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Abstract 

 

Lysenin is classified as a pore-forming toxin protein that is isolated from the earthworm 

Eisenia fetida and consists of 297 amino acids [1]. Lysenin inserts large conducting pores (3.0-

4.7 nm in diameter) into artificial membranes (BLM) which include sphingomyelin. These pores 

(channels) are open and oriented upon insertion into the bilayer lipid membrane. Lysenin 

channels gate at positive voltages (voltage-induced gating), but not at negative voltages. Lysenin 

pores also exhibit activity modulation in response to changes in ionic strength and pH, indicating 

that electrostatic interaction is responsible for Lysenin conductance activities. In this line of 

inquiries, and by modulating Lysenin electrostatic interactions, it was hypothesized that the 

electrical properties of Lysenin pores (channels) could be influenced by multivalent ions.  

The macroscopic conductance of Lysenin channels was inhibited by addition of 

multivalent ions. The inhibition was concentration dependent and reversible by addition of 

chelating or precipitating agents. The ability of the examined multivalent ions to inhibit pore 

conductance depended on ionic charge and size. Taken together, these results indicate that the 

Lysenin channel has a binding site that is placed inside the channel and interacts electrostatically 

with multivalent ions resulting in a conductance response related to ionic number and size. The 

high sensitivity of Lysenin pores toward trivalent ions indicates that Lysenin channels could be 

used to develop novel biosensors for multivalent ion detection in environmental samples. 

The dynamic interaction of Lysenin with multivalent ions was modeled based on the 

conductivity of the bulk solution and the status of Lysenin channels. The purpose of the model 

was to provide a mechanistic understanding of Lysenin gating. Using the experimental data, an 

equilibrium rate constant of the interaction between Lysenin and each multivalent ion was 

estimated. Each rate constant was related to the binding affinity of each ion with the binding site. 
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1 

Chapter 1 Introduction 

1.1 Introduction to Biomembrane Channels and This Research 

In any biological membrane there are pathways called ion channels for ions or 

biomolecules to pass through. They are responsible for controlling the movement of 

biomolecules or ions in and out of these membranes [2], and can be considered as controlled 

pores in the membrane. They control the traffic across the biological membrane by gating, so 

they open and close according to the need of the cell or the organelle inside it. There are different 

types of gating; voltage and ligand gating are two common examples. In voltage gating, for 

instance, the channel responds to a voltage to switch its state from open to close state or vice 

versa [3].  

The investigation of ion channels in the cell or organelle membranes has many 

limitations and difficulties. To overcome these difficulties in this research, a self- inserted 

protein (called Lysenin) in a membrane containing sphingomyelin is used. 

This work is a valuable addition to previous studies in the field of ligand gating and its 

uses in biosensing applications. In this study, Lysenin, which is categorized as a pore-forming 

toxin, is used to insert channels in an artificial planar bilayer lipid membrane (BLM). The 

mechanism of Lysenin’s gating was inspected under the influence of multivalent ions in order to 

reveal the functionality of such a protein in the BLM. This work proposes that Lysenin channels 

have a binding site that interacts electrostatically with multivalent ions and senses them 

differently according to their ionic numbers and sizes. This gives Lysenin the capability to be 

used as a sensor for biological applications like detecting the amount of different ions such as 

lead, potassium, copper and sodium in our drinking water. In addition, the interaction of Lysenin 
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and multivalent ions was modeled based on the conductivity of the bulk solutions and the status 

of Lysenin channels. The purpose of that modeling is to provide more evidence that enhance us 

to comprehend the mechanism of Lysenin gating. Accordingly, by fitting the experimental data, 

the equilibrium rate constants of the interaction between Lysenin and metal ions were estimated. 

1.2 The Importance and Motivation  

The incentive of this study was first to understand the gating process of ion channels by 

investigating the dynamic interaction between metal ions and Lysenin channels, and then to 

establish a biological sensor setup to detect various metal ions in environmental samples.  

Ion channels are central in performing many biological processes; they can be found 

either in external membranes (plasma), or the in the membranes of organelles inside the cell such 

as lysosomes and mitochondria [2]. 

The importance of this investigation arises from the fact that all living cells have 

biological membranes (biomembranes), which define either their boundaries or the boundaries of 

their constituent organelles. A Biological membrane consists of lipids (mainly phospholipids) 

and proteins either attached (associated protein) or embedded (integral protein), in addition to 

some other complexes [4]. 

Providing a compartment for the cell’s constituents is not the only function of the 

membrane. The plasma cell membrane (exterior) for example, has a potential difference between 

its interior and exterior sides due to the differing concentrations of various types of ions. This 

potential difference provides what is called the resting membrane potential which lies in the 

range (-60mV — -80mV) [5]. In order to maintain this resting potential the biomembrane should 
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contain controlled pathways within its structure; called ion channels [6]. These ion channels are 

regulated (controlled) by the cell where the biomembrane is said to be selective [4]. 

  Understanding the mechanism of Lysenin’s gating would enrich our knowledge of the 

functionality of ion channels in living systems and cells. The role of ion channels is not only in 

controlling their pathways across their biomembranes, although these channels have several 

other functions. For example, they are responsible for regulating the pH and the size of the cell 

itself or the organelles inside it; in addition, they are significant for the transport of salt and 

water. Any failure in their functionality may lead to severe medical consequences. Epilepsy is an 

ion channel disease which affects the neuromuscular system [2]. 

1.3 Main Dissertation Problem 

My main passion is to understand how cellular transport takes place. In this direction of 

investigation, the efforts of this research focus on the field of microcarrier drug delivery, with 

particular emphasis on transport of medications and/or therapeutic material across 

biomembranes.  

This dissertation endeavors to investigate the mechanism of ligand-induced gating of 

Lysenin as a pore-forming toxin under the influence of multivalent ions, to further explore the 

potential of this setup for use in biosensing applications, and finally to investigate theoretically 

the kinetics of these ions and Lysenin channels by modeling the experimental data. 
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1.4 Dissertation Structure 

This dissertation consists of eight chapters. In chapter one, the introduction; it consists of 

a brief overview of ligand-gating and the significance of this study within this field. 

Chapter two is the literature review, where it begins by explaining the importance of the 

tiny sizes of cells and the transport through biomembranes. The definition of biomembrane and 

the significance of diversity of its lipid structure, its charge surface and their influence on 

functionality.  Then full description of Lysenin, the protein that has been used in this research, 

metal ions and the definitions of pH, electrical conductivity. 

Chapter three, materials and methods, a full explanation of the required chemicals, lipids 

and the instrumentation that has been used will be presented and fully explained. In chapter four, 

results and discussion, the sensing of multivalent ions by Lysenin and the mechanism of 

Lysenin’s gating will be discussed in detail. 

Chapter five is the modeling of the dynamic interaction between ions and the binding site 

of Lysenin. In chapter six the experimental data are fitted by using the suggested mathematical 

model to estimate the equilibrium rate constant. Chapter seven is the summary of the 

experimental results and conclusion and finally, Chapter eight, the future work; some projects 

are proposed that can be conducted by any interested future student or researcher in this field. 
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Chapter 2 Literature Review 

2.1 The Cell and its Membrane 

Cells are divided into two types, prokaryotic and eukaryotic. The prokaryotes, such as 

bacteria, do not have a nucleus, while the eukaryotes such as plants, animals and fungi do [7].  

Cells have different shapes and sizes. Bacteria, for example, range in diameter from about 

1-5 m in diameter; while animal cells are about 10-100 m. Some cellular duties, such as the 

transport of biomaterials across the cell membrane, are related to the proportion of its surface 

area to its volume [4]. The surface area effectively represents the amount of cell membrane 

available for the uptake of nutrients and the excretion of waste [7]. The volume of a spherical 

shape increases more than its surface area (V α r
3
, whereas A α r

2
) and the cell has very small 

dimensions. The ratio of its surface area to volume is quite large which explains the tiny size of 

the cell, which enhances the membrane of the cell in performing the cell’s duties and puts a 

constraint on the size of the cell. Its size can increase only as long as the membrane’s surface 

area is adequate to transport biomaterials across it. 

One organelle which all cells have in common is the cell membrane (plasma membrane), 

which defines the cell’s boundary and provides it with its distinct compartment. The plasma 

membrane controls the traffic of biomolecules and ions across it. The membrane of the cell has 

pathways (channels) which control the quantity and the quality of biomolecules and ions that 

pass across the membrane. The mechanism of controlling the membrane channels is called gating 

and selectivity [4]. A schematic of a cross sectional area of an animal cell with some of its 

constituents is illustrated in Figure 2.1 [7], demonstrating the importance of the biomembrane for 

the cell as a whole and for its constituents such as the nucleus and mitochondrion. 



6 

 

 

Figure 2.1: Schematic drawing of a cross section of an animal cell showing the 

cell membrane and the biomembranes of other cell parts. 

The plasma membrane and other cellular membranes are composed primarily of two 

layers of phospholipid molecules (4-5 nm thick) [7]. The two phospholipid layers arrange 

themselves such that all the hydrophilic ends directed toward the inner and outer membrane 

surfaces, while the hydrophobic ends are hidden within the interior (see Figure 2.2). In addition 

to the phospholipid, the cellular membrane has smaller amounts of other lipids, such as 

cholesterol, and many kinds of proteins, which are inserted into the phospholipid structure [8]. 
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Figure 2.2: Schematic drawing of bilayer lipid membrane (BLM) shows their two 

leaflets (layers), which consist of hydrophilic headgroups (polar) and the 

hydrophobic tails (nonpolar) surrounded by water. 

2.2 Diversity of Biomembrane Lipid Structure 

Biomembranes usually contain different kinds of lipids; more than what is required to 

form their bilayer. Each lipid species has its own diverse role. Sphingomyelin (SM), a major 

sphingolipid, is one of the constituents of the plasma membrane of animal cells (in the outer 

leaflet). Sphingomyelin interacts with cholesterol that found in the membrane and forms what is 

called lipid rafts [9]. 

The biological membrane consists of proteins embedded in (integral proteins) or attached 

to (peripheral proteins) bilayers, which are mainly constructed of lipids. Most membrane lipids 

and proteins are not simply hydrophilic (water loving) or hydrophobic (afraid of water), but in 

fact have both hydrophobic and hydrophilic sections. In the presence of water, the hydrophilic 

polar heads orient themselves to self-assemble at the outer surface of the bilayer lipid membrane 

and their hydrophobic hydrocarbon tails become hidden inside [10] as illustrated in Figure 2.2. 
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Because of their amphipathic nature, (hydrophilic and hydrophobic regions within the same 

structure) lipids are insoluble in water, but are highly soluble in organic solvents such as n-

Decane or chloroform [11]. An example of the structure of amphipathic molecule, phosphatidyl 

ethanolamine (PE or cephalin), is illustrated in Figure 2.3. 

The length of the hydrocarbon chains plays an important role in the stability and fluidity 

of the membrane. The shorter the hydrocarbon tails (chains), the weaker the interaction between 

them, accordingly, the lipid is less rigid and become fluid, especially at low temperatures. In 

addition, the kinks in the hydrocarbon tails (double bond between two CH molecules in the chain 

as shown in Figure 2.3) also increase the fluidity of the membrane because these kinks impede 

the packing of fatty acids [6].  
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Figure 2.3: The membrane phospholipids and its amphipathic nature. (a) A 

phospholipid molecule consists of a polar head and two fatty acids (nonpolar tails) 

attached by a glycerol backbone. PE is an example of the membrane 

phospholipids, where the polarity of the head results from a positively charged 

amino group connected to a negatively charged phosphate one. Note that if the 3 

hydrogen atoms bonded to the N atom were replaced by 3 methyl groups (CH3) 

then we would have Phosphatidylcholine (PC or lecithin). (b) A schematic 

drawing of this phospholipid molecule (PE or cephalin). Such a molecule is called 

zwitterion (hybrid ion) because it has both positively and negatively charged 

groups in its structure [12]. 

In terms of chemical structure, the six main classes of lipids are fatty acids, composed of 

a long, unbranched hydrocarbon chain with a carboxyl group at one end, phospholipids such as 

PE, triacylglycerols (also called triglycerides) which contain a glycerol group attached to three 

fatty acids, glycolipids, steroids such as cholesterol, and terpens [4, 7].  
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A cellular membrane is essentially a hydrophobic permeability barrier that consists of 

phospholipids, glycolipids, cholesterol, and membrane proteins. With the exception of bacteria, 

the membranes of most cells contain sterols (such as cholesterol). Phospholipids are considered 

crucial since they are the main lipid constituents of most biological membranes and they have 

amphipathic nature too. Phospholipids have asymmetrical distribution between the inner and 

outer leaflet of biomembrane. Sphingomyelin (SM) for example is found in the outer leaflet, 

while Phosphatidylethanolamine (PE) resides in the inner one [7]. 

In terms of structure, phosphatidic acid (PA) (two fatty acids and a phosphate group 

attached to a glycerol), is essential in the synthesis of other phospholipids. The 

phosphatidylethanolamine (PE), illustrated in Figure 2.3, is just one of the phospholipids that can 

be synthesized from PA, and if we replaced the ethanolamine in its head with serine, inositol, or 

choline we would get phosphatidylserine (PS), phosphatidylinositol (PI), and 

phosphatidylcholine (PC or lecithin) respectively. The latter in particular (PC) is one of the 

predominant phospholipids in biomembranes, with a large fraction of their surfaces being 

occupied by phosphocholine groups [13].  Along with these phospholipids (PE, PC, PI, PS), 

(Phosphatidylglycerol) and diphosphatidylglycerol (Cardiolipin) also count among the most 

common phospholipids [6]. 

PE, PC and PS are examples on the zwitterionic lipids, which have both positive and 

negative charges (polar) on their head groups [12]. The positively charged groups of 

ethanolamine and choline attached to phosphatidic acid, via phosphate group (negatively 

charged), and form a polar head groups. Serine group caries both positively and negatively 

charged and when attached to the phosphate it forms also a polar head group. On the other hand 

the inositol is neutral and when attached to the negatively charged phosphate group, they form a 
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negatively charged (PI) lipid. The chemical structures of ethanolamine, choline, serine and 

inositol are illustrated in Figure 2.4 [7]. 

 

Figure 2.4: Chemical structures of the most common functional groups used with 

phosphatidic acid to form phosphoglycerides, (a) Ethanolamine and (b) Choline 

are positively charged (c) Serine is zwitterionic even before attached to 

phosphatidic acid and (d) Inositol headgroup is neutral. 

Based on their chemistry, phospholipids are classified as either phosphoglycerides (as 

those mentioned above) or sphingolipids. Sphingolipids are also important for their wide use in 

biomembranes. Sphingomyelin (SM), as mentioned before, is found concentrated in the outer 

leaflet of the membrane of animal cells [9]  with a significant role in both natural and artificial 

membranes. In fact, without sphingomyelin, it would not be possible for Lysenin to create the 
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membrane channels that it does. Lysenin was used to detect the presence of the sphingomyelin in 

the membranes [14]. 

As a result of interaction between SM and the membranes’ cholesterol, lipid rafts are 

formed. They have a significant role in many cellular functions, such as membrane trafficking 

and cell signaling. Accordingly the insertion of lysenin channels in any membrane depends 

significantly on the presence of these lipid rafts [9]. Cholesterol, a steroid, proved critical in this 

research, both for stable BLM construction and its interaction with sphingomyelin to facilitate 

Lysenin’s channel-forming abilities. The chemical structures of sphingomyelin and cholesterol 

are illustrated in Figure 2.5 (a) and (b). 

 

 

Figure 2.5: (a) The chemical structure of sphingomyelin, which is considered as 

one of the major constituents of animal cell membranes. It can be found in the 

myelin sheaths of nerve cells [14]. (b) The chemical structure of cholesterol 

consists of a four-ringed hydrocarbon linked to a hydrocarbon chain. 

Membrane fluidity is affected by the presence of cholesterol in an animal cell, which is 

about 50% of the total membrane lipid. Cholesterol is usually found in both layers (leaflets) of 
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the plasma membrane. The cholesterol molecule binds to a neighboring  phospholipid  molecule, 

where it can form a hydrogen bond with the oxygen atom that is between the glycerol backbone 

and the fatty acid of the phospholipid molecule [7]. In this research, the presence of cholesterol 

molecules in both leaflets of the BLM enhances its stability and facilitates Lysenin’s channel-

forming abilities. The chemical bond between cholesterol and phospholipid is illustrated in 

Figure 2.6. 

 

Figure 2.6: Cholesterol molecules in a lipid bilayer. (a) Cholesterol molecules are 

present in both lipid monolayers of the membrane of animal cells. (b) Cholesterol 

forms a hydrogen bond (via its hydroxyl group) with the oxygen atom that is 

between the glycerol backbone and the fatty acid of the phospholipid molecule. A 

mixture of lipids and cholesterol was used in this study in preparing the artificial 

bilayer lipid membrane (BLM) to provide stability and facilitate the pore 

formation of Lysenin. 
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2.3 Lipid Bilayer Surface Charge 

For a better understanding of the influence of ions on Lysenin function, charged lipids 

were investigated in this research. Charged lipids were provided by using Asolectin (see chapter 

3). The charge of Asolectin is due to the lipid’s composition since it is composed of roughly 

equal portions of  phosphatidylcholine (PC), phosphatidylethanolamine (PE) and 

phosphatidylinositol (PI) [15]. There is no net charge carried by the head groups of the 

zwitterionic lipids either (PE) or (PC), and the (PI) component is negatively charged as 

illustrated in Figure 2.4. The charge of the head group of the zwitterion can be affected by the pH 

of the solution surrounding it [16], therefore the charge of Asolectin, that is on (PI) was kept 

constant (during the conducted experiments in this study) by using HEPES/KOH buffer (i.e. 

maintain a neutral pH).  

2.4 Transport across Biomembranes 

Cell membranes (as defined previously) are composed of two layers of lipid molecules 

and are therefore relatively impermeable to ions. The cell membrane is crucial because it 

separates the interior and the exterior of the cell, such that it keeps them at different 

concentrations and compositions [17]. The movement of a neutral molecule is regulated by the 

concentration gradient of that molecule across the membrane (diffusion); on the other hand, the 

movement of an ion is controlled by its electrochemical potential (gradient) which is the 

concentration gradient in addition to the charge gradient of the ion across the membrane. 
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 Most cells have a negative membrane potential, which means the outside is at higher 

potential than the inside of the membrane [7]. Although, potassium ions are more concentrated 

inside the cell (~150mM inside to ~4mM outside), there is an excess of negative charges inside it 

because of the other negatively charged species such as proteins and RNA [18]. On the other 

hand, the exterior side of the membrane is at a higher potential because of the higher 

concentration of sodium ions (~140mM outside to ~5mM inside). Additionally, other cations 

(such as Ca
2+

) are found outside the cell membrane, which participate in causing the outer 

surface of the membrane to be at a higher potential. 

The transport of materials and ions across the cell membrane, or between different 

intracellular compartments, is mediated by membrane proteins called ion channels. They are 

mainly responsible for the transport of specific ions such as potassium (K
+
), sodium (Na

+
), 

calcium (Ca
+
) hydrogen (H

+
) and chlorine (Cl

-
) [17]. Ion channels regulate the amount and 

concentrations of  hormones and they control the body electrolyte and volume homeostasis [19]. 

The significance of these membrane proteins arises from its relation with several diseases. 

Malfunctioning of ion channels may lead to many various human diseases such as cystic fibrosis 

or epilepsy [17]. The ability to control the gating of these cellular transporters may open a new 

window for drug delivery applications.  

Among different types of ion channels, Na
+
, K

+
, Ca

+
, and Cl

-
 are considered the most 

common examples. The gating mechanism is one significant characteristic of an ion channel. 

The gating process changes the status of the channel from an open (activation) to a close 

(inactivation) state or vice versa. Ion channels also exhibit selectivity, which enables them to 

control the quality of biomolecules that passes through the membrane [20]. The most important 

characteristic of ion channels is the selectivity, where they have the ability to distinguish 
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between ions and other species [21]. It gives ion channels that impressive property of not only 

controlling the traffic of ions but also determining the kind of required ions (selectivity filter) 

that are allowed to enter or leave the cell through the membrane. 

2.5 Metal Ions  

2.5.1 Importance and Characteristics of Metal Ions 

Metal ions could be used as a tool to investigate biological mechanisms or structures. Their 

availability, simplicity and well-defined structures make them a powerful tool in many scientific 

investigations, especially in biological applications [22]. One of the reasons to use metal ions in 

this research is their potential toxicological effect at higher concentrations in biological media 

and their strong relevant and association with different biological functions. Their ability to be 

used as tools to analyze the structure and function of ion channels is another significant reason to 

use them in order to address the problem of mechanism of gating of Lysenin as a pore-forming 

toxin.  

Metals cover more than 77% of the elements in the periodic table. The alkali and the 

alkaline earth metals, which are groups 1 and 2 respectively, (Figure 2.7) are considered very 

reactive elements [23]. Elements 21 (Scandium) through 30 (Zinc) and 39 (Yittrium) through 48 

(Cadmium) are the first two rows of the block known collectively as the transition metals. 

Elements 58 (Cerium) through 71 (Lutetium) are called the lanthanides. Correspondingly, 

another 14-elements series starting from element 90 (Thorium) to element 103 (Lawrencium) is 

called actinides [12]. 
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Figure 2.7: The periodic table of the elements, showing bulk metals such as Na, 

trace metals such as Mn, toxic metals such as Pb and beneficial metals like Cr. All 

elements located to the left of the black bold zigzag line are called metals [24]. 

Metal ions have various ionic sizes (relative to their parents) and the size of each ion 

depends on its charge number. Cations, for example are smaller than their parents, while anions, 

on the other hand, are larger [12]. The biological classification and the ionic and hydrated radii 

of the metal ions in this research are shown along with their electron shell configuration in 

Appendix A. 

2.5.2 Metal Ions and Biological Interactions 

Although metal ions might be used for treating some diseases, such as using Mg
2+

 for the 

treatment of intestinal disorders and Fe
2+

 for anemia [25], they may threaten human health when 
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they enter our food chain or water supplies. Some soluble metal ions such as Fe
2+

 and Mn
2+

 are 

toxic to plants at high levels [26]. 

Since metal ions are positively charged, then they look to share electron pairs with other 

atoms to achieve a bond or charge-charge interaction. Metal ions have large ionic sizes and their 

charges are greater than one. Accordingly, they have the ability to bind to many ligands around 

them [27] and could serve to maintain the enzyme molecule in the structure needed for biological 

activity. 

The treatment of complicated neurological diseases such as Alzheimer’s or Parkinson’s 

could be improved by understanding the mechanism of metal ion interactions with the central 

nervous system. Many other diseases such as tuberculosis could be treated by using Lanthanides 

[22]. Some essential metals and medical consequences resulting from their deficiency in our 

bodies are shown in Table 1 below [29]. 

Table 1: The deficiency of some ions in humans and their corresponding diseases  

 

The following ions were used in this research: Na
+
, K

+
, Ca

2+
, Mg

2+
, Co

2+
, Mn

2+
, Zn

2+
, Ni

2+
, 

Fe
2, 3+

, Cd
2+

, Al
3+

, La
3+

, Ce
3+

, Eu
3+

, and Tb
3+

. In addition, some non-metal ions such as SPD
3+

 

and SPM
4+

 were used as well.  

Metal ion Related disease 

Iron deficiency pernicious anemia 

Insufficient dietary zinc growth retardation, skin changes 

Copper deficiency brain disease, anemia, heart disease  

Excess of mercury and lead toxicity in humans 

Calcium deficiency bone deterioration 

Cobalt deficiency anemia 

Excess of manganese  symptoms similar to Parkinson's disease 

Chronic exposure to cadmium & lead neurological, and kidney toxicity 
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2.5.3 Chelation of Metal Ions 

The chelation is an interaction process between metal ions and other compounds called 

chelating agents (ligands), resulting in binding these metal ion to a central atom in the ligand. 

Some ligands bind to one metal ion, and accordingly they are called monodentate. On the other 

hand, polydentate (multidentate) is a ligand that has the ability to bind with a metal ion through 

several atoms, holding it like a claw. When a chelating agent binds to a metal ion, it holds it 

tightly, such that it is prevented from reacting with other species in the solution [12]. The 

Ethylenediaminetetraacetate ion (EDTA) is a common example of the polydentate ligands [28]. 

Chelating agents may have different functional groups in which they provide the required 

electrons that are essential in binding with metal ions. Additionally, a precipitator could be used 

as an alternative to chelation to inhibit metal ion interaction in solution. Potassium phosphate 

was used in this research to precipitate aluminum and copper ions. Carboxylate, Phenoxide and 

Phosphate are some of the common functional groups  [26]. The chemical structures of these 

groups along with EDTA and EGTA are explained in Appendix B.  

Most proteins are able to bind to metal ions, so metal proteins are significant in biological 

studies and applications [29]. It was crucial for this research to examine the stability of Lysenin 

channels in the BLM during their dynamic interaction with multivalent ions. Checking the 

stability of Lysenin channels would be essential in this study because it determines whether these 

channels were functioning reversibly (closed to open state) or were simply removed from the 

BLM. Chelating agents played a crucial role in the investigations in this direction.  



20 

 

Along with EDTA and EGTA as chelating agents for most metal ions, potassium 

phosphate (KH2PO4) was used as a precipitator in some experiments in this research to 

precipitate aluminum and copper ions from the bulk solution. 

2.5.4 Influence of Metal Ions on Gating 

Metal ions modify the gating of ion channels or block the pathway of these ion channels. 

For voltage-gated channels (such as sodium channel), metal ions interact with the voltage 

domain sensor causing that modification [30]. On the other hand, channels that gate in response 

to external stimuli such as K
+
 metal ions are considered ligand-gated channels (such as 

potassium channel) [31].  

The mechanism of gating is governed by the interaction between metal ions and protein 

channels. Some mechanisms assume that metal ions screen the voltage domain sensor of the 

voltage-gated channel, while other mechanisms propose a dynamic charge-charge interaction 

between metal ions and the protein’s voltage domain sensor [22]. 

The investigation of this study considered the effect of metal ions on the conductance of a 

Lysenin channel, which is different from ion channel (see sec.2.7.1) in that Lysenin channels 

lack selectivity. According to the experimental results (chapter 4), a pore-blocking mechanism is 

consistent with all observations and findings.  As a result, the experimental data was compared 

with a proposed model that assumes a dynamic equilibrium between a charged site on the protein 

and ions passing through the pore. The model also assumes competition between different ions 

for occupation of the site.  However, it is also possible that neutralization of the charge at the 

protein site may cause a conformational change that also plays a role in reducing ion transport. 
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2.6 pH, Buffer and Electrical Conductivity 

2.6.1 Acidity and Basicity of Solutions 

Acid and base quantities must be in equilibrium in the human body so that it maintains a 

neutral pH. In solutions such as those found inside or outside body cells, acids dissociate into 

hydrogen ions (H
+
) and anions. Bases, on the other hand, dissociate into hydroxide ions (OH

-
) 

and cations. Any big changes of the normal H
+
 and OH

-
 concentrations may greatly modify cell 

functions and disrupt homeostasis [32]. In our bodies, hydrolysis of CO2 produces a weak acid 

that plays a major role in maintaining the acid-base balance necessary to assure normal 

functioning [12]. Because of that it is very important to keep the balance of acids and bases in 

our bodies. 

The pH of a solution describes the hydrogen ion concentration [H
+
] in it. The Danish 

biochemist Soren Sorenson (1868-1939) proposed a scale for expressing acidity and basicity 

based on the concentration of Hydrogen ions [12]. This pH scale (0 to 14) was built based on the 

mathematical formula which defines the pH as the negative logarithm to the base 10 of [H
+
], that 

is  pH= -log[H
+
]. For instance, a pH=0 represents 1M concentration of Hydrochloric acid (HCl), 

and pH=14 represents 10
-14

 M concentration of sodium hydroxide (NaOH). The pH values of 

some common substances are given in Table 2 [10, 12]. 
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Table 2: pH values of some common substances 

 

 

 

It was found that highly charged metal cations (such as Al
3+

) are acidic. Therefore, when 

salts containing these ions dissolve in water, the pH of the solution is affected. In fact, when they 

dissolve in water, metal ions behave like Lewis acids. According to the Lewis acid-base 

definition, a base is a substance that provides an electron pair, and an acid is a substance that 

receives an electron pair  [23].  

 

Substance pH   Acidity and basicity 

Hydrochloric acid (HCl) 0 More acidic (lower pH) 

Stomach acid 1.5-2.0  

Lemon  2.3  

Beer, vinegar 2-3  

Oranges 3.5  

Tomatoes 4.5  

Black coffee 5  

Urine 6  

Saliva 6.5  

Distilled water 7 Neutral 

Human Blood 7.4  

Sea water 8.2  

Baking soda 8.3  

Household ammonia 11.7  

Bicarbonate of soda 12  

Oven cleaner 13  

Sodium hydroxide (NaOH) 14 More basic (higher pH) 
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2.6.2 Buffer 

Buffers may be defined as salts of weak acids or bases which maintain a constant hydrogen 

ion concentration in the solution. Buffers are significant because most functions of biological 

organisms critically depend on the pH [33]. On the other hand, not all types of buffers fit with 

every experimental requirement. In this research, it was very critical to choose a buffer with 

relatively weak binding of metal ions, so HEPES/KOH buffer was chosen. It keeps a neutral pH 

of either KCl, or NaCl electrolyte solutions. Further information about HEPES/KOH buffer can 

be found in Appendix B.   

2.6.3 Electrical Conductivity of Electrolyte Solutions 

The electrolyte solutions of either sodium chloride (NaCl) or potassium chloride (KCl) 

dissociate in water and increase its electrical conductivity according to their concentrations. An 

electrolyte is classified as weak or strong, based on whether its solution is a poor or good 

conductor of electricity. With water as the solvent, some examples of weak electrolytes are NH3 

and CO2, while NaCl and KCl are considered strong electrolytes [34]. A crystal of NaCl, for 

instance, consists of positive and negative ions, and when it dissolves in water, the ions break off 

from the crystal and go into solution as hydrated ions. Upon its motion, the ion becomes 

hydrated, that is, surrounded by a number of water molecules (hydration number) that form a 

sphere of hydration [12]. The hydration number is different from the coordination number [34], 

which can be defined as the average number of water molecules that are the closest neighbors of 
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the ion [28]. The values of the hydration numbers (nh) of some ions, which have been used in this 

study are listed in Table 3 below [12, 34]. 

                                   Table 3: The hydration numbers of some ions 

 

Ion Na
+
 K

+
 Cl

-
 Mg

2+
 

nh 6 3 6 12 

 

 Within a sphere of hydration; the water molecules closest to an ion are oriented so that 

their oxygen atoms are directed toward a cation such as sodium cation in Figure 2.8-a. 

 

Figure 2.8: The ions are hydrated (surrounded by six water molecules). (a) The 

negatively charged oxygen atoms of the water molecules’ dipoles are attracted by 

the positively charged sodium ion. (b) The positively charged hydrogen atoms in 

the water molecules’ dipoles are attracted by the negatively charged chloride ion. 

The electrolyte solution used in the experiments of this investigation was mixed with the 

buffer, which does not affect the conductivity of the electrolyte itself. The conductivity of 

potassium chloride, with and without HEPES/KOH (buffer), is measured and shown in Figure 

2.9. 
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Figure 2.9: The conductivity of potassium chloride without buffer and mixed 

with 20mM buffer in the range of 0 to 800 mM KCl. The buffer does not change 

the conductivity of potassium chloride ions in the electrolyte. 

Although the conductance “G” is just a constant multiplied by the conductivity “k” (see 

Appendix C) in the study of ionic channels, the electrical conductivity is related to the solution, 

while conductance is associated with the ionic channel or the pathway of ions through the 

membrane [19, 35]. For example, Lysenin as mentioned before creates pores or channels through 

the membrane. Accordingly these Lysenin channels would have conductance as a physical 

property, while the conductivity is the physical property of electrolyte solution surrounding these 

channels. Conductance, conductivity and electrochemical reactions in electrolytes and between 

electrodes and electrolytes are clarified in Appendix C.  



26 

 

2.7 Lysenin: A Pore-Forming Protein 

2.7.1 Ion Channels versus Lysenin 

There are many limitations in using transmembrane proteins, like ion channels, in 

experimental investigations. They may lose their functionality as they leave their original 

environment in the cell membrane. In addition, it is not an easy process to reconstitute these ion 

channels again in an artificial membrane and it is difficult to distinguish between different types 

of ion channels when using the patch clamp approach. An important and unique characteristic of 

ion channel is the selectivity, which enables the ion channel to allow one subset of ions (anions 

or cations) to pass through its pathway [36]. 

An interesting model for studying ion transport proteins is provided by pore-forming 

proteins (Lysenin channels), which are unusual in that they function in lipid bilayers and also 

exist stably in the aqueous phase. Lysenin, a self-inserted protein, makes a large pore in a 

membrane that contains sphingomyelin causing a malfunction of the cell’s electrochemical 

gradient leading to cell death [37]. The major difference between Lysenin channels and ion 

channels is the selectivity. Unlike ion channels, Lysenin channels allow both subsets of ions 

(anions or cations)  to flow through their pathways [38]. Their functionality feature makes it 

possible to produce pore-forming proteins as recombinant proteins, which can subsequently be 

used to reconstitute functional pores in artificial membranes. 

Lysenin, a pore-forming protein that consists of 297 amino acids, (33kDa as a monomer 

[39]), extracted from the earth worm E. fetida, is water-soluble and interacts with cell 

membranes containing sphingomyelin to form large conductance pathways (the entrance of the 
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pore 3 nm to 5.7 nm in diameter [40, 41]). In fact, Lysenin was used to detect the presence of 

sphingomyelin in membranes [40].  

It is known that if most of the amino acids in a protein were hydrophobic, the protein 

would be virtually insoluble in water and would be found instead in a nonpolar environment [7]. 

This means that most of the amino acids of Lysenin are hydrophilic. Since any hydrophilic 

amino acid is polar, due to the charge on its R group [12] (see Figure 2.10), then Lysenin has the 

capability to electrostatically interact with other charged molecules or ions.  

 

Figure 2.10: The amino acid is a molecule that has a central carbon atom attached 

to one hydrogen atom and to three different groups (amino, carboxyl and R 

group), the R group defines the amino acid. 

As it provides an excellent method to investigate the structure-function of biomembranes, 

a planar lipid bilayer (BLM) has been used along with Lysenin in order to investigate the 
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formation of Lysenin’s pores and its gating. The insertion of Lysenin’s stable channels in an 

artificial bilayer lipid membrane containing sphingomyelin is illustrated in Figure 2.11-a. 

 

 

Figure 2.11: (a) Schematic shows three Lysenin channels inserted in artificial 

bilayer lipid membrane containing sphingomyelin immersed in an aqueous 

solution (KCl or NaCl), (b) Electron microscopy shows that Lysenin produced a 

honeycomb structure (pores) in sphingomyelin-containing membranes [9] 
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2.7.2 The Structure of Lysenin 

Revealing the structure of a protein is crucial in understanding and explaining its 

functionality and its interaction with the lipid membrane or other kinds of proteins. Lysenin, as 

explained in the previous sections, requires sphingomyelin to interact and make pores in the 

membrane. Investigating the structure of Lysenin bound to SM is crucial to this research because 

it enhances our understanding to better propose mechanisms either for insertion in the BLM or 

for gating. 

The mechanism of Lysenin’s pore-forming in the BLM is yet to be known. One of the 

suggested mechanisms is that the Lysenin protein units assemble themselves on the surface of 

the BLM then they insert and make the pore [41]. 

Defining the structure of Lysenin is still under investigation. Since it expands our 

understanding of the influence of the protein’s charge on its activity in the membrane 

(functionality), determining the charged amino acids among its structure is of great interest to 

this research. The investigation of Lysenin’s structure will lead to better understanding of both 

protein-lipid interaction and protein-protein interaction. A newly published structure of Lysenin 

[41] shows that Lysenin has  N-terminal domain that is divided into two subdomains and the C-

terminal domain. This structural investigation uncovered the interaction between one of the 

hydrophobic tails of sphingomyelin and two tyrosine molecules on one side of Lysenin. It was 

surmised that the opposite side of the protein should therefore be along the inner lumen of an 

assembled channel. The electrostatic surface representation revealed an area of negative charge 

located in the suspected inner channel wall region (two adjacent glutamate amino acids), which 
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was hypothesized to be responsible for the interaction with positive ions [42]. The structure of 

Lysenin is illustrated in Figure 2.12. 

  

 

Figure 2.12: A spiral-and-ribbon model of Lysenin crystal structure showing (a) 

its two domains: the first one is the N-terminal (red and blue) which is the part of 

the protein that is inserted inside the membrane, and the second domain is the C-

terminal one (cyan) which is the head of the Lysenin protein. (b) The hinge is 

located at the boundary between the head (C-terminal) and the body of Lysenin 

(N-terminal), and has a freedom to move about 45
0
 [41]. 

2.7.3 Interaction of Lysenin with Lipids 

Lysenin contains charged amino acids [43] and analysis of its surface charge shows the 

accumulation of positive charges at its head side (C-terminal)  [41] as shown in Figure 2.13 (dark 

blue color). This indicates that the head group of Lysenin (C terminus) electrostatically interacts 

and binds with the phosphocholine group of sphingomyelin, or from phosphocholine lipids. 
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Accordingly, the initiation of the insertion of Lysenin in a membrane containing SM is governed 

by charge-charge interaction [44].  

Lysenin’s hinged region plays a role enabling the remainder of its structure (N-terminal 

domain) to bind with sphingomyelin and insert into the membrane (see Figure 2.13). This 

insertion into the BLM creates a pore with either a hexamer assembly (six proteins are required 

to form a single pore), or a trimeric assembly (three proteins per pore), which leads to different 

measurements of the diameter of the mouth of the pore (3 nm-5.7 nm) [9, 40, 41]. These 

measurements of the pore size do not mean that the channel has a cylindrical shape with the 

same diameter along its inner lumen of the assembled channel. For example, most ion channels, 

such as the potassium channel, have a larger diameter at the entrance of the channel (mouth) than 

along the interior [19, 30, 31].  

As explained in sec.2.7.2, the location within the structure of Lysenin that is responsible 

for the interaction with positive ions was proposed to be inside the channel lumen. Accordingly, 

it was hypothesized that the two glutamate amino acids are facing the interior of the pore, and 

hence are responsible for the electrostatic interaction between ions and Lysenin (see Figure 

2.13). This hypothesis proposes a preferred mechanism of ligand-induced gating of Lysenin. 
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Figure 2.13: Electrostatic surface representation of Lysenin shows the positively 

charged regions (blue) at the C-terminus and the negatively charged ones at the 

N-terminus (red). One of the fatty acid tails of the SM binds with Lysenin along a 

groove on the surface [41]. 

2.7.4 Voltage Gating, Ligand Gating and Modulation of Channels  

Lysenin channels lack the selectivity as a distinct character of ion channels, while they 

show voltage-induced gating and activity modulation by ionic strength and pH, indicating that 

electrostatic interactions play a major role in establishing their electrical activity. Previous 

studies of Lysenin’s voltage gating [1] observed that Lysenin channels (which was formed in a 

BLM that was made of asolectin) closed their pathways when a positive voltage across the 

membrane was held, but  did not notice any voltage dependence. Instead, our investigations (see 

chapter 4) proved that Lysenin channels are voltage dependent and respond to changes in the 

positive voltages across the asolectin bilayer lipid membrane in which they are imbedded [45]. 
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Voltage gating as a distinct characteristic of Lysenin was one of the main reasons to investigate 

the ligand gating for such a protein under the influence of metal and nonmetal ions. 

The mechanism of the gating of ion channels could be modulated by monovalent or 

divalent cations such as H
+
 and Ca

2+ 
[19]. The ligand binds to the protein’s binding site and as a 

result, it might gate its pore by directly limiting transport without significant protein 

conformational change or by driving the protein to undergo conformational changes 

(rearrangement of the tertiary structure) [21] as illustrated in Figure 2.14 (a) and (b) respectively. 

 

 

Figure 2.14: Two mechanisms of ligand gating: (a) a ligand interacts with the 

protein’s binding site, and then the pathway of the channel is blocked by the 

ligand (pore-blocking mechanism), (b) a ligand binds to the binding site causing 

conformational changes leading to pore blocking. 
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Chapter 3 Materials and Methods 

3.1 Materials 

For all experiments, the following materials were used: chemicals, Teflon chamber, and a 

measurement device. Chemicals were essential to prepare the lipids used in constructing the 

bilayer lipid membranes (BLM) within the two-compartment Teflon chamber, and the Molecular 

measurement device (Axopatch 200B amplifier and the DigiData 1440A digitizer) was used to 

record the electrical signals across the BLM.  

3.1.1 Chemicals 

Asolectin (Aso) from soybean, Lysenin, Sphingomyelin (SM) and Cholesterol (Chol) 

were purchased from Sigma-Aldrich. Other chemicals were purchased commercially and used 

without further purification. 

The lipids were dissolved using n-decane, and deionized water was used for dissolving all 

salts and multivalent ions that came in powder form. HEPES/KOH buffer was added to sodium 

chloride and potassium chloride solutions due to its solubility, stability, minimum complexation 

with metal ions [46], and to keep the pH of the solution around physiological conditions (pH 7). 

A stock solution of approximately 30 µM of Lysenin was prepared by dissolving 50 µg of 

Lysenin in 50 µl of solution (50% of 60 mM KCl and 50% Glycerol) buffered with 20 mM 

HEPES/KOH to maintain a neutral pH. 
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The bulk solution (NaCl, or KCl) was used as a supporting electrolyte to observe the 

bilayer formation and Lysenin insertion, and to measure the conductance before and after adding 

the multivalent ions. All tested multivalent metal ions were in chloride form.  

3.1.2 Teflon chamber 

The chamber consisted of two compartments with a volume of 1.6 ml each and a thin 

Teflon film placed vertically between the two compartments. A single aperture of diameter of 70 

m to 100 m was made in the middle of the Teflon film. The voltage was applied across the 

film (and across the BLM) via two Ag/AgCl electrodes which were used to apply the required 

voltage and to record the subsequent electrical current.  

3.1.3 Measurement devices 

The silver-silver chloride electrodes were placed across an artificial planar bilayer lipid 

membrane (BLM). One electrode was placed in one compartment and grounded, and the other 

was connected to a head stage and placed in the other compartment as Figure 3.1 depicts. Since 

the recorded current was on the order of picoamperes, the entire set-up was electrostatically 

isolated inside a Faraday cage to minimize external electrical noise.  
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Figure 3.1: Three Lysenin channels inserted into a constructed BLM. The electric 

current through these channels was recorded by using two Ag/AgCl electrodes 

placed across the BLM in the chamber that contained an aqueous electrolyte. 

3.2 Methods 

A full explanation of the artificial bilayer lipid membrane (BLM) formation, insertion of 

Lysenin protein into the BLM, and the method of conductance measurements before and after 

adding multivalent metal ions will be provided in this section. 

3.2.1 Planar BLM Formation 

 The painting technique [47] was used to construct a planar bilayer lipid membrane. To 

form a BLM using the painting method, lipids were dissolved in an organic solvent (n-decane) 

and then spread over an aperture punctured in the Teflon sheet [48, 49]. The Teflon sheet was 

mounted vertically between two compartments which were filled with electrolyte solution. 
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The negatively charged mixture of lipids used in all experiments consisted of 10 mg 

Asolectin, 5 mg Cholesterol and 5 mg Sphingomyelin dissolved in 400 l of n-decane.  

The diameter of the aperture was about 70-100 m punctured in the middle of a Teflon 

sheet (3 cm x 1.7 cm), which separated two reservoirs or compartments, each filled with 1.0 ml 

of buffered electrolyte (150 mM KCl, 20 mM HEPES/KOH buffer, pH 7).  

The solutions in each compartment were continuously stirred with two small bar 

magnetic stirrers, which were part of the stirrer system spin-2 controller (Warner Instruments). 

The ionic current was recorded by immersing the two Ag/AgCl electrodes in these 

compartments. The two electrodes were connected to an amplifier device (Molecular Device 

called Axopatch 200B), which was then connected to a digitizer (Molecular Device called 

DigiData 1440A). For data analysis P.Clamp 10.2(Molecular Device) and Origin (OriginLab) 

were used. 

Forming a stable BLM required a capacitive current of about 60-90 pA. These values were 

estimated because the measured value of the BLM capacitance is approximately 1μF/cm
2
, and 

the formation BLM area, in the conducted experiments in this research, lies between (0.6-

0.9)x10
-4 

cm
2 

then the expected capacitive current would be between 60 pA to 90 pA. More 

details and explanations of BLM capacitance can be found in Appendix E. A recorded capacitive 

current of a stable BLM is displayed in Figure 3.2 where the capacitive current is about 70 pA. 
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Figure 3.2: Current versus time graph illustrates a recorded capacitive current in 

picoamperes (70 pA), evidence of stable BLM formation across the punctured 

aperture in the Teflon sheet. 

3.2.2 Insertion of Lysenin into BLM 

An external transmembrane voltage of –80 mV was applied across the formed bilayer 

lipid membrane. The head stage compartment was at negative voltage while the other 

compartment was grounded. Lysenin was added to the grounded compartment in minor amounts 

(0.6-1.5 l of 0.3 M), and the solution was stirred by the magnetic stirrer to enhance the 

Lysenin-lipid interaction. Lysenin started to insert channels in the BLM after approximately 4 

minutes. Although the insertion of Lysenin channels seemed to be fast process, the entire process 

of reaching the maximum number of inserted channels was slow. The insertion of Lysenin 
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depended on the concentration of protein in the solution; therefore, it might take minutes or even 

hours. According to the increase in the recorded ionic current, which was in discrete steps, the 

step-current represented the ionic current passing through that channel. The current per channel 

was approximately -48 pA (at -80 mV) as Figure 3.3 depicts, while the current through the 

aperture (without the membrane) exceeded 10
6
 pA at about 4 mV applied voltage.  
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Figure 3.3: The insertion process of Lysenin channels into BLM. The current per 

channel was approximately –48 pA when the biased voltage across the membrane 

was –80 mV. The value of the current per channel is important because it enables 

us to estimate the total number of channels. 

The kinetic process of Lysenin insertion into the BLM required waiting about an hour to 

reach a state of equilibrium, which was observed by optimization of the macroscopic ionic 
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current through the BLM (open current). The kinetic process and the equilibrium state of 

Lysenin insertion into the BLM are illustrated in Figure 3.4. It took more than 25 minutes to 

reach a steady state of open current (the current through all pores). 

The approximate number of all inserted channels in the BLM was estimated by dividing the 

value of the open current by its value per channel. According to Figure 3.4 the estimated number 

of channels in the BLM is about 300 channels (that is the total current through all pores divided 

by the current per pore).  

The data recording protocols were adopted for each measurement. That is, for the insertion of 

channels and the opening or closing of these channels, the gap-free protocol was used. The 

conductance measurements were made with the episodic stimulation protocol [50]. 
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Figure 3.4: Current versus time graph showing insertion of about 300 Lysenin 

channels into BLM. Ionic current passing through BLM increases with time and 

reaches its maximum value and then stabilizes in about 25 minutes. 
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3.2.3 Addition of Ions and Measuring Conductance  

After reaching a steady state of open current i.e. current through all-open pores, and 

before adding the multivalent metal ions, the grounded compartment (trans) was flushed and 

refilled with a fresh electrolyte solution so that no more Lysenin channels would be inserted. 

Then multivalent ions were added to the buffered electrolyte solution. The addition of the 

multivalent ion concentration was gradual and to both sides of the channels (both sides of the 

chamber). Accordingly, the conductance of the channels has been reduced as a result of the 

dynamic interaction between multivalent ions and the Lysenin. 

In order to measure the conductance of these channels (before and after adding ions) a 

linear voltage ramp was applied across Lysenin channels, which was defined by using the 

episodic Stimulation protocol (0 mV: -60 mV: 0 mV, 0.5 mV/ 5 scan rate), each run consisted of 

three identical voltage sweeps, that is a total of six I-V curves in the range of (0 mV: -60 mV: 0 

mV). This voltage ramp is illustrated in Figure 3.5. The average slope of the linear ramps was 

calculated to obtain the channels’ conductance before the addition of ions (G0), and after (G). 
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Figure 3.5: The conductance of Lysenin channels was measured by applying a 

voltage ramp (0 mV: –60 mV: 0 mV) across the inserted channels in the BLM. 

3.3 Error Analysis 

The differences in the slopes (Figure 3.6-a) showed how the addition of monovalent ions 

(in mM) increased the solution conductivity. However, the addition of significantly fewer 

amounts of trivalent ions (in μM) dramatically decreased the channels’ conductance but not the 

conductivity of the bulk solution (Figure 3.6-b). 
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Figure 3.6: (a) Increasing the concentration of sodium chloride from 50 mM to 

800 mM increased the conductivity of the bulk, while (b) addition of 100 μM 

trivalent ferric ions (Fe
3+

) to 150 mM KCl bulk solution significantly reduced the 

channels’ conductance.  

For each experiment, the overlap of the six curves recorded (Figure 3.5) at a specific 

concentration demonstrated the steady state stability and yielded very small errors in measuring 

the conductance. However, the conductances measured at the same concentration for multiple 

experiments yielded a range of values. The reported conductance is the average of these 

conductances with their standard deviation. The uncertainties appear on the graphs in the form of 

error bars. Further explanation of error analysis can be found in Appendix D.  
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Chapter 4 Results and Discussion 

4.1 Insertion of Lysenin Channels into BLM, and their Electrical Characterization    

After achieving a stable and proper BLM (see the Materials and Methods chapter), 

minute amount of Lysenin at a final concentration of approximately 200 pM was added to the 

grounded side of the bilayer setup under continuous stirring. Under voltage clamp conditions of -

80 mV, Lysenin addition yielded increasing open current that stabilized to approximately 12 nA 

in approximately 30 minutes as illustrated in Figure 4.1. This open current indicated that Lysenin 

disturbed the intrinsic barrier function of the BLM and allowed the charged transporters to move 

through the membrane. 
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Figure 4.1: The macroscopic current increases with time, showing a rapid growth 

and leveling of current through the BLM. The behavior of the current indicates a 

permeability increase of the BLM upon the addition of Lysenin channels by 

maximizing the number of charge transporters passing through the BLM. 
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A closer inspection of the current traces performed at higher resolution indicated that the 

open current increased in steps, where each step represents one channel, as Figure 4.2 depicts, as 

opposed to a monotonic decrease. Each individual step changed the open current by 

approximately 48 pA as illustrated in Figure 4.2, demonstrating that Lysenin inserted uniformly 

large conductance channels in artificial planar membranes BLMs [1, 51].   
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Figure 4.2: The interaction between Lysenin and bilayer lipid membrane affects 

the latter’s permeability, resulting in insertion of pores. A higher resolution graph 

of open current shows the stepwise nature of this process and its relation with 

each individual pore (approximately -48 pA/pore at -80 mV bias voltage) 
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When the BLM was biased by positive voltages, the ionic current through Lysenin 

channels dramatically decreased [1, 43, 45, 52]. Although no direct evidence was provided 

previously, Lysenin’s structure underwent conformational changes causing its channel to switch 

from open to closed state [1, 45]. This voltage-induced gating may interfere with other changes 

in conductance induced by other external factors, thus this research directly addressed this 

problem by analyzing the response of single Lysenin channels to external voltages. For this 

purpose, a very small amount of Lysenin, approximately 20 pM at final concentration, was added 

to the grounded reservoir side, where it yielded only three inserted channels in approximately 30 

minutes. The insertion of further channels was prevented by flushing the grounded reservoir with 

20 ml fresh buffered electrolyte and removing the free protein from the bulk.  

The ionic currents measured through the three channels in response to positive step 

voltages, as illustrated in Figure 4.3, indicated extended stability at +5 mV. At +10 mV, transient 

changes in the open current indicated voltage-induced gating. The flickering in current became 

more persistent at +15 mV, while at +30 mV all three channels closed in a few seconds. 
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Figure 4.3: Current versus time graph shows the closing of three embedded 

channels into the bilayer due to voltage-induced gating. At +15 mV the pores 

started to gate, and holding the potential at +30 mV closed all three pores (150 

mM KCl, 20 mM HEPES/KOH, pH 7). 

Applying different amounts of negative voltages across the three open Lysenin channels 

did not produce any non-ohmic behavior as a result of the current flowing through them, as 

shown in Figure 4.4. This provided excellent conditions to conduct the experiments of this study 

in this negative voltage range, so the voltage gating did not interfere with the conductance 

measurements.  
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Figure 4.4: Current versus time graph shows the negative applied voltages up to -

30 mV did not produce closure in any of the bilayer’s three pores (150 mM KCl, 

20 mM HEPES/KOH, pH 7). 

Lysenin’s behavior at the single-channel level, including its voltage-induced gating, was 

fully reflected in the I-V curve recorded for larger number of channels. Current-voltage curve (in 

the range of -80 mV to +60 mV) was recorded for more than 1000 channels that were inserted in 

the BLM (Figure 4.5). The linear and ohmic behavior observed at negative voltages 

demonstrated that no conformational changes (closings) occurred in that range. In contrast, 

voltages greater than +20 mV showed a strong non-linearity of open current. The transition from 

high to low conductance was gradual and underwent a negative dynamic conductance region 

(negative slope) followed by rectification [45].   
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Figure 4.5: Current voltage graph shows the behavior of a population of Lysenin 

channels in the BLM surrounded by a supporting electrolyte solution of 150 mM 

KCl, 20 mM HEPES/KOH pH 7. The linearity in the negative voltage shows no 

rectification, while it can clearly be seen in the positive voltage region due to the 

voltage-induced gating of Lysenin. 

This research investigated the dynamic interaction of multivalent ions with Lysenin, 

which was measured by calculating the conductance of Lysenin channels. The results above 

(Figure 4.5) recommend conducting the experiments of this research in the negative voltage 

region as mentioned before. The negative and positive voltage regions are related to the direction 

of the electric field, which was produced by the electrodes across the inserted channels and 

BLM. The directions of the electric fields are shown in section 4.5.1. 
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4.2 Effect of Monovalent Ions Concentrations on Lysenin Channels’ Conductance 

 Changes in conductance of Lysenin channels elicited by multivalent ions were 

investigated by adding electrolyte metal and non-metal ions to the bulk solution in chloride form. 

For this study, it was essential to assess whether the addition of chloride ions to the bulk 

electrolyte would interfere with conductance measurements by either promoting conformational 

changes to Lysenin channels, or by disturbing the open current due to screening effect.  

 Lysenin channels’ macroscopic conductance increased linearly with 50 mM NaCl/ KCl 

sequential increases in electrolyte concentration (Figure 4.6-a) which is consistent with the 

linearity in conductivity for both monovalent species (Figure 4.6-b) indicating no interference 

from these ions in the range of 50-900 mM KCl/NaCl. 
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Figure 4.6: (a) The conductance of Lysenin channels linearly increased with 

monovalent ion concentration in the range 50mM to 900 mM, which is consistent 

with the conductivity curve in (b), indicating no changes in the geometry of the 

channels in that range. (b) K
+
 and Na

+
 increased the conductivity at a constant rate 

in the range of 50-900 mM, with the difference between the two ions due to 

sodium’s lower mobility. 
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The higher conductance recorded in the presence of KCl compared to NaCl (Figure 4.6) 

can be explained based on the difference in relative electrophoretic mobility between Na
+
 and 

K
+
. When exposed to external electric fields in solutions, K

+ 
moves faster than Na

+ [33].  

 Previous studies of Lysenin[45] suggested that voltage gating could be affected by high 

monovalent ion concentration, where the pores are in their open state according to the foot-in-

the-door model of gating [53]. The effect of low and high salt concentrations on gating due to 

monovalent ions will be discussed later in section 4.5. 

 Unless otherwise stated, all experiments were conducted with the same salt concentration 

of 150 mM NaCl or KCl, which is near physiological conditions. Thus, any changes in 

conductance during multivalent ion investigations are not due to monovalent ions. 

4.3 Influence of Divalent Metal Ions on Lysenin Channel’s Macroscopic Conductance 

 Unlike monovalent ions, which yielded a linear increase in Lysenin’s channels 

conductance, divalent metal ions affected and reduced their conductance [51, 54]. The analytical 

response to divalent metals manifested itself as a decrease in the macroscopic conductance of 

Lysenin channels. This decrease was observed when the analyte was in the mM range, a value 

much less than monovalent concentration, although the inhibitory effect was not uniform for all 

tested divalent metal ions as illustrated in Figure 4.7 and Figure 4.8. 

  Although all the added ions carried a charge of +2, their inhibitory effect considerably 

varied, indicating that chemical identity might influence changes in the macroscopic 

conductance. The alkaline earth Ca
2+

 and Mg
2+

 were the least effective inhibitors, where the 

conductance of Lysenin channels has been reduced by approximately 30% at 20 mM bulk 
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concentration, as Figure 4.7-a depicts. On the other hand, the other divalent cations such as 

Mn
2+

, Ni
2+

, Co
2+

, and Fe
2+ 

had a higher ability to inhibit the macroscopic current: up to 90% at 

less than 10mM for the case of Fe
2+

, as Figure 4.7-b depicts. The divalent ions Zn
2+

 and Cd
2+

 

exhibited similar behavior to the other metal ions. Zn
2+

 reduced the macroscopic conductance by 

at least 80% at low bulk concentration, as illustrated in Figure 4.8. The electronic configuration 

of the ions is illustrated in Appendix A. 
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Figure 4.7: (a) Mg
2+

and Ca
2+

decreased the conductance of Lysenin channels by 

about 30% (b) Mn
2+

 also reduced the conductance of channels but was less 

efficient than Ni
2+

 and Co
2+

. The most efficient divalent ion was Fe
2+

 and the 

linear increase after the minimum conductance was due to the subsequent increase 

in the bulk conductivity. 
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Figure 4.8: Zn
2+

 was more efficient and caused a greater reduction in Lysenin’s 

channels conductance than Cd
2+

 and at a lower concentration range.  
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4.4 Effect of Trivalent Metal Ions on Lysenin Channel’s Macroscopic Conductance 

The addition of trivalent metal ions to the bulk solution reduced the conductance of 

Lysenin channels to a larger extent than most of the divalent ions [51, 54] as shown in Figure 

4.9. All tested trivalent lanthanides approximately shut down the ionic transport in concentration 

ranges of 130 M-650 M. 
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Figure 4.9: Lanthanides ions were very effective inhibitors of ionic transport 

through Lysenin channels, and lowering the conductance to approximately zero in 

ranges of 130 M-650 M. 

The greatest efficiency was encountered for Al
3+

, which diminished the conductance at 

less than 1.5 M bulk concentration as illustrated in Figure 4.10, and in fact demonstrated the 

highest inhibition potential among all tested metal ions.   
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Figure 4.10: Among the tested ions, Al
3+

 was the most effective inhibitor, 

bringing the conductance of Lysenin channels to zero in the range of zero to 1.5 

M. 
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4.5 Influence of Monovalent Ions on Lysenin’s Gating 

4.5.1 High Monovalent Concentration Modulates Lysenin’s Voltage Gating 

Monovalent ions were used as a bulk solution (electrolyte) in order to measure the 

electrical current through Lysenin channels (i.e. determining their conductance). In fact the BLM 

by itself can be considered as a capacitor (see Appendix E) of dielectric constant (   ) [6]. As 

the voltage was applied, an external electric field (      ) was created across the BLM and across 

the inserted Lysenin channels. This external electric field (Figure 4.11) was established because 

of the accumulation of cations and anions of the electrolyte on both sides of the BLM, even 

before any channel insertion. As a result of the charge accumulation on both sides of the BLM, 

the dielectric material of the BLM became polarized. Accordingly, an internal electric field 

(      ), which is opposed to the external one, was produced across the BLM. Then any changes of 

the charge distribution on the BLM could affect their external (      ) and internal (      ) electric 

fields. 

Lysenin channel has two charged regions in its structure (see sections 2.7.3 and 2.7.4) 

creating an electric dipole moment (  ) along its structure (Figure 4.11). The interaction between 

the external electric field (      ) and Lysenin’s electric dipole moment (  ) plays the major role in 

its gating. The direction of the electric field affects the state of the channel, as illustrated in 

Figure 4.11. The channel stays in its open state because of the interaction between        and the 

dipole moment (  ), that is       . If the applied voltage is reversed, as illustrated by Figure 4.12, 

and when the critical voltage is achieved, then the channel closes as a result of the dipole-electric 

field interaction (      ). 
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Figure 4.11:  A Lysenin channel in its open state. The structure shows just two of 

the six Lysenin proteins with their dipole moments interacting with the external 

electric field across the BLM and the channel. The blue and red colors represent 

the positive and negative charged regions (inside the lumen) respectively [42]. 

The interaction between (      ) and (   ) that is (      ) forces the channel to stay 

open. 

 

Figure 4.12: The positive voltage is applied across the BLM and the channel. The 

Lysenin channel starts to gate when this voltage exceeds the critical voltage, 

proposing that the main cause for voltage gating is the dipole-electric field 

interaction (      ). 
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Since all multivalent ions that have been used in this research were in the chloride form, 

it was essential to inspect the effect of different concentrations of chloride ions (monovalent 

ions) on the conductance of Lysenin channels and their functionality (gating). 

The influence of monovalent ion concentration on the voltage-induced gating of Lysenin 

was investigated for a large number of Lysenin channels as illustrated in Figure 4.13. The critical 

voltage of Lysenin channels has been shifted from about 30 mV at a concentration of 300 mM 

KCl to about 60 mV at a concentration of 600 mM KCl. A close inspection of Figure 4.13 shows 

a leakage current in the positive voltage region either at 300 mM (after 60 mV) or at 600 mM 

(after 80 mV), which could be either through the membrane or through the channels themselves, 

or both. The high leakage current at higher monovalent ion concentration could be due to the 

increase in the conductivity of the bulk, or due the lack of closing of Lysenin channels. These 

findings indicated that monovalent ions (K
+
 and Cl

-
) electrostatically interacted with Lysenin via 

its charged regions within its structure (see Figure 2.12), where potassium cations accumulated 

on the negatively charged region and chloride anions accumulated on the positively charged 

region of Lysenin. This accumulation of charges weakened the strength of Lysenin’s dipole 

moment which affected its interaction with the external electric field (      ) as shown in Figure 

4.12. As the concentration of monovalent ions increased Lysenin’s dipole moment strength 

decreased, then the required external electric field for gating increased, which explained the shift 

in the voltage-induced gating of Lysenin from 30 mV at 300 mM KCl to 60 mV at 600 mM KCl.  

On the other hand, the slope of each straight line in the negative region (negative voltage 

and negative current) represents the conductance of the channels. The increase of the slopes, 

which is proportional to the increase in concentration, does not signify an increase in the 
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channels’ conductance but rather, it was due to the increase in the conductivity of the bulk 

solution itself. 
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Figure 4.13: Current versus voltage graph shows the shift in the critical voltage 

of Lysenin as a result of the electrostatic interaction of monovalent ions and the 

voltage sensor of Lysenin channels. In the negative region, the slopes of the 

straight lines increased because of the increase in the conductivity of the solution.  

4.5.2 Monovalent and Multivalent Ions Compete Lysenin’s Binding Site 

Usually the region in the protein structure which electrostatically interacts with an 

external electric field and causes the voltage gating is called the voltage-sensing domain or the 

voltage sensor [19, 55], while, as introduced before (sec.2.7.2), the one for ligand gating is called 

the binding site. 
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The behavior of Lysenin channel’s conductance over a wide range of cerium trivalent 

cation concentrations and at different monovalent salt concentrations showed how high salt 

concentration affected the sensitivity of Lysenin channels toward cerium ions. At high 

concentration of monovalent ions (900 mM KCl), the conductance of Lysenin was decreased 

(due to the interaction with 500 M Ce
3+

) just by approximately 40% as illustrated in Figure 

4.14. While at 300 mM KCl, Lysenin’s sensitivity has affected less, and at 150 mM KCl or 75 

mM KCl the effect of monovalent ions on Lysenin channels’ conductance was even less. 

These findings indicated that monovalent cations (K
+
) competed for the binding site with 

trivalent cations, (supported by our model in the next chapter) where this binding site was 

proposed to be the negatively charged regions among Lysenin’s structure (i.e. the two acidic 

amino acids mentioned in sec 2.7.4). Since the concentration of (K
+
) was much higher than that 

for (Ce
3+

) the binding site would be occupied by these monovalent ions. Being heavily occupied 

by (K
+
), the electrostatic interaction between the binding site and trivalent cations (Ce

3+
) was 

reduced, which eventually minimized their probability of binding. 
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Figure 4.14: The behavior of the conductance of Lysenin channels versus 

concentration of monovalent concentrations shows the sensitivity of Lysenin 

towards trivalent cations (Ce
3+

) at low monovalent ion concentrations. This 

sensitivity became weaker as the monovalent ion concentration increased.  

Since high monovalent concentration modulated the voltage gating and reduced the 

sensitivity of Lysenin toward cerium trivalent cations, it was important in this research to 

investigate Lysenin’s voltage gating under the influence of divalent cations. Unlike trivalent 

cations, divalent ones did not totally inhibit the ionic current through Lysenin channels (they 

partially closed Lysenin channels). For this reason, comparing voltage-induced gating before and 

after adding divalent cations would help in explaining Lysenin’s mechanism of gating. This 

comparison was important because it revealed the relationship between the binding site and the 
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domain sensor of Lysenin. To distinguish between Lysenin’s voltage sensor and its binding site, 

a series of experiments were conducted, where an I-V curve was recorded before and after 

adding magnesium divalent cations (Figure 4.15). 
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Figure 4.15: Divalent ions modify the voltage gating of Lysenin. A notable shift 

in the critical voltage before and after adding Mg
2+

 was recorded. The critical 

voltage was shifted from 20 mV to 40 mV before and after adding Mg
2+

 

respectively. 

As expected, before adding Mg
2+

, the critical voltage of Lysenin at electrolyte condition 

(150 mM KCl) was about 20 mV. After adding Mg
2+

 the behavior of the I-V curve was different 

where a shift (from 20 mV to 40 mV) in the critical voltage appeared. This indicated that the 

Mg
2+

 electrostatically interacted with the negatively charged region of Lysenin (Red color in 

Figure 4.12). This negatively charged region is located within the hydrophobic region in the 

protein’s structure [41]. Since both negatively and positively charged regions form Lysenin’s 
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voltage sensor, this experiment proposes that binding site of Lysenin to be part of its voltage 

sensor. 

The previous experiments in this section showed how high monovalent concentration 

modulated the voltage gating, reduced the sensitivity of Lysenin toward trivalent cations, and 

caused a shift in voltage gating. All of these findings indicate that the negatively charged region 

of the dipole moment has been electrostatically affected. The two acidic negatively charged 

amino acids (two Glutamate amino acids) are located inside the channel itself (i.e. within the 

hydrophobic part or the N-terminus). The significance of these findings is that they indicate the 

position of the presumed binding site to be inside the channel. 

4.5.3 Monovalent Ions affect the Transport of Lysenin’s Channels  

The strength of the electric dipole moment of Lysenin was modulated by monovalent ion 

concentrations. Since the strength of this dipole moment plays a major role of Lysenin’s gating, 

it was crucial to investigate the effect of different monovalent ion concentrations on the 

conformational changes of Lysenin’s channel (i.e. the geometry of the channel). Conductance 

“G” is directly proportional to conductivity “k”, where the proportionality constant or (the 

geometry of the channel) is the cross sectional area per channel’s length, that is     
 

 
  (see 

Appendix C). The importance of this experiment was that it led to better understanding of the 

mechanism of Lysenin’s gating (Sec. 2.7.2). 

A series of experiments were conducted at different KCl concentrations, to measure the 

conductance of one single Lysenin channel. The experiments covered the concentration range 

from 1 mM to 900 mM of potassium chloride buffered with HEPPES/KOH. The experimental 
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results (Figures 4.16) indicated that the channel’s conductance was not affected by the 

monovalent concentrations in the range of 50 mM to 900 mM KCl as shown in sec.4.2. 

However, results were also consistent with monovalent ions attaching to the negative site and 

saturating at about 50 mM. 
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Figure 4.16: The measurement of the conductance of single Lysenin channel 

shows its nonlinear and linear behavior in the ranges of 1 mM to 50 mM and 50 

mM to 900 mM KCl respectively. 

As Figure 4.17 depicts, in the range of 1 mM to 50 mM KCl, the channels underwent 

conformational changes appeared as a nonlinear behavior of the channels’ conductance with their 

corresponding conductivities. A close inspection of Figure 4.17 revealed that the steepest slope 

(the slope is the cross sectional area per channel’s length ( 
 

 
 )) was in the lowest concentration (1 

mM to10 mM), then the geometry of the channels was less affected in that range. These results 

could not explain exactly whether the area of the channel, the length, or both has changed under 
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the influence of monovalent ions. This important finding shows how the strength of Lysenin’s 

dipole moment was sensitive to monovalent ions, and indicates more sensitivity toward 

multivalent ions.  
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Figure 4.17: The measurement of the conductance of single Lysenin channel 

shows its nonlinear behavior with the conductivity of KCl bulk upon increasing 

its concentration from 1 mM to 50 mM. The differences in slopes of the segments 

indicate a change in the geometry of the channel. 

4.5.4 Sensitivity of the Lysenin-BLM Biosensor 

Since monovalent ions affected the electrostatic interaction between Lysenin’s dipole 

moment and multivalent ions (in the range of 1 mM to 50 mM KCl), then it was essential for this 

research to look for the ideal conditions of the minimum influence of monovalent ions on the 
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channel’s geometry. A set of experiments were conducted in the micromolar range (Figure 4.18), 

where the KCl bulk concentration was diluted from 1 mM to 50 M. The results show an 

excellent linear relationship between the conductance of Lysenin channel and the concentration 

of the monovalent ions.  
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Figure 4.18: The linearity of the conductance versus bulk concentrations of one 

single channel indicates that the geometry of the channel is not affected at very 

low monovalent ion concentrations. 

The linearity of the conductance and monovalent ion concentration reveal no influence of 

monovalent ions on the channels’ geometry in this low-range concentration. This finding 

recommends the best experimental conditions for Lysenin use in biosensing applications that 

detect multivalent ions in biological samples. These conditions simply eliminate the influence of 



67 

 

monovalent ions on the electrostatic interaction between Lysenin’s binding site and multivalent 

ions.  

In this line of inquiry, a set of experiments were conducted in order to inspect the 

sensitivity of Lysenin channels under the influence of multivalent ions. Different concentrations 

of cobalt divalent ions were added to the Lysenin channels at very low monovalent ion 

concentrations (Figure 4.19). Compared with the behavior of Lysenin at 150 mM KCl, the results 

showed that Lysenin was more sensitive toward Co
2+

 at a very low monovalent ion 

concentration. This finding supports the competition concept between multivalent and 

monovalent ions for the binding site. Cobalt divalent ions won the competition for the binding 

site at this low monovalent ion concentration. 
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Figure 4.19: Lysenin channels show more sensitivity to Co
2+

 at the lowest 

monovalent ion bulk concentrations. 
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4.6 Charge Impact on Lysenin Channel’s Conductance 

The previous experiments showed how Lysenin channels’ conductance was influenced by 

different multivalent ions. All tested multivalent metal ions inhibited partially or totally the 

Lysenin channels’ transport capabilities according to their respective efficiencies, which were 

considerably varied.  Although the experiments did not offer enough information to help in 

deciphering the intimate mechanisms behind this observed decrease in conductance, some 

general trends may be described. 

As concluded before, the effect of monovalent ions (in the micromolar range) was almost 

negligible on the conductance of Lysenin channels. That is, monovalent ions did not reduce the 

macroscopic conductance. Divalent ions did not affect the conductance as efficiently as ions with 

charges greater than +2, which eliminated the conductance in the µM range. These observations 

proposed electrostatic interaction as the primary source of the decrease in conductance.  

In order to explore the influence of charge on the inhibitory potency, experiments 

involving the same ion (Fe) in two different redox states, +2 and +3, were conducted. The 

divalent ferrous ion Fe
2+

 was a very efficient inhibitor where the macroscopic conductance was 

decreased by more than 90% at about 10 mM concentration as Figure 4.20 depicts. However, the 

trivalent form of the same ion reduced the transport capabilities by approximately 95% at much 

lower concentration (about 250 M), and demonstrated that the charge, and not the chemical 

identity, modulated the inhibition efficiency of Lysenin channels [51].    
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Figure 4.20: Trivalent ferric ions (Fe
3+

) reduced the conductance of Lysenin 

much more effectively than divalent ferrous ions (Fe
2+

), indicating the irrelevance 

of chemical identity to changes in Lysenin’s conductance. 

4.7  Hydrated Radius and Charge Density Effects on Lysenin Channel’s Conductance 

The different sensitivities encountered for ions of the same charge indicated that other 

physical properties might play a role in modulating the macroscopic conductance of Lysenin 

channels. The most uniform response was encountered for the trivalent lanthanides, which carry 

the same charge but have different ionic radii.  

With this in mind, ion size was hypothesized to be responsible for the different 

sensitivities, as steric hindrance might impede accessibility to the binding site [56]. While the ion 

size hypothesis would explain why Al
3+

, with an ionic radius of approximately 0.55  , was more 

efficient than any of the lanthanides, ranging from 1.05 to 1.20  , it did little to account for 
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divalent ions such as: Zn
2+ (0.74   radius), Ni

2+ (0.715    radius), Mn
2+ (0.86   radius), and Co

2+ 

(0.74   radius) [57].  

Nevertheless, the ionic radii as reported does not take in consideration the fact that the 

ions were hydrated with one or more layers of water molecules (effective hydrated radii), where 

the effective size of the ions would be larger and should be considered in the reaction with 

Lysenin’s binding site. All trivalent cations have the same hydrated radii (9  ) [33]. Taking into 

account that Lysenin makes a pore with radius of about 15   then diminishing the conductance 

of the channel by blocking is a plausible mechanism. The ionic and hydrated radii for the ions 

that used in this research are listed in Appendix A. 

For a better understanding of the influence of ionic size on Lysenin’s gating, a set of 

experiments were performed using the huge polyamines (nonmetals) spermidine
3+

 “SPD
3+”

 and 

spermine
4+

 “SPM
4+

”, whose chemical structures are displayed in Figure 4.21 [58].  

 

 

Figure 4.21: The chemical structure of (a) Spermidine
3+

 and (b) Spermine
4+

 

The addition of Spermidine and Spermine to the bulk electrolyte of concentration 150 

mM NaCl, as Figure 4.22 depicts, did not reduce macroscopic conductance to the same degree as 

the trivalent metals did. The addition of 5 mM Spermidine reduced the conductance by 

approximately 40% despite the fact that Spermidine is trivalent. This low sensitivity resembled 
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the inhibition induced by divalent metals rather than trivalent ones. The addition of 4 mM 

Spermine to the electrolyte reduced the conductance of Lysenin channels by more than 50%, 

similarly to divalent metal ions. The slightly higher sensitivity recorded for Spermine may be 

linked to its higher ionic charge compared to Spermidine.  
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Figure 4.22: The effects of (a) trivalent Spermidine and (b) quatrovalent 

Spermine on conductance of Lysenin channels were similar to those of divalent 

ions. 

Spermine has a linear structure (cylindrical shape) and is considered to be the longest 

among other polyamines with about (20   in length) and (4   in diameter) [30]. Taking into 

account the diameter of Lysenin channel which lies between 30   [40] and 57   [41], then 

Spermine would pass through the Lysenin’s channel. The low inhibition observed for both 
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voluminous organic ions provided supplementary evidence to indicate that the modulation of the 

channel conductance could be governed by both ionic charge and size [51, 54]. 

4.8 Reversibility 

The interaction of multivalent ions with Lysenin channels yielded a concentration-

dependent decrease in macroscopic conductance upon their addition to the bulk solution of 

monovalent ions. The experimental results indicate that electrostatic interaction played a major 

role in modulating Lysenin’s sensitivity to multivalent ions, without offering any further clues to 

the mechanistic processes resulting from such interaction.  

The stability of Lysenin channels in the BLM was investigated in the presence of 

multivalent ions to determine whether these channels were functioning reversibly, that is opening 

and closing, or were simply removed from the BLM. Such studies required the consequent 

removal of the multivalent ions from the bulk electrolyte. The simplest approach for this task 

would be to flush the bilayer chamber with fresh electrolyte until all multivalent ions were 

completely removed. Practically, however, the well-known fragility of the unsupported BLM 

seriously impeded such an approach. 

An experiment was conducted in order to measure the changes in macroscopic 

conductance of Lysenin channels upon addition of La
3+

. Lysenin was added to the BLM and an 

open current of approximately 11.5 nA was reached. The measurements were performed in 

voltage clamp conditions of -80mV bias, and sampling rate 100 ms. The addition of 10 M La
3+

 

reduced the conductance significantly (channels closed) in about 2 minutes (Figure 4.23-a), then 
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the addition of 1mM EDTA, a chelator, reinstated (in much shorter time) the initial conductance 

properties and demonstrated reversibility [51, 54].  

Accordingly, the capabilities of various chelating or precipitating agents, in the bulk 

electrolyte, were investigated to reduce the amount of free ions and help in analyzing 

reversibility. 
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Figure 4.23: Chelators’ or precipitators’ effect on recovering the current through 

closed Lysenin channels. The fast recovery of the current indicated that these 

channels were functioning in the BLM. (a) Addition of EDTA chelated La
3+

; as a 

result the channels reopened again. (b) Phosphate ions precipitated Al
3+

; the 

channels reopened quickly. 

Another experiment was conducted to investigate this property with regards to Al
3+

. The 

bilayer preparation and the Lysenin insertion were performed as described in chapter three. The 

measurements were performed in voltage clamp conditions of -40 mV bias, and the changes in 

the macroscopic currents upon multivalent ion addition were recorded as a function of time 

(sampling rate 1 s).  
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Before the addition of any multivalent ions, the free Lysenin in solution was carefully 

removed by flushing the ground side of the chamber with 30 ml of fresh buffered electrolyte. As 

a result, the total amount of Lysenin was drastically reduced to only the few thousand proteins 

inserted into the BLM. 

Addition of 100 M of Al
3+

 rapidly shut down the open current in a matter of minutes as 

Figure 4.23-b depicts, and neither the addition of EDTA or EGTA as chelating agents provided 

any reversal. Since these particular agents however are not reported as effective removers of 

Al
3+

, the lack of conductance recovery did not necessarily disprove the reversibility.  In fact, 

subsequent addition of 5 mM of phosphate ions quickly reinstated the open current through 

Lysenin channels. Phosphate ions have the ability to interact with free Al
3+

 and the resulting 

phosphate has a very low solubility in water at neutral pH [54]. As a result, it was concluded that 

the interaction between Al
3+

 and Lysenin was indeed reversible, and that the changes in 

conductance were cancelled by precipitating the inhibitors. 

The insertion process of Lysenin channels in the BLM was a slow and stable process that 

took about one hour (see Figure 4.1) and reversibility indicated that these channels were not 

pulled out of the BLM as a result of their interactions with multivalent ions. If this removal had 

indeed occurred, and the channels had been released to the solution, they would have reinserted 

at an extremely slow rate after chelation or precipitation, as their bulk concentration would be 

very low. Instead, the rapid reversibility of these channels indicated their firm establishment in 

the BLM. 

The reversibility of macroscopic conductance induced by multivalent ions ruled out the 

hypothesis that these ions caused irreparable damage to Lysenin channels. In fact, it was 

evidence showing that the pores did not come out of the membrane. 
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The noted reversibility has profound implications for the possibility of Lysenin’s use in 

biosensing purposes. The distinctive conductance changes of this protein’s channels could make 

it a novel biosensor for multivalent ions, and its reversibility would allow the analysis of multiple 

samples with one sensing system [51, 54]. Reversibility as a fundamental feature separates 

multiple-use sensors from single-use probes. Additionally, the Lysenin-BLM setup could be used 

to detect and distinguish between chelators and precipitators such as detecting phosphate in 

water samples.  

4.9 Single Channel Investigation and Mechanism of Conductance Decreasing 

The macroscopic conductance of Lysenin channels decreased with the increase of the 

concentration of multivalent ions. The physical determinants of the observed changes in 

conductance and the intimate mechanisms leading to such functionalities are yet to be 

determined. 

Lysenin inserts stable channels into bilayer membranes [1, 39, 43, 59], and the channels are 

regulated by voltage and ligands [1, 43, 45, 51, 54, 60]. These conducting paths are not really ion 

channels, but are simply pores in a bilayer with some similar behaviors to ion channels (see 

chapter 2). Both structures are capable of high transport rate, but Lysenin lacks the selectivity 

function [1, 43]. Selectivity is an extremely important characteristic of ion channels that enables 

the cell to discriminate and control biomolecules exchange with its surroundings [4], in other 

words it is the transport of only a certain type of ions for maintaining the electrochemical 

gradient, whereas such a function would not be a stringent requirement when it comes to, for 

example, a pore-forming toxin (Lysenin) that kills its host cell by dissipating its electrochemical 
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gradient. The interaction between wild type pore-forming proteins and multivalent ions is not 

well documented [51, 61-64] and no feasible mechanisms have been advanced so far to explain 

it. 

In contrast, ion channel regulation has been reviewed for decades [22, 65-68]. Based on 

the functional similarities between Lysenin and ion channels, one might assume similar 

mechanisms behind their interactions with multivalent ions. Ion-channel regulation by 

multivalent ions is a very complex process. Ligand-gated ion channels experience a 

conformational change upon the binding of a specific ligand [69], or the pathway of the ion 

channels is blocked by these ions [22]. 

The analysis of the macroscopic current through Lysenin channels during their dynamic 

interaction with multivalent ions offered some important clues to the mechanism of interaction. 

Reversibility of Lysenin channels, which showed fast recovery of conductivity upon the removal 

of the inhibitory ions, ruled out the possibility of permanent damage to the Lysenin channels or 

their expulsion from the supporting bilayers. This was key evidence on the gating process of 

Lysenin. 

 Furthermore, the graph of conductance inhibition displayed a fall-off shape with much 

higher sensitivity in the low concentration range, while the higher concentrations indicated 

saturation. As multivalent ion concentration increases, the probability of their time-interaction 

with the binding site increases until it reaches its maximum capacity of ions (saturation). At high 

concentration, saturation was observed as a flattening in response. This behavior indicates the 

presence of a binding site interacting with those multivalent ions, which is consistent with the 

previous findings in sec.4.5. 
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Another significant clue is the interaction between ions and Lysenin which can be 

considered electrostatic interaction. The different sensitivities of Lysenin to multivalent cations 

support such kind of interaction. The modulation of the voltage gating upon addition of 

multivalent ions and the competition between monovalent and multivalent ions for the binding 

site (sec.4.5) are strong evidence to propose electrostatic interaction. 

The final shape and size of Lysenin channel after assembled in the BLM is unknown. The 

diameter of the entrance (mouth) of Lysenin pore was reported [40, 41] to be either (30  ) or (47 

 ), while the internal size of the pore (whether it is narrower or fatter) is for sure ambiguous. But 

based on the similarities between pore-forming proteins and ion channels, we may assume the 

same internal-structural size. The sizes of potassium ion channel gets narrower below the 

entrance of the pore [19, 31, 70, 71]. Accordingly, it is hypothesized that Lysenin channel 

follows the same sense and have a narrower pathway below its entrance. Taking in consideration 

the hydrated sizes of ions (lanthanides 18   in diameter), then blocking the pathway of Lysenin 

pore is a plausible mechanism. In fact, the experimental data is consistent with this mechanism 

either for divalent or trivalent ions without excluding other possible mechanisms. 

 However, it may still possible that Lysenin possesses multiple binding sites, and a cluster 

of ions could completely occlude the conducting pathway. Open current measurements 

performed on a large population of Lysenin channels could not offer further information to help 

in discriminating between various current-blockage mechanisms, so at this time of inquiry, 

analysis of the single-channel level was conducted.  

Insertion of a small number of Lysenin channels into a planar BLM was performed by 

adding extremely small amounts of Lysenin, approximately 10 pM of final concentration, to the 

trans chamber while applying a negative voltage of -80mV across the membrane. After inserting 
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a small number of channels as illustrated in Figure 4.24-a, the trans chamber was flushed with 

about 30ml of fresh electrolyte in order to prevent any further insertion. The insertion of each 

channel changed the current by approximately -48 pA, as Figure 4.24-a depicts. Adding 300 μM 

of La
3+ 

to both sides of the chamber decreased the open current in a stepwise manner, as shown 

in Figure 4.24-b.  
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Figure 4.24: (a) The kinetic process of inserting three Lysenin channels in the 

BLM increased current in three discrete steps. (b) The inhibition of the current 

through these channels in a similar manner as they closed upon addition of La
3+

. 

The noise was higher in (a), so the recorded line is thicker than (b).  

This observation was crucial in establishing the mechanism of the dynamic interaction of 

Lysenin channels with multivalent ions. An eventual occlusion of the Lysenin channels by 

clusters of ions attached to multiple binding sites should produce a monotonical and gradual 

variation in the open current. From a thermodynamics standpoint the binding process is 

described in statistical terms and it is impossible for all the binding sites to be simultaneously 
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occupied and to produce a sudden and uniform change in the open current. The most probable 

mechanism compatible with the observed current variation, then, is the pore-blocking 

mechanism.  

Since single channel analysis proved to be an excellent tool in deciphering the effect of 

La
3+

 on Lysenin channels, the experiment was repeated to analyze the influence of Ca
2+

 on the 

macroscopic currents through single channels. After inserting a few Lysenin channels into the 

BLM and adding 40 mM Ca
2+

 to the bulk solution, a high resolution current recording (-80 mV 

bias voltage) was performed. Although the initial salt concentration and voltage conditions were 

identical to the La
3+

 experiment, Ca
2+

 followed the same pattern but in smaller current steps, as 

Figure 4.25-b depicts. The changes in the open current were characterized as steps of 

approximately 22 pA, indicating partial closing of these channels. 

The sub-closed state of conductance under the influence of divalent ions could be 

explained with two scenarios. The first would be that all individual channels went through single 

conformational transitions to sub-conducting states, that is  

Four open channels                           Four sub-conducting channels 

 

The other scenario is that some channels remained in their open state while others closed 

partially before closing completely, or 

Four open channels                 {Two sub-conducting state             {Two non-conducting state 

                          + Two open channels}                 + Two open channels} 

 



80 

 

The first scenario of partial change for all channels is most probable. If the second 

scenario were true then eventually all channels would be switched to the fully closed state 

because divalent ions were still in the bulk and would continue to interact with Lysenin. 
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Figure 4.25: (a) The kinetic process of inserting three Lysenin channels in the 

BLM increased current in three discrete steps. (b) The addition of Ca
2+

 decreased 

open current in a similar  manner to La
3+

 with approximately half amplitude steps 

indicating a sub-conducting state. The noise was higher in (b), so the recorded 

line is thicker than (a). 

 

The binding of divalent ions (3-8   in diameter) produced small transients in the open 

current but their amplitudes were extremely low as illustrated in Figure 4.25-b. It was proposed 

that the binding partially blocked the conducting pathway and reduced the current but the 

conductance was never completely nullified. The result of this experiment indicated that Ca
2+

 (6 

  in diameter) attached to the binding site, and accordingly the pore was partially blocked as 

shown by the small decreased steps in the current. 
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The differences in sensing various divalent or various trivalent ions by Lysenin (see 

Figures 4.7, 4.8 and 4.9) could be due to the ion-binding affinity between these ions and the 

binding site of Lysenin. The electric field across a Lysenin channel is on the order of 10
7
 V/m 

which is a massive field, and may force the ions inside the channel to leave the binding site, 

unless there was an interaction process between the binding site and the ions. The behavior of 

Lysenin channels under the influence of ions indicated a dynamic interaction between the 

channels and the binding site, which was governed by the ion-protein binding affinity. 

The investigation of the dynamic interaction between ions and Lysenin indicate the pore-

blocking mechanism because it is consistent with the experimental data. However, this does not 

rule out the possibility that other mechanisms, such as, conformational change, were playing a 

role in limiting transport. However, we could say that the hydrated ions were playing a role.  
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Chapter 5 Modeling the Dynamic Interaction between Ions and Lysenin  

5.1 Kinetics of the Dynamic Interaction between Lysenin and Ions 

The history of biological-ion channel modeling goes back more than 100 years [35]. In 

the beginning of the premolecular era, the analysis of those simple models was considered the 

main source of information on channel structure. Early suggested models depended mainly on 

the simplified approximations that lead to mimic the function of the channel. 

As science advanced, more molecular biological structures became known; and through 

the use of computer software the modeling of these structures has achieved great progress [72]. 

Modeling enhances our understanding of the structure-function relation of different proteins, 

especially ion channel or pore-forming proteins.  

In this work, a mathematical model is proposed for Lysenin channel’s kinetic process, 

which assumes based on the reaction-rate approach [72] that the binding site of Lysenin 

dynamically interacts with metal ions. The ions jump between the binding site and the bulk 

solution according to a rate constant that governs the kinetic process. The closing of Lysenin 

channels (or the sub-closing) is considered to be a forward reaction process between Lysenin and 

multivalent ions, while the reopening of these channels is considered to be a backward reaction 

of the kinetic process. 

Single channel experiments were performed in order to investigate the dynamic process 

of the interaction between ions and a Lysenin channel. A minute amount of Lysenin was added 

to a BLM formed in 150 mM KCl buffered with 20 mM HEPES/KOH.  A single channel was 

observed to be inserted in the BLM (48 pA) as illustrated by Figure 5.1. A small concentration of 

La
3+

 was added (60 μM) to interact with this channel so it would not induce sustained full 
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closing. The purpose of adding La
3+

 was to examine the dynamic interaction between metal ions 

and Lysenin. According to Figure 5.1, the fluctuation of the recorded current indicated that the 

Lysenin channel switched from its open state (-48 pA) to partially closed one (-15 pA) for some 

time as a result of the dynamic interaction between La
3+

 and the binding site; then the La
3+

 left 

the binding site, resulting in reopening the channel again, and so on. The behavior of the channel, 

in terms of the current fluctuations, provided extra evidence of the dynamic interaction between 

the binding site of the Lysenin channel and the metal ions. 
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Figure 5.1: La
3+

 ions interacted with Lysenin channel and caused a fluctuation in 

current revealing the dynamic interaction between them. The status of the channel 

was switched between partially closing and reopening according to the dynamic 

interaction with ions. 
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The purpose of modeling Lysenin’s interaction with multivalent ions was to understand 

and predict their influence on the Lysenin’s macroscopic conductance and measure the 

equilibrium rate constants of these dynamic interactions. 

The model was established by estimating the macroscopic current response to different 

concentrations of multivalent ions in single-channel analysis. In addition, the bulk conductivity, 

applied voltage and the channels’ geometry were considered in this model.  

Some essential assumptions and approximations were proposed in order to build this 

model: Lysenin-ion interaction was assumed to be a single step, the concentration of ions was 

approximately constant, and all ions were able to pass through the Lysenin channel. 

5.2 Mathematical Model for Ligand Gating of Lysenin Channels  

According to the experimental results, regarding dynamic interaction (Figure 5.1) and 

reversibility shown in Figure 4.23 and), the interaction between multivalent ions and Lysenin 

was reversible. Reversibility as a process can be defined in terms of forward and reverse 

reactions of a dynamic equilibrium process between ions and Lysenin. The significance of this 

approach is that it will enable us to estimate the equilibrium rate constants for these reactions.   

5.2.1 Equilibrium Rate Constant 

The equilibrium rate constant is defined as:    
  

  
  , where 
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For the general elementary reaction                   

      

The rate laws for the forward and reverse reactions are [34] 

             ,           , and at equilibrium        , so   

K  
  

  
 

     

        
                                                                                                                                         

        are integers or half integers and the reaction is said to have order “ ” with respect to A, 

or order “ ” with respect to B [34]. 

The experimental results revealed that the interaction between Lysenin and multivalent 

ions switched Lysenin to either a sub-closed state with divalent ions, or a fully closed state with 

trivalent ions. Even for higher degree ions than trivalent (n>3) the interaction must remain within 

these two possibilities.  

That is 

Open channels + divalent ions    sub-closed channels, or 

Open channels + trivalent ions    fully closed channels 

Let us introduce the following parameters: 

                                                                               

                                                                  

                                                                        

                                                                                          

It is clear that at any time  

                                                                                                                                               

Let x be the ratio of the number of the sub-closed (or fully closed) channels to the number of 

open channels as shown in Equation (5.3). 
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The interaction of Lysenin with “m” multivalent ions (     ) can be expressed as: 

           
  

 
  

                                                                                                                                       

According to Equation (5.1), the equilibrium rate constant in Equation (5.4) can be written as: 

  
    

           
 , or 

    
  

         
                                                                                                                                             

  Plug Equation (5.2) in Equation (5.5), then 

  
  

              
                                                                                                                                

Now plug Equation (5.3) into Equation (5.6) 

  
   

               
 , or 

  
 

            
 , then 
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5.2.2 Electric Current Before and After Adding Multivalent Ions 

                    

Let us define 

                                                                

                                                                  , then 

                                                                                                                                                       

Where “w” is the area per unit length of the channel (channel’s geometry) 

                                                                  

V is the bias voltage across the channel 

                   

Let us define 

                                                              

                                                                          

                                                                                  , then 

                                                                                                                                                              

But          , then 
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      all channels are closed, which is the case for trivalent ions. In general for any partially 

conducting (sub-closed) state, this value should be       , which is the case for the 

interaction of Lysenin with divalent ions. 

By plugging Equation (5.10) in Equation (5.9) we get 

                                                                   

                                                                                                                                                 

If we assume that the channels’ geometry is not going to be affected by the interaction 

with multivalent ions, that is “ ” is going to be the same before and after adding     , then the 

current “  ” can be expressed as 

                                                                                                                                                         

     is the specific conductivity after addition of     , and by plugging Equation (5.12) in 

Equation (5.11) and divide Equation (5.11) by Equation (5.8) we get 

 

  
 

                

      
                          

 

  
 

            

  
                                                                                                                                  

The electrical conductivity of the bulk solution after adding divalent ions, such as Ca
2+

, 

stays linear (see Figure 5.2) according to the following relationship: 

                                                                                                                                                     

                                                                         . 
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Figure 5.2: Addition of Ca
2+

 to a bulk of 150 mM KCl linearly increases the 

conductivity of the bulk. The linear fit gives the value of the parameter “b” which 

is the slope of line. 

By plugging Equation (5.14) in Equation (5.13) we get 

 

  
 

          

  
            , by using Equation (5.7) we get 

 

  
 

          

  
 
           

          
                                                                                                    

For low concentration of multivalent ions i.e.              then 

                                

 

  
 

           

          
                                                                                                                                   

If we have full closure then  f = 0 and this equation reduced to 



90 

 

 

  
 

 

          
                                                                                                                                    

The parameters in Equation 5.15 can be defined as: 

                                                                

                                                                 

                                                                   

                                                                       

                                     

f   is a fraction that describes the status of the channel         

                                                        

                                                   

m  is the cooperativity number which is the required number of ions interacting with Lysenin to 

cause either full or partial closure.  
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Chapter 6 Comparison between Theory and Experiment 

The purpose of fitting the experimental data to the model was to provide evidence for an 

explanation of the type of interaction between the binding site and the ions. In addition, the intent 

was to reveal the mechanism of gating of the Lysenin channel. The strength of the dynamic 

interaction of ions with Lysenin was related to the estimated values of the equilibrium rate 

constant “K”. 

6.1 Fitting Data of Divalent Metal Ions 

Lysenin channels sensed divalent ions differently as shown in Figures (4.7-4.8). The 

fraction number “f”, which described the status of the channel according to its definition in 

Equation (5.10), was estimated by considering the best fit of the experimental data using the 

mathematical model (Equation 5.15). The model estimated the values of the equilibrium rate 

constants “K” for each dynamic interaction, while the cooperativity number “m” was chosen to 

be one for all divalent ions except for copper, where it was proposed to be two according to the 

case study described in section 8.1.  

The variables that appeared in the model were taken as follows:         mS/cm, and 

b=0.14 for all other divalent ions as illustrated in Figure 5.2, where the slope “b” was calculated 

from the linear relationship of conductivity versus concentrations of divalent ions. 

The experimental results of the dynamic interaction between Lysenin and divalent ions 

were fit to the model (Equation 5.15) and showed an excellent prediction as illustrated in Figures 

6.1-6.8.  
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Figure 6.1: The model successfully predicted a stable sub-conducting state of 

Mg
2+

. As indicated by the graph, the macroscopic current decreased at low 

divalent ion concentrations was followed by a linear increase due to the 

subsequent increase in conductivity of the bulk. 
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Figure 6.2: Fitting the experimental data of Ca
2+

. 



93 

 

0 30 60 90 120 150 180

0.0

0.2

0.4

0.6

0.8

1.0

I/
I 0

[Mn
2+

]  (mM)

 Mn
2+

 Fitting

 K 0.150 ± 0.009 mM
-1

 f 0.244 ± 0.012

 m 1

 

Figure 6.3: Fitting the experimental data of Mn
2+

. 
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Figure 6.4: Fitting the experimental data of Ni
2+

. 
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Figure 6.5: Fitting the experimental data of Co
2+

. 
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Figure 6.6: Fitting the experimental data of Fe
2+

. 
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Figure 6.7: Fitting the experimental data of Cd
2+

. 
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Figure 6.8: Fitting the experimental data of Zn
2+

. 
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The estimated values of the equilibrium rate constants along with the fraction numbers 

“f” of divalent ions are enumerated in Table 4. The different values of the equilibrium rate 

constants are related to the ion-binding affinity between the ions and Lysenin.   

Table 4: predicted values of equilibrium rate constants and the fraction numbers “f” for divalent 

ions. 

 

Divalent ion f Equilibrium rate constant  

K  in  mM
-1

 

Mg
2+

 0.450   0.098  

Ca
2+

 0.378   0.079   

Mn
2+

 0.244   0.150 

Ni
2+

 0.321 0.303 

Cd
2+

 0.199 0.228 

Co
2+

 0.229 0.139 

Zn
2+

 0.125 0.952 

Fe
2+

 0.067 1.02 
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6.2 Fitting Data of Trivalent Metal Ions 

The effect of the trivalent ions was uniform in that they caused a full closure of Lysenin 

channels. Accordingly the fraction number “f=0”, and the very low concentration “M” 

indicates no significant increase in the bulk concentration (that is b≈0) of all tested trivalent ions.  

This allows simplification of the model and we can use Equation (5.17) below to fit the 

data for trivalent ions     
 

  
 

 

          
   

The dynamic interaction of Lysenin and aluminum trivalent experimental results were fit 

to the model and showed an excellent prediction as illustrated in Figure 6.9  

0.0 0.4 0.8 1.2 1.6

0.0

0.2

0.4

0.6

0.8

1.0
 Al

3+

 Fitting

K 42.7 ± 13.2 M
-1

m 1

I/
I 0

[Al
3+

]  (M)
 

Figure 6.9: The model successfully predicted a non-conducting state. As 

indicated by the graph, the macroscopic current decreased at very low aluminum 

trivalent ion concentrations. 
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The fitting graphs of other trivalent ions to the model are shown in Figures 6.10-6.14, and 

the estimated values of the equilibrium rate constant for each trivalent ion are listed in Table 5, 

where it can be noticed their decrease with Lysenin’s sensitivity to them. 
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Figure 6.10: Fitting the experimental data of Ce
3+

. 
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Figure 6.11: Fitting the experimental data of La
3+

. 
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Figure 6.12: Fitting the experimental data of Eu
3+

. 
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Figure 6.13: Fitting the experimental data of Tb
3+

. 
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Figure 6.14: Fitting the experimental data of Fe
3+

. 
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                 Table 5: predicted values of equilibrium rate constants for trivalent ions 

 

 

Trivalent ion Equilibrium rate constant  

K in  M
-1

 

Al
3+

 42.70   

Ce
3+

 0.0220   

Fe
3+

 0.0060   

La
3+

 0.0017  

Eu
3+

 0.0009 

Tb
3+

 0.0007  
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6.3 Fitting the Data for High Monovalent Ion Concentration 

The experimental data sec.4.5.2 that considered the competition between monovalent and 

trivalent ions was also fitted by using the proposed model (Equation 5.17). The model predicted 

the values of “K” where it decreased with increasing monovalent ion concentration (Figures 

6.15-6.19). The ratio of trivalent to monovalent ions was kept the same as monovalent ion 

concentration increased which was considered as evidence on the competition for the binding 

site between monovalent and trivalent ions. The general trend, of Lysenin’s conductance with 

trivalent ions in the presence of different concentrations of monovalent ions, was that Lysenin 

turned to be less sensitive to trivalent at high monovalent ion concentrations. Being heavily 

occupied by monovalent ions, the electrostatic interaction between the binding site and trivalent 

ions (Ce
3+

) was reduced, which eventually minimized their probability of binding. 
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Figure 6.15: Fitting the experimental data of Ce
3+

 at 75 mM KCl. 



103 

 

 

0 30 60 90 120 150

-0.2

0.0

0.2

0.4

0.6

0.8

1.0  150 mM KCl

 Fitting

K 0.022 ± 0.002 M
-1

m 1

I/
I 0

[Ce
3+

]  (M)
 

Figure 6.16: Fitting the experimental data of Ce
3+

 at 150 mM KCl. 
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Figure 6.17: Fitting the experimental data of Ce
3+

 at 300 mM KCl. 
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Figure 6.18: Fitting the experimental data of Ce
3+

 at 600 mM KCl. 
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Figure 6.19: Fitting the experimental data of Ce
3+

 at 900 mM KCl. 
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Chapter 7 Conclusions 

The main objective of this study was to investigate the mechanism of gating of Lysenin 

as a pore-forming toxin under the influence of multivalent ions, and to further explore the 

potential of this setup for use in biosensing applications. This work added useful scientific 

information to previous studies in the field of ligand gating and its uses in biosensing 

applications.  

In the conducted experiments, Lysenin gated noticeably under the influence of most 

divalent ions, and fully closed when interacting with trivalent metal ions. Lysenin’s voltage-

gating process, which was observed in the positive voltage range, indicated that each Lysenin 

channel could have what is called a voltage sensor. Accordingly, the dynamic interaction 

between Lysenin and the external electric field appeared to be electrostatic. On the other hand, 

Lysenin channels did not show any voltage-gating when negative voltages were applied, 

remaining in their open state over the entire negative voltage range. The open state of Lysenin 

channels at negative voltages provided the ideal conditions for the investigation of the 

electrostatic interaction between Lysenin’s binding site and multivalent ions. The experimental 

data was consistent with a model that assumed that binding site was a negatively charged region 

inside the lumen of the channel.  

The analytical response of the conductance of Lysenin channels was not the same for divalent 

and trivalent ions. Trivalent metal ions approximately inhibited the transport through the Lysenin 

channels by blocking their open pathway, which appeared as discrete steps. The experimental 

data was also consistent with a pore-blocking mechanism, but did not exclude the role of 

additional mechanisms such as conformational changes. The hydrated sizes of the ions relative to 
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the size of the pore supported this hypothesis. The size of the charge was not the only reason for 

ligand gating; in addition, ionic size and the ion-binding affinity which led to the ligand gating 

mechanism (pore-blocking). 

The suggested mathematical model was built according to a pseudo-first order kinetic 

process based on the dynamic interaction process between the ions and Lysenin’s binding site. 

The model predicted successfully the behavior of Lysenin under the influence of different 

multivalent ions. Upon their interaction, the equilibrium rate constant was estimated by fitting 

the experimental data to the model. The experimental data were fitted successfully according to 

the proposed model, where it follows the behavior of Lysenin under the influence of different 

multivalent ions and concentrations. The data and model together provided values of the 

equilibrium rate constants of each multivalent ion, reflecting the channel’s sensitivity to these 

ions. 

Reversibility as a fundamental feature separates multiple-use sensors from single-use 

probes. Additionally, the Lysenin-BLM setup could be used to detect and distinguish between 

chelators and precipitators such as detecting phosphate in water samples. The noted reversibility 

has profound implications for the possibility of Lysenin’s use in biosensing purposes. The 

distinctive conductance changes of this protein’s channels could make it a novel biosensor for 

multivalent ions, and its reversibility would allow the analysis of multiple samples with one 

sensing system.  

Lysenin was the most sensitive toward aluminum trivalent ions. The sensitivity of 

Lysenin to multivalent ions indicated its potential for use as a sensor for the detection of metal 

ions in biological samples. As a sensor we found that the Lysenin’s sensitivity to multivalent ions 

increased for low monovalent ion concentration. 



107 

 

Chapter 8 Future Work 

8.1 Full Closing versus Partial Closing: a Cu
2+

 Study  

The conducted experiments, under the same conditions (voltage and resolution), showed 

a one-step full closing state for La
3+

 and a one-step partially closing state for Ca
2+ 

divalent ions 

[51]. All tested trivalent ions followed the same pattern, in which they caused direct closure of 

the open channel in one step; but some divalent ions such as Cu
2+

 did partially close the channel 

not in one step but rather in an additional transient step. 

It was hypothesized that a single trivalent ion was interacting with each Lysenin 

channel’s binding site and causing the channel to close.  On the other hand, Lysenin 

demonstrated a lower and varied sensitivity to divalent ions, with its highest sensitivity to Cu
2+

 

(Figure 8.1). 
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Figure 8.1: Among all tested divalent ions, Cu
2+

 demonstrated the greatest 

conductance reduction effect on Lysenin channels, requiring only 200 M to 

almost completely shut them. 
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In order to understand the mechanism that ruled the dynamic interaction of Lysenin with 

copper divalent ions (Cu
2+

), another experiment was conducted under the same conditions of 

voltage (-80mV bias voltage across the BLM) but with higher sampling rate (50 ms
-1

). The 

addition of minute concentrations of Lysenin resulted in the insertion of only two channels (-48 

pA each) in the BLM (Figure 8.2-a). The addition of 500 μM Cu
2+

 almost completely nullified 

the conductance at much lower concentrations than other divalent ions. The open channels 

switched to the closed state, but with an intermediate transient step as Figure 8.2-b depicts. 

Addition of EGTA with a final concentration of 10 mM recovered the initial (open) current, 

showing the same intermediate step for the reopening of channel as shown in Figure 8.2-c.  
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Figure 8.2: (a) Two Lysenin channels opening. (b) Full closure of Lysenin 

channels in two steps as induced by Cu
2+

 with brief transitional periods between 

them.  (c) The channels reopen with similar transitional states upon Cu
2+

 

chelation. 
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The full closure of Lysenin in the presence of Cu
2+

 through transient steps indicated that 

more than one Cu
2+

 was needed. If we assumed one single divalent ion per each intermediate 

step, then two ions would be required to switch each channel to its fully closed state.  To 

determine the equilibrium rate constant of copper, the data (Figure 8.1) was fitted according to 

the proposed model as Figure 8.3 depicts, where “m” was chosen to be “2”.  
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Figure 8.3: The model provided the value of the equilibrium rate constant of the 

interaction between copper divalent ions and the binding site of Lysenin.  
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8.2 The Influence of Lipid Composition on Lysenin Channel Insertion and Activity 

The objective of such a plan is to expand our understanding of Lysenin channel activity. 

This investigation will have a direct impact on this research because it expands our knowledge of 

the protein-lipid interaction in the case of Lysenin and its influence on the mechanism of Lysenin 

channel gating. 

The influence of lipid composition on the Lysenin functionality will be investigated from 

the electrophysiological measurements. Planar lipid bilayers composed of various lipid types 

including neutral, zwitterionic, saturated and non-saturated with different tail lengths will be 

formed by well-established painting or folding techniques. Channel insertion and functionalities 

such as voltage/ligand gating and selectivity will be analyzed by measuring the ionic currents 

under various environmental conditions. 

8.3 Ion-Lipid Interaction Effect on Lysenin Channel Functionality 

The objective of this investigation is to understand how ion-lipid interaction influences 

the activity of Lysenin channels. 

Their ability to be used as tools to analyze biological structures and functioning was the 

main drive to use them in order to examine the activities of Lysenin. Their potential toxicological 

effect at higher concentrations in biological media, and their strong relevant and association with 

different biological functions is another reason to study ion-lipid interaction. 
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The investigation of ion-lipid interaction will answer some significant questions in this 

research such as, how ion-lipid interaction affects the oligomerization (channel insertion), the 

voltage and ligand gating of Lysenin channels.  

Determining the nature of interaction between ions and lipids has a direct impact on 

explaining the interaction between ions and Lysenin that leads to better understanding of 

Lysenin’s channel performance (mechanism). 

8.4 Controlled Molecular Transport 

The objective of this project is to produce a novel method for drug delivery by using 

liposomes. Lysenin is an excellent model for transmembrane complexes, transporters with 

multimeric organization, pore-forming toxins, and ion channels. A better understanding of their 

interactions and functionalities, and the novel approaches developed would be of large interest 

for a research team focused on physiological regulation, signaling, communication, and 

membrane trafficking. The implications of potential applicability in developing more efficient 

drug delivery systems and in designing host-specific antimicrobial peptides can have a lasting 

impact on human health. 

Unlike many other pore-forming toxins, the Lysenin channel is regulated by voltage and 

ligand binding, and these abilities open new perspectives for controlled drug delivery. The 

proposed approach uses Lysenin channels to be reconstituted into spherical bilayer lipid 

membranes (liposomes) as shown in Figure 8.4 loaded with the drug of interest.  
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Figure 8.4: Fluorescent giant unilamellar vesicle (GUV). 

Since Lysenin inserts constitutively open channels in artificial membranes at rest, the 

pores will be forced to close by creating a diffusion potential of positive value (> +20 mV) or by 

ligand binding such as Al
3+

. The transmembrane voltage and the ligand concentration can be 

further controlled by external stimuli such as electric fields, temperature, or ionizing and non-

ionizing radiation. A convenient externally-triggered change in transmembrane voltages or 

inhibitory-ligand concentrations reopens the channels and releases the load at the desired 

location in a controlled manner. This work puts together the significant results of this research on 

Lysenin in the service of a rapidly growing medical application field such as drug delivery.  
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8.5 Modulate the Charge on Lysenin Structure 

The objective of this plan is to identify the amino acids that function in binding 

multivalent ions and also to reveal the role of the Lysenin’s charge in its gating process 

(voltage/ligand). 

The structure of Lysenin is still under investigation and locating the charged amino acids 

among its structure is of great interest to the people who are in this field of research. The 

investigation of the influence of protein’s charge on its activity in the membrane leads to better 

understanding of both protein-lipid interaction and protein-protein interaction.  

Modulating the charge of Lysenin will have a great impact on this research. It will 

enhance in determining the position and the structure of the binding site of Lysenin channels, 

which is responsible for the electrostatic interactions between Lysenin and ions. 

A newly published structure of Lysenin [41] shows the presence of two acidic amino 

acids in a region of Lysenin that extends into the hydrophobic core of a lipid bilayer. Since 

charged amino acids are unlikely to be found at the lipid interface, it is hypothesized these two 

amino acids are facing the interior of the pore, which is consistent with the sensitivity of Lysenin 

to trivalent cations; conductance through Lysenin is blocked by addition of trivalent cations 

(Figure 4.9). In order to examine the role of these amino acids, site directed mutagenesis of 

Lysenin complementary DNA (cDNA) could be used to change the two acidic residues to neutral 

amino acids such as Alanine.   
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Appendix A: Characteristics of Metal Ions  

 
Table 6: Biological classification, ionic and hydrated radii [22, 33, 57, 73]. 

 

Atomic 

number 

Element 

 

Oxidation 

state 

Biological 

classification 

Effective ionic 

radii,   

 

Effective hydrated 

radii,   

 

11 Na +1 Bulk 1.09 4.50 

12 Mg +2 Bulk 0.76 8.00 

13 Al +3  0.55 9.00 

19 K 1+ Bulk 1.50 3.00 

20 Ca +2 Bulk 1.12 6.00 

25 Mn +2 Essential 0.86 6.00 

26 Fe +2 Essential 0.78 6.00 

+3 Essential 0.66 9.00 

27 Co +2 Essential 0.74 6.00 

28 Ni +2 Beneficial 0.715 6.00 

30 Zn +2 Essential 0.74 6.00 

48 Cd +2 Toxic 0.96 5.00 

57 La +3  1.18 9.00 

58 Ce +3  1.20 9.00 

63 Eu +3  1.085 9.00 

65 Tb +3  1.05 9.00 
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Table 7: Electronic configurations of elements and ions [12, 74]. 

 

Atomic number Element 

 

Electron 

configuration 

of Atom 

Ion Oxidation 

state 

Electron 

configuration of 

ions 

11 Na  [Ne]3s
1
 Na+ +1 [Ne] 

12 Mg [Ne]3s
2
  Mg2+ +2 [Ne] 

13 Al [Ne]3s
2
 3p

1
 Al3+ +3 [Ne] 

19 K [Ar]4s
1
 K+ 1+ [Ar] 

20 Ca [Ar]4s
2
 Ca2+ +2 [Ar] 

25 Mn [Ar]4s
2
3d

5
 Mn2+ +2 [Ar]4s

0
 3d

5
 

26 Fe [Ar]4s
2
 3d

6
 Fe2+ +2 [Ar]4s

0
 3d

6
 

Fe3+ +3 Ar]4s
0
 3d

5
 

27 Co [Ar]4s
2
 3d

7
 Co2+ +2 [Ar]4s

0
 3d

7
 

28 Ni [Ar]4s
2
 3d

8
 Ni2+ +2 [Ar]4s

0
 3d

8
 

30 Zn [Ar]4s
2
 3d

10
 Zn2+ +2 [Ar]4s

0
 3d

10
 

48 Cd [Kr]5s
2
4d

10
 Cd2+ +2 [Kr]5s

0
4d

10
 

57 La [Xe]6s
2
5d

1
 La3+ +3 [Xe]6s

0
5d

0
 

58 Ce [Xe]6s
2 
4f

1
5d

1
 Ce3+ +3 [Xe]6s

0 
4f

1
5d

0
 

63 Eu [Xe]6s
2 
4f

7
 Eu3+ +3 [Xe]6s

0 
4f

6
 

65 Tb [Xe]6s
2 
4f

9
 Tb3+ +3 [Xe]6s

0 
4f

8
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Appendix B: Chelating Agents and Buffers 

 

B.1 Chelating Agents and Precipitators 

 

EDTA, EGTA and phosphate were used in this research as chelating agents and 

precipitators respectively. EDTA, a hexadentate ligand, contains two amine groups and four 

carboxylic acid groups. By ionizing the acid groups, EDTA introduces six coordinate binding 

sites, which can be bound to a metal ion. EGTA, a polyamino carboxylic acid that is related to 

EDTA, has a higher affinity for calcium than magnesium ions. The chemical structure of EDTA 

and EGTA is illustrated in Figure B.1. 

 

 

Figure B.1:  The chemical structure of (a) EDTA, and (b) EGTA 

 

Phosphate also was used in this research to precipitate couple of metal ions such as 

aluminum trivalent and copper divalent ions. The chemical structures of phosphate precipitator 

and some common functional groups of chelating agents are illustrated in Figure B.2. 

 

Figure B.2:  The chemical structure of (a) Phosphate (b) Phenoxide (c) Carboxylate 
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B.2 HEPES 

Buffered solutions are essential in biological investigations. Cell biology, for instance, 

uses cell-cultural media mixed with HEPES buffer in many applications. Compared to other 

agents, HEPES exhibits solubility, stability and experiences minimum interaction with metal 

ions [46]. 

In this study, the pH of the electrolyte was kept constant by adding HEPES/KOH buffer. 

The chemical structure of HEPES is shown in Figure B.3 [33]. When NaCl electrolyte solution 

was used, the produced NaOH, a base, increased the pH (see equation C.4 in Appendix C). In 

order to maintain a constant pH, HEPES bound the OH- molecule and kept the bulk at a constant 

pH. 

 

 

 

 
 

 

Figure B.3: The chemical structure of HEPES. 
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Appendix C: Conductivity and Electrochemical Reactions 

 
C.1 Electrical Conductivity 

Electrical conduction is a transport effect in which electrical charge (carried by electrons 

or ions) moves through the system [34].  

 

Figure C.1: An electrolysis cell 

 

 

  Two Silver/silver chloride electrodes at each end of a cell— filled with electrolyte 

solution as illustrated in Figure C.1— were used to apply a potential difference by connecting 

them to a power supply. The conductivity ‘ ” of a the electrolyte; that is the reciprocal of 

resistivity “ 1/ ” is defined as        , where “E” is the electric field, and  “j” is the electric 

current density or the electric current per unit cross sectional area that is       . 

Since Ohm’s law applies to aqueous ionic solutions, then if we assume that the electric field 

is constant and along the x-direction, then 

    
  

  
         , then     

 

  
  , or     
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The term  
 

 
  is called the resistance, that is    

 

 
 and its reciprocal is called the conductance 

G, so     
 

 
  

Conductance is the reciprocal of resistance, and it is convenient to deal with conductance 

rather than resistance when discussing channels in membrane. Simply, the total conductance of 

the channels is just the sum of each individual channel’s conductance [36]. The SI units of 

conductivity and conductance are S/cm and S respectively, where S denotes siemens. 

 

C.2 Ions in Solution and Electrochemical Reactions 

The electrochemical reactions occurring at, the silver/silver chloride electrodes 

(Ag/AgCl), the anode and cathode (see Figure C.2) along with chemical reactions in the 

electrolyte can be described in simple chemical equations. The electrolyte of sodium chloride, 

for instance, and water undergoes ionic dissociation as shown in equation C.1. 

        

   
         

        
                                                                                                                         

As the potential difference is applied between the electrodes, positive ions (Na
+
) move 

towards the negative electrode (cathode) and negative ions (Cl
-
) move towards the positive one 

(anode). Reactions of sodium ions at the cathode and of chlorine at the anode are described by 

the following equations [75].  
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The neutralized chloride ion (Equation C.3) interacts with the chloride layer that covers 

the anode (see Figure C.2). The base NaOH dissociates according to equation C.4. 

                                                                                                                                             

 

Figure C.2: Sodium ions become sodium atoms after they gain electrons at the cathode, while 

chloride ions turn to chlorine atoms at the anode. 

 

Since the electric current can flow in both directions, then the electrochemical reactions 

at the electrodes are reversible. The silver/silver chloride electrodes (Ag/AgCl) provide the best 

conditions to enhance both a flow of electrons in the wires, and a flow of ions in solution. The 

AgCl, which covers the Ag electrodes, dissociates to Ag atoms and Cl
-1 

ions after the electrons 

pass through these electrodes. As a result, the hydrated Cl
-1 

ions enter the solution, as illustrated 

by equation C.5 and Figure C.3. 
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Figure C.3: The chemical reactions of the chloride ions at the Ag/AgCl electrodes 
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Appendix D: Conductance Calculations, Uncertainties and Errors 

 
In order to estimate the conductance of Lysenin channels, a linear voltage ramp was 

applied across the BLM. That linear ramp was defined by using the episodic stimulation protocol 

(0 mV: -60 mV:0 mV, 0.5 mV/5 scan rate), each run consisted of three identical voltage sweeps, 

that is a total of six I-V curves in the range (0 mV: -60 mV :0 mV) as shown in Figure 3.5. 

D.1 Measuring the Initial Conductance and the Uncertainty 

The conductance was calculated from the slope of I-V curve, which was obtained by 

using a Clamp fit analysis as follows: 

1. Open the required file and let’s assume that file has the number of (10127006.abf) as 

illustrated in Figure D.1 below. This graph is still the recorded current-time graph, so we 

need to get the current-voltage graph in order to calculate the conductance.    

 

Figure D.1: Recording of current versus time of an electric ramp of (0 mV: -60 mV: 0 mV). This 

electric ramp was applied across the BLM containing Lysenin channels. 

 

 

2. Execute “Analyze” then “quick graph” then choose “trace vs. trace” this will open a trace 

vs. trace dialog box. On the X-Axis trace, choose “sweep#1” and highlight the waveform Cmd0 
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(mV). On the Y-Axis trace, choose “sweep#1” and highlight the signal “Ipatch (pA)”, then on 

region choose “EpochA which is the straight line between the cursers 1 and 2” (see Figure D.1) 

and then choose “Replace” under the “destination”. By executing “OK” we get an I-V graph as 

illustrated in Figure D.2.  

 

 

Figure D.2: Current versus voltage of Epoch A. 

 

 

3.  The conductance is just the slope of the line in Figure (D.2) above. 

4. To consider the second straight line (Epoch B), which lied between cursers 3 and 4 we 

repeat the same steps in (2) above but we change to Epoch B and choose “Apend” under the 

“destination” and by clicking “OK” we get the second I-V curve as illustrated in Figure D.3.  
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Figure D.3: Current versus voltage for one ramp (0 mV: -60 mV: 0 mV) of the first sweep. 

 

5. The analysis above covered the first sweep, and for the other two sweeps we need to 

repeat the above procedures to get the six straight lines as shown in Figure D.4. 

 

 

Figure D.4: Current versus voltage for the six ramps (three sweeps). The slope is almost the 

same for all of these lines indicating small errors in the calculations of conductance. 

 

 

6.  The conductance of the BLM was just the mean of the slopes of these lines. The root 

mean square (RMS) of these measurements was taken as the standard deviation of the slopes i.e. 

the estimated values of the conductance, which are listed in Table 8. 
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Table 8: The estimated values of the electrical conductance of Lysenin channels before adding 

ions 

m1 m2 m3 m4 m5 m6 

233.8 x10
-9

 233.5 x10
-9

 234.5 x10
-9

 233.5 x10
-9

 234.5 x10
-9

 233.3 x10
-9

 

 

 

7. In order to calculate the uncertainty, the standard deviation for these measurements was 

considered.                
   

   
   [76], where N is the number of measurements which is 6 in this 

case and (  ) is the ith measurement and (   ) is the mean measurement. According to this 

equation the mean conductance was calculated to be              , and the standard 

deviation was              , And since the measurements should be expressed as:  

                        [76]. Then the measurement of the conductance before adding ( 

    )                . 

 

D.2 Measuring the Conductance after adding      and Estimating the Uncertainty 

Follow the previous procedures (1-7) for a file that contains the recorded data of the 

current ramp. Say this file was (10127009.abf). The slopes are shown in the Table 9. 

 

Table 9: The estimated values of the electrical conductance of Lysenin channels after adding 

ions 

m1 m2 m3 m4 m5 m6 

224.0 x10
-9

 223.0 x10
-9

 223.6 x10
-9

 224.2 x10
-9

 224.1 x10
-9

 223.9 x10
-9
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According to the data in Table 9, the mean of the conductance (slopes) after adding 

multivalent ions would be               and the standard deviation would be    

        , then the measurement of conductance after adding (    )                . 

 Some of the figures that have been introduced in this dissertation considered the 

conductance versus concentrations, that is  
 

  
 , where G is the slope of the current-voltage curve 

after adding      and    is the slope of the current-voltage curve before adding    . That is  

                                               .  

The following formula has been used [76] to calculate the uncertainty of the conductance: 

            
 

  
 

  

   
    

  

   
 

  

  
   , Then  

 

  
 

     

     
    

   

     
 

   

     
     

 

  
                             

This means during the same experiment the standard deviation (error) of conductance  
 

  
  is 

almost negligible. 

D.3     Sources of Errors and Error Bars 

 

The main source of errors in the conducted experiments appeared to be due to the 

evaporation of the electrolyte solution. This was because the average time of conducting one 

experiment was about 4-6 hours, and in some cases it took about more than that. The evaporation 

affected the concentration of the bulk (either KCl or NaCl) and accordingly the calculations of 

concentrations of metal ions were affected. the evaporated amount of solution was measured to 

be        out of        . This produced about 5% error in calculating concentrations, and 

would be considered as the x-error bars in all the graphs. On the other hand, the y-error bars were 

estimated from calculating the standard deviation of the same experimental value but from 

different experiments. 
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Appendix E: Capacitance and Electric Field Across BLM    

 

E.1   The Capacitance of BLM  

 

A planar lipid bilayer membrane (BLM) can be considered as a biological parallel plate 

capacitor (Figure E.1) [77].  When a potential difference     is applied across the leaflet of the 

membrane, then the capacitance (  in Farads) of that membrane can be expressed as [36]: 

                                                                                                                                                                   

Where ( ) is the stored charge in these leaflets.  

 

 

Figure E.1: Bilayer lipid membrane is considered as a Parallel plate capacitor 

 

 

It is known that Fringing effect is found between any two parallel-plate capacitor [78], 

and to reduce this effect we usually make the separation between the plates too small. Since the 

thickness of the lipid bilayer is too small (less than 10 nm), so we expect the electric field to be 

uniform and no Fringing effect. Accordingly the Capacitance (SI base units) of the BLM can be 

expressed as: 

          
 

  
                                                                                                                                        

Where    denotes the membrane dielectric constant, 

              denotes the area of the planar bilayer lipid membrane, and 

               denotes the thickness of the bilayer lipid membrane. 

It is most common to use the capacitance per unit area for membranes [6]. 
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In order to measure the capacitance of the bilayer lipid membrane, a train of triangular 

voltage waves was applied across the BLM. As a result, a train of square current waves was 

recorded as illustrated in Figure E.2. The amplitude of the recorded square waves (the capacitive 

current) was proportional to the area of the BLM and hence to its capacitance. 

 

 

 

 

Figure E.2: The formation of a bilayer lipid membrane (BLM) was inspected by applying a train 

of triangular voltage waves across the BLM and recording a train of square current waves. 

 

 

The capacitive current can be theoretically estimated by using Equation E.1, so if we 

differentiate both sides with respect to time we get: 

 
  

  
 

  

  
        

  

  
                                                                                                                              

If we apply a triangular voltage which varies with time with a slope of    ( 
  

  
   ) 

then we expect the current to be equivalent to the capacitance (Equation E.3), and this is why we 

do call it by the capacitive current. 

Theoretically, we can estimate the values of the capacitive current that tells us about the 

formation of the bilayer lipid membrane from multilayer ones. According to Equation E.2, the 
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capacitance and the thickness of the bilayer membrane are inversely proportional, and since the 

radius of the aperture is (70-100 μm) and the measured values of the capacitance per unit area of 

a BLM (0.7-0.86 μF/cm
2
) [79] then the square capacitive current “I” can be calculated as 

follows: 

If the radius of the aperture is 100μm and the radius of the formed BLM is approximately 

50μm, then the area of the BLM is      , that is                . If we accept the 

measured experimental capacitance per unit area to be 0.7 μF/cm
2
, then the capacitance (or the 

capacitive current) would be      
  

                         . According to this value, 

if the capacitive current is greater than 50pA, then we expect BLM formation. 

 

E.2      Electric Fields across the BLM 

The electric fields that are considered and influenced the BLM are just the ones who are 

across it and not inside the electrolyte solution. In fact we can neglect the electric field within the 

solution. These electric fields are illustrated in Figure E.3, and the equivalent electric circuit of 

the BLM and the electrolyte solution is shown in Figure E.4. 
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Figure E.3: The external electric field (      ) across the BLM was created due to the charge 

accumulation of monovalent ions (K
+
 and Cl

-
). These charges were driven by the positive and 

negative electrodes. The accumulation of these charges polarized the dielectric material of the 

BLM creating an opposing electric field (      ). 

 

 
 

 

Figure E.4: The equivalent electric circuit of the lysenin channels inserted in the BLM and 

surrounded by the electrolyte solution. 
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