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ABSTRACT 

The complex interactions between human health and the physical landscape and 

environment have been recognized, if not fully understood, since the ancient Greeks.  Landscape 

epidemiology, sometimes called spatial epidemiology, is a sub-discipline of medical geography 

that uses environmental conditions as explanatory variables in the study of disease or other 

health phenomena.  This theory suggests that pathogenic organisms (whether germs or larger 

vector and host species) are subject to environmental conditions that can be observed on the 

landscape, and by identifying where such organisms are likely to exist, areas at greatest risk of 

the disease can be derived.  Machine learning is a sub-discipline of artificial intelligence that can 

be used to create predictive models from large and complex datasets.  West Nile virus (WNV) is 

a relatively new infectious disease in the United States, and has a fairly well-understood 

transmission cycle that is believed to be highly dependent on environmental conditions.  This 

study takes a geospatial approach to the study of WNV risk, using both landscape epidemiology 

and machine learning techniques.  A combination of remotely sensed and in situ variables are 

used to predict WNV incidence with a correlation coefficient as high as 0.86.  A novel method of 

mitigating the small numbers problem is also tested and ultimately discarded.  Finally a 

consistent spatial pattern of model errors is identified, indicating the chosen variables are capable 

of predicting WNV disease risk across most of the United States, but are inadequate in the 

northern Great Plains region of the US. 
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1. INTRODUCTION AND BACKGROUND 

 Landscape epidemiology, sometimes called spatial epidemiology, is a sub-discipline of 

medical geography that uses environmental conditions as explanatory variables in the study of 

disease or other health phenomena.  Machine learning is a sub-discipline of artificial intelligence 

that can be used to create predictive models from large and complex datasets.  West Nile virus 

(WNV) is a relatively new infectious disease in the United States, and has a fairly well-

understood transmission cycle that is believed to be highly dependent on environmental 

conditions.  This study takes a geospatial approach to the study of WNV, using both landscape 

epidemiology and machine learning techniques.   

 “Given that the transmission of pathogens leading to disease requires the close 

juxtaposition of a susceptible individual with an infected conspecific, vector, or environmental 

source of pathogens, transmission dynamics are inherently spatial processes” (Ostfeld, Glass, & 

Keesing, 2005, p. 328).  While closely related to various medical, public heath, and geographic 

approaches, the landscape epidemiology approach to disease research is unique in many ways.  

To understand the tradition of landscape epidemiology, it is helpful to briefly review its history 

and that of its progenitor, medical geography. 

1.1. MEDICAL GEOGRAPHY 

Medical Geography, or Health Geography as it is sometimes called, by its very nature has 

always been a cross-disciplinary field of study.  It has at various times been associated most 

closely with applied medicine, landscape ecology, regional geography, cartography, and spatial 

statistics among other fields.  In its modern form it is most commonly associated with the 

medical discipline of epidemiology, a field of study "concerned with the distribution and 

determinants of health and diseases, morbidity, injuries, disability, and mortality in 
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populations"(Friis & Sellers, 2009, p. 6).   Sometimes called nosogeography (from the Greek 

nósos for disease or sickness), medical geography has been studied in one form or another since 

long before the famous quantitative revolution beginning in the 1950s in geography and even 

before the birth of scientific medicine in the late nineteenth century (Numbers, 2000).   

 Dr. Jacques M. May, often considered the father of modern medical geography, 

recognized the long tradition of medical and geographic knowledge intertwining when he 

pointed out that “the idea that such an approach should be made….was understood by 

Hippocrates” (May, 1950).  The “Father of Modern Medicine,” Hippocrates of Cos was an 

ancient Greek physician born around 460 BC and well regarded for his many writings and for the 

founding of the Hippocratic School of Medicine (Grammaticos & Diamantis, 2008).  Although 

he is best known for the Hippocratic Oath that physicians today still take – “the aim of the 

physician should be to do good to his patient, or, at least, to do no harm” (Hippocrates, 1849, p. 

341) – he is also regarded as one of the first to recognize the connection between health and 

place.  His treatise “On Airs, Waters, and Places” discusses the impacts “different seasons, the 

winds, the various kinds of water, the situation of cities, the nature of soils, and the modes of life, 

exercise upon the health” (Hippocrates, 1849, p. 181).  It seems clear that he was at least aware 

of the complexities of human health and its relationship to physical environmental factors 

(Meade & Emch, 2010).  He passed this understanding, along with much of his medical 

expertise, down to his students.  Although similar ideas are also to be found in the teachings of 

other ancient scholars such as Plato, very little was added to this basic premise for nearly two 

millennia. 

It has been said, “the earliest physicians knew little of the cause of diseases beyond the 

fact that certain ones seemed to be found in certain localities only” (James & Jones, 1954, p. 
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453).  Tropical diseases were so classed because they occurred primarily in the tropics.  Some 

diseases, such as respiratory illness, appeared to improve or even be cured by patients simply 

moving to higher elevations.  There are many more examples, but the pattern was consistent.  

Although the root causes of disease were illusive, the correlation between the environment and 

illness was easily observed, if not always readily understood.  Indeed, much of classical 

medicine was devoted to primarily geographic inquiry, identifying where diseases commonly 

occurred and among whom.   

 

Figure 1 – Alexander Johnston’s “Geographical Distribution of Health and Disease in 

Connection Chiefly With Natural Phenomena” (Johnston, 1856). 

Before the advent of the ‘germ theory of disease,’ there was little in the way of scientific 

explanation for the cause of disease outside of observable environmental conditions.  “Without a 
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‘germ’ or ‘virus’ to assign any direct cause to, the epidemiologists were left with the need to 

produce disease maps, in order to relate these deaths and cases to every natural event and 

condition out there – be these wind, sun, weather, topography, or population and transportation 

features” (Altonen, 2002).  The earliest explicit disease maps focused on endemic disease 

boundaries which tended to remain fairly stationary over long periods of history.  The famous 

“Health and Disease” world map of Alexander Johnston is probably the best surviving example 

(see Figure 1).  It is essentially an isotherm map with particular diseases assigned to climatic 

bands, with local variations from “his review of endemic and epidemic prone regions around the 

world based on exploration, travel and migration history” (Altonen, 2002). 

Despite the persistent lack of verifiable explanation of why such region-disease 

relationships existed, geographical analysis was considered an established part of medical 

research “until the Pastorian discoveries turned attention to the study of pathogenic organisms” 

(James & Jones, 1954, p. 453) and away from spatial relationships.  “With the rise of 

bacteriology and the germ theory of disease in the late nineteenth century, medical geography 

went into decline….the new laboratory medicine of Claude Bernard and Louis Pasteur did 

indeed strip medical geography of the cachet it once enjoyed” (Numbers, 2000, p. 219).  By the 

early part of the 1900s, medical researchers had largely left geography behind, and geographers 

had failed to keep pace with advances in medicine.  In the 1922 text “Principles of Human 

Geography” the discussion of health seems more closely tied to Hippocrates than Pasteur: “The 

geographical distribution of health and energy depends upon climate and weather more than on 

any other single factor” (Huntington & Cushing, 1922, p. 248). 

1.1.1. LANDSCAPE EPIDEMIOLOGY AND THE QUANTITATIVE REVOLUTION 
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Evgeny Nikanorovich Pavlovsky was a Russian parasitologist who recognized the same 

connection between disease and place observed since Hippocrates, but he may have been the first 

to accurately describe why such a relationship should exist.  He correctly described that the 

pathogenic organisms responsible for disease were themselves profoundly sensitive to 

environmental conditions.  He also recognized the importance of disease vectors such as ticks 

and mosquitoes, and that they also were subject to environmental variables that could be 

observed on the landscape.  He formalized his observations into a new scientific field which he 

called “landscape epidemiology” (Pavlovsky, 1965).  In essence “the theory behind landscape 

epidemiology is that by knowing the vegetation and geological conditions necessary for the 

maintenance of specific pathogens in nature, one can use the landscape to identify the spatial and 

temporal distribution of disease risk” (NASA, 2001).   

Around this same time the field of geography was undergoing “a radical transformation 

of spirit and purpose” otherwise known as the “Quantitative Revolution” (Burton, 1963).  The 

American Geographical Society started developing an “atlas of disease” in 1944 (American 

Geographical Society, 1944), the Communicable Disease Center (later to be renamed the Centers 

for Disease Control and Prevention, but consistently referred to as the CDC) was organized in 

1946 with the primary purpose of locating and killing malarial mosquitoes (CDC, 2010), and two 

years after that the World Health Organization was founded (World Health Organization, 2012).   

In the midst of this revival and transformation, Dr. Jacques M. May emerged as an 

innovator and a leader in the newly reborn field of quantitative medical geography.  He helped 

redefine the field, literally, when as a member of the International Geographical Union’s 

Commission on Medical Geography he defined it as “the study of the distribution of manifested 

and potential diseases over the earth’s surface and of factors which contribute to disease 
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(pathogens) followed by the study of the correlations which may exist between these and the 

environmental factors (geogens)” (T. Brown & Moon, 2004, p. 751).  May is sometimes 

considered the father of modern medical geography, not because he created the field, but because 

he integrated the field.  He understood the power of applying quantitative analysis to spatial 

phenomena, especially when backed by a thorough understanding of the underlying pathogen 

ecology of the diseases being examined.  Under his leadership “this vision of a ‘new’ medical 

geography was realized, because May was able to carefully interweave the two ‘sciences’ of 

medicine and geography within his disease ecology perspective” (T. Brown & Moon, 2004, p. 

759). 

Today medical geography is a cross-disciplinary approach to studying health and well-

being, disease, illness and other spatially distributed health phenomena (Association of American 

Geographers, 2011).  The Internet has allowed for the collection and mass-dissemination of 

medical and health related data (often connected to a specific geographic location) on a scale 

never before possible, as exemplified by the WHO’s Global Health Atlas, the CDC’s ArboNET 

and others (CDC, 2012b; World Health Organization, 2007).  Remote sensing has emerged as a 

“fundamental geospatial analysis tool” (Quattrochi, Walsh, Jensen, & Ridd, 2004, p. 377) that 

provides vast amounts of data of both the physical and human landscape, much of which can be 

used in landscape epidemiological studies such as this one (Hay, 2000).  The development of 

geographic information systems (GIS) has allowed for greater integration than ever before of 

both data and analysis techniques, including advanced spatial statistics applicable to health-

related research (Abler, 1987; Goodchild, 1992), and is especially well suited to “establishing 

relationships between disease rates and exposures to environmental factors” (Rushton, 2003, p. 
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51).  The legacies of May, Pavlovsky, and even Hippocrates are apparent in the continuing 

traditions and emerging practices of this rapidly advancing field. 

1.2. MACHINE LEARNING 

Machine learning is a branch of artificial intelligence concerned with computer systems 

capable of learning, or using logical inductive inference to improve performance (Quinlan, 

1986).  In the simplest task-oriented or “engineering approach” to machine learning, the system 

is trained on a set of data and creates algorithms to classify or categorize the data, then uses those 

algorithms to categorize new data based on what it “learned” from the training data.  “The 

inductive inference machine [machine learning program] takes categories that have been useful 

in the past and, by means of a small set of transformations, derives new categories that have 

reasonable likelihood of being useful in the future” (Solomonoff, 1956, p. 1).  This process is 

often cyclical, resulting in the system “learning” and improving its accuracy over time.  In 

geospatial studies, machine learning is sometimes used in place of simple statistical techniques 

like linear regression in an attempt to better model complex relationships with multiple 

interacting variables, such as the relationship between disease the environment.   

One very common machine learning technique involves the use of hierarchical decision 

trees to discriminate among classes of objects (Carbonell, Michalski, & Mitchell, 1983).  A 

binary partitioning algorithm selects the variables by which to split the data into categories at 

each level of the hierarchy, and the resulting tree is used to classify each object in the dataset.  

Such trees can be thought of as having object attributes at the nodes, alternative values of these 

attributes along the edges, and leaves corresponding to sets or classes of objects with matching 

attributes.  One could use a decision tree to manually decide at each node which category or 

group of categories a particular data object is most like, and then traverse, or move through the 
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tree making decisions based on the object’s attribute values until a final classification is reached 

(Quinlan, 1993).  Figure 2, adapted from Quinlan (1986), is an example of a simple decision tree 

with only two possible classes, P and N, corresponding to Positive Instances and Negative 

Instances.  In this example, certain weather conditions are considered appropriate for some 

unspecified activity, class P, and by traversing the tree starting at the root (the top of the 

diagram), one could determine if current conditions qualified or not (Quinlan, 1986).  It is fairly 

simple to extend this concept to include any number of classes and variables.  This form of 

analysis is well established in remote sensing classification studies, and is sometimes referred to 

as CART (classification and regression tree) analysis (Congalton, 2010). 

 

Figure 2 – A simple decision tree, adapted from (Quinlan, 1986, p. 87). 

Another common machine learning approach involves the creation of production rules 

that take the form of if-then statements (Carbonell et al., 1983).  If certain conditions are met in 

the data, then specific action can be taken on that data, perhaps placing it in a class or applying a 

particular algorithm to create quantitative output ( Jensen, 2005).  Multiple rules can be applied 
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to the same dataset to try and fit the model to the data more closely than possible with more basic 

statistical techniques.  Cubist is an inductive machine learning program created by RuleQuest 

that develops decision trees for data mining purposes (RuleQuest Research, 2012).  It can also 

convert those trees into production rules consisting of if-then statements, which are much easier 

to understand and interpret (J. R. Jensen, Hodgson, Garcia-Quijano, Im, & Tullis, 2009).  In this 

study Cubist was used to model the impact of complex environmental variables on West Nile 

virus disease incidence. 

1.3. WEST NILE VIRUS 

West Nile virus (WNV) was first identified in a patient from the West Nile district of 

northern Uganda in 1937 (Campbell, Marfin, Lanciotti, & Gubler, 2002; C. G. Hayes, 2001).  

The disease has been endemic in various parts of Africa, Asia, Europe and Australia since that 

time, but only recently made the oceanic leap to the New World.  The first known appearance of 

the disease in the Western hemisphere was in New York City, NY, USA in 1999 (Nash et al., 

2001; Petersen & Roehrig, 2001).  Since then it has spread across the country and has resulted in 

“the largest epidemics of neuroinvasive WNV disease ever reported” (E. B. Hayes et al., 2005, p. 

1167).  It is now widely considered “the dominant vector-borne disease in this continent” 

(Kilpatrick, Kramer, Jones, Marra, & Daszak, 2006, p. 0606). 

The chief premise of the field of epidemiology is that disease is not a random occurrence, 

but occurs “in patterns that reflect the operation of underlying factors” (Friis & Sellers, 2009, p. 

142).  Epidemiological studies can be divided into two broad categories, descriptive and 

analytical, the former generally preceding the latter.  Analytical epidemiology studies are more 

concerned with the etiology, or causes, of disease, and how to better predict and/or manage 

disease occurrence.  Understanding the descriptive epidemiology of a disease is an important 



10 

 

prerequisite to ensure sound inferences and analytical techniques are employed.  When studying 

a particular disease, the first question is often “what is it?” but is quickly followed by the “who, 

where, when, and why/how” of the disease.  In this section I will briefly outline some of the 

descriptive epidemiological characteristics of WNV, starting with the Natural History of the 

disease (the what), followed by the categories of Person, Place, and Time (who, where, and 

when) and conclude with the Etiology and Transmission (the why and how).  Note:  these will be 

reported as they apply to WNV in the US only, and may differ in some ways from 

characterizations of WNV in the Old World. 

1.3.1. NATURAL HISTORY 

West Nile virus is a flavivirus, related to Saint Louis, Japanese, Kunjin, and Murray 

Valley encephalitis viruses (CDC, 2003).  Like all viruses, WNV is an obligate parasite that 

depends on the cells it infects for replication (Campbell et al., 2002; Oldstone, 1998).  The strain 

introduced into the Western hemisphere via New York in 1999, identified as NY99, is closely 

related to the lineage I strain found in Israel in 1998, both notable for their increased 

pathogenicity among birds (C. G. Hayes, 2001; Lanciotti, 1999).  The virus has “subsequently 

undergone subtle genetic alteration” but remains a highly virulent threat to both avian and human 

hosts (W. Reisen & Brault, 2007, p. 642).  

For humans there are two broad categories of disease that can result from WNV infection 

(see Figure 3).  Neuroinvasive WNV, sometimes called “severe” WNV disease or West Nile 

virus neuroinvasive disease (WNND), is a potentially life-threatening class of diseases including 

West Nile meningitis, West Nile encephalitis, and acute flaccid paralysis (CDC, 2012b).  

Common symptoms include fever, movement disorders, tremors, myoclonus, and Parkinsonism, 

with fatigue, headache, and myalgias often persisting for several months.  Some neuroinvasive 
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patients “have good long-term outcome, although an irreversible poliomyelitis-like syndrome 

may result” (Sejvar et al., 2003, p. 511). 

 

Figure 3 – Reported human cases of WNV (Neuroinvasive and Non-neuroinvasive) and Deaths 

in the US from 1999-2012, as reported to the CDC (CDC, 2012b). 

 

Figure 4 – Total reported human cases of WNV in the US from 1999-2012, compared to 

estimated total cases derived from serosurvey results by Mostashari et al. (2001) and others. 
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It is estimated that only about 1 in 150 infected persons will develop a severe form of the 

disease (CDC, 2012b).  Another 20% or so develop relatively mild symptoms generally termed 

West Nile Fever, or non-neuroinvasive WNV, and the remaining roughly 80% are completely 

asymptomatic (Mostashari et al., 2001).  Non-neuroinvasive symptoms are often so mild that 

many cases are likely misdiagnosed and unreported every year (Sejvar et al., 2003), however 

there is evidence that West Nile fever may in fact be more severe than generally acknowledged 

with around 30% requiring hospitalization and nearly 80% missing work or school due to the 

illness with a median absence of 10 days (Watson et al., 2004).  It is estimated that over 1 million 

Americans have likely been infected (W. Reisen & Brault, 2007).  Serosurvey results from 

Mostashari et al. (2001) and others were used to calculate estimates of total WNV infections (see 

Figure 4), demonstrating the severity of presumed underreporting of WNV.  The case-fatality 

rate (see Figure 5) for non-neuroinvasive cases is below 1%, and for neuroinvasive cases it 

ranges from 3% to 15% (CDC, 2012b). 

 

Figure 5 – Case Fatality Rate (red line) plotted over total deaths from WNV (blue bars) in the US 

from 1999-2012, as reported to the CDC (CDC, 2012b). 
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1.3.1.1. Case Definition 

While clinical symptoms and patient history may indicate WNV infection, diagnosis 

requires laboratory testing (CDC, 2012b).  Initial testing includes an enzyme-linked 

immunosorbent assay (ELISA) for IgM antibodies (CDC, 2012a).  There are now at least four 

FDA-cleared WNV serological kits available commercially for presumptive diagnosis used 

widely by state public health and private commercial laboratories, however these tests can 

produce false positives due to cross-reactive antibodies from similar viruses, so they require 

confirmation using plaque reduction neutralization tests (PRNT) which were established by the 

CDC as the gold standard (Janusz, Lehman, Panella, Fischer, & Staples, 2011).   

For a case to be classified as confirmed neuroinvasive, it must meet the clinical criteria of 

fever above 100.4° F, acute signs of central or peripheral neurological dysfunction (meningitis, 

encephalitis, acute flaccid paralysis, or other signs) documented by a physician, and the absence 

of a more likely clinical explanation.  It must also meet laboratory criteria of virus isolation from 

tissue, blood, or body fluid; or the ELISA and PRNT tests described above.  If the virus-specific 

IgM antibodies are confirmed via ELISA but no other testing is performed the case is classified 

as probable.  Similarly for a case to be classified as confirmed non-neuroinvasive, it must meet 

clinical criteria of fever above 100.4° F, absence of neuroinvasive disease and absence of more 

likely clinical explanation, and must undergo the same laboratory testing as the neuroinvasive 

cases.  Probable cases likewise receive ELISA but no confirmatory testing (CDC, 2012a).  The 

ArboNET system (see Section 3.3.2) only records cases that have received laboratory testing, but 

does not distinguish between confirmed and probable cases (CDC, 2003). 

1.3.2. PERSON CHARACTERISTICS 

1.3.2.1. Age 
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Generally considered “the most important factor” (Friis & Sellers, 2009, p. 146) among 

personal attributes, age is perhaps less important in WNV transmission than might be expected, 

at least when total cases are observed together.  In fact, all ages are considered equally 

susceptible to infection, since exposure to infected mosquitoes can occur at any age.  The 

development of disease in response to infection, however, is related to age.  Neuroinvasive cases 

in particular appear to be strongly associated with advancing age, especially between 60-89 years 

(E. B. Hayes et al., 2005; O’Leary et al., 2004).  Using data from the 2002 epidemic, median age 

for fever cases was in the 40s, while median age of severe cases was in the 60s.  Deaths resulting 

from all forms of WNV infection during that same year had a median age in the 70s (O’Leary et 

al., 2004).  From 1999-2007, the case fatality ratio of neuroinvasive WNV disease was around 

1% for most age cohorts, but jumped to 14% for adults over age 50 (Staples, 2009).   

Unsurprisingly then, although all ages are susceptible to infection, older persons appear 

more likely to develop a severe form of disease and are also more likely to die as a result of 

either form of disease (Sejvar, Lindsey, & Campbell, 2011).  At least one study observed an 

inverse correlation between age and non-neuroinvasive WNV disease, but the findings may have 

been subject to volunteer bias among the participants (J. A. Brown et al., 2007). 

1.3.2.2. Sex 

 Similar to age, sex does not appear to be linked to WNV morbidity when looking at total 

cases (Campbell et al., 2002).  For example, again making use of the 2002 epidemic figures, 

male infection rates hovered around 50% for most forms of the disease (O’Leary et al., 2004).  

Incidence of neuroinvasive cases, however, were markedly higher among males than females, 

with .51 and .36 per 100,000 respectively from 1999-2007 (Staples, 2009).  Mortality also 
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appears to be more common among men, with males making up nearly 70% of the total deaths in 

2002 (O’Leary et al., 2004). 

1.3.2.3. Race/Ethnicity 

 Data on race and ethnicity with regards to WNV is scarce and non-exhaustive, but some 

does exist.  According to the CDC, incidence rates from 1999-2007 for neuroinvasive WNV only 

(total incidence was not reported by race) was approximately .37 for Caucasians, .3 for African 

Americans, and .09 for “other” per 100,000 (Staples, 2009).  Unfortunately, race and ethnic data 

of disease cases was not available for this study. 

1.3.2.4. Socio-Economic Status 

 Socio-Economic Status is an interesting and somewhat confounding factor with regards 

to WNV infection.  For reasons not entirely understood, some studies indicate strong 

relationships between low socio-economic areas and high WNV incidence (Harrigan et al., 

2010), while others report the strongest relationships between middle class suburban 

neighborhoods and high WNV rates (Rochlin, Turbow, Gomez, Ninivaggi, & Campbell, 2011).  

Interestingly, these differences appear to be somewhat regional in nature, although the 

differences themselves have not yet been studied.  I will not address this in my study, but it is a 

potentially interesting topic for future research. 

1.3.2.5. Other Person Factors 

Other person variables are hard to come by for WNV.  There does not appear to be any 

data (at least not publicly available) on the effects of marital status, religion, family size, blood 

type, personality traits, or occupation on either WNV morbidity or mortality.  That’s not to say 

there are not important considerations involving these factors, merely that the current data is 

incomplete on the subject.  For example, “human behaviors, such as smoking and dog walking, 
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that bring humans outside the protection of screened or air-conditioned homes at night elevate 

the risk of infection” by increasing their risk of exposure to infected mosquitos, but such data is 

not collected for WNV patients, so quantitative assessments are problematic (W.K. Reisen, 2010, 

p. 474).   Laboratory experiments have indicated that the protein CCR5 may be a protective 

factor against WNV, therefore those with genetic mutations that lack functional CCR5, including 

an estimated 1% of North American Caucasians, “may be at greater risk of fatal encephalitis 

from WNV infection” (W. G. Glass et al., 2005, p. 1095).  There are indications that 

immunocompromised hosts may also have increased susceptibility (W. G. Glass et al., 2005), but 

according to the CDC it is currently still unknown if these individuals are indeed at increased 

risk (CDC, 2012b). 

1.3.3. PLACE CHARACTERISTICS 

 Many studies have examined the place characteristics of WNV disease within the United 

States.  Since this is also the primary focus of this research, these will be examined in more detail 

in the Literature Review (see Section 2).  This section will look only at general place factors. 

Within the United States, WNV was first identified in New York City in 1999, and 

quickly spread out in a manner similar to contagious diffusion, first spreading to nearby areas 

and then reaching farther and farther out from the initial place of introduction.  In 2000, Rappole 

et al. warned that viremic migratory birds could spread the virus very rapidly over long 

distances, as had been observed in the Old World WNV movements (J. H. Rappole, Derrickson, 

& Hubálek, 2000).  Luckily this did not appear to take place, at least not to a significant degree 

(J. H. Rappole et al., 2006).  After just a few short years, however, the disease managed to spread 

across the continent, although it still has not penetrated much into the colder northern regions of 

Canada and Alaska, likely due to the inhospitable conditions for the necessary mosquito vectors. 
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Figure 6 – Year during which WNV activity was first detected in each state, as reported to the 

CDC. 

While the disease has spread from coast to coast and is now considered endemic (A. 

Townsend Peterson, Robbins, Restifo, Howell, & Nasci, 2008) there does appear to be 

significant spatial clustering as evidenced by extremely high spatial autocorrelation values 

measured using both global and local Moran’s I tests (Anselin, 1995; Moran, 1950) across the 

continental United States (Young & Jensen, 2012).  Furthermore, for reasons not entirely 

understood, the states and counties with the highest cumulative incidence and most pronounced 

incidence rates normalized by population are primarily clustered together in the northern Great 

Plains (Lindsey, Kuhn, Campbell, & Hayes, 2008).  When analyzing clustering of incidence 

rates, which normalize the disease data by population, the northern Great Plains, as well as 

southwest Idaho, stand out as persistent hotspots (Sugumaran, Larson, & DeGroote, 2009; 

Young & Jensen, 2012). 
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1.3.4. TIME CHARACTERISTICS 

 West Nile virus depends on mosquito vectors, and as such WNV infection is seasonal and 

cyclic in nature.  There was some speculation early on that without migratory bird diffusion to 

bring the virus back and forth from tropical regions where it can thrive year-round, the virus 

might die out over the winter (J. Rappole & Hubalek, 2003), but it has been shown to overwinter 

in Culex mosquitos (Nasci et al., 2001), allowing it to reappear seasonally without reintroduction 

via migratory birds.  Although the virus remains in mosquitoes over the winter months, human 

cases do not normally occur during this time.  Human cases tend to occur (in the US at least) 

from mid-summer to mid-autumn, or in other words, mosquito season.  When weather conditions 

are right, this time can extend from as early as April to as late as December, but the majority of 

cases occur (meaning symptoms first manifest) between July and September (Staples, 2009).   

Cx. pipiens, or the common house mosquito, a prominent WNV vector across the 

continent “demonstrate a late-summer shift” in feeding behavior from primarily birds to 

primarily humans and other mammals (Kilpatrick et al., 2006, p. 0608).  This behavior, while 

limiting the time during which human disease transmission generally occurs, actually amplifies 

WNV epidemics.  By feeding primarily on birds capable of carrying WNV in the early summer 

as opposed to “wasted” feedings on humans and other dead-end hosts, the intensity of the 

epidemic in mosquitoes is amplified.  This in turn likely leads to a greater number of human 

infections after the feeding shift than would have occurred if the mosquitoes fed on humans year-

round (Kilpatrick et al., 2006). 

Reisen and Brault (2007) identified a “three year epidemic pattern” in North America, 

whereby WNV is quietly introduced into a new area with “low avian depopulation rates and few 

human cases,” successfully overwinters, and then undergoes “explosive epidemic amplification” 
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in its second season in the area, followed by subsidence possibly associated with herd immunity.  

Despite the tendency to subside following the epidemic year, they also noted that avian herd 

immunity “appears to be transient owing to antibody decay, rapid population turnover and 

perhaps enhanced brooding success due to reduced population density and increased resources,” 

resulting in the possibility of renewed viral amplification and further epidemics (W. Reisen & 

Brault, 2007, p. 643). 

1.3.5. ETIOLOGY AND TRANSMISSION  

West Nile virus is a zoonotic disease of birds, which are the primary and amplifying 

hosts, and is considered an arbovirus (arthropod-borne virus, transmitted by blood-sucking 

insects (Mosby, 2009)) transmitted primarily by mosquito vectors, although bird-to-bird 

transmission has been demonstrating in laboratory settings (McLean et al., 2001).  While there 

are over 160 bird species and at least 36 mosquito species involved in the viral transmission 

cycle, the most common culprits include corvids (crows and jays) and Culex mosquitoes (CDC, 

2003).  The CDC has recommended examination of dead American Crows in particular as an 

effective surveillance strategy (CDC, 2003; LaDeau, Calder, Doran, & Marra, 2010).   

Interestingly, “American Crows were found to be significantly underrepresented in the 

blood meals of the ornithophilic [bird-feeding] mosquitoes” compared to abundance 

measurements, possibly suggesting bird-to-bird transmission occurs in the wild (Apperson et al., 

2004, p. 80).  While the virus has also been found in horses, reindeer, sheep, deer, bears, and 

feral swine (Gibbs et al., 2006), the author is not aware of any confirmed cases of transmission to 

humans from any host or vector other than mosquitoes.  Infected mammals, including humans, 

do not develop sufficient viral levels in their blood to infect biting mosquitoes, making them so-

called “dead-end” or incidental infections and not a part of the normal transmission cycle (E. B. 
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Hayes et al., 2005; W.K. Reisen, 2010).  With the rare exceptions of mother-to-child 

transmission and contaminated blood transfusions or organ transplantations (all donated blood in 

the US is screened for WNV RNA (CDC, 2012b)), human-to-human transmission does not 

appear to take place, making quarantines unnecessary for infected patients (Ciota et al., 2008; 

Kumar et al., 2004). 

 

Figure 7 – WNV Transmission Cycle, adapted from  (CDC, 2012b). 

1.4. STATEMENT OF THE PROBLEM 

Many existing studies seeking to define areas of WNV risk required data that is both 

expensive and challenging to obtain such as dead bird surveillance or mosquito collection and 

testing, usually requiring lots of man-hours in the field (Mostashari, Kulldorff, Hartman, Miller, 

& Kulasekera, 2003).  While such data is very useful, it is not collected in a standardized or 

uniform manner and sampling is extremely sparse at best, with large portions of the country not 

collecting these data at all.  Further, as Allen and Wong (2006) noted, “some counties…are 

contemplating the idea of not gathering and testing dead birds in the future, partly for financial 

reasons, and partly because previous WNV-cases already confirmed the presence of the virus in 
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the region” (Allen & Wong, 2006, p. 263).  In fact, even the CDC reports on its WNV Q&A 

page, in response to the question about why some areas stop collecting dead birds – “Some states 

and jurisdictions are no longer collecting dead birds because they have sufficiently established 

that the virus is in an area, and additional testing will not reveal any more information.  Shifting 

resources away from testing of dead birds allows those resources to be devoted elsewhere in 

surveillance and control” (CDC, 2012b).  While this is true, it ignores the usefulness of this data 

to studies such as this one.  Since such data has very poor geographic coverage and is in 

increasingly short supply, other methods must be found that will work in the absence of 

extensive field data.   

In addition, some researchers feel that the underlying geography of the United States is 

far too diverse to permit the creation of national-scale models of WNV risk, relying instead on 

customized regional or state-level models (DeGroote & Sugumaran, 2012; Winters et al., 2008).  

Others feel their results indicate some level of generalizability and that a country-wide model 

might be feasible (A. Townsend Peterson et al., 2008; Shaman, 2009).  This study seeks to 

contribute to this discussion. 

Finally, there are two common problems with spatial studies of disease, the small 

numbers problem and the modifiable areal unit problem (MAUP).  The small numbers problem 

“is probably the most pervasive problem in disease mapping” occurring when the number of 

cases of disease in an area is small, or when the population of the area is small (Pringle, 1995, p. 

343).  This can be due small areas or rare disease or both, but when such small numbers are used 

to calculate rates the results can be very misleading.  Relatively minor changes in the data can 

appear very significant due to the small numbers involved in the calculations, often exaggerating 

or otherwise confounding results.  The small numbers problem is apparent in the WNV incidence 
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data, both due to the variable sizes of counties and due to the fact that it is still a relatively new 

disease and is not fully endemic across the contiguous United States.  Since only about 20% of 

infections cause sickness, the data we have are only a small sample of total infections.  

Furthermore, the fact that many WNV cases (those that do get ill) are likely misdiagnosed, the 

actual case count is probably severely underreported (see Figure 4), which only amplifies the 

small number problem.  The MAUP is a systemic geographical research problem affecting all 

studies that use arbitrary and modifiable zones.  When data are examined at different 

geographical scales or levels of aggregation, the results can change dramatically, casting doubt 

on the validity of the spatial statistics or other models used (Gehlke & Biehl, 1934).   

1.4.1. RESEARCH QUESTIONS AND HYPOTHESES 

 The primary research question under investigation in this study is if WNV risk can be 

quantified and predicted with acceptable accuracy across the continental United States using 

remotely sensed environmental variables.  I hypothesize that the environmental variables of 

NDVI, elevation, land cover, precipitation, and temperature are spatially related to WNV 

incidence strongly enough to allow for predictive risk modeling at the national level.  A second 

question looks at a finding of Landesman et al. (2007) that prior-year precipitation measurements 

were stronger predictors of disease incidence than concurrent year precipitation (Landesman et 

al., 2007).  A third research question is if there are clear regional variations that impact model 

performance spatially, and if so, what might be causing them.  A fourth and final question is if 

my method of mitigating the small numbers problem, described in section 3.6.2, is effective or 

not based on its impact on model performance.    
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2. LITERATURE REVIEW 

 With regards to landscape epidemiology, GIS, remote sensing, and spatial risk models, 

Eisen and Eisen (2011) stated clearly in their article titled “Using Geographic Information 

Systems and Decision Support Systems for the Prediction, Prevention, and Control of Vector-

Borne Diseases” that “it should be noted that the literature is too extensive for exhaustive 

reviews of all related published papers; therefore, [I] present only selected, representative 

publications as examples” (L. Eisen & Eisen, 2011, p. 42). 

 Researchers looking at Lyme disease, the most frequent vector-borne disease in the US 

prior to WNV’s introduction, determined that “there is a need to extend risk analysis to larger, 

less well defined areas while reducing the expenditure of time and resources” and concluded that 

geographic information systems could provide the needed framework to “rapidly identify risk 

factors of zoonotic disease over large areas” (G. E. Glass et al., 1995, p. 944).  One persistent 

challenge with landscape epidemiological studies, and indeed epidemiological studies in general, 

is the question of what potential risk factor variables to investigate and which to ignore.  When 

dealing with environmental variables, there is almost no end to the list of factors that could prove 

to be significantly correlated with disease.   

2.1. HABITAT MODELS 

Many existing studies have endeavored to simplify this list of potential variables by 

focusing on the WNV transmission cycle, namely the distribution of either the bird reservoir 

hosts or the mosquito vectors.  Cooke et al. (2006) modeled mosquito habitats using 

environmental variables to predict WNV risk.  Their models indicated that 67% of human cases 

occurred in areas predicted as high-risk.  They also noted that “dead bird occurrences are 

correlated with human WNV risk and can facilitate the assessment of environmental variables 
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that contribute to that risk” (Cooke, Grala, & Wallis, 2006, p. 36).  Trawinski and Mackay 

(2008) found that WNV vector mosquito abundance is spatially autocorrelated, indicating it can 

be predicted for unsampled locations (Trawinski & Mackay, 2008).  Beck et al. (1994) used 

remote sensing in a landscape epidemiological study of malarial mosquitoes in Mexico, and 

found landscape elements could predict vector abundance with an overall accuracy of 90% (Beck 

et al., 1994).   

2.1.1. ECOLOGIC NICHE MODELS 

Peterson et al. (2004) recognized existing vector habitat maps are “at best incomplete, if 

not actually misleading” and instead used ecological niche modeling using rule-set prediction 

algorithms to more accurately predict Leishmaniasis vector presence (A. Townsend Peterson, 

Pereira, & De Camargo Neves, 2004, p. 10).  Ecologic niche modeling (ENM) relates “known 

occurrences of species across landscapes” to environmental variables across the same landscape 

to identify the ecologic distribution of the species, which can then be used to predict potentially 

suitable habitats at locations where species occurrence is not known (A. T. Peterson, 2006, p. 

1822). 

Ecologic niche modeling uses rule-based machine learning algorithms to characterize 

“general environmental regimes under which species or phenomena may occur” but has seldom 

been applied to disease transmission studies (A. T. Peterson, 2006, p. 1823).  While my data is 

not of fine-enough spatial resolution to be considered ecological niche modeling, the same basic 

techniques were applied.   

2.2. HUMAN-ENVIRONMENTAL MODELS 

Others researchers ignore the transmission cycle entirely and focus instead on descriptive 

epidemiological factors such as socioeconomic status or land use without attempting to model 
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the habitats of birds or mosquitoes.  For example, outbreaks in the Chicago and Detroit areas 

showed positive correlation between infection and socioeconomic factors including income and 

age of housing (M. O. Ruiz, Tedesco, McTighe, Austin, & Kitron, 2004; M. Ruiz, Walker, 

Foster, Haramis, & Kitron, 2007).  Studies in north-central US have found middle class suburban 

neighborhoods tend to be at highest risk, while similar studies for the southern and western US 

indicate highest risk is in low income areas (Rochlin et al., 2011).  Brown et al. (2008) found 

urban land covers in the Northeastern US to have the highest odds of above-median disease 

incidence (H. E. Brown, Childs, Diuk-Wasser, & Fish, 2008).  Harrigan et al. (2010) examined a 

disease hotspot in Orange County, CA and found both mosquito and human WNV prevalence 

were best explained (their models explained as much as 95% of the variation) using economic 

variables and “anthropogenic characteristics of the environment” including neglected swimming 

pool density (Harrigan et al., 2010, p. 1).   

Researchers working in Florida found positive correlations between hydrology models 

and WNV infection, which they believed could be generalized to the national level (Shaman et 

al., 2009).  Human land-use and WNV infection rates among American crows were strongly 

correlated in the northeastern United States (LaDeau et al, 2010).  Gates and Boston (2009) 

identified a very strong relationship between irrigation and both human and equine WNV 

occurrence at the county level over a three-year period, presumably due to irrigation increasing 

available mosquito habitat and therefore increasing risk of disease transmission.  They found as 

irrigation rose as a percentage of total land area by only 0.1% that the WNV incidence rate 

would increase by 50% for humans and 63% for horses (Gates & Boston, 2009).  Liu et al. 

(2008) similarly found WNV outbreaks in Indianapolis were influenced by percentages of 

agriculture and water (Liu, Weng, & Gaines, 2008).  Bowden et al. (2011) analyzed human 
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WNV incidence and land cover across the US and identified regional variations.  In Northeastern 

regions urban land covers were positively associated with WNV disease while in the Western US 

agricultural land covers had the strongest positive association.  They theorized the regional 

differences they observed can be explained by behavioral differences between the prominent 

mosquito vectors for the respective regions (Bowden, Magori, & Drake, 2011). 

2.3. CLIMATE MODELS 

Climatological data is commonly used due to its close relationship with reservoir and 

vector habitats.  One national scale study found a potential correlation between decreased WNV 

infection rates and below average summer temperatures (Reisen, 2009).  Renneboog et al. (2009) 

also found that as low temperatures increased, mosquito abundance increased (Renneboog et al., 

2009).  Another study hypothesized that increasing water flow in catch basins would positively 

impact breeding conditions for Culex mosquitos, and alternately drought years would negatively 

impact mosquito populations.  These impacts would in turn presumably decrease infection rates 

(Ghosh, 2011).  While these conclusions make sense with what is known of optimal mosquito 

habitats, one study in Florida found that droughts can actually amplify the disease in a manner 

similar to that observed for the related St. Louis encephalitis virus (Shaman, Day, & Stieglitz, 

2002).  The theory is that “drought brings avian hosts and vector mosquitoes into close contact” 

as they are forced to cluster around the less-abundant water sources which “facilitates the 

epizootic cycling and amplification of the arboviruses within these populations” (Shaman, Day, 

& Stieglitz, 2005, p. 134).  This theory could potentially explain why the hot and dry year 2012 

was the worst epidemic year since 2003, but the data for 2012 was not yet available from the 

CDC as of this writing, so the theory could not be tested in this study.  Interestingly, Landesman 

et al. (2007) found that human WNV incidence was associated more with precipitation from the 
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preceding year than the concurrent year, with above-average rainfall in the eastern US and 

below-average rainfall in the western US both preceding outbreaks.  Monthly precipitation and 

3-month “seasons” of precipitation were found to be highly variable and generally not as well 

correlated with WNV incidence as simple annual precipitation data.  They also noted that in 

some species of mosquitoes, “droughts can facilitate population outbreaks…in the following 

year” (Landesman, Allan, Langerhans, Knight, & Chase, 2007, p. 337).   

Soverow et al. (2009) looked at a number of weather variables in connection with WNV 

incidence from 2001-2005 across 17 states and discovered warmer temperatures, elevated 

humidity, and heavy precipitation all increased human infection rates independently of one 

another (Soverow, Wellenius, Fisman, & Mittleman, 2009).  Researchers looking at WNV 

infection in Culex mosquitoes in northeast Illinois found increased air temperature was the 

strongest predictor of increased infection, and that precipitation and temperature alone could 

explain up to 79% of the spatial variability (M. O. Ruiz et al., 2010).  Reisen et al. (2006) found 

that the virus itself has trouble replicating within mosquitoes when temperatures are below 

around 14° C, and further discovered that above-average summer temperatures appear to be 

linked closely to the epidemic summers of 2002-2004 (William K. Reisen, Fang, & Martinez, 

2006).   

2.4. REMOTE SENSING AND GIS 

Remotely sensed data has long been recognized by epidemiologists, biogeographers, 

conservationists and others as a useful tool for estimating habitat extents of both flora and fauna, 

among other uses (Cline, 1970; Washino & Wood, 1994).  Swatantran et al. (2012) successfully 

used remote sensing and machine learning methods to map migratory bird habitats (Swatantran 

et al., 2012).  Hayes et al. (1985) demonstrated that imagery from Landsat 1 and 2 could be used 
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to identify mosquito larval habitats (R. O. Hayes, Maxwell, Mitchell, & Woodzick, 1985).  

Dambach et al. (2012) performed a similar study in rural West Africa, finding remotely sensed 

precipitation, temperature, and vegetation indices could be used to predict vector densities 

(Dambach et al., 2012).  NDVI (Normalized Difference Vegetation Index) in particular, when 

used in combination with topographic data, has “proven to have excellent predictive ability” of 

WNV risk (A. Townsend Peterson et al., 2008, p. 343).  NDVI is an index, originally created by 

Rouse et al. (1974), derived from spectral reflectance values in the near infrared and red portions 

of the electromagnetic spectrum, and designed to be proportional to photosynthetic activity (John 

R Jensen, 2007; Rouse, Haas, Schell, & Deering, 1974).  It is a key component of many WNV 

risk models due to its close association with vegetation that can serve as habitat for both birds 

and mosquitos, and its association with water, necessary specifically for mosquito breeding and 

egg-laying (H. Brown, Duik-Wasser, Andreadis, & Fish, 2008). 

Many researchers have attempted to use remotely sensed environmental datasets in 

predictive spatial epidemiological models (R. J. Eisen & Eisen, 2008).  Perhaps one of the best 

examples of a successful predictive disease risk model was the Rift Valley fever risk map created 

by Anyamba et al. (2009) which provided 2-6 weeks of warning of an outbreak in the Horn of 

Africa.  Using a combination of remotely sensed environmental data, they accurately 

prospectively predicted the spatial and temporal disease activity with enough notice to facilitate 

response and mitigation efforts (Anyamba et al., 2009).   

GIS research also has a “long history” with studies of human health and well-being 

(Foody, 2006), with many proponents pointing back to John Snow’s famous London Cholera 

epidemic map of 1850 (Snow, 1855).  While Snow obviously didn’t use a GIS in his analysis, the 

basic methods he employed of spatial thinking and pattern recognition continues today (Brody, 



29 

 

Rip, Vinten-Johansen, Paneth, & Rachman, 2000).  With regards to vector borne diseases such as 

WNV, the link between the climate, the environment, and disease outbreaks is of increasing 

interest among researchers.  So much of the relevant data is inherently spatial that a means of 

integrating and analyzing such data in an explicitly-spatial context is becoming imperative.  

Shuchman et al. (2002) suggest a GIS-based system with a remote sensing component “could 

significantly improve the management of vector borne disease events” by providing, among 

other things, “an improved prediction capability based on climate and environmental models” 

(Shuchman, Malinas, & Edson, 2002, p. 305). 

2.5. THE SMALL NUMBERS PROBLEM AND THE MODIFIABLE AREAL UNIT PROBLEM (MAUP) 

There are basically three methods of dealing with the small number problem.  The first is 

to use spatial smoothing techniques that compute a location’s value based on the values of that 

location’s neighbors, reducing spatial variability (Wang, 2006).  The second is to aggregate 

values to larger geographic areas until sufficiently high values are reached, but this approach 

again introduces the challenges associated with the MAUP (Wang, Guo, & McLafferty, 2012).  

The MAUP can be tested by comparing different levels of aggregation, but this dramatically 

increasing the complexity of the model and in turn diminishes the interpretability of results.  

Unfortunately there is no simple fix for this problem, although data normalization and the 

consistent use of the same areal units (e.g. counties) can help mitigate its effects (Openshaw, 

1984).  The final method commonly used to address the small numbers problem is to aggregate 

values over time (Wang, 2006).  While this method is fairly straightforward and does not 

exacerbate the MAUP, it does require all explanatory variables to likewise be aggregated over 

the same temporal range, and it limits the amount of time-series comparisons that can be made 

from the data.  
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3. METHODS AND MATERIALS 

3.1. STUDY AREA 

As of 2012, human cases of West Nile virus have been reported from all of the lower 48 

United States, while no cases have yet been reported in either Alaska or Hawaii (CDC, 2012b).  

This study restricts its focus to these contiguous states.  For reasons of confidentiality, disease 

incidence data is only made available aggregated to the county level, so the county is the basic 

unit in this study.   

While a study of human-environment interactions such as this would be better served by 

smaller, naturally defined regions and boundaries as opposed to political ones, the research is 

limited by the resolution of the available data.  Furthermore, although the data and methods here 

employed could be used to create regional models instead of a single national model, one of the 

research questions being investigated was if a single national model with suitable accuracy could 

be created despite the obvious regional differences across the study area.  Such region-specific 

models can and probably should be created as well for improved predictive accuracy, but for the 

scope of this study, a single study area was selected. 

3.2. REMOTE SENSOR DATA 

3.2.1. NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI) 

NDVI (Normalized Difference Vegetation Index) is a measure of “greenness” and 

contains information on both vegetation and surface water.  It was selected, as previously 

mentioned, for its relationship to both avian and mosquito habitat.  NDVI data was obtained 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra 

satellite (NASA Land Processes Distributed Active Archive Center (LP DAAC), 2012).  The 

MOD13A3 data was used, which gives monthly NDVI values at a spatial resolution of 1 × 1km 
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(Solano, Didan, Jacobson, & Huete, 2010).  Figure 8 shows the NDVI in January (on the left) 

and July (on the right) of 2003, demonstrating how “greenness” changes throughout the year. 

 

Figure 8 – Normalized Difference Vegetation Index (NDVI) values for the continental US in 

2003, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument 

(NASA Land Processes Distributed Active Archive Center (LP DAAC), 2012). 

3.2.2. ELEVATION 

Topographic data (see Figure 9) was obtained from Global Land Cover Facility SRTM 

(Shuttle Radar Topography Mission) global mosaic at 30 × 30 arc second resampled to 1 × 1km 

resolution, originally collected in February 2000 (USGS, 2006).  Elevation generally changes 

very slowly, and data that covers the entire study area is infrequently collected, so the same 

SRTM data was used for the entirety of the study period. 

Elevation derivatives of slope and aspect (see Figure 10) were created using the Spatial 

Analyst toolbox in ArcMap 10.1 (ArcGIS Desktop, 2012).  Slope was measured in degrees.  

Aspect was measured in degrees, and was then reclassified into 8 categories, representing the 

four cardinal and four inter-cardinal compass directions, sometimes called “D8.”   
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Figure 9 – Elevation data for the continental US, derived from the Shuttle Radar Topography 

Mission (SRTM) of 2000 (USGS, 2006). 

 

 

Figure 10 – Derivatives of SRTM Elevation data for the continental US (USGS, 2006).  Slope 

measure in degrees, and Aspect reclassified into 8 principal compass directions (D8). 
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3.2.3. LAND COVER 

 Land Cover data (see Figure 11) was obtained from the National Land Cover Database 

2006 (NLCD2006), maintained by the Multi-Resolution Land Characteristics Consortium 

(MRLC) and the US Geological Survey (USGS).  This dataset covers the conterminous United 

States with 16 classes of land cover (not counting some Alaska-only classes that were not present 

in this dataset), and was created using primarily unsupervised classification from Landsat ETM+ 

satellite imagery at a nominal spatial resolution of 30 × 30 meters (Fry et al., 2011). 

 

Figure 11 – National Land Cover Database of 2006 with Legend, from the MRLC and USGS 

(Fry et al., 2011). 
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3.3. IN SITU AND ANCILLARY DATA 

3.3.1. CLIMATE DATA 

The in situ data used in this study included temperature and precipitation data from 

Oregon State University’s PRISM (Parameter-elevation Regressions on Independent Slopes 

Model) Climate Group database which uses point data and underlying grids such as digital 

elevation models and 30 year climatological averages to improve interpolation accuracy, 

especially in mountainous terrain (Oregon State University, 2012).  Precipitation data (see Figure 

12) was provided in an ARC/INFO gridded ASCII format in the form of 30 year normals from 

1981-2010 and annual precipitation measurements at a nominal spatial resolution of 30 × 30-

arcseconds measured in millimeters. 

 

Figure 12 – 30-year precipitation normal for the continental US, from the PRISM Climate Group 

(Oregon State University, 2012). 
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Temperature data (see Figure 13) was in the form of 30 year normal, average monthly 

and annual maximum and minimum temperature values, also at a resolution of 30 × 30-

arcseconds from 1981-2010, measured in degrees Celsius.  Temperature maximums and 

minimums were in separate grids, so they were processed separately and combined later. 

 

Figure 13 – 30-year temperature normal for the continental US, from the PRISM Climate Group 

(Oregon State University, 2012).  TMin represents average minimum temperatures and TMax 

represents average maximums. 

3.3.2. DISEASE INCIDENCE DATA 

 Data on reported WNV infections were obtained from the CDC’s ArboNET system.  In 

response to WNV’s introduction and rapid spread through the US, ArboNET was developed by 

the Centers for Disease Control and Prevention (CDC) in 2000 to monitor and track WNV cases 

and other human arboviral diseases within the US (CDC, 2003).   Neuroinvasive WNV is 

included in the list of nationally notifiable diseases maintained by the Council of State and 

Territorial Epidemiologists (CSTE) in consultation with the CDC (CSTE, 2012).  This list 

indicates which diseases must be reported by law to the CDC and within what time frame the 

report must be made.  While non-neuroinvasive cases are not included in the list of nationally 
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notifiable diseases, the CDC strongly encourages states to report them to ArboNET anyway 

(CDC, 2003).  With the ArboNET system, local clinics and health workers report suspected or 

confirmed cases of WNV infection to their State Health Department.  The State Health 

Department should then upload the data directly into the ArboNET system within the next 

normal reporting cycle (usually 7 days), which is then managed and processed by the CDC and 

made available to the public as aggregated data at the county level (Young & Jensen, 2012). 

The first few years of WNV in the US were atypical due to the spatially restricted nature 

of the virus as a new emerging pathogen in a new environment.  It wasn’t until 2002 that WNV 

was detected west of the states bordering the Mississippi River, but during that year it spread all 

the way to California and Washington.  By 2003 it had occurred in 47 of the lower 48 states, so 

for this reason 2003 was selected as the first year from which incidence data was used in model 

generation in this study.  The study period chosen was the six-year period from 2003-2008. 

3.3.3. CENSUS DATA 

 Population data were obtained from the US Census Bureau (“Census Bureau Homepage,” 

2013).  Intercensal population estimates are created by the Federal State Cooperative Program 

for Population Estimates (FSCPE) and are also distributed by the US Census Bureau.  The vector 

GIS county data for the US was created by Esri, derived from Tele Atlas data and was provided 

with the ArcGIS 10.1 software (ArcGIS Desktop, 2012). 

3.4. SOFTWARE PROGRAMS AND TOOLS 

3.4.1. ARCGIS DESKTOP 10.1 

 ArcGIS for Desktop Advanced 10.1 (formerly known as ArcInfo) is a suite of software 

programs created by Esri (Environmental Systems Research Institute), and was the GIS of choice 

for this study.  The ArcMap program was used extensively during almost all stages of the 
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analysis, from pre-visualization and data exploration to analysis and final map creation.  All 

maps created for this study were made with ArcMap (ArcGIS Desktop, 2012). 

3.4.2. CUBIST 2.07 GPL EDITION 

Cubist is a data mining program built by RuleQuest Research that uses machine learning 

to build rule-based predictive models.  These models, while created using complex decision 

trees, are expressed as collections of rules, each with an associated multivariate linear model, to 

maximize interpretability.  When data matches a specific rule’s condition, the model associated 

with that rule is used to calculate a predicted value (RuleQuest Research, 2012).  Cubist also 

supports model testing on independent subsets of the data that can then be imported back into 

GIS software for further visualization and testing.  Cubist can also create the model based on a 

randomly sampled subset of the input data, and use the remainder for testing.  A single-threaded 

Linux version of Cubist 2.07 is available under the GNU GPL (general public license) free of 

charge, and this was the version used in this study (Cubist, 2012). 

RuleQuest also provides free C source code for a companion program called simply 

“Sample.c” meant primarily as an illustration for how Cubist models can be used in other 

programs (RuleQuest Research, 2012).  Sample.c takes as input the model created by Cubist, and 

a “.cases” file containing data matching the format of the data used to create the model, and as 

output produces predicted values for those cases.  Since Cubist only outputs predictions for test 

cases, Sample.c was used to generate the model’s predicted values for all cases (aka counties).  

This small program was designed for use with models generated by Cubist 2.08 or later, so minor 

modifications were made to the code to allow it to recognize models created with Cubist 2.07 

which was used in this study. 

3.4.3. OTHER PROGRAMS AND TOOLS 
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 Other programs and tools used in this study included Microsoft Excel 2010, part of the 

Microsoft Office Suite, LibreOffice v3.6.5 Calc for Linux (LibreOffice, 2013), Python v2.7 

(Python, 2013), R: A language and environment for statistical computing v2.14.2 (R 

Development Core Team, 2012), and Notepad++ v6.2.3 (Ho, 2012).  Excel and Calc were used 

to calculate simple ratios such as disease incidence rates and to format data tables for use in 

Cubist.  Python 2.7, and the associated IDLE (Interactive DeveLopment Environment) were used 

extensively during data preprocessing to create and run geoprocessing scripts using the ArcPy 

site package of tools from the ArcGIS software (see Appendix A).  R was used to calculate an 

odds ratio (OR) using the “epitools: Epidemiology Tools” package (Aragon, 2012).  Notepad++ 

was used primarily to format input data for Cubist and to view output from Cubist.  All of the 

above tools, with the exception of Excel, are available online free of charge. 

3.5. STUDY DESIGN 

In traditional epidemiological studies descriptive epidemiology generally precedes 

analytic, first asking who, what, when and where, and then moving on to the why or the etiology 

of the disease.  In the case of WNV the etiology of the disease itself is fairly well understood 

already, but due to the complex nature of human-environment interactions, the spatial 

distribution or “where” of the disease is not.  Rather than investigate the spatial aspects of the 

disease in an effort to understand the underlying etiology, this study takes a reverse approach 

using the already known etiology of the disease to further investigate the geographical 

components. 

This study takes both an ecological and retrospective study design approach.  It is 

ecological merely by nature of the data, which has been aggregated to the level of counties by the 

CDC for the sake of privacy considerations.  Retrospective study designs in epidemiology 
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investigate the association between a disease and past exposures to risk factors for the disease 

among a cohort.  Since it is difficult to measure actual exposure to mosquitoes among disease 

cases, we instead use the environmental variables previously discussed as proxies for bird and 

mosquito habitats likely to be involved in WNV transmission.  This landscape epidemiological 

approach allows us to treat the environmental variables as the “exposures” in a traditional 

retrospective design, although we already know the environmental variables themselves are not 

causative.  Machine learning algorithms were used to examine and compare these exposures, and 

predictive models were created that could potentially be used in a prospective study design.  One 

pseudo-prospective design was approximated using odd years to create the model and then 

testing it on even years during the study period. 

3.6. ANALYTICAL TECHNIQUES 

 

Figure 14 – A flowchart of methods and materials used in this study, simplified and condensed. 
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A simplified flowchart of this study can be found in Figure 14.  The input datasets 

underwent preprocessing (described in section 3.6.1), then were fed into Cubist for model 

generation (see section 3.6.3), which output predictive models.  The models were then evaluated 

according to the criteria found in section 3.6.4. 

3.6.1. DATA PREPROCESSING 

 The West Nile virus data from the CDC was provided in Excel spreadsheets, and 

contained total cases by county, separated into neuroinvasive and non-neuroinvasive totals.  

Population data from the Census were used to change the raw case counts into incidence rates 

using Excel.  NDVI data from the MODIS sensor came in georeferenced raster tiles that had to 

be mosaicked together.  Each month of each year of the study period required 15 tiles to cover 

the entire continental United States, equaling a total of 1,080 tiles.  An Esri ModelBuilder 

workflow was created to mosaic the first set of 15 tiles (corresponding to January 2003), which 

was then exported to a Python geoprocessing script using Esri’s ArcPy site package.  This script 

was then modified to allow rapid preprocessing of all the MODIS data.  Similar scripts were 

created and used to preprocess the PRISM climate data.  Each of the monthly environmental 

datasets – temperature, precipitation, and NDVI –  were aggregated to the county level using 

zonal statistics in ArcMap.  The zonal statistics tool was used to calculate a mean from all of the 

input pixels that fell within each zone, in this case counties, for each input dataset.  This process 

was also scripted to save time (see Appendix A). 

The remaining datasets of SRTM elevation and the NLCD2006 were snapshot datasets, 

as opposed to the multi-temporal nature of the previously discussed datasets.  Preprocessing of 

these datasets was fairly straightforward and was performed using ModelBuilder models in 

ArcMap, shown in Figure 15.  Since these datasets only needed to be processed once (as opposed 
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to the multi-temporal data that required lots of identical preprocessing), scripts provided no 

enhanced speed or other utility, and were therefore not created. 

 

Figure 15 – Esri ModelBuilder diagram of Elevation and Land Cover preprocessing.  Blue ovals 

correspond to raw input datasets, yellow rectangles to geoprocessing tools, and green ovals to 

derived datasets. 

Elevation derivatives of slope and aspect were creating using tools from the Spatial 

Analyst toolbox.  Elevation and slope were then aggregated to the county level using the same 

Zonal Statistics as Table tool from the Spatial Analyst toolbox used on the previously discussed 

datasets.  Aspect and NLCD2006 were the only qualitative (categorical) variables used and 

required a slightly different aggregation technique.  Aspect was first reclassified from degrees to 

8 classes corresponding to the 4 cardinal and 4 inter-cardinal compass directions: North, North-

East, East, South-East, South, South-West, West, and North-West.  Aspect and NLCD were then 

both aggregated to the county level using the Tabulate Area tool from the Spatial Analyst 
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toolbox which allows for the areal amount of each variable occurring in the zone of interest to be 

preserved.  The Zonal Statistics tool expects only quantitative data and calculates means and 

other statistics, while the Tabulate Area tool works with qualitative variables without losing data 

(as would occur for example when using the majority statistic in the Zonal Statistics tool which 

eliminates all variables in the zone of interest except the one covering a majority of the area). 

 The input data layers were saved to tables and joined together by FIPS (Federal 

Information Processing Standard) codes manually in ArcMap and Excel, as well as using python 

scripts (see Appendix A) into a single data table containing 3,105 rows and 283 columns for 

input into Cubist (see section 3.4.2).  Two other tables were also created that temporally 

aggregated the data for all of the odd years and the even years of the study period. 

3.6.2. ADDRESSING THE SMALL NUMBERS PROBLEM 

 The small numbers problem was addressed in two separate ways.  First, incidence data 

was converted to incidence rates, otherwise known as being normalized by population.  All of 

the data was then temporally aggregated to attain more reliable rates.  NDVI, and climate data 

that are measured monthly were averaged by corresponding months between years.  Land cover 

and elevation data remained unmodified due to a lack of reliable change information for those 

datasets over the study period. 

 A second approach to mitigating the small numbers problem with regards to WNV, 

similar to a technique used by Biggerstaff and Petersen (2003), was also evaluated (Biggerstaff 

& Petersen, 2003).  As discussed in Section 1.3.1, neuroinvasive disease cases represent only 

about 1 out of every 150 human infections.  While non-neuroinvasive disease is “probably 

significantly underdiagnosed” due to its mild symptoms and clinical similarity to other diseases 

(CDC, 2003, p. 19), neuroinvasive cases are generally quite severe and it seems reasonable to 
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assume reporting of neuroinvasive cases is much closer to 100% than reporting for non-

neuroinvasive WNV.  Further, the amount of underreporting of non-neuroinvasive cases varies 

from year to year (see Figure 4), making a single underreporting adjustment impractical.  

Neuroinvasive cases were treated as a 150 infections each, resulting in a theoretical 30 non-

neuroinvasive cases per neuroinvasive case (following the estimate that 20% of infections result 

in non-neuroinvasive disease) per year.  These estimated values for WNV disease incidence 

(only counting the neuroinvasive and non-neuroinvasive cases, not total estimated infections) 

were then used to calculated estimated incidence rates.  These two values for WNV incidence 

(raw/reported and estimated) were both run through Cubist separately so their relative strengths 

and weaknesses could be compared. 

3.6.3. PREDICTIVE MODEL GENERATION 

The above-mentioned datasets were aggregated to a common geographic scale (US 

Counties) and compiled into data tables for input into Cubist (see Appendix B).  The WNV 

incidence data (either raw or estimated, depending on the specific test setup) served as the 

dependent variable in the equation, with the environmental data serving as the independent (or 

explanatory) variables in a manner conceptually similar to multiple regression.   

Cubist contains a number of optional and advanced settings when creating rule-based 

predictive models.  These optional settings include the use of unbiased rules, composite models, 

committee models, sampling, seeding, case weighting, cross-validation, extrapolation constraints 

and setting the maximum number of rules to be generated.  Detailed explanations of these 

settings are unnecessary here, but the interested reader is referred to RuleQuest’s website 

(www.rulequest.com) for more information (RuleQuest Research, 2012).  Suffice it to say here 
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that after much research and testing, the default settings were deemed most appropriate for this 

study, with two exceptions outlined below.   

For all but one of the experimental setups tested sampling was used, whereby Cubist uses 

a pseudo-random number generator to divide the input data cases into two groups, one for 

training and model generation, and the other for testing or model validation.  Given the large 

number of cases (3,105 counties), it was heuristically determined that 80% of the data should be 

assigned to training and the remaining 20% reserved for testing.   

The other optional setting used was seeding, whereby a specific seed value is provided by 

the user for Cubist to use in its pseudo-random number generator during sampling.  This feature 

allows the selection of training and test cases during subsequent test runs with varying settings to 

be held constant.  This removes the variable of chance associated with changing training sets 

between similar tests, allowing the variables that were changed to be evaluated with less 

uncertainty.  This was only used during variations within single experimental setups as will be 

described in more detail in the Results section.  Between experimental setups, the seed value was 

changed. 

3.6.4. MODEL EVALUATION 

“The most common mistake among machine learning beginners is to test on the training 

data and have the illusion of success” (Domingos, 2012, p. 2).  Care was taken to maintain strict 

separation between training and test data, either with sampling as described above, or through the 

use of independent datasets.  Cubist reports statistical accuracy measures for each model it 

creates, consisting of Average |Error|, Relative |Error|, and a Correlation Coefficient.  The 

Average |Error|, or average error magnitude, is simply the mean absolute difference between the 

predicted values and the actual values.  This is simple enough to interpret, as smaller values 
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would indicate less error and therefore a stronger model, although some datasets could contain 

large average error numbers and still be relatively strong models due to the nature and 

distribution of the input data.  The Relative |Error|, or relative error magnitude, is the ratio of the 

average error magnitude divided by the error magnitude that would result from every predicted 

value being equal to the mean value.  The relative error magnitude ought to be less than 1 for 

useful models.  This provides a more comparable metric across models.  Finally, the correlation 

coefficient is the Pearson’s product-moment, or Pearson’s r, measure of linear dependence, 

measured by dividing the covariance of the predicted and actual values by the product of their 

standard deviations.  Values for the correlation coefficient will always fall between 1 and -1, 

with values near 1 indicated a near perfect correlation.  This would indicate the model “fits” the 

real world data very well and is in effect a good predictive model.  A value of 0.9, for example, 

could be interpreted as “the model explains 90% of the observed variation” or in other words, 

“the model is around 90% accurate at predicting X.”  Interpretations of correlation coefficient 

values as high, medium, or low, etcetera are somewhat arbitrary, but for the purposes of this 

study correlation coefficients higher than 0.7 were considered good fits, suitable for disease 

prediction. 

Cubist also computes predicted disease incidence for each county in the test dataset from 

each model.  Using Cubist’s companion “Sample.c” program and an optional “.cases” file, 

predicted disease incidence rates were computed for both test and training cases.  These 

predicted incidence values were reimported into ArcGIS and joined back to US counties vector 

data via FIPS code for mapping.  This was done to allow a visual analysis of the model’s 

predictive power and regional effectiveness.  These prediction maps were created using a 

standard deviation classification technique applied to the difference between predicted values 
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and actual values (i.e. the model errors) to easily display where the model over- or under-

predicted disease.  Care was taken to ensure the neutral category in these maps (the areas within 

one-half positive or negative standard deviation from the mean) contained the true zero value of 

model errors, so that over- and under-prediction reading of the maps was accurate. 

From the models created by Cubist, an odds ratio (OR) – a common epidemiological 

metric that looks at the association between exposure and outcome – was also computed (Friis & 

Sellers, 2009).  The OR was designed for use among populations of individuals classified as 

exposed/not-exposed and diseased/not-diseased, and is not intended for use with aggregated data 

such as counties serving as cases.  Some minor modifications had to be made, which likely 

impacted the odds ratio’s effectiveness.  Taking the first rule, which is the most explanatory, 

from the Cubist model with the highest correlation coefficient, environmental variables were 

identified that served as the “exposures” of interest.  The first rule from Cubist was also used to 

determine threshold values for these variables so that counties could be classified as either 

exposed or not-exposed.  Counties were classified as either disease present or not-present.  With 

counties thus classified as exposed/not-exposed and disease present/not-present, an OR was 

calculated using the formula “(AD)/(BC), where A is the number of [counties with] the disease 

and have been exposed, B is the number who do not have the disease and have been exposed, C 

is the number who have the disease and have not been exposed, and D is the number who do not 

have the disease and have not been exposed” (Friis & Sellers, 2009, p. 661).  This can be thought 

of as measuring whether or not the exposures of interest increase the chances of disease or not. 

Normally this ratio would be equal to 1 if there was no difference between disease 

incidence among those exposed and those not-exposed.  The OR should be higher than 1 for 

exposures that increase risk of disease, and values lower than 1 may indicate protective factors 



47 

 

that help prevent disease.  The OR was computed using R: A language and environment for 

statistical computing, and the epitools: Epidemiology Tools package (Aragon, 2012; R 

Development Core Team, 2012).  This provided a quantitative method for model evaluation 

outside of Cubist’s reported statistical accuracy, although the necessary modifications to the 

measure made its results somewhat suspect. 

  



48 

 

4. RESULTS 

There were eight experimental setups, each with between 2 and 4 variations, making a 

total of 30 runs using Cubist.  The first setup (R1) included all six years of the study period.  R1a 

and R1b used 30-year normals for temperature and precipitation data and the NDVI data was 

averaged by month over the study period.  R1c and R1d did not use normals or averages, but 

looked at all of the explanatory variables for the entire study period – this was referred to as the 

“Everything but the Kitchen Sink” approach.  As outlined by Jensen (2005), there is a large body 

of evidence demonstrating that machine learning can “deal effectively with tasks that involve 

highly dimensional data” and that “the new thinking is to let the geographic data itself ‘have a 

stronger voice’” as opposed to using data reduction techniques before analysis (John R Jensen, 

2005, p. 421). 

The second setup (R2) used data averaged across the odd years of the study period to 

create the model, and was tested against the data averaged over the even years.  This was the 

only experimental setup where two full datasets (all 3105 counties) were used, eliminating the 

need for sampling.  Odds and evens were chosen simply to avoid any confusion with time-series 

analysis that may have arisen from a chronological ordering. 

The third through eighth setups (R3-R8) each involved data from a single year of the 

study period, 2003-2008.  The “a and b” runs were, as above, merely differentiating between 

whether raw (“a” runs) or estimated (“b” runs) WNV rates were being used as the predicted 

variable.  The “c and d” runs for R3-R8 used precipitation data from the previous year instead of 

the year under study to test the findings of Landsman et al. (2007) that precipitation from the 

previous year was more strongly associated with disease outbreak than precipitation during the 

concurrent year (Landesman et al., 2007).   
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Table 1 below summarizes the variations on the eight experimental setups just described.  

Results from each of the eight experimental setups and their variations will be reported in turn.  

All of the predictive models created using Cubist were tested on data independent of the data 

used for training, or model generation.  The average error, relative error, and correlation 

coefficient values reported below are the evaluations of the test data, while the maps show results 

from both training and test data for ease of readability. 

Table 1 – Various Cubist Runs, or experimental setups.  Abbreviations used: avg. = average; RR 

= Raw Rates of WNV Incidence; ER = Estimated Rates of WNV Incidence; EV = 

Explanatory/Environmental Variables; PPT = Precipitation; and “ = Ditto (same as preceding). 

Run# Experimental Setup Notes Predicted Variable 

R1a Avg. of all 6 years of EV Avg. RR for all 6 years 

R1b “ Avg. ER for all 6 years 

R1c All 6 years (not avg.) of EV Avg. RR for all 6 years 

R1d “ Avg. ER for all 6 years 

R2a Avg. of Odd Years used to create model, avg. 

of Even Years used to test. 

Avg. RR for Even Years 

R2b “ Avg. ER for Even Years 

R3-8a Single Year (2003-08) EV only RR for Single Year 

R3-8b “ ER for Single Year 

R3-8c Single Year (2003-08) EV with prior-year PPT RR for Single Year 

R3-8d “ ER for Single Year 

 

4.1. R1: ENTIRE STUDY PERIOD 

The first experimental setup, R1, resulted in the highest correlation coefficients for any of 

the models created in this study, with 0.84 for R1a and 0.86 for R1c (see Table 2).  Average and 

relative error magnitudes both increased when predicting estimated WNV rates (b and d), and the 

associated correlation coefficients correspondingly went down.  The most used variables in rule 

conditions for R1 models included precipitation and the NLCD06 land cover class 41 – 

Deciduous Forest. 
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Table 2 – Results from setup R1(a-d). 

Run# Average 

|Error| 

Relative 

|Error| 

Correlation 

Coefficient 

Most Used Variable 

R1a 20.7 0.39 0.84 Precipitation (’03-’08) 

R1b 218 0.66 0.55 NLCD-41 

R1c 18.9 0.35 0.86 Precipitation (’02) 

R1d 185.2 0.56 0.56 Precipitation (’02) 

 

Figure 16 – Distribution of model errors from R1(a-d), categorized by Standard Deviations. 

The spatial distribution of model errors (see Figure 16) exhibits a pattern.  Roughly 

halfway across the country from East to West, all four R1 models start to exhibit evidence of 

significant over- and under-predicting of WNV incidence, both raw (a and c) and estimated (b 

and d).  All four exhibit limited cases of under-predicted errors in the eastern half of the US, but 

little or no cases of over-predicting.  This region of increased errors becomes less concentrated 

through most of the Mountain West and fades before reaching the West coast. 
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4.1.1. ODDS RATIO 

As setup R1 resulted in the highest correlation coefficients, it was chosen for odds ratio 

(OR) calculation, as discussed in section 3.6.4.  Based on the relatively simpler data and 

production rule conditions, model R1a was chosen over R1c, despite a slightly lower correlation 

coefficient.  The first rule’s conditions were used to identify key environmental variables and 

suitable thresholds for the data in order to classify counties as “exposed” or “not-exposed.”  The 

conditions used were: (Average Precipitation (30-year normal) > 754.649 mm) AND (Average 

NDVI for December > 0.3238802).  Of the 3,105 counties in the study area, approximately two-

thirds (2,156 counties) met the “exposed” criteria.  The threshold for WNV incidence was set at 

zero, resulting in a little over half (1,698 counties) being classified as “disease-present” (see 

Table 3).  The OR was calculated as (A*D)/(B*C), or (961*212)/(1195*737) = 0.23.  The R 

package “epitools: Epidemiology Tools” (Aragon, 2012) calculated a 95% confidence interval of 

0.19 to 0.28. 

Table 3 – County categorizations and totals used to calculate the Odds Ratio (OR) for model 

R1a. 

 Disease Present Disease Not Present 

Exposed A) 961 B) 1195 

Not-Exposed C) 737 D) 212 

4.2. R2: ODD YEARS MODEL TESTED ON EVEN YEARS 

Setup R2 resulted in correlation coefficient values of 0.34 for R2a and 0.13 for R2b (see 

Table 4).  Average error magnitude increased when predicting estimated WNV rates (b), but 

relative error magnitude actually decreased, demonstrating the risk in interpreting the average 

error magnitude out of context.  Despite a lower relative error, the correlation coefficient for R2b 

was much lower than R2a.  The most used variables in rule conditions for R2 models included 

average minimum temperatures in December and average NDVI values in November. 
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Table 4 – Results from setup R2(a-b). 

Run# Average 

|Error| 

Relative 

|Error| 

Correlation 

Coefficient 

Most Used Variable 

R2a 28.5 1.03 0.34 TMin Dec 

R2b 176.2 0.93 0.13 NDVI Nov 

 

Figure 17 – Distribution of model errors for R2(a-b), categorized by Standard Deviations. 

The spatial distribution of model errors (see Figure 17) exhibits a clear regional pattern in 

both models, although R2a appears to have less inconsistencies than R2b.  The northern Great 

Plains region tends to exhibit over-prediction errors in both models, while a smaller region 

centered approximately in southern Idaho exhibits under-prediction errors in both models. 

4.3. R3: 2003 

Setup R3 resulted in relatively high correlation coefficient values of 0.84 and 0.8 for a 

and c respectively, and 0.55 and 0.58 for b and d (see Table 5).  Average and relative error 

magnitudes increased when predicting estimated WNV rates (b and d) and correlation 

coefficients correspondingly went down compared to their raw WNV rates counterparts (a and 

c).  The most used variable in rule conditions for R3 models was precipitation, both concurrent 

and prior-year.  Results for R3a and c (as well as for b and d) were very similar, indicated little 

difference between model effectiveness between those variations. 
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Table 5 – Results from setup R3(a-d). 

Run# Average 

|Error| 

Relative 

|Error| 

Correlation 

Coefficient 

Most Used Variable 

R3a 11.5 0.35 0.84 Precipitation (’03) 

R3b 112.9 0.58 0.55 Precipitation (’03) 

R3c 11.5 0.35 0.8 Precipitation (’02) 

R3d 106.8 0.55 0.58 Precipitation (’02) 

 

Figure 18 – Distribution of model errors for R3(a-d), categorized by Standard Deviations. 

The spatial distribution of errors in the R3 models (see Figure 18) display a pattern very 

similar to that seen in the R1 models.  The northern Great Plains region and the western Great 

Plains bordering on the Rocky Mountains together form an apparent cluster of errors, both over- 

and under-predicting WNV in all four models.  The estimated WNV models (b and d) both 

exhibit scattered cases of mild under-prediction in the eastern US. 

4.4. R4: 2004 
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Setup R4 resulted in low correlation coefficient values of 0.18 to 0.26 (see Table 6).  

Average error magnitudes increased when predicting estimated WNV rates (b and d), while 

relative error magnitudes decreased.  Correlation coefficients were lower for the models 

predicting estimated WNV rates than those predicting raw rates.  The most used variables in rule 

conditions for R4 models included NDVI in June and December, prior-year precipitation, and the 

land cover class 81 – Pasture/Hay. 

Table 6 – Results from setup R4(a-d). 

Run# Average 

|Error| 

Relative 

|Error| 

Correlation 

Coefficient 

Most Used Variable 

R4a 1.8 0.73 0.26 NDVI Dec 

R4b 14.3 0.56 0.22 NLCD-81 

R4c 1.6 0.64 0.26 Precipitation (’03) 

R4d 14.3 0.56 0.18 NDVI June 

 

Figure 19 – Distribution of model errors for R4(a-d), categorized by Standard Deviations. 
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The spatial distribution of R4 model errors (see Figure 19) bears a passing resemblance to 

that seen previously, although the pattern is less pronounced in a and c than in previous models, 

and almost non-existent in models b and d.  For reasons unknown, the estimated rates models (b 

and d) predicted very low values for all counties, resulting in the extremely low correlation 

coefficient values, as well as the lack of over-prediction errors.  

4.5. R5: 2005 

Setup R5 resulted in correlation coefficient values as high as 0.56 and as low as 0.12 (see 

Table 7).  Average and relative error magnitudes both increased when predicting estimated WNV 

rates (b and d) and correlation coefficients correspondingly went down.  R5a was the best model, 

explaining about 10% more of the data than the next best model, R5c.  The most used variables 

in rule conditions for R5 models included average minimum temperatures for October and 

December, mean elevation, and land cover class 41 – Deciduous Forest. 

Table 7 – Results from setup R5(a-d). 

Run# Average 

|Error| 

Relative 

|Error| 

Correlation 

Coefficient 

Most Used Variable 

R5a 3.1 0.61 0.56 TMin Dec 

R5b 42.5 0.82 0.12 NLCD-41 

R5c 3.3 0.66 0.46 Elevation 

R5d 40.3 0.77 0.12 TMin Oct 



56 

 

 

Figure 20 – Distribution of model errors for R5(a-d), categorized by Standard Deviations. 

The spatial distribution of R5 model errors (see Figure 20) again resembles the trend 

previously observed of both over- and under-prediction errors clustering in the northern Great 

Plains and scattered throughout the West, with relatively few errors observed in the eastern US.  

The pattern is less apparent in the estimated WNV models (b and d), although it does still appear 

to be present to some extent. 

4.6. R6: 2006 

Setup R6 resulted in correlation coefficient values for a-d of 0.6, 0.41, 0.58, and 0.48 

respectively (see Table 8).  Average error magnitudes increased when predicting estimated WNV 

rates (b and d), while relative error magnitudes either stayed the same or went down compared to 
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raw rate models (a and c).  The most used variables in rule conditions for R6 models included 

NDVI values for March and December. 

Table 8 – Results from setup R6(a-d). 

Run# Average 

|Error| 

Relative 

|Error| 

Correlation 

Coefficient 

Most Used Variable 

R6a 4.2 0.61 0.6 NDVI Dec 

R6b 37.7 0.61 0.41 NDVI Mar 

R6c 4.2 0.62 0.58 NDVI Dec 

R6d 36.3 0.59 0.48 NDVI Mar 

 

Figure 21 – Distribution of model errors for R6(a-d), categorized by Standard Deviations. 

The spatial distribution of R6 model errors (see Figure 21) is similar to the general trend 

observed previously, with the notable exception that the northern Great Plains appears somewhat 

less error prone and the region centering on southern Idaho appears to be much more pronounced 
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in a and c with under-prediction errors in the core and over-prediction around the periphery.  

This pattern is present, but not as pronounced in the estimated WNV models (b and d). 

4.7. R7: 2007 

Setup R7 resulted in the widest range of correlation coefficients within a single 

experimental setup, ranging from 0.28 to 0.75 (see Table 9).  Average and relative error 

magnitudes increased when predicting estimated WNV rates (b and d) and those models’ 

correlation coefficients went down.  The most used variables in rule conditions for R7 models 

included average minimum temperatures for October, and NDVI values for January. 

Table 9 – Results from setup R7(a-d). 

Run# Average 

|Error| 

Relative 

|Error| 

Correlation 

Coefficient 

Most Used Variable 

R7a 5.2 0.52 0.75 TMin Oct 

R7b 37.2 0.67 0.28 NDVI Jan 

R7c 5.3 0.53 0.75 TMin Oct 

R7d 36.7 0.66 0.28 NDVI Jan 
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Figure 22 – Distribution of model errors for R7(a-d), categorized by Standard Deviations. 

The spatial distribution of R7 model errors (see Figure 22) is yet again strikingly similar 

to the predominant trend of both under- and over-prediction errors clustering in the northern 

Great Plains region, with less significant errors scattered around the region, mostly fading before 

the West coast and the eastern Great Plains.  This pattern is again most apparent in the raw WNV 

models (a and c), although still evident in the estimated WNV models (b and d).  Again, as 

above, the estimated WNV models’ errors tend to extend further east and exhibit less spatial 

clustering than their raw WNV model conterparts. 

4.8. R8: 2008 

Setup R8 resulted in correlation coefficient values of 0.29 and 0.3 for runs a and c, and 

values of 0 and 0.02 for b and d (see Table 10).  Average error magnitudes increased when 
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predicting estimated WNV rates (b and d), but relative error magnitude decreased.  The most 

used variables in rule conditions for R8 models included average minimum temperatures in 

April, and land cover class 71 – Grassland/Herbaceous. 

Table 10 – Results from setup R8(a-d). 

Run# Average 

|Error| 

Relative 

|Error| 

Correlation 

Coefficient 

Most Used Variable 

R8a 1.5 0.72 0.29 TMin Apr 

R8b 13.3 0.62 0 NLCD-71 

R8c 1.5 0.72 0.3 TMin Apr 

R8d 13.2 0.62 0.02 NLCD-71 

 

Figure 23 – Distribution of model errors for R8(a-d), categorized by Standard Deviations. 

The spatial distribution of R8 model errors (see Figure 23) again resembles the general 

trend of clustered errors in the northern Great Plains and southern Idaho regions, although the 

pattern is somewhat less pronounced in 2008, and again almost non-existent in the estimated 
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WNV models (b and d).  For reasons unknown, just as occurred with R4, the estimated WNV 

models (b and d) predicted very low values for all counties, resulting in the extremely low 

correlation coefficient values, as well as the lack of over-prediction errors.  

4.9. NORTHERN GREAT PLAINS MODEL 

While the stated study area included the entire continental US, the consistent spatial 

pattern observed in the “northern Great Plains” (NGP) region was deemed of sufficient interest 

to warrant a follow up model.  The region was delineated with the help of a local Moran’s I map 

(see Figure 26) that identified a large cluster of high WNV incidence rate counties (see Figure 

24).  The data for these selected counties were then exported to a table and run through Cubist to 

generate a ninth, region-specific model, referred to here as the NGP model. 

 

Figure 24 – The “Northern Great Plains” (NGP) region extracted for further modeling in Cubist. 

The input data and Cubist parameters used during NGP model generation were matched 

as closely as possible to those used for R1c, the model with the highest correlation coefficient.  
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NGPa predicted raw WNV incidence rates while NGPb predicted estimated WNV incidence 

rates.  The NGP models resulted in correlation coefficient values of 0.5 for a, and 0.27 for b (see 

Table 11).  Average and relative error magnitudes increased when predicting estimated WNV 

rates (b) and the correlation coefficient correspondingly went down.  The most used variables in 

rule conditions for NGP models included precipitation, average maximum temperatures in June, 

September, December and annually, and average minimum temperatures in May and July. 

Table 11 – Results from setup NGP(a-b). 

Run# Average 

|Error| 

Relative 

|Error| 

Correlation 

Coefficient 

Most Used Variable(s) 

NGPa 144.6 0.84 0.5 Precipitation (’06) 

TMax June, Sep, Dec, Yr 

TMin May and July 

NGPb 1097 0.99 0.27 TMin May 

As with prior models, results were markedly poorer when predicting estimated WNV 

rates compared to raw incidence rates.  In order to make an accurate comparison between 

national model R1c and regional model NGPa, the NGP counties were run through Sample.c 

using R1c’s model, and a correlation coefficient of 0.7 was found, compared to the 0.5 achieved 

with the regional model, indicating the national model predicted the NGP region more accurately 

than the regional model did.  
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5. DISCUSSION AND CONCLUSION 

The first research question asked in this study was if remotely sensed environmental 

variables could be used to predict WNV incidence rates with acceptable accuracy across the US.  

While the question was intentionally vague on what would be considered “acceptable accuracy,” 

the results of the R1 models, specifically a and c, seem to justify the conclusion that they can.  

That being said, there were several obvious shortcomings with the many models, some of which 

were evidently spatial in nature.  The calculated odds ratio (OR) of 0.23, for example, if 

interpreted in the traditional way would imply the selected environmental conditions identified 

by Cubist are in fact protective factors against WNV disease.  This interpretation clearly does not 

harmonize with the other evaluations of the R1 models.  It seems apparent that the adjustments to 

the OR measurement necessary for its use on aggregated data invalidated its effectiveness as an 

evaluation tool.  The low OR score could alternatively evidence the complexity of the Cubist 

predictive models by demonstrating that the conditions used in a single rule cannot predict WNV 

alone, while the entire model together performs quite well. 

The machine learning decision trees algorithms used by Cubist are spatially ignorant, or 

in other words, locations and spatial relationships were not variables used during model 

generation.  The patterns and correlations identified within the data, used to create the predictive 

models, are all location unaware.  With this in mind, the observed spatial pattern of model errors, 

remarkably consistent across the 30 different models, is intriguing.  The figures above show 

consistently that the various models are least accurate in the northern Great Plains (NGP), Rocky 

Mountains, and southern Idaho areas.  Perhaps even more interesting than this apparent regional 

clustering of errors is the fact that these regions appear to be subject to both under- and over-

prediction at the same time, with the notable exception of the R2 models which spatially 
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segregated the under- and over-predicted areas.  After initial model evaluation presented in the 

results above, most of the subsequent analysis was devoted to attempting to explain these 

patterns. 

Figure 25 was created to evaluate what impact spatial sampling bias might have had on 

the observed results.  US counties are notoriously disparate in both size and composition, which 

often causes problems in spatial studies such as this one.  The eastern US is composed of 

generally very small counties, that are nevertheless highly populated.  Much of the western US, 

by comparison, is made up of very large counties with generally lower populations, except for 

the coastal regions.  For these reasons, almost any sampling scheme using US counties as a base 

unit is practically guaranteed to exhibit spatial bias.  Sampling for the predictive models was 

performed aspatially within Cubist using a pseudo-random number generator with a seed value 

that was kept consistent within experimental setups.   
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Figure 25 – Training and Test cases for Experimental test setup R1. a) shows Training cases in 

blue, b) shows remaining test cases in blue, c) and d) show predictive model R1a Errors 

overlayed on training and test cases. 

Figure 25a shows the counties selected by Cubist as training cases for the R1 models, and 

Figure 25b shows the remaining counties used for testing.  Visual inspection confirms that the 

sampling is about as unbiased as possible given the constraints already discussed.  Figure 25c 

and d show the same counties as a and b, this time overlaid with the model errors from R1a to 

demonstrate that the observed spatial pattern of model errors is apparent in both training (c) and 

test (d) datasets, indicating spatial sampling bias was not a significant factor in producing the 

pattern. 

The regions of poor model performance seem closely related to the regions previously 

identified by Young and Jensen (2012) and others as the areas with the most pronounced 
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clustering of disease incidence.  Figure 26 shows the Anselin Local Moran’s I, a spatial cluster 

and outlier analysis tool that measures spatial autocorrelation (Anselin, 1995), of the disease 

incidence data for the study period (a) compared to the errors or residuals from predictive model 

R1a (b).   

 

Figure 26 – Anselin Local Moran’s I maps.  a) shows clustering of WNV Incidence Rates for the 

entire 6-year study period, and b) shows clustering of residuals from predictive model R1a. 

The similar spatial pattern indicates a connection, although it is primarily conjecture at 

this point as to what exactly that connection is.  Perhaps the high incidence values in the region 

are a reflection of the relatively small populations, and thus a result of the small numbers 

problem discussed earlier.  Figure 27 may offer some support of this theory, showing the lowest 

population counties in lighter shades of blue, which appear to match fairly well with the regions 

suffering from the most model errors, with the possible exception of the low-population counties 

in the eastern US. 
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Figure 27 – Average Population during the study period (2003-2008).  Notice the central, 

western, and “Northern Great Plains” (NGP) regions tend to have lower populations, making 

them more susceptible to the Small Numbers Problem. 

The strongest evidence for this theory, that model errors are associated with low-

population counties, is presented in Figure 28, which shows the standard deviations of the model 

errors for R1a and R1b plotted against county population.  The resulting scatterplot shows that 

the models both perform admirably at a large range of population values, with the majority of the 

errors occurring in counties with relatively lower populations.  This is most apparent in the top 

two scatterplots in Figure 28. 
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Figure 28 – Scatterplots of models R1a and R1b residuals (as Standard Deviations) against 

County Population.  The top row shows population in millions, with the bottom plots show the 

same data on a logarithmic Y axis to better visualize the distribution. 

The lower two plots in Figure 28 present the same data, but using a logarithmic scale for 

population, which emphasizes the differences between R1a and R1b.  R1b errors, while they 

appear to follow the same pattern as R1a of being most common in low-population counties, can 

also be seen to “shift” the errors up, meaning counties with slightly higher populations are more 
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likely to be over- or under-predicted when using the estimated WNV model.  This was an 

unexpected consequence as the estimated WNV models were created specifically to attempt to 

mitigate the small numbers problem, but they appear to have in effect expanded it to a “small and 

not-as-small numbers” problem.  Between the consistently lower (often embarrassingly lower) 

correlation coefficients and the scatterplots of Figure 28, I have concluded that my method of 

estimating WNV incidence rates to mitigate the small numbers problem was not successful. 

The R1 and R2 models were the most comprehensive in that they covered the entire study 

period, but the R3-R8 models served to illustrate temporal variations in the validity of the 

methods used in this study.  Model strength varied widely by year, indicating a pronounced 

sensitivity to temporal changes, and a corresponding lack of consistent environmental conditions 

that can be used as reliable predictors.  Said another way, the fact that the yearly models varied 

so much in effectiveness implies that there is not a single set of environmental conditions that 

will always indicate WNV disease presence.  If there were, the Cubist models would have been 

expected to identify similar rule sets each year, resulting in models that performed equally well 

from year to year. 

The R3-R8 models were also used to investigate the research question of whether prior-

year precipitation was a better predictor than concurrent-year precipitation.  The results, shown 

in the c and d models, were decidedly mixed.  In all, 4 models showed decreased efficacy using 

prior-year precipitation, 4 showed increased efficacy, and 4 stayed the same, as measured by 

their correlation coefficients compared to their corresponding concurrent-year models.  The 

average decrease was 0.05, while the average increase was 0.0325.  It was concluded that the 

results in relation to the prior versus concurrent precipitation research question were 

inconclusive. 
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With some exceptions, the region centered on southern Idaho appeared in many models 

to be a secondary cluster of model errors.  Unlike the NGP region however, the southern Idaho 

cluster almost always exhibited under-prediction errors at its core.  There is likely some set of 

environmental conditions, or perhaps behavioral conditions among the population, responsible 

for this pattern that were not included in this study. 

 

Figure 29 – Estimated fresh water usage for artificial irrigation in 2005, measured in millions of 

gallons per day.  Data from the National Atlas (USGS Water Resources of the United States, 

2010). 

Similarly it seems evident that some unknown variable or variables are responsible for 

the major problems modeling the NGP region and the western US in general.  One theory is that 

artificial irrigation, which is much more common in the western half of the country (see Figure 

29), increases the amount of habitat available for key mosquito vectors, thereby increasing the 

likelihood of disease transmission.  Irrigation data was not directly included in this study, 

although it was hoped that the combination of NDVI and land cover information would capture 
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some of the same patterns.  Explicitly including irrigation data in future models may improve 

results. 

It was an assumption of this study (one well supported by the literature) that a national-

scale predictive model would invariably perform poorer for specific regions than smaller region-

specific models would, owing to the significant regional variations in environmental conditions 

across the US.  The results of the NGP model showed that assumption to be unfounded in this 

case.  The national model R1c, which boasted an overall correlation coefficient of 0.86, dropped 

to about 0.7 when looking only at the NGP region, while the region-specific NGPa model only 

mustered a 0.5 correlation coefficient.  As much as possible, all other variables were held 

constant, indicating the region-specific NGP model was a worse predictor of its own region than 

the national R1c model was.  The implication seems to be that this region is subject to some 

unknown confounding variable(s) that the models were not equipped to predict.  Further 

exploration is needed to determine the exact nature of the interference and what variables might 

be responsible. 

5.1. SUMMARY OF RESEARCH QUESTIONS 

This study sought answers to four main research questions: 1) can remotely sensed 

environmental variables be used to predict WNV incidence rates across the continental US, 2) is 

prior-year precipitation a better predictor than concurrent year precipitation, 3) is a single 

national model accurate enough, or is regional variation too strong, requiring smaller region-

specific models, and 4) can the small numbers problem be mitigated by estimating WNV 

incidence from neuroinvasive cases to compensate for underreporting? 

With correlation coefficients as high as 0.8, the answer to the first research question is 

yes, the chosen environmental variables of temperature, precipitation, elevation, NDVI, and land 
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cover are related to WNV incidence strongly enough to allow predictive modeling.  The machine 

learning techniques employed were able to identify complex relationships between the data, and 

in the case of the R1c model explained approximately 86% of the observed real-world data. 

The second question, as to whether prior year or concurrent year precipitation is a 

stronger predictor of WNV, cannot be answered at this time.  Results were inconclusive and 

more research will need to be done on this topic to support or refute the claim authoritatively. 

The question of whether or not a national model is appropriate across the highly diverse 

study area of the continental US is harder to answer.  Again pointing to models R1a and c, it is 

tempting to conclude that a national model is effective, however the repeated pattern of model 

errors clustering spatially in the northern Great Plains region and elsewhere indicates the model 

is not appropriate for all regions.  That said, the follow up model NGP showed that region-

specific models may not in fact produce better results than the national model.  Owing to this last 

finding, it was deemed prudent to conclude that a national model is appropriate, as long as it is 

interpreted with the knowledge of its regional biases and shortcomings. 

Finally, as to the novel method of mitigating the small numbers problem with WNV data, 

this study showed clearly that it was not effective.  Not only did the estimated WNV models 

consistently perform much poorer than their raw WNV counterparts, but their errors were spread 

over a larger range of county population values, in effect amplifying the small numbers problem 

instead of mitigating it.  The technique here employed is therefore deemed a failure, and its 

further use is discouraged. 

5.2. LIMITATIONS AND AREAS FOR FUTURE STUDY 

This study was subject to a number of limitations, most notably those associated with the 

necessity of using counties as the basic study unit and the small numbers problem.  Finer 
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resolution data would be expected to yield better results, but it was not available to the author at 

the time of this study.  The small numbers problem, as discussed previously, is a persistent 

problem with studies of this nature, and while the mitigation technique here employed was 

unsuccessful, it is hoped that other techniques might yet be developed to help lessen its impact. 

Other areas for improvement and future research include incorporating spatial 

information explicitly into the predictive model.  It has been suggested that simply including 

latitude and longitude coordinates of county centroids might allow machine learning techniques 

like Cubist to identify simple spatial patterns in the data.  More complicated methods of 

including topological relationships (perhaps a county-neighbor weights matrix or something 

similar) might also yield interesting results.  It should also be noted that Cubist is only one 

machine learning program and many other programs and techniques exist, including neural 

networks, which might be shown to better model the relationships between the environment and 

WNV risk. 

Finally there is the obvious need to identify the confounding variable(s) at work in the 

NGP region and in the western US in general.  Possible culprits include the amount of artificial 

irrigation (much more common in the western US) which provides excellent mosquito habitat, or 

perhaps different mosquito vectors or avian hosts which may prefer different environmental 

conditions.  The next major step in this research, once some of the bugs are worked out of the 

model, would be to incorporate it into a spatial decision support system (SDSS) for use by 

researchers and public health officials with an interest in early warning detection of areas at 

high-risk for WNV disease.   
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APPENDIX A - PREPROCESSING PYTHON SCRIPTS 

 As described in section 3.6.1, much of the data preprocessing was accomplished via 

Python scripts, namely the NDVI data from MODIS and the Temperature data from PRISM.  

The preprocessing scripts for these datasets are included here in abbreviated form. 

A1. NDVI_PREP.PY 

# ----------------------------------------------------------------------------------- 
# NDVI_Prep.py 
# Created on: 2013-01-21 16:21:52.00000 
#    (generated by ArcGIS/ModelBuilder) 
# Modified by: Sean Young 
# Description:  
#    Takes a year's worth of MODIS NDVI tiles one month at a time, mosaicks them  
#    together, then aggregates the data to the county level using the Zonal  
#    Statistics as Table tool from the Spatial Analyst toolbox. 
# ----------------------------------------------------------------------------------- 
 
#----------------------------------------------------- 
# Import, Set Product Code, and Check Out Extension 
#    Note: glob used for file searching functionality 
#----------------------------------------------------- 
print "Loading..." 
import arceditor 
import arcpy 
import glob 
arcpy.CheckOutExtension("spatial") 
 
#------------------------- 
# User-defined Variables: 
#------------------------- 
yr = "03" 
MODIS_tilepath = "D:\\GIS\\sgyoung\\ThesisData\\MODIS\\" 
output_gdb = "D:\\GIS\\sgyoung\\ThesisData\\MODISData.gdb" 
counties = "D:\\GIS\\sgyoung\\ThesisData\\MyData.gdb\\CONUS_counties_dtl" 
 
#------------------ 
# Other Variables: 
#------------------ 
mmmyy = "jan"+yr 
acqdate = "A20"+yr+"001" 
mmmyy2 = "feb"+yr 
acqdate2 = "A20"+yr+"032" 
mmmyy3 = "mar"+yr 
acqdate3 = "A20"+yr+"061" 
mmmyy4 = "apr"+yr 
acqdate4 = "A20"+yr+"092" 
mmmyy5 = "may"+yr 
acqdate5 = "A20"+yr+"122" 
mmmyy6 = "jun"+yr 
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acqdate6 = "A20"+yr+"153" 
mmmyy7 = "jul"+yr 
acqdate7 = "A20"+yr+"183" 
mmmyy8 = "aug"+yr 
acqdate8 = "A20"+yr+"214" 
mmmyy9 = "sep"+yr 
acqdate9 = "A20"+yr+"245" 
mmmyy10 = "oct"+yr 
acqdate10 = "A20"+yr+"275" 
mmmyy11 = "nov"+yr 
acqdate11 = "A20"+yr+"306" 
mmmyy12 = "dec"+yr 
acqdate12 = "A20"+yr+"336" 
mosaic_datuminfo = 
"GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_1984',6378137.0,298.257223563
]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]];-400 -400 1000000000;-
100000 10000;-100000 10000;8.98315284119522E-09;0.001;0.001;IsHighPrecision" 
 
#---------------- 
# Processing Jan 
#---------------- 
print "Starting "+mmmyy 
 
NDVI_Mosaic = "NDVI_" + mmmyy 
NDVI_Mosaic_Path = output_gdb+"\\"+NDVI_Mosaic 
ndvi_stat = output_gdb+"\\ndvi_"+mmmyy+"_stat"  
 
#---------------------- 
# Locating MODIS Tiles 
#---------------------- 
print "Finding Tiles..." 
h07v05 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h07v05.005.*.hdf")[0]  
h08v04 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h08v04.005.*.hdf")[0]  
h08v05 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h08v05.005.*.hdf")[0]  
h08v06 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h08v06.005.*.hdf")[0]  
h09v04 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h09v04.005.*.hdf")[0]  
h09v05 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h09v05.005.*.hdf")[0]  
h09v06 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h09v06.005.*.hdf")[0]  
h10v04 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h10v04.005.*.hdf")[0]  
h10v05 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h10v05.005.*.hdf")[0]  
h10v06 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h10v06.005.*.hdf")[0]  
h11v04 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h11v04.005.*.hdf")[0]  
h11v05 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h11v05.005.*.hdf")[0]  
h12v04 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h12v04.005.*.hdf")[0]  
h12v05 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h12v05.005.*.hdf")[0]  
h13v04 = glob.glob(MODIS_tilepath+"MOD13A3."+acqdate+".h13v04.005.*.hdf")[0] 
allTiles = 
h07v05+";"+h08v04+";"+h08v05+";"+h08v06+";"+h09v04+";"+h09v05+";"+h09v06+";"+h10v04+"
;"+h10v05+";"+h10v06+";"+h11v04+";"+h11v05+";"+h12v04+";"+h12v05+";"+h13v04 
 
#-------------------------------- 
# Process: Create Mosaic Dataset 
#-------------------------------- 
print "Creating Mosaic..." 
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arcpy.CreateMosaicDataset_management(output_gdb, NDVI_Mosaic, mosaic_datuminfo, "", 
"", "NONE", "") 
 
#---------------------------------------- 
# Process: Add Rasters To Mosaic Dataset 
#---------------------------------------- 
print "Adding tiles to mosaic..." 
arcpy.AddRastersToMosaicDataset_management(NDVI_Mosaic_Path, "Raster Dataset", 
allTiles, "UPDATE_CELL_SIZES", "UPDATE_BOUNDARY", "NO_OVERVIEWS", "", "0", "1500", 
"", "", "SUBFOLDERS", "EXCLUDE_DUPLICATES", "NO_PYRAMIDS", "NO_STATISTICS", 
"NO_THUMBNAILS", "", "NO_FORCE_SPATIAL_REFERENCE")                                            
 
#------------------------------------ 
# Process: Zonal Statistics as Table 
#------------------------------------ 
print "Calculating statistics..." 
arcpy.gp.ZonalStatisticsAsTable_sa(counties, "FIPS", NDVI_Mosaic_Path, ndvi_stat, 
"DATA", "MEAN") 
 
print "Done with "+mmmyy 
 
#---------------- 
# Processing Feb 
#---------------- 
print "Starting "+mmmyy2 
. 
. 
. 
. 
print "Done with "+mmmyy12 
 
print “Success!” 
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A2. NDVI_TABLEMELTER.PY 

# ----------------------------------------------------------------------------------- 
# NDVI_TableMelter.py 
# Created on: 2013-01-22 15:15:13.00000 
# Modified by: Sean Young 
# Description: 
#     Takes one year of NDVI monthly data tables, after mosaicking and aggregation  
#     in NDVI_Prep.py and "melts" them together into one table. 
# ----------------------------------------------------------------------------------- 
 
#--------------------- 
# Import arcpy module 
#--------------------- 
print "Loading..." 
import arcpy 
 
#------------------------ 
# User-defined Variables: 
#------------------------ 
yr = "03" 
modispath = "D:\\GIS\\sgyoung\\ThesisData\\MODISData.gdb" 
outPath = "D:\\GIS\\sgyoung\\ThesisData\\TestOutput.gdb" 
 
#----------------- 
# Other Variables: 
#----------------- 
deletables = "ZONE_CODE;COUNT;AREA;MIN;MAX" 
melters = "MEAN" 
mainTable = outPath+"\\ndvi_"+yr 
temp02 = modispath+"\\ndvi_feb"+yr+"_stat" 
temp03 = modispath+"\\ndvi_mar"+yr+"_stat" 
temp04 = modispath+"\\ndvi_apr"+yr+"_stat" 
temp05 = modispath+"\\ndvi_may"+yr+"_stat" 
temp06 = modispath+"\\ndvi_jun"+yr+"_stat" 
temp07 = modispath+"\\ndvi_jul"+yr+"_stat" 
temp08 = modispath+"\\ndvi_aug"+yr+"_stat" 
temp09 = modispath+"\\ndvi_sep"+yr+"_stat" 
temp10 = modispath+"\\ndvi_oct"+yr+"_stat" 
temp11 = modispath+"\\ndvi_nov"+yr+"_stat" 
temp12 = modispath+"\\ndvi_dec"+yr+"_stat" 
 
#------------------------- 
# Process: Copy mainTable 
#------------------------- 
print "Copying Jan"+yr+" table to new location" 
arcpy.Copy_management(modispath+"\\ndvi_jan"+yr+"_stat",mainTable,"Table") 
print "Copied to "+modispath+" successfully." 
 
#------------------------ 
# Process: Delete Fields 
#------------------------ 
print "Deleting Extra Fields..." 
arcpy.DeleteField_management(mainTable, deletables) 
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print "Extraneous fields eradicated with extreme prejudice." 
 
#---------------------- 
# Process: Join Fields 
#---------------------- 
print "Melting tables together..." 
arcpy.JoinField_management(mainTable, "FIPS", temp02, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp03, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp04, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp05, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp06, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp07, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp08, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp09, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp10, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp11, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp12, "FIPS", melters) 
 
print "Table melting of "+mainTable+" complete."  
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A3. TEMP_PREP.PY 

# ----------------------------------------------------------------------------------- 
# Temp_Prep.py 
# Created on: 2013-01-21 10:27:48.00000 
#     (generated by ArcGIS/ModelBuilder) 
# Modified by: Sean Young 
# Description:  
#     Takes one year of monthly TMax and TMin PRISM Data, projects the data, then  
#     aggregates to county level using Zonal Statistics as Table tool from Spatial  
#     Analyst toolbox. 
# ----------------------------------------------------------------------------------- 
 
#-------------------------------- 
# Import and Check Out Extension 
#-------------------------------- 
print “Loading…” 
import arcpy 
arcpy.CheckOutExtension("spatial") 
 
#------------------------- 
# User-defined Variables: 
#------------------------- 
yr = "03" 
inpath = "D:\\GIS\\sgyoung\\ThesisData\\PRISM\\20"+yr 
outpath = "D:\\GIS\\sgyoung\\ThesisData\\PRISMData.gdb" 
cnty = "D:\\GIS\\sgyoung\\ThesisData\\MyData.gdb\\CONUS_counties_dtl" 
 
#------------------ 
# Other Variables: 
#------------------ 
tmin_01 = "us_tmin_20"+yr+".01" 
tmin_02 = "us_tmin_20"+yr+".02" 
tmin_03 = "us_tmin_20"+yr+".03" 
tmin_04 = "us_tmin_20"+yr+".04" 
tmin_05 = "us_tmin_20"+yr+".05" 
tmin_06 = "us_tmin_20"+yr+".06" 
tmin_07 = "us_tmin_20"+yr+".07" 
tmin_08 = "us_tmin_20"+yr+".08" 
tmin_09 = "us_tmin_20"+yr+".09" 
tmin_10 = "us_tmin_20"+yr+".10" 
tmin_11 = "us_tmin_20"+yr+".11" 
tmin_12 = "us_tmin_20"+yr+".12" 
tmin_14 = "us_tmin_20"+yr+".14" 
tmax_01 = "us_tmax_20"+yr+".01" 
tmax_02 = "us_tmax_20"+yr+".02" 
tmax_03 = "us_tmax_20"+yr+".03" 
tmax_04 = "us_tmax_20"+yr+".04" 
tmax_05 = "us_tmax_20"+yr+".05" 
tmax_06 = "us_tmax_20"+yr+".06" 
tmax_07 = "us_tmax_20"+yr+".07" 
tmax_08 = "us_tmax_20"+yr+".08" 
tmax_09 = "us_tmax_20"+yr+".09" 
tmax_10 = "us_tmax_20"+yr+".10" 
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tmax_11 = "us_tmax_20"+yr+".11" 
tmax_12 = "us_tmax_20"+yr+".12" 
tmax_14 = "us_tmax_20"+yr+".14" 
tmin01_stat = outpath + "\\tmin"+yr+"01_stat" 
tmin02_stat = outpath + "\\tmin"+yr+"02_stat"  
tmin03_stat = outpath + "\\tmin"+yr+"03_stat"  
tmin04_stat = outpath + "\\tmin"+yr+"04_stat"  
tmin05_stat = outpath + "\\tmin"+yr+"05_stat"  
tmin06_stat = outpath + "\\tmin"+yr+"06_stat"  
tmin07_stat = outpath + "\\tmin"+yr+"07_stat"  
tmin08_stat = outpath + "\\tmin"+yr+"08_stat"  
tmin09_stat = outpath + "\\tmin"+yr+"09_stat"  
tmin10_stat = outpath + "\\tmin"+yr+"10_stat"  
tmin11_stat = outpath + "\\tmin"+yr+"11_stat"  
tmin12_stat = outpath + "\\tmin"+yr+"12_stat"  
tmin_stat = outpath + "\\tmin"+yr+"_stat"  
tmax01_stat = outpath + "\\tmax"+yr+"01_stat"  
tmax02_stat = outpath + "\\tmax"+yr+"02_stat"  
tmax03_stat = outpath + "\\tmax"+yr+"03_stat"  
tmax04_stat = outpath + "\\tmax"+yr+"04_stat"  
tmax05_stat = outpath + "\\tmax"+yr+"05_stat"  
tmax06_stat = outpath + "\\tmax"+yr+"06_stat"  
tmax07_stat = outpath + "\\tmax"+yr+"07_stat"  
tmax08_stat = outpath + "\\tmax"+yr+"08_stat"  
tmax09_stat = outpath + "\\tmax"+yr+"09_stat"  
tmax10_stat = outpath + "\\tmax"+yr+"10_stat"  
tmax11_stat = outpath + "\\tmax"+yr+"11_stat"  
tmax12_stat = outpath + "\\tmax"+yr+"12_stat"  
tmax_stat = outpath + "\\tmax"+yr+"_stat" 
projection_info = 
"GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_1984',6378137.0,298.257223563
]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]]" 
stats = "MIN_MAX_MEAN" 
 
#----------------------------- 
# Process: Define Projections 
#----------------------------- 
print “Defining projections…” 
arcpy.DefineProjection_management(tmin_01, projection_info) 
arcpy.DefineProjection_management(tmin_02, projection_info) 
arcpy.DefineProjection_management(tmin_03, projection_info) 
arcpy.DefineProjection_management(tmin_04, projection_info) 
arcpy.DefineProjection_management(tmin_05, projection_info) 
arcpy.DefineProjection_management(tmin_06, projection_info) 
arcpy.DefineProjection_management(tmin_07, projection_info) 
arcpy.DefineProjection_management(tmin_08, projection_info) 
arcpy.DefineProjection_management(tmin_09, projection_info) 
arcpy.DefineProjection_management(tmin_10, projection_info) 
arcpy.DefineProjection_management(tmin_11, projection_info) 
arcpy.DefineProjection_management(tmin_12, projection_info) 
arcpy.DefineProjection_management(tmin_14, projection_info) 
arcpy.DefineProjection_management(tmax_01, projection_info) 
arcpy.DefineProjection_management(tmax_02, projection_info) 
arcpy.DefineProjection_management(tmax_03, projection_info) 
arcpy.DefineProjection_management(tmax_04, projection_info) 
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arcpy.DefineProjection_management(tmax_05, projection_info) 
arcpy.DefineProjection_management(tmax_06, projection_info) 
arcpy.DefineProjection_management(tmax_07, projection_info) 
arcpy.DefineProjection_management(tmax_08, projection_info) 
arcpy.DefineProjection_management(tmax_09, projection_info) 
arcpy.DefineProjection_management(tmax_10, projection_info) 
arcpy.DefineProjection_management(tmax_11, projection_info) 
arcpy.DefineProjection_management(tmax_12, projection_info) 
arcpy.DefineProjection_management(tmax_14, projection_info) 
 
#------------------------------------ 
# Process: Zonal Statistics as Table 
#------------------------------------ 
print “Aggregating and calculating statistics…” 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_01, tmin01_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_02, tmin02_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_03, tmin03_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_04, tmin04_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_05, tmin05_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_06, tmin06_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_07, tmin07_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_08, tmin08_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_09, tmin09_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_10, tmin10_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_11, tmin11_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_12, tmin12_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmin_14, tmin_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_01, tmax01_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_02, tmax02_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_03, tmax03_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_04, tmax04_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_05, tmax05_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_06, tmax06_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_07, tmax07_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_08, tmax08_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_09, tmax09_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_10, tmax10_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_11, tmax11_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_12, tmax12_stat, "DATA", stats) 
arcpy.gp.ZonalStatisticsAsTable_sa(cnty, "FIPS", tmax_14, tmax_stat, "DATA", stats) 
 
print “Success!” 
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A4. TEMP_TABLEMELTER.PY 

# ----------------------------------------------------------------------------------- 
# PRISM_TableMelter.py 
# Created on: 2013-01-22 15:15:13.00000 
# Modified by: Sean Young 
# Description: 
#    Takes one year of TMax or TMin PRISM tables, after projection and aggregation by 
#    Temp_Prep.py and melts them all into one new table. 
# ----------------------------------------------------------------------------------- 
 
#--------------------- 
# Import arcpy module 
#--------------------- 
print "Loading..." 
import arcpy 
 
#------------------------- 
# User-defined Variables: 
#------------------------- 
yr = "08" 
minORmax = "MIN" 
inpath = "D:\\GIS\\sgyoung\\ThesisData\\PRISMData.gdb" 
outPath = "D:\\GIS\\sgyoung\\ThesisData\\TempOutput.gdb" 
 
#------------------ 
# Other Variables: 
#------------------ 
if minORmax == "MAX": 
    pathfill = "tmax" 
    deletables1 = "ZONE_CODE;MIN" 
    melters = "MAX;MEAN" 
if minORmax == "MIN": 
    pathfill = "tmin" 
    deletables1 = "ZONE_CODE;MAX" 
    melters = "MIN;MEAN" 
prismpath = inpath+"\\"+pathfill+yr 
mainTable = outPath+"\\"+pathfill+yr 
temp02 = prismpath+"02_stat" 
temp03 = prismpath+"03_stat" 
temp04 = prismpath+"04_stat" 
temp05 = prismpath+"05_stat" 
temp06 = prismpath+"06_stat" 
temp07 = prismpath+"07_stat" 
temp08 = prismpath+"08_stat" 
temp09 = prismpath+"09_stat" 
temp10 = prismpath+"10_stat" 
temp11 = prismpath+"11_stat" 
temp12 = prismpath+"12_stat" 
tempYR = prismpath+"_stat" 
 
#------------------------- 
# Process: Copy mainTable 
#------------------------- 
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print "Copying Jan"+yr+" table to new location" 
arcpy.Copy_management(prismpath+"01_stat",mainTable,"Table") 
print "Copied to new location successfully." 
 
#----------------------- 
# Process: Delete Field 
#----------------------- 
print "Deleting Extra Fields..." 
arcpy.DeleteField_management(mainTable, deletables1) 
print "Extraneous fields eradicated with extreme prejudice." 
 
#--------------------- 
# Process: Join Field 
#--------------------- 
print "Melting tables together..." 
arcpy.JoinField_management(mainTable, "FIPS", temp02, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp03, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp04, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp05, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp06, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp07, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp08, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp09, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp10, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp11, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", temp12, "FIPS", melters) 
arcpy.JoinField_management(mainTable, "FIPS", tempYR, "FIPS", melters) 
 
print "Table melting of "+mainTable+" complete."  
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APPENDIX B - CUBIST FILE FORMATS 

 Cubist (Cubist, 2012) requires a minimum of two input files for model creation, and 

outputs to at least two others.  These files are text and csv formats, but are identified for use in 

Cubist with special extensions: .names and .data (inputs), .model and .pred (outputs), with two 

additional optional input files, .test and .cases.  Examples of these file formats are presented 

below, as well as part of the console output from Cubist. 

B1. NAMES (*.NAMES) FILE 

The names file is the first required input file for Cubist, and it declares the names and 

types of all the data to be used in the machine learning decision tree generation.  The Names file 

is a plain text (.txt) document, but the extension must be changed to “.names” in order for Cubist 

to recognize it and read it in properly.  The syntax is very simple: comments are delineated with 

a vertical bar “|” and white space (multiple spaces or tabs) are treated as single spaces, allowing 

for formatting for user-readability without impacting the syntax of the file.   

The target attribute (the variable to be predicted with the model) is always listed first, 

regardless of its position in the actual data file, but it must be listed again in place along with its 

type.  All variables are then declared in the order in which they occur in the data table, followed 

by a colon “:”, along with a data type, or the instruction for Cubist to ignore that particular 

attribute.  Recognized data types include continuous (used for most numeric attributes), discrete 

(identified as a list of possible nominal values separated by commas and terminating with a 

period), date, time, timestamp, and label, and they all must end with a period.  The label variable 

is used to identify cases and is not used in model generation.  Cubist can also use implicitly-

defined attribute values using simple formulas that can involve any previously defined attribute 

variable. 
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Below is an abbreviated version of the names file for R1a: 

|************************************************************** 
| R1a - Averages of all 6 years, used to predict Raw WNV Rates 
|************************************************************** 
 
| Target goes first, without declaration of type: 
RR38.    | Target 
 
| List of variables in order comes next, with type declared: 
|***County Info*** 
OID:  ignore. | Object ID from ArcMap 
State:  ignore. | Two letter state code 
County: ignore. | County name 
FIPS:  label.  | Federal Information Processing Standard Code 
|***WNV*** 
RR38:  continuous. | Raw Rate for 2003-2008 totals. 
ER38:  ignore. 
|***Precip*** 
ppt38:  continuous.  | Mean Precip 30yr Normal 
|***Temp*** 
tmax38: continuous. | Mean Max Temp 30yr Normal 
tmin38: continuous. | Mean Min Temp 30yr Normal 
|***NDVI*** 
n0138:  continuous. | Mean NDVI for Jan 2003-08 
n0238:  continuous. | Mean NDVI for Feb 
n0338:  continuous. | March 
n0438:  continuous. | April 
n0538:  continuous. | May 
. 
. 
. 
. 
nlcd95: continuous. | Area of NLCD06 class 95 – Emergent Herbaceous Wetland 
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B2. DATA (*.DATA), TEST (*.TEST), AND CASES (*.CASES) FILES 

The required Data file is a comma-separated, or CSV, text file, but like the Names file it 

uses a custom extension of “.data”.  This file must not contain a header row, and the order of the 

attributes in the data table must match the order listed in the Names file exactly.  The optional 

Test (*.test) file, used only when separate training and test datasets are available, and the 

optional Cases (*.cases) file, which is only used in the “Sample.c” program, are both the exact 

same format as the Data file, with the exception that the values for the target variable can be 

unknown in a Cases file.  These files contain only attribute data values separated by commas, 

with no comments or other special symbols. 

Below is a small segment (only the first 8 columns of the first 5 and last rows shown) of 

the Data file for R1a: 

1,AL,Autauga County,1001,0,0,137148.4531,2408.917481... 
2,AL,Baldwin County,1003,6.083280105,94.89916963,166424.8906,2504.301514... 
3,AL,Barbour County,1005,3.564342319,110.4946119,132380.8906,2476.249268... 
4,AL,Bibb County,1007,0,0,140364.7656,2388.782959... 
5,AL,Blount County,1009,1.812770971,1.812770971,141347.0938,2217.50708... 
. 
. 
. 
3105,WY,Weston County,56045,279.8713574,1944.36943,37528.54297,1502.03418... 
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B3. PRED (*.PRED) FILE 

The Pred file is a text file output by Cubist with the extension “.pred” that gives predicted 

values for all test cases used.  Cases are identified by the label attribute (which was identified in 

the Names file), and the Pred file lists both the actual and predicted values for each case, 

separated by spaces. 

An abbreviated example of R1a’s Pred file is shown below: 

(Default value 35.5165825) 
 
   Actual  Predicted    Case 
    Value      Value 
 --------  ---------    ---- 
 9.585354  0.0339297    1013 
 0.870174  0.9073461    1015 
 0.000000  0.4137744    1021 
 0.000000  1.0149122    1035 
 0.000000  0.3301621    1041 
. 
. 
. 
. 
33.743671  19.3345871   56029 
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B4. MODEL (*.MODEL) FILE 

The Model file output by Cubist is a text file with the extension “.model” that contains 

the production rules derived from the hierarchical decision tree.  While the model file is plain 

text, every piece of information in the file is tagged so that the model file can be easily parsed 

and read in by external programs.  This makes the file somewhat difficult for humans to read 

because it appears cluttered, but the tags allow great extensibility when using Cubist models with 

programs like “Sample.c” or others.  See Appendix B5 for a more human-friendly formatting of 

the model rules, as printed to the console immediately following model generation. 

An abbreviated example of the Model file for R1a is provided below (including Rule 1 

and Rule 15): 

id="Cubist 2.07 GPL Edition 2013-02-01" 
prec="6" globalmean="35.51658" extrap="0.1" insts="0" ceiling="1276.216" floor="0" 
att="RRtot" mean="35.51658" sd="108.1282" min="0" max="1160.2" 
att="ppt38" mean="99045.09" sd="35007.9" min="8322.42" max="297105" 
att="tmax38" mean="1884.899" sd="463.3917" min="782.126" max="3084.98" 
att="tmin38" mean="633.3988" sd="450.516" min="-612.162" max="1975.05" 
att="n0138" mean="3620.359" sd="1561.452" min="-125.285" max="8069.57" 
att="n0238" mean="3451.231" sd="1544.414" min="-175.993" max="7949.23" 
. 
. 
. 
. 
att="nlcd95" mean="3.163126e+07" sd="1.260578e+08" min="0" max="2.97298e+09" 
sample="0.8" init="12" 
entries="1" 
rules="15" 
conds="2" cover="1723" mean="3.2311018" loval="0" hival="98.8468" esterr="3.3677480" 
type="2" att="ppt38" cut="75464.898" result=">" 
type="2" att="n1238" cut="3238.8015" result=">" 
coeff="5.5157504" att="ppt38" coeff="4e-05" att="tmax38" coeff="0.005" att="tmin38" 
coeff="-0.008" att="n0138" coeff="-0.0019" att="n0238" coeff="0.0009" att="n0338" 
coeff="0.0024" att="n0438" coeff="-0.001" att="n0638" coeff="0.0032" att="n0738" 
coeff="-0.0022" att="n0838" coeff="-0.0017" att="n0938" coeff="0.0022" att="n1038" 
coeff="-0.0047" att="n1138" coeff="0.0029" att="n1238" coeff="-0.0017" 
. 
. 
. 
. 
conds="5" cover="34" mean="381.3927917" loval="24.4569" hival="758.988" 
esterr="149.3016052" 
type="2" att="nlcd42" cut="61200" result="<=" 
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type="2" att="tmax38" cut="1853.483" result="<=" 
type="2" att="elevMean" cut="464.29883" result=">" 
type="2" att="nlcd23" cut="1830600" result="<=" 
type="2" att="n0338" cut="2303.4329" result=">" 
coeff="1590.8806906" att="ppt38" coeff="-0.00938" att="tmax38" coeff="0.061" 
att="tmin38" coeff="-0.035" att="n0238" coeff="0.3467" att="n0338" coeff="-0.467" 
att="n0438" coeff="-0.0035" att="n0538" coeff="0.0036" att="n0638" coeff="0.0034" 
att="n0838" coeff="-0.0018" att="n0938" coeff="0.0019" att="n1038" coeff="0.002" 
att="n1138" coeff="-0.0055" att="elevRange" coeff="-0.006" att="elevMean" coeff="-
0.016" att="sloMean" coeff="-0.003305" att="nlcd23" coeff="-1.5e-07" att="nlcd41" 
coeff="-7e-09" 
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B5. CONSOLE OUTPUT 

When the Unix version of Cubist is run from the command line, a successful model 

generation results in detailed output “printed” directly to the console.  Most of the content is a 

human-friendly formatting of the production rules that define the model, and which can be 

derived with some effort from the Model file.  However, Cubist also outputs evaluation data to 

the console which is not included in the default output files (Pred or Model).  This evaluation 

data is very valuable, including the average error magnitude, the relative error magnitude, and 

the correlation coefficient as calculated on both the training and the test cases.  Cubist also lists 

how often the various attributes were used in the model, either in rule conditions (marked 

“Conds”) or in the linear equations that define the model’s predicted values (marked “Model”). 

An abbreviated version of the console output for R1a is provided below: 

Cubist [Release 2.07 GPL Edition]  Fri Feb  1 10:06:24 2013 
--------------------------------- 
 
    Options: 
 Application `R1a' 
 Use 80% of data for training 
 Random seed 12 
 
    Target attribute `RRtot' 
 
Read 2484 cases (48 attributes) from R1a.data 
 
Model: 
 
  Rule 1: [1723 cases, mean 3.2311018, range 0 to 98.84679, est err 3.3677480] 
 
    if 
 ppt38 > 75464.9 
 n1238 > 3238.802 
    then 
 RRtot = 5.5157504 - 0.0047 n1038 + 0.0032 n0638 + 0.0029 n1138 
         - 0.008 tmin38 - 0.0022 n0738 + 0.0022 n0938 + 0.0024 n0338 
         - 0.0019 n0138 - 0.0017 n0838 + 0.005 tmax38 - 0.0017 n1238 
         - 0.001 n0438 + 4e-05 ppt38 + 0.0009 n0238 
 
  Rule 2: [420 cases, mean 4.5232439, range 0 to 157.3587, est err 4.0890737] 
. 
. 
. 
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  Rule 15: [34 cases, mean 381.3927917, range 24.45685 to 758.988, est err 
149.3016052] 
 
    if 
 tmax38 <= 1853.483 
 n0338 > 2303.433 
 elevMean > 464.2988 
 nlcd23 <= 1830600 
 nlcd42 <= 61200 
    then 
 RRtot = 1590.8806906 - 0.003305 sloMean - 0.467 n0338 + 0.3467 n0238 
         - 0.00938 ppt38 + 0.061 tmax38 - 0.035 tmin38 - 0.016 elevMean 
         - 1.5e-07 nlcd23 - 0.0055 n1138 + 0.0036 n0538 - 0.0035 n0438 
         + 0.0034 n0638 - 0.006 elevRange + 0.0019 n0938 - 0.0018 n0838 
         + 0.002 n1038 - 7e-09 nlcd41 
 
 
Evaluation on training data (2484 cases): 
 
    Average  |error|         17.0169770 
    Relative |error|               0.31 
    Correlation coefficient        0.87 
 
 
 Attribute usage: 
   Conds  Model 
 
    78%    94%    ppt38 
    60%    56%    n1238 
    34%    82%    tmax38 
    32%    35%    elevMean 
    24%           nlcd90 
    18%    14%    nlcd52 
    10%    33%    sloMean 
     9%     5%    nlcd42 
     7%    12%    nlcd23 
     6%           nlcd43 
     5%    69%    n0338 
           99%    tmin38 
           95%    n0438 
           78%    n0938 
           77%    n0238 
           76%    n0638 
           76%    n1138 
           75%    n0838 
           74%    n1038 
           72%    n0738 
           67%    n0138 
           25%    n0538 
           20%    elevRange 
           15%    nlcd41 
           12%    asp4 
            9%    nlcd71 
            6%    nlcd82 
            6%    nlcd11 
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            5%    nlcd21 
            4%    nlcd22 
            2%    asp2 
            2%    asp8 
 
 
Evaluation on test data (621 cases): 
 
    Average  |error|         20.7125696 
    Relative |error|               0.39 
    Correlation coefficient        0.84 
 
 
Time: 1.6 secs 
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