included the orientation of gneissic fabrics, 

mineral lineations, and a detailed field survey of the Paleoproterozoic leucogranite sill complex.  

The field area was located at ~ 2500 m elevation with the vast majority of the area thickly 

vegetated with high-altitude grasses greatly limiting the outcrop exposure.   Foliation and 

lineation orientation measurements were taken at 65 stations distributed across the ~ 24 km
2
 field 

area (Figure 4).  Measurements from the field investigation and also those data recorded by 

O’Neill et al. (1985) were contoured to provide an interpretive structure / foliation trajectory map 

(Figure 5).  Field measurements were incorporated into the conceptual cross section A-A’ and 
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plotted/analyzed using the OSX Stereonet 8.0.2 © 2011-2012 software package created by R. W. 

Allmendinger (Figure 6).  Twenty-two field-oriented samples were taken from a variety of rock 

types distributed across the field area.  The data provided structural constraints on the 

relationship between the deformation of the Highlands gneiss dome and the emplacement of the 

leucogranite sill complex in the context of the GFTZ.  To understand the timing of leucogranite 

emplacement and deformation of the Highlands gneiss dome, we collected field-oriented samples 

from (1) the leucogranite sill complex, (2) the deformed gneisses hosting the sill complex, and 

(3) a garnet-rich leucocratic gneiss approximately 5 km south of the map area.  Slabs of the 

samples were cut perpendicular to foliation and parallel to the stretching lineation to identify 

sense of shear and the textural setting of monazite (e.g. Passchier and Trouw, 2005).  For ten 

select samples, polished thin sections were professionally prepared by Burnham Petrographics 

for optical petrography and in-situ electron probe microanalysis (EPMA).  Backscattered 

electron (BSE) imaging, X-ray mapping, and quantitative analyses of monazite were done using 

the Cameca® SX50 and Cameca® “Ultrachron” electron microprobe at the University of 

Massachusetts Electron Microprobe Lab, Amherst, Massachusetts.  Emphasis was placed on 

identifying oscillatory- or sector-zoned monazite in the leucogranites to date the time of 

crystallization, and defining domains of monazite in host gneisses that grew syn-kinematically 

with deformation and metamorphism (e.g., Dumond et al. 2008).  

 

Monazite Geochronology Methods 

Monazite Th–U–total Pb geochronology by EPMA in this study followed the strategy 

proposed by Williams et al. (2006).  Monazite geochronology works on the basis of two 

fundamental assumptions 1) All Pb measured in the sample is radiogenic, having formed from 



7 
 

the decay of its parent elements U or Th.  2) Monazite behaved as a closed system since the time 

of crystallization.  Concentrations (ppm) of U, Th, and Pb are measured via the electron 

microprobe, these values are then plugged into the age equation (Equation 1) to produce a date 

(τ).  λ
232

, λ
238

, and λ
235 

are the decay constants of 
232

Th, 
238

U, and 
235

U respectively (Montel et al., 

1996). 
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Full-section Ca Kα maps of thin-sections 12B-46B, 12B-15B and MT11-01 were 

collected via EPMA to identify all monazite grains (Figures 7, 8, and 9; Williams and Jercinovic, 

2002).  Twenty-eight grains were mapped at high-spatial resolution (0.3–6.0 μm) (Figures 7, 8, 

and 9).  Y Lα and Th Mα maps were batch-processed simultaneously and individually to identify 

similar and texturally distinct compositional domains to guide subsequent quantitative analysis 

(Williams et al., 2006).  All quantitative trace element analyses were preceded by high-resolution 

wavelength spectral scans and peak overlap corrections following the methods of Jercinovic and 

Williams (2005) and Jercinovic et al. (2008) (see also Pyle et al., 2005).  All background scans 

and quantitative analyses were carried out with a focused beam at 15 kV and 200 nA using a 

modified Cameca® SX100 electron microprobe - the Cameca® “Ultrachron” EPMA.  For details 

regarding the instrument, analytical protocol, and standards used, see Jercinovic et al., 2008.  A 

2σ standard deviation uncertainty for each dated domian is reported (Figure 10).   The final result 

is illustrated as a single histogram probability distribution for each monazite domain.  Multiple 

domains from one or more grains (interpreted to represent the same monazite growth event based 

Equation 1 
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on similarity in date, composition, and/or texture) were grouped together based on a bin size of 

100 million years (Figure 11).  Multiple results from a consistency standard of known age are 

presented along with the data to document short-term systematic error and provide a qualitative 

assessment of accuracy during the analytical session (Williams et al., 2006).   

 

V. Results 

Field Data 

 Field mapping of the Steels Pass area revealed a suite of geologic features affected by 

multiple deformation events that have occurred since the Neoarchean.  Foliation and lineation 

measurements were divided into three field-based domains based on the mapped lithology and 

structural setting.   

Domain 1 

 Domain 1 included the Early Proterozoic and Archean mylonitic biotite gneiss (X(A)m) 

and a thin (0.5km-wide) swath of the Early Proterozoic and Archean quartz + feldspar + biotite 

gneiss (X(A)qf) exposed north of the Early Proterozoic sill complex (Xs(X(A)qf)) (Figures 4-6).  

This domain is defined by the relative absence of clear stretching lineations and or leucogranite 

sills.   Measurements were restricted by access and outcrop exposure to the ridgeline of the         

~ 700 m high Big Ridge trending NW-SE for ~ 5 km through the central map area.  Fabric seen 

in domain 1 is defined by the prevalent fine sheets of biotite and the occasional quartz ribbon 

and/or plagioclase clast (Figure 12).  This domain contains 20 data locations which reveal a 

mean foliation orientation of 198°, 26°W and a mean lineation orientation of 15°  199° (Figure 

6).  In this domain a measureable stretching lineation was only found in three site locations due 

to the biotite-rich schistose nature of the gneisses.  Domain 1 contained very few site locations in 



9 
 

which clear kinematic observations could be made, but where clast kinematics could be 

measured a top-down-to-the-west sense of motion was indicated (Figure 13).   

Domain 2 

  Domain 2 is defined by the persistence of a clear, down-plunge stretching lineation 

observed in many of the 24 data locations mapped within the sill complex unit (Figures 4-6).  

This area consists of Early Proterozoic quartz + feldspar + biotite gneiss that has been 

pervasively intruded by leucogranite and mafic sills (Figures 14 and 15).  Measurements in this 

domain were predominantly taken in the area immediately north of Steels Pass and further 

northeast on Brazil Ridge.  Observations made in both areas confirm the NNE extent of the 

Steels Pass shear zone.  Domain 2 has a mean foliation of 209°, 22°W and a mean lineation of 

22°  261° (Figure 6).  The fabric of domain 2 is defined by stringers of biotite, quartz ribbons 

and flattened/stretched clasts of plagioclase feldspar (Figure 16).  Within Domain 2, the 

measurable lineations are distinctly defined by a tightly clustered, direct down-plunge, western 

orientation on the stereonet (Figure 6).  Lineations are primarily visible in the leucogranite sills 

that intruded the host gneiss (Figure 17).  These lineations were closely analyzed and were 

interpreted to be dominantly a line of stretch due to tapered feldspar clasts and elongate ribbons 

of quartz.  In this area the leucogranite sills include abundant deformed plagioclase clasts, which 

also uniformly indicate a top-down-to-the-west sense of shear (Figures 16 and 18).  

Domain 3  

 Domain 3 includes all 31 data points south of the sill complex unit in the quartz + 

feldspar + biotite gneiss (Figures 4-6).  The western extent of domain 3 is delineated by the west-

dipping limb of an antiform structure.  This area is intruded by both leucogranite and mafic sills, 

which occur at approximately the same frequency, as opposed to the previous two domains in 
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which exposures of the leucogranite sills appear to greatly outnumber the mafic sills.  Also 

included within this domain is an Early Proterozoic mafic body (Xm).  Field measurements 

identify a sub-horizontal, upright, antiformal structure with a best-fit girdle calculated to be 339°, 

87°E and with a SW-plunging β-axis of 03°  249° (Figure 6).  Parasitic folds are prevalent on 

both the east and west limbs of the antiform (Figure 19).  The antiform structure is truncated in 

the north and south by the Hell Canyon Pluton (TKqmh) and the Twin Bridges Fault, 

respectively.  A clear overprinting of an older vertical fabric (S1~ 064˚, 90˚) by a younger, much 

shallower fabric (S2 ~ 180˚, 3˚W) is evident across this domain (Figure 20).  Identifiable clast 

kinematics are rarely observed, although a stretching or intersection lineation is consistently 

definable that plunges both east and west in the respective limbs of the antiform.   

 

Thin Section Data   

Domain 1 

 One thin section was cut from a garnet + biotite gneiss (sample 12B-15B) collected in 

domain 1 (Figure 21).  Major mineral components include: ~ 50% quartz, ~ 25% garnet, ~ 15% 

biotite, and ~ 10% plagioclase + K-feldspars.  The fabric in this thin section is defined by quartz 

ribbons ~ 1.0 mm in width with biotite plates conforming to the delineated fabric orientation.  

Garnet is present, but pervasively replaced by biotite. 

Domain 2 

 Six of the ten thin sections prepared were cut from samples sourced from domain 2.  Four 

samples were taken from leucogranite sills and the other two thin sections are from mafic 

granulite sills.  Thin section 12B-01 from a leucogranite sill near Steels Pass exhibits excellent 

clast kinematics (Figure 22).  The fabric in 12B-01 is defined by elongate quartz ribbons.  Major 
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mineral components include: ~ 90% quartz, ~ 5% plagioclase, ~ 5% biotite.  Some plagioclase 

clast cores have been completely replaced by clusters of new small grains.  Core-mantle 

structures apparent in the larger syn-kinematic plagioclase clasts range from 2-5 mm in diameter.  

In contrast, recrystallized mantle clasts are substantially smaller, ~ 350 – 550 µm in diameter.  

Matrix grains are ~ 125 µm in diameter. 

 A second leucogranite sill within domain 2 found on Brazil Ridge was sampled (thin 

section 12B-11, Figure 23).  Major minerals in this sample include: ~ 60% quartz and ~ 40% 

plagioclase.  The fabric in this section is defined by elongate quartz ribbons and a few large (2.0 

– 3.0 mm) quartz clasts.  Quartz ribbons and clasts exhibit pervasive undulose extinction.  The 

quartz ribbons vary in size, with the largest ribbons exceeding 20 mm in length and ~ 1.5 mm 

wide.  Plagioclase clasts show core-mantle structures, separating new small mis-aligned 

plagioclase grains.  Core clasts range in size from ~ 3.0 – 4.0 mm in diameter, but recrystallized 

mantle grains are only 350 – 450 µm.  The core and mantle grains are surrounded by a matrix of 

much finer quartz and plagioclase grains (75 – 100 µm).   Subtle bands of fine-grained matrix are 

aligned with the fabric extending across the section.   

 Thin section 12B-46B is also from yet another leucogranite sill  ~ 200 m south of the 

12B-01 site in the vicinity of Steels Pass (Figure 24).  This thin section is of utmost importance 

because it contains monazite grains, which have been analyzed further and will be discussed in 

the monazite geochronology section.  The fabric in this sample is defined by quartz ribbons, with 

the largest ones ~ 1 mm x 15 mm in size, with well-developed undulose extinction.  Quartz 

ribbon grains have been recrystallized into polygonal forms. Syn-kinematic K-feldspar and 

plagioclase clasts show top-down-to-the-west dextral shear.  The largest feldspar grains are ~ 1.5 

mm in diameter, many of which show severe deformation as cracks and alteration to sericite.  



12 
 

Evidence for core-mantle structures exists, though in this thin section the core grains have been 

completely recrystallized into new grains with the mantle (350 – 400 µm).  Grain boundaries in 

this sample are convex in shape, likely due to a static recrystallization process discussed later.   

 Mafic sills were also sampled and thin section 12B-10B is from a mafic granulite sill on 

Brazil Ridge (Figure 25).  Dominant minerals include: ~ 70% hornblende, ~ 10% quartz, ~ 15% 

garnet remnants, and ~ 5% plagioclase.  Garnet is replaced by hornblende, but remnant garnet 

grains ~ 2 mm in diameter are present.  The matrix fabric in this thin section is defined by the 

grain-shape preferred orientation of the very fine-grained (~ 125 µm) laths of hornblende.   

Domain 3 

 Two thin sections examined are from this domain.  Sample 12B-32 is from a leucogranite 

sill that crosses the east-dipping limb of the antiform (Figure 26).  This sample is very coarse 

grained and composed of  ~ 80% quartz, ~ 10% plagioclase, ~ 5% K-feldspar, and ~ 5% biotite.  

Large quartz clasts with core/mantle structures dominate this section.  Core grains are ~ 12 mm 

in diameter and the smaller mantle grains are ~ 1.0 – 1.5 mm in diameter and the very small 

matrix grains range in size from 250 to 500 µm in diameter.  Fabric in this section is delineated 

by numerous elongate quartz ribbons, which are ~ 1mm in width and 5mm in length.   

 Thin section 12B-40 is from a leucogranite sill on the west-dipping limb of the antiform 

(Figure 27).  Core-mantle structures persist with core clasts of 1.5 to 3.5 mm in diameter and 

mantle grains of 250 – 450 um in diameter.  Fabric in this section is defined by quartz ribbons ~ 

700 um wide and up to 10 mm in length and with undulose extinction.  Grain boundaries outside 

the quartz ribbons are curved.  Mineralolgy includes: ~ 90% quartz, ~ 5% plagioclase, and ~ 5% 

biotite.  Bands in the thin section are rich with platy biotite grains aligned with the rock fabric.  

The entire section is divided by a pair of micro-faults oriented perpendicular to the fabric.   
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  An additional thin section is MT11-01, from a garnetiferous migmatitic sill 

approximately 5 kilometers south of the mapping area (Figure 28).  The major mineral 

components of this rock include: ~ 40% quartz, ~ 30% plagioclase + K-feldspar, ~ 20% garnet, ~ 

10% biotite. Feldspars display replacement by sericite/muscovite (white micas).  This sample has 

a coarse-grained (1.0 – 3.0 mm) phaneritic texture.  Weak fabric is visible due to the elongate 

quartz grains, which exhibit undulose extinction (sub-grain boundaries).  Grain boundaries tend 

to be nearly perpendicular to fabric. 

 

Monazite Geochronology  

 Monazite dating analyses were performed on the thin section of leucogranite sill  

12B-46B from domain 2.  This sample was chosen for the analysis due to its structurally 

significant field location and the quality of its monazite grains.  Five priority grains were dated 

using the Cameca® “Ultrachron” EPMA.  Grains were given priority based on their zoning and 

condition.  Severely altered grains were excluded from the analyses. 

 Two distinct populations of monazite domains are exhibited in the five monazite grains 

analyzed (Table 1A-1D; Figure 11).  The older population (P1) includes of 11 dates taken from 

the cores and various zones within four of the analyzed grains.  P1 has an average date of 

2444.87 ± 392 Ma (Figure 10).  These dates may be indicative of inherited Archean monazite 

grains from the country rock through which the leucogranite sill intruded.  The younger 

population (P2) consists of 6 dates taken from the rims of grains M1, M5, and M7 and the core 

of grain M6 (Figures 29 and 30).  P2 has an average date of 1534.27 ± 116 Ma (Figure 10).  

Neither of these populations represents the crystallization age of the leucogranite sill dated by 

Mueller et al. (2005) as ca. 1770 Ma.     
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VI.  Discussion  

Research on the Highland Mountains gneiss dome is of particular importance because of 

its location in the enigmatic GFTZ.  This zone is recognized as the northern boundary of the 

Wyoming cratonic province (O’Neill and Lopez, 1985).  Although there is disagreement 

concerning both the timing and tectonic setting of the formation of the GFTZ (Mueller et al., 

2005), it is inferred as the suture zone between the unexposed Archean Medicine Hat block of 

the Hearne province and the Wyoming craton (Fig. 1A) (O’Neill and Lopez, 1985).  Aspects of 

the Highland Mountains and other Precambrian basement rock in SW Montana resemble those 

structures found in the Early Proterozoic suture zones of the Canadian Shield (O’Neill, 1998; 

Hoffman, 1989), where monazite analyses have previously been utilized successfully to date 

deformation (e.g., Snowbird Tectonic Zone: Dumond et al., 2008).  The Archean leucogneisses 

coring the Highland Mountains are inferred to have experienced Paleoproterozoic strain during 

collision along the GFTZ (Mueller et al., 2005).   

Previously mapped by O’Neill et al. (1996), a structural gneiss dome has been interpreted 

as underlying much of the southern extent of the Highland Mountains.  Previous research in the 

region has been inconclusive regarding whether the gneiss dome formed directly in response to 

collision along the GFTZ or as a result of later extension, e.g., as a metamorphic core complex 

(Foster et al., 2006).  The discovery of the Steels Pass shear zone supports the existence and 

development of the Highland Mountains gneiss dome during post-orogenic extension as a result 

of crustal thickening.  The Steels Pass shear zone, identified by a shallow west-dipping fabric 

(Figure 14), was formed as the zone of detachment along which the Highland Mountains gneiss 

dome was exhumed.  The activation of the Steels Pass shear zone and the exhumation of the 

gneiss dome likely were initiated late in the Paleoproterozoic tectonic event history (~ 1.7 Ga: 
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see monazite data interpretation below).  The exhumation of the Highland Mountains gneiss 

dome resulted in lower amphibolite grade metamorphism and partial melting.  Post-orogenic 

extension is commonly associated with lithospheric delamination and mafic magmatism (Collins, 

2002).  This process could have produced the mafic sills present in the Highland Mountains as 

underplating mafic material was emplaced between ~ 1.80 and ~ 1.75 Ga in the Medicine Hat 

block to the northwest (Davis et al. 1995). 

 

Structural Evolution 

Across the map area, the three domains defined above are distinctly visible in the 

foliation trajectories.  Domain 1 includes a penetrative fabric which is consistently oriented at 

around 198˚, 26˚W (Figure 6).  This is interpreted to be the background host gneiss fabric, i.e., 

pre-emplacement of the leucogranites and a relict feature of the Neoarchean?-Paleoproterozoic 

metamorphic history of the mylonitic bioite-gniess.   

Further south, the transition from domain 1 into domain 2 is marked by the abrupt 

increase in leucogranite sills and the definition of a well-defined stretching lineation (Figures 4-

6).  The stretching lineations in domain 2 sills define the NNE trending Steels Pass shear zone as 

a zone of dextral shear sense along a gently W-dipping extensional shear zone or detachment.  

Measurements initially taken in the Steels Pass area were subsequently observed further north on 

Brazil Ridge leading to the conclusion that this zone of dextral shear extends north-northeast 

from Steels Pass.  Further investigation to the south of Steels Pass would likely confirm the 

southern extension of the Steels Pass shear zone.   

The Steels Pass shear zone is thought to be a line of detachment along which the 

Highlands Mountains gneiss dome was exhumed.  This hypothesis is supported by clast 
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kinematics observed in the leucogranites of the shear zone and the geometry of the gneiss dome 

itself.  Down-to-the-west shear along the Steels Pass shear zone would accommodate the 

exhumation of the gneiss dome as seen to the east and south of Steels Pass (Figure 31).  The 

Steels Pass shear zone is truncated in the north and south by the Cretaceous Hell Canyon Pluton 

and the reactivated Tertiary Twin Bridges Fault, respectively (O’Neill et al., 1988).   

Domain 2 transitions south into domain 3 across Steels Pass Creek.  Domain 3 is defined 

by the prevalence of parasitic folds formed on the limbs of a sub-horizontal, upright antiform.  

Field measurements indicate that the foliations in domain 3 steepen upwards towards the axial 

surface of the antiform.  Leucogranite and mafic sills are abundant though they are not 

consistently oriented along the fabric of domain 3 as they are in domain 2.  The antiform 

structure may be part of a second-order fold complex comprising the westernmost structural 

exposure of the Highlands Mountains gneiss dome. 

 

Deformation Setting 

The suite of microstructures observed in thin section indicate deformation associated with 

the exhumation of the Highland Mountains gneiss dome ceased while the involved rocks were 

still at significant depth in the presence of hydrothermal fluids.   

Microstructures indicate two phases of deformation: the first being syn-tectonic 

(structures formed during the tectonic deformation event that drove the metamorphism) and the 

second being post-tectonic (structures formed after the tectonic deformation has ceased).  Syn-

tectonic conditions for these rocks are characterized by lower amphibolite facies metamorphism, 

not exceeding 600˚C, based on quartz and feldspar microstructures (Tullis, 2002).  Under these 

conditions, garnet may have grown in the migmatite sill (MT11-01) and the quartz + feldspar + 
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biotite gneiss of domain 1 (12B-15B).  Along the Steels Pass shear zone in domain 2, 

leucogranite sills (12B-01 and 12B-46B) were emplaced under syn-tectonic conditions, i.e., the 

deforming shear motion influences the shape and orientation of the quartz ribbons and clasts 

during emplacement, indicating a shallow-west-dipping dextral sense of shear (evidence of this 

shear is seen both in outcrop and in thin section; Figures 14, 17, 22, and 24).  The deformed syn-

kinematic clasts of plagioclase underwent a dynamic recrystallization process, forming core-

mantle structures, which lower the total internal energy configuration of the clast (Figure 23).  

Syn-tectonic deformation ceased at relatively high temperatures in the presence of some amount 

of melt and/or grain boundary/pore fluids.  The post-tectonic processes of static recrystallization 

subsequently dominated apparently while the terrain was cooling and being exhumed.  During 

static recrystallizaton, sub-grain boundaries are developed in the quartz ribbons and clasts as the 

dislocations are swept to zones of higher concentration (Evans et al., 2001; Paschier and Trouw, 

2005).  Dislocation tangles are removed as the grain boundaries tend to grow and straighten 

while undergoing GBAR (grain boundary area reduction) (Paschier and Trouw, 2005).  The 

grains themselves become more polygonal in form (foam texture) as a result of the GBAR 

(Figure 32). 

 

Monazite Geochronology 

The monazite geochronology study sought to establish the timing of the Highland 

Mountains gneiss dome with respect to the emplacement of a local leucogranite sill complex.  

Understanding this relationship would allow important constraints to be placed on the timing and 

deformation of the Highland Mountains gneiss dome with respect to the development of the 

GFTZ and the Steels Pass shear zone.   



18 
 

Emplacement of the sill complex was initially defined by Mueller et al. (2005) based on 

ca. 1.77 Ga crystallization ages for one leucogranite from the area.  Sample 12B-46B did not 

preserve any evidence for ca. 1.77 Ga monazite, but did contain abundant inherited ~2.5 Ga 

(Archean) monazites (P1).  Leucogranite sill 12B-46B apparently did not grow monazite during 

emplacement due to its bulk composition and/or pressure-temperature-fluid constraints.  

Monazite growth requires a phosphatic (PO4) bulk composition containing rare earth elements 

(REE’s) such as Cerium and Yttrium (Williams et al., 2006a).  The leucogranite sill 12B-46B did 

inherit at least four Archean monazite grains from the surrounding country rock (X(A)qf).  Some 

200 My later, a Mesoproterozoic passive intracontinental rifting event caused by lithospheric 

extension led to the formation of the Belt-Purcell basin (Chandler, 2000).  This rifting event is 

inferred to coincide with the growth of the younger monazite population (P2).  This passive 

rifting event drove extensional faulting and sporadic tholeitic to alkaline magmatism to occur in 

the period of ~1500 Ma to about 1320 Ma during deposition of the Belt supergroup (Lydon, 

2008).  The intracontinental rifting and associated magmatism could have mobilized reactive Th, 

Si, Ca, and (Y + REE) grain boundary/pore fluids into communication with the sill complex 

leucogranites, causing grain alteration and growing ca. 1.5 Ga (P2) Mesoproterozoic rims on the 

inherited Archean monazite cores (M1, M5, and M7; Figures 29 and 30) (e.g. Bingen and van 

Breemen, 1998; Hansen and Harlov, 2007; Rasmussen and Muhling, 2007; Simmat and Raith, 

2008; Martins et al., 2009; Harlov et al., 2010). 

 

VII. Conclusions 

 This research has examined the timing and deformation of the Highland 

Mountains gneiss dome by focusing on a local leucogranite sill complex as situated within the 
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Great Falls tectonic zone.  The following represents a preferred order of events. 

Circa 2.5 Ga:  Monazite grains form and record the crystallization ages of either and/or 

both of the separate Archean Medicine Hat block and Wyoming Province terranes.   

1.78 – 1.72 Ga:  The GFTZ closes along its NE-SW trend driving orogenesis and 

significant crustal thickening (Harms et al, 2006).  Leucogranite sill emplacement at depth along 

the Steels Pass shear zone coincides with extension caused with post-orogenic crustal thinning.  

The crustal extension and associated top-down-to-the-west shear along the Steels Pass shear zone 

allow the development of the Highland Mountains gneiss dome.  All leucogranite sills emplaced 

during this extension contain monazite (P1) inherited from the Archean country rock and some 

sills (constrained by their bulk composition) include new monazite grains that formed during the 

time of leucogranite crystallization.  The sill sampled in this study apparently did not have the 

appropriate bulk composition to grow monazite at 1.78-1.72 Ga, if it was emplaced at this time 

(as dated for a different leucogranite sill nearby by Mueller et al. (2005).  Core-mantle micro-

structures developed in the leucogranites as a result of syn-tectonic dynamic recrystallization.  

Following the crustal extension and syn-tectonic deformation, post-tectonic deformation 

processes dominated.  This results in the static recrystallization processes of GBAR and develops 

the foam-like grain texture seen in thin section. 

Circa 1.5 Ga:  The Belt-Purcell passive intracontinental rifting event mobilized enriched 

(Y+REE) hydrothermal grain boundary/pore fluids from the alkaline/tholeitic melts into 

communication with the local leucogranite sill complex.  Presence of the enriched fluids drove 

monazite grain alteration and grew a younger population (P2) of high-Y monazite rims on the 

old (P1) Archean monazite cores.  Monazite grains are individually altered by variations in the 

enriched fluid composition and reaction conditions. 
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Today:  Two populations of monazite grains are seen (P1 ~2.5 Ga and P2 ~1.5 Ga) in 

leucogranite sill 12B-46B.  Neither of these populations may represent the actual crystallization 

age of this individual sill.  The annealed textures of the thin section micro-structures may 

represent the combination of effects of the syn- and post-tectonic deformation processes as well 

as the reactions and alterations that took place during the growth of the younger monazite 

population (P2).    
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VIII. Figures 

 

Figures 1A and 1B: 
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Figure 2: 

 Adapted from O’Neill and Lopez (1985), this figure illustrates the extent of the Great 

Falls tectonic zone and other related geologic features at the scale of North America. 
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Figure 3: 

 Adapted from Mueller et al. (2005), this figure illustrates the position of the Great Falls 

tectonic zone relative to the associated regional geologic provinces and orogenic zones. 
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Figure 4: 

 Geologic map and data resulting from field investigation.  Base layer topography adapted 

from USGS Table Mountain, MT Quadrangle.  Cross section A-A’ is depicted in Figure 6. 
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Figure 5: 

 Contoured foliation measurements illustrating changes in fabric orientation across the 

field area.  
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Figure 10: 

 Average dates plotted for each sample domain.  Two populations are apparent, population 

1 (P1) has an average date of 2444.87 ± 392 Ma, and population 2 (P2) has an average date of 

1534.27 ± 116 Ma.  Error bars represent the ±2σ standard deviation for each population.  

Complete monazite dataset is seen in Table 1A-1D.   
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Figure 11:  

 Monazite date count histogram.  Each bar represents the number of dates calculated 

within that corresponding 100 My age bin.  The red curve illustrates a polynomial fit to the data.  

The two peaks seen at ~ 1.5 and ~ 2.5 Ga represent the dominant monazite date populations P2 

and P1 respectively.  
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Figure 12: 

 This field image taken at site 12B-14 (See Figure 4 for location) illustrates the textures 

and mineralogy seen in the Archean Mylonitic gneiss (X(A)m) of domain 1.  This location in 

particular is abundant with garnet retrogressed to biotite.  U.S. quarter for scale.  Photo Credit: 

Lane Boyer, August 2012.  



33 
 

Figure 13: 

 This outcrop image at site 12B-15B illustrates a kinematic garnet δ – clast with 

leucocratic tails indicating a top-down-to-the-west-southwest shear sense.  Pencil tip for scale.  

Photo Credit: Greg Dumond, August 2012. 
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Figure 14: 

 Field shot taken at site 12B-01 just north of Steels Pass, within the Steels Pass shear zone.  

The shear zone fabric strikes at ~160° and has a shallow dip to the west-southwest at ~20° 

defined by leucogranite sills and porphyclasts of plagioclase and k-feldspar with quartz ribbons 

(See inset image). The author for scale.  Photo Credit: Greg Dumond, August 2012. 
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Figure 15: 

 Outcrop at site 12B-46, within the Steels Pass shear zone, exposing the leucogranite sills.  

Fabric is defined by the leucocratic layers, leucogranite sills and biotite in the host gneiss.  

Hammer for scale.  Photo Credit: Lane Boyer, August 2012. 
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Figure 16: 

 Field image taken at site 12B-07 within the Steels Pass shear zone.  This figure illustrates 

a plagioclase σ-clast with sinistral top-down-to-the-west-southwest shear.  Fabric is defined by 

quartz ribbons and deformed plagioclase clasts.  U.S. quarter for scale.  Photo Credit: Greg 

Dumond, August 2012.   
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Figure 17: 

 Outcrop at site 12B-46, within the Steels Pass shear zone, seen here is a ~2 meter thick 

leucogranite sill fully exposed in outcrop.  The base of this sill was heavily corrugated with a 

lineation at 17°→250°, indicating syn- to post-emplacement deformation of the sill along the 

shear zone fabric.  This is the sill analyzed in the monazite geochronology study.  Hammer for 

scale.  Photo Credit: Lane Boyer, August 2012.  
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Figure 18: 

 This field shot taken at site 12B-11 on Brazil Ridge illustrates the northern continuation 

of the Steels Pass shear zone.  The plagioclase σ-clast seen here indicates a top-down-to-the-

west-southwest shear sense, plunging at 32° towards 246°.  Pen for scale.  Photo Credit: Greg 

Dumond, August 2012.  
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Figure 19: 

 Outcrop at site 12B-43 on the western limb of the antiform mapped in domain 3.  The 

fabric is defined here by granite pegmatic layers within the quartz+feldspar+biotite gneiss 

(X(A)qf) (See inset image).  The parasitic folds seen here steepen to the east as one approaches 

the hinge of the anitform.  Hammer for scale.  Photo Credit: Lane Boyer, August 2012.  



40 
 

Figure 20: 

 Outcrop at site 12B-38 illustrates the near vertical fabric in X(A)qf seen near the hinge of 

the domain 3 antiform.  The steep S1 fabric (yellow) is overprinted by the shallow S2 fabric 

(red).  This shallow S2 fabric may relate to the formation of the Highland Mountains gneiss 

dome.  Pencil for scale.  Photo Credit: Lane Boyer, August 2012.  
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Figure 29: 

 Thorium Mα X-ray map of monazite grain M5 from thin section 12B-46B.  Three distinct 

domains are apparent by variations in thorium concentration.  Average dates are given in 

millions of year ago with errors of ±2σ standard deviation.  Image is 300 x 300 pixels in 

dimension, each pixel is 0.596 μm in width. 
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Figure 30: 

 Calcium Kα X-ray map of monazite grain M7 from thin section 12B-46B.  At least three 

distinct domains are apparent by variations in calcium concentration and average date.  Average 

dates are given in millions of year ago with errors of ±2σ standard deviation.  Image is 500 x 500 

pixels in dimension, each pixel is 0.572 μm in width.  
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