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ABSTRACT 

Larinus minutus Gyllenhal, a biological control agent of invasive knapweeds, has become 

established in several states and provinces since initial North American introduction in 1991.  In 

order to reduce growing spotted knapweed populations in Northwest Arkansas, Larinus minutus 

(a biological control agent of spotted knapweed) was released annually from 2008-2011.  Little 

is known about the larval development of this species, although the widespread use of this insect 

has provided research describing detailed host range and generalized life history.  The speed and 

extent of the spread of this weevil from release sites following introduction have not been 

reported.  This research described the larval development of L. minutus and its spread from 

release sites.  Overwintered adult weevils were field collected and allowed to mate for two days 

for larval development studies.  Females were placed individually into a mesh cage attached to a 

capitulum and allowed ~24 hours to oviposit.  Randomly-collected caged capitula were dissected 

biweekly and head capsule measurements recorded.  Once a majority of larva pupated, alternate 

day observations were conducted on remaining caged capitula to determine average emergence 

date.  Two cohorts (occurring at full and late-flower) were used to observe season-related 

development differences.  Two larval instars were observed from head capsule data analyzed 

with Hcap, a computer program that analyzes frequency distributions to determine instar number, 

mean head capsule width, instar range, and optimal separation points.  Compared to previously 

published observations, all developmental stages were accelerated and one fewer stage was 

observed.  Release sites were surveyed with transect sampling in winter of 2011 and 2012 to 

describe average L. minutus spread following introduction.  Sampling included collection of 100 

capitula per quadrat along each transect for later dissection and timed visual observation to 

record positive infestation.  GPS coordinates were recorded at each sample location to determine 



distance from a release site.  Collected data were analyzed with a diffusion equation to describe 

the spread from a release site.  This research shows two years post release, an annual increase of 

infested capitula, up to 21%, and spread from a release point, up to ~225 m can be expected. 
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Introduction 

Spotted knapweed, Centaurea stoebe ssp. micranthos (Gugler) Hayek, is one of the most 

widespread and problematic weeds of the introduced Centaurea in North America.  Spotted 

knapweed is found in 46 states and 7 Canadian provinces (USDA 2013).  While a number of 

options including herbicides and cultural practices exist for managing knapweeds, biological 

control is typically used as it is the most cost efficient and sustainable.  The classical biological 

control of invasive knapweeds is a longstanding program in North America that has culminated 

in the importation of 13 natural enemies of Centaurea spp. from 1970-93 (Müller-Schärer and 

Schroeder 1993) with redistribution of particular agents ongoing (Minteer et al. 2011).   

Larinus minutus Gyllenhal was first released in North America in 1991 for the biological 

control of invasive knapweeds (Müller-Schärer and Schroeder 1993).  The weevil is thought to 

be one of the most successful agents due to reductions of knapweed that followed its introduction 

in Colorado and British Columbia (Seastedt et al. 2003, Myers 2008).  The weevil has been 

established in 8 states (Lang et al. 1996, Story 2002, Minteer et al. 2011) and despite its 

widespread distribution and use, relatively little is known of its larval development besides a 

generalized life history. 

Adult forms of L. minutus overwinter near the base of the plant and become active in 

spring.  Mating is observed approximately 4 weeks later with oviposition taking place in the 

florets of newly open capitulum soon thereafter (Groppe 1990, Kashefi and Sobhian 1998).  

Upon hatching, larvae move to the center of the capitulum and complete development over the 

course of 3-4 weeks and pupate within the capitulum (Groppe 1990).  After emergence from 

pupation, adults consume nearby knapweed, preferring flowers to other parts of the plant, and 

overwinter until the next season (Groppe 1990). 
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Because the life history of L. minutus is so generalized, this provided an opportunity to 

better describe the larval development.  The preliminary observations made in Groppe (1990) did 

not report a range, variance, or frequency of each instar (3 were reported), and thus I suspect the 

reported number of instars and corresponding head capsule widths may be inaccurate due to an 

insufficient sample size.  Furthermore, an average development time for each instar was not 

determined.  The first objective of this thesis research was to address these inadequacies with 

regular sampling of discretely established, field-based cohorts, of protected and contained 

immature L. minutus from oviposition until emergence as adults.  Two cohorts were setup to 

determine any seasonal differences in L. minutus development. 

As L. minutus is credited with providing partial control of knapweeds in British Columbia 

and Colorado (Seastedt et al. 2003, Myers 2008) it is important to document what happens to a 

site in the years following introduction.  This information can be useful to future biological 

control efforts.  Research conducted by Minteer (2012) introduced L. minutus to 37 different 

sites in northwest Arkansas from 2008-2011.  The objective of chapter 3 was to describe changes 

in L. minutus infestation levels and spread from release points as a site ages.  This was 

accomplished by grouping release sites by year of L. minutus introduction and using transect 

sampling to estimate infestation levels and spread, and analyzing these data with an exponential 

decay function when possible. 
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Taxonomy and Nomenclature 

 Due to the high morphological variation and use of inappropriate characters, spotted 

knapweed has undergone numerous name changes and is difficult to classify (Ochsmann 2001).  

A study utilizing molecular and morphological techniques found North American spotted 

knapweed belongs to Centaurea stoebe L. subsp. micranthos (Gugler) Hayek, and not Centaurea 

stoebe L. subsp. stoebe.  Both subspecies are separated by ploidy level with tetraploids and 

diploids belonging to subsp. micranthos and subsp. stoebe respectively (Ochsmann 2001).  A list 

of accepted synonyms, as well as previous names, for C. stoebe subsp. micranthos is presented in 

Ochsmann (2001). 

Biology and habitat 

Spotted knapweed is a biennial or short-lived perennial forb Eurasian in origin and can be 

diploid or tetraploid.  A ploidy ratio study (Treier et al. 2009) of spotted knapweed populations 

in Europe and North America found that both tetraploid and diploid forms exist in mostly non-

overlapping populations in Europe while the tetraploid form comprises 98% of the populations 

sampled in North America.  Both ploidy forms possess different life histories with diploids and 

tetraploids exhibiting monocarpic and polycarpic life cycles respectively.  In general the plant is 

a pioneer species that quickly invades and takes advantage of disturbances in soil (Watson and 

Renney 1974). 

As this project deals with North American spotted knapweed, only the biology of the 

tetraploid form will be considered.  Spotted knapweed starts off as an achene that after sprouting 

overwinters as a basal rosette.  Upon the start of the next growing season the plant will bolt and 

can produce over 15 stems (Watson and Renney 1974).  The stems can than grow >1 m with 

branching occurring in the upper half.  Branches are terminated with capitula that are covered in 



! 7 

characteristic brown triangular tips that give spotted knapweed its name.  During flowering, each 

capitulum produces 20 to 50 pink or purple tubular florets (Watson and Renney 1974, Winston et 

al. 2010) and after pollination, each capitulum produces an average of 30 achenes (Winston et al. 

2010).  Depending on growing conditions, the annual viable seed production of one spotted 

knapweed plant is estimated at 350-20,000 seeds (Watson and Renney 1974).  After the growing 

season, individual stems will senesce and the plant will overwinter again as a rosette.  While 

achenes are the primary form of reproduction in spotted knapweed, the plant can employ lateral 

shooting to produce new rosettes (Watson and Renney 1974). 

Range and invasion success 

 Spotted knapweed was first introduced to North America as a contaminant of hay in the 

late 1800s (Winston et al. 2010) and is reported from all states except Oklahoma, Texas, 

Mississippi, and Alaska (USDA 2013).  Treier et al. (2009) suggests that both ploidy forms were 

introduced to North America but that the tetraploid form has outcompeted the diploid form and is 

the dominant ploidy type.  Overall, spotted knapweed is estimated to infest over 2.9 million ha in 

the United States (DiTomaso 2000) with the largest populations found in the Northwestern and 

central states were it is a rangeland pest.  The plant is estimated to spread at a rate of 10-24% 

annually (Duncan et al. 2004).  Dispersal of knapweed achenes occurs by wind, water, 

attachment to animals or vehicles, and as contaminants of hay (Winston et al. 2010).  Once 

knapweed has been established at a site, only 0.1 percent of the total produced seeds are required 

to survive to maintain knapweed densities (Schirman 1981). 

The polyploidy exhibited by North American spotted knapweed is thought to be a 

contributing factor to the plants establishment success.  In comparison to a diploid, a tetraploid 

produces additional florets, smaller capitulum, a lower number of capitulum per plant, extra 
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accessory rosettes, and significantly less seeds per plant in one season (Henery et al. 2010, Mráz 

et al. 2011).  Since the tetraploid spotted knapweed has the ability to flower numerous times, 

higher total seed fecundity can be attained in comparison to the monocarpic diploid form.  This 

may have given tetraploids the competitive edge in North American establishment (Treier et al. 

2009, Henery et al. 2010). 

In addition to the success of the tetraploid form in North America, spotted knapweed may 

have undergone additional evolutionary changes after introduction.  The evolution of increased 

competitive ability (EICA) hypothesis states that following introduction to an area lacking 

specialist co-evolved natural enemies, genotypes of the invasive species that invest in 

reproductive ability or biomass accumulation rather than herbivory defense, whichever is the 

most beneficial, will be favorably selected (Blossey and Nötzold 1995).  In comparison to the 

European tetraploid counterpart, North American tetraploids exhibit a lower level of gene 

expression involved with plant defense (Broz et al. 2009), a significant increase in reproduction 

capacity (Henery et al. 2010), and an increased tolerance to drier continental climates (Treier et 

al. 2009).  These observations seem to support the EICA hypothesis but all three publications 

assert the need for further testing in order to rule out other possibilities such as a founder effect 

(Broz et al. 2009, Treier et al. 2009, Henery et al. 2010) that could account for these differences. 

Allelopathy has also been suggested as another factor considered having an impact on 

invasion success and establishment.  The allelopathic advantage against resident species 

hypothesis put forth by Callaway and Ridenour (2004) suggests an invasive plant in possession 

of an allelochemical will compete better with plants in an invaded range in comparison to 

coevolved plants in its native range.  The assumption is that the native plants will have evolved 

allelochemical defenses that the plants in the introduced range lack.  
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After soil infested with spotted knapweed was found to inhibit the growth and 

development of crops (Fletcher and Renney 1963), it was suggested that the plant releases a 

growth chemical, which would later be defined as an allelochemical, that inhibited the growth of 

competing plants.  Later research extracted cnicin, a sesquiterpene lactone, from spotted 

knapweed and found that when applied at varying concentrations, the germination of tested 

plants was inhibited (Kelsey and Locken 1987).  While little research has been done on the 

allelopathic potential of cnicin since then, one study found that while cnicin did not prevent 

germination, it can inhibit seeding growth (Schabes and Sigstad 2007).  Cnicin may also aid 

knapweed establishment via different means.  Large herbivores find cnicin to be bitter tasting 

and will avoid its consumption if possible (Watson and Renney 1974, Kelsey and Locken 1987).  

As a result, other species of plant are overgrazed and any competitive effects to spotted 

knapweed are reduced.   

Perhaps the most researched compound implicated in the allelopathic potential of spotted 

knapweed is (-)-catechin.  After developing a hexane extraction technique, Bais et al. (2002) 

claimed to have to isolated racemic catechin from root exudates of spotted knapweed and that the 

(-)-catechin form was phytotoxic.  Additional research (Bais et al. 2003) reported high levels of 

catechin in the soil surrounding spotted knapweed and that (-)-catechin damages surrounding 

root systems by creating reactive oxygen species.  When (-)-catechin was applied to the roots of 

diffuse knapweed (Centaurea diffusa Lam.), Arabidopsis thaliana (L) Heynh, and spotted 

knapweed at soil representative levels, reactive oxygen species were created which resulted in 

large-scale cell death in diffuse knapweed and A. thaliana.  Spotted knapweed in comparison 

only produced low levels of reactive oxygen species and failed to exhibit any necrosis. 
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In an attempt to assess the evolution of increased competitive ability hypothesis, a study 

(Blair et al. 2005) comparing catechin production rates between European and North American 

spotted knapweed found the hexane extraction technique developed by Bais et al. (2002) to be 

non-reproducible and catechin to be insoluble in hexane.  After developing a new technique to 

extract catechin, Blair et al. (2005) was unable to find any catechin in soil samples from spotted 

knapweed field sites.  Catechin has been reported as highly unstable in soils (Inderjit et al. 2008) 

and only present at extremely low concentrations (Perry et al. 2007).  Since then, Bais et al. 

(2002) has been retracted and an erratum has been posted for Bais et al. (2003).  Both 

publications acknowledge the non-reproducible nature of the hexane extraction.   

The reactive oxygen species mechanism of (-)-catechin has also been contested.  

Research (Duke et al. 2009) attempting to recreate the formation of reactive oxygen species 

reported by Bais et al. (2003) found root death did not occur following catechin application, even 

after being left in media containing (-)-catechin for four days.  After being placed in (-)-catechin 

free media, tested plants resumed healthy root growth within two days.  Additionally, Duke et al. 

(2009) found that catechin actually inhibits the formation of reactive oxygen species.  No 

explanation has been presented to account for the differences in results between the two studies 

(Bais et al. 2003, Duke et al. 2009) since then. 

Finally, the lack of specialist natural enemies attacking knapweeds, prior to biological 

control efforts in North America, is thought to have contributed to the invasion success and 

spread of knapweeds by allowing them to escape the herbivory pressure that native plant life 

presumably experiences (Müller-Schärer and Schroeder 1993).  This idea, in combination with 

the assumption that an invasive will be highly unlikely to experience a host switch from a native 

specialist natural enemy comprises assumptions made by the enemy release hypothesis (ERH) 
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(Keane and Crawley 2002).  By escaping herbivory pressure, an invasive plant may be better 

able to compete with native plants in the acquiring of nutrient and space resources.  While a 

native plant should be evolved to its corresponding native environment, and thus exert a 

relatively high pressure on competing invasive plants, anthropologic manipulation of local 

conditions can decrease the competitive ability of a native plant and allow an opportunity for an 

invasive plant to establish (Keane and Crawley 2002).  Knapweeds are pioneer species that 

quickly colonize disturbed habitats such as along roads, railways, places of refuse, and 

overgrazed rangeland (Watson and Renney 1974), however they have a difficult time 

establishing in areas under cultivation (Harris and Cranston 1979).  A combination of reduced 

competition from native plants as a result of disturbance and escape from herbivory pressure 

seem to be two factors conducive to knapweed establishment and spread. 

Ecological and Economic impacts 

 The direct and indirect effects of spotted knapweed and two other knapweeds, C. diffusa 

and Rhaponticum repens (L.) Hidalgo, are estimated to cost Montana $42 million dollars 

annually based on an infestation of over 2 million acres (Hirsch and Leitch 1996).  An infestation 

of diffuse and spotted knapweed of 30,000 ha in British Columbia reduced available forage by 

up to 88% (Harris and Cranston 1979).  Ingestion of large amounts of diffuse and spotted 

knapweed can lead to toxic symptoms in horses (Maddox 1979).  Spotted knapweed-dominated 

sites experience increased surface water runoff, soil sedimentation yields, and interrill erosion 

(Lacey et al. 1989).  Invasion of spotted knapweed is related to reductions in plant community 

composition (Tyser and Key 1988). 
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Chemical Control 

The use of herbicides is an established and effective method of controlling knapweed 

populations.  Dicamba, clopyralid and picloram, and 2,4-D will effectively control knapweed if 

properly applied (Müller-Schärer and Schroeder 1993).  However since most formulas are broad 

spectrum or specific to a particular group of plants, detrimental effects to native plants can occur 

(Synder and Shephard 2007) and surface water runoff can lead to the contamination of nearby 

water bodies (Hirsch and Leitch 1996).  The use of herbicides as a primary means of knapweed 

control is economically unfeasible due to the wide area in which knapweed has invaded and the 

relative low monetary value of the land on which the weed is a pest (Maddox 1979).  Herbicides 

are best used in spot treatment of knapweed in recently invaded areas in order to prevent the 

establishment of a knapweed seed bank (Harris and Cranston 1979). 

Cultural control  

One cultural management option is the use of herbivore grazing.  While cattle and horses 

avoid spotted knapweed (Cheeseman 2006), sheep and other wildlife have been observed grazing 

on knapweeds (Wright and Kelsey 1997, Olson and Wallander 2001).  As a consequence, 

prescription grazing using sheep has been proposed as a control method of spotted knapweed 

(Launchbaugh and Hendrickson 2001).  Additional research investigating the potential of grazing 

as a component of knapweed management must be conducted as 22 percent of consumed 

achenes remain viable after passing through a sheep’s digestion system which may contribute to 

spread (Wallander et al. 1995) especially given only 0.1 percent of seed is needed for 

contamination (Schirman 1981). 

Controlled burning can provide another management technique in certain situations.  

While fire has been shown to successfully reduce knapweed populations in Midwestern grass 
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prairies (Wintson et al. 2010), in Montana a controlled fire of a forested site created a 

disturbance conducive to knapweed colonization with an approximate sixfold increase of spotted 

knapweed occurring within 2 years of burning (Sheley et al. 1998).  Additionally, knapweeds 

have a deep taproot that allows the plant to survive burning (Wintson et al. 2010). 

Cultivation, hand pulling, and mowing can also be used to impede the spread of spotted 

knapweed, however these options are time and cost prohibited due to the widespread distribution 

of knapweeds.  These techniques are best used to control spotted knapweed in limited areas 

(Winston et al. 2010). 

Biological control 

 Due to difficulties with other control measures, biological control is the most economic 

and long lasting solution to knapweed infestation (Harris and Cranston 1979).  The knapweed 

biological control program was first started in 1961 with field surveys of spotted knapweed in 

Western Europe and by 1971, 12 natural enemies had been discovered and the host ranges of 10 

studied (Schroeder 1985).  The first agents investigated and introduced were those that attack the 

seeds and flowering parts of knapweeds in an attempt to establish control via seed reduction 

(Schroeder 1985).  Releases were made from 1970-1976 of three seed feeders and one root borer 

(Müller-Schärer and Schroeder 1993).  On the assumption that seed reduction alone would 

provide insufficient control, an investigation of natural enemies that attack the roots and rosettes 

of knapweeds was conducted by CIBC from 1979 to 1983 at 37 European locations (Schroeder 

1985) and resulted in the release of four root-feeding species from 1982-1987 (Müller-Schärer 

and Schroeder 1993).  With introduced species totaling eight, Harris (1991) suggested attack of 

the soft achene stage could result in further seed reduction.  As a consequence, five additional 

achene feeders were released from 1991-1993 (Müller-Schärer and Schroeder 1993).  Overall, 
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from 1970-1993, 13 insect species were imported and established in North America (Müller-

Schärer and Schroeder 1993).  Since then, no additional introductions have taken place, however 

foreign exploration for additional natural enemies to exploit the foliage and root crowns of 

rosettes, niches of spotted knapweed phenology currently unattacked, has been suggested (Smith 

2001, Story 2002). 

Reductions of spotted knapweed densities in Montana were observed after the 

introduction of Cyphocleonus achates Fahraeus (Story et al. 2006).  Prior to C. achates 

introduction, six other agents were already established but failed to reduce densities (Story et al. 

2006).  As infestation of spotted knapweed by C. achates can stress the plant to mortality or 

reduced vigor (Corn et al. 2006) it has been implicated in being the most effective natural enemy 

of spotted knapweed (Myers 2008).  As multiple natural enemies were present prior to C. 

achates establishment, reductions of spotted knapweed density could also be the result of a 

cumulative stress threshold being reached (Story et al. 2006).  Likewise, introduction of C. 

achates with three other natural enemies in a spotted knapweed dominated site in Colorado 

resulted in a 93 percent reduction in spotted knapweed over a 8 year period (Carney and Michels 

2010).  Research investigating the combined effects of multiple natural enemies including C. 

achates found an overall decrease in knapweed performance and vitality and projects knapweed 

biological control can be attained by utilizing multiple species of biological control agents 

(Knochel and Seastedt 2010). 

Larinus minutus 

 A number of Larinus spp. have been investigated and utilized for the biological control of 

invasive weeds (Groppe et al. 1990, Jordan 1995, Lang et al. 1996, Gültekin et al. 2008, Briese 

2000).  After undergoing host specificity testing from 1985-1989 (Groppe 1990), Larinus 
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minutus Gyllenhal was first released in North America in 1991 for the biological control of 

diffuse and spotted knapweeds (Müller-Schärer and Schroeder 1993) from initial collections of 

adult weevils in Greece and Romania (Lang et al. 1996).  Since then, the weevil has been 

redistributed and established in Arkansas, Colorado, Indiana, Minnesota, Montana, Oregon, 

Wyoming, and Washington (Lang et al. 1996, Story 2002, Minteer et al. 2011). 

 Myers (2008) suggested that L. minutus alone provides sufficient control of diffuse 

knapweed as decreases of diffuse knapweed in British Columbia and Colorado, both areas with 

longstanding knapweed biological control programs, did not occur until after L. minutus 

establishment (Seastedt et al. 2003, Myers 2008).  This reduction can likely be attributed to 

large-scale seed destruction exhibited by larval feeding, which typically destroys 100% of 

achenes in infested capitula (Kashefi and Sobhian 1998), and adult feeding of rosette leaves, 

seedlings, and the parenchyma of bolting stems which can kill plants (Myers et al. 2009). 

Larinus minutus biology 

Larinus minutus overwinters as an adult in the debris surrounding knapweed sites and 

leaves these sites in spring (Kashefi and Sobhian 1998).  Overwintered adults consume nearby 

knapweed, preferring flowers relative to other parts of the plant, and are observed mating 

approximately 4 weeks later (Groppe 1990, Kashefi and Sobhian 1998).  Once mated, females 

oviposit in newly opened flowers that under laboratory conditions hatch in 3-4 days (Kashefi and 

Sobhian 1998).  For the next 3-4 weeks in the capitulum, the larva reportedly passes through 3 

instars and consumes all surrounding achenes (Groppe 1990). The mature larva then constructs a 

pupation chamber from remaining material in the capitulum and pupates (Kashefi and Sobhian 

1998).  After emergence from pupation, adults consume nearby knapweed, again preferring 
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flowers to other parts of the plant, and overwinter in the surrounding soil until the next season 

(Groppe 1990). 

Spread from release sites 

 As release of a biological control agent is akin to that of an invading organism, 

quantification of invasion dynamics can provide useful information (Fagan et al. 2002).  Indeed, 

numerous diffusion and integrodifference equations can be used to model and describe the 

spread of an invading organism, or alternatively a biological control agent (Kot et al. 1996).  

Determination of the factors affecting the spread of a newly introduced agent greatly improves 

the application of these models. 

In general, spread is typically described by monitoring of sites at different distances from 

the release location.  For example, Galerucella calmariensis L. and G. pusilla Duftschmid, both 

chrysomelid biological control agents of purple loosestrife, were estimated to disperse 15, 46 and 

69 m from initial release sites (~40 m2) for each successive year after (McAvoy et al. 1997).  

This study however didn’t describe infestation rates relative to distance from the release sites.  

Another study monitored and described the dispersal of biological control agent, Rhinoncomimus 

latipes Korotyaev (Coleoptera: Curculionidae), from release sites on mile-a-minute weed over 

the course of four years by setting up monitoring points along concentric circles around the 

release point (Lake et al. 2011).  In doing this, researchers were able to determine average spread 

for the weevil to be 1.5 to 2.9 m per wk and at 4 months following release, weevils had spread 

beyond 25 m, the largest concentric circle that was monitored.   

L. minutus has been reported as spreading up to ~2 km 2 years from a release made in 

California (Woods and Popescu 2001).  There have been no published, detailed studies 

describing Larinus spp. dispersion from release sites in North America.  Given the potential of L. 
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minutus in providing successful control of knapweed, formulation of a model describing spread 

and impact can provide valuable information to the implementation of future biological control 

programs. 
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Introduction 

Spotted knapweed, Centaurea stoebe ssp. micranthos (Gugler) Hayek, is an invasive 

plant native to Eurasia.  Initial introduction occurred in northwestern North America (Watson 

and Renney 1974) and it can now be found in 46 states and 7 Canadian provinces (USDA 2013).  

Spotted knapweed reduces available forage for livestock and wildlife (Watson and Renney 1974) 

and, increases soil surface water runoff and stream sediment yield (Lacey et al. 1989).  Spotted 

knapweed, along with other invasive knapweeds, has been the target of classical biological 

control attempts because control through the widespread and continual use of herbicides is 

economically impractical (Maddox 1979).  From 1970-93, 13 natural enemies of spotted 

knapweed were imported and established in North America (Müller-Schärer and Schroeder 

1993). 

Larinus minutus Gyllenhal (Col: Curculionidae) was first introduced to North America in 

1991 for biological control of Centaurea spp. (Lang et al. 1996).  Since then, the weevil has 

become established in Arkansas, Colorado, Indiana, Minnesota, Montana, Oregon, Wyoming, 

and Washington (Lang et al. 1996, Story 2002, Minteer et al. 2011).  Larinus minutus is credited 

with providing partial control of knapweeds in British Columbia and Colorado, which are areas 

with longstanding knapweed biological control programs (Seastedt et al. 2003, Myers 2008).  

Knapweed densities in these areas decreased only after introduction of L. minutus.  This 

reduction was attributed to large-scale seed destruction and adult feeding (Myers et al. 2009).  

Larval L. minutus feeding destroys 100% of achenes in infested capitula (Kashefi and Sobhian 

1998).  Despite the widespread use of L. minutus, relatively little is known about its larval 

development. 
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L. minutus overwinters as an adult in debris near knapweed sites and leaves these sites in 

spring (Kashefi and Sobhian 1998).  Once active, adults feed on, seedlings and new shoots of 

knapweed.  Larinus minutus prefers feeding on flowers, once they are present, relative to other 

parts of the plant.  After feeding, adults mate approximately four weeks later (Groppe 1990).  A 

mated female will chew a small hole in the floret of a newly opened capitulum to prepare a site 

for oviposition.  An egg is then directly oviposited into the empty space and under laboratory 

conditions eggs hatch in 3-4 days (Kashefi and Sobhian 1998).  During the next 4 weeks, the 

larva reportedly passes through three instars, moving deeper into the capitulum and consuming 

all surrounding achenes.  Prior to pupation, the mature larva constructs a cocoon from remaining 

material in the capitulum (Kashefi and Sobhian 1998).  After pupation, the newly emerged adult 

feeds on nearby knapweed and overwinters in surrounding soil until the following spring 

(Groppe 1990).   

The number of larval stages in insects is recognized by creating a frequency distribution 

of recorded measurements, usually taken from the width of the head capsule, with each peak 

corresponding to an instar (Daly 1985).  Additional support for instar number can be obtained by 

plotting the logarithmic mean of each peak against that of the presumed instar number (Dyar 

1890).  A straight line should be produced, provided full representation of data for each instar 

and size increases of each subsequent instar progress geometrically with a corresponding 

constant growth ratio (Daly 1985).  Deviation from a straight line suggests a missed instar.  In 

the event a frequency distribution produces overlapping, non-discreet peaks, various alternative 

techniques have been developed to determine instar numbers (Caltagirone et al. 1983, Schmidt 

1996, Logan et al. 1998).   
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The objective of this study was to better define larval development of L. minutus with 

regular sampling of discretely established, field-based cohorts, of protected and contained 

immature L. minutus. 

Materials and Methods 

This experiment was conducted at a spotted knapweed plot in full-flower at the 

University of Arkansas Agriculture Experiment Station located in Washington County Arkansas.  

Full-flower was defined as a narrow timeframe (1-2 wk) in which the vast majority (~80%<) of 

knapweed capitula were in a state of bloom (late May to early June in northwest Arkansas).  

At the onset of full-flower, approximately 600 active adult weevils were collected from 

the spotted knapweed plot and divided into mating sub-colonies, each containing 100 adults.  

Sub-colonies were maintained in an environmental chamber held at 25° C with a 16:8 (L:D) h 

photoperiod and provisioned with flowering spotted knapweed capitula for food.  After two days, 

weevils were removed from sub-colonies and sexed using a method described by Kashefi (1993) 

until 250 females were identified.  Females were then transferred individually to lidded 1 oz 

clear plastic cups for handling and transport. 

Newly-opened capitula (250) were selected throughout the plot.  Each selected capitulum 

was hand pollinated with a phenologically similar capitulum of a different plant, by rubbing the 

florets of each respective capitulum together, to ensure development of the achenes.  Mesh cages 

(ca. 13 cm x 8 cm) were attached to the stem below the capitulum with a fishing line drawstring.  

Mesh cages were only attached to newly-opened capitula, as females have been noted to oviposit 

in capitula of that phenological stage (Kashefi and Sobhian 1998).  Once the cage was in place 

on the pollinated capitulum, a female was transferred from the plastic cup into a mesh cage.  All 

250 sexed females were transferred individually to a mesh-caged capitulum. 
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Caged females were allowed 24 h for oviposition after which they were destroyed to 

prevent excessive oviposition and capitulum damage via feeding.  Female destruction was 

accomplished mechanically without cage removal to prevent damage to the capitulum or stem.  

Three days after the caged female was killed, 20 caged capitula were collected in an unbiased 

manner twice-weekly.  After collection, caged capitula were dissected and developing L. minutus 

removed.  For each capitulum, the number of larvae present and corresponding head capsule 

widths were measured using an ocular micrometer within a stereomicroscope.  Once dissections 

suggested a majority of L. minutus had pupated, remaining caged capitula were observed every 

other day for adult emergence.  Upon emergence, adults were sexed and collection date was 

recorded. 

A second, late-flower, cohort was set up in mid-June to examine seasonal effects on L. 

minutus development.  Late-flower occurs after a vast majority of knapweed capitula are no 

longer in bloom and individual stalks begin to senesce.  At this point, a much smaller number of 

capitula can still be found in various stages of bloom that can support L. minutus development.  

Although the late-flower cohort followed the same experimental procedures as the full-flower 

cohort, biweekly collection of 20 randomly selected caged capitula was increased to 30 after 

preliminary data suggested accelerated larval development and poor representation of later 

instars.   

Head capsule measurements from both cohorts were combined for Hcap analysis (Logan 

et al. 1998).  The Hcap program determines instar number, mean head capsule width and SD 

within an instar, number of larvae in an instar, optimum instar separation points, and 

probabilities of instar misclassification from head capsule data.  The mean development time and 

standard error for each life stage were determined from caged capitula dissection data for both 
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cohorts.  Using calculated mean development times as a reference, a mean daily temperature was 

determined for each life stage from weather data taken from a meteorological station at the 

Arkansas Agriculture Experiment Station.  

Results 

 The frequency distribution produced by Hcap indicates L. minutus in northwest Arkansas 

undergoes two larval instars (Fig. 1).  Overall, head capsule widths ranged from 0.38 mm to 1.02 

mm.  The mean, standard deviation, number of larvae in an instar, size ranges, and instar 

misclassification probability calculated by the Hcap program are presented in Table 1.   

 Three days following oviposition, only eggs were present in the first full-flower 

collection, but by the second collection date, 7 d after oviposition, only L1 larvae were found.  

This suggests eggs hatched 3-7 d following oviposition for the full-flower cohort.  For the late-

flower cohort, L1 larvae were the most common life stage 3 d from oviposition suggesting a 

majority of egg hatch occurred in 1-3 d.   

Instar development times and corresponding mean daily temperatures for both cohorts are 

presented in Table 2.  Pupae were present in dissections 17-24 d from oviposition in the full-

flower cohort and 6-17 d for the late-flower cohort.  Development from oviposition to pupation 

occurred in 21.6 ± 1.0 d (n=9) for the peak-flower cohort and 16.8 ± 0.5 (n=28) d for the late-

flower cohort.  Twice-weekly collections of caged capitula were terminated at 24 and 17 d for 

full and late-flower, respectively, after dissections suggested pupae were the most prominent life 

stage.  Adult emergence occurred 26.9 ± 0.8 d (n=9) and 25.6 ± 0.4 d (n=25) from oviposition 

for full and late-flower respectively.   
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Discussion 

In this study, L. minutus was found to have two larval instars with head capsule widths at 

0.51 ± 0.07 mm and 0.88 ± 0.07 mm.  My results disagree with reports from a previous 

publication specifying three instars with corresponding head capsule widths at 0.5, 0.7, and 1.0 

mm (Groppe 1990).  Groppe’s three head capsule widths fall within the range of measurements 

recorded in the present study.  These observations (Groppe 1990) did not report a range, 

variance, or frequency for each instar, thus we suspect the reported number of instars and 

corresponding head capsule widths are inaccurate due to an insufficient sample size. 

Alternatively, our study may have recorded a reduction in instar number for L. minutus. 

Although the number of larval instars is typically thought to be immutable within a species, 

intraspecific variability of instar number, otherwise known as developmental polymorphism 

(Schmidt and Lauer 1977), has been documented in >100 species and in most major orders 

(Esperk et al. 2007).  A summary of publications reporting developmental polymorphism found 

variation of instar number commonly attributed to temperature, photoperiod, humidity, food 

quality and quantity, and sex (Esperk et al. 2007).  This study was not designed to specifically 

address these factors, as the occurrence of two instars was unexpected.  However, the possibility 

of their influence on larval L. minutus instar number could not be assessed as Groppe (1990), did 

not report developmental conditions. 

Based on occurrence of pupae from dissections, an accelerated larval development rate, 

in comparison to that reported in Groppe (1990), was observed in both cohorts.  Likewise, 

differences in the average daily temperatures experienced by the full and late-flower cohort are 

suspected to be the reason for differences in larval developmental rates.  An increase in 

temperature can also have other effects in insect development.  Head capsule widths of instars of 
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Listronotus bonariensis Kuschel (Coleoptera: Curculionidae) were shown to vary widely 

between seasons and even between generations (Goldson et al. 2001).  In the chironimid 

Glyptotendipes tokunagai Sasa, higher temperatures induced decreases in both development 

times and head capsule widths (Baek et al. 2012).  If higher temperatures can reduce the overall 

body size in L. minutus, laboratory larval development studies will elucidate this relationship and 

may provide an explanation for the discrepancy in mean head capsule width of this study and 

that of Groppe’s (1990).  
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Table 1.  Descriptive statistics for Larinus minutus head capsule width data calculated by 

Hcap. 

 
 
 
 
 
 
 
 
 
 

 

Larval 

instar 

 

Sample 

size 

 

Mean ± SD  

(mm) 

 

Size range 

(mm) 

 

Probability of Misclassification 

i as i-1 i as i+1 Total 

1 120 0.51 ± 0.07 0.36-0.73 0.000000 0.000017 0. 000017 

2 59 0.88 ± 0.07 0.73-1.03 0.032077 0.000000 0.032077 
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Table 2.  Average larval development times (days) and daily temperatures for two cohorts 

of Larinus minutus.  All times are measured from oviposition. Mean daily temperature is 

calculated from the daily maximum and minimum temperature between oviposition and 

mean development time for each stage.  Full-flower was defined as a narrow 1-2 wk time 

period in which >80% of the capitula were in a state of bloom within the knapweed plot.  

Late-flower was occurred after full-flower and is characterized by <20% of the capitula in 

a state of bloom. 

 

Cohort 

 

Instar 

 

n 

Mean Development 

Mean ± SE (days) 

Mean Daily 

Temp.  

(C˚) 

Range 

(days) 

Full-flower L1 33 9.55 ± 0.67 23.8 6-20 

L2 8 13.12 ± 0.66 23.52 10-17 

Late-flower L1 56 4.11 ± 0.23 29.95 3-10 

L2 42 11.52 ± 0.32 29.84 6-17 
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CHAPTER 4 

SPREAD OF L. MINUTUS AT RELEASE SITES IN NORTHWEST ARKANSAS 
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Introduction 

Spotted knapweed, Centaurea stoebe ssp. micranthos (Gugler) Hayek, is an invasive 

plant native to Eurasia.  The plant was initially introduced to the North American Pacific 

Northwest (Watson and Renney 1974) and is now found in all but four states (USDA 2013).  

Ecological and economic damage from spotted knapweed infestations include increased stream 

sediment yield, soil surface water runoff, and reduction in available forage for livestock and 

wildlife (Watson and Renney 1974, Lacey et al. 1989).   

Spotted and other invasive knapweeds, have been the target of classical biological control 

with a total of 13 natural enemies imported and established in North America (Müller-Schärer 

and Schroeder 1993).  Of these, Larinus minutus Gyllenhal was first introduced to North 

America in 1991 (Lang et al. 1996).  The weevil has since become established in Arkansas, 

Colorado, Indiana, Minnesota, Montana, Oregon, Wyoming, and Washington (Lang et al. 1996, 

Story 2002, Minteer et al. 2011).  Introduction of L. minutus to sites in British Columbia and 

Colorado, areas in which other natural enemies have already been released, resulted in a decrease 

of diffuse and spotted knapweed density (Seastedt et al. 2003, Myers 2008).  Larval L. minutus 

feeding destroys 100% of achenes in infested capitula (Kashefi and Sobhian 1998) and adult 

feeding, may kill bolting stems (Myers et al. 2009). 

Larinus minutus was reported as spreading up to 140 m in one year from 2 release sites in 

Washington state (Whaley 2002) to ~2 km 2 years from a single release location in California 

(Woods and Popescu 2001).  Formulation of a model describing spread and impact of L. minutus 

can provide valuable information in the implementation of future biological control programs.  

This study was designed to evaluate the local spread of L. minutus at multiple release sites in 

Arkansas. 
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Methods 

Larinus minutus spread and infestation rates were documented by sampling along 

transects from late fall to late winter in 2011-2012 and 2012-2013 at L. minutus release sites.  

Sampling that occurred in 2011-2012 and 2012-2013 will hereafter be referred to as 2011 

sampling and 2012 sampling, respectively.  The year of initial release of L. minutus varied 

among release sites (2009-2011).  Data were collected from 20 release sites in 2011 and 23 sites 

in 2012 (Table 1). While L. minutus was introduced at 37 sites in northwest Arkansas (Minteer 

2012), mowing, urban development and yearly variation in knapweed patch size eliminated some 

of the release sites for sampling. 

When establishing sampling transects, initial transects began at the release point so as to 

pass through the area with the most knapweed.  A second transect, approximately perpendicular 

to the initial transect, was then similarly created.  Four transects were established in this manner, 

with each new transect approximately perpendicular to the last created transect.  Additional 

transects were created in-between the initial four transects in large knapweed patches in order to 

ensure a more complete description of density of L. minutus across the knapweed-infested site. 

The total number and direction of transects was generally limited by spotted knapweed 

abundance as the weed is patchily distributed.  Circular sampling quadrats with a ~7 m radius 

were established every ~15 m along each transect.  Plastic flagging was used to mark the center 

and the perimeter of each quadrat to ensure that only the knapweed within a quadrat was 

assessed and that adjacent quadrats did not overlap.  A quadrat was established at the next 

available knapweed patch along that transect in the event a quadrat contained no knapweed. 

The coordinate of the center of each quadrat were recorded with a GPS device (Garmin 

Nüvi 500, Garmin Ltd., Kansas City, MO).  Observations during this experiment placed 
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coordinate accuracy within ~2 m.  These coordinates were later used to determine the distance of 

a quadrat from the point of initial release of L. minutus at a given site visual searches were 

conducted for 3 minutes or until an emergence hole was observed, whichever came first.  A 

transect was terminated when no emergence holes were observed during the visual searches of 

two successive quadrats during 2011 sampling.  In 2012, sampling transects terminated when no 

more knapweed could be found along the transect, or when further sampling was not possible 

because of the extension of the transect into posted private property.  Transects never went 

beyond ~1 km, and most terminated within the first 300 m, as sites were bounded by 

anthropogenic features, natural boundaries, and the patchy distribution of knapweed.  This 

change was made after observations from 2011 suggested weevil distribution at a given site 

could occur in a non-continuous manner and that the weevil could spread further than what was 

expected. 

Greater than 100 capitula were collected in an unbiased manner throughout a quadrat and 

saved for subsequent dissection to determine percent infestation.  Capitula were approached and 

collected from an angle that prevented observation of any potential emergence holes in order to 

prevent sampling bias.  An infestation percentage was determined from a maximum of 100 

dissected capitula, even if >100 were collected for each sampling circle.  In the event <100 

capitula were present within a quadrat, all capitula were collected and an infestation percentage 

was still determined.  Capitula were classified as infested if a L. minutus emergence hole was 

observed, or if dissection revealed evidence of complete L. minutus development. 

Release sites were grouped by years from release, and an average maximum distance of 

quadrats with L. minutus infested capitula was calculated in order to calculate yearly changes in 

maximum distance of L. minutus infestation from the release point at each site.  An average L. 
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minutus infestation was calculated from all sampling quadrats within the first 50 m from the 

release point, hereafter referred to as the area of release, for release sites that recovered L. 

minutus from capitula collections.  After these initial values were calculated, release sites were 

then grouped by year and an overall average L. minutus infestation at the area of release was 

determined. 

Data were analyzed with a one-way ANOVA with maximum distance at which L. 

minutus were detected or percent infestation at the release area as the response variables and 

years since release as the fixed factor.  Data on maximum distance were log-transformed and 

those on percent infestation were arcsine-square root transformed to ensure that they conformed 

to the assumptions of the ANOVA.  Posthoc pairwise comparisons of means across the fixed 

factor were made using Tukey’s HSD tests.  Evidence of strong (p<0.05) effects are used to 

make inferences. 

Knapweed is patchily distributed and L. minutus is univoltine.  Both of these factors place 

limits on the distance L. minutus can move within a season.  Consequentially, high levels of 

infestation were expected at the point of release and would likely decrease with distance from the 

release point.  An exponential decay function would adequately describe this expected local 

population increase (i.e. at the release point) and spread of L. minutus following introduction.  

Diffusion equations are an established method in describing the spread of an invading or 

introduced organism and provide a first step in evaluating ecological factors involved with 

resultant spread (Rudd and Gandour 1985, Andow et al. 1990). 

The exponential decay function ! = !!!!" was fitted to transect sampling data with a 

Levenberg-Marquardt nonlinear least-squares algorithm in R to quantitatively describe spread at 

each of the release sites (R Development Core Team 2012).  In the above equation, y is the 



!

39!
!

predicted %-infested capitula, and x is the distance from the release point.  A is the estimate of 

%-infested capitula at the initial release location (i.e., x=0).  B represents the rate at which 

density of L. minutus declines relative to distance from initial release point (‘decay in weevil 

abundance’ hereafter). The smaller the absolute value of B, the more gradual the decline in 

abundance from the initial release point.  An approximate value of A and B based on the data 

were used as starting values for the iterative fitting of the exponential decay function using the 

algorithm mentioned earlier; the analysis provides the best fit parameter estimates for A and B 

given the data. 

 The exponential decay function was fit only to release sites that fulfilled the following 

criteria: 1) more than 10 quadrats were sampled per year, and 2) Sampling occurred in both 

collection years.  The rationale for these criteria were that criterion 1 ensured that only sites with 

adequate data were used to understand the spread patterns, and criterion 2 enabled an 

examination of difference in spread patterns across sampling years.  Five sites (sites 3, 4, 15, 16 

and 31) met both of these requirements.  Data from sites that did not fit the above criteria are 

presented as scatter plots displaying %-infested capitula in relation to distances from the release 

point. 

Results 

Although L. minutus infestation was recorded at most sites in both sampling years, there 

were some release sites in which the weevil was not recovered by the sampling method used 

(Table 1).  Of the 20 release sites sampled in 2011, L. minutus infestation was not recorded at 

four sites (1, 20, 27 and 30).  Likewise, weevil infestations were not documented from four of 

the 23 sites sampled in 2012 (9, 11, 20 and 27). 
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Release sites sampled in 2012 generally established quadrats at further distances from the 

release point than 2011, as the criteria used in making a decision to end a sampling transect were 

modified in the second year (Figures 1, 2, & 3).  Sampling transects in 2012 would rarely go 

beyond 500 m due to the bounded nature of the release sites.  Infestation was documented 

between 0–309 m and 0–622 m from all release sites from 2011 and 2012 sampling periods 

respectively.  The average maximum distance of L. minutus infestation increased by ~60 m and 

~100 m between 0–1 yr and 1–2 yr from release respectively but decreased ~25 m between 2–3 

yr from release (Table 2). There was a difference in average maximum distance in relation to 

years since release (F=2.946; d.f.=3,30; P=0.049), although there were no significant differences 

observed between any 2 years (P<0.05).  There was no difference in the average percent 

infestation in relation to years since release (F=2.607; d.f.=3,25; P=0.074), or between any 2 

years (P<0.05) (Table 2). 

 The r2 values of the exponential fit for sites 3, 4, 15, 16 and 31 were 0.58, 0.06, 0.68, 0.26 

and 0.72 respectively in 2011 and 0.03, 0.37, 0.47, 0.51, and 0.20 in 2012 respectively.  A 

significant increase in %-infested capitula was observed at sites 3, 4, and 15 while an increase 

was not observed at sites 31 and 16 (P<0.05, Table 3).  The decay in weevil abundance (B) at 

sites 3 and 15 were lower between years suggesting that L. minutus spread from the release 

location (P<0.05, Table 4).  Larinus minutus releases were made in 2009 for site 31, whereas 

releases in sites 3, 4, 15, and 16 were made in 2010.  Infestations at the initial release point were 

~5–15% based on the exponential decay model (Table 3) for 2010 release sites sampled in 2011.  

Infestation levels were higher for these sites from 2012 sampling 2 years after release (~38–48% 

at initial release point, Table 3). 
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Discussion 

Overall, the large number of sites at which L. minutus infestation was recorded indicates 

successful establishment of populations of this species at the majority of the release sites.  

Monitoring of release sites following initial introduction found L. minutus present at all but two 

release sites (Minteer 2012).  The consistent annual increase in both the average %-infested 

capitula within the area of release, and the maximum distance of infestation implies yearly 

population growth and spread following introduction to a site.  Despite this, it is obvious that 

establishment of L. minutus populations at some sites remain less successful and have lower 

levels of infestation.  Sites sampled 3 yr post introduction failed to follow the general pattern of 

yearly increase in terms of both maximum distance and average %-infestation at the area of 

release.  This was likely due to the smaller number of sites that fell within this category.  

Equally, this may be the result smaller knapweed patches at these sites.  

Emergence holes were observed in 2011 at site 30 and in 2012 at sites 20 and 27 during 

visual inspection from the six sites in which sampling failed to record L. minutus infestation. 

This indicates that the weevil is present at these release sites despite infested capitula not being 

collected.  This result may possibly be due to either a clumped distribution of L. minutus such 

that 100 capitula per quadrat represents an inadequate sample size to capture establishment, 

and/or a reduced knapweed density.  Given that the sampling regime in this study failed to record 

infestation at sites in which L. minutus was present, future sampling programs should retain 

visual searches in order to increase chances of observing L. minutus infestation. 

Release sites analyzed with the exponential decay function revealed that localized 

increase and spread was evident at all sites except site 31.  At site 31 similar infestation levels 

were reported from both sampling years at the area of release.  Weevils in this area had an 
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additional year for population growth in comparison to the other 2010 introduction sites as L. 

minutus was introduced in 2009 at this site.  As a consequence, site 31 had high infestation levels 

(~30%) at the release site during 2011 sampling relative to sites 3, 4, 15, and 16 (~5–15%).  This 

also likely explains why the 2011 infestation levels at site 31 (~30%) were similar to 2012 

infestation levels at sites 3, 4, 15 and 16 (~39–48%).  

There was also no significant difference in percent infestation between sampling years at 

site 16 (Table 3).  A severe reduction of knapweed near the release site in 2012 was possibly a 

result of a drought in combination with mowing and grass competition, which reduced the 

competitive ability of knapweed.  However, of the release-site-knapweed that could be sampled 

at this site in 2012, plants were typically stunted and were not as robust in comparison to the 

previous year.  This may have reduced survival of larval L. minutus by reducing achene 

production.  A high larval mortality would result in lower L. minutus infestation levels from 

quadrats as only capitula in which an emergence hole was present were counted as infested. 

An increase in L. minutus population was evident from significant increases of release-

site-knapweed infestation levels between sampling years 2011 and 2012 at the remaining sites (3, 

4, and 15) (Table 3).  Of these, site 3’s knapweed was the most like a monoculture for both 

sampling years, with a high level of knapweed coverage.  Mowing from nearby businesses 

contained knapweed in this area to an absolute distance of ~180 m from the release point in 

2012.  The absolute value of B at site 3 was significantly smaller in 2012 than in 2011, indicating 

that local spread has occurred at this bounded site (Table 4).   

Both sites 4 and 15 had healthy, robust knapweed in 2011 with reduced competition from 

other plants.  These sites also had large knapweed populations in 2012.  Both of these factors 

likely led to the significant L. minutus population increase observed at the release point at both 
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sites.  At site 4, although sampling in 2011 only extended to ~200 m, there was a marked 

increase in infestation levels at the same distance in 2012 suggesting successful spread of the 

weevil from the release site.  There was a similar pattern at site 15 in which a clear increase in 

infestation was recorded at ~300 m, the edge of that site’s sampling in 2011.  These data 

suggests an outward expansion of L. minutus from the release point after population growth 

occurs. 

These data suggests that in the years following introduction of L. minutus to a release 

site, increases in infestation and spread can be expected.  The high number of sampled release 

sites in which L. minutus was recovered suggested that L. minutus was likely present at all 

release sites, although sometimes at non-detectible levels with the sampling regime used in this 

study.  Capitula infestations up to ~21% may be expected within the area of release two years 

post introduction given an average release of ~750 L. minutus.  Furthermore, L. minutus could be 

expected to spread at least ~225 m from the release point two years post release based on these 

studies.  These findings have implications for future spotted knapweed biological control 

programs that utilize L. minutus.  Increases in both the number of release sites and their 

proximity to each other would be an appropriate approach for the rapid and sustained 

suppression of spotted knapweed within a confined area.  If rapid suppression is not a priority 

distances between release points could be increased.  These conclusions were supported by 

analysis of release sites using the exponential decay equation, which showed a yearly increase of 

capitula infestation and spread from the release point.  Diffusion models, like the exponential 

decay function used in this study, are valuable tools in investigating the spread of an introduced 

organism (Andow et al. 1990); my findings support the utility of such approaches.  Future 

studies should continue transect sampling of release sites to observe how colonization progresses 
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across these release sites.  Novel patches of knapweed, in which no releases of L. minutus were 

made, should also be monitored and sampled in order to capture instances of long-distance 

dispersal of individual gravid females. 
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Table 2.  The average maximum distance and average infestation for sites of a certain release 

year. 

Years post 

release 

Average maximum distance 

L. minutus recorded (m) 

Mean ± SE 

Average infestation in 

first 50 m (%) 

Mean ± SE 

0 64.38 ± 37.49 (n=4)  2.83 ± 0.83 (n=4)  

1 126.1 ± 25.53 (n=13)  5.27 ± 1.28 (n=11)1  

2 225.46 ± 53.41 (n=13)  20.76 ± 5.80 (n=12)  

3 205.7 ± 47.72 (n=4)  19.75 ± 1.79 (n=2)  

 

1Reductions in sample size between average maximum distance and average infestation are a 

result of some sites not having knapweed within the first 50 m. 
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Table 3.  A values estimated by the exponential decay function ! = !!!!" . 

 

Site number 

 

2011-2012   

Mean ± SE 

 

2012-2013  

Mean ± SE  

3 15.33 ± 2.48 a1 38.58 ± 4.69 b 

4 5.57 ± 2.08 a 44.4 ± 9.85 b 

15 11.81 ± 1.4 a 39.74 ± 6.20 b 

16 14.41 ± 3.78 a 47.83 ± 20.83 a 

31 30.09 ± 4.68 a 24.34 ± 5.52 a 

 

1Means in a row followed by the same letter are not significantly different (P<0.05).  95% CI 

were used. 
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Table 4.  B values estimated by the exponential decay function ! = !!!!" . 

 

Site number 

 

2011-2012 

Mean ± SE 

 

2012-2013 

Mean ± SE 

3 1.6x10-2 ± 3.9 x10-3 a1 9.6 x10-4 ± 1.4 x10-3 b 

4 4.8 x10-3 ± 4.9 x10-3 a 5.6 x10-3 ± 2.0 x10-3 a 

15 3.1 x10-2 ± 4.4 x10-3 a 1.2 x10-2 ± 3.0 x10-3 b 

16 1.6 x10-2 ± 6.9 x10-3 a 3.0 x10-2 ± 1.4 x10-2 a 

31 2.3 x10-2 ± 7.1 x10-3 a 4.0 x10-3 ± 3.0 x10-3 a 

 

1Means in a row followed by the same letter are not significantly different (P<0.05).  95% CI 

were used. 
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Figure 1.  Sites sampled in 2011 and 2012 following releases of Larinus minutus adults in the 

summer of 2009. 
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Figure 2.  Sites sampled in 2011 and 2012 following releases of Larinus minutus adults in the 

summer of 2010. 
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Figure 3.  Sites sampled in 2011 and 2012 following releases of Larinus minutus adults in the 

summer of 2011. 
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Figure 4.  Sites for which the exponential decay function was fit.   
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CHAPTER 5 

CONCLUSION 
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Conclusion 

 The objectives of this thesis were to better define the larval development of L. minutus 

and to describe spread from release sites in the years following introduction.  This study 

calculated average development times of each larval instar and reported accelerated rates of 

development with fewer instars in comparison to previous publications.  This research 

determined that annual increases in both capitula infestation rates and spread from a release site 

can be expected in the years following introduction.   

Larinus minutus undergoes only two larval instars.  This conflicts with a previous 

publication specifying three instars (Groppe 1990).  My findings showed a large range in size 

within each instar.  Since no rearing conditions, head capsule range, variance, or frequency were 

reported in Groppe (1990), I suspect the discrepancy in number of instars to be the result of an 

insufficient sample size in Groppe (1990).  Developmental polymorphism (i.e., a shift in # of 

instars) can result from differences in temperature, photoperiod, and humidity (Esperk et al. 

2007).  Although it is possible that the differences in environmental conditions between the 

studies may have influenced instar number, I feel this is unlikely due to the clear findings of this 

study and the lack of methodology reported by Groppe (1990).  Future multiple temperature 

laboratory development studies could fully assess the hypothesis that L. minutus undergoes 

temperature-induced developmental polymorphism.  However, a more expansive collection of 

European L. minutus headcapsule data would be a more cost effective first step.  Larvae 

developed in 24 and 17 d for full and late-flower cohorts respectively.  A previous publication 

placed larval development as complete at 28 days (Groppe 1990).  Multiple temperature 

laboratory development studies could also assess if these differences are a result of differences in 

temperatures from the weevils native range. 
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Increases in infestation and spread can be expected in the years following successful 

introduction of L. minutus to a site.  There was fairly large variation in the level of L. minutus 

infestation increase among sites.  This variation was likely due to factors such as constancy of 

knapweed between years, overall patch size, and a patchy spatial distribution that may reduce the 

amount of samplable knapweed.  For all sites sampled, consistent increases in infestation at the 

area of release and in maximum infestation distance were observed, except for sites sampled 

three years from release.  This was likely the result of the small number of sampled release sites 

fitting this category.  An additional year of sampling when at least 10 more of these sites are at 3 

years after release would provide a more robust analysis.  This could be accomplished though 

sampling in late 2013.  The sampling regimen used with this study (collection and dissection of 

100 capitula) was inadequate at detecting low-level infestations with collection data only.  

Sample size could be increased significantly (e.g., to 1000 capitula), but this may not be cost or 

time effective.  I believe it is imperative that future studies include a longer, standardized visual 

search component in order to record sites with low infestations.  Although visual search is less 

precise as infested capitula are much more likely to be missed, the technique vastly increases the 

number of capitula sampled in the same period of time.   

This study provides valuable reference information to future biological control programs 

utilizing L. minutus.  In this study, an average release of ~750 L. minutus resulted in capitula 

infestations up to ~21% within the area of release and a spread of at least ~225 m from the 

release point two years post introduction.  This spread distance is extremely conservative, as the 

study sites were largely bounded (geographically restricted). It is also evident that while the 

exponential decay function used in this study does not completely explain the observed patterns 

of spread, it does provide an essential first step in recognizing that additional variables influence 
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weevil spread.  The percentage of knapweed coverage should be incorporated as a covariate of 

the exponential decay function to investigate knapweed amount in relation to capitula infestation 

levels.  Future studies of L. minutus dispersal should attempt to sample and monitor novel 

patches of knapweed, of which no releases of L. minutus were made, to capture occurrences of 

long-distance dispersal.  Findings from these studies, in addition to this study, can provide 

information in determining an optimal distance in which to make L. minutus releases.   
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