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Abstract

The Highland Mountains of southwestern Montana offer a unique view of the Archean
igneous and metamorphic rocks within the Great Falls tectonic zone (GFTZ). A
Paleoproterozoic structural gneiss dome has been interpreted in the southern extent of the
Highland Mountains. The ~ 130km? of exhumed metamorphic rocks and gneiss dome exposed
in the Highland Mountains are the primary focus of this research. The formation of the Highland
Mountains gneiss dome is proposed to be directly related to a northwest-side down detachment
(the Steels Pass shear zone) that formed during terrane collision along the GFTZ. The field
investigation determined foliation and lineation orientation measurements taken at 65 stations.
Twenty-two field oriented samples were obtained from a variety of rock types distributed across
the ~ 24 km? field area. Three field-based domains were established from the lithology,
foliation, and lineation observations. Full-section X-ray maps of three sample thin-sections were
collected via EPMA to identify all monazite grains. Twenty-eight grains were mapped at high-
spatial resolution (0.3-6.0 um). Thin section micro-structures observed show effects of a
multistage deformation history with both dynamic and static recrystallization processes.
Monazite geochronology of one thin section revealed two distinct populations of monazite
grains; Archean (~ 2.5 Ga) and Mesoproterozoic (~ 1.5 Ga). The older population represents the
crystallization age of either, or both the Medicine Hat block and the Wyoming province terranes.
The younger population is hypothesized to have grown during deformation/alteration associated

with the formation of the Belt-Purcell Rift Basin.



Acknowledgements

I would like to thank my friend and advisor Greg for his time and guidance, Peggy for the use of
her wonderful Montana ranch, and Steve for his support and comments. This project would

never have left the office without you.

I would also like to thank my friends and family for sticking with me through this project.

This research was supported through grant funding from the Charles J. Vitaliano grant-in-aid
program of the Indiana University Dept. of Geosciences, the University of Arkansas graduate
research scholarship program and the Tobacco Root Geological Society field research grant

program.



Table of Contents

R 0o 3 Tod 1 o] o P 1
I CT=To] (oo (oS T=] 11T o PR 2
L BaCKGIOUNG. ...t e e e ettt et 4
IV, MEtNOUOIOQY . ... e e 5
A, FIeld MEENOGS. ... 5
B. Monazite Geochronology Methods. ..., 6
N RESUIS. ..t e, 8
AL FIBIA DAL, . .ot 8
B. Thin SECHION Data.......c.einiii e e 10
C. Monazite GEOChIONOIOQY.......cuiiie i 13
VL DISCUSSION. ...ttt e e e e e 14
A, Structural EVOIULION. ... 15
B. Deformation SEttiNg........cooiirii e 16
C. Monazite GEOCIONOIOQY.......oviii e 17
AV L @0 [0 (1] o] PP 18
VL FQUIES. ..o e e e e 21

DO 2 ] (] (=] 0101 57



I. Introduction

Gneiss dome development during (and after) orogeny remains a significant field of study
in tectonics, e.g., the Himalayas (e.g. Beaumont et al., 2004). Gneiss domes have been inferred
to occur during both continental collision and extension (Beaumont et al., 2001; Andronicos et
al., 2003). Critical to understanding the tectonic significance of gneiss domes, is the study of
well-exposed samples from the geologic record that can be linked to plate collision and/or
extension.

A Paleoproterozoic structural gneiss dome has been interpreted in the southern extent of
the Highland Mountains, Montana, within the Great Falls tectonic zone (GFTZ) (O’Neill et al.,
1988; O’Neill et al., 1996; Figures 1A and 1B). The GFTZ is a northeast-trending zone of
geologic features that can be traced from the Idaho Batholith, across the Laramide thrust-belt and
basement structures of southwestern Montana, through the cratonic rocks of central Montana and
into southwestern Saskatchewan, Canada (O’Neill, 1985; Figure 2). The GFTZ and the Vulcan
structure ~ 800 km to the north, have both been proposed as sites of a Paleoproterozoic suture
between the Archean Hearne and Wyoming provinces (Mueller et al. 2005; Figure 3). Virtually
all of the Precambrian rocks composing the Vulcan structure and much of the GFTZ are buried
beneath Phanerozoic cover. The primary exceptions to this are igneous and metamorphic rocks
of the Highland Mountains and the Little Belt Mountains of Montana (Mueller, 2002). Thus the
~ 130 km? of exhumed metamorphic rocks and gneiss dome exposed in the Highland Mountains
are a window into the structures of the GFTZ and are the primary focus of this research (Figures
1A and 1B).

The main objective of this project was to define the tectonic relationship between the

Highland Mountains gneiss dome and the formation of the GFTZ of southwest Montana. The



formation of the Highland Mountains gneiss dome is hypothesized to be directly related to a
northwest-side down detachment (shear zone) that formed during terrane collision along the
GFTZ. Unfortunately, the exact boundaries and the timing and nature of dome formation are not
well understood. The primary purpose of this project was to determine if the Highland
Mountains gneiss dome formed within the tectonic context of the Paleoproterozoic collision
between the Wyoming and Hearne/Medicine Hat provinces along the GFTZ. (e.g. O’Neill et al.,

1988; O’Neill, 1995; Foster et al., 2006; Harms et al. 2006)

I1. Geologic Setting

The Precambrian geology of North America is characterized by geochemically and
geophysically distinct Archean cratonic blocks bounded by Proterozoic orogenic zones (and
inferred suture zones) resulting from collisions with Paleoproterozoic terranes or other Archean
cratons (Karlstrom and Houston, 1984; Chamberlain, 1998; Nelson et al., 1993; Dahl et al.,
1999). The primary geologic components of the upper midwestern United States and
southwestern Canada include the Superior province, the Hearne province, Wyoming province,
and the Medicine Hat block terranes, as well as the Great Falls tectonic zone, the Trans-Hudson
orogen, and the Vulcan structure orogenic zones (Figure 3; Mueller, 2002; Foster et al., 2006).
The interaction between these blocks and provinces during collision of the Wyoming and Hearne
provinces is not well constrained (Mueller, 2002). Several models have been proposed to
explain the suturing/interaction of these provinces. Mueller (2002) suggested an “en-echelon”
amalgamation of the Wyoming, Medicine Hat, and Hearne provinces. He suggested that the
collision between the Wyoming craton and Medicine Hat terrane occurred first in the Archean

along the GFTZ, followed by suturing of the Wyoming-Medicine Hat composite block with the



Hearne province (Green et al., 1985; Hoffman, 1988; Boerner et al., 1998; Lemieux et al., 2000).
An alternative model proposed by O’Neill and Lopez (1985) and O’Neill (1988) suggested that
the Medicine Hat block docked first with the Hearne province along the Vulcan structure,
followed by a later (pre-Mesoproterzoic) collision of the Medicine Hat/Hearne composite block
with the Wyoming province along the GFTZ.

The Highland Mountains, situated within the GFTZ, include some of the westernmost
exposures of metamorphic Archean basement in southwestern Montana and thus possible
exposures of the orogen between the Wyoming and Medicine Hat/Hearne provinces (Harlan et
al., 1996). The rocks consist of a layered sequence of amphibolite-grade leucocratic gneiss,
overlain by well-foliated quartz+feldspar+biotite gneiss (Harlan et al., 1996). In general, the
layered metamorphic rocks of the southern Highland Mountains define a large doubly-plunging
antiform (O’Neill et al., 1988). The antiform structure, called the Highland Mountains gneiss
dome by O’Neill et al. (1988), was interpreted to have formed as a result of a poorly understood
regional metamorphic event during penetrative deformation at ca. 1.8 Ga, which reset the K-Ar
and Rb-Sr mineral systems in Archean basement rocks across much of southwestern Montana
(Gilletti, 1966, 1971; Erslev and Sutter, 1990). This was coincident with the Big Sky orogeny,
as defined in the Tobacco Root Mountains to the northeast of the study area (Harms et al, 2004).

The rocks of primary importance to this study include leucogranite sills and dikes
comprising the “sill complex” unit within the gneiss dome of the southern Highland Mountains
as mapped by O’Neill et al. (1996) in the vicinity of Steels Pass (rectangle in Figure 1B).
O’Neill et al. (1996) describe this unit as a “dense swarm of leucocratic quartz-feldspar sills
intruded into crystalline metamorphic rocks. The sills are present both as non-foliated, coarse-

grained pegmatite and as strongly sheared, lineated, and foliated mylonitic intrusions.” The



metamorphic rocks of this sill complex unit are proposed to coincide with a detachment/shear
zone that accommodated exhumation and formation of the Highland Mountains gneiss dome

(O’Neill et al., 1988). This detachment will be referred to as the Steels Pass shear zone.

I11. Background

The age and origin of the Highland Mountains is only loosely constrained in the
literature. Harlan et al. (1996) found that “°Ar/**Ar dates for biotite and hornblende in basement
gneiss from the southern Highland Mountains record cooling ages of 1820 — 1793 Ma. This date
was proposed to be the record of cooling of the Highland Mountains gneiss dome following
high-grade metamorphism in early Proterozoic time (Harlan et al., 1996). U-Pb
geochronological constraints from the Highland Mountains are extremely limited. U-Pb dates
from zircons sampled in gneisses of the southern Highland Mountains record two poorly
constrained age populations, the first at 2.7 — 3.0 Ga and the second at 1.8 — 1.9 Ga (O’Neill et
al., 1988). The latest event was interpreted as the record of metamorphism and deformation of
the Highland Mountains gneiss dome during the formation of the GFTZ (O’Neill and Lopez,
1985). The only other published U-Pb data from the Highland Mountains consists of a ca. 1.77
Ga date for monazite from a cross-cutting leucogranite in the quartzofeldspathic host gneiss
(Mueller et al., 2005). The limited geochronological data are consistent with Paleoproterozoic
tectonism affecting the Highland Mountain gneisses, but the accurate timing of gneiss dome

formation and deformation along the GFTZ remain poorly understood.



IVV. Methodology

This research addresses two major problems: 1) the relationship between the Highland
Mountains gneiss dome and the GFTZ, and 2) the timing of leucogranite emplacement and
deformation/alteration within the Highland Mountains gneiss dome. Data were compiled from
previous studies and a foliation trajectory map was constructed to help constrain the relationship
between the Highlands gneiss dome and the northeast-trending GFTZ (Figure 1B). Regional
geologic mapping and structure contouring outline the extent and orientation of the Highland
Mountains gneiss dome. Stereonet analyses and cross-sections constrain the geometry of the
dome in the focus area (rectangle in Figure 1B). Mapping and in-situ analysis of syn-kinematic
(grown during deformation) monazite in field-oriented tectonites (metamorphic rocks highly
altered due to tectonic activity) constrains the timing and nature of the hypothesized

Paleoproterozoic deformation.

Field Methods

The month-long field investigation focused on the NW-dipping Steels Pass shear zone
first noted by O’Neill et al. (1988). Observations included the orientation of gneissic fabrics,
mineral lineations, and a detailed field survey of the Paleoproterozoic leucogranite sill complex.
The field area was located at ~ 2500 m elevation with the vast majority of the area thickly
vegetated with high-altitude grasses greatly limiting the outcrop exposure. Foliation and
lineation orientation measurements were taken at 65 stations distributed across the ~ 24 km? field
area (Figure 4). Measurements from the field investigation and also those data recorded by
O’Neill et al. (1985) were contoured to provide an interpretive structure / foliation trajectory map

(Figure 5). Field measurements were incorporated into the conceptual cross section A-A’ and



plotted/analyzed using the OSX Stereonet 8.0.2 © 2011-2012 software package created by R. W.
Allmendinger (Figure 6). Twenty-two field-oriented samples were taken from a variety of rock
types distributed across the field area. The data provided structural constraints on the
relationship between the deformation of the Highlands gneiss dome and the emplacement of the
leucogranite sill complex in the context of the GFTZ. To understand the timing of leucogranite
emplacement and deformation of the Highlands gneiss dome, we collected field-oriented samples
from (1) the leucogranite sill complex, (2) the deformed gneisses hosting the sill complex, and
(3) a garnet-rich leucocratic gneiss approximately 5 km south of the map area. Slabs of the
samples were cut perpendicular to foliation and parallel to the stretching lineation to identify
sense of shear and the textural setting of monazite (e.g. Passchier and Trouw, 2005). For ten
select samples, polished thin sections were professionally prepared by Burnham Petrographics
for optical petrography and in-situ electron probe microanalysis (EPMA). Backscattered
electron (BSE) imaging, X-ray mapping, and quantitative analyses of monazite were done using
the Cameca® SX50 and Cameca® “Ultrachron” electron microprobe at the University of
Massachusetts Electron Microprobe Lab, Amherst, Massachusetts. Emphasis was placed on
identifying oscillatory- or sector-zoned monazite in the leucogranites to date the time of
crystallization, and defining domains of monazite in host gneisses that grew syn-kinematically

with deformation and metamorphism (e.g., Dumond et al. 2008).

Monazite Geochronology Methods
Monazite Th-U-total Pb geochronology by EPMA in this study followed the strategy
proposed by Williams et al. (2006). Monazite geochronology works on the basis of two

fundamental assumptions 1) All Pb measured in the sample is radiogenic, having formed from



the decay of its parent elements U or Th. 2) Monazite behaved as a closed system since the time
of crystallization. Concentrations (ppm) of U, Th, and Pb are measured via the electron
microprobe, these values are then plugged into the age equation (Equation 1) to produce a date
(1). 2%, 2% and 2%* are the decay constants of **Th, ?*®U, and %*U respectively (Montel et al.,

1996).

Equation 1

Pb = &[exp(lnzt) —1]208 +
232 238.04

0.9928[exp(12%81) — 1]206 +

535,07 *-0072[exp (2 7) — 11207
Full-section Ca Ka maps of thin-sections 12B-46B, 12B-15B and MT11-01 were
collected via EPMA to identify all monazite grains (Figures 7, 8, and 9; Williams and Jercinovic,

2002). Twenty-eight grains were mapped at high-spatial resolution (0.3-6.0 um) (Figures 7, 8,
and 9). Y La and Th Mo maps were batch-processed simultaneously and individually to identify
similar and texturally distinct compositional domains to guide subsequent quantitative analysis
(Williams et al., 2006). All quantitative trace element analyses were preceded by high-resolution
wavelength spectral scans and peak overlap corrections following the methods of Jercinovic and
Williams (2005) and Jercinovic et al. (2008) (see also Pyle et al., 2005). All background scans
and guantitative analyses were carried out with a focused beam at 15 kV and 200 nA using a
modified Cameca® SX100 electron microprobe - the Cameca® “Ultrachron” EPMA. For details
regarding the instrument, analytical protocol, and standards used, see Jercinovic et al., 2008. A
2 standard deviation uncertainty for each dated domian is reported (Figure 10). The final result
is illustrated as a single histogram probability distribution for each monazite domain. Multiple

domains from one or more grains (interpreted to represent the same monazite growth event based



on similarity in date, composition, and/or texture) were grouped together based on a bin size of
100 million years (Figure 11). Multiple results from a consistency standard of known age are
presented along with the data to document short-term systematic error and provide a qualitative

assessment of accuracy during the analytical session (Williams et al., 2006).

V. Results
Field Data

Field mapping of the Steels Pass area revealed a suite of geologic features affected by
multiple deformation events that have occurred since the Neoarchean. Foliation and lineation
measurements were divided into three field-based domains based on the mapped lithology and
structural setting.
Domain 1

Domain 1 included the Early Proterozoic and Archean mylonitic biotite gneiss (X(A)m)
and a thin (0.5km-wide) swath of the Early Proterozoic and Archean quartz + feldspar + biotite
gneiss (X(A)gf) exposed north of the Early Proterozoic sill complex (Xs(X(A)gf)) (Figures 4-6).
This domain is defined by the relative absence of clear stretching lineations and or leucogranite
sills. Measurements were restricted by access and outcrop exposure to the ridgeline of the
~ 700 m high Big Ridge trending NW-SE for ~ 5 km through the central map area. Fabric seen
in domain 1 is defined by the prevalent fine sheets of biotite and the occasional quartz ribbon
and/or plagioclase clast (Figure 12). This domain contains 20 data locations which reveal a
mean foliation orientation of 198°, 26°W and a mean lineation orientation of 15° » 199° (Figure
6). In this domain a measureable stretching lineation was only found in three site locations due

to the biotite-rich schistose nature of the gneisses. Domain 1 contained very few site locations in



which clear kinematic observations could be made, but where clast kinematics could be
measured a top-down-to-the-west sense of motion was indicated (Figure 13).
Domain 2

Domain 2 is defined by the persistence of a clear, down-plunge stretching lineation
observed in many of the 24 data locations mapped within the sill complex unit (Figures 4-6).
This area consists of Early Proterozoic quartz + feldspar + biotite gneiss that has been
pervasively intruded by leucogranite and mafic sills (Figures 14 and 15). Measurements in this
domain were predominantly taken in the area immediately north of Steels Pass and further
northeast on Brazil Ridge. Observations made in both areas confirm the NNE extent of the
Steels Pass shear zone. Domain 2 has a mean foliation of 209°, 22°W and a mean lineation of
22° > 261° (Figure 6). The fabric of domain 2 is defined by stringers of biotite, quartz ribbons
and flattened/stretched clasts of plagioclase feldspar (Figure 16). Within Domain 2, the
measurable lineations are distinctly defined by a tightly clustered, direct down-plunge, western
orientation on the stereonet (Figure 6). Lineations are primarily visible in the leucogranite sills
that intruded the host gneiss (Figure 17). These lineations were closely analyzed and were
interpreted to be dominantly a line of stretch due to tapered feldspar clasts and elongate ribbons
of quartz. In this area the leucogranite sills include abundant deformed plagioclase clasts, which
also uniformly indicate a top-down-to-the-west sense of shear (Figures 16 and 18).
Domain 3

Domain 3 includes all 31 data points south of the sill complex unit in the quartz +
feldspar + biotite gneiss (Figures 4-6). The western extent of domain 3 is delineated by the west-
dipping limb of an antiform structure. This area is intruded by both leucogranite and mafic sills,

which occur at approximately the same frequency, as opposed to the previous two domains in



which exposures of the leucogranite sills appear to greatly outnumber the mafic sills. Also
included within this domain is an Early Proterozoic mafic body (Xm). Field measurements
identify a sub-horizontal, upright, antiformal structure with a best-fit girdle calculated to be 339°,
87°E and with a SW-plunging B-axis of 03° » 249° (Figure 6). Parasitic folds are prevalent on
both the east and west limbs of the antiform (Figure 19). The antiform structure is truncated in
the north and south by the Hell Canyon Pluton (TKgmh) and the Twin Bridges Fault,
respectively. A clear overprinting of an older vertical fabric (S;~ 064°, 90°) by a younger, much
shallower fabric (S, ~ 180°, 3°W) is evident across this domain (Figure 20). Identifiable clast
kinematics are rarely observed, although a stretching or intersection lineation is consistently

definable that plunges both east and west in the respective limbs of the antiform.

Thin Section Data
Domain 1

One thin section was cut from a garnet + biotite gneiss (sample 12B-15B) collected in
domain 1 (Figure 21). Major mineral components include: ~ 50% quartz, ~ 25% garnet, ~ 15%
biotite, and ~ 10% plagioclase + K-feldspars. The fabric in this thin section is defined by quartz
ribbons ~ 1.0 mm in width with biotite plates conforming to the delineated fabric orientation.
Garnet is present, but pervasively replaced by biotite.
Domain 2

Six of the ten thin sections prepared were cut from samples sourced from domain 2. Four
samples were taken from leucogranite sills and the other two thin sections are from mafic
granulite sills. Thin section 12B-01 from a leucogranite sill near Steels Pass exhibits excellent

clast kinematics (Figure 22). The fabric in 12B-01 is defined by elongate quartz ribbons. Major

10



mineral components include: ~ 90% quartz, ~ 5% plagioclase, ~ 5% biotite. Some plagioclase
clast cores have been completely replaced by clusters of new small grains. Core-mantle
structures apparent in the larger syn-kinematic plagioclase clasts range from 2-5 mm in diameter.
In contrast, recrystallized mantle clasts are substantially smaller, ~ 350 — 550 um in diameter.
Matrix grains are ~ 125 um in diameter.

A second leucogranite sill within domain 2 found on Brazil Ridge was sampled (thin
section 12B-11, Figure 23). Major minerals in this sample include: ~ 60% quartz and ~ 40%
plagioclase. The fabric in this section is defined by elongate quartz ribbons and a few large (2.0
— 3.0 mm) quartz clasts. Quartz ribbons and clasts exhibit pervasive undulose extinction. The
quartz ribbons vary in size, with the largest ribbons exceeding 20 mm in length and ~ 1.5 mm
wide. Plagioclase clasts show core-mantle structures, separating new small mis-aligned
plagioclase grains. Core clasts range in size from ~ 3.0 — 4.0 mm in diameter, but recrystallized
mantle grains are only 350 — 450 um. The core and mantle grains are surrounded by a matrix of
much finer quartz and plagioclase grains (75 — 100 um). Subtle bands of fine-grained matrix are
aligned with the fabric extending across the section.

Thin section 12B-46B is also from yet another leucogranite sill ~ 200 m south of the
12B-01 site in the vicinity of Steels Pass (Figure 24). This thin section is of utmost importance
because it contains monazite grains, which have been analyzed further and will be discussed in
the monazite geochronology section. The fabric in this sample is defined by quartz ribbons, with
the largest ones ~ 1 mm x 15 mm in size, with well-developed undulose extinction. Quartz
ribbon grains have been recrystallized into polygonal forms. Syn-kinematic K-feldspar and
plagioclase clasts show top-down-to-the-west dextral shear. The largest feldspar grains are ~ 1.5

mm in diameter, many of which show severe deformation as cracks and alteration to sericite.
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Evidence for core-mantle structures exists, though in this thin section the core grains have been
completely recrystallized into new grains with the mantle (350 — 400 um). Grain boundaries in
this sample are convex in shape, likely due to a static recrystallization process discussed later.

Mafic sills were also sampled and thin section 12B-10B is from a mafic granulite sill on
Brazil Ridge (Figure 25). Dominant minerals include: ~ 70% hornblende, ~ 10% quartz, ~ 15%
garnet remnants, and ~ 5% plagioclase. Garnet is replaced by hornblende, but remnant garnet
grains ~ 2 mm in diameter are present. The matrix fabric in this thin section is defined by the
grain-shape preferred orientation of the very fine-grained (~ 125 um) laths of hornblende.
Domain 3

Two thin sections examined are from this domain. Sample 12B-32 is from a leucogranite
sill that crosses the east-dipping limb of the antiform (Figure 26). This sample is very coarse
grained and composed of ~ 80% quartz, ~ 10% plagioclase, ~ 5% K-feldspar, and ~ 5% biotite.
Large quartz clasts with core/mantle structures dominate this section. Core grains are ~ 12 mm
in diameter and the smaller mantle grains are ~ 1.0 — 1.5 mm in diameter and the very small
matrix grains range in size from 250 to 500 pum in diameter. Fabric in this section is delineated
by numerous elongate quartz ribbons, which are ~ 1Imm in width and 5mm in length.

Thin section 12B-40 is from a leucogranite sill on the west-dipping limb of the antiform
(Figure 27). Core-mantle structures persist with core clasts of 1.5 to 3.5 mm in diameter and
mantle grains of 250 — 450 um in diameter. Fabric in this section is defined by quartz ribbons ~
700 um wide and up to 10 mm in length and with undulose extinction. Grain boundaries outside
the quartz ribbons are curved. Mineralolgy includes: ~ 90% quartz, ~ 5% plagioclase, and ~ 5%
biotite. Bands in the thin section are rich with platy biotite grains aligned with the rock fabric.

The entire section is divided by a pair of micro-faults oriented perpendicular to the fabric.

12



An additional thin section is MT11-01, from a garnetiferous migmatitic sill
approximately 5 kilometers south of the mapping area (Figure 28). The major mineral
components of this rock include: ~ 40% quartz, ~ 30% plagioclase + K-feldspar, ~ 20% garnet, ~
10% biotite. Feldspars display replacement by sericite/muscovite (white micas). This sample has
a coarse-grained (1.0 — 3.0 mm) phaneritic texture. Weak fabric is visible due to the elongate
quartz grains, which exhibit undulose extinction (sub-grain boundaries). Grain boundaries tend

to be nearly perpendicular to fabric.

Monazite Geochronology

Monazite dating analyses were performed on the thin section of leucogranite sill
12B-46B from domain 2. This sample was chosen for the analysis due to its structurally
significant field location and the quality of its monazite grains. Five priority grains were dated
using the Cameca® “Ultrachron” EPMA. Grains were given priority based on their zoning and
condition. Severely altered grains were excluded from the analyses.

Two distinct populations of monazite domains are exhibited in the five monazite grains
analyzed (Table 1A-1D; Figure 11). The older population (P1) includes of 11 dates taken from
the cores and various zones within four of the analyzed grains. P1 has an average date of
2444.87 = 392 Ma (Figure 10). These dates may be indicative of inherited Archean monazite
grains from the country rock through which the leucogranite sill intruded. The younger
population (P2) consists of 6 dates taken from the rims of grains M1, M5, and M7 and the core
of grain M6 (Figures 29 and 30). P2 has an average date of 1534.27 + 116 Ma (Figure 10).
Neither of these populations represents the crystallization age of the leucogranite sill dated by

Mueller et al. (2005) as ca. 1770 Ma.
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V1. Discussion

Research on the Highland Mountains gneiss dome is of particular importance because of
its location in the enigmatic GFTZ. This zone is recognized as the northern boundary of the
Wyoming cratonic province (O’Neill and Lopez, 1985). Although there is disagreement
concerning both the timing and tectonic setting of the formation of the GFTZ (Mueller et al.,
2005), it is inferred as the suture zone between the unexposed Archean Medicine Hat block of
the Hearne province and the Wyoming craton (Fig. 1A) (O’Neill and Lopez, 1985). Aspects of
the Highland Mountains and other Precambrian basement rock in SW Montana resemble those
structures found in the Early Proterozoic suture zones of the Canadian Shield (O’Neill, 1998;
Hoffman, 1989), where monazite analyses have previously been utilized successfully to date
deformation (e.g., Snowbird Tectonic Zone: Dumond et al., 2008). The Archean leucogneisses
coring the Highland Mountains are inferred to have experienced Paleoproterozoic strain during
collision along the GFTZ (Mueller et al., 2005).

Previously mapped by O’Neill et al. (1996), a structural gneiss dome has been interpreted
as underlying much of the southern extent of the Highland Mountains. Previous research in the
region has been inconclusive regarding whether the gneiss dome formed directly in response to
collision along the GFTZ or as a result of later extension, e.g., as a metamorphic core complex
(Foster et al., 2006). The discovery of the Steels Pass shear zone supports the existence and
development of the Highland Mountains gneiss dome during post-orogenic extension as a result
of crustal thickening. The Steels Pass shear zone, identified by a shallow west-dipping fabric
(Figure 14), was formed as the zone of detachment along which the Highland Mountains gneiss
dome was exhumed. The activation of the Steels Pass shear zone and the exhumation of the

gneiss dome likely were initiated late in the Paleoproterozoic tectonic event history (~ 1.7 Ga:
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see monazite data interpretation below). The exhumation of the Highland Mountains gneiss
dome resulted in lower amphibolite grade metamorphism and partial melting. Post-orogenic
extension is commonly associated with lithospheric delamination and mafic magmatism (Collins,
2002). This process could have produced the mafic sills present in the Highland Mountains as
underplating mafic material was emplaced between ~ 1.80 and ~ 1.75 Ga in the Medicine Hat

block to the northwest (Davis et al. 1995).

Structural Evolution

Across the map area, the three domains defined above are distinctly visible in the
foliation trajectories. Domain 1 includes a penetrative fabric which is consistently oriented at
around 198°, 26°W (Figure 6). This is interpreted to be the background host gneiss fabric, i.e.,
pre-emplacement of the leucogranites and a relict feature of the Neoarchean?-Paleoproterozoic
metamorphic history of the mylonitic bioite-gniess.

Further south, the transition from domain 1 into domain 2 is marked by the abrupt
increase in leucogranite sills and the definition of a well-defined stretching lineation (Figures 4-
6). The stretching lineations in domain 2 sills define the NNE trending Steels Pass shear zone as
a zone of dextral shear sense along a gently W-dipping extensional shear zone or detachment.
Measurements initially taken in the Steels Pass area were subsequently observed further north on
Brazil Ridge leading to the conclusion that this zone of dextral shear extends north-northeast
from Steels Pass. Further investigation to the south of Steels Pass would likely confirm the
southern extension of the Steels Pass shear zone.

The Steels Pass shear zone is thought to be a line of detachment along which the

Highlands Mountains gneiss dome was exhumed. This hypothesis is supported by clast

15



kinematics observed in the leucogranites of the shear zone and the geometry of the gneiss dome
itself. Down-to-the-west shear along the Steels Pass shear zone would accommodate the
exhumation of the gneiss dome as seen to the east and south of Steels Pass (Figure 31). The
Steels Pass shear zone is truncated in the north and south by the Cretaceous Hell Canyon Pluton
and the reactivated Tertiary Twin Bridges Fault, respectively (O’Neill et al., 1988).

Domain 2 transitions south into domain 3 across Steels Pass Creek. Domain 3 is defined
by the prevalence of parasitic folds formed on the limbs of a sub-horizontal, upright antiform.
Field measurements indicate that the foliations in domain 3 steepen upwards towards the axial
surface of the antiform. Leucogranite and mafic sills are abundant though they are not
consistently oriented along the fabric of domain 3 as they are in domain 2. The antiform
structure may be part of a second-order fold complex comprising the westernmost structural

exposure of the Highlands Mountains gneiss dome.

Deformation Setting

The suite of microstructures observed in thin section indicate deformation associated with
the exhumation of the Highland Mountains gneiss dome ceased while the involved rocks were
still at significant depth in the presence of hydrothermal fluids.

Microstructures indicate two phases of deformation: the first being syn-tectonic
(structures formed during the tectonic deformation event that drove the metamorphism) and the
second being post-tectonic (structures formed after the tectonic deformation has ceased). Syn-
tectonic conditions for these rocks are characterized by lower amphibolite facies metamorphism,
not exceeding 600°C, based on quartz and feldspar microstructures (Tullis, 2002). Under these

conditions, garnet may have grown in the migmatite sill (MT11-01) and the quartz + feldspar +
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biotite gneiss of domain 1 (12B-15B). Along the Steels Pass shear zone in domain 2,
leucogranite sills (12B-01 and 12B-46B) were emplaced under syn-tectonic conditions, i.e., the
deforming shear motion influences the shape and orientation of the quartz ribbons and clasts
during emplacement, indicating a shallow-west-dipping dextral sense of shear (evidence of this
shear is seen both in outcrop and in thin section; Figures 14, 17, 22, and 24). The deformed syn-
kinematic clasts of plagioclase underwent a dynamic recrystallization process, forming core-
mantle structures, which lower the total internal energy configuration of the clast (Figure 23).
Syn-tectonic deformation ceased at relatively high temperatures in the presence of some amount
of melt and/or grain boundary/pore fluids. The post-tectonic processes of static recrystallization
subsequently dominated apparently while the terrain was cooling and being exhumed. During
static recrystallizaton, sub-grain boundaries are developed in the quartz ribbons and clasts as the
dislocations are swept to zones of higher concentration (Evans et al., 2001; Paschier and Trouw,
2005). Dislocation tangles are removed as the grain boundaries tend to grow and straighten
while undergoing GBAR (grain boundary area reduction) (Paschier and Trouw, 2005). The
grains themselves become more polygonal in form (foam texture) as a result of the GBAR

(Figure 32).

Monazite Geochronology

The monazite geochronology study sought to establish the timing of the Highland
Mountains gneiss dome with respect to the emplacement of a local leucogranite sill complex.
Understanding this relationship would allow important constraints to be placed on the timing and
deformation of the Highland Mountains gneiss dome with respect to the development of the

GFTZ and the Steels Pass shear zone.
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Emplacement of the sill complex was initially defined by Mueller et al. (2005) based on
ca. 1.77 Ga crystallization ages for one leucogranite from the area. Sample 12B-46B did not
preserve any evidence for ca. 1.77 Ga monazite, but did contain abundant inherited ~2.5 Ga
(Archean) monazites (P1). Leucogranite sill 12B-46B apparently did not grow monazite during
emplacement due to its bulk composition and/or pressure-temperature-fluid constraints.
Monazite growth requires a phosphatic (PO4) bulk composition containing rare earth elements
(REE’s) such as Cerium and Yttrium (Williams et al., 2006a). The leucogranite sill 12B-46B did
inherit at least four Archean monazite grains from the surrounding country rock (X(A)qf). Some
200 My later, a Mesoproterozoic passive intracontinental rifting event caused by lithospheric
extension led to the formation of the Belt-Purcell basin (Chandler, 2000). This rifting event is
inferred to coincide with the growth of the younger monazite population (P2). This passive
rifting event drove extensional faulting and sporadic tholeitic to alkaline magmatism to occur in
the period of ~1500 Ma to about 1320 Ma during deposition of the Belt supergroup (Lydon,
2008). The intracontinental rifting and associated magmatism could have mobilized reactive Th,
Si, Ca, and (Y + REE) grain boundary/pore fluids into communication with the sill complex
leucogranites, causing grain alteration and growing ca. 1.5 Ga (P2) Mesoproterozoic rims on the
inherited Archean monazite cores (M1, M5, and M7; Figures 29 and 30) (e.g. Bingen and van
Breemen, 1998; Hansen and Harlov, 2007; Rasmussen and Muhling, 2007; Simmat and Raith,

2008; Martins et al., 2009; Harlov et al., 2010).

VI1. Conclusions
This research has examined the timing and deformation of the Highland

Mountains gneiss dome by focusing on a local leucogranite sill complex as situated within the
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Great Falls tectonic zone. The following represents a preferred order of events.

Circa 2.5 Ga: Monazite grains form and record the crystallization ages of either and/or
both of the separate Archean Medicine Hat block and Wyoming Province terranes.

1.78 — 1.72 Ga: The GFTZ closes along its NE-SW trend driving orogenesis and
significant crustal thickening (Harms et al, 2006). Leucogranite sill emplacement at depth along
the Steels Pass shear zone coincides with extension caused with post-orogenic crustal thinning.
The crustal extension and associated top-down-to-the-west shear along the Steels Pass shear zone
allow the development of the Highland Mountains gneiss dome. All leucogranite sills emplaced
during this extension contain monazite (P1) inherited from the Archean country rock and some
sills (constrained by their bulk composition) include new monazite grains that formed during the
time of leucogranite crystallization. The sill sampled in this study apparently did not have the
appropriate bulk composition to grow monazite at 1.78-1.72 Ga, if it was emplaced at this time
(as dated for a different leucogranite sill nearby by Mueller et al. (2005). Core-mantle micro-
structures developed in the leucogranites as a result of syn-tectonic dynamic recrystallization.
Following the crustal extension and syn-tectonic deformation, post-tectonic deformation
processes dominated. This results in the static recrystallization processes of GBAR and develops
the foam-like grain texture seen in thin section.

Circa 1.5 Ga: The Belt-Purcell passive intracontinental rifting event mobilized enriched
(Y+REE) hydrothermal grain boundary/pore fluids from the alkaline/tholeitic melts into
communication with the local leucogranite sill complex. Presence of the enriched fluids drove
monazite grain alteration and grew a younger population (P2) of high-Y monazite rims on the
old (P1) Archean monazite cores. Monazite grains are individually altered by variations in the

enriched fluid composition and reaction conditions.
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Today: Two populations of monazite grains are seen (P1 ~2.5 Ga and P2 ~1.5 Ga) in
leucogranite sill 12B-46B. Neither of these populations may represent the actual crystallization
age of this individual sill. The annealed textures of the thin section micro-structures may
represent the combination of effects of the syn- and post-tectonic deformation processes as well
as the reactions and alterations that took place during the growth of the younger monazite

population (P2).
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VIII. Figures

Figures 1A and 1B:
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Figure 1A) A regional location map
showing the Highlands Mountains
situated within the Great Falls
tectonic zone (O'Neill and Lopez,
1985), between the Wyoming craton
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Hat block to the northwest. Adapted
from Ault et al. (2012)

Figure 1B) Foliation trajectory
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Figure 2:
Adapted from O’Neill and Lopez (1985), this figure illustrates the extent of the Great
Falls tectonic zone and other related geologic features at the scale of North America.
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Figure 3:
Adapted from Mueller et al. (2005), this figure illustrates the position of the Great Falls
tectonic zone relative to the associated regional geologic provinces and orogenic zones.
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Figure 4:
Geologic map and data resulting from field investigation. Base layer topography adapted
from USGS Table Mountain, MT Quadrangle. Cross section A-A’ is depicted in Figure 6.
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Figure 5:
Contoured foliation measurements illustrating changes in fabric orientation across the
field area.
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Figure 10:

Average dates plotted for each sample domain. Two populations are apparent, population
1 (P1) has an average date of 2444.87 + 392 Ma, and population 2 (P2) has an average date of
1534.27 £ 116 Ma. Error bars represent the £2¢ standard deviation for each population.
Complete monazite dataset is seen in Table 1A-1D.
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Figure 11:

Monazite date count histogram. Each bar represents the number of dates calculated
within that corresponding 100 My age bin. The red curve illustrates a polynomial fit to the data.
The two peaks seen at ~ 1.5 and ~ 2.5 Ga represent the dominant monazite date populations P2
and P1 respectively.

12B-46B: Monazite Date Counts

number of dates
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Figure 12:

This field image taken at site 12B-14 (See Figure 4 for location) illustrates the textures
and mineralogy seen in the Archean Mylonitic gneiss (X(A)m) of domain 1. This location in
particular is abundant with garnet retrogressed to biotite. U.S. quarter for scale. Photo Credit:
Lane Boyer, August 2012.
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Figure 13:
This outcrop image at site 12B-15B illustrates a kinematic garnet & — clast with
leucocratic tails indicating a top-down-to-the-west-southwest shear sense. Pencil tip for scale.

Photo Credit: Greg Dumond, August 2012.

12B-15B

i | Kinematic garnet 8 - clast in X(A)m.

~ Sinistral shear sense indicates top-
down-WSW.

Picture view at 320°.
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Figure 14:

Field shot taken at site 12B-01 just north of Steels Pass, within the Steels Pass shear zone.
The shear zone fabric strikes at ~160° and has a shallow dip to the west-southwest at ~20°
defined by leucogranite sills and porphyclasts of plagioclase and k-feldspar with quartz ribbons
(See inset image). The author for scale. Photo Credit: Greg Dumond, August 2012.

12B - 01
Shallow WSW dipping Steels Pass

shear zone. (160°, 20°SW)
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Figure 15:

Outcrop at site 12B-46, within the Steels Pass shear zone, exposing the leucogranite sills.
Fabric is defined by the leucocratic layers, leucogranite sills and biotite in the host gneiss.
Hammer for scale. Photo Credit: Lane Boyer, August 2012.

12B - 46

Leucogranite sills intruding mafic
host rocks in the Steels Pass shear
zone.

Fabric: 153°, 20°SW

Viewing at 250°.
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Figure 16:
Field image taken at site 12B-07 within the Steels Pass shear zone. This figure illustrates

a plagioclase o-clast with sinistral top-down-to-the-west-southwest shear. Fabric is defined by
quartz ribbons and deformed plagioclase clasts. U.S. quarter for scale. Photo Credit: Greg
Dumond, August 2012.

. o
Viewing at 351°.

e
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Figure 17:

Outcrop at site 12B-46, within the Steels Pass shear zone, seen here is a ~2 meter thick
leucogranite sill fully exposed in outcrop. The base of this sill was heavily corrugated with a
lineation at 17°—250°, indicating syn- to post-emplacement deformation of the sill along the
shear zone fabric. This is the sill analyzed in the monazite geochronology study. Hammer for
scale. Photo Credit: Lane Boyer, August 2012.

12B-46

Massive luecogranite sill near Steels
Pass.

Strong stretching lineation (17°, 250°)
In corrugated fabric at base.

Viewing at 250",
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Figure 18:
This field shot taken at site 12B-11 on Brazil Ridge illustrates the northern continuation

of the Steels Pass shear zone. The plagioclase o-clast seen here indicates a top-down-to-the-
west-southwest shear sense, plunging at 32° towards 246°. Pen for scale. Photo Credit: Greg

Dumond, August 2012.

128 =il

Kinematic plagioclase clast seen in a
luecogranite sill on Brazil Ridge.

Sinistral top-down-WSW (327, 246°) shear
sense. Viewing at 336°.
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Figure 19:

Outcrop at site 12B-43 on the western limb of the antiform mapped in domain 3. The
fabric is defined here by granite pegmatic layers within the quartz+feldspar+biotite gneiss
(X(A)gf) (See inset image). The parasitic folds seen here steepen to the east as one approaches
the hinge of the anitform. Hammer for scale. Photo Credit: Lane Boyer, August 2012.

12B-43

Parasitic Z-folds as seen in the X(A)gf on
the west limb of the domain 3 antiform.

Viewing at = 060°
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Figure 20:

Outcrop at site 12B-38 illustrates the near vertical fabric in X(A)qf seen near the hinge of
the domain 3 antiform. The steep S1 fabric (yellow) is overprinted by the shallow S2 fabric
(red). This shallow S2 fabric may relate to the formation of the Highland Mountains gneiss
dome. Pencil for scale. Photo Credit: Lane Boyer, August 2012.

12B - 38

X(A)gf near hiﬁbg_pf antiform.r
VerticalS1 fabric (060%.90°) being
over-printed by a shallow:S2 fabric -

(097°,39°SW). N

Viewing at 060°.
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Figure 29:

Thorium Ma X-ray map of monazite grain M5 from thin section 12B-46B. Three distinct
domains are apparent by variations in thorium concentration. Average dates are given in
millions of year ago with errors of 26 standard deviation. Image is 300 x 300 pixels in
dimension, each pixel is 0.596 um in width.
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Figure 30:
Calcium Ko X-ray map of monazite grain M7 from thin section 12B-46B. At least three

distinct domains are apparent by variations in calcium concentration and average date. Average
dates are given in millions of year ago with errors of +2¢ standard deviation. Image is 500 x 500
pixels in dimension, each pixel is 0.572 pm in width.
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