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ABSTRACT

Self-assembly is a process by which simple components build complex structures through 

local interactions.  Directed percolation is a statistical physical model for describing competitive 

spreading processes on lattices. The author describes an algorithm which can transform a tile 

assembly system in the abstract Tile Assembly Model into a directed percolation problem, and 

then shows simulations of the aTAM which support this algorithm. The author also investigates 

two new constructs designed for Erik Winfree's abstract Tile Assembly Model called the NULL 

tile and temperature 1.5. These constructs aid the translation between self-assembly and directed 

percolation and may assist self-assembly researchers in designing tilesets in the aTAM with non-

deterministic local properties, but guaranteed global properties. Temperature 1.5 results indicate 

the brittleness of the standard temperature 2 tile assembly system, and the NULL tile is shown to 

assist simulations of large assembly processes while also reinforcing the need for variable 

temperature models to more closely simulate laboratory self-assembly.
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1.  INTRODUCTION 

1.1  Problem

Self-assembly is the process by which simple components build complex structures 

through local interactions. Self-assembling systems include atomic systems and molecular 

formation [1], macromolecular and crystal formation [2], and cellular composition. There is an 

entity in each case which interacts with other similar entities such that the complexity of the 

whole system increases and the free energy is minimized. The building blocks of life, proteins, 

also interact to gain complexity through self-assembly, and because of this continue to be a 

mainstay in self-assembly research [3]. Investigations into self-assembly through experiments 

with DNA have resulted in complex DNA structures like bipedal walkers [4] in the lab and 

theoretical advancements like Erik Winfree's abstract Tile Assembly Model [5].

One of the simplest and most important characteristics of self-assembly lies in the nature 

of the construction. The components assemble without supervision by a global agent. The nature 

of self-assembly, its constrained yet globally undirected construction of the target structure, 

makes it an exceedingly useful tool for myriad disciplines, particularly nanotechnology. Self-

assembly is used to construct nanoscale materials because it provides nanoscientists with a 

bottom-up design process; the structure assembled is implicitly designed by specifying only the 

components and their binding domains. By definition it disallows an ordering of components by 

an intelligent processor into predetermined schema. This circumvents the need for a traditional 

top-down design workflow, something difficult to implement at the nanoscale. Erik Winfree's 

abstract Tile Assembly Model, or aTAM, provides an invaluable tool for specifying the self-

assembling components in this bottom-up design process. Instead of gold nanoparticles, DNA, or 
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colloidal crystals, the aTAM manipulates tiles: four-sided and rigid structures that cannot be 

rotated or reflected. Winfree's abstraction borrows heavily from Wang tiles, first introduced in 

[28]. There are a number of key changes; for example, binding domains of tiles are described by 

the glues on their four sides and are articulated by the “temperature” of the system, a construct 

Wang tiles do not consider.

Self-assembly is well-described under Winfree's aTAM and derived models, such as the 

kinetic Tile Assembly Model, but these models can be expanded further to address additional 

constraints and concerns [5]. By intuition it seems that self-assembly is a less constrained 

process than the traditional aTAM can account for and can be better understood by adapting 

existing statistical mechanical models to the tile assembly process. This is also evident in the 

laboratory, as experiments infrequently correspond exactly to the predictions of the aTAM [15]. 

This thesis specifically considers percolation theory, the study of the number and properties of 

clusters of occupied sites on graphs [6]. Additional constructs are also considered which can aid 

the assembly process to more accurately reflect in vitro self-assembly. The first is the addition of 

a static tile type to each tile assembly system called the NULL tile whose purpose is to account 

for vacancies in the tile assembly. The second is the introduction of an unstable temperature 

value into the aTAM called here temperature 1.5 which gives a probabilistic component to the 

aTAM.

1.2  Objective

Using simulations, this thesis will demonstrate the equivalence of directed site 

percolation on the square lattice and self-assembly. Also, the author will examine the usefulness 
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of two new constructs which could more accurately represent laboratory self-assembly by 

simulation within the aTAM. 

1.3  Approach

The connection between percolation theory and the aTAM is first made by transforming 

the configuration of tiles in an assembly into a lattice where sites that contain tiles are considered 

occupied and where sites that do not contain tiles (or contain incorrect tiles) are considered 

unoccupied. The percolation system introduces probabilistic behavior seen in laboratory 

experiments while also reinforcing the power of the aTAM. It is by this transformation of the 

aTAM and the addition of probabilistic behavior that the model is provided more flexibility 

without losing its broad application in the study of self-assembly. Percolation theory studies 

dynamical systems which can be expressed on finite or infinite graphs. There are a suite of 

equations that express expected behaviors at infinite range which can be used to determine the 

probability of configuring very large assemblies. Experimental results on finite graphs can also 

be used to interpret the step-by-step process of current laboratory self-assembly. 

A cluster is a percolating cluster and the lattice it is on is said to percolate if that cluster 

“connects the top line or plane with the bottom line or plane [6].” Imagine that a sponge or other 

porous material is held under a slow drip of water. If the water permeates the material, that is if it 

penetrates the material fully, then there is a path from the top of the material to the bottom 

through which water can travel. That path belongs to a percolating cluster of sites within the 

material and the material can be modeled by a lattice that percolates. A percolating cluster is 

outlined in figure 1. Note that not all occupied sites on the lattice are a part of the percolating 
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cluster, only those sites reachable from the seed site at the top of the lattice. This is a result of the 

directed edges in the graph.

By transforming a tile assembly problem into a percolation problem, laboratory results 

can be examined in a new light. A system that fails to configure appropriately can be considered 

through terms which are well-described within percolation theory. An assembly under non-ideal 

conditions can undergo a phase transition as those conditions approach the ideal; these 

conditions affect attachment attachment probabilities which are instrumental in reaching the final 

absorbing state. A state is considered absorbing if no further action can occur once the system 

has reached that state [6]. To avoid undesired absorbing states, the aTAM disregards many 

Figure 1: A percolating cluster on a tilted square lattice
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interactions among tiles and aggregates which occur in laboratory self-assembly. These 

undesirable interactions include unexpected tile attachments (tile a is expected, but tile b attaches 

for some reason) and uneven attachment rates (assuming a planar construction, tile a is expected 

to attach at site (i, j), but, before it can, tiles attach at surrounding sites and prevent tile a from 

approaching its binding site). Such interactions short circuit the attachment process or prevent 

correct assembly, leaving the aggregate such that the system cannot finish the designed 

assembly. In errorful assemblies, i.e. assemblies with a preponderance of error leading to an 

absorbing state, the conditions and tile set are such that the state which consists of only the 

designed assembly can no longer be reached from the current state. Such an aggregate can be 

said to be in an “absorbing state”. No further interactions with tiles in the system can occur, and 

the aggregate is not in the expected final configuration. This absorbing state is a direct result of 

tile attachment order and probability. Local, probabilistic choices made during assembly from 

attachment to attachment can affect the global outcome of the aggregate. Percolation theory shed 

s new light on self-assembled systems; instead of “Does this tileset assemble the desired 

configuration or does it form an undesired, intermediate aggregate?”, the question becomes 

“Does this system percolate (assemble the designed aggregate) or does it reach an undesired 

absorbing state (an errorful assembly)?” This question is at the core of percolation on finite 

lattices.

Self-assembly can construct both passive (inert materials) and active (walkers and 

hinged-lid boxes) structures at the nano, micro, meso, and macro scales, but current design 

principles for self-assembling systems are lacking. Laboratory researchers focus on advancement 

through trial and error, allowing the process to develop naturally and without constraint, but the 
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discipline requires a more focused and developed design workflow to continue its relevance. By 

translating well-described qualities and behaviors inherent in percolating lattices into self-

assembly, a whole new wealth of tools are available to researchers. These tools include 

descriptive equations of a comparable dynamical system and alternate dynamical models of 

attachment and growth. Through these tools, more flexible work-flows can be established which 

will allow researchers to construct both more reliably and also more efficiently at any scale. By 

better describing self-assembly, a wide array of disciplines are positively affected, including 

nanotechnology, medicine, chemistry and physics.

In this paper the author will describe a number of new avenues of investigation and initial 

results in applying percolation theory to the aTAM and the process of self-assembly. Multiple 

tilesets were found or created that exhibited complex but predictable finite and infinite 

properties. Finite properties were verified by hand and infinite properties were extrapolated from 

large finite simulations. These tilesets were assembled within a simulation tool that allows 

temperature 2 attachments, temperature 1 attachments, and a mix of the two called by the author 

temperature 1.5. Local and global behaviors were studied at different system temperatures on all 

tilesets. In addition, a NULL tile type was introduced into the assembly process of each tileset 

and the results compared to equivalent directed percolation systems. Particular attention is paid 

to temperature 1.5 systems which include the NULL tile. Tile assembly systems operating at 

temperature 1.5 with NULL tiles are shown to be nearly identical to the directed site percolation 

problem.
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1.4  Organization of this Thesis

Chapter 2 covers key materials necessary for the author's investigations of self-assembly, 

the aTAM, and directed percolation. Section 2.1 relates core concepts vital to the objective of 

this thesis, particularly percolation and self-assembly through the aTAM. Section 2.2 investigates 

relevant recent works in the fields of self-assembly and percolation.

Chapter 3 presents the author's methodology and introduces the key constructs necessary 

to evaluate this methodology, including the tilesets and new concepts utilized, definitions of 

measures used to assess these constructs, and a formal algorithm which translates a tile assembly 

system into a system undergoing directed percolation. A brief summary of the author's 

investigative method is given in section 3.3.

Chapter 4 relates the results of experimentation on each tileset with the NULL tile and 

temperature 1.5. Directed percolation simulations are described and approximate critical 

probabilities discussed for each tileset. In section 4.6, these results are analyzed with respect to 

each other, and conclusions are reached regarding the properties of the tilesets used and how 

those properties interacted with the new constructs introduced in this thesis.

Chapter 5 resolves the author's analysis into a conclusive statement regarding the 

similarity of self-assembly by the aTAM to directed percolation. In addition, the author discusses 

usefulness of the NULL tile and temperature 1.5 in the aTAM, and also the role that statistical 

mechanical models like directed percolation can play in the continued development of design 

workflows and applications of assembled structures. In section 5.2, some open questions are 

related by the author concerning this thesis, and possible avenues of investigation are discussed.
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2.  BACKGROUND

2.1  Key Concepts

The three underlying concepts which define the foundations of this research are self-

assembly, the abstract Tile Assembly Model, and percolation theory. Self-assembly and the 

aTAM are described first, after which percolation theory is introduced.

2.1.1  Self-assembly and the aTAM

Winfree describes his abstract Tile Assembly Model as follows [5]:

The fundamental units in this model are unit square tiles (also called monomers) with 
labeled edges. We have an unlimited supply of each type. Aggregates are formed by placing 
new tiles next to and aligned with existing ones such that sufficiently many of their edges have 
matching labels. Tiles cannot be rotated or reflected. [… ] Each edge label σi has an associated 
strength gi, which must be a non-negative integer. At temperature T, an aggregate of tiles can 
grow by addition of a monomer whenever the summed strength of matching edges exceeds T [… 
] these are called stable additions. 

More formally, by Soloveichik and Winfree in [7], let Σ be a set of bond types and let t, a tile 

type, be a 4-tuple (σN, σE, σS, σW) ∈  Σ4. A null bond type represents a null interaction. If t has 4 

null bond types, t is called the NULL tile type. A tile type cannot be rotated or reflected because 

such a transformation disrupts the ordering of bond types which define that tile type. If T is a set 

of tile types, then a tile is an ordered pair (t, (i, j)) ∈  T x Z2 which belongs to tile type t and is at 

location (i,  j) in the configuration. A configuration C is a Z+ x Z+ space which contains tiles at 

each location (i,  j). A strength function g: Σ x Σ → Z, where null ∈  Z, defines the interactions 

between tiles orthogonally adjacent in the configuration. g must be symmetric, non-negative, and 

diagonal. If g is symmetric, then g(t, u) = g(u, t) where t, u are tiles. For g to be non-negative, 

there can be no adverse reactions between tiles; that is, there can be no negative bond strengths 
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between tiles. If g is diagonal, then only sides with matching bond types interact. Finally, g(t, 

null) = 0, that is, a tile cannot bind with nothing. 

In addition to Winfree's terminology1 there are a number of terms concerning self-

assembly which should be introduced less formally. A configuration, structure, or assembly is 

the resultant of the self-assembly process. A tile or component can configure, organize, or 

assemble into a final configuration or assembly.2  Tiles that interact with other tiles or 

aggregates such that stable additions are made are said to attach or accrete to the aggregate. 

Winfree's aTAM can support any number of dimensions, but two-dimensional tile assembly is 

most relevant here. Further discussion will assume such planar configurations. Each tile type has 

a binding domain, a unique set of labels, or glues, which describe the matching labels (glues) to 

which its faces can bind. A tile type is identified by its binding domains and these domains must 

be unique among tile types in the tileset. Unbound tiles, i.e. tiles that are not a part of an 

aggregate, seek to bind to open binding sites on other tiles and aggregates. If a tile t has a glue g 

on its north face, another tile u with glue g' on the south face can attempt to bind on that glue. 

For simplicity, the author assumes the convention that g characterizes it's own binding domain, 

or g =  g'. Although usually represented by unique single character names, glues can also be 

characterized by color or other unique identifiers. Here is an example of tile t binding with an 

aggregate.

1The author uses Winfree's term aggregate to describe any collection of bound tiles that are not 
in the expected final arrangement.
2Although self-assembly shares commonalities with self-organization, the author does not wish 
to conflate the two; the sharing of terminology between self-assembly and self-organization is an 
unfortunate circumstance. To avoid confusion, the author endeavors to use the terms assembly 
and  component  when  referring  to  the  general  process  of  self-assembly,  and  the  terms 
configuration and tile when referring to self-assembly by the aTAM.
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Note the binding domain of t. It seeks to bind its south face on glue n and its west face on glue n. 

The open binding site has such a binding domain. If we assume that the glues involved in 

forming the bond have a sum strength equal to the temperature of the system, a stable addition to 

configuration C is made. Otherwise, no addition is made. A tile assembly system also requires a 

seed, an abstract catalyst to which tiles from the tileset bind until some final aggregate or the 

expected configuration is formed. In figure 2, we can consider the aggregate consisting of tiles c, 

s, and r the seed of the assembly. Informally, the seed, tileset, and temperature of the system are 

the input into some black box which outputs the expected final configuration. This black box can 

be formally represented by the ordered triple T called a tile assembly system. T = (T, σ, τ) where 

T is the tileset (a finite set of tile types), σ is the seed tile or aggregate, and τ is the temperature 

of the system [5]. Certain assemblies exhibit a property called local determinism. This property 

is dependent on the glues and glue strengths, tiles, and the temperature of the system. If these 

conditions are such that for each possible binding domain there exists one or fewer tiles, then the 

assembly is said to be locally deterministic.

10

Figure 2: A tile t attempts to attach to a configuration in the aTAM in a temperature 2 Tile 

Assembly System. Tiles have names in white and four glues in black, one to each side of 

the tile. Strength 1 glues are represented by single connectors and strength 2 glues are 

represented by double connectors.



2.1.2  Percolation

Percolation is can model many different spreading processes, including forest fires, 

dispersion of fluid through rock, and  epidemics [6], [7]. Informally, percolation can be 

exemplified as the study of fluid flow in porous media. In particular, as water is poured on a 

stone, it will pass into cracks, fissures, and pores on the stones surface. If the stone is very porous 

or fractured, the water will penetrate the material and flow through the stone. If the material 

stone is very dense and tightly packed, water will simply flow over and around it. In this way, 

many percolation problems can be visualized.

Fundamentally, percolation theory is the study of clusters on special graphs called 

lattices. A lattice is an array of points with even spacing which exhibit translational symmetry. In 

the case of the square lattice, orthogonally adjacent points in the lattice, called sites, are 

connected by simple edges, called bonds. Sites can be either occupied or unoccupied and bonds 

can be either open or closed. Imagine the porous stone from the previous paragraph. It is riddled 

with nooks and crannies, cracks and holes through which water can flow. A pore in the rock 

(called a site in percolation theory) is either occupied with water or unoccupied. If that water can 

flow from one pore into another, deeper in the stone, then their is a bond between these pores 

that is open. If no such connection between these pores exists, then the bond is closed. A cluster 

is a group of occupied sites connected by open bonds.  The very porous stone allows water to 

pass nearly unimpeded; therefore it has many clusters. An impermeable stone has no such 

clusters because there are no pores in the stone for water to occupy, and there are no fissures or 

holes for water to flow through. 
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The minimum cluster size is one, and the maximum cluster size is the size of the lattice. 

Although percolation theory can be applied to a wide variety of graphs, the two-dimensional 

square lattice is most relevant to the aTAM. In the square lattice, each site is adjacent to at most 

four neighbors, one each to the north, south, east, and west. If the lattice is finite, sites along the 

border and at the corners of the lattice may have as few as two neighbors. Other lattices 

considered in percolation theory, but not considered here include the honeycomb, triangular, 

diamond, simple cubic, body centered cubic, face centered cubic, and high dimensional 

hypercubic lattices. Only the honeycomb (hexagonal), triangular, and square lattices are two-

dimensional.

In the simplest percolation problem, sites and bonds are occupied or open independent of 

any other site or bond in the lattice. That is, if site A is occupied, the probabilities that sites B, C, 

and D are occupied remain unaffected. There are three percolation problems which can be 

considered on a particular lattice, site percolation, bond percolation, and site-bond percolation. In 

site percolation, all bonds are considered open. This constraint ensures that any adjacent 

occupied sites form a cluster, since a cluster is defined as a collection of adjacent occupied sites 

connected by open bonds. Site percolation is random if each site is occupied with probability p 

and unoccupied with probability (1 – p) and is found occupied or unoccupied independently of 

the status of other sites in the lattice. A cluster on a lattice undergoing random site percolation 

consists of a group of adjacent occupied sites. In bond percolation, all sites are considered 

occupied. Bond percolation is random if each bond is open with probability q and closed with 

probability (1 – q) and if each bond is found open or closed independently of other bonds in the 

lattice. A cluster on a lattice undergoing random bond percolation consists of a group of sites 
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adjacent by open bonds. A special hybrid of site percolation and bond percolation, conveniently 

called site-bond percolation, is also important to consider. In site-bond percolation, sites are 

occupied with probability p and unoccupied with probability (1 – p) and bonds are open with 

probability q and closed with probability (1 – q). In site-bond percolation, a cluster is a group of 

occupied sites adjacent by open bonds. One property of percolation under intense scrutiny is the 

behavior of a percolation system at some critical probability pc. For site percolation, if p < pc, 

then no percolating, also called spanning, cluster can form. If p > pc, then a percolating, or 

spanning, cluster is guaranteed to form. This critical probability is said to mark a phase transition 

because the system behaves in a fundamentally different way when the probability of a particular 

bond or site being open or occupied is below the critical probability compared to when the 

probability of open bonds or occupied sites is above the critical probability. For some infinite 

systems with low dimensionality, this pc can be found exactly within some tolerance, but for high 

dimensional systems, only inexact estimates gathered from the analysis of mathematical models 

and finite experimental systems exist. On a finite square lattice, a percolating cluster is a cluster 

which has at least one site on opposite edges of the lattice. An example of a such a cluster can be 

found outlined in figure 1.

Self-assembly by the aTAM is inherently dependent on the open binding sites on an 

aggregate and is described by seeded growth. Directed percolation is a constrained percolation 

problem which can relate the aTAM to percolation theory. In directed percolation, bonds are 

given a direction which disallows interactions with “previous” sites on the lattice. This 

introduces anisotropy into the formerly isotropic percolation problem. Clusters are now defined 

as being a group of occupied sites connected by open, directed bonds. In addition, directed 
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percolation is seeded. This means that some initial collection of sites are first marked occupied 

and then the system is allowed to change state through some probability of growth or expansion.

Directed percolation excels at modeling systems that are characterized by two competing 

processes. In the epidemic system mentioned earlier, each site can be infected or healthy. 

Spreading is controlled by some probability p which describes a rate of infection. Healthy sites 

adjacent by a directed bond to infected sites can become infected with probability p and infected 

sites can spontaneously recover with probability (1 – p). If p < pc, then the system enters an 

absorbing state where the infection fails to spread and ultimately dies out. This state is called an 

absorbing state because the system cannot spontaneously regenerate the infection.

The process of directed percolation can be analyzed layer by layer in a time-dependent 

formulation where t encodes the current layer, or the boundary of the percolation process, as it 

advances across the lattice. At t = 0, the process begins with a seeded set of sites s0; at t  = i the 
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Figure 3: A square lattice undergoing random percolation (left) and a tilted square 

lattice undergoing directed site percolation (right) where time increases down the 

lattice



leading edge of the system is encoded in the set of sites si. To model directed percolation, a tilted 

two-dimensional square lattice is constructed by taking an undirected square lattice and rotating 

it 45 degrees before adding directions to all bonds such that no site has a path to any of its 

ancestors. An example of the transformation from the square lattice to the tilted square lattice is 

presented in figure 3. 

It is interesting to note both self-assembly and percolation can be related through cellular 

automata. In the case of directed percolation, the Domany-Kinzel cellular automaton is used [8]. 

The DKCA is a simple stochastic cellular automaton which when composed into a system of 

automata on a directed tilted square lattice exhibits directed percolation behavior. The 

probability of spreading is captured by three rules which relate a site and its parents. The child 

site is occupied with probability 0 if neither parent is occupied, and the child is occupied with 

probability p1 if one parent is occupied and the other is unoccupied. The child is occupied with 

probabilityp2 if both parents are occupied. These relationships are shown in Table 1, where the 

child's probability of being marked occupied is in column Child.

Parent 1 Parent 2 Child

Unoccupied Unoccupied 0

Unoccupied Occupied p1

Occupied Unoccupied p1

Occupied Occupied p2

Table 1: The probabilistic rules of the DKCA 

Suppose p represents the probability that a particular site is marked occupied and q represents the 

probability of a particular bond being open. If p1 = p·q and p2 =  p·q(2 – q), then a site-bond 

percolation problem is created [9]. When p = 1, then a directed bond percolation problem is 
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formed and p1 = q and p2 = q(2 – q). A directed site percolation problem can be created if q = 1, 

yielding p1 = p2 = p .

2.2  Related Work

2.2.1  Adaptations to the aTAM

A number of adaptations to the aTAM  have been made to better model different aspects 

of self-assembly. Winfree's kinetic Tile Assembly Model, or kTAM, is one such adaptation [5]. 

The strict constraints on aggregate growth are done away with in the kTAM and allowances are 

made which more accurately describe self-assembly in “laboratory conditions,” although certain 

abstractions are introduced to simplify calculations. Winfree's kTAM assumes the following:

1. Tile concentrations are constant and equal.

2. Aggregates cannot interact (bind) with each other.

3. Tiles are equally likely to bind to an aggregate.

4. Tiles can dissociate from an aggregate at a rate exponentially inverse to the strength of its 

bond to the aggregate.

Winfree also defines 3 system parameters, Gmc, Gse, and kf . Gmc measures the cost of binding a 

tile to an aggregate and is set by the experimenter through the concentration of tiles in the 

system. Gse measures the energy cost of breaking a single bond. The final system parameter, kf, 

defines the timestep and doesn't affect the behavior of the system. The binding rate of a 

particular tile to a particular open binding site on a particular aggregate can be written as

rf = kf * e-Gmc 
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This equation demonstrates that the binding rate is simply the current timestep multiplied by the 

tile concentration. The equation 

rr,b = kf * e-b * Gse 

describes the likelihood that a particular tile will dissociate from the aggregate at a particular 

timestep. Although the kTAM is an improvement upon the aTAM for laboratory work, the 

fundamental tile assembly process remains unchanged and the analysis and conclusions 

presented here can be specified for either the kTAM or the aTAM.

In addition, work at Duke has yielded a number of generalized models for self-assembly, 

each with a specific application [10]. Aggarwal et al. have developed a flexible glue model 

which allows for interactions between non-binding glues, a multiple temperature model which 

allows the temperature of the system to change during the tile assembly process,  a multiple tile 

model which allows for the accretion of aggregates to other aggregates, and a unique shape 

model which allows a tileset to assemble any final configuration as long as each configuration 

has the same shape. Additional work in other research groups has resulted in the probabilistic 

Tile Assembly Model or pTAM and the Two-handed Tile Assembly Model [11], [12]. In the 

pTAM, tilesets are designed such that it is likely that the final configuration will be a linear 

“ruler” of length N. Each tile t has a companion tile r called a reset tile. If t can attach to an 

aggregate at a particular site, so can r. Since tile concentrations are held equal, the probability 

that tile t will bind to the aggregate is equivalent to the probability that tile r will bind to the 

aggregate. This models a system which can guarantee that the given tileset will probabilistically 

assemble rulers of length N, even though the number of tiles in the tileset is lower than the 
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expected lower bound based on the Kolmogorov complexity3 of the ruler. In order to achieve this 

curious result, constraints in the aTAM are modified and adapted such that many different rulers 

are allowed to assemble from a given tileset and the majority are provably of length N.

The Two-handed Tile Assembly Model builds on early work on supertiles, or aggregates 

of tiles, by allowing supertiles to assemble larger configurations without affecting the process by 

which single tiles assemble. The Two-handed Tile Assembly Model resembles the multiple tile 

model developed by Aggarwal et al., but Doty et al. in [12] define a formalization which is 

consistent with other definitions of the aTAM and expands on the simple generalization 

established at Duke. Doty et al. produce a model which allows for tile assembly systems which 

produce multiple terminal assemblies without disallowing infinite assemblies and while allowing 

finite quantities of particular tile types. By allowing attachments between aggregates and 

abstracting this process such that tile-to-aggregate attachments are still allowed, the Two-handed 

Tile Assembly Model establishes the usefulness of well-described and stable additions to the 

existing aTAM.

The pTAM represents a different type of modification to the aTAM. The pTAM seeks to 

adapt and change existing constraints in the aTAM, while creating processes which capitalize on 

these adaptations to generate new functionality not present in the simpler aTAM. By allowing 

3 Kolmogorov complexity is the measure of resources needed to describe an object absolutely 
without  unnecessary  repetition.  In  other  words,  the  Kolmogorov  complexity  of  an  object 
represents the absolute minimum number of units needed to represent that object. Rothemund, 
Winfree,  and  Soloveichik demonstrated that  the Kolmogorov  complexity of  the shape  of  an 
assembled configuration represents a lower bound on the minimal number of distinct tile types 
necessary  to  self-assemble  it  in  a  series  of  papers  which  formalized  the  constraints  on 
construction  of  arbitrary  shapes  via  self-assembly  [13],  [14].  Their  conclusions  involve  the 
description  of  a  configuration  in  terms  of  arbitrarily  small  units  (which  could  be  tiles  or 
supertiles/aggregates), and the resolution that assembly in the aTAM at temperature 2 is Turing 
Universal.  The  minimum number  of  tile  types  which  assemble  a  single  arbitrary shape  and 
nothing else is Θ(K/log K) where K is the Kolmogorov complexity of the shape.
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the use of tile types which share glues on their operative binding faces (the west face for east-

growing assemblies, and the east face for west-growing assemblies), the pTAM seeks to use 

nondeterministic processes such that conventional tile complexity boundaries can be 

circumvented. Tile complexity, or the minimum number of tile types needed to assemble a 

particular configuration, is a costly constraint on assembly. Current DNA assembly techniques 

require significant investment in synthesizing appropriate materials, with some large samples 

costing as much as $700 dollars per unit to fabricate uniquely [15]. By reducing tile complexity 

without introducing unreasonable constraints which would be difficult to replicate in laboratory 

assembly, the pTAM has adapted the aTAM to fill a different role for self-assembly researchers. 

Where the aTAM focuses on creating locally deterministic configurations by accreting tiles one 

by one to an aggregate, the pTAM focuses on creating conditions which yield a particular 

configuration with a relatively high probability. This flexibility comes at a cost, though. The 

pTAM is designed to only produce 1-dimensional structures called rulers; no work has been done 

to expand the results into higher dimensions [11]. Therefore, the pTAM seems primarily useful 

for researchers performing a bin or staged assembly. A staged assembly is an assembly which 

constructs intermediate aggregates in the aTAM by introducing tile types in a measured way 

[16]. In this fashion, multiple non-interacting rulers can assemble in a single step before 

introducing connective tiles which would construct rulers that interact with existing rulers in 

solution. Such adaptations show the worth of investigating the constraints of the aTAM further 

and adapting new processes and models to describe the aTAM so that future investigations can 

adapt the aTAM further.
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3.  METHODOLOGY

3.1  High Level Design

In order to model tile assembly, a tile assembly simulation tool designed to mimic the 

abstract Tile Assembly Model was constructed using Java in the Eclipse IDE. The tool assembles 

a Configuration, a class that wraps a two-dimensional array of Tiles with additional 

functionality. Each Tile object has an array of Glues and each Glue has a binding domain and a 

name which uniquely identifies it. Each Tile is given a north, east, south, and west Glue and is 

identified in the Configuration by its name and location. A simplified class diagram is shown in 

figure 5. Assembly begins with a seed row of pre-assembled seed Tiles. This row is prepared 

outside of the Configuration and then attached explicitly as the seed. Additional seed tiles 

necessary for assembly, such as seed “column” tiles, are attached explicitly during aggregation. 
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Figure 4: Here is the order of attachment to a seed A by a series of tiles. The next 

tile to be attached occupies the first open binding site in the aggregate where the 

first open binding site is either directly to the right of the previously attached tile 

or the first tile on a new row in the aggregate.



Each new Tile is attached to the Configuration at the next open site, which is always either the 

eastern neighbor of the most recent attachment or is a new seed column Tile. Thus, assembly 

occurs from left to right, top to bottom. See figure 4 for a simple example. The seed Tile is 

labeled A and subsequent tiles B through F are attached in alphabetic order. Each Tile in the 

simulation is assumed to be present in the system in an infinite quantity and is selected for 

attachment greedily. When a Tile attempts to attach to a Configuration, temperature and chance 

of correct attachment are given as parameters. Since attachment is probabilistic and constrained 

by the binding domains of the open binding site, situations can arise where no Tile in the tileset 

is able to attach to the current binding site. In such situations a NULL Tile is attached. The 

NULL Tile is a Tile that shares no Glues with any Tiles in the tileset and it signifies a 

vacancy/error in the Configuration. A Tile from the tileset may not be able to attach to the 

configuration for two reasons: the temperature of the system inhibits the attachment or a NULL 

Tile is attached with preference over a Tile in the tileset based on some probability determined at 

attachment time. The Configuration can assemble at temperature τ = 1 or τ = 2. In a tile assembly 

system where τ = 2, the Configuration can attach a Tile at τ = 1 with some probability provided 

at attachment time. This behavior, called temperature 1.5, describes a temperature system which 

may more closely approximate a laboratory environment without losing the aTAM's descriptive 

yet succinct properties. Note that this does not violate the requirement that the temperature of a 

tile assembly system must be an integer as the behavior at temperature 1.5 is simply the behavior 

of a Tile t at τ  = 1 with some probability k and the behavior of a Tile t at τ = 2 with some 

probability (1 – k ).
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Figure 5: A simplified class diagram of the tile assembly simulation tool



In  order to quantify final assemblies, a Correlator was written which takes two  n x  n 

Configurations as text files composed of n lines of n tokens each delimited by white space. Each 

token is a tile name and represents a tile from the tileset which assembled the Configuration. The 

Correlator parses the files such that for all 0 ≤ i, j ≤ n, t1 at position (i1, j1) in Configuration C1 and 

t2 at position (i2, j2) in Configuration C2  are compared by name. If the names are matched, then 

both a correlation measure and the total number of comparisons are incremented. If the names 

are  not  matched,  then the total  number of  comparisons  is  incremented  while  the  correlation 

measure remains the same. This creates a correlation percentage which measures the correlation 

between the tiles in two separate Configurations. Two perfectly correlated Configurations are 

said to be identical, and two Configurations which have no correlation are said to be distinct. 

While  Configurations  which  are  assembled  from  distinct  tilesets  must  always  be  distinct, 

Configurations  which  are  assembled  from the  same  tileset  may not  necessarily  be  identical 

depending  on the  parameters  given  to  the  tile  assembly system.  This  is  partially  due to  the 

behavior  of  the  Correlator;  Tile  neighborhoods  are  not  considered.  This  means  that  in 

temperature 1 or temperature 1.5 tile assembly systems a tile t could attach at location (i1, j1) in 

configuration C1 and also at location (i2, j2) in configuration C2 even if tiles at locations (i – 1, j) 

and  (i,  j –  1)  in  both  C1 and  C2 do  not  match.  The  correlation  between  a  perfect  (ideal) 

temperature 2 assembly and a temperature  1.5  assembly is  controlled by the presence of an 

absorbing phase transition. If the temperature 1.5 assembly sees a preponderance of error during 

the attachment of new tiles to the aggregate, then it is impossible to continue the assembly of the 

expected design. In this case, correlation decreases sharply and such an aggregate is said to be in 

an absorbing phase transition.
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In  addition,  a  visualization  tool  called  VisTool  was  written  in  Processing,  a  Java-

derivative language created by Casey Reas and Ben Fry. VisTool accepts a text file representing 

a Configuration, much like the Correlator, and parses it for tile names. Each tile in the tileset is 

interpreted as a color and that color is rendered to the screen at pixel location (i, j) where (0, 0) is 

the upper-leftmost pixel. In this way, VisTool translates an  n x  n Configuration into an  n x  n 

image. This image can then be easily analyzed and saved for future comparison or examined for 

cluster patterns and sizes. VisTool is used to determine whether a Configuration contains clusters 

of infinite size given that Configuration's tile assembly system. If a Configuration shows a large 

cluster which spans the image from the upper left  corner  to the lower right  corner,  VisTool 

interprets this cluster as a cluster of infinite size. The primary purpose of VisTool is to relate 

configurations of tiles assembled with the aTAM to systems undergoing directed percolation 

processes.
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As  seen  in  figure  6  from  [8],  directed  percolation  produces  predictable  patterns  of 

clustered sites below, at, and above critical percolation values. Measures like correlation length, 

or  the  difference  in  either  time  or  space  (vertical  and  horizontal  distance  in  figure  6, 

respectively), can be used to evaluate cluster size objectively. The correlation length of clusters 

which are the product of a tile assembly process was not measured for this thesis; instead broad 

cluster behaviors were determined subjectively by observation and through VisTool and those 

observations were used to find approximate critical percolation values for each tileset. Further 
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Figure 6: An example of a pure directed percolation problem below, at, and above critical 

percolation probabilities from a seed row (top) and a single seed (bottom)



analysis beyond the scope of this thesis will require the use of correlation length, a more standard 

metric.

3.2 Tilesets and Definitions

A number of steps were taken to ensure the correctness of the simulation tool. Five 

tilesets were found or created which assembled independently verifiable configurations in the 

aTAM . These tilesets, discussed in sections 3.2.1 through 3.2.5, were chosen independently for 

a variety of reasons including historical relevance to the aTAM, their complexity, repetition or 

predictable long-range interactions, and regularity. Once the simulation tool was verified to 

correctly assemble final configurations given a particular tile assembly system, these tilesets 

were used to evaluate two new adaptations to the aTAM: the NULL tile and temperature 1.5. The 

details concerning the NULL tile and its application are related fully in 3.2.6 and temperature 1.5 

is explained in section 3.2.7. Finally, these adaptations to the aTAM were used in tandem with 

each tileset to study directed site percolation behavior in the aTAM. A formal statement of 

equivalency is given in section 3.2.8.
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3.2.1 Single Glue Tileset

The Single Glue tileset consists of one tile and one glue plus a set of seed tiles. This 

simple tileset was employed for the following two reasons: to understand experimentally the 

effect of NULL tile attachments on a trivial tileset, and to verify the correctness of the simulation 

for arbitrarily large configuration sizes. In addition, this tileset corresponded to directed 

percolation in a straightforward way, and was used to confirm the equivalence between tile 

assembly and directed percolation through simulations using the NULL tile at temperature 1.5. 

Assembly is resilient at temperature 1, that is aggregation is not halted by an error, and single 

NULL tile attachments (which model such errors) do not interrupt the normal assembly process. 

This is because the tile set has only a single glue. In the case of a NULL attachment, a 

subsequent temperature 1 attachment effectively “corrects” for the NULL and aggregation 

continues. Assemblies which are resilient to errors can be used to make large aggregates of tiles 

which reliably exhibit an expected behavior. A tile assembly system where T is the Single Glue 

Tileset can be reduced easily to a directed percolation problem using the algorithm described in 
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Figure 7: The Single Glue Tileset where tile names are shown in white and glue names are 

shown in black, one to each tile side. Glue strengths are represented by either a single 

connector (strength 1) or a double connector (strength 2).



section 3.2.8 and directed percolation properties are immediately evident in the final 

configurations. This behavior is partially due to the tileset's resiliency to attachment errors due to 

its trivial size.

3.2.2 Double Glue Tileset

The Double Glue Tileset consists of 16 tiles and two glues plus a set of seed tiles. Each of 

the 16 possible combinations of glues is present on some tile in the tileset. This contributes 

symmetry to the tileset. The Double Glue Tileset was created in order to reinforce and extend the 

analysis of the similar but simpler Single Glue Tileset. The tiles present in the tileset can bind 
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Figure 8: The Double Glue Tileset



non-uniquely on any open binding site in the configuration, which introduces a non-deterministic 

element in a previously locally deterministic system. The full potential of this tileset wasn't 

explored in this thesis due to simulation constraints, but initial experimentation shows an 

intriguing relationship between the Double Glue Tileset and the Single Glue Tileset when NULL 

tiles are allowed. Consider a configuration of tiles from the Double Glue Tileset and the NULL 

tile. Each open binding site has 5 possible tiles which can occupy that site at temperature 2. At 

temperature 1, each site can bind 13 possible tiles. This highly non-deterministic attachment 

scheme builds on the trivial properties which are exhibited by the Single Glue Tileset. These 

properties include resilience to temperature 1 assembly as well as  non-programmed growth by 

non-deterministic attachment. The Double Glue Tileset exhibits these properties but in a more 

chaotic way due to the number of tiles which can attach at a given open binding site. The sheer 

number of correct tile attachments on a single open site regardless of binding domain creates less 

predictable assemblies which are all still technically correct.

Assemblies of the Double Glue Tileset continue to grow, but correlation between a 

perfect assembly (or intended assembly) and another assembly even at temperature 2 is low. This 

indicates that even though the aggregate is still undergoing assembly, this assembly is no longer 

following an intended program.
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3.2.3 Counter Quilt Tileset

The Counter Quilt Tileset has 18 tiles plus a set of seed tiles and consists of a tileset 

which assembles a finite configuration that is embedded within an infinite “quilting” tileset. The 

finite configuration is  a small  tileset  which “counts” from 0 to 7 and is  found in [25].  The 

purpose of this tileset was to construct small, test-able configurations which had well-understood 
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Figure 9: The Counter Quilt Tileset



finite  and  infinite  tiling  properties  not  represented  in  the  Single  or  Double  Glue  Tilesets. 

Essentially, if the tileset can construct a small quilt with perfect accuracy, then it can construct a 

large quilt with perfect accuracy. The predictable infinite properties can be used to easily show 

how errors during assembly can propagate or repair by random chance in a temperature 1.5 tile 

assembly  system.  Partial  aggregates  begin  to  assemble  correctly  and  then  an  unfavorable 

attachment derails the aggregate. This is evidence that highly constrained tilesets (or tilesets with 

detailed and complex programs which necessarily have a large number of glues and possible 

binding domains) are more susceptible to entering an errorful state which is characterized by a 

preponderance of vacancies and incorrect tile attachments. Stated another way, complex tilesets 

are more susceptible to an absorbing phase transition.

A small configuration of 10000 tiles is shown below in figure 10. Each tile is represented 

by a small ellipse. Gray ellipses represent '0' tiles, while white ellipses represent '1' tiles. Quilting 

and seed tiles are shown in black.
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Figure 10: A small configuration assembled from the Counter Quilt tileset



3.2.4 Sierpinski Tileset

The Sierpinski Tileset was first proposed by Erik Winfree in [5] and later shown to 

configure within predicted error rates in vitro by Rothemund, Papadakis, and Winfree in [26]. 

The tileset consists of four tiles and a seed aggregate. Tiles are labeled as '1' or '0', and the final 

configuration is read based on these labels. The growth occurs diagonally in the fashion of a 

Sierpinski triangle. Evaluation of this tileset in assembly systems outside of the aTAM has 

generated interesting variations, including the fibered Sierpinski tileset. In [27], Lathrop et al. 

show that the fibered version of the Sierpinski tileset has the same zeta dimension as the 

Sierpinski tileset, and can be strictly assembled in a generalized Tile Assembly Model. The 

fibered Sierpinski tileset is interesting in that it is fundamentally a collection of linear structures 

of tiles which are composed parallel and perpendicular to one another. These linear structures are 

the “fibers” of the Sierpinski triangle design.
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Figure 11: The Sierpinski Tileset



The Sierpinski tileset was chosen because of the diagonalized pattern consisting of 

regular triangles which grow according to rules encoded into the tileset's design. Like the 

Counter Quilt Tileset and unlike the Single and Double Glue Tilesets, the Sierpinski Tileset has 

been designed to yield a particular final configuration, thus, errors in attachment and other 
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Figure 12: A small Sierpinski triangle configuration



probabilistic behavior can be analyzed based on the aggregates formed by tile assembly systems 

with known parameters.

3.2.5 Binary Counter Tileset

The Binary Counter Tileset from [13] is a simple tileset consisting of four unique tile 

types plus a seed aggregate. Each tile type is labeled as either '1' or '0' much like the Sierpinski 

tileset. After the configuration is assembled, correctness is tested by polling the assembly and 

“reading” the tile labels. In the tileset, two tiles are labeled '1' and two tiles are labeled '0'. The 

configuration grows infinitely assuming infinite quantities of each tile type. Each row of the 

assembly is a single number in binary representation and each column encodes the “place” of its 

contained digits. The underlying logic of the algorithmic assembly is borrowed from the ripple-

carry adder. The initial conditions set by the seed determine the first “number” to be assembled. 

Figure 14 shows a configuration assembled from the Binary Counter Tileset which counts from 0 

to 63. '1' tiles are shown in white and '0' tiles are shown in gray. The least significant digit is 

represented by the leftmost column in the configuration. The Binary Counter Tileset was chosen 
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Figure 13: The Binary Counter Tileset



to give counterpoint to the Counter Quilt Tileset, a derivative tileset, while confirming assembly 

behavior seen in the Sierpinski Tileset.
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Figure 14: A configuration of the Binary Counter Tileset which 

"counts" from 1 to 63 where 0 is a seed row for the counter. 



3.2.6 The NULL Tile

The NULL tile represents a “hole” in the configuration. In the aTAM, there is no 

consideration for a binding site which fails to attach the appropriate tile. If no tile can occupy a 

particular binding site, then that site is left unoccupied and assembly continues. In general, this 

behavior is acceptable when taken with the other constraints imposed by the aTAM, but 

laboratory assembly can introduce geometric and spatial limitations which cannot be modeled in 

the aTAM. If an open binding site is surrounding on all sides by tiles, the tile which wishes to 

bind to that site cannot due to geometric constraints. This type of vacancy can be referred to as a 

kinetic trap. The speed of the assembly at some locality of binding sites is greater than the global 

speed of assembly, which means that the aggregate can “grow around” an open binding site such 

that no tile can attach to the binding site. In other words, two tiles in solution cannot occupy the 

same location, so the open binding site becomes “fenced in” by other tiles. In addition, if tiles in 

solution are represented in different concentrations (and not held at constant and equivalent 

concentrations as expected in the aTAM or kTAM), then tiles with higher concentrations are 

more likely to attach to open binding sites than tiles with lower concentrations by simple 

probability.

In order to model this, the author introduces a NULL tile to the aTAM which attaches 

probabilistically to an aggregate. In order to work within the attachment constraints set by the 

aTAM, at each open binding site a tile must attach, if possible. If no such attachment is possible, 

then a NULL tile is attached. To simulate kinetic traps, it could also be the case that a NULL tile 

is attached instead of a tile from the tileset. In this case there is some probability p that tile t will 

attach to aggregate C and some probability (1 – p) that the NULL tile will attach instead, where 0 
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≤ p ≤ 1. Therefore there are two conditions under which the NULL tile attaches to the aggregate: 

either no tile in the tileset can make a stable addition, or the NULL tile has been selected to 

attach over any other tile in the tileset. Whenever the NULL tile is allowed, either condition for 

attachment is valid. The NULL tile's behavior is unchanged for temperature 1.5 systems. 

3.2.7 Temperature 1.5 Systems

Temperature 1.5 is a hybrid temperature. A tile assembly system at temperature 1.5 

assembles at either temperature 1 or temperature 2 probabilistically. More formally, temperature 

1.5 describes a system where each attachment is made at temperature 1 with some probability p 

and temperature 2 with the probability (1 – p). A tile assembly system at temperature 1.5 can 

simulate temperature 1 assembly if the probability of temperature 2 attachment is 0, and a tile 

assembly system at temperature 1.5 can simulate a temperature 2 assembly if the probability of 

temperature 1 attachment is 0. The temperature of each attachment is determined at attachment 

time for each tile accreting to the aggregate. If a tile is unable to attach to the configuration at a 

given open binding site, then a NULL tile is attached, regardless of current attachment 

temperature or other probabilistic considerations.

3.2.8 The aTAM and Directed Percolation

Informally, a tile assembly system can be transformed into a directed percolation problem 

by turning each tile into a site in a square lattice, and each stable bond between two tiles into a 

directed edge between the appropriate two sites. If the tile in the aggregate is an error, then the 

corresponding site is unoccupied, else if the tile is correct, then the corresponding site is 

occupied.
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More formally, consider some tile assembly system T = (T, σ, τ) that assembles some 

configuration C. C is an n x n square. Let site s ∈ S, where S is the set of sites, be s = (i, j) where 

i, j ∈   Z is a site on a lattice indexed by (i, j) from 0 to n. Let g: (S, S) → Z where S is the set of 

sites in C, and Z is the integers and where g(s1, s2) is the function that returns the binding strength 

between sites 1 and 2 in S. Create a square lattice of size n x n called L where each node is called 

a site and can be labeled occupied or unoccupied and each edge is called a bond and can be 

labeled open or closed. For each edge e from l1 to l2 in L, make e a directed edge from l1, the site 

at index (i, j), to l2, the site at index (i+1, j), then do the same for the edge from l1 to l3, the site at 

index (i, j+1). Then tilt L such that the first tilted row of L contains one site, the second tilted row 

contains two sites, the third tilted row contains three sites, and so on. Each tilted row is called a 

timestep, and sites in a timestep are referenced from left to right such that the leftmost site is 0, 

the next site is 1, and so on. Each site in LTILT can thus be referenced by a pair (u, v) where u, v ∈   

Z and u, v ≥ 0 where u is the timestep and v is the index into that timestep. See figure 15 for 

clarification. At each timestep u, for each index v, mark site (u, v) occupied in this way:

I. If u = v = 0, mark site (u, v) occupied and call this the seed for the directed 

percolation

II. If 0 < v < u – 1, mark site (u, v) occupied with probability p if both site (u – 1, v – 1) 

and site (u – 1, v) are occupied where τ = 2 , else if either site (u – 1, v – 1) or site (u 

– 1, v) are occupied mark site (u, v) occupied with probability p where τ = 1, else 

mark site (u, v) unoccupied with probability (1 – p)
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◦ mark directed edges e1 from site (u – 1, v – 1) to site (u, v) and e2 from site (u – 1, 

v ) to site (u, v) open with probability q if g((u – 1, v – 1), (u, v)) + g((u – 1, v ), 

(u, v)) ≥  τ

III. If  v = 0, mark site (u, v) occupied with probability p if site (u – 1, v) is occupied, else 

mark site (u, v) unoccupied with probability (1 – p)

◦ mark directed edge e from (u – 1, v ) to (u, v) open with probability q if g((u – 1, 

v), (u, v)) ≥  τ

IV. If v = u and v > 0, mark site (u, v) occupied with probability p if site (u – 1, v – 1) is 

occupied, else mark site (u, v) unoccupied with probability (1 – p)

◦ mark directed edge e from (u – 1, v – 1) to (u, v) open with probability q if g((u – 

1, v – 1), (u, v)) ≥  τ

In this way, if T = (T, σ, τ) where τ = 2 and T configures an n x n square, all sites (u, v) in LTILT 

are occupied and all bonds are open. Thus, where p = q = 1, T is a deterministic tile assembly. 

Where p < 1, T is a tile assembly system operating at temperature 1.5.  In general, the probability 

of an assembly is given by p1 and p2 from section 2.1.2.
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Figure 16: The corresponding tile assembly where black tiles are correct and white tiles are 

errors at temperature 1.5.

Figure 15: A tilted lattice L where each site is referenced by a coordinate pair (u, v) such 

that u is the timestep and v is the index into that timestep. For example, node (2, 3) in 

configuration C is site (5, 1) in L.
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3.2.9 Directed Percolation in the aTAM

Directed percolation can be simulated in the aTAM with a simple tileset which follows 

the rules of the Domany-Kinzel automata. See table 1 for these rules. Each sequence of “parents” 

is given 2 child tiles, one which represents a occupied site and one which represents an 

unoccupied site. The probability of occupation, represented by p1 and p2, is controlled by tile 

concentrations in solution. Figure 19 shows the tileset which corresponds to the DKCA.
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Figure 18: A phase diagram of the DKCA adapted from [8] with additional points of 

interest. Where p2 = 1 and p1 = 0, this corresponds to a temperature 2 assembly. Where 

p2 = p1 = 1, this corresponds to a temperature 1 assembly. Along the red line, 

temperature 1.5 behavior is observed.
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3.3 Implementation and Methods

As mentioned previously, each Configuration can be output to a text file where each Tile 

is identified by name and separated by white space. Lines in the file correspond to rows in the 

Configuration. Text files representing small final Configurations of the pre-existing tilesets 

mentioned above were checked by hand against existing correct examples to verify the accuracy 

of the assembled Configurations. In order to cross-verify the accuracy of assembled 

Configurations, VisTool and the Correlator were employed. By constructing a verified target 
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Configuration at τ = 2 and then comparing it to a Configuration at τ = 1 or a temperature 1.5 

system, an analysis of the applicability of temperature 1.5 is made which tests fidelity or the 

deviation of a temperature 1 or 1.5 Configuration from the target. Correlation data was also 

found between NULL inclusive tilesets and NULL exclusive tilesets. Although test 

Configurations were constructed which included 25 million tiles, conclusions are drawn only 

from Configurations of 1 million Tiles due to memory and computer time constraints. Also, tile 

concentrations were held equal and infinite quantities of each tile are assumed to keep all 

probabilities uniform.

A series of simulations using each tileset in the tile assembly tool were performed. The 

first set of simulations was of each tileset at temperature 2 with no modifications. A second 

series of simulations was then performed at temperature 1. Correlation between the temperature 

2 and temperature 1 assemblies was then recorded. Many simulations of each tileset were 

performed at temperature 1 since the non-deterministic attachment process can create wildly 

different final configurations and assembly can fail before a final configuration is reached. A 

series of simulations was then performed at temperature 1.5 with varying probabilities of 

temperature 1 attachment, ranging from 0% to 100%. Expected behavior at p = 0 was perfect 

correlation with temperature 2 assemblies and expected behavior at p = 1 was approximate 

temperature 1 correlation. Next a series of simulations was performed at temperature 2 and 

temperature 1 which included the NULL tile with probability of attachment ranging from 0% to 

100%. At p = 0, correlation behavior commensurate with the temperature of the system was 

expected and at p = 1 an all NULL configuration was expected. Finally, simulations were 

performed at temperature 1.5 and with NULL tiles. Directed percolation  has clearly defined 
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behaviors in the qualities of clusters it produces on lattices below, at, and above critical 

percolation values. This behavior is seen clearly in such systems where the probabilities of 

temperature 1 attachment and NULL tile attachment control the cluster behavior. After each set 

of simulations, high contrast images were created with VisTool  of selected configurations in 

order to analyze the behavior of each tileset under each set of conditions.

Configurations were examined for a number of properties, particularly correlation and the 

existence of spanning clusters. First, these configurations were parsed by hand and those which 

seemed to exhibit interesting properties were given to VisTool for further analysis. Each 

configuration processed by VisTool is transformed into a 1,000 x 1,000 pixel image where each 

pixel represents a single tile. Tiles from the tileset or seed are colored black and NULL tiles are 

colored red. A configuration is determined to have a percolating cluster if the tileset assembled 

such that there exists a path from the lower right hand corner of the configuration to the upper 

left hand corner which consists only of orthogonally adjacent black pixels. These paths are found 

greedily and such a path is guaranteed to exist if an infinite cluster exists because of the nature of 

the directed percolation process. The probability of spontaneous generation was held at 0 and the 

temperature of the system was always at least 1, therefore each tile from the tileset must be 

adjacent to either one or more seed tiles, one or more tiles from the tileset, or a mix of the two.
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4.  RESULTS

4.1 Single Glue Tileset

As seen in figure 20, the NULL tile at temperature 2 greatly affects the correlation 

between the configuration assembled with no probability of NULL tile attachment and the 

configuration with some probability of NULL tile attachment. As long as there is more than a 

trivial probability of NULL tile attachment, correlation remains very low. In other words, any 

chance of error in the assembly destroys correlation with an assembly of the same tileset at 
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Figure 20: The correlation between a 1000x1000 Single Glue Tileset Configuration in a 

temperature 2 tile assembly system with NULL Tiles and without. Each datapoint 

represents a single simulation at the appropriate chance of non-NULL attachment.



temperature 2. As the probability of NULL attachment increases, an absorbing phase transition is 

seen. In figure 18, the assembly moves off of the temperature 2 point of interest and into the 

absorbing phase portion of the diagram. Even at a 99.98% chance of non-NULL attachment, 

correlation hovers around 1%, meaning only 1 in 100 tiles at some (i, j) in the configurations 

match. As this probability of non-NULL attachment approaches 99.9999%, correlation 

approaches 100%. At temperature 1, a positive linear relationship between the NULL tile 

configuration and the non-NULL tile configuration is seen, as shown in figure 21. For this 

simple tileset, the probability of a correct configuration is given by the probability of non-null 

attachment. This is illustrated further by assembly at temperature 1.5 where the probability of 

attaching a NULL tile is 0%. As shown in figure 21, the assembly is not affected by the 

probability of temperature 1 attachment, whether it is a 0% or 100% chance. The assembly only 

depends on the probability of NULL attachment. Figure 22 also shows that the same sharp 

transition seen in figure 20 at temperature 2 is also present at temperature 1.5 where p1 = .5 for 

attaching at temperature 1 and p2 = (1 – p1) = .5 for attaching at temperature 2. 
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Directed percolation behavior is seen with a non-NULL attachment probability of 71% 

which is close to the directed site percolation critical probability seen in the DK model 

mentioned in section  2.2.2. As mentioned previously, the chance of temperature 1 attachment is 

superfluous for this tileset since behavior is identical in temperature 1 and temperature 2 tile 

assembly systems using the Single Glue Tileset. Figures 23, 24, and 25 depict aggregates of the 

Single Glue Tileset below, at, and above the critical probability for percolation.
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Figure 22: The correlation between two Single Glue Tileset configurations, one with the 

NULL tile and one without, at τ = 1. This shows the triviality of the Single Glue Tileset and 

is an initial indicator for the qualities seen in self-assembly as a percolation system detailed 

in section 3.3. 

Figure 21: Correlation between a temperature 2 assembly and a temperature 1.5 assembly 

of Single Glue Tileset where probability of temperature 1 attachment is 50% and 

probability of non-NULL attachment ranges from 0% to 100%
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Figure 23: Single Glue Tileset where p < pc

Figure 25: Single Glue Tileset where p > pc

Figure 24: Single Glue Tileset where p = pc



4.2 Double Glue Tileset

As seen in figure 26, correlation converges to about 6% as the chance of non-NULL tile 

attachment approaches 100%. It  should be noted that  correlation is not a strong measure for 

“correctness” when considering a highly non-deterministic tile assembly system.  The Double 

Glue Tileset has high binding domain symmetry among its constituent tiles and this fouls the 
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Figure 26: When the Double Glue Tileset with the NULL tile assembles at temperature 1, 

correlation with assemblies at temperature 2 stabilizes at a little more than 6%. This result 

is indicative of the effect of local determinism on assembly correlation.



simulation process because attachments are made greedily. Correlation between a temperature 2 

Double Glue configuration and a temperature 1.5 Double Glue configuration with NULL tiles is 

therefore a poor measure of correctness. In order to avoid this issue, any non-NULL attachment 

is considered a correct attachment in further analysis of the Double Glue tileset.

Allowing NULL tiles has a  negligible effect  on this correctness  unless the chance of 

NULL attachment is so high that the chance of attaching a NULL row (a row of NULL tiles 

which  begins  at  site  (i,  j) and  ends  at  (i-1,  j+1))  approaches  unity.  In  vitro this  may  not 

necessarily be a true “row” of components, it is simply the leading edge of the assembly which 

must be errorful  (or NULL).  Much like a temperature 2 tile assembly system cannot recover 

from a single NULL tile, a temperature 1 tile assembly system cannot recover from a NULL row 

attachment.  Effectively,  the NULL row and NULL tile  operate  in  the same fashion  in their 

respective tile systems. They disrupt the attachment of new tiles to the assembly to such a degree 

that the process fails and the returned configuration is incomplete and practically uncorrelated 

with complete temperature 2 assemblies. This process mirrors directed percolation's absorbing 

state. In temperature 2 assembly, a single NULL tile is enough to signal an absorbing state, while 

in temperature 1 assembly, a row of NULL tiles (as defined above) signals an absorbing state. As 

long as the chance of non-NULL attachment is sufficiently high (as defined by simulation of 

other percolation systems collected in [8], this is about a 70% chance of non-NULL attachment), 

the assembly continues and as the size of the configuration approaches  infinity, infinite range 

percolation properties are expected. This phase transition at about 70% is seen coincidentally in 

figure 26 as well. Figures 27, 28, and 29 show Double Glue Tilesets below, at, and above this 

critical probability for percolation.
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Figure 28: Double Glue Tileset where 

black represents any tile in the tileset and 

where p = pc

Figure 27: Double Glue Tileset where black 

represents any tile from the tileset and where 

p < pc

Figure 29: Double Glue Tileset where black 

represents any tile from the tileset and where 

p > pc



4.3 Counter Quilt Tileset

The Counter Quilt tileset is not resilient to temperature 1 assembly in a temperature 1.5 

system. It is difficult for the system to recover from a single temperature 1 attachment in a 

predominantly temperature 2 system. Correlation between temperature 2 systems and 

temperature 1.5 systems exhibits a strong phase transition when the probability of a temperature 

1 attachments approaches 0, as seen in figure 30. Despite this interaction, the Counter Quilt 

tileset does not halt or fail to assemble in a temperature 1 system. The highly symmetrical nature 

of the quilt and the binary counter create a robust environment for attachment which fuels the 

assembly as long as the NULL tile is disallowed. When the NULL tile is introduced, directed 

percolation behavior is seen with critical probabilities of temperature 2 attachment at 

approximately 86% and non-NULL attachment probability at 87%. Figures 31, 32, and 33 depict 

the aggregates formed by the Counter Quilt Tileset  below, at, and above these critical 

probabilities.
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Figure 30: Correlation between temperature 2 systems and temperature 1.5 systems as 

probability of temperature 2 attachments approaches 100%
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Figure 31: Counterquilt Tileset where black 

represents any tile from the tileset and 

where p < pc

Figure 32: Counterquilt Tileset where black 

represents any tile from the tileset and where 

p = pc

Figure 33: Counterquilt Tileset where black 

represents any tile from the tileset and 

where p > pc



4.4 Sierpinski Tileset

The Sierpinski Tileset shows behavior not seen before in other tilesets when considering 

NULL attachment. As seen in figure 34, there is a smoother phase transition as the system 

approaches a 100% chance of non-NULL attachment, but it is not as marked as previous tilesets. 

Assembly at temperature 1.5 yields critical probabilities of temperature 2 attachment at 

approximately 75% and non-NULL attachment probability at 87%. An assembly constructed at 

temperature 1 without NULL attachment is illustrated in figure 35. The design of the tileset is 

still somewhat visible, with some collections of tiles taking on triangle-like formations, but the 

unconstrained aggregation of tiles leads to restarts and non-triangular clusters sprinkled 

throughout the configuration.
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Figure 34: The phase transition evident in other tilesets is difficult to determine from 

correlation percentage in the Sierpinski Tileset



In addition, if the whole configuration is considered and NULL tiles are allowed with a small 

probability at temperature 1, the relationship between directed percolation and tile assembly 

becomes more clear at a high level. In figure 36, elongated clusters of tiles from the tileset come 

to narrow points before entering an absorbing state, so it is easy to see as NULL attachment 

probabilities and the probability of temperature 1 attachment both approach the critical 

probabilities, these clusters will eventually become more attenuated and exhibit infinite length in 

the system. Conceptually, figure 36 depicts the behavior of the Sierpinski tileset around NULL 

tile attachments. Examples of the Sierpinski Tileset below, at, and above the critical probabilities 

given earlier can be seen in figures 37, 38, and 39. As the chance of NULL attachment increases, 

the connection between figure 36 and 37 becomes more clear.  Tiles from the tileset begin to fill 

in around the NULL attachments, producing clusters of NULL tiles surrounded by tiles from the 

tileset.
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Figure 35: The Sierpinski Tileset at temperature 1 displays a number of interesting 

properties. Triangle-like shapes are still constructed with some regularity, but a large 

number of errors and restarts are also seen.
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Figure 36: The Sierpinski Tileset with a non-trivial chance of NULL attachment at 

temperature 1, where black and white tiles are from the tileset and NULL tiles are red
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Figure 37: Sierpinski Tileset where black 

represents any tile from the tileset and 

where p < pc

Figure 38: Sierpinski Tileset where black 

represents any tile from the tileset and 

where p = pc

Figure 39: Counterquilt Tileset where 

black represents any tile from the tileset 

and where p > pc



4.5 Binary Counter Tileset

The Binary Counter Tileset displays correlation properties similar to the Sierpinski 

Tileset, as seen in figure 40. As the chance of non-NULL attachment approaches 100%, the 

correlation between the assemblies approaches 100%, but the steep transition seen in previous 

tilesets is absent. Assembly at temperature 1.5 yields critical probabilities of temperature 2 

attachment at approximately 76% and non-NULL attachment probability at 87%. Figures 41, 42, 

and 43 show the behavior of the Binary Counter Tileset below, at, and above this critical 

percolation probability.
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Figure 40: The correlation between a temperature 2 assembly without NULL tiles and with 

NULL tiles in the Binary Counter Tileset
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Figure 42: Binary Counter Tileset where 

black represents any tile from the tileset and 

where p = pc

Figure 41: Binary Counter Tileset where 

black represents any tile from the tileset 

and where p < pc

Figure 43: Binary Counter Tileset where 

black represents any tile from the tileset 

and where p > pc



4.6 Analysis

Each tileset assembled in very large configurations (1000 tiles by 1000 tiles) shows an 

interesting behavior at temperature 1.5. At practically any probability of temperature 1 behavior, 

the system adopts predominantly temperature 1 characteristics (uncontrolled growth which does 

not follow the intended program for the tileset) and does not strongly correlate with the 

temperature 2 assembly. As the probability of temperature 2 attachment approaches 1, the 

behavior of the system at temperature 1.5 approaches temperature 2 suddenly. This behavior 

happens in such a sharp and predictable way that it seems to represent a phase transition between 

system temperatures. This result indicates that temperature 2 is difficult to achieve in any real 

system. Although behavior of the aTAM at temperature 2 is well-described, behaviors in 

temperature 1 systems are not. The computational power of temperature 1 systems in general is 

difficult to determine because non-determinism expands the local determinism seen in 

temperature 2 systems. Instead of a 1-to-1 correspondence between tiles and sites, temperature 1 

systems exhibit a k-to-1 correspondence between k  tiles with partial matches in their binding 

domains where k > 0. An example of this is seen in temperature 1.5 assemblies of the Double 

Glue tileset. In a tileset with few glues, the assembly can be so unconstrained that specific 

configurations are very difficult to achieve. Therefore, the fact that temperature 1 behaviors are 

seen even when allowing a very large portion of total attachments to be temperature 2 means 

further analysis of temperature 1 assemblies is necessary. Even a well-designed tileset will suffer 

losses in total yield if temperature 2 behavior is expected, but not seen in the experimental 

system.
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In addition to the number of glues, the quantities of each tile used in the system is also 

relevant. For systems where some tiles are used in much higher quantities than others, correlation 

can be misleading. For example, both the Sierpinski Tileset and the Binary Counter Tileset use a 

disproportionately large number of tiles from one tile type, seen most explicitly in figure 12. 

Each white ellipse represents a tile from a single tile type. The correlation measure simply 

checks location (i, j) in both configurations, if the tile name is the same, the correlation 

percentage increases. Therefore, if a relatively large number of tiles from a single tile type 

appear in a configuration, correlation is positively biased. Such bias could contribute to the 

behavior seen at very high chances of non-NULL attachment shown in figures 34 and 40. The 

phase transition isn't as sharp as it is in the Single Glue Tileset and Double Glue Tileset.

Similarities to directed percolation are seen at temperature 1.5 for tilesets which would 

construct infinite configurations given infinite space and infinite quantities of each tile type. 

When the NULL tile is introduced at temperature 1.5, with critical probabilities consistent with 

those found through simulation of directed percolation in this and other models, tile assemblies 

generate probable infinite clusters of non-NULL tiles. As the probability of temperature 2 and 

non-NULL attachment increases, these clusters begin to saturate the configuration until a perfect 

assembly is replicated at probability 1 for temperature 2 attachment  with no probability for 

NULL attachment. Site percolation is easily translated into a tile assembly problem. In the Single 

Glue Tileset with NULL tiles at temperature 1, the DK model site percolation probability is 

nearly spot on. In configurations of 1,000,000 tiles, clusters spanning the entire lattice begin to 

form reliably at around pc = .705 for the chance of attaching non-NULL tiles. These early results 

seem promising in successfully relating directed percolation and tile assembly. Further study is 
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needed to better articulate these findings for shapes other than the relatively simple n by n square 

and for tilesets other than the Single Glue Tileset. Experimentally, some loose critical 

probabilities were found for the Counter Quilt, Sierpinski, and Binary Counter Tilesets, but 

further trials are needed to evaluate and refine these initial findings.

The fundamental shift inherent in temperature 1.5 requires more investigation and deeper 

analysis, but these findings indicate some interesting properties. As discussed earlier, a 

temperature 1.5 system has some probability of attachment at temperature 2 and some 

probability of attachment at temperature 1. This is simulated by giving a probability t of 

attachment at temperature 2 and defining the system's probability of temperature 1 attachment as 

(1 – p). Two key results indicate that temperature 1.5 could help future tile assembly systems 

more carefully approximate laboratory assembly processes while also creating new avenues for 

investigation regarding the computational complexity of temperature 1 assembly.

A system operating at temperature 1.5 can represent a system at temperature 2 or 1 

depending on the value given for t. As t approaches 1, there is a predictable change in large 

assemblies which indicates a phase transition. This shift from temperature 1 behavior to 

temperature 2 behavior is over a relatively miniscule threshold, as seen in figures 20, 30, 34, and 

40 and reveals a fundamental difference between temperature 1 and temperature 2 systems which 

assemble finite structures. Although the aTAM is a great model for describing particular 

assemblies under set conditions, it does not generalize well to procedures outside of those 

conditions. It is difficult to describe and assemble a material with particular global properties 

without articulating those global properties through locally deterministic attachment procedures. 

Relevant adaptations to the aTAM, such as the pTAM, are a step in the right direction, but 
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further work in this area is required. Current design principles can yield complex configurations 

with guaranteed global behaviors, but at the cost of yield. As configurations become more 

geometrically complex (measured by their Kolmogorov complexity), the chance of error during 

assembly grows. By developing tilesets that are resilient despite temperature 1.5, researchers can 

guarantee global properties despite unfavorable local interactions. 

Global attributes like conductivity, hydrophobicity or -philicity, and optical qualities like 

transparency can be described by global behaviors and need not involve universally correct, 

locally deterministic component attachment. By keeping a hand on the dial, so to speak, a 

researcher could tune a tileset to a broad field of attachment probabilities and describe a range or 

class of acceptable configurations (similar to the probabilistic assembly of rulers of length N  

seen in the pTAM). Since temperature 1.5 is easy to implement in tile assembly simulations, this 

tuning can occur without the use of costly materials. Once broad changes have been made, finer 

adjustments can be made in vitro which can then be fed back into the simulation in order to 

refine the model.

The use of NULL tiles can benefit these analyses. By abstracting failed attachments into 

a catch-all tile type, the desired global properties of an assembly can be iteratively simulated 

until they fall within acceptable margins. Focusing on directed percolation and the behavior of 

clusters on the finite lattice, the global concentration of correct tiles can easily be determined at 

certain probabilities in a particular configuration. Since the critical probability of producing 

infinite clusters can now be described by directed site percolation, models of finite-size systems 

in the literature can be employed to analyze similarly sized finite configurations. Conductivity in 

particular is a global property which has already been addressed in percolation theory literature 
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[6]. A lattice structure with a certain expectation of conductivity can be more reliably built and 

tested within the context of previous findings in studies on finite percolating lattices. Also, 

consider a self-assembling superstructure made via staged self-assembly. By layering the 

assembly process and constructing stages of supertiles with global properties, researchers can 

more easily guarantee global properties of the total assembly by guaranteeing the properties of 

the component supertiles which are less complex and easier to assemble.

Also, the representation of tile assembly as a directed percolation process (particularly 

directed site percolation) is a helpful first step in relating well-described statistical mechanical 

models of systems with phase transitions to self-assembly, even outside of the aTAM. Results 

shown here indicate that assembling n by n squares of arbitrarily large size can be represented by 

a directed site percolation problem on that same square lattice. The simple translation between 

the two problems seems to indicate a promising and elegant relationship between the two 

processes which could prove fruitful in solving self-assembly systems for certain global 

properties. Investigations into directed lattice animals and their geometric relationships to 

arbitrarily organized configurations could also prove fruitful now that initial simulations have 

shown a connection between directed percolation and the aTAM.

In addition, an absorbing state once reached cannot be left (by the nature of directed 

percolation), which indicates that tiling fidelity is difficult to achieve under non-ideal conditions, 

where non-ideal conditions are taken to be non-temperature 2 systems which can undergo 

errorful aggregation. Even specially designed error-correcting tilesets can theoretically enter 

absorbing states where errors are so numerous that the system cannot recover. When taken with 

the DKCA tileset presented in figure 19, this result indicates that directed percolation models are 
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well adapted to describe self-assembly in the aTAM . Also, figure 19 describes a tileset which is 

capable of sweeping out the phase diagram described by figure 18, which may lead to additional 

CA which can program tile assemblies for bulk or global statistical properties.
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5 CONCLUSIONS

5.1 Findings

Each tileset constructs the expected configuration with perfect accuracy in a temperature 

2 system with no NULL tiles. This behavior is expected in the aTAM. Conversely, tilesets which 

include NULL tiles very rarely assemble the expected configuration. The NULL tile halts the 

assembly process, and the temperature of the system prevents further attachments from 

occurring. As seen in figure 44, at temperature 2, a NULL tile attachment can derail an entire 

assembly. Note that although t has a partially correct binding domain, it cannot attach, even if it 

is the next expected tile in the configuration, ignoring the NULL attachment.

As  the  probability  of  a  NULL tile  attachment  approaches  zero,  the  correlation  between  the 

NULL allowance configuration and the regular temperature 2 configuration approaches unity. At 

temperature 1, NULL attachment isn't as detrimental to the continued assembly, but correlation 
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Figure 44: Tile t attempts to attach to configuration C



remains  consistently low.  This  is  due to  the less constrained attachment  process  which both 

allows  the  aggregate  to  correct  a  NULL  attachment  while  also  allowing  unexpected  tile 

attachment on open binding sites.

Results  also  indicate  that  percolation  and  self-assembly  by  the  aTAM  are  related. 

Simulations of the Single Glue Tileset and the Double Glue Tileset show that infinite clusters 

develop  at  approximately  the  same  critical  percolation  values  in  each,  although  the  non-

deterministic nature of attachment generated variant clusters in the Double Glue Tileset which 

were  impossible  to  relate  via  correlation  at  any  temperature.  Furthermore,  these  critical 

percolation  values  are  similar  to  critical  percolation  values  for  the  DK  model  of  directed 

percolation.  The  relationship between  percolation and self-assembly by the aTAM is clearly 

shown  by  these  results,  but  further  simulation  of  designed  tilesets  with  particular  final 

configurations,  like the Sierpinski  and Counter  Quilt  tilesets,  indicates  that  when a tileset  is 

crafted such that a specific configuration is expected in a temperature 2 tile assembly system, 

infinite  clusters  are  developed  at  critical  percolation  values  higher  than  those  seen  with  the 

Single  Glue and Double Glue Tilesets.  This behavior  is  a  direct  result  of the asymmetry in 

binding domains seen in these tilesets; as the set of possible binding domains becomes larger and 

less  regular,  opportunities  for  new  tiles  to  attach  become  more  rare.  This  is  due  to  the 

dependence on the variable temperature system for a particular temperature during a particular 

attachment attempt.

Temperature 1.5 allows for variable system temperature determined probabilistically at 

attachment time for each new attachment and can be used to more accurately predict  how a 

tileset might assemble in a laboratory environment. This is due to the pervasive and unavoidable 
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nature of attachment errors which are ignored in temperature 2 aTAM tile assembly systems. 

Simulations of temperature 1.5 behavior indicate that non-trivial probabilities of temperature 1 

attachment in the tile assembly system tend to cause the entire system to behave as though it 

were  temperature  1  when  correctness  is  measured  by  correlation  to  a  temperature  2 

configuration. When considering tilesets like the Sierpinski or the Counter Quilt, this behavior 

becomes more clear, as seen in figure 36.

The NULL tile  has  an interesting effect  on assembly and  is  necessary  to  distinguish 

directed percolation behavior in the chosen tilesets. Without a NULL tile, assembly will halt 

when no tile can attach, but allowing NULL attachments makes the tile assembly process more 

robust for temperature 1 or temperature 1.5 tile assembly systems. The addition of the NULL tile 

creates another phase transition in correlation percentage for non-trivial NULL attachment rates 

which decays as the tileset integrates more glues and tile types (such as the Sierpinski and Binary 

Counter Tilesets). This decay can be seen by comparing the sharp transition seen in the Single 

Glue Tileset in figure 20 to the shallower and more scattered transition in the Sierpinski tileset 

and Binary Counter Tileset (figures 34 and 40). The nature of these tilesets also contributes to 

the decay, since both the Sierpinski and Binary Counter do not use all tile types equally.

When the NULL tile is allowed and the temperature of the system is set to temperature 

1.5,  strong  directed  percolation  behavior  is  seen.  This  is  most  clear  when  examining 

configurations  of  the  Single  and  Double  Glue  Tilesets  below,  at,  and  above  the  critical 

probabilities found through simulation. Essentially the NULL tile and temperature 1.5 increase 

the flexibility of the aTAM by reducing or removing constraints on attachment which would 

cause the assembly to stop attaching new tiles.
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In conclusion, simulation results show the NULL tile to be a necessary addition to the 

aTAM where designed tilesets or temperature 1.5 are parameters of the tile assembly system and 

the constraints imposed by the aTAM on assembly are too binding. When the NULL tile and 

temperature 1.5 are allowed with some probability, strong directed percolation behavior becomes 

evident. These simulation results support the formal equivalence of self-assembly and directed 

percolation given in section 3.2.8. Additionally, well-known critical probabilities for percolation 

in  the  DK  model  for  cellular  automata  match  critical  probabilities  for  percolation  seen  in 

simulations of two distinct tilesets.

5.2 Future Work

As mentioned previously in section 4, there are a number of avenues of investigation 

which need further development. With regards to the experimental applicability of the author's 

conclusions concerning the usefulness of temperature 1.5, the first step is to articulate minimal 

tilesets which are inclined to construct configurations with predictable global properties, a feat in 

its  own  right.  Perhaps  the  Single  Glue  and  Double  Glue  Tilesets  hold  the  key  to  such 

investigations. Both tilesets can be used to represent random media where some components or 

elements of the medium have certain desirable properties that other components do not have. If 

this property is binary, then such random media can be represented by the Single Glue tileset 

with a NULL tile. Properties with up to 16 categorical values can be represented with the Double 

Glue  Tilesets,  although  the  directed  bond  percolation  problem would  need  to  be  addressed 

probabilistically  with  such  a  large  number  of  values.  Potentially,  if  a  tileset  can  arbitrarily 

represent a medium that follows some functional distribution of its components, and that tileset 

75



is minimal or close to minimal, then a whole new class of system can be represented with the 

aTAM which does not rely on local determinism except as a constraint which aids assembly.

Also, the connection between directed percolation and the aTAM must be formalized. 

The mathematical  connection between the aTAM and directed percolation or other statistical 

mechanical models must be developed and articulated for researchers looking to simulate such 

systems. Since self-assembly has a strong connection to DK automata and directed percolation 

shares  that  connection,  perhaps  the  beginnings  of  this  association  could  be  made  there. 

Additionally,  directed percolation gives researchers  access to a number of potentially helpful 

resources, including the concept of directed lattice animals. A lattice animal is a collection of 

occupied sites adjacent by open bonds and is the result of a percolation process. Lattice animals 

are  defined  by a perimeter  and area  which  are  calculated  from the  statistical  and geometric 

properties of the animal. In the aTAM with NULL tiles, configurations of non-NULL tiles can be 

thought of as lattice animals. By relating these aggregates or clusters in a configuration to lattice 

animals, new metrics and workflows are introduced to the process of self-assembly which can be 

used to improve design and assembly in simulations and in the laboratory by giving researchers 

more tools to describe and investigate self-assembled products.
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