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ABSTRACT 

Land surface phenology describes events in a seasonal vegetation cycle and can be used 

in a variety of applications from predicting onset of future drought conditions, to revealing 

potential limits of historical dry farming, to guiding more accurate dating of archeological sites.  

Traditional methods of monitoring vegetation phenology use data collected in situ.  However, 

vegetation health indices derived from satellite remote sensor data, such as the normalized 

difference vegetation index (NDVI), have been used as proxy for vegetation phenology due to 

their repeated acquisition and broad area coverage.  Land surface phenology is accessible in the 

NDVI satellite record when images are processed to be intercomparable over time and 

temporally ordered to create a time series.  This study utilized NDVI time series to classify areas 

of similar vegetation phenology in the northern Fertile Crescent, an area from the middle 

Mediterranean coast to southern/south-eastern Turkey to western Iran and northern Iraq.  

Phenological monitoring of the northern Fertile Crescent is critical due to the area’s minimal 

water resources, susceptibility to drought, and understanding ancient historical reliance on 

precipitation for subsistence dry farming.  Delineation of phenological classes provides areal and 

temporal synopsis of vegetation productivity time series.  Phenological classes were developed 

from NDVI time series calculated from NOAA’s Advanced Very High Resolution Radiometer 

(AVHRR) imagery with 8 × 8 km spatial resolution over twenty-five years, and by NASA’s 

Moderate Resolution Imaging Spectroradiometer (MODIS) with 250 × 250 m spatial resolution 

over twelve years.  Both AVHRR and MODIS time series were subjected to data reduction 

techniques in spatial and temporal dimensions.  Optimized ISODATA clusters were developed 

for both of these data reduction techniques in order to compare the effects of spatial versus 

temporal aggregation.  Within the northern Fertile Crescent study area, the spatial reduction 



 
 

technique showed increased cluster cohesion over the temporal reduction method.  The latter 

technique showed an increase in temporal smoothing over the spatial reduction technique.  Each 

technique has advantages depending on the desired spatial or temporal granularity.  Additional 

work is required to determine optimal scale size for the spatial data reduction technique.   
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1.  INTRODUCTION 

Land surface phenology describes the events connected to seasonal changes in vegetation 

(Jensen 2007).  Researchers have monitored phenological trends and linked them with changes in 

environmental variables (such as precipitation and temperature) to predict onset of drought in 

arid climates (Bajgiran et al. 2008; Trigo, Gouveia, and Barriopedro 2010).  The Middle East 

region, including the northern Fertile Crescent, particularly benefits from an increased 

understanding of vegetation phenology dynamics due to its persistent reliance on scarce water 

resources, specifically precipitation, for subsistence dry farming.  Scholars traditionally believed 

that the spatial extent of dry farming conformed to a relatively static isohyet between two-

hundred fifty and three-hundred millimeters precipitation per year, with minor inter-annual 

changes driven by precipitation accumulation variation (Beaumont 1996; de Brichambaut and 

Wallen 1963).  This boundary was set using traditional monitoring of vegetation phenology in 

situ.  More recently, however, researchers have accessed land surface phenology from remotely 

sensed images resulting in the ability to monitor large areas at frequent intervals.  They have 

used remote sensing-derived land surface phenology to create zones of similar phenology within 

a broad area (Gu et al. 2010).  This study partially revisits the limit of dry farming proposed by 

de Brichambeaut and Wallen (1963) by classifying vegetation phenology in the northern Fertile 

Crescent using remotely sensed imagery. 

1.1 SATELLITE IMAGERY MATURITY 

Digital satellite remote sensing of the earth has produced records of land conditions for 

multiple decades, made possible by regular revisit schedules inherent in repeating processional 

orbits.  Multiple programs have launched a series of sensors to maintain uninterrupted time series 
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image collections spanning many years.  Notable examples of such programs are Landsat, jointly 

sponsored by USGS and NASA, NOAA’s Advanced Very High Resolution Radiometer 

(AVHRR), and NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). 

A natural tradeoff between spatial resolution and temporal resolution of global image 

acquisition exists in satellite remote sensing.  High temporal resolution data collection (e.g. daily 

revisit) requires a large ground area to be covered in each image while high spatial resolution 

(e.g. ability to identify a specific road) requires focusing on a small ground area.  Many new 

initiatives have lessened the time between revisits while increasing the spatial resolution per 

pixel.  Beginning in 1972, Landsat data collection occurred every 18 days (16 days on later 

missions) but boasted spatial resolution of 80 × 80 m (reduced to 30 × 30 m on later missions).  

The AVHRR sensor program, which began in 1978, is able to acquire daily global imagery at a 

spatial resolution of 1.1 × 1.1 km.  MODIS was first placed in orbit in 1999 with the capability 

of daily image collection at a maximum spatial resolution of 250 × 250 m for data collection in 

its red and near-infrared bands.  As satellite remote sensing embraces maturity, and advances in 

storage of digital imagery and computational power increase, new imaging programs will likely 

lessen the tradeoff even more.  For a comprehensive review and discussion of long time series 

satellite imagery programs spanning more than twenty years, readers are directed to Gutman and 

Masek (2012).  Their research includes information about derivation and availability of data 

products derived from these long time series programs. 

The complete archive of successive temporal images acquired by each mission is 

comprised of multi-decadal records that have garnered significant interest in both academia and 

in industry.  Multi-temporal change detection has achieved widespread adoption to quantify 

change in land cover using just two images focused on the same spatial region but separated by a 
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period of time.  However, such discretized utilization of rich time series imagery neglects its 

inherent ability to expose the temporal trajectory of the land changes.  In other words, rather than 

utilize imagery from just two dates, there may be certain advantages in utilizing complete time 

series when continuous data are available that span multiple decades.  A research area where use 

of such time series information is beneficial is in understanding the processes involved in land 

cover changes resulting from climate change.  Researchers can identify specific changes in year-

to-year phenology, examine associated climate and physiographic variables, and model or 

synthesize processes and interactions that lead to changes on the land surface. 

It is important to note that the terms “multi-temporal” and “time series” have slight but 

significant differences in their definitions.  “Multi-temporal analysis” focuses on analysis of 

spatial changes in a variable among multiple, discretized dates, while “time series analysis” 

means analysis of temporal trajectory of a variable through a continuum of dates.  Change 

detection between two dates is an example use of multi-temporal imagery.  An example use of 

time series data is classifying continuous vegetation data according to phenological similarity.  

This research addresses exclusively the use of long (multiple, continuous years) time series 

imagery for classifying phenological variables. 

1.2 PRE-PROCESSED TIME SERIES IMAGERY AVAILABILITY 

As a result of the maturity of time series remote sensing, researches have made attempts 

to produce ready-to-use time series datasets.  Traditional preprocessing procedures, among 

others, require clouds and atmospheric noise data to be removed, bi-directional reflectance 

correction due to satellite drift, and data calibration because of sensor degradation. 

A review of a few examples of research in correcting these issues will provide 

perspective of their relevance to time series imagery analysis.  Holben et al. (1986) presented 
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Maximum Value Compositing (MVC), which is applied to time series imagery by retaining the 

maximum reflectance value for each pixel over a compositing period to obtain multi-day 

composite images.  Common compositing periods range from eight days to one month in order to 

provide enough data to ensure acquisition of maximum reflectance for each pixel in a scene.  

Later, Vermote and Kaufman (1995) and Los (1998) introduced sensor calibration techniques for 

AVHRR channels 1 and 2, which normalized collected data that proved valuable contributions 

for working with time series imagery that requires consistent measurements over time.  Vermote 

et al. (1997) worked to correct degraded AVHRR image data after the Mount Pinatubo eruption 

spread a large blanket of aerosol particulates across the planet.  Left uncorrected, the interference 

of the aerosols with satellite imagery would have rendered the affected scenes useless in a long 

time series dataset.  In addition, Pinzón et al. (2005) developed a method using empirical mode 

decomposition to isolate and remove spectral artifacts in time series imagery caused by gradually 

changing solar zenith angles due to the orbital drift of a satellite platform.  These and other 

techniques have given scientists the ability to create highly consistent time series imagery 

datasets. 

Interest in pre-processed, ready-to-use time series imagery led to the creation of multiple 

high quality datasets developed using AVHRR or MODIS imagery.  The previously mentioned 

advances removed cumbersome processing steps and point current researchers to explore the 

depth of information gained from time series analysis of temporal trajectory.  This study focuses 

on investigating the value added to unsupervised classification of the normalized difference 

vegetation index (NDVI) using the full temporal trajectory time series imagery. 
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1.3 NDVI TIME SERIES CLASSIFICATION 

Scientists have frequently used remotely sensed data to extract thematic information 

using manual image interpretation or computational statistical pattern recognition algorithms. 

The process of transforming data into thematic information is known as classification (Jensen 

2005). 

 

Researchers have approached classification of satellite imagery-derived time series NDVI 

using several methods.  The following examples are a sample of the variety of methods used for 

classifying NDVI time series.  The examples were divided into three categories: flattened-, 

reduced-, and full-data time series.  Flattened-data time series are characterized by the 

Figure 1 Time series of remotely sensed images have been used as full-, reduced-, and flattened-
data time series in digital image classification. Each type of time series targets specific attributes 
of vegetation phenology in image classification. 



6 
 

replacement of original data values with single-value metrics derived from the date and NDVI 

value of important phenological events.  One such metric is “length of growing season” 

calculated as the number of days with an NDVI value greater than a predetermined threshold.  

Reduced-data time series are designed to reduce the dimensionality of a dataset while still 

maintaining a temporal sequence.  Full-data time series utilize the maximum number of imagery 

dates to obtain temporal NDVI vectors (array of values) for every pixel location which 

accurately track the trajectory of data values over time. 

1.3.1 FLATTENED-DATA 

Gu et al. (2010) demonstrated the use of flattened-data time series to produce a 

“phenoclass” map of the conterminous United States.  Using 16-day composite MODIS scenes 

for the years 2000 through 2004, they calculated nine phenological metrics: 1) start-of-season 

time, 2) start-of-season NDVI, 3) end-of-season time, 4) end-of-season NDVI, 5) maximum 

NDVI, 6) maximum NDVI time, 7) duration of season, 8) amplitude of NDVI, and 9) seasonal 

time integrated NDVI.  Next, they calculated each metric for each year in the dataset and then 

the median value of each metric for the five years of MODIS data.  The result of these 

processing steps flattened the time series into a set of nine rasters, one for each metric.  The 

authors used the metric rasters as input to image classification to produce forty phenological 

classes. 

1.3.2 REDUCED-DATA 

Weiss et al. (2001) aggregated monthly time series AVHRR NDVI data in Saudi Arabia 

for the years 1982 to 1994 into a one-value-per-pixel-per-year dataset.  They calculated one-

value-per-pixel as the coefficient of variation (COV), which measured NDVI variation over time 

(one year period).  They then used regression to explore linear trends in COV values over time.  
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Areas exhibiting negative slopes over the twelve years of data indicated a loss in vegetation 

while positive slopes showed an increase in vegetation.  Next, the scholars classified the COV 

slopes as declining, stable, or improving per pixel to obtain a desertification status map.  The 

yearly COV values created a reduced dataset but temporal trajectory was a crucial aspect of the 

study. 

Kouchoukos (2001) produced an “agro-ecological” map from fifteen years of time series 

data in the Fertile Crescent.  He calculated monthly averages of AVHRR NDVI data over all 

fifteen years resulting in twelve NDVI images representing an average year.  He then temporally 

ordered and subjected the monthly averages to unsupervised classification, resulting in a map 

with seven classes.  Kouchoukos reduced the data in this example by averaging corresponding 

months over time, a method repeated by Al-Bakri & Taylor (2003). 

Another example of using reduced-data time series is presented in Benedetti et al. (1994).  

They performed principle components analysis (PCA) on monthly AVHRR composites of the 

northern Mediterranean for 12- and 6-month time frames during the years 1986 to 1989.  PCA is 

a common technique to reduce dimensionality of a dataset while retaining the most non-

redundant information possible.  Next, the researchers conducted unsupervised classification on 

the first three principle components for both 12- and 6-month datasets.  The resulting 6-month 

PCA class map classified “agro-climatological” regions.  Scholars widely employ PCA and other 

techniques such as Fourier transform, to reduce dimensionality and to remove noise while 

maintaining the temporal sequence within time series data. 

1.3.3 FULL-DATA 

Time series remote sensing data are valuable in research like the previously cited studies.  

Some research questions, however, benefit from the use of a full time series dataset.  A full time 
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series dataset is sometimes referred to as temporal trajectory, a term that denotes the ability to 

obtain a measurement at any point between a start and end date.  Kouchoukos et al. (1998) 

obtained full time series AVHRR NDVI data for a single hydrologic year, specifically October 

1992 to September 1993.  After temporally arranging the thirty-six images that comprised the 

full time series, they classified the data to produce thirteen classes and interpreted the classes 

according to dominant land cover type. 

Nguyen et al. (2012) used Système Pour l’Observation de la Terre (SPOT) time series 

imagery for 1998 to 2008 to map rice cultivation on the Mekong Delta of southern Vietnam.  

They ran multiple classifications on the long full time series data and determined the best 

classification map through the use of a cluster separability index that measured the statistical 

uniqueness of each class.  The resulting map consisted of 77 classes that the scientists examined 

for rice-cropping activity.  Next, they compared the classes with field data and official records, 

which revealed that their technique was highly successful in identifying rice fields. 

Nguyen et al. called the long time series data “hyper-temporal,” repeating a term first 

used by Piwowar and LeDrew (1995) to describe the time series imagery they used to monitor 

sea ice.  The term “hyper-temporal” introduces uncertainty whether the time series is restricted to 

many images over a long time frame (e.g. 200 images over 5 years) or describes many images 

over a short time frame (e.g. 200 images over 5 minutes).  Therefore, researchers should use the 

term “long time series” over “hyper-temporal” to avoid ambiguity of temporal duration of time 

series. 

To date, few analyses have made use of full-data long time series.  This is partially due to 

their relatively new availability.  Remote sensing missions have entered a phase of maturity, 

opening opportunities for research in this area.  Yet, researchers still face barriers in the analysis 
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of time series data, which requires specialized computer equipment and programming skills to 

access the time series data in a synoptic way.  Use of full-data time series in studies of temporal 

change will undoubtedly become more common as reliable time series imagery is extended, 

computer processing performance increases, and off-the-shelf software capable of analyzing time 

series becomes available. 

1.4 RESEARCH HYPOTHESIS 

This study focused on the information content added to classification when long time 

series are used.  Specifically, investigation of the following hypothesis was pursued: there is no 

spatial difference between unsupervised classifications based on mean year reduced vs. segment 

mean reduced long time series NDVI.  During the investigation of the research hypothesis, the 

following questions were considered: 1) what are the qualitative differences in the spatial 

distribution of classes; and 2) what do the varying class boundaries contribute to our 

understanding of regional and temporal patterns of the classified area?  Common ISODATA 

clustering implementation was used to classify both reduced data time series, and a new use of 

image segmentation as a data reduction technique was developed. 

2.  BACKGROUND  

At the most elementary level, classification of satellite imagery and associated derived 

variables is an advanced form of image interpretation and a continuation from the analog era of 

manual photo interpretation (Congalton 2010).  During the analog era, aerial photo analysts 

manually traced boundaries between objects on a photo to produce a classified thematic map.  

Such maps were, and are, valuable to professionals needing accurate inventory of land use or 

land cover over large areas.  However, the process of manually creating classified maps was time 
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and labor intensive, making the mass production of custom classified maps cost and talent 

prohibitive.  The birth of the digital era enabled researchers to transfer the process of 

classification to computer programs that could create classification maps very quickly with 

minimal analyst input.  The transition from analyst-centric to computer-centric classification, and 

the associated time reduction for producing a map, coupled with the easy accessibility of digital 

imagery, has led to a proliferation of classification maps. 

2.1 UNSUPERVISED CLASSIFICATION 

The starting point for digitally creating a classification map is to group pixels with similar 

data characteristics into classes.  Image classification techniques are commonly divided between 

supervised or unsupervised algorithms (Jensen 2005).  Supervised classification is accomplished 

using class samples identified from an image via an expert image interpreter.  The computer 

program calculates the similarity of each pixel to each sample class created by the expert.  

Unsupervised classification clumps the data into classes according to the inherent structure of the 

data in the measurement space and is usually based on a user-defined k parameter that tells the 

algorithm how many classes the researcher expects to find across the image data.  The expert 

operating the classification software has little to no additional input.  The classification software 

then uses a series of heuristic evaluations of intermediate data class membership to adjust class 

parameters and reassign data to new classes until the algorithm converges on the best distribution 

of data given k classes. 

Unsupervised digital image classification removes one source of human bias from the 

classification process: false pattern recognition of non-patterns.  The human brain can identify 

visual patterns very easily such as differences in shapes of letters, regions of different colors, 

differences in faces of separate individuals, etc.  However, when faced with a question of subtle 
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statistical pattern dispersal, the brain tends to pick out patterns that are not statistically significant 

and creates patterns where randomness exists (Rogerson 2006).  Automatic image classification 

ensures that the label assigned during classification is statistically justified. 

Classification using computational methods also provides methods for complex class 

assignments.  Basic classification assigns each pixel in a scene to a specific class label.  As a 

result, each class produced is crisp or does not intersect with any other class (also known as 

hard).  Advanced classification algorithms can also assign each pixel a probability score for each 

class it could be assigned to, causing the classes to fade into each other.  These soft-boundary 

classes are known as fuzzy classes. 

 

Figure 2 Crisp (left) and fuzzy (right) class distibutions plotted against two input dimensions.  
The gray data points in the right graph could belong to either class and could have an associated 
class membership probability value. 

2.1.1 SIMILARITY 

The goal of unsupervised time series classification is “to determine groups of similar time 

series” (Liao 2005, 1858).  Key to the idea of classification is the concept of similarity.  For each 

implementation of different remote sensing classification algorithms, pixel (and time series 

vector) calculations determine the level of similarity to a known group or label.  The specific 
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algorithm used to determine similarity is known as a similarity measure.  Multiple similarity 

measures are currently being used to produce class maps.  The knowledge of the analyst, 

structure of the data, and goal of the output class map guide which similarity measure an analyst 

uses in the process of classification.  D notation for the following similarity measures represents 

the distance between two time series vectors, f(p) and f(q). 

Minkowski distance is a generalization of Euclidean and Manhattan distances and is the 

absolute difference between time series values f p and f q at each moment t in the vectors 

(Lhermitte et al. 2011).  The distance is calculated using the equation: 

 ∑  [1] 

When r, a unit-less placeholder variable used to generalize the Euclidean and Manhattan 

distance equations to the Minkowski distance equation, is assigned a value of 1, the equation 

gives Manhattan distance.  Euclidian distance is calculated when r is given a value of 2.  Many 

unsupervised classification algorithms rely on vector similarity calculated using Euclidean 

distances because it is simple to calculate and straightforward to interpret. 

More complicated similarity measures calculate the distance between time series after 

first applying a mathematical transformation such as PCA or Fourier analysis.  The PCA distance 

is measured between a subset of principle components for each time series given by PCp and 

PCq.  The distance is calculated by: 

 ∑  [2] 

PCs
p and PCs

q are the sth principle components of the selected subset of m principle 

components.  Since PCA is designed to maximize variance in the first principal component (PC) 

and proceed with reduced variance in subsequent PCs, only the first few PCs may suffice in 

capturing the necessary information to properly classify each pixel. 
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Another transformation based similarity measure, ξ, uses relative amplitude and phase of 

a time series Fourier transform to match the shape of a time series curve to a set of reference 

curves.  The most similarly shaped curve will have the lowest ξ value among the set of 

references.  In direct contrast to a distance-based similarity measure, amplitude differences and 

phase shifts are ignored and only curve shape is compared.  Specific algorithm details can be 

found in Evans and Geerken (2006). 

 Scholars have developed other time series similarity measures to address unique issues 

posed by research problems.  A review and comparison of a number of time series similarity 

measures is presented in Lhermitte et al. (2011).  In the current research, Euclidean distance is 

used to measure similarity of time series vectors. 

2.1.2 USER INPUT 

Supervised classification is used when a priori reference data are available.  From a time 

series remote sensing perspective reference data are pixel vectors of length n where n is the 

number of scenes (dates) included in the time series.  The k parameter, which is the number of 

vectors in a reference dataset, represents the number of classes in the data.  Each vector 

represents the ideal time series values for a class.  When reference data are unavailable, 

unsupervised classification is used to determine class values. 

Unsupervised classification algorithms do not need reference data but usually do require 

a k parameter to be defined by the analyst.  The k parameter is an estimate of how many distinct 

classes are present in a dataset of time series imagery.  Traditionally, k has been derived from a 

previous classification of the area of interest or interactively adjusted until the analyst determines 

that significant classes have been identified.  Relatively few studies using unsupervised 

classification of NDVI incorporate the a posteriori class similarity statistical analysis described 
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by Tou and Gonzales (1974) and Swain and Davis (1978) and exemplified by Nguyen et al. 

(2012).  Class similarity will be addressed in greater detail shortly. 

2.1.3 PROCESS 

The basic classification process traces boundaries between unique areas of a map, 

grouping together areas that are similar, and applies labels to each group.  Similar areas could 

have simple or detailed labels depending on the variable under scrutinization and the level of 

classification (e.g. for land cover, “vegetation” vs. “mountain needle leaf evergreen”; or for 

phenology, “high NDVI” vs. “long high ‘green’ period with relatively high NDVI during 

senescent months”).  Common classification schemes identify spatial phenomena with a single 

variable or dimension, using labels such as “grassland,” “forest,” or “desert.” 

Classification software programs, on the other hand, can identify patterns in multiple 

dimensions.  Along with spatial patterns, which are defined by proximal pixels of similar value, 

images can be classified by spectral and temporal patterns.  Multi-spectral and hyper-spectral 

sensors collect image data in either a few (multi-spectral) spectral bands or hundreds (hyper-

spectral) of spectral bands.  Each pixel represents a vector of data defined by the surface 

reflectance in each of the sensor’s bands.  Similar to multi- and hyper-spectral data, each pixel in 

a time series of image data represent a vector of data (See figure 3). 

Unsupervised classification algorithms determine “best” representation of each of k 

classes and then assign a label to every data point in the input space.  The concept of “best” 

representation of a class has multiple interpretations.  The class means representation is most 

common.  Values from the input space are evaluated for similarity against the mean value of data 

points in each class.  Input data are labeled as being members of the class to which they are most 

similar (similarity defined as smallest difference according to distance measure, D, used).   
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Figure 3 Possible values for a 'lawn' pixel over the spectral (top) and temporal (bottom) domains.  
Each time frame on the bottom chart represents a half-month time step, taken from time series 
AVHRR NDVI.  Spectral data have unique reflectance values throughout the electromagnetic 
spectrum allowing classification to group similar spectral curves. Time series data likewise 
exhibits unique reflectance values throughout a temporal continuum allowing for classification 
of similar phenological curves.  Spectral curve data obtained from the USGS Digital Spectral 
Library splib06a (Clark et al. 2007). 

Another common “best” representation technique is class medoids where, instead of 

evaluating against the class mean, input values are evaluated against the data vector in the class 

most similar to the class mean.  Many other interpretations of “best” representation exist to 

satisfy particular research objectives. 
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In remote sensing applications, each pixel (or pixel vector for time series) is an input data 

point.  During the classification process, each data point is labeled as belonging to a class.  The 

result is a map of nominal data that exhibits the spatial distribution of the computed classes. 

2.1.4 ISODATA 

The most common classification algorithm adopted in the field of remote sensing is 

ISODATA developed by Ball and Hall (1965) and commonly referenced in Tou and Gonzales 

(1974).  ISODATA stands for Iterative Self-Organizing Data Analysis Techniques A, suggesting 

to the user that the process repeats until a threshold or convergence value is met.  ISODATA 

uses a set of heuristic rules to cluster homogenous data based on the internal structure of the data 

in question. 

The ISODATA algorithm is outlined in the following steps (generalized from Tau and 

Gonzales (1974)): 

1. Specify k parameter, number of iterations allowed, and other parameters.  These vary 

depending on software packages used. 

2. Assign starting class mean vectors. 

3. Distribute all data among the classes based on distance to class mean vector.  Split or 

merge classes as needed. 

4. Calculate the new class mean vectors from the class membership. 

5. Calculate average distance of class members to their class mean vector and the standard 

deviation for each class membership. 

6. Find the class member with the maximum distance to the class mean vector. 

7. Split class if calculated values are within a relative threshold. 

8. Calculate distance between all class mean vectors. 
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9. Group classes within a threshold distance. 

10. If finished iterating through the data, save class membership to file.  Otherwise, repeat 

process from step 3. 

As implemented by Ball and Hall (1965) and as designed in most modern GIS software 

packages, ISODATA uses Euclidean distance to measure distance (as discussed previously).  An 

illustration of how ISODATA uses Euclidean distance is instructive at this point. 

Given a simple one layer raster, the distance from each cell’s value to each class mean 

value is calculated using simple Euclidean distance.  For example, if a cell has a value of 30 and 

the class mean has a value of 45, the Euclidean distance is calculated as (|30-45|2)1/2 = |-15| = 15.  

For a three date time series pixel vector with values of [40, 47, 50] and class mean vector of [35, 

38, 46] the Euclidean distance is calculated as (|40-35|2 + |47-38|2 + |50-46|2)1/2 = (25 + 81 + 

16)1/2 = 11.05.  Note that the Euclidean distance for vectors is the same as calculating the norm 

of the vector produced from differencing the class mean vector (x) and the pixel vector (y), and is 

mathematically represented as: 

 ‖ ‖. [3] 

2.1.5 EVALUATION 

Methods for evaluating the effectiveness of image classification vary greatly between 

supervised and unsupervised classification.  Available reference data allows supervised 

classification to be performed and also allows follow-up accuracy assessment to measure how 

well the classification algorithm assigned pixels to known classes.  Time series NDVI do not 

have corresponding reference data.  Therefore, well known accuracy assessment methods such as 

computing Cohen’s kappa coefficient (Cohen 1960) or creating an error matrix (Jensen 2005) are 
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impossible to use for unsupervised classification of time series NDVI.  The process for creating 

reference data for time series NDVI is undefined. 

Cluster validation is used instead of accuracy assessment for unsupervised classification.  

The goal of cluster validation is to answer the question: did the classification algorithm identify 

the structure and number of inherent clusters, or classes, in the input data?  Methods of 

answering this question use indices of class cohesion and class separation.  Class cohesion 

describes the compactness of the class members about the class center, while class separation 

measures the uniqueness of each class by measuring the distance between classes.  Researchers 

have developed many cluster validation indices (CVIs) to manage various scenarios (Arbelaitz et 

al. 2012). 

Since the early days of computational clustering, scholars have demonstrated the need for 

a posteriori evaluation of partitions proposed by classification algorithms.  In presenting 

ISODATA, Ball and Hall suggested that “some evaluation of the significance of a given 

clustering is possible” based on metrics derived from the clustered data (1965, 51).  Tou and 

Gonzales (1974) provided examples of basic cluster evaluation and pointed to the use of CVIs to 

guide k parameter input.  Nguyen et al. (2012) used a CVI called the Divergence Index to 

determine the optimal number of classes, k, inherent in MODIS time series NDVI data.  

Arbelaitz et al. (2013) compared thirty CVIs for performance under varied parameters.  Although 

few indices consistently performed well, the Silhouette Index developed by Rousseeuw (1987) is 

worth noting because it achieved noticeably good results throughout all tests. 

Nguyen et al. (2012) used the Divergence Index defined by Swain and Davis (1978).  The 

index uses class Signature files to calculate the separability between classes.  Signature files 
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contain a mean vector and covariance matrix for every class in a classification scheme.  These 

values are calculated using the class assignments and the original data.   

The Transformed Divergence index (Swain and Davis 1978) is calculated as: 

 ∑ ∑  [4] 

where, 

 2000 1 exp  (ERDAS 2011) [5] 

and 

 ∑ ∑ ∑ ∑  

                      ∑ ∑  [6] 

Elements of equations 3, 4, and 5 are: 

1. TDij – transformed divergence between classes i and j 

2. p(ωi) – a priori probability of class membership; equal to m-1 

3. m – total number of classes 

4. Dij – the divergence between classes i and j 

5. tr[x] – the trace of matrix x; calculated as the sum of the elements on the diagonal of x 

6. ∑i - the covariance matrix of class i 

7. Ui – the mean vector of class i 

8. T – the transpose function 

Mean vectors and covariance matrices are obtained from class signature files produced 

during the classification process. 

It is important to note that the minimum Transformed Divergence serves as a complimentary 

measure to the average Transformed Divergence when evaluating classification schemes.  

Minimum Transformed Divergence is defined as the minimum Transformed Divergence 
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measurement between a pair of classes in the set of all class pairs as calculated in equation 4.  

The minimum Transformed Divergence measures how well each classification scheme separates 

the most closely related classes.  A relatively low value indicates that the closest classes are not 

well separated, while a relatively high value gives the analyst confidence in the classification 

scheme.  In general, the more classes the data are divided into, the lower the minimum 

Transformed Divergence.  This is due to the fact that as more class means populate in the 

measurement space, the average distance between classes is reduced.  Because of this 

phenomenon, the analyst must balance the increasing average Transformed Divergence against 

the decreasing minimum Transformed Divergence to select an optimal classification scheme. 

2.2 IMAGE SEGMENTATION 

Image segmentation is the process of decomposing an image into homogenous regions 

called segments.  This technology is related to the field of cognitive psychology or the science of 

understanding how humans interpret the world through sensory perception.  As mentioned in the 

introduction, people are very efficient remote sensors and can accurately and rapidly identify 

objects.  The eyes transmit information to the brain which unconsciously filters noise and applies 

boundaries and categories to objects.  Computer image segmentation mimics this ability by 

recognizing homogeneity based on proximal data values of similar magnitude and applying 

boundaries around homogenous areas to create image objects (Baatz and Schäpe 2000). 

2.2.1 HOMOGENEITY AND HETEROGENEITY 

Image segmentation relies on the ability of the computer to measure contextual 

information about each pixel in an image and its adjacent pixels.  There are two common 

approaches to image segmentation: top-down and bottom-up.  A top-down approach creates an 

initial segment, which includes all pixels of an image, and subsequently divides the image into 
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regions and checks for homogeneity.  This process is repeated until a threshold homogeneity 

value is reached.  The bottom-up approach starts with pixel-sized objects and merges objects 

based on homogeneity. 

The common implementation of a bottom-up approach is multiresolution segmentation 

introduced by Baatz & Schäpe (2000).  To maximize the homogeneity within segments and 

maximize the heterogeneity between segments, they developed mathematical measures and 

applied them to image objects.  Homogeneity h is defined as: 

 ∑  [7] 

f1d is the feature value for segment 1in dimension d, and σ is the standard deviation 

feature f for all segments in dimension d.  Feature f is an arbitrary metric that can be derived 

from an image object.  For instance, f could be the mean of all the pixel values in a segment or it 

could be the variance of all the pixel values in a segment. 

To minimize the heterogeneity within segments, the multiresolution segmentation 

algorithm performs a merge of two image objects that produces the least change of 

heterogeneity, hdiff, among possible merges.  This is measured by the equation: 

 ∑  [8] 

h1c is the homogeneity of object 1 in dimension d, hmd is the homogeneity of segments 1 

and 2 after a virtual merge, n1 is the size of object 1, and wd is the weight of dimension d.  The 

virtual merge is a “what if” condition: what will the homogeneity be if segment 1 and 2 are 

merged?  The “what if” scenario is repeated to calculate hdiff for all pairs of adjacent segments, 

and the minimum value is chosen to define the segment merge. 

Segment form attributes such as shape can also be accounted for during the segmentation 

process.  Adding weight to the form of segments lessens the influence of spectral homogeneity in 
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the segmentation process.  Inclusion of segment form during segmentation is useful to 

morphologically identify features when there are weak spectral differences between the features 

or when features may be too influenced by spectral heterogeneity to accurately identify features 

in noisy imagery. 

 

 

Figure 4 Satellite imagery can be segmented to create image objects bounding neighboring 
homogeneous pixels.  This example illustrates the segment merge decision criteria: minimize 
potential increase in heterogeneity within a segment. 

2.2.2 USE CONSIDERATIONS 

Image segmentation can effectively divide an image into image objects that correspond to 

real world objects visible in the segmented scene (Corcoran and Winstanley 2007).  Many 
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analyses that used image segmentation focused on extracting land use/land cover classes from 

basic grayscale or multi-spectral imagery where a priori class labels were manually assigned by 

the analyst during the segmentation process.  For example, Corcoran and Winstanley (2007) used 

grayscale imagery of a suburban residential area to compare human-created vs. computer-created 

image segments.  Volunteer test subjects were instructed to draw boundaries around objects in 

the image, which included streets, vehicles, houses, etc.  The optimal computer segmentation 

strategy produced much smaller segments on average than the human-made segments.  This 

indicates that the computer segments are relatively conservative in their approximation of real-

world objects. 

The concept of image objects can easily be expanded to many dimensions.  Although 

humans perceive objects in the visible electromagnetic spectrum at a single point of time 

represented as three components (RGB or IHS), computers can interpret image objects in an 

unlimited set of components.  For example, instead of inputting a single grayscale image, the 

computer could input a scene with ten co-registered grayscale images collected throughout a 

year.  Segments created from this scene would delineate areas of homogenous temporal spectral 

value across all layers.  Thus, researchers can use the image segmentation process to explore data 

that is not easily visualized. 

Image segmentation software commonly implements functions to increase the fit of 

segments to real world objects.  These functions include sub-segmenting and merging.  Sub-

segmenting allows researchers to take larger image segments where large areas of homogeneity 

exist and isolate, into smaller segments, the image segments that contain smaller heterogeneous 

regions.  Merging functions work to select small segments which are homogenous according to  
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Figure 5 Six segmentation scales for time series AVHRR NDVI.  Red lines indicated segment 
boundaries added from previous (larger) segmentation scheme.  Scale 15 (bottom right) is 
comprised of mostly pixel-level segments which cannot be further subdivided.  Image 
segmentation repeated for multiple scales reveals the optimal segmentation scale. 
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an expert defined threshold, then merge them into a new larger segment.  These processes 

demonstrate the control the analyst is given over the segmenting process. 

Because image segmentation groups homogenous values, it effectively reduces the 

amount of data needed to represent an image.  A similar concept involves the resampling of 

raster data to a larger cell size.  Instead of performing a uniform gridded merging of cells, image 

segmentation merges cells according to value homogeneity.  The mean value of the merged 

pixels can be used to represent the new, larger area segment.  Reduced raster data appear as s 

segments instead of p pixels, where s is always less than p. 

2.3 NDVI TIME SERIES 

This research relied on the ability of multi-spectral remote sensing systems to record the 

physical interaction of insolation with green-leafed vegetation.  Reflection spectra of healthy 

green-leafed vegetation display relatively weak red reflectance (ρred; due to internal chlorophyll 

absorption) and strong infrared reflectance (ρNIR; due to the spongy mesophyll of a plant cell) of 

incident solar radiation (Jensen 2007).  The normalized difference vegetation index (Deering et 

al. 1975; Tucker 1979) takes advantage of this phenomenon to measure vegetation health as 

proxy for in situ observation.  NDVI is calculated as: 

 	  [9] 

Variables ρNIR and ρred correspond to AVHRR channels or MODIS bands 2 and 1, 

respectively. 

 Valid NDVI values range from -1 to 1, with healthy green vegetation approaching a value 

of 1 and senescent vegetation closer to a value of 0.  Surfaces exhibiting reflected spectra higher 

in the red than NIR (e.g. water) calculate to negative NDVI, between -1 and 0.  In sparsely 

vegetated arid environments, soils and/or rock that are visible through the vegetation structure 
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can adversely affect NDVI (Kouchoukos et al. 1998).  In relatively small spatial scale time series 

imagery, researchers found minor negative impacts from background material (Weiss, Marsh, 

and Pfirman 2001).  Schmidt and Karnieli (2000) found that AVHRR NDVI data were generally 

good indicators of vegetation in arid environments, especially when spatial separation exists 

between land cover types (annuals, perennials, biogenic crusts/lichens, etc.); the effectiveness 

decreases as land cover types are mixed (e.g. when low ground vegetation are covered by taller 

vegetation canopy throughout the course of the year). 

2.3.1 CLASSIFICATION 

Phenology is indirectly measured through indices of time series remotely sensed data 

such as NDVI or Enhanced Vegetation Index (EVI).  Various researchers have used these indices 

to classify vegetation into phenological groups.  Grouping similar phenological values aids 

creation of classified maps of agro-climatological regions. 

The natural phenological cycle, visible with the naked eye in the seasonal change of 

vegetation, produces a seasonal oscillation (often referred to as a signal, curve, or profile) in the 

NDVI calculated from data throughout a year (the lower pane of figure 3 shows the phenological 

cycle for twenty-five consecutive years).  Time series NDVI data spanning the length of a year 

can serve as a valuable proxy for plant phenology (Geerken 2009).  These data are formed by a 

consistent spatial extent represented in a series of rasterized NDVI layers.  Each represents a 

specific snapshot or aggregation in time.  For example, if data are collected daily and composited 

twice a month, the time series would consist of twenty four (twice a month for twelve months) 

separate layers where the pixels, in corresponding locations throughout the layers of the time 

series, reveal the temporal NDVI curve (see figure 2).  Inter-annual comparison can occur if time 
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series data is collected for multiple years and is processed to maintain internal consistency 

(DeFries, Hansen, and Townshend 1995). 

Time series NDVI data are used as input data for classification algorithms to create data 

partitions.  Each input pixel corresponds to pixels in the same spatial location on each of the 

images in the time series.  Therefore, input to the classification algorithm is a vector (array) of 

data in n dimensions where n is the number of images in the time series.  Each NDVI vector 

plotted through time reveals the phenological curve at each pixel location.  Using a similarity 

measure, the classification algorithm groups and then assigns class membership labels to pixel 

vectors of similar structure.  The output map indicates to which group each pixel vector was 

assigned. 

Authors have used various names to describe the classes resulting from this process.  

Benedetti et al. (1994) used the term “agro-climatological” to describe the influence of 

climatological variables such as precipitation, temperature, and solar radiation on the health of 

vegetation throughout the time series.  Kouchoukos (2001) applied “agro-ecological” to a seven 

class map.  He proceeded to manually interpret the classes based on NDVI curve shape and 

correspondence to ground phenomena.  White et al. (2005) and Hargrove et al. (2009) adopted 

the term “phenoregion” to describe the classification of NDVI data combined with climate data.  

Gu et al. (2010) called NDVI time series classes “pheno-classes,” which reflects the cyclical 

nature of the data being classified.  Commonly, classification software automatically assigns 

numerical labels to classes because descriptive labels become cumbersome when describing 

many small differences between NDVI time series vectors.  Classification of NDVI time series 

vectors is therein limited in its comparison to land cover/land use classification. 
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2.3.2 CLASSIFICATION ISSUES 

Several problems face an effective classification of time series.  First, noise in a time 

series masks the expected value.  Noise in a dataset is manifest by erroneous values and may be 

introduced to a dataset at the sensor or during image pre-processing.  During classification, an 

erroneous value will make a corresponding pixel vector classify differently than an accurate 

value.  Consequently, the partitioning scheme for the entire time series dataset would be affected.  

Readers are recommended to review Hird and McDermid (2009) to explore issues and proposed 

algorithms to solve problems arising from noise in time series data. 

Second, sampling at irregular intervals and uneven lengths of time series preclude 

classification due to temporally varying NDVI properties.  This concern may comfortably be 

ignored when working with time series imagery from satellite platforms.  All pixels in an image 

are temporally comparable because each image was collected at the same time.  Since each 

image in a time series must contain a value (possibly “No Data”) for each of its pixels, uneven 

pixel vector lengths are unlikely to occur. 

Other concerns are relevant when using statistical methods with assumptions about the 

structure of the data.  Two of these assumptions specific to time series data are temporal serial-

correlation (or commonly called temporal autocorrelation) and non-stationarity.  These 

assumptions are not addressed in this work; however readers should note their constraints when 

performing statistical analysis with time series data. 
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3.  METHODS 

3.1 STUDY AREA 

The study area is the northern Fertile Crescent, which covers the area extending 

longitudinally from 28˚ to 50˚ east with a latitudinal span from 28˚ to 42˚ north.  The northern 

Fertile Crescent derives its name from an arc-shaped agriculturally productive zone trending 

east-west with a central northern apex and southward-bowed ends. 

 

Figure 6 The northern Fertile Crescent study area is outlined in green, the boundary extent of the 
AVHRR data is in orange, and the boundary extent of the mosaicked MODIS data is in red 
(columns h20 on left, h21 on right).  Esri provided basemap image. 

A principle feature of the region is a strong north-south precipitation gradient with high 

yearly totals in the north and minuscule totals in the south (Hole & Zaitchik 2007).  A strong 

natural vegetation gradient also coincides with the climate gradient.  Dense green vegetation is 
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fed by the high precipitation in the north, while the low precipitation south is dominated by 

desert and meager scrubland (Beaumont 1996). 

Over the timeframe of the data used in this study, widespread changes in terms of 

agricultural production and water infrastructure occurred in the Fertile Crescent.  Large-scale 

development projects altered traditional dry farming methods by stabilizing the availability of 

irrigation water.  Turkey’s Southeastern Anatolia Project (Güneydoğu Anadolu Projesi, GAP) 

introduced dams and canals designed to increase total agricultural production in southeastern 

Turkey.   

Beaumont (1996) and Hole and Zaitchik (2007) explored the use of remote sensing to 

monitor changes resulting from the projects.  Midway through the study period, Beaumont 

(1996) analyzed the state of agriculture and water resources.  He predicted unsettling 

consequences for downstream neighbors of the increased irrigated agricultural lands because of 

the 1) reduced flow of water in existing rivers and 2) increased pollutant runoff from agricultural 

activities such as fertilizer, pesticides, and other chemicals. 

Hole and Zaitchik (2007) followed up Beaumont’s (1996) work by reporting observed 

consequences from the heavy agricultural development.  They noted that areas outside of the 

traditional limits of dry farming were being used extensively for agriculture through the help of 

irrigation canals and new groundwater wells.  In other locations, the arable land area dropped to 

levels which could not maintain the historic area of farmed land.  The reader is encouraged to 

review Beaumont (1996) and Hole and Zaitchik (2007) for a full explanation of the 

consequences of the noted development projects.  Recent research confirms that water resources 

were taxed at unsustainable levels during the years following implementation of the development 

projects (Voss et al. 2013). 
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3.2 REMOTE SENSOR DATA 

3.2.1 AVHRR 

This study used the Global Inventory Modeling and Mapping Studies (GIMMS) AVHRR 

time series NDVI data from the Global Land Cover Facility (GLCF) at the University of 

Maryland (Tucker, Grant, and Dykstra 2004).  GIMMS data were designed to be consistent and 

comparable throughout 25 years (1981-2006) and between newer earth observation systems such 

as SPOT-4 Vegetation instrument and Moderate Resolution Imaging Spectroradiometer 

(MODIS) (Tucker et al. 2005; Brown et al. 2006).  Data were obtained from six different 

AVHRR instruments and identified by the satellite on which they were mounted (NOAA-6, 

NOAA-7, NOAA-9, NOAA-11, NOAA-14, and NOAA-16).  NDVI was calculated per scene 

with the equation 9, where Channel 1 and Channel 2 are data from the red and infrared portions 

of the electromagnetic spectrum, respectively.  Half-month MVCs (Holben 1986) with a spatial 

resolution of 8 × 8 km were calculated for all areas of the globe.  The researchers applied 

corrective processing to the dataset in a temporally and spatially targeted manner to create a 

spatially seamless and temporally continuous product.  The reader is referred to Tucker et al. 

(2005) for a detailed explanation of processing and manipulation techniques used in the creation 

of the GIMMS NDVI data. 

 NDVI data were stored in 16 bit integer raster with valid NDVI data range from -1,000 to 

1,000.  Water was given a value of -10,000 and masked pixels a value of -5,000.  A 

corresponding flag raster was downloaded with the NDVI raster.  The true NDVI values (scaled 

between -1 and 1) were obtained using the equation: 

 
,

 [10] 
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The quality flag raster also stored 16 bit integer values that need to be converted to a 

usable data range of 0 to 6.  A summary of the meaning of the flag values is given in table 1.  

The flag values are designed to be used to exclude data which fails to meet the standards of a 

given application.  For this research, data values associated with flag values of 0 through 5 were 

used in the analysis.  The flag values were obtained from the raw flag data using the equation: 

 10 [11] 

 

Flag Value Description 

0 Good value 

1 Good value, possibly snow 

2 NDVI retrieved from spline interpolation 

3 NDVI retrieved from spline interpolation, possibly snow 

4 NDVI retrieved from average seasonal profile 

5 NDVI retrieved from average seasonal profile, possibly snow 

6 Missing data 

Table 1 Flag values for GIMMS AVHRR MVC NDVI. 

Other time series AVHRR NDVI datasets are available and were considered for use in 

this research.  Comparable datasets are: Pathfinder AVHRR Land (PAL) dataset developed by 

James and Kalluri (1994), Land Long Term Data Record (LTDR) version 3 (v3) developed by 

Pedelty et al. (2007), and Fourier-Adjustment, Solar Zenith Angle Corrected, Interpolated 

Reconstructed (FASIR) dataset developed by Los et al. (2000).  Beck et al. (2011) compared the 

four datasets and found that each dataset excels in various applications as listed below.  The PAL 

dataset showed a positive NDVI trend in desert region where NDVI should remain constant.  The 

LTDRv3 dataset contained the lowest total potential atmospheric error and is applied properly 

when absolute NDVI values are used.  The researchers found the FASIR dataset to be similar to 

the LTDRv3 dataset.  Ultimately, they concluded that the GIMMS dataset was more consistent 
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throughout the time series than the other datasets and recommended GIMMS for use when 

detecting change or performing trend analysis. 

3.2.2 MODIS 

In this research, MODIS time series NDVI data were used in conjunction with AVHRR 

time series NDVI data.  MODIS data were obtained for twelve years (2000-2012) from the 

USGS Land Processes Distributed Active Archive Center (LP DAAC) using NASA’s Reverb 

web interface (http://reverb.echo.nasa.gov).  The MODIS time series was processed in a similar 

manner to the AVHRR data.  Individual scenes were examined for cloud and/or atmospheric 

contamination and poor sun-target-sensor geometry.  Pixels without contamination or poor 

geometry were retained for further processing.  MVC was then used to produce a 16 day 

composite.  The full processing procedure is explained by Solano et al. (2010).   

The downloadable scenes were multi-layer and conveyed the actual data values for NDVI 

and EVI along with pixel quality and other information.  NDVI was stored as 16 bit integers with 

a range of -2,000 to 10,000.  Actual NDVI was calculated from the stored values using the 

following equation: 

 0.0001 [12] 

 ‘NoData’ values were presented as -3,000.  Quality data were stored as 8 bit integers 

with valid range -1 to 3.  A summary of data errors is given in table 2.  Data values with 

corresponding error values of 0 through 2 were used in data analysis for this project. 

Value Summary QA Description 

-1 Fill/No Data Not Processed 

0 Good Data Use with confidence 

1 Marginal data Useful, but look at other QA information 

2 Snow/Ice Target covered with snow/ice 

3 Cloudy Target not visible, covered with cloud 

Table 2 Flag values for MODIS MVC NDVI. 
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3.2.3 LANDSAT AND OTHER HIGH RESOLUTION IMAGERY 

Landsat Thematic Mapper (TM) scenes of the selected region within the study area, 

specifically from 1984 and 1985, were downloaded from NASA’s Reverb web system.  

Additionally, recent date high resolution aerial and satellite imagery, which is available through 

Esri’s ArcMap® (ESRI 2012; see http://goto.arcgisonline.com/maps/World_Imagery), were 

accessed to aide manual interpretation of classification results.  Classification results influenced 

the location and timeframe of downloaded scenes.  Five locations were selected according to 

interest relative to class differences.  Locations included agricultural areas east of Al Assad 

Reservoir, areas in the Harran Plain, areas near Ceylanpınar, Turkey, and two adjacent locations 

between Aleppo, Syria and Al Assad Reservoir. 

3.3 DATA REDUCTION 

This research explored the differences between optimum classification of reduced-data 

mean year and reduced-data segment mean time series NDVI.  The ISODATA algorithm was 

used to classify both mean year and segment mean time series using simple Euclidean distance to 

measure pixel vector similarity. 

The AVHRR and MODIS data were processed independently from each other but shared 

common processing steps.  Pre-processing steps were undertaken to arrange and focus the data 

on the Fertile Crescent.  AVHRR data were downloaded as global scenes and clipped to bounds 

of 28˚ to 50˚ east and 28˚ to 42˚ north.  Full-data AVHRR time series was comprised of 612 

NDVI rasters corresponding to the 612 compositing periods of the covered twenty-five and a half 

years. 

The MODIS data were downloaded as two adjoining tile scenes per acquisition date.  The 

western scene covered column 20, row 5; the eastern scene covered column 21, row 5.  For each 
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date, the two scenes were mosaicked using the ArcPy® (ESRI 2012) Python package.  The 

MODIS full-data time series was comprised of 294 mosaicked NDVI rasters corresponding to 

294 compositing periods covered in the twelve included years. 

 

Figure 7 Process workflow comparison for the mean year data reduction method (left branch) 
and the segment mean data reduction method (right branch).  The only difference is the method 
used to calculate the time series which is used as input to the ISODATA classification function.  
Both methods were executed for both AVHRR and MODIS data. 

Raw data values were converted to actual NDVI using equation 7 for AVHRR.  MODIS 

data were extracted from each associated downloaded HDF file and left in their scaled NDVI 

integer form to accommodate use of 16 bit depth rasters to reduce the memory cost during 
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processing.  Actual quality flag values for AVHRR were calculated using equation 8.  The 

MODIS quality data did not require any calculation as they were given in actual values. 

 

Figure 8 Conceptually, the mean year data reduction method reduces full-data time series 
through temporal aggregation (top) while the segment mean data reduction method reduces full-
data time series using spatial aggregation (bottom). 

3.3.1 MEAN YEAR METHOD 

Reduced-data mean year time series were created from the AVHRR or MODIS data 

using the ArcPy® Python package.  Pixels in scenes that had undesirable quality flag values were 

given a value of ‘NoData’ so as to not influence the calculated mean value.  For each time series, 

corresponding time frames for each year in the time series were averaged to produce a ‘mean 

year’ time series.  The mean year for the AVHRR time series consisted of 24 average NDVI 
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rasters corresponding to the 24 bi-monthly composites each year; the mean year consisted of 23 

rasters for the MODIS time series since the compositing time of the MODIS data is every 16 

days. 

3.3.1.1 WRITTEN EXPLANATION 

The process used to calculate the mean year time series was as follows: 

1. Identify common compositing periods for each year (e.g. Jan 1-15, Jan 16-

31… etc.). 

2. Group all images in the time series by their compositing period. 

3. Add cell-by-cell NDVI value for all images in a compositing period image 

group which have valid pixel values; valid pixels are pixels which are not 

associated with an undesirable flag value. 

4. Divide cell-by-cell the summed NDVI by the total number of valid pixels that 

contributed to the summed NDVI to obtain a mean raster for each compositing 

period. 

5. Repeat steps 3 and 4 for each compositing period image group. 

The resulting set of mean compositing period rasters were temporally ordered into a 

mean year time series (24 layers for AVHRR and 23 layers for MODIS). 

3.3.1.2 MATHEMATICAL EXPLANATION 

Calculation of the mean year time series is represented by the following logic and 

equation.  For all composite periods c = 1, 2… p, p being the total number of compositing 

periods in a year, the mean of composite period c, ̅, over y years is given as: 

 ̅
∑

.		
 [13] 
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Element Rasteric is the ith year raster in compositing period c.  Contrib. Rastery is a raster 

which contains the number of valid contributions made to the summed raster, per cell.  If, for 

each raster contributing to the sum, no cell is flagged as invalid, the Contrib. Raster takes the 

form of a uniform raster with each cell value equal to the number of years y in the original time 

series belonging to compositing period c.  When pixels are flagged as invalid, the cell values in 

Contrib. Raster vary. 

3.3.1.3 GRAPHICAL EXPLANATION 

 

Figure 9 Mean year time series for AVHRR and MODIS were calculated like this example mean 
year time series calculation for a two year full-data time series with three compositing periods 
per year.  The mean year time series is comprised of the same number of rasters as the number of 
images acquired in a year. 
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An example calculation of a mean year time series is given in figure 9.  The example 

original time series is made up of two years with three compositing periods per year, which gives 

a total of six images in the full-data time series.  Each raster is represented by a grid of cells with 

integer values representing per cell data value.  Where data values are missing such as if an 

undesirable flag value had been associated with a cell value a blank cell appears (top right raster 

in first column of third row).  The associated contributing raster reflects the missing value by 

only counting valid cells in each raster in the numerator.  Each raster in the resulting mean year 

time series is shown in the right column.   

3.3.2 SEGMENTATION METHOD 

eCognition® (Trimble 2011) image segmentation software was used to segment both 

AVHRR and MODIS full-data time series to produce segment reduced-data.  Due to the large 

amount of data existent in the MODIS time series, slightly different processing methods were 

used for AVHRR and MODIS data.  Initially, both AVHRR and MODIS full-data time series 

were temporally ordered and loaded into eCognition®.  Only for the MODIS data, eCognition® 

split each image in the time series into 600 × 600 pixel tiles to reduce the data input to the 

segmentation process.  Multi-resolution segmentation was executed for the entire AVHRR time 

series and each MODIS time series tile using image pixels as input.  Shape and compactness 

parameters were set to 0.  The MODIS tiles were stitched together using a custom rule set that 

identified and re-segmented the tile border objects.  This was done to remove superimposed 

linear segments introduced in the tiling phase (see figure 10). 
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Figure 10 Segmented MODIS tiles were processed to remove linear segment boundaries caused 
by the tiling proceedure.  Final segments exhibited no remnant of the tile borders. 

Segmentation was repeated for scale parameter values of 0.05, 0.10, 0.15, 0.20, 0.25, and 

0.30 for AVHRR data and 15, 18, 21, 24, 27, 30, 33, 36, 39, and 42 for MODIS data.  The vastly 

different scale parameters for the different data types were used due to the range difference 

between the actual NDVI values for AVHRR (range -1…1, 32 bit floating point) and scaled 
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NDVI values for MODIS (range -2000…10000, 16 bit integer).  The segments produced at each 

scale level were compared to the total number of pixels in a single date of imagery to determine 

the percent of data that was reduced and the average number of pixels per segment that were 

produced under each proposed segmentation scheme.  Manual interpretation and selection of best 

segment scheme versus amount of data reduction was performed with help of the graphs 

displayed in figure 13. 

3.3.1.1 WRITTEN EXPLANATION 

Segments from the best segmenting scheme were exported from eCognition® in Esri 

shapefile format.  Each segment was represented by a polygon that was at least the same size as a 

pixel.  The polygons were used to create a series of spatially un-registered rasters according to 

the following description.  A raster was created for each image in the full-data time series.  Each 

new raster contained a cell for every segment in the shapefile.  Each cell contained the mean 

value of the pixels bounded by a segment and calculated from the corresponding image in the 

full-data time series.  The number of rasters per data set equaled the number of layers in the time 

series.  Each raster was one column by s rows where s was the number of segments produced in 

the segmenting step.  In terms of procedure, the following steps were taken: 

1. Load all images in the time series into eCognition® and segment at a scale of 0.3 for 

AVHRR or 42 for MODIS with shape and compactness set to 0; export segments. 

2. Repeat step 1 for scale parameter values of 0.05, 0.10, 0.15, 0.20, and 0.25 for AVHRR 

or 15, 18, 21, 24, 27, 30, 33, 36, and 39 for MODIS. 

3. Determine best segmentation scheme by a combination of % data reduction and average 

segment size; subsequent steps apply to the best segmentation scheme only. 

4. Calculate mean NDVI value per segment from the first layer in the original time series. 
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a. Add all pixel values which fall in each segment. 

b. Divide by the number of valid pixels contributing to the summed value; valid 

pixels are defined as pixels not having an associated undesirable flag value. 

5. Write the mean NDVI value per segment to a cell in a new raster of dimension 1 x s. 

6. Save the new raster to file as a member of the segment mean time series. 

7. Repeat steps 4 through 6 for all layers in the original time series. 

3.3.1.2 MATHEMATICAL EXPLANATION 

Mathematically, the mean segment time series is calculated using the following logic and 

equation.  For each segment i = 1, 2…s, where s is the number of segments in the segmentation 

scheme, the mean of i, ,̅ is calculated using: 

 ̅
∑

 [14] 

The variable n is the number of pixels bounded by segment i and pixelp is the value of 

pixel p.  Furthermore, this procedure is applied to each image in the original time series to obtain 

the segment reduced time series. 

3.3.1.3 GRAPHICAL EXPLANATION 

Figure 11 demonstrates the segment averaging calculation.  The segment boundaries are 

represented by the leftmost object in the left column, which is labeled Segments.  The segment 

boundaries are superimposed onto each raster from the full-data time series to identify which 

cells should be grouped as belonging to each segment.  Each segment pixel group is summed 

then divided by the number of valid cells contributing to the summation.  Valid cells are cells 

that have an NDVI value not masked by the flag data.  An example of an invalid cell is given in 

the rightmost object in the left column, third row.  The mean value calculated for the associated 
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segment excludes the invalid cell from the calculation.  If all cells in a segment are invalid, the 

corresponding cell in the segment mean raster will have a value of 0.  Another possible value is 

‘NoData’ represented by the value 32767, which is the maximum positive integer using signed 

16 bit storage. 

 

Figure 11 Segment mean reduced-data time series were calculated from AVHRR and MODIS 
full-data time series according to the scheme presented in this example segment mean time series 
calculation for a three raster full-data time series.  The total number of rasters in each segment 
mean time series equaled the number of images in the full-data time series. 

3.3 ISODATA CLASSIFICATION 

Each raster in the mean year reduced-data raster set was arranged in temporal order to 

obtain the mean year time series.  Each pixel location in the mean year time series represented an 
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NDVI vector spanning a single “mean” year.  Layers were arranged so that the beginning of the 

calendar year was layer 1 and subsequent time frames were assigned ascending layer numbers 

for a total of 24 ordered images for AVHRR and 23 for MODIS. 

Similarly, each raster in the segment mean reduced-data raster set was temporally ordered 

to produce the segment mean time series.  Each pixel location in the segment mean time series 

represented the temporal trajectory vector of NDVI spanning 612 compositing periods for 

AVHRR and 294 compositing periods for MODIS.  Layers in each data set were temporally 

arranged so the earliest compositing time and year were assigned to the first layer and 

subsequent time frames were assigned to ascending layers. 

Mean year reduced-data and segment mean reduced-data time series for both AVHRR 

and MODIS were subjected to unsupervised classification using the ISODATA algorithm as 

implemented by ERDAS IMAGINE®.  ISODATA was used to cluster similar pixel vectors and 

output a map of the class spatial distribution for each reduced-data time series for each sensor 

type (total of four maps). 

3.3.1 K PARAMETER ADJUSTMENT AND CLUSTER VALIDITY 

The optimal classification scheme for each reduced-data time series was identified by 

iterating through k = 3, 4…100.  Classification was repeated with unchanging parameters except 

for the k parameter, which suggested the number of classes into which ISODATA should 

partition the data.  Maximum number of classes was limited at 100 to keep the number of classes 

relatively low to ease interpretation but large enough to extract spatially small classes.  Each 

proposed classification scheme resulting from each different k was scrutinized using cluster 

validation techniques. 
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Cluster validity for each ISODATA execution was calculated using the Transformed 

Divergence index (Swain and Davis 1978) implemented using ERDAS IMAGINE® (ERDAS 

2011).  The best proposed classification scheme was determined manually using a combination 

of average Transformed Divergence and the minimum Transformed Divergence (see figure 12). 

4.  RESULTS AND DISCUSSION 

4.1 MEAN YEAR REDUCED-DATA 

The structure of mean year reduced-data is inflexible; mean year reduced-data will 

always consist of a time series with the same number of rasters as compositing periods in the 

corresponding full-data time series, regardless of years spanned in the full-data time series.  This 

property trades flexibility of amount of data reduction (see section 4.2) for reduced complexity 

of computation of the reduced-data time series.  Thus, the AVHRR time series, which spans 25.5 

years, was reduced to 24 rasters, while the MODIS time series, which spans 12 years, was 

reduced to 23 rasters. 

Theoretically, the information inherent in the mean year reduced-data AVHRR time 

series should reflect its longer span.  However, the averaging calculation for the mean year 

method made retaining discreet contributions of the additional years impossible.  Instead, mean 

year reduced-data were used to obtain the average value for a particular location over time.  

Another way of conceptualizing this is to think of each cell of a raster as being smoothed over 

the temporal dimension, which is an effective way of ignoring specific unique values in the full-

data time series. 
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4.1.1 TRANSFORMED DIVERGENCE 

Optimal classification was determined from the calculated transformed divergence 

between classes.  Figure 12 reveals that average Transformed Divergence remained relatively 

high in all classification schemes for both the AVHRR reduced mean time series and MODIS 

reduced mean time series.  The minimum Transformed Divergence became useful in this 

scenario as selection criteria for better classification schemes.  Local maxima of the calculated 

minimum transformed divergence indicated classification schemes that divided the data 

relatively well.  While the general trend of minimum Transformed Divergence for MODIS and 

AVHRR were similar, MODIS minimum Transformed Divergence averaged around two 

hundred points less than AVHRR on classification schemes with greater than 40 clusters.  This 

phenomenon may be influenced by the ISODATA clustering not being able to converge on an 

ideal classification scheme for a large number of classes in the limited number of iterations 

allowed (6). 

Comparison of minimum Transformed Divergence local maxima showed interesting 

similarities.  Each had an early peak at 7 classes for AVHRR and 9 for MODIS; a peak after a 

precipitous drop at 21 classes for AVHRR and 20 for MODIS; and a local peak at 73 classes for 

both AVHRR and MODIS.  The coincident peaks may indicate a natural division within the 

NDVI data.  Subsequent analysis focused on these classification schemes. 
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Figure 12 Transformed divergence (red) and minimum transformed divergence (black with circle 
markers) of possible classification schemes for mean year AVHRR (top) and MODIS (bottom) 
data were graphed to compare cluster schemes of AVHRR to MODIS and to determine local 
maximum minimum Transformed Divergence.  Common local maximums occur around 7 to 9, 
20 to 21, and 73 class (cluster) schemes. 
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Six of the seven classes from the seven class scheme for AVHRR intersected the Fertile 

Crescent area of interest.  Simple visual inspection of the spatial distribution of the classes 

revealed coarse boundaries that generally mimicked isolines of the steep vegetation gradient.  Of 

the twenty-one classes in the second scheme, seventeen intersected the area of interest.  Seven of 

the seventeen classes contributed ten or less pixels to the area.  The remaining ten classes 

represented large, compact sections within the area except one, which was fragmented and 

occurs on the periphery and near rivers.  Finally, the seventy-three class scheme divided the area 

into forty-three classes with many of the included clusters only contributing a few cells to the 

area.  Only eight of the forty-three classes were major contributors to the area, while another 

eleven to twelve classes were minor contributors, provoking further investigation.  The 

remaining twenty-four classes were on the periphery of the area, comprising only a few cells, or 

were exclaves from classes with centers distant from the area of interest.  The seventy-three class 

scheme was chosen as the optimal AVHRR classification map for the Northern Fertile Crescent, 

because the scheme captured the diversity of class structure while the classes can be reduced to 

ten to twenty-six important classes. 

The seven class scheme for the MODIS mean year reduced-data time series was 

dominated by four classes that hid potentially interesting variation in the vegetation gradient.  In 

the twenty class scheme, more variability was exposed and the resolution enhancement 

compared to AVHRR became apparent with the ability to pick up intra-segment variation that 

was diluted by the AVHRR.  Class dispersion throughout the study area was dominated by four 

classes, while only four other classes provided appreciable data for analysis.  Remaining classes 

contributed a low percentage of the area, were focused on water bodies within the area, or did 

not intersect the area.  Lastly, the seventy-three class scheme was examined. 
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Eleven of the seventy-three classes were major contributors to the area of interest, and 

another thirteen contributed meaningful spatial segregation and information worth investigating 

further.  Forty-seven other classes intersected the study area but were very minor contributors or 

extremely scattered throughout the area.  Only two classes did not intersect the study area at all.  

The seventy-three classification scheme was chosen for further development of a MODIS cluster 

map of the northern Fertile Crescent due to the reasonable expectation of interpreting the twenty-

four major and minor contributing classes and the high level of spatial clustering apparent within 

the area of interest. 

4.2 SEGMENTED REDUCED-DATA 

Figure 13 shows the percent data reduction and average segment size (in pixels) for the 

various segmentation schemes investigated.  Selection strategy for the best segmentation scheme 

balanced the need to reduce the amount of data while maintaining appropriate spatial resolution.  

The application of this strategy varied between individual time series.  Average segment size in 

pixels weighed more heavily than percent data reduction for AVHRR data because of the already 

coarse spatial resolution.  Accordingly, candidate segmentation schemes were limited to schemes 

with segmentation scales less than 0.30 because schemes 0.30 and above reduced spatial 

resolution too much for the AVHRR data even though improved data reduction occurs.  Visual 

review of the segments for each remaining candidate segmentation scheme was required to 

identify differences in segments of the segmentation schemes.  Scale 0.15 is selected as best 

segmentation scheme because it effectively segmented the area of interest while showing 

improved data reduction over the next scheme, scale 0.10, which had a similar segment size 

value. 
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Figure 13 Data reduction and average segment size for various segmentation scales for AVHRR 
(top) and MODIS (bottom).  These graphs were used to guide the selection of optimal 
segmentation scheme. Maximizing percent data reduction was paramount in the selection criteria 
for the MODIS time series while maintaining a relatively small segment sizes was decisive for 
the AVHRR time series. 
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Selection of best segmentation scale for MODIS data was approached differently than for 

AVHRR.  Percent data reduction was given more weight in the selection process because of the 

necessity to limit the amount of data processed in the classification procedure.  As the data 

reduction curve approaches the limit of 100%, the value returned by each successive 

segmentation schemes is reduced as shown by the flattening of the curve.  Similarly, as the 

segmentation scale increases, the value returned by the average segment size is reduced due to 

the exponential growth of the average segment size.  An estimated starting point to eliminate 

segmentation schemes was at the transition of vertical trend to horizontal trend on the percent 

data reduction curve, specifically at the 24 scale point.  Accordingly, segmentation schemes of 

scale 24 and below were eliminated from the candidate best segmentation scheme pool. 

To further refine the candidate pool of best segmentation schemes, total time series size 

was considered.  To approximate the size of mean year reduced time series, the total data points 

(pixels) were computed for the mean year time series (1,059,840,000 pixels) and then the total 

allowed segments in the segmentation scheme were calculated by dividing the total number of 

pixels in the mean year time series by the number of rasters in the full-data time series.  

Consequently, the optimal number of segments in a segmentation scheme was at most 3,604,898, 

which translated to the 92.18 percent data reduction threshold.  This constraint eliminated scale 

27 from consideration. 

Segment size increased dramatically with each successive segmentation scheme while the 

change in percent data reduction diminished rapidly.  Scale 30 was selected as the best 

segmentation scheme from the pool of remaining candidates due to it being the next smallest 

scheme after the implemented constraints. 
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4.2.1 TRANSFORMED DIVERGENCE 

Due to the high number of bands used as input to the ISODATA clustering algorithm for 

both AVHRR and MODIS segment-mean time series, the IMAGINE® transformed divergence 

separability function did not produce reliable results.  The average and minimum transformed 

divergence for each classification scheme produced a value of 2000, which is the maximum 

value possible for this metric.  Alternatively, the same number of classes from the mean year 

classification schemes was used for the segment mean classification for both AVHRR and 

MODIS time series. 

4.3 COMPARISON OF MEAN YEAR CLASSES TO SEGMENTED CLASSES 

Classes were categorized as major, minor, and scattered to aide interpretation of spatial 

distribution of each classification scheme.  Table 3 shows the major, minor, and scattered class 

contributions to the study area.  Major classes contributed significant portions of the total area.  

Minor classes were comprised of spatially interesting zones and contribute more than a few 

pixels to the area.  Scattered classes contributed only a few pixels per class to the area.  These 

categories were used to guide the creation of classification maps for each data type and reduction 

method.  As a result, only major and minor classes are shown on the maps in figures 14 through 

17. 

 Figures 14 and 15 depict the spatial distribution of the major and minor classes for 

AVHRR and MODIS mean year data reduction method, respectfully.  Figures 16 and 17 show 

the distribution of major and minor classes for AVHRR and MODIS segmented mean data 

reduction method, respectively.  A simple comparison of the major and minor class inclusion 

table revealed differences in the classification schemes.  A comparison of the classification maps 
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confirmed this conclusion.  A comparison of AVHRR maps (figures 14 and 16) and MODIS 

maps (figures 15 and 17) revealed the extent of class distribution differences. 

 Major Minor Scattered 

Mean Year AVHRR 23, 24, 25, 28, 30, 36, 
41, 46 

22, 26, 29, 37, 39, 40, 
42, 45, 52, 60, 65, 66 

18, 19, 20, 21, 27, 31, 
32, 33, 34, 43, 44, 47, 
49, 55, 57, 59, 62, 63, 
65, 68, 69, 70, 71, 73 

Mean Year MODIS 25, 26, 27, 29, 30, 41, 
43, 46, 49, 56, 58 

24, 28, 44, 47, 48, 55, 
57, 59, 60, 61, 63, 64, 72 

2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 
23, 31, 32, 33, 34, 35, 
37, 38, 39, 40, 42, 45, 
50, 51, 52, 53, 54, 62, 
65, 66, 67, 68, 69, 70, 
71, 73 

Segment Mean AVHRR 19, 23, 24, 30, 32, 34 16, 18, 20, 27, 33, 36, 
45, 46, 52, 56, 57, 59 

13, 14, 15, 17, 21, 22, 
25, 26, 28, 29, 35, 37, 
38, 40, 41, 43, 48, 50, 
53, 55, 60, 61, 63, 64, 
65, 68, 70, 72 

Segment Mean MODIS 32, 34, 35, 36, 39, 41, 42 37, 38, 40 25, 26, 28, 29, 30, 33 

Table 3 Classes intersecting the study area.  Major classes contribute significant portions of the 
total area.  Minor classes are comprised of spatially interesting zones and contribute more than a 
few pixels to the area.  Scattered classes contribute only a few pixels per cluster to the area.  
Analysis focused on the major and minor classes only. 

An obvious difference between the AVHRR classification schemes was the number of 

classes apparent in the interior of the Syrian Desert to the middle center/bottom of the maps.  

Classification of segmentation means resulted in a more homogenous desert with fewer classes, 

while the mean year scheme fragmented the desert with more classes.  This fragmented pattern 

was repeated throughout the map comparison.  Another example was found near the top border 

of the study area where classes were layered in concentric crescents.  More classes were seen in 

the mean year classification scheme than the segment mean scheme.  Overall, the segment mean 

scheme had two less major classes but maintained the number of minor classes. 
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A comparison of the MODIS classification schemes showed similar but more drastic 

differences.  Again the desert was less fractured into multiple classes in the segment mean 

scheme.  The area near the upper border of the study area was also simplified from many classes 

to only a few classes.  Most revealing of the change in classification schemes came from the 

class inclusion chart.  Major classes in the segment mean scheme dropped to seven classes from 

eleven in the mean year scheme.  Minor classes also dropped from thirteen to only three in the 

segment mean scheme.  A driver of this drastic change was the reduced number of valid classes 

produced during the ISODATA clustering of the segment mean time series.  While all other 

classification schemes produced twenty-five valid classes, the clustering of segment means only 

produced valid classes starting at class 25 and ending at 73. 
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Figure 14 Major and minor clusters from the AVHRR mean year data reduction method.  The study area is highly fragmented, but a 
general pattern of concentric layers following the Fertile Crescent are apparent. 
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Figure 15 Major and minor clusters from the MODIS mean year data reduction method.  Similar fragmentation and patterns as seen in 
the AVHRR mean year map are shown in greater detail in the MODIS data. 
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Figure 16 Major and minor clusters from the AVHRR segment mean data reduction method.  Less fragmentation is apparent with this 
method while maintaining the spatial pattern of concentric layers built around the Fertile Crescent. 
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Figure 17 Major and minor clusters from the MODIS segment mean data reduction method.  Even more drastic reduction of 
fragmentation is shown in the MODIS data.
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4.3.1 HIGH RESOLUTION IMAGERY OF SELECTED CLASSES 

To aide interpretation of the class differences, high resolution historical Landsat 

Thematic Mapper (TM) imagery was downloaded for select locations and compared to the class 

maps.  Freely available high resolution aerial and satellite imagery were also compared to class 

maps.  Only MODIS-based class maps were used from this point due to the very coarse 

resolution of the AVHRR class maps.  Table 4 shows class membership differences among five 

locations selected from the study area with a brief description of apparent groundcover based on 

the imagery.  Figures 18 through 27 depict enlarged maps of the selected points of interest.  

Historical Landsat imagery was used as a reference for point of interest selection but is not 

shown.  A hallmark difference between mean year classes and segment mean classes was the 

appearance of spatial smoothing similar to the effect of a low-pass filter.  A reduced number of 

speckled classes (lone pixels or small groups of pixels of differing class membership within other 

classes) were seen in the segment mean scheme.  Extracted class membership and proximate 

classes were used to guide analysis of class temporal trajectory. 

Point of Interest 
Mean Year 

MODIS 
Class 

Segment 
Mean 

MODIS 
Class 

Imagery Description 

1 56 38 
Active agricultural field; active in historical imagery; 

additional CORONA image included for reference 

2 56 38 Active ag.  field; active historically 

3 46 35 Inactive ag.  field; N/A 

4 41 34 Rangeland or inactive ag.  field; inactive historically 

5 63 38 Active ag.  field; inactive historically 

Table 4 Cluster membership of select point of interest locations. 
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Figure 18 The first point of interest is an active agricultural field near the confluence of the lower 
Balikh and Euphrates rivers.  This area is dominated by irrigated agriculture. 

 

Figure 19 Historical satellite imagery from the CORONA program acquired November 1968 
compared to modern imagery shows massive agricultural intensification (Casana et al. 2012). 
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Figure 20 Point of interest 1 intersects class 56 of the mean year classification scheme. Class 56 
appears to generally correspond to cropped areas in figure 18. 

 

Figure 21 Point of interest 1 intersects with the main agricultural class of the segment mean 
classification scheme, class 38.  Class 38 is less fragmented than class 56 of figure 19. 
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Figure 22 Points of interest 2 and 3 displayed over natural color imagery.  Point 2 is over an 
active field in the Harran plain while point 3 is over an inactive field. 

 

Figure 23 Points of interest 2 and 3 correspond to classes 56 and 46, respectively.  A high level 
of class fragmentation is apparent between the points. 
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Figure 24 Points of interest 2 and 3 correspond with classes 38 and 35, respectively, in the 
segment mean classification map. Visible clusters are relatively un-fragmented. 

 

Figure 25 Points of interest 4 and 5 are west of Al Assad Lake and correspond with rangeland 
and active fields, respectively. 
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Figure 26 Point 4 is contained within class 41 which covers most of the rangeland but is 
peppered with classes 46 and 30. Point 5 intersects class 63 which is limited in spatial extent. 

 

Figure 27 In the segment mean classification map, point 4 is now associated with class 40 which 
covers most of the rangeland (along with class 35). Point 5 is in class 38, the main agricultural 
class of the scheme. 
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4.3.2 TEMPORAL TRAJECTORY OF SELECTED CLASSES 

Class dynamics over time cannot be obtained from the imagery or class map alone.  

Temporal trajectory was used to indicate the mean NDVI values throughout the study period.  

Graphs of the temporal trajectory were produced to provide insight into class structure and 

processes undergone over time.  Not all graphs are reproduced herein.  However, the graphs 

corresponding to the selected classes/clusters in figure 20 are included. 

4.3.2.1 POINT OF INTEREST 1 & 2 

 At the first and second 

point of interest (figure 28), both 

class schemes produced a cluster 

with double-cropping peaks.  The 

period between crop cycles, 

however, was smoothed in the 

mean year cluster by comparison to 

the more well-defined cropping 

periods of the segment mean 

cluster.  Additionally, the peak 

NDVI cropping period was 

switched between the two classes.  

For the mean year class, the peak NDVI period came after the first cropping period of each year, 

while the segment mean class showed a peak NDVI during the first cropping period of each year. 

 

Figure 28 Cluster minimum, maximum, and mean (green) 
NDVI for clusters intersecting point of interest 1 and 2 for 
the length of the original time series. 
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4.3.2.2 POINTS OF INTEREST 3 & 4 

 A comparison of the 

classification time series chart for 

point of interest 3 (figure 29) and 4 

(figure 30) was similar.  Yearly 

crop cycle apparent in NDVI for 

each class showed a dormant 

period followed by a quick green-

up and single harvest.  The cycle 

shape for each year was similar 

between all compared classes 

indicating general agreement in 

class structure.  Also, time frames 

above 190 in classes covering point 

4 displayed a generally lower peak 

NDVI.  An inspection of the 

situation of point 4 on the maps 

indicated that it was in a 

rangeland/dry-farmed area.  The 

reduction of peak NDVI could 

indicate dryland degradation, 

prolonged drought, or changing 

water availability within the 

Figure 30 Cluster minimum, maximum, and mean (green) 
NDVI for clusters intersecting point of interest 4 for the 
length of the original time series. 

Figure 29 Cluster minimum, maximum, and mean (green) 
NDVI for clusters intersecting point of interest 3 for the 
length of the original time series. 
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region.  In this instance, the segmentation mean method was favorable because it did not average 

NDVI values over time and maintained the magnitude of true NDVI peak.  This property is seen 

in figure 31 (and less obviously in figure 30) with the segment mean NDVI peaks lower than the 

mean year peaks. 

4.3.2.3 POINT OF INTEREST 5 

 Point of interest 5 (figure 31) resembled point of interest 1 and 2.  Both points of interest 

were members of the same segment mean class but different mean year classes.  Again, a double-

cropped pattern was seen in both 

classes, and the first crop period 

was lower in mean year class and 

higher in the segment mean class.   

Point 5’s depth of the dip between 

crop periods within a year for the 

mean year class differed from point 

1’s dip depth. 

4.4 OUTCOME OF WORK 

This project succeeded in 

preserving temporal information 

while reducing data size, which is a 

valuable contribution to future researchers attempting to use temporal information from a full-

data time series.  Based on qualitative spatial and time series analysis, the research hypothesis, 

“there is no spatial difference between unsupervised classifications based on mean year reduced-

data vs. segment mean reduced-data time series”, was rejected.  The provided examples 

Figure 31 Cluster minimum, maximum, and mean (green) 
NDVI for clusters intersecting point of interest 5 for the 
length of the original time series. 
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qualitatively differentiated the compared classification methods.  Each technique has advantages 

depending on the desired spatial or temporal granularity.  The mean year reduction method most 

likely picks out average intra-annual phenological variation.  Variation in temporal trajectory is 

contained in the segment mean method.  The MODIS segment mean classification map should 

be used for maximum utilization of the temporal information in the classification scheme. 

4.5 FUTURE DIRECTIONS 

Additional work is required to refine the segment mean data reduction method in a couple 

of areas.  First, work is needed to define guidelines for determination of optimal scale size for the 

spatial data reduction technique.  In this study, optimal scale size was determined by “guided 

guessing”; no quantitative measure of “best” segmentation level was used.  For a more reliable 

outcome, future work needs to incorporate a method for quantitative evaluation of each proposed 

segmentation scheme.  Second, additional work is required to determine a best cluster validity 

index to use to select the optimal classification scheme.  Although this work used a quantitative 

measure (the minimum Transformed Divergence) to guide classification scheme selection, work 

is needed to compare the effect of using different CVIs.  A list and descriptions of potential CVIs 

is presented by Arbelaitz et al. (2013). 

Future research is also needed to determine the best distance (similarity) measure for use 

in unsupervised classification to take advantage of the properties of the segment mean method.  

Simple ISODATA was used for this research.  However, similarity calculated in ISODATA 

(Euclidean distance) is essentially an averaging operation on pixel vectors.  More effective 

similarity measures, which use the temporal information retained by the segment mean data 

reduction method, should take account of the shape of the NDVI curve over time. 
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5.  CONCLUSION 

Four land surface phenology classification maps were produced from time series satellite 

imagery to compare classification of mean year data reduction method against classification of 

the segment mean method.  Two of the four maps were produced using 8 × 8 km AVHRR data 

over the years 1981 through 2006.  The other two maps were produced using 250 × 250 m 

MODIS data for the years 2000 through 2012.  The segment mean method showed both spatial 

smoothing similar to a low-pass filter and a reduction of the number of total classes covering the 

study area.  The classification map created from the MODIS segment mean data reduction 

method represents the multi-decadal vegetation phenology record with an optimal spatial 

resolution.  
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7.  APPENDIX 

The following are selected Python code scripts used in the course of this work. 

7.1 CREATION OF MEAN YEAR RASTERS 

import os 
import arcpy 
from arcpy.sa import * 
 
arcpy.env.overwriteOutput = True 
arcpy.CheckOutExtension("Spatial") 
 
#create a dictionary to keep track of all the compositing period days and corresponding years 
cmpst_prd_dict = {} 
for filename in os.listdir(r'D:\GIS\bbunker\Py\modis_time_series'): 
 if os.path.splitext(filename)[1] == r'.img': 
  if filename[5:8] not in cmpst_prd_dict: 
   cmpst_prd_dict[filename[5:8]] = [filename[1:5]] 
  else: 
   cmpst_prd_dict[filename[5:8]].append(filename[1:5]) 
for daynum in cmpst_prd_dict: 
 print 'Start day number ',daynum 
 mask_sum = '' 
 ndvi_sum = '' 
 for year in range(0,len(cmpst_prd_dict[daynum])): 
  print '\tworking on year ',(year + 1),' of ',len(cmpst_prd_dict[daynum]) 
  basepath = r'D:\GIS\bbunker\Py\modis_time_series' 
  filename = 'A' + cmpst_prd_dict[daynum][year] + daynum + '.img' 
  ndvi_in = os.path.join(basepath,filename) 
  qa_in = os.path.join(basepath,'QA',filename) 
  mask_temp = Con(qa_in, 1, 32767, 'VALUE <= 2 AND VALUE >= 0') 
  ndvi_temp = Raster(ndvi_in) * mask_temp 
  outpath = r'D:\GIS\bbunker\Py\modis_masked' 
  ndvi_outpath = os.path.join(outpath, 'A' + cmpst_prd_dict[daynum][year] + 
daynum + '.img') 
  if year == 0: 
   mask_sum = mask_temp 
   ndvi_sum = ndvi_temp    
  else: 
   mask_sum = mask_sum + mask_temp 
   ndvi_sum = ndvi_sum + ndvi_temp 
 #divide the NDVI sum by the binary sum for the same time frame 
 mask_sum = Con(mask_sum, 1, mask_sum, 'VALUE = 0') 
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 ndvi_avg = ndvi_sum / mask_sum  
 outfilepath = r'D:\GIS\bbunker\Py\modis_mean_year_composites' 
 outfilename = os.path.join(outfilepath, daynum + '.img') 
 outfilename_qa = os.path.join(outfilepath, 'QA', daynum + '_qa.img') 
 arcpy.CopyRaster_management(ndvi_avg, outfilename, '', '', '32767', 
  '','','16_BIT_SIGNED', '','') 
 arcpy.CopyRaster_management(mask_sum, outfilename_qa, '', '', '', 
  '','','16_BIT_SIGNED', '','') 
 #Do not use ndvi_avg.save(outfilename) as.save() creates a 32bit raster by default! 
 print 'Done with ',outfilename 

7.2 CALCULATION OF SEGMENT MEANS 

import arcpy 
import os 
import time 
 
arcpy.env.overwriteOutput = True 
 
ZoneRasterData = r'D:\GIS\bbunker\eCog\modis_scale30\raster_image_segments.img' 
 
imagefile_base = r'D:\GIS\bbunker\Py\modis_time_series' 
for imagefilename in os.listdir(imagefile_base): 
 if os.path.splitext(imagefilename)[1] == r'.img': 
  print 'Processing: ',os.path.splitext(imagefilename)[0] 
  sTime = time.time() 
  input_img = os.path.join(imagefile_base,imagefilename) 
  outTablePath = r'D:\GIS\bbunker\Py\modis_segment_means\tables' 
  outTableName = os.path.splitext(imagefilename)[0] + r'.dbf' 
   
  arcpy.CheckOutExtension("Spatial") 
  arcpy.sa.ZonalStatisticsAsTable(ZoneRasterData, 'Value', input_img, 
   r'in_memory\table', "DATA", "MEAN") 
  arcpy.TableToTable_conversion(r'in_memory\table', outTablePath, 
   outTableName) 
  print r'Minutes Elapsed: ',(time.time()-sTime)/60.0 
#If 'error: too many unique values!', set arcmap options -> raster -> no. Unique values 
# to render = {>number of objects} 

7.2 CREATION OF SEGMENT RASTERS 

import arcpy 
from dbfpy import dbf 
import os 
import time 
import multiprocessing 
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arcpy.env.overwriteOutput = False 
arcpy.env.rasterStatistics = 'NONE' 
arcpy.env.pyramid = 'NONE' 
 
refTable_path = r'D:\GIS\bbunker\eCog\MODIS_scale30\raster_segments.img.vat.dbf' 
refTable = dbf.Dbf(refTable_path) 
n = refTable.recordCount #number of segments in current segment scheme 
tablefile_base = r'D:\GIS\bbunker\Py\modis_segment_means' 
 
def build_raster_from_table(tablefilename): 
 #print 'Processing: ',os.path.splitext(tablefilename)[0] 
 sTime = time.time() 
 input_table_path = os.path.join(tablefile_base,r'tables',tablefilename) 
 output_ascii_path = os.path.join(tablefile_base,os.path.splitext(tablefilename)[0] + r'.txt') 
 output_img_path = os.path.join(tablefile_base,os.path.splitext(tablefilename)[0] + r'.img') 
  
 table = dbf.Dbf(input_table_path) 
 output_ascii = open(output_ascii_path, 'w') 
 output_ascii.write('NCOLS 1\n') 
 output_ascii.write('NROWS ' + str(n) + '\n') 
 output_ascii.write('XLLCENTER 0.0\n') 
 output_ascii.write('YLLCENTER 0.0\n') 
 output_ascii.write('CELLSIZE 1.0\n') 
 output_ascii.write('NODATA_VALUE 65535\n') 
  
 lines = [] 
 trCount = 0 
 asciiCount = 0 
 noDataCount = 0 
 while asciiCount < n: 
  if trCount < table.recordCount: #if there are still rows to be added from the table 
   if refTable[asciiCount]['VALUE'] < table[trCount]['VALUE']:  
    while refTable[asciiCount]['VALUE'] < table[trCount]['VALUE']: 
     lines.append('65535\n') 
     asciiCount += 1 
     noDataCount += 1 
   else: 
    lines.append(str(int(table[trCount]['MEAN'])+2000) + '\n') 
    trCount += 1 
    asciiCount += 1 
  else: 
   lines.append('65535\n') 
   asciiCount += 1 
   noDataCount += 1 
  
 lines[len(lines)-1] = lines[len(lines)-1][:-1] #remove the last newline character 
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 output_ascii.writelines(lines) 
 output_ascii.flush 
 output_ascii.close() 
 del output_ascii 
 in_mem_name = r'in_memory\temp'+os.path.splitext(tablefilename)[0] 
 arcpy.ASCIIToRaster_conversion(output_ascii_path, in_mem_name, 'INTEGER') 
 arcpy.CopyRaster_management(in_mem_name, output_img_path, '', '', '65535', 
  '','','16_BIT_UNSIGNED', '','') 
 arcpy.Delete_management(in_mem_name) 
 eTime = (time.time()-sTime)/60 
 #write a Quality Assessment file 
 qa_file_path = os.path.splitext(output_ascii_path)[0] + r'_qa.txt' 
 qa_file = open(qa_file_path, 'w') 
 qa_file.write('No. Rows in DBF: ' + str(table.recordCount) + '\n') 
 qa_file.write('No. Rows from DBF included: ' + str(trCounter) + '\n') 
 qa_file.write('No. Rows written to ASCII file: ' + str(asciiCounter) + '\n') 
 qa_file.write('No. Rows of added NoData (32767): ' + str(noDataCounter) + '\n') 
 qa_file.write('Time taken to create raster: %.2f minutes' % eTime) 
 qa_file.flush() 
 qa_file.close() 
 print r'Minutes Elapsed for ',os.path.splitext(tablefilename)[0],r': ',eTime 
 
if __name__ == '__main__': 
 table_list = [] 
 for tablefilename in os.listdir(os.path.join(tablefile_base,r'tables')): 
  if os.path.splitext(tablefilename)[1] == r'.dbf': 
   table_list.append(tablefilename) 
 pool = multiprocessing.Pool(7) 
 pool.map(build_raster_from_table, table_list) 
 pool.close() #Synchronize the main process with the job processes to cleanup 
 pool.join() 
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