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ABSTRACT 

 

Site-specific recombination systems are powerful tools for genetic modification. They 

have been used to integrate a transgene into a pre-defined locus and to remove marker genes 

from a transgene locus. Two of the most widely used site-specific recombination systems in 

plants are the Cre/lox system from the bacteriophage P1 and the FLP/FRT system from the yeast 

Saccharomyces cerevisiae.  The Cre/lox system is well-characterized and is the first choice in 

application of site-specific recombination system. However, some applications such as marker-

free site-specific gene integration require the use of two recombination systems.  In addition, the 

availability of alternative recombination systems can offer a flexible choice or the opportunity to 

develop multiple applications in a single platform. Hence, the FLP/FRT system should be 

evaluated further for its recombination efficiency, particularly in rice, a model crop plant. Some 

studies using FLP/FRT systems, with the wild type FLP called FLPwt recombinase, reported low 

efficiency for regular application of the system in removal of transgenic locus. However, two 

improved versions of FLPwt: FLPe (thermostable version of FLPwt) and FLPo (mouse-codon 

optimized version of FLPe) are available and have not been carefully tested in plants. 

To look for the best choice of FLP recombinase variant in the application of the FLP/FRT 

system in crop genetic engineering, the relative recombination efficiencies of FLPwt, FLPe and 

FLPo for marker gene excision from the transgene locus in rice were evaluated. FLPwt, FLPe, 

and FLPo transgenic rice lines were generated and FLP activity in these lines was evaluated. 

These experiments revealed that FLPe and FLPo had much higher activity than FLPwt in 

removing FRT-flanked npt segment to fuse GUS gene with the promoter.  These experiments 



 

also indicated that FLPo is relatively more efficient than FLPe.  Thus, based upon results from 

the present study, I recommend the use of FLPo in plant genetic engineering. 
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1.1. Genetically Modified (GM) Crops and Agricultural Improvement 

World population is projected to reach 9.1 billion by 2050, which is 34 percent higher 

than today. In order to meet food demand for this increasing number of population, food 

production is required to increase about 70 percent in 2050 compared to the 2005-2007 period 

(FAO, 2009). This can be achieved via expansion of cultivated land and improvement of 

yield. The former target is not achievable since most arable land resources for agriculture 

have been used, and available land is declining because of the increase in population, 

urbanization, desertification, and erosion. In addition, climate change with additional abiotic 

stresses such as drought, cold, and salinity stresses, and emergence of pathogens are 

contributing to the reduction of food production (reviewed by Mahajan and Tuteja, 2005). 

Hence, it is urgent to produce crops with higher yield that are able to withstand abiotic and 

biotic stress.  

Traditional breeding has been successful in producing better varieties.  However, the 

process through discovery, selection, and crossing “super” individuals is slow, and is 

attainable only for those traits available in sexually compatible species. Meanwhile, plant 

biotechnology allows gene transfer across species boundary, in which, theoretically, a gene 

from one organism can be isolated and transferred to another organism even if it belongs to a 

different kingdom in the taxonomy system. The organism that received a gene from a foreign 

source is called transgenic or a genetically modified organism (GMO).  

The first successful efforts to produce transgenic plants trace back to the 1980s, when 

several groups reported generation of transgenic plants using model species (Wang et al., 

2011). Since then, the number of publications in the field increased dramatically, with the 
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focus shifting to crop plants (Vain, 2007). The traits of agronomic importance include disease 

and herbicide resistance and tolerance to environmental stresses such as drought, cold, and 

salinity. Recent research has also focused on increasing crop yield and the nutritional value. 

These activities hold great promise for food security, and deal with the climate change.  

In the year 1994, Tomato was the first GM crop to be grown, but the year 1996 was 

considered the first year of commercialization as the planted area of GM crops significantly 

increased and reached 1.7 million hectares (Brookes and Barfoot, 2006). Currently, 160 

million hectares of GM crops are planted in 29 countries in all continents of the world. The  

three countries that have the highest area planted in GM crops are the United States, Brazil, 

and Argentina.  The most widely grown GM crop in the world is herbicide tolerant soybean, 

followed by stacked traits maize, and Bt cotton (James, 2011). Application of GM crops 

resistant to insects has resulted in a reduction in pesticide use (Kleter et al., 2007), which is 

useful to pest management, and beneficial to the environment. 

 1.2. Current Plant Transformation Technologies 

Plant transformation is the process by which foreign DNA is introduced into the 

excised plant tissues (explants). There are several methods to transfer DNA into plant cells: 

Agrobacterium-mediated T-DNA transfer, particle bombardment of DNA, polyethylene 

glycol-mediated DNA delivery, microinjection of DNA, and electroporation of DNA.  Among 

these, Agrobacterium and particle bombardment are the two common methods (Vain, 2007).  
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1.3. Transgene Locus Structure 

The integration mechanism of transgenes is not fully understood yet.  However, there 

have been a number of research studies that explored these mechanisms. The introduced DNA, 

normally, will integrate into the host genome randomly and generate multi-copy insertion 

patterns with linked or unlinked loci (Afolabi et al., 2004; Cluster et al., 1996; Maqbool and 

Christou, 1999; Pawlowski and Somers, 1998; Svitashev et al., 2002; Zhang et al., 2008). The 

composition of each locus is also variable and complex, comprising one or more transgene 

copies with complete, inverted, and/or truncated integration. DNA rearrangement may also 

occur in the host chromosomal sequences around the transgene locus (Maqbool and Christou, 

1999). Within the transgene locus, a vector backbone is often found to be integrated along with 

genes of interest (Afolabi et al., 2004; Vain, 2007). 

Chromosomal positions and the complexity of transgene loci have major effects on the 

level and stability of transgene expression (Matzke and Matzke, 1998; Stam et al., 1997). A 

gene will have a greater possibility to be expressed when located in euchromatin as opposed to 

heterochromatin regions. In fact, transgenes may preferentially integrate into transcriptionally 

active regions (Kohli et al., 2003), and this may be because of the accessibility of euchromatin 

to the foreign DNA. Also, multi-copy and complex structure insertion often leads to gene 

silencing (Stam et al., 1997).  

Gene silencing entails suppression or down regulation of gene activity. A number of 

studies have revealed several circumstances in which gene silencing can take place: a) position 

effect: the transgenes integrate in unfavorable locations in the genome such as telomeres and 

centromeres (Matzke and Matzke, 1998); b) gene copy number: presence of multiple copies of 
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the gene (Stam et al., 1997); and c) transgene over-expression either from multiple gene copies 

or from a single copy due to strong promoter activity (Que et al., 1997). Hence, in plant 

transformation, a single copy of the gene of interest (GOI) is expected to generate an optimum 

level and stable expression; although, a single copy may also undergo silencing if expressed by 

a strong promoter (Elmayan and Vaucheret, 1996).  Further, if multiple copies of a gene are 

full-length without any rearrangement or truncation, they may be expressed properly to 

generate higher expression compared to the single copy locus (Akbudak and Srivastava, 2011).  

Engineering of full-length multi-copy locus, however, requires precise transformation 

techniques such as recombinase-mediated gene integration. 

1.4. Selection Marker Gene (SMG) in Plant Transformation 

Plant transformation is a low efficiency process. Therefore, along with the GOI, 

selectable marker genes are used in plant transformation process to assist the selection of 

transformed cells. Most commonly used selection marker genes confer antibiotic or herbicide 

resistance (Table 1). On selection agent-containing media, non-transformed cells cannot 

survive whereas transformed cells can grow, and therefore, be selected. The presence of these 

genes in transgenic crops raises serious concern. Horizontal transfer of antibiotic resistance 

genes from transgenic plants to pathogenic bacteria could potentially occur, which would 

render the use of these antibiotics in disease treatment impossible. Although, the possibility of 

DNA transfer from plants to bacteria is debatable, many organizations including the U.S. Food 

and Drug Administration and European countries recommended removing antibiotic resistant 

genes from transgenic crops (EFB, 2001; FDA, 1998).  Similarly, there is a constant worry of 

the vertical transfer of herbicide resistance genes from crop to wild and weed species. In 

addition, once transgenic plants are selected and grown, selectable marker genes serve no 
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purpose. Meanwhile, the expression of these genes, which is usually driven by strong 

constitutive promoters such as maize ubiquitin promoter (ubi) or cauliflower mosaic virus 35S 

promoter (CaMV 35S), could be an unnecessary metabolic burden on plants (Gidoni et al., 

2008).  Besides, multi-gene transfer to study and engineer a metabolic pathway in plants is 

increasingly useful approach (Naqvi et al., 2010). However, the number of available of SMG 

applied routinely in plant transformation is limited, and SMG are needed for selection in each 

transformation step. Therefore, removal and recycling of SMG will alleviate public and 

regulatory concerns, and enable gene stacking. Taking all above reasons into account, obtaining 

marker-free transgenic plants is important for the future GM crops. A number of approaches 

have been used to produce marker-free transgenic plants, of which two most popular are 

following: 

 

 

 

Table 1: Commonly used selectable marker genes in plant transformation. 

Marker gene Enzyme encoded Selective agent 

nptII Neomycin phosphotransferase Genticin (G418), kanamycin 

hpt Hygromycin phosphotransferase Hygromycin B 
ppt Phosphinothricin acetyl transferase Phosphinothricin (Bialophos) 

als Acetolactate synthase 
Chlorosulfuron, 
imidazolinones 
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1.4.1. Marker-segregation by Co-transformation of GOI and SMGs 

In this approach, the SMG and GOI are transferred into explants on separate constructs. 

If they integrate into separate genomic loci, they can segregate in the progeny and marker-free 

progeny can be obtained. These constructs can be introduced by Agrobacterium-mediated 

transformation or biolistic transformation. However, the former is preferred as it usually 

produces distinct T-DNA copies and simpler transgene integrations compared to the latter. 

Using this approach, several studies have been successful in producing marker-free plants 

(Daley et al., 1998; Komari et al., 1996; Matthews et al., 2001; Miller et al., 2002).  

Using two vectors in one Agrobacterium strain, Daley et al. (1998) reported 8 out 40 

and 24 out of 41 primary transgenic lines of rapeseed and tobacco, respectively, to contain 

segregated loci of kanamycin resistance and GUS gene.  Thus, marker-free transgene locus 

could be obtained from 40% and 58% of T0 lines of rapeseed and tobacco, respectively. Miller 

et al. (2002) generated 87 co-transformed T0 events of maize expressing GUS activity and 

LibertyTM resistance, using one vector (containing two T-DNA regions) in one strain. Marker-

free T1 progeny (GUS positive, Liberty sensitive) were recovered from 55 of these lines, giving 

an efficiency of ~64%.  In rice, Parkhi et al. (2005), using two vectors in two strains, obtained 

14 marker-free lines out of a total of 24 co-transformants.  In another study carried out to 

develop sheath blight resistant transgenic rice, Sripriya et al (2008) obtained 4 co-transformed 

events, of which two were able to generate marker free in T1 progeny. In this study, two 

vectors in one strain were used.  

The advantage of this approach is that no post-transformation modifications are needed 

to recover marker-free plants.  However, this application is limited to sexually propagated 

species only and in many cases, both T-DNA integrate into the same locus. For example, 
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Afolabi et al. (2004) selected 50 co-transformed rice lines, representing 98 loci, developed by 

one strain two vector approach (pGreen and pSoup vectors, where pGreen contained SMG).  

Transgene inheritance and segregation analysis revealed that 56% of the loci contained linked 

pGreen and pSoup insertions; while 31% had only the pGreen locus, and 13% had only the 

pSoup locus in the progeny (Afolabi et al., 2004). Transgene expression analysis showed that 

overall efficiency of marker-free “active” T-DNA line recovery is ~9%.  Previous studies were 

based on phenotypic analysis, whereas this study carried out a detailed molecular analysis.  

Thus, efficiency reported by Afolabi et al. (2004) is more reliable.  In addition, most transgenic 

lines produced by the Agrobacterium method contain binary vector backbone integrations, 

which is also an undesirable genetic element.   

1.4.2.  Recombinase-mediated excision of SMGs 

Recombinases are able to delete a DNA segment placed between two directly oriented 

binding sites. Hence, a site-specific recombination (SSR) system can specifically remove 

SMGs from a transgene locus.  This application was first demonstrated by using the Cre/lox 

system to remove a kanamycin resistance gene from the tobacco genome (Dale and Ow, 1991).  

Later on, other SSR systems such as FLP/FRT, R/RS also were also used for SMGs removal 

(Darbani et al., 2007; Gidoni, Srivastava and Carmi, 2008; Puchta, 2003).  Recombinase 

mediated SMGs excision can be induced under certain conditions or in specific tissue by using 

inducible or tissue specific promoters (Fladung et al., 2010; Li et al., 2007; Liu et al., 2005; 

Zuo et al., 2001).  
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1.5. Approaches for Designing Transgene Locus 

High level and stable expression of transgenes is the goal of plant transformation. In 

order to achieve this, it is important to make sure that transgenes are integrated with a simple 

locus structure into active regions on chromosomes. Hence, designing a transgene locus, or in 

other words, gene targeting into a desired locus is a desirable approach in plant transformation. 

Gene targeting is made possible by homologous recombination (HR) between a transgene and a 

homologous sequence on the host chromosome (Weinthal et al., 2010). Homologous 

recombination is the basis of recombination between chromosomes during meiosis. This is also 

a natural mechanism to repair DNA double strand breaks (DSBs). Homologous recombination 

involves DNA synthesis directed from a homologous template. However, DSBs can also be 

repaired by illegitimate recombination (IR) via non-homologous end joining (NHEJ). Thus, 

HR-mediated gene targeting into mitotically dividing cells is quite inefficient (Cotsaftis and 

Guiderdoni, 2005). However, gene targeting can be enhanced by introducing DSB into specific 

genomic sites using specialized nucleases such as Zinc Finger nucleases or TALENs. 

1.5.1. Zinc-finger Nucleases (ZFNs) 

ZFNs are synthetic restriction enzymes, which combine FokI non-specific cleavage 

domains with artificially prepared zinc finger domains (Weinthal et al., 2010; Wu et al., 2007).  

Expression of ZFNs can produce genomic DSBs on the recognition sites (DNA sequences) of 

the ZFNs, which can be easily designed theoretically for any DNA sequence.  ZFN induced 

DSB become hot spot for gene targeting.  ZFN-mediated gene targeting was successfully 

performed in tobacco (Townsend et al., 2009) and maize (Shukla et al., 2009).  In tobacco, 

based on the number of recombinants recovered, Townsend et al. (2009) achieved ~4% gene 
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targeting.  In the majority of these cases, the distance to mutation (separation of ZFN binding 

site and the transgene insertion site) was 0.2 kb.  In a few cases (0.2%) distance to mutation 

was 1.5 kb. In another study, based on number of targeted integration events in total 

transformants, Shukla et al. (2009) reported 18-40% gene targeting in maize using ZFNs. 

However, the major limitations of ZFN is their toxicity due to off-target activity, and designing 

of an efficient ZFN (DeFrancesco, 2012). To overcome this problem, TALENs have recently 

been developed. 

1.5.2. TALENs 

Transcription activator-like (TAL) effector nucleases (TALENs) are the fusion of the 

catalytic domain of the FokI nuclease with TAL effector targeting domain. The TAL effector 

target domain is used to direct the FokI nuclease catalytic domain to create site-specific DSBs. 

Since FokI functions as a dimer, TALENs are designed in pairs to bind two DNA strands at 

their target sites separated by a spacer. TAL effectors are found in the genus Xanthomonas. 

Injected into plant cells via type III secretion system, TAL effectors bind and activate 

expression of genes that facilitate the bacteria colonization (Bogdanove et al., 2010). Most TAL 

effectors have a 34 amino acid targeting domain involving many repeats. These repeats are 

polymorphic at a pair of residues, mostly at positions 12 and 13, called the repeat-variable di-

residue (RVD). Different RVDs associate with different nucleotides. The number of repeats 

and the composition of RVDs determine the length and the sequence of target sites (Boch and 

Bonas, 2010; Bogdanove and Voytas, 2011; Hockemeyer et al., 2011). The repeats in the TAL 

effectors domain can be customized to target a specific sequence of interest (Cermak et al., 

2011). Customized TALENs have been shown to target specifically the sequence of ADH1 

gene from Arabidopsis and gridlock gene from zebrafish in an in vivo assay carried out in yeast 
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(Christian et al., 2010).   While in plant system, TALEN-mediated gene targeting was described 

recently in rice(Li et al., 2012). 

Just as ZFNs, TALENs can also be designed to induce DSBs around marker genes to 

excise them from the chromosome.  The DSBs will be repaired by the cellular DNA repair 

system.  These technologies have not been applied for marker removal to date.  Effective 

design of TALENs for inducing site-specific DSBs, and subsequent repair of these sites will 

be necessary for the success of these new tools in biotechnology. The effectiveness of these 

tools in plant genetic engineering remains to be tested. 

1.6. Site-specific Recombination (SSR) Systems 

SSR systems play a vital role in native biological systems by inserting, excising, and 

inverting DNA segments. Most commonly used site-specific recombination systems are 

derived from prokaryotes and lower eukaryotes. They have been utilized widely for 

experimental research and biotechnology applications in higher eukaryotes. Each SSR system 

comprises a recombinase and its recognition sites (DNA sequence). In general, SSR systems 

can be divided into two families: tyrosine or serine recombinase families, according to the 

presence of tyrosine or serine in the binding site of the catalytic domain of the enzyme 

(Grindley et al., 2006).  

Some representatives of these systems are Cre/lox (Control of recombination/locus of x-

cross over) and FLP/FRT (FLP/FLP Recognition Target) systems in the tyrosine family, and 

phiC31 in the serine family. The Cre/lox system of bacteriophage P1 and FLP/FRT system 

from the 2-µm plasmid of the yeast Saccharomyces cerevisiae are well characterized and 
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commonly used in plant transformation. Each system comprises a single recombinase protein 

(Cre, FLP) and its target or recognition sequences (lox, FRT).  

Recombinases carry out the recombination reaction on their target sites and can join or 

excise a DNA fragment, without adding or losing nucleotides. Hence, they have been used for 

integrating or removing genes at specific positions. The target sites comprise repeats flanking 

spacer region. The spacer sequence determines the orientation of recombination sites. 

Recombinases bind to the inverted repeats and make a cut in the spacer region to initiate 

recombination.  Recombination between two oppositely oriented target sites leads to the 

inversion of the intervening DNA (Figure 1).  In contrast, recombination between two target 

sites placed in the same orientation on a DNA fragment leads to the excision of the 

intervening DNA.   

The excised DNA has a circular form, which in principle can be re-integrated into the 

site of origin (Figure 1).  However, excision reaction is kinetically favored and re-integration 

of the excised DNA has not been detected to date. This recombination mechanism/kinetics is 

appropriate for removing marker genes from transgenic plants.  For transgene integration, 

however, reversibility of recombination must be controlled to prevent excision of the newly 

integrated DNA. Hence, mutant recombination sites have been developed, which recombine 

with each other and generate recombination-incompetent products (Albert et al., 1995; 

Schlake and Bode, 1994).  As a result, the forward reaction is much more efficient than the 

reverse reaction (Figure 1). With the unique ability to cut and join DNA, SSR systems are 

useful tools for genetic engineering applications such as transgene integration and marker 

gene deletion.  
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Figure 1: Site-specific recombination. (a) Deletion and integration: Recombination 

between two directly oriented sites (triangles) on one DNA molecule leads to the excision of 

the intervening segment as a circular molecule. The reaction is reversible, so the site-specific 

recombination between a circular DNA molecule and chromosome leads to the insertion of 

circular DNA into the chromosome. (b) Inversion: Recombination between two oppositely 

oriented sites generates the inversion of the intervening DNA in a reversible reaction. 
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1.6.1. The Cre/lox system 

The Cre/lox system from Escherichia coli phage P1 consists of the Cre recombinase and 

its 34-bp recognition site, lox.  Cre is a 343-amino acid protein, with a molecular mass of 38-

kDa, belonging to the tyrosine recombinase family. The wild type lox site, called loxP, 

consists of two 13-bp binding regions flanking a 8-bp spacer region (Figure 2). The Cre/lox 

system is the first SSR system employed for genomic modification. This system is widely 

used in both plant and mammalian systems.  

A study by Sauer utilizing the Cre/lox systems in Saccharomyces cerevisiae showed 

that Cre functions in heterologous systems (Sauer, 1987). Later, the system was shown to 

function in tobacco (Dale and Ow, 1990). Since then, this system has been used in many 

species for a variety of applications.  

1.6.2. The FLP/FRT system 

The FLP/FRT system comes from the 2-µm plasmid of the yeast Saccharomyces 

cerevisiae. FLP recombinase, belonging to the tyrosine recombinase family, is a 423-amino 

acid protein, with a molecular mass of 46-kDa.  FRT is the binding site of FLP recombinase.  

The minimal FRT site consists of 34-bp, with two 13-bp repeats flanking the 8-bp spacer 

region. The native FRT site contains an additional 13-bp repeat, which is non-essential for the 

recombination (Figure 2).  

1.7. New FLP Proteins 

There are three different variants of FLP protein: FLPwt, FLPe, and FLPo. FLPwt is a 

modified version of native FLP found in yeast.  In FLPwt, cryptic splice acceptor sites at the 3’ 
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end was eliminated to allow for efficient translation of the FLP protein in mammalian and plant 

cells (O'Gorman et al., 1991). A study on recombination activity of FLP and Cre at different 

temperatures revealed that FLP is more thermolabile compared with Cre both in vitro and in 

vivo (E. coli and mammalian cells) (Buchholz et al., 1998).  The optimum temperature for FLP 

activity was found to be under 30 OC, and the activity was hardly detectable at temperature 

above 39 oC, where as optimum temperature for Cre was 37 oC and above.  Due to the 

instability of FLP at 37 oC, FLP/FRT recombination in plant and mammalian systems is 

inefficient.  Looking for an improved version of FLP that can stay active at higher 

temperatures, Buchholz and co-workers (1998) randomly mutated the coding sequence of FLP 

gene and obtained an thermostable version of FLP, enhanced FLP or FLPe, that had a four-fold 

higher recombination efficiency than FLPwt at 37oC and 10 fold higher at 40oC in E. coli but 

became fully denatured at 42oC (Buchholz et al., 1998). FLPo, the third variant of FLP 

recombinase, is the codon-optimized version of FLPe with the codon usage based on the mouse 

genome (Raymond and Soriano, 2007). 

1.8. Site-specific Recombination based Plant Transformation Technologies 

Several site-specific recombination systems have been shown be functional in a variety 

of plant cells.  Therefore, they have been used to manipulate transgene locus structure.  The 

most widely used SSR systems are Cre/lox and FLP/FRT.  These systems have been 

successfully used for removing SMG from plant genomes, and also for integrating foreign 

DNA into a dedicated genomic site.  A review of their applications in plant transformation is 

provided below: 
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Figure 2: Nucleotide sequences of lox and FRT recombination sites.  
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1.8.1. Cre/lox system based plant biotechnologies 

 Cre/lox system is the first site-specific recombination system used in studies to modify 

genomes of plants and animals. Based on the function of Cre recombinase, the system has been 

used widely to insert foreign genes into specific chromosomal locations, delete a transgene 

from the locus or resolve transgene locus structure.   

1.8.1.1. Cre/lox system for site-specific integration 

In plants, Cre/lox have been deployed to generate precise transgene integration in 

Arabidopsis (Louwerse et al., 2007; Vergunst et al., 1998; Vergunst and Hooykaas, 1998), 

tobacco (Albert et al., 1995; Day et al., 2000), and rice (Akbudak and Srivastava, 2011; 

Chawla et al., 2006; Srivastava et al., 2004; Srivastava and Ow, 2004; Srivastava and Ow, 

2002).  Site-specific integration is achieved via two steps: random integration of target lox site 

into the genome followed by Cre-mediated insertion of gene-of-interest in the target lox site 

(Figure 3). Vergunst and Hooykaas (1998) generated target Arabidopsis lines, which 

contained the nptII gene without a promoter and ATG start codon upstream.  Hence, these 

lines were kanamycin sensitive. Retransformation of the target lines with two vectors, one 

containing the promoter-ATG fragment and the other containing the cre gene, generated a 

precise integration locus, in which nptII was made functional by the precise placement of the 

promoter and start codon in promoterless nptII gene.  In another study, Day et al. (2000) 

utilized the Cre/lox system to achieve precise integration of the gus gene in tobacco.  In this 

study, Cre activity was encoded in the target locus; hence, transformation was done with a 

single vector called a donor vector that contained a promoter-less hygromycin resistance gene 

(Hyg) and a fully functional gus gene.  Introduction of the donor vector generated hygromycin 
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resistant cells expressing GUS activity.  Cre/lox mediated precise transgene integration in rice 

was first reported by Srivastava and Ow (2002).  This approach was further validated in 

follow up studies by Srivastava et al (2004) and Chawla et al (2006).  A similar strategy was 

adopted in this study involving restoration of nptII activity in the site-specific integration 

locus.   

Precise introduction of a transgene to a locus can also be achieved by the exchange of a 

cassette via recombination between a pair of lox sites.  In this approach, both target locus and 

donor vector must have two lox sites flanking genes to be exchanged via recombination.  

Louwerse et al. (2007) utilized this strategy to replace the bar gene in a target locus with the 

nptII gene and obtained kanamycin-resistant Arabidopsis lines. 

As described in section 1.3, single copy integration is highly desired in plant 

transformation because multi-copy transgene locus integration frequently undergoes gene 

silencing. The site-specific integration approach generates integration of a single-copy of 

transgenes into a defined genomic position. Hence, transgenic lines produced by this approach 

will not only be single copy, but also have predictable level of expression as determined by 

transgene control elements (e.g. promoters and enhancers) (Chawla et al., 2006; Day et al., 

2000; Nanto and Ebinuma, 2008; Srivastava et al., 2004). 
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Figure 3: Molecular Strategy of site-specific gene integration. (a) Donor plasmid 

containing the gene of interest (goi) along with a recombination site, lox or FRT, and 

promoterless marker gene (M). (b) Target locus carrying recombinase gene (cre or FLP) with 

a constitutive promoter, a target site (lox and FRT), and a selectable marker gene. (c) 

Introduction of the donor plasmid into the target cells results in recombinase (Cre or FLP) 

mediated site-specific integration of donor circle into target locus generating a site-specific 

integration (SSI) structure.  The SSI structure contains unique fusion of marker gene (M) with 

the promoter of target locus, making the event selectable on specific drug or herbicide. 
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1.8.1.2. Cre/lox system for marker removal 

  A number of studies have utilized the Cre/lox system to excise DNA fragments or 

marker genes from transgene loci in various plant species, e.g. tobacco, rice, maize, banana, 

and wheat  (Chong-Pérez et al., 2012; Cuellar et al., 2006; Dale and Ow, 1991; Day et al., 

2000; Hoa et al., 2002; Jia et al., 2006; Khattri et al., 2011; Odell et al., 1990; Odell et al., 

1994; Sreekala et al., 2005; Zhang et al., 2003). Principle of site-specific recombination based 

marker removal from transgenic plants was described in Figure 4. The general principle for 

testing marker removal is that a reporter gene (gene of interest) is separated from its promoter 

by a lox-flanked DNA segment. Upon the introduction of Cre activity, the DNA segment is 

removed, and a reporter gene is activated through fusion with its promoter. Cre activity can be 

introduced by re-transformation, crossing with cre expressing lines or conditional expression 

(tissue-specific or inducible). Utility of Cre/lox system for marker removal was demonstrated 

more than 20 years ago in a set of studies (Dale and Ow, 1991; Odell et al., 1990; Russell et 

al., 1992).  Dale and Ow (1991) generated transgenic lines conferring hygromycin (hyg) and 

kanamycin resistance, in which hyg gene was flanked by loxP sites. The authors used both re-

transformation and cross pollination to introduce Cre activity, and obtained hygromycin 

sensitive tobacco lines. Using the retransformation approach, 10 out of 11 kanamycin resistant 

lines were made hygromycin sensitive; whereas only 42 lines out of a total of 78 were made 

sensitive to hygromycin in the cross pollination approach. Thus, marker-removal efficiency is 

much higher in the retransformation approach.  In rice, Hoa et al. (2002) also applied the cross 

pollination approach to remove the hpt  gene from rice and analyzed T1 hybrids.  Marker 

removal in F1 plants in this study was reported to be 26.02% when T0 plants were crossed 

with Cre plants, and 58.33% when T2 plants were crossed with Cre plants.  Zhang et al. 
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(2003) tested auto-excision approach (removal of cre gene and marker gene in a single 

fragment) in maize by placing the cre gene under the control of a heat shock promoter. Both 

the nptII gene and cre gene were flanked by loxP sites. Heat treatment generated Cre activity, 

which removed the loxP-flanked fragment, and fused the GFP gene with its promoter. In this 

study, the auto-excision was very efficient but not 100% in some plants as they still expressed 

nptII after heat shock treatment. Marker removal using the inducible cre gene was also 

achieved in rice by Sreekala et al. (2005) and Khattri et al. (2011).  In the first study, Cre 

activity was induced by a chemical (β-estradiol), and among 86 independent transgenic T0 

plants, 10 plants were found to be marker-free after the induction. In the second study, Cre 

activity was controlled by the promoter HSP 17.5 E,a soybean heat shock promoter.  Upon 

heat shock treatment, nptII gene was removed resulting in the activation of gus gene. The 

efficacy of heat-inducible cre gene for marker excision was demonstrated in six different cell 

cultures.  Marker-excision and inheritance of marker-free locus in transgenic plants was 

studied in one line, in which it was found to be 94%.  Using Cre/lox system, complex 

transgene locus or multi-copy integrations could be resolved to single-copy locus (De Buck et 

al., 2007; Moore and Srivastava, 2006; Srivastava et al., 1999; Srivastava and Ow, 2001). 

Srivastava et al. (1999) flanked a transgene fragment between two oppositely oriented lox511 

sites.  The bar selection gene in this fragment was flanked by directly oriented loxP sites.  

Four bialaphos resistant wheat lines were generated, which were crossed with a Cre-

expressing line.  Analysis of F2 progeny from this cross revealed that a multi-copy locus was 

resolved to a single copy locus, and the bar selection marker gene was removed 

concomitantly.  Thus, utilization of two sets of heterospecific lox sites (loxP and lox511) led 

to marker removal and locus simplification in one step.   
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Figure 4: Principle of site-specific recombination based marker removal from transgenic 

plants.  Transgenic lines containing the gene of interest (goi) are generated. The transgene 

construct contains a cassette of a marker gene (SMG) flanked by two directly oriented 

recombination sites (triangles).  Then, introduction of recombinase activity into the target lines 

leads to marker removal and generates transgenic lines containing only the goi.  P, promoter;  

nos3’, nopaline synthase terminator;  35S, cauliflower mosaic virus 35S promoter;  goi, gene of 

interest. 
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1.8.2. FLP/FRT based plant biotechnologies 

The FLP/FRT system has been shown to function in Arabidopsis (Sonti et al., 1995), 

tobacco (Lloyd and Davis, 1994), rice (Radhakrishnan and Srivastava, 2005), maize (Lyznik et 

al., 1996), and turfgrass (Hu et al., 2006) among other plant species. Similar to the Cre/lox 

system, FLP/FRT system has been employed for: (1) precise transgene integration, and (2) 

maker removal.  However, a smaller number of studies that describe the use of this system have 

been published compared with the Cre/lox system, and most of the reports are on marker 

excision.  

1.8.2.1. FLP/FRT system for site-specific integration 

The FLP/FRT system has been used for site-specific integration in soybean (Li et al., 

2009), aspen (Fladung, Schenk, Polak and Becker, 2010), and rice (Nandy and Srivastava, 

2011, 2012). For site-specific integration, in general, the target locus containing FRT sites are 

generated by a random transformation approach.  Then, a donor construct containing the gene 

of interest is introduced along with FLP gene to produce site-specific integration structure 

(Figure 3). Li et al. (2009) and Fladung et al. (2010) achieved site-specific integration via the 

exchange of DNA cassettes between the target locus and the donor DNA placed between a pair 

of FRT sites. With the co-integration approach involving a single FRT x FRT recombination, 

Nandy and Srivastava (2011) generated precise integration of the gus gene in rice genome.  In 

this study, FLP activity was introduced via transient expression of FLPe (described in section 

1.7).  Introduction of FLPe activity was important as the FLP gene located in the target locus 

was inactive.  A careful analysis in this study concluded that expression of FLP gene is 

severely down regulated when an FRT site is present between the promoter and the FLP coding 
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sequence, a design commonly used in site-specific integration methodology.  It should be noted 

that the presence of the lox site between the promoter and the cre gene does not significantly 

affect Cre expression. Since FLPe displays higher recombination efficiency compared to 

FLPwt (Buchholz et al, 1998), FLPe was chosen to drive site-specific integration of foreign 

DNA into the rice genome.  A recent study by Nandy and Srivastava (2012) developed a 

marker-free site-specific integration approach in which the marker gene from site-specific 

integration locus developed by FLPe/FRT system was removed by Cre/lox recombination.  

Thus, recombinase-mediated transgene locus manipulation is highly precise and versatile.   

1.8.2.2. FLP/FRT system for marker removal 

For marker removal in plants, the FLP/FRT system has been applied in tobacco (Davies 

et al., 1999; Gidoni et al., 2001; Woo et al., 2009), aspen (Fladung and Becker, 2010), 

Arabidopsis (Kumar and Thompson, 2009), rice (Akbudak and Srivastava, 2011; Hu et al., 

2008) and turfgrass (Hu, Nelson and Luo, 2006) among others. The general principle for testing 

marker removal is the same as described in the Cre/lox system. Davies et al. (1999) used this 

strategy in tobacco to remove gus gene and activate the spectinomycin resistance gene (aadA). 

In this study, FLP activity was introduced by crossing the FLP-expressing lines with the target 

(FRT) line.  The excision was evident in the somatic cells of F1 hybrids; however, only one of 

eight F1 plants displayed excision in germinal tissue as stable marker-free (FLP-negative) F2 

progeny was obtained only from one F1 parent.  Woo et al. (2009) placed a cassette consisting 

of a hygromycin resistance gene (hyg) and FLP gene under the control of hydrogen peroxide-

induced promoter in the FRT-flanking region, and developed transgenic tobacco lines. When 

hydrogen peroxide was applied, FLP was expressed and FRT-flanked region was removed.  

This recombination resulted in the fusion of the bar gene with the 35S promoter.  The authors 
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reported about 13-41% T1 seeds were marker-free (hpt), and grew on media containing 

phosphinothricin but not hygromycin. A similar strategy was applied by Fladung and Becker 

(2010) to remove marker genes and activate GUS activity from aspen.  They used heat-shock 

promoter to activate the FLP gene instead of a chemical-induced promoter and obtained GUS 

expression in 15 lines out of 23 transgenic aspen lines.  Hence, marker removal in that study 

was reported to be about 65%.   

Gidoni et al. (2001) applied the FLP/FRT system for excision of the functional rolC 

gene in tobacco.  rolC confers a distinct phenotype consisting of small, male-sterile flowers and 

some other pleiotropic effects. In this study, rolC-expressing line was crossed with FLP-

expressing line, and removal of rolC was assessed by restoration of male fertility and normal 

phenotypes in F1 tobacco plants. This study reported restoration of fertility and seed setting to 

be 52-93% or 20-42% in the progenies displaying normal or sectorial leaf phenotypes, 

respectively.  In Arabidopsis, Kumar and Thompson (2009) placed a reporter cassette (35S-

Luciferase-GFP NosT) between two regions called “to be removed” (TBR). Each TBR was 

flanked by directly repeated FRT sites. This double TBR construct was used to retransform 

Arabidopsis carrying a heat shock-inducible FLP gene. With this strategy, the authors obtained 

TBRs-free Arabidopsis plants upon FLP induction, and also showed reduction of transgene 

copy number in later generations.  Marker removal was also successfully done in rice by Hu et 

al. (2008) and Akbudak and Srivastava (2011). In both studies, the nptII gene was removed to 

activate GUS activity. However, in the first study, FLP activity was introduced by crossing 

FLP-expressing line with FRT recombination-reporter line; while in the second study, marker 

removal was achieved when marker-containing lines were retransformed with FLPe gene. 

These two studies are further discussed in the next chapter (Part 2).  
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All of the above studies, except that of Akbudak and Srivastava (2011), utilized the 

wild-type FLP (FLPwt) for marker excision.  Marker excision was observed in all of these 

studies in somatic cells but transmittance of marker-free locus to the next generation was 

usually found to be inefficient.  Additionally, FLPwt was found to be ineffective in directing 

site-specific gene integration in the rice genome (Nandy and Srivastava, 2011).  These 

observations indicate that FLP/FRT system is not as robust as Cre/lox system when FLPwt is 

used.  However, this deficiency has been effectively addressed by the use of FLPe and FLPo 

proteins. 

1.9. Efficiency of FLP Proteins 

 A study on the fusion of nuclear localization signal into phiC31, Cre, and FLPe in 

hamster ovary cells revealed FLPe only achieved 10% recombination activity on chromosomal 

targets compared with Cre (Andreas et al., 2002).  In embryonic stem cells, Cre and FLPo have 

similar recombination efficiency (Raymond and Soriano, 2007). Recently, several researches in 

mammalian system have successfully utilized FLP (Schaft et al., 2001) and FLPe (Farley et al., 

2000; Ponsaerts et al., 2004; Wong et al., 2011) to drive recombination. From protein titration 

experiments, FLP is required at 10 fold concentration compared to Cre to obtain optimum 

recombination of the same quantity of substrate (Ringrose et al., 1998).  In plant systems, a 

study on the function of the FLP/FRT system in rice showed that FLPwt is as efficient as Cre in 

removing DNA segment when FLP and FRT vectors are co-bombarded into rice cells 

(Radhakrishnan and Srivastava, 2005).  Akbudak and Srivastava (2011) compared FLPwt and 

FLPe activities on a chromosomal target by bombarding FLP vectors into a FRT-transgenic 

line, and found FLPe to be three to five times more efficient.  However, there is no study that 

directly compared recombination efficiency of different FLP variants, FLPwt, FLPe and FLPo, 
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expressed from genomic loci on chromosomal FRT targets.  Evaluation of FLP activity using 

this design is necessary to assess the efficiency of FLP/FRT system for marker removal from 

plant genomes. 
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Cre/lox has become the first choice for marker-excision and site-specific integration 

because of its superior efficiency in a wide range of species.  However, some applications 

such as marker-free site-specific gene integration require the use of two recombination 

systems (Darbani et al., 2007; Fladung and Becker, 2010; Nanto and Ebinuma, 2008; 

Srivastava and Ow, 2004).  Moreover, the availability of alternative recombination systems 

can offer the opportunity to develop multiple applications in a single platform.  Hence, there 

is a need to develop additional recombination systems that can efficiently carry out both DNA 

excision and integration reactions.  The well-characterized FLP/FRT system should be 

evaluated further for its recombination efficiency in crop plants such as rice.  In an earlier 

study, FLPwt was found to have similar efficiency as Cre in removing marker genes from the 

extra-chromosomal plasmid molecules in rice cells when expressed from genomic DNA 

(Radhakrishnan and Srivastava, 2005).  In a later study, Hu et al. (2008) crossed seven FLP-

expressing transgenic rice lines with 19 FRT-target lines and demonstrated that FLP 

recombinase efficiently catalyzed the excision of nptII gene from the target locus, which 

resulted in the activation of the GUS gene.  Hu et al. (2008), however, did not analyze the 

recovery rate of a stable marker-free locus (% of Gus-positive, FLP-negative progeny).  The 

excision efficiency in this study was based on the presence or absence of uniform GUS 

activity in the progeny.  Among 27 hybrids, Hu et al. (2008) found 15 hybrids with complete 

DNA recombination (uniform GUS activity), and 12 with incomplete DNA recombination 

(variation in GUS activity).  Further, presence of uniform GUS staining in a large number of 

F2 progeny suggested that the FLP-mediated marker excision took place in the germinal cells 

of the F1 parent.  However, the authors also noted that a number of hybrids that showed 

uniform GUS staining failed to generate stable marker-free F2 progeny.  Hence, the efficiency 
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of the FLP/FRT system in removing marker genes from transgenic line and its progeny was 

not evaluated by confirming the presence of a recombination footprint in the progeny.  In 

another study, Akbudak and Srivastava (2011) found that transiently expressed, FLPwt was 

ineffective in recombining FRT sites located on the rice genome, whereas FLPe was effective. 

Thus, a careful evaluation of the FLP activity on chromosomal targets is needed.   

There are three different versions of FLP proteins: FLPwt, FLPe (the thermostable 

derivative of FLPwt), and FLPo (the mouse codon-optimized version of FLPe); however, no 

previous study compared recombination efficiencies of these variants when they are stably 

expressed from a genomic locus and act on chromosomally located FRT sites.  Hence, the 

overall objective of this research is to stably express the three variants of FLP recombinase 

(FLPwt, FLPe and FLPo) in rice and evaluate their relative recombination efficiencies for 

marker gene excision from a well characterized transgene locus, 1.7D (Khattri, 2006). 

In order to achieve the above objective, the following steps were executed: 

1. Develop transgenic rice lines expressing FLPwt, FLPe, and FLPo. 

2. Carry out molecular analysis of the lines. 

3. Initiate crosses of the selected FLP lines with the 1.7D line. 

However, to the time of this thesis, experiments for only first two steps were completed. In 

the future, selected FLP lines will be crossed with the 1.7D line, and will be evaluated the 

efficiency of FLP-mediated transgene excision in F1 hybrids and the progeny.    
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3.1. Two Distinct Approaches for Generation of FLP-expressing Lines 

Two different approaches were used to generate FLP lines: 

(1) Site-specific approach: FLP genes will integrate into the defined T5 locus (see 3.2.1) to 

generate identical transgenic lines. This is the best scenario to compare activity of FLP 

proteins (see 4.1).  FLP lines generated by this approach are referred as FLP-SSI lines. 

(2) Standard method for genetic transformation: random integration: FLP genes will 

integrate randomly into different loci and therefore, generate variation in gene 

expression. FLP lines generated by this approach are referred as Nipponbare FLP lines. 

3.2. Material 

3.2.1. Rice Cultivars 

For the site-specific approach, the T5 line (Taipei-309), a well-characterized Cre/lox 

target line (Srivastava and Ow, 2002) (Figure 5) was used. In the T5 locus, cre is controlled by 

the maize ubiquitin promoter (Ubi); one lox 76 site is placed between the Ubi promoter and cre 

gene; next to cre gene is the hygromycin resistant gene (HygR) (35S:hpt:nos3’). The T5 locus 

provides Cre activity for site-specific integration. On the other hand, the Nipponbare cultivar 

was used to generate FLP lines in a random integration approach. 

3.2.2. Plasmid Constructs 

Two different sets of constructs were used in this study.  Plasmids used in the site-

specific approach were called donor constructs whereas plasmids used in the random 

integration approach were called random integration constructs. All plasmids were already 

available in Dr. Srivastava’s laboratory. 
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3.2.2.1. Donor constructs 

In the donor vectors, FLP coding sequences are driven by the Ubi promoter. The npt 

gene was placed before FLP genes for selection on geneticin-containing media. The whole 

cassettes are flanked by loxP and lox75 sites (Figure 6). The only difference among these 

constructs is the FLP coding sequence in which:  

pAA9 contains the coding sequence for FLPo. 

pAA10 contains the coding sequence for FLPe. 

pAA11 contains th ecoding sequence for FLPwt. 

3.2.2.2. Random integration constructs 

The random integration vectors are shown in Figure 7, which contain the coding 

sequences for the three types of FLP protein in which: 

pAA7 contains the coding sequence for FLPo. 

pAA8 contains the coding sequence for FLPe. 

pUbiFLP contains the coding sequence for FLPwt 

Because of the lack of a marker gene for selecting transformed cells, these constructs 

were used in a co-bombardment with a selection vector containing the hygromycin resistant 

gene (pHPT). 
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Figure 5: T5 target locus.  cre is under the control of the maize ubiquitin promoter (Ubi). One 

lox76 site is placed between cre and the Ubi promoter. Hygromycin resistant gene (HygR = 

35S:HPT:nos3’) is present in the locus for selection. 

 

 

 

Figure 6: FLP donor constructs. loxP and lox75 sites flank a cassette involving 

promoterless neomycin resistant gene (npt) and FLP genes. FLP genes are controlled by 

maize ubiquitin promoter (Ubi). 
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Figure 7: Random integration constructs.  FLP genes are driven by the maize ubiquitin 

promoter (Ubi). The hpt gene is driven by the 35S promoter.  
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3.3. Methods 

3.3.1. Rice Transformation, Selection and Regeneration 

The rice tissue culture procedure was adopted from Nishimura et al. (2006). Seeds of T5 

or Nipponbare cultivar were placed on 2N6D media (Table 2) to induce callus formation.  

Callus was selected and transferred to bombardment media (Table 2) and kept for two hours 

before transformation using the Biolistic particle bombardment method with a PDS-1000/He 

system (Bio-Rad). Each donor construct (10 µg) was separately coated onto 25 µg gold 

suspension, whereas 5 µg of each random integration construct along with 5 µg pHyg was 

separately coated onto 50 µg gold suspension.  Each DNA-coated gold suspension was 

included in a mixture with 50 µl 2.5M CaCl2 and 20 µl 0.1M spermidine for each 

transformation experiment.  

After bombardment, calli were kept 24 hours in bombardment media. Then, calli were 

divided into four equal parts as four possible independent transgene events and transferred to 

2N6D media for a week. Subsequently, they were transferred to 2N6D media containing 

geneticinTM (100 mg/ml) or hygromycin (50 mg/ml) according to the type of plasmid used in 

transformation, for selection of transformed calli for 4-8 weeks. The growing calli on selection 

media were selectively transferred to regeneration media (Table 2). Callus induction, selection, 

and regeration were carried out in PercivalTM growth chamber at 25oC with full light. 

Regenerated shoots were transferred to plant growth media for root induction and shoot 

elongation. Plants were then moved to the greenhouse. 
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Table 2: Plant tissue culture media. 

Meida Components (for 1 litter) 

2N6D 3.98 g N6 (CHU) basal salt mixture; 0.1 g Myo-inositol; 0.3 g 
Casaminoacids; 2.878 g Proline; 100 µl 2,4 D (10 mg/mL); 30 g Sucrose; 
3 g Phytogel; 10 ml N6 vitamins 100X stock; pH = 5.8 

Bombardment 4 g N6 (CHU) basal salt mixture; 0.1 g Myo-inositol; 1 g Casaminoacids; 
200 µl 2,4 D (10 mg/mL); 30 g Sucrose; 63 g Sorbitol; 2 g Phytogel; 2 ml 
N6 vitamins 500X stock; pH = 5.8 

Regeneration 4.6 g MS salt mixture; 10 ml of 100X MS vitamin; 0.1 g Myo-inositol; 2 g 
Casaminoacids; 1 ml of 1,000X NAA; 20 ml of 50X Kinetin; 30 g 
Sucrose; 30 g Sorbitol; 3 g Phytogel; pH = 5.8 

Plant growth 4.6 g MS salt mixture; 10 ml of 100X MS vitamin; 0.1 g Myo-inositol; 30 
g Sucrose; 3 g Phytogel; pH = 5.8 

 

 

 

 

 

 

 

 

 



38 

3.3.2. DNA Isolation 

 For molecular analysis, DNA was extracted from callus or leaf tissue of transgenic lines 

using a CTAB method. Frozen tissues were ground and dissolved in 2 ml CTAB extraction 

buffer by vortexing and incubating at 55 oC in 30 minutes.  subsequenctly, 1 ml phenol-

chloroform was added, mixed and centrifuged at 4000 rpm for 10 minutes.  The aqueous phase 

was collected into 2 ml of chloroform:iso-amyl alcohol (24:1).  After centrifugation at 4000 

rpm for 5 minutes, the aqueous phase was collected and mixed with double volume of cold 

95% ethyl alcohol before DNA was collected by centrifugation at 4000 rpm in 10 minutes.  

After one wash with cold 70% ethyl alcohol, the DNA was dried and dissolved in autoclaved 

water

3.3.3. Polymerase Chain Reaction (PCR) 

PCR was carried out on the genomic DNA of geneticin or hygromycin resistant lines with 

corresponding primers to determine successful integration of the FLP genes.  Amplified 

products were separated on 0.8% agarose gel. The components for one 25-µl PCR reaction  are 

1 µl of 100 ng / µl DNA; 5 µl of Mg-free buffer;  1.5 µl of 25 mM MgCl2; 2.5 µl of 2 mM 

dNTP;  0.5 µl for each of 25 µM forward and reverse primers;  0.25 µl of 100 µg/µl Taq 

polymerase; and 13.75 µl of autoclaved water.  

 Quantitative real time PCR (qRT-PCR) was also carried out for measuring mRNA 

abundance of FLP genes. Total RNA was extracted from leaf tissue of T1 FLP lines and 

subjected to qRT-PCR. The components for one 12.5- µl qRT-PCR reaction are: 0.25 µl Tag 

mix; 6.25 µl of 2X SYBR Green reaction mix; 0.05 µl for each of 15 µM forward and reverse 

primers; 1.5 µl of RNA template (25 ng/ µl); and 4 µl RNase-free water.  Combination results 
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from this experiment and FLP transient assays will provide correct comparison of activity of 

FLP proteins (see sections 5.4 and 5.5). 

3.3.4. Southern Hybridization 

To further confirm the presence of the transgene and determine the transgene 

integration pattern, Southern hybridization was carried out.  About 5 µg of genomic DNA 

(from leaf tissue) was digested with EcoRI or EcoRV according to random integration or SSI 

approach, respectively.  Digested DNA was separated on 0.8% agarose-ethidium bromide 

containing gel and then transferred onto nylon membranes (Amersham HybondTM – N+). These 

membranes were hybridized with particular 32P labeled DNA probes for ubi and FLP genes. 

3.3.5. FLP Expression Assay 

Calli from FLP lines were bombarded with plasmid pRP9 in which the FRT-flanked npt 

gene separates the gus gene from a Ubi promoter (Figure 8).  The FLP activity from the FLP 

lines is expected to remove the npt cassette from the beta-glucuronidase (GUS)-negative pRP9 

locus and generate the GUS-positive recombination footprint (Figure 8). The GUS activity was 

detected by incubating bombarded explants in GUS stain solution. The components of GUS 

stain solution are: 0.1 M sodium phosphate buffer (pH 7); 0.5 mM K3Fe(CN)6; 0.5 mM 

K4Fe(CN)6; 10 mM Na2EDTA (pH8); and 1 mM X-Gluc (5-Bromo-4-chloro-3-indoxyl-β-D-

glucuronide cyclohexylammonium salt). 

 After bombarding with pRP9 vector, calli were kept 72 hours at room temperature. 

Then, the calli were placed in GUS staining solution and kept at 37 oC. To calculate GUS 

activity, the total number of blue spots generating on each callus in each staining well was 

counted. 
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Figure 8: Molecular strategy for the FLP expressing assay.  FLP-expressing lines were 

bombarded with the pRP9 vector. FLP activity is expected to remove the npt gene from the 

vector to put the promoterless GUS gene under the control of the Ubi promoter. Hence, FLP 

activity has detected indirectly via GUS expression. Ubi, maize ubiquitin promoter;  npt, 

neomycin phosphotransferase gene;  nos3’, transcription terminator from nopaline synthase 

gene;  GUS, beta-glucuronidase gene (coding region). 
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4.1. Rationale for the Site-specific Integration Approach 

 Different genomic positions and variable copy numbers of transgenes generate variation 

in gene expression. The genomic ‘position effect’ should be eliminated to precisely compare 

recombination efficiency of FLP proteins, and FLP genes should be expressed at the same 

level.  FLP genes are expected to have same expression level when they are expressed from a 

locus containing a single copy that was inserted in a specific site within the genome referred to 

as site-specific integration (SSI). Due to the fixed genomic position and locus structure, SSI is 

expected to generate equal level of FLP expression from different transgenic lines as 

demonstrated for GUS and GFP genes in rice SSI lines (Akbudak et al., 2010; Chawla et al., 

2006; Day et al., 2000; Nanto and Ebinuma, 2008; Srivastava et al. 2004).   

4.2. Molecular Strategy for Site-Specific Integration 

  In the site-specific integration approach, donor constructs containing FLPwt, FLPe or 

FLPo genes were introduced into the T5 line that contains a ‘target locus’ for Cre/lox 

mediated site-specific integration. Cre activity in T5 cells is expected to split the donor 

construct via loxP x lox75 recombination, and generate a backbone-free donor circle.  This 

donor circle contains a promoter-less npt gene, and a functional FLP gene. The donor circle 

will integrate into the T5 target locus via lox75 x lox76 recombination, and form a site-

specific integration locus (SSI) (Figure 9).  The SSI locus expresses the npt gene, and is 

therefore selectable on geneticinTM.  In addition, SSI locus contains a double-mutant lox site 

(lox75/76 fusion), that is important for stabilizing the SSI locus as the lox75/76 recombinant is 

a poor substrate of Cre. 
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Figure 9: Site-specific integration of the FLP gene into the T5 locus via Cre-lox 

recombination. Upon introduction of FLP donor constructs (pAA9, 10, 11) into the T5 callus, 

Cre activity in T5 cells splits the donor construct via loxP X lox75 recombination, and generates 

a backbone-free donor circle, which contains the promoter-less npt gene and a complete FLP 

gene. Then, the donor circle integrates into the T5 target locus via lox75 x lox76 recombination, 

and forms a site-specific integration locus (SSI). nptII, promoterless neomycin 

phosphotransferase gene; Ubi, maize uniquitin promoter; FLP, FLPwt or FLPe or FLPo gene; 

cre, Cre recombinase gene; HygR, hygromycin resistance gene (35S:HPT:nos3’); a, b, c, and d 

are PCR primers. 
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4.3. Generation of FLP-SSI Lines in the T5 Background 

 Seeds from the T5 cultivar were plated on 2N6D media for callus induction. Callus was 

selected for particle bombardment.  FLPwt, FLPe, and FLPo lines were generated by 

bombarding T5 callus with plasmids pAA11, pAA10, and pAA9, respectively. Bombarded calli 

were selected on geneticinTM (100 mg/L) -containing 2N6D media.  In total, three experiments 

consisting of 77 plates were conducted to generate FLP-transgenic lines in which 19 plates were 

for FLPwt, 28 plates for FLPe, and 30 plates for FLPo.  These bombardments generated 65 

FLPwt, 41 FLPe, and 28 FLPo geneticin-resistant lines (Table 3).  Each callus which was able to 

grow on the selection media was  transferred to regeneration media containing GeneticinTM (100 

mg/L). At the same time, genomic DNA was extracted from the geneticin-resistant callus lines, 

and subjected to PCR analysis.  

4.4. PCR Analysis of FLP Callus Lines 

Geneticin resistant callus lines were subjected to PCR for the detection of two integration 

junctions: the first junction spanning loxP, and the second junction spanning lox75/76. Primer 

pair a and b was used to detect junction 1 at loxP site, and primer pair c and d was used to detect 

junction 2 at lox75/76 site (Figure 9 and Table 4).  A large number of FLPwt lines was difficult 

to handle, so for PCR analysis, 20 out of 65 FLPwt lines were randomly selected.  Twenty eight 

FLPe and FLPo were selected for PCR. Eighteen FLPwt, 18 FLPe and 12 FLPo were positive for 

both junctions (Table 3; Figure 32 in Supplementary Work section).   
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4.5. FLP-activity Assay on Transgenic Callus Lines 

FLP expression assay was carried out on all available lines in order to select the lines 

displaying high FLPwt activity. In this assay, FLP lines were bombarded with pRP9 vector, and 

stained for GUS activity 72 hours after bombardment.  In the pRP9 vector, a cassette of FRT-

flanked npt fragment separates the gus gene from the Ubi promoter.  FLP activity is expected to 

remove the npt fragment and fuse the gus gene with the Ubi promoter, which leads to GUS 

expression (Figure 8).    

Sixty five FLPwt, 41 FLPe, and 12 FLPo lines were bombarded with pRP9 vector. All 65 

FLPwt resistant lines showed a blue background staining without deep blue spots.  This result 

indicated that there was intrinsic or native GUS activity in FLPwt lines, and no activity 

originating from FLP-mediated recombination of pRP9 was generated (absence of deep blue 

spots). GUS activity is generally absent in plants.  However, a few studies reported intrinsic GUS 

activity in a number of plant species under specific conditions such as callus cells: sugarbeet, 

Arabidopsis, rice, tobacco, maize, rye, potato, tomato, apple, and almond (reported and reviewed 

by Sudan et al., 2006; Wozniak et al., 1994).  

To further confirm the native GUS activity, GUS staining of FLPwt callus lines was 

carried out without pRP9 bombardment, which generated dark blue stain in all 65 FLPwt lines. 

These results are illustrated with a representative line, T20C4, in Figure 10.  Twenty one FLPwt 

SSI lines were selected for regeneration.  These lines included 18 PCR-positive lines, and three 

newly available lines that showed light blue background staining (Table 5). Intrinsic GUS 

activity was not observed in FLPe and FLPo lines. In the FLP activity assay, none of the FLPwt 

lines showed the presence of deep blue spots upon pRP9 bombardment, and only background 
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staining was visible (Figure 10).  This indicated absence of detectable FLP activity in FLPwt-SSI 

lines.  Next, 7 out of 41 FLPe and 9 out of 12 FLPo lines displayed GUS activity (presence of 

deep blue dots) upon pRP9 bombardment (Figure 11 and 12).  The FLPo lines generated more 

blue spots than FLPe lines in this assay, indicating higher FLP activity.  Thus, FLPe and FLPo 

were found to display much higher FLP activity compared to FLPwt, and FLPo appeared 

superior to FLPe.  

 

 

 

 

                                              With pRP9                        Without pRP9 

 

Figure 10: Intrinsic GUS activity in a representative FLPwt-SSI callus line (T22C1).  Callus 

was submerged in GUS stain and incubated at 37oC for a few hours or overnight.  GUS activity 

in callus was observed regardless of pRP9 bombardment. 

T22C1 
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Figure 11: FLP assay in FLPe-SSI lines. Callus bombarded with pRP9 was submerged in GUS 

stain and incubated at 37oC overnight.  Number and size of blue dots indicates FLP activity.  

Seven FLPe lines that showed GUS activity upon pRP9 bombardment are shown.  T5 callus was 

used as negative control.   

T17C2 T41C1 

T44C4 T50C4 

T76C4 T77C1 

T79C3 T5 
cultivar 
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Figure 12: FLP assay in FLPo-SSI callus lines.  Nine FLPo lines that showed GUS activity 

upon pRP9 bombardment are shown.  GUS activity indicates FLP activity.  T5 callus serves as 

negative control.   

 

T4C1 T32C3 

T32C4 T39C1 

T39C2 T40C2 

T62C3 T63C1 

T66C3 T5 
cultivar 
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4.6. Generation of FLP Plant Lines 

All FLP lines including PCR-positive and newly available lines (whether or not positive 

for FLP activity based upon the pRP9 bombardment) were considered for plant regeneration.  

Twenty one FLPwt lines, 33 FLPe lines and 15 FLPo callus lines were transferred to 

regeneration media. Of which, 17 FLPwt lines, 14 FLPe lines, and 4 FLPo lines were 

regenerated (Table 5, 6, and 7). Unfortunately, none of FLPe and FLPo lines that displayed 

positive FLP activity in pRP9 bombardment assay were successfully regenerated (Table 6 and 7). 

However, FLP-negative lines were considered for further analysis because we assumed that 

absence of FLP activity in callus may have been due to the reversion of SSI locus.  SSI lines are 

mostly hemizygous for the insertion locus, and express strong Cre activity from the second target 

allele.  This Cre activity may revert SSI locus to generate chimeric transgenic lines.  These 

chimeric lines regenerate into SSI plant lines, which could also be chimeric.  However, chimeric 

SSI lines transmit the SSI locus to progeny at high efficiency (Srivastava et al., 2004).  In 

homozygous progeny, the SSI locus is stably expressed (Srivastava et al., 2004).  It was not clear 

that FLP-negative lines had suffered reversion; therefore, FLP lines were regenerated. 

Fifteen FLPwt, 8 FLPe, and 3 FLPo lines were successfully transferred to the greenhouse 

(Table 3, 5, 6, and 7).  Since FLPwt callus showed native GUS activity, all 15 FLPwt plant lines 

were subjected to GUS staining to check for the presence of GUS activity.  Leaf cuttings from 15 

FLPwt lines were stained with GUS staining solution at 37oC and observed after 12 or 24 h.  

Background GUS activity was visible in 9 FLPwt lines, whereas the other 6 FLPwt lines did not 

show GUS activity (Figure 13).  The 9 FLPwt lines with GUS activity were removed from 

further analysis.  Through the whole process from bombardment and tissue culture, 6 FLPwt, 8 

FLPe, and 3 FLPo SSI lines were selected for further analysis (Table 5, 6, and 7). 
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Table 3: Summary of three bombardment experiments on T5 background. 

FLP 
type 

Expe
rime

nt 

No. of 
bombarded 

plates 

No. of 
geneticin 
resistant 
callus 
lines 

No. of 
callus lines 
selected for 

PCR  

No. of 
callus 
lines 

positive 
for PCR  

No. of 
regener

ated 
lines * 

No. of plant 
lines grown in 

greenhouse 

FLPwt 
1 10 32 17 16 17 15 
2 9 30 3 2 0 0 

Total 19 65 20 18 17 15 

FLPe 

1 9 14 12 7 7 5 
2 10 11 8 5 3 1 
3 9 16 8 6 4 2 

Total 28 41 28 18 14 8 

FLPo 

1 10 5 5 3 2 2 
2 10 12 12 7 1 1 
3 10 11 11 2 1 0 

Total 30 28 28 12 4 3 
* : including PCR-positive lines and newly available lines (see Table 5, 6, and 7) 

 

Table 4 : Primers used for PCR analysis 

Codes Primers Sequences 
a Ubi 5’  TCTACTTCTGTTCATGTTTGTG  3’ 
b KanR 5’  CTCGATGCGATGTTTCGCTT  3’ 
c Gus2 5’  GATTAGAGTCCCGCAATTAT  3’ 
d CreUAG 5’  CTAATCGCCATCTTCCAGCA  3’ 
e FLP RII 5’  CTCAGTGATCTCCCA GATGC  3’ 
f FLPe F                                                                                                                                                                                                                                                                                                                                                              5’  CGCGCCACCATGAGCCAATTT  3’ 
g FLPe R 5’  ATGCGGGGTATCGTATGCTTCC  3’ 
h FLPo F2 5’  CCCAAGCTTGGATCCATGAGCCAGTTCGACATCCTG  3’ 
i FLPo R 5’  GGGGTACCGAGCTCTCAG ATCCGCCTGTTGAT  3’ 
m Hygro F 5’  ACCGCGACGTCTGTCGAGAA  3’   
n Hygro B 5’  CCAGTGATACACATGGGGATC  3’ 
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Table 5: Summary of FLPwt-SSI lines 

FLPwt PCR 
(callus 
DNA) 

Regenerated Rooted Green 
house 

Native 
GUS 
leaf 

Selected 
for 

further 
analysis 

T20C3 + + + + - * 
T20C4 + + + + +  
T21C1 + + + + +  
T22C1 + + + + - * 
T22C2 + + + + - * 
T23C1 na + + + +  
T23C3 + -     
T23C4 + + + + +  
T24C1 na + + + - * 
T25C3 + + + + - * 
T25C4 + + + died   
T27C2 + + + + +  
T27C3 + -     
T28C1 + + + + +  
T28C2 + + + + - * 
T28C3 + + + + +  
T28C4 + + + died   
T29C3 na + + + +  
T29C4 + + + + +  
T55C1 + -     
T55C3 + -     

na: not assayed 
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Table 6: Summary of FLPe-SSI lines 

FLPe PCR 
(callus 
DNA) 

FLP 
activity 
(callus) 

Regenerated Rooted Greenhouse 

T11C3 + - -   
T11C4 na - -   
T12C2 + - + + + 
T14C1 + - + + + 
T14C3 + - + + + 
T16C1 + - + + + 
T17C2  + -   
T17C4 + - + + + 
T18C3 + - + lost  
T41C1 - + -   
T44C4 na + -   
T45C1 + - + -  
T45C4 + - + + + 
T47C2 na - -   
T49C4 + - -   
T50C2 + - -   
T50C3 + - + -  
T50C4 na + -   
T71C4 na - -   
T72C2 + - + + + 
T72C4 na - -   
T73C3 na - -   
T74C1 na - -   
T75C1 na - -   
T75C3 na - -   
T76C2 + - + + + 
T76C4 na + -   
T77C1 + + -   
T77C3 + - + -  
T78C2 + - + -  
T79C2 na - -   
T79C3 + + -   

na: not assayed 
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Table 7: Summary of FLPo-SSI lines 

FLPo PCR 
(callus 
DNA) 

FLP 
activity 
(callus) 

Regenerated Rooted Greenhouse 

T2C3 + - -   
T3C2 + - + + + 
T4C1 + + + + + 
T32C3 + + -   
T32C4 + + -   
T38C1 + - + + + 
T39C1 + + -   
T39C2 + + -   
T40C1 + - -   
T40C2 + + -   
T63C1 + + + lost  
T66C3 + + -   

 

 

 

 

Figure 13: Native GUS activity in representative positive (T28C1) and negative (T28C2) 

FLPwt lines.  Leaf cuttings from 15 FLPwt lines were immersed in GUS staining solution at 37 

oC and observed after 12 h and 24 h. 
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4.7. Molecular Characterization of FLP- SSI Plant Lines 

 FLP lines in greenhouse were characterized by molecular analysis.  Genomic DNA was 

extracted from leaves of FLP-SSI lines by the CTAB method, and subjected to PCR and 

Southern hybridization. 

4.7.1. PCR analysis  

FLP-SSI lines, which contain integration of FLP donor constructs into the T5 locus, 

should have two unique junctions at the loxP and lox75/76 sites (Figure 9).  To test the presence 

of these junctions, DNA from FLP-SSI lines were subjected to PCR with primer pair a and b and 

primer pair c and d (Figure 9 and Table 4).  Amplified fragments at junction 1 and junction 2 are 

expected to be 1.4 kb and 1.2 kb, respectively. DNA from the parent line, T5 cultivar, was used 

as negative control.  Those lines that showed bands of the two junctions, even of an unexpected 

size which indicated the intake of the FLP genes, are considered as positive, and the lines that 

did not show any amplification are considered as negative.  Based on this criteria, 5 out of 6 

FLPwt-SSI lines (T20C3; T22C2; T24C1; T25C3; T28C2) were positive for both junctions, and 

one (T22C1) negative for both junctions (Figure 14 and Table 8).  All eight FLPe-SSI lines 

(T12C2; T14C1; T14C3; T16C1; T17C4; T45C4; T72C2; T76C2) contained both junctions of 

the expected sizes (Figure 15 and Table 8).  All three FLPo-expressing lines (T3C2; T4C1; 

T38C1) were positive for the two junctions; although T38C1 had an unexpected size for junction 

2, which was assumed that there was truncation in adjacent sequences (Figure 16 and Table 8).  

 



56 

 

Figure 14 : PCR analysis for two integration junctions in FLPwt-SSI lines. Primers a and b 

amplified 1.4 kb fragment at junction 1; primers c and d amplified 1.2 kb fragment at junction 2. 

 

 

 

 

Figure 15 : PCR analysis for two integration junctions in FLPe-SSI lines. Primers a and b 

amplified 1.4 kb fragment at junction 1; primers c and d amplified 1.2 kb fragment at junction 2. 
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Figure 16: PCR analysis for two integration junctions in FLPo-SSI lines.  Primers a and b 

amplified 1.4 kb fragment at junction 1; primers c and d amplified 1.2 kb fragment at junction 2. 

 

 

Table 8: Summary of PCR analysis of FLP-SSI lines 

FLP 
type 

Positive for 2 junctions Negative for 2 
junctions 

FLPwt T20C3; T22C2; T24C1 *st; T25C3; T28C2; T22C1*0 

FLPe 
T12C2; T14C1; T14C3*st; T16C1*st; T17C4; T45C4; 
T72C2*st; T76C2 

 

FLPo T3C2; T4C1; T38C1*u  
*0: none of two junction amplified. 
*u: unexpected size of amplified band. 
*st: sterile 
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4.7.2. Southern analysis  

 After PCR analysis, FLP-SSI plant lines were analyzed by Southern hybridization to 

further investigate integration of transgenes and determine integration pattern.  T24C1 (FLPwt-

SSI line), T14C3, T16C1 and T72C2 (FLPe-SSI lines) were sterile, and had been removed; 

hence, this analysis were carried out on 5 FLPwt-, 5 FLPe-, and 3 FLPo-SSI lines. 

 Genomic DNA from the FLP-SSI lines and T5 cultivar was digested with EcoRV and 

hybridized with a 32P-labelled probe for Ubi promoter.  Since the Ubi promoter is located out of 

EcoRV fragment (Figure 17, 18 and 19), EcoRV-digested DNA from both T5 and FLP-SSI lines 

should present only one band on the blot, if consisting only of the SSI locus and lacking random 

integrations (single-copy).  However, the hybridized bands for successfully integrated FLP-SSI 

lines should be of a larger size compared with the band for T5 locus as the SSI locus has an 

additional donor cassette (npt-Ubi-FLP).  Furthermore, random integration of donor plasmids is 

also possible, which would generate a multi-copy integration pattern. Therefore, Southern 

hybridization results from FLP-SSI lines may fall into following categories:  

(1) A 5-kb single band similar to the band of T5 cultivar: this pattern indicates no integration 

of donor circle into T5 locus, therefore, the line is non-transgenic.  T22C1 (FLPwt-SSI 

line) fell into this category (Figure 17 and Table 9). 

(2) Two bands, one same as that of T5, and the another of a larger size.  Based on EcoRV 

maps of SSI locus of FLPwt, FLPe, and FLPo, ~7 kb with FLPwt and ~10 kb with FLPe 

and FLPo SSI locus is expected (Figure 17a, 18a, and 19a).  This pattern indicates 

integration of donor circle into one of the T5 alleles (hemizygous integration). Southern 

hybridization revealed that three FLPwt-SSI lines (T20C3; T22C2; T25C3), two FLPe-

SSI lines (T17C4; T45C4), and one FLPo-SSI line (T3C2) were hemizygous for 
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integration locus (Figure 17, Figure 18, Figure 19 and Table 9). However, these 

integrations were likely to be truncated as the observed bands were of smaller than the 

expected sizes. Further, the intensity of SSI band in some lines (e.g. T20C3, T25C3, 

T17C4, T45C4, and T3C2) was less than that of T5 band. This phenomenon is 

characteristic of “locus reversion” because of the Cre activity from the intact T5 allele in 

hemizygous SSI lines.  This excision in T3C2 (FLPo-SSI line) took place at very high 

efficiency as integration allele is hardly detected (Figure 19). 

(3) There was only one band at a larger size compared to that of T5 cultivar.  This band 

should be at 10-kb for FLPe and FLPo lines or at 7-kb for FLPwt.  This pattern indicates 

the lines contain SSI integration into both T5 alleles (homozygous).  One FLPwt-SSI line 

(T28C2) and two FLPe-SSI lines (T14C1 and T76C2) fell in this category (Figures 17, 18 

and Table 9). However, the bands were not at expected size; therefore, these integrations 

were likely truncated. 

(4) More than two bands: this pattern indicates random integration of the donor circle outside 

the T5 target locus, most likely in addition to SSI.  This category is called a multi-copy 

integration.  One FLPe-SSI line (T12C2) and two FLPo-SSI lines (T4C1 and T38C1) fell 

into this category (Figure 18, 19 and Table 9). T12C2 had three integrations involving 

one truncated SSI and two random integrations. T38C1 had three random integrations. 

These random integrations may consist of truncated SSI in both T5 alleles and one 

random integration of the donor circle (Figure 18, 19). T4C1 had multi-random 

integration of the donor circle (Figure 19). 
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a) 

 

b) 

 

Figure 17: Southern hybridization of EcoRV-digested genomic DNA of FLPwt-SSI lines 

with the Ubi probe.  a) EcoRV map of T5 and SSI locus. b) Southern hybridization of EcoRV 

digested genomic DNA of FLPwt lines with Ubi probe.  T20C3, T22C2, and T25C3 were 

hemizygous for integration; T28C2 was homozygous for integration;  T22C1 was non-transgenic 

T5. 
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a) 

 

b)  

 

Figure 18: Southern hybridization of EcoRV-digested genomic DNA of FLPe-SSI lines with 

Ubi probe. a) EcoRV map of T5 and SSI locus. b) Southern hybridization of EcoRV digested 

genomic DNA of FLPe lines with Ubi probe. T17C4 and T45C4 were hemizygous for 

integration; T14C1 and T76C2 were homozygous for integration; T12C2 contains random 

integrations. 
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a) 

 

b) 

 

Figure 19: Southern hybridization of EcoRV-digested genomic DNA of FLPo-SSI lines with 

Ubi probe. a) EcoRV map of T5 and SSI locus. b) Southern hybridization of EcoRV digested 

genomic DNA of FLPo-SSI lines with Ubi probe. T3C2 was hemizygous for integration;  T4C1 

and T38C1 had random integrations. 
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4.8. FLP Expressing Assay on T1 FLP-SSI Lines 

In order to detect FLP activity in the progeny of FLP-SSI lines, embryos from T1 seeds 

or callus derived from T1 seeds were bombarded with pRP9.  Ten-twelve embryos from each of 

T20C3, T22C2, T25C3, T28C2 (FLPwt), and T3C2 (FLPo) lines were isolated.  Similarly, callus 

induced from mature T1 seeds of T28C2 (FLPwt), T12C2, T14C1, T76C2 (FLPe), and T38C1 

(FLPo) were used for bombardment with pRP9 and stained 72 hours later with GUS staining 

solution (Table 9). FLP activity was determined through the number of blue spots produced on 

explant per bombardment.  After staining with GUS staining solution for 12 h, 24 h, and 48 h, no 

GUS activity (blue spot) was observed on any sample (Figure 20 and 21, and Table 9).  This 

procedure was repeated and the same result was obtained. Therefore, none of FLP-SSI lines was 

selected for future application. 
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Table 9: Characterization of FLP-SSI lines  

FLP type Name 
Characterized by 

Southern hybridization 
Selected for 
FLP assay 

Result for 
FLP assay 

FLPwt 

T20C3 Heterozygous tc * - a 
T22C1 Non-transgenic   
T22C2 Heterozygous tc * - a 
T25C3 Heterozygous tc * - a 
T28C2 Homozygous tc * - a, b 

FLPe 

T12C2 Random integration * - b 
T14C1 Homozygous tc * - b 
T17C4 Heterozygous tc * - a 
T45C4 Heterozygous tc * - a 
T76C2 Homozygous tc * - b 

FLPo 
T3C2 Heterozygous tc   
T4C1 Contained random integration   
T38C1 Contained random integration * - b 

tc: truncated integration 
-  :  negative, no blue spot was observed 
a :  on embryos of T1 seeds 
b :  on callus derived from T1 seeds 
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Figure 20: FLP activity assay on T1 callus.  Callus was bombarded with pRP9 and stained for 

GUS activity.   FLPwt, FLPe, FLPo lines are shown.  GUS activity in FLPwt line T28C2 is 

intrinsic activity as this activity was observed without pRP9 bombardment.   
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Figure 21: FLP activity assay on T1 embryos of selected FLP-SSI lines.  T1 embryos were 

bombarded with pRP9 and stained with GUS solution. None showed GUS activity. T22C2 and 

T28C2 showed some background staining (shown above), whereas other lines (T20C2, T25C3, 

and T3C2) appeared similar to the T5 cultivar control (as shown above).   
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4.9. Discussion 

 Three bombardment experiments performed for a total of 28 and 30 callus plates to 

generate FLPe and FLPo expressing lines, respectively, whereas the number of experiments to 

generate FLPwt expressing lines was two on a total of 19 callus plates.  Sixty five FLPwt, 41 

FLPe, and 28 FLPo resistant lines were obtained. However, 21 FLPwt, 33 FLPe, and 15 FLPo 

lines were transferred to regeneration media after PCR analysis and FLP activity assay. 

Seventeen FLPwt, 14 FLPe, and 4 FLPo lines were regenerated but only 15 FLPwt, 8 FLPe, and 

3 FLPo lines were successfully grown in the greenhouse.  However, intrinsic GUS activity was 

again observed in FLPwt lines that reduced FLPwt lines for further analysis to only 6 lines. 

 The GUS gene is not to be present in plants.  However, a number of studies reported 

background GUS activity in plants: Arabidopsis, rice, tobacco, maize, rye, potato, tomato, apple, 

and almond (reported and reviewed by Sudan et al., 2006; Wozniak et al., 1994).  The proposed 

explanations for this phenomenon were microbial contaminants or endophytes, which may 

present GUS activity. Background GUS activity has an optimum acidic pH. Hence, native GUS 

activity is believed to be controlled at neutral or higher pH.  In the present study, native GUS 

activity was still observed on calli with staining solution at both pH 7 and 8.    

 PCR analysis revealed that all FLP-SSI plant lines except T22C1 (FLPwt) had the 

integration of donor circles.  Later, Southern analysis also confirmed that the Ubi promoter was 

not present in T22C1. Hence, this line was non-transgenic.  This means T22C1 (FLPwt) was able 

to escape the selection with geneticin.  Most of the lines had the integration in only one allele 

(three FLPwt lines, two FLPe lines, and one FLPo line).  These lines were heterozygous for the 

integration loci (Table 9).  The intensity of hybridized bands for SSI loci in some lines was less 
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than that of the T5 locus.  The reason for this is that the activity of Cre from T5 locus acted on 

SSI locus that excised out donor circles after the integration.  The excision was at high rate in 

T3C2 line (FLPo) that made the hybridized band for the SSI locus in this line hardly detectable.  

The integration in two alleles took place in three lines: T28C2 (FLPwt), T14C1 and T76C2 

(FLPe); hence, these lines were homozygous for the integration locus. Unfortunately, all these 

homozygous or hemizygous integrations appeared to be truncated as the integrated bands were 

not of the expected size. Beside SSI, random integrations were also present in one FLPe line 

(T12C2) and two FLPo lines (T4C1 and T38C1).  

 FLP activity then was assessed in FLP-SSI lines.  Calli or embryos from T1 seeds of FLP 

lines were bombarded with the pRP9 vector and stained with GUS solution 72 hours later.  GUS 

activity was not observed in any samples. Therefore, none of FLP-SSI lines was selected for 

further application. Looking back at the experiments on FLP activity assays, these lines did not 

show any GUS activity in the FLP assay (Table 6 and 7).  The reason for this could be truncation 

in the SSI locus as revealed in Southern analysis. 

 Although comparison for FLP activity from characterized plant lines was not possible, 

FLP assay on callus lines revealed FLP activity in several transformed lines (Figure 10, 11 and 

12).  Based on number of blue spots, it can be suggested that FLPe and FLPo removed the FRT-

flanked npt fragment much more efficiently than FLPwt, indicating superior recombination 

efficiency of FLPe and FLPo.   
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5.1. Generation of Nipponbare FLP lines 

Calli were induced from seeds of Nipponbare (Nip) cultivar on 2N6D media. Calli were 

selected for bombardment with FLP constructs.  FLPwt-, FLPe-, and FLPo-transgenic lines were 

generated by co-bombarding four, five, and four Nipponbare callus plates with plasmids 

pUbiFLP, pAA8, pAA7 (Figure 7), respectively, along with a plasmid containing the selection 

marker gene, hygromycin phospho-transferase gene (pHPT; Figure 7). Bombarded calli were 

selected on hygromycin (50 mg/L) containing 2N6D media. In total, 15 FLPwt, 18 FLPe, and 16 

FLPo (hygromycin resistant) lines were obtained (Table 10). These lines were taken for a FLP 

expression assay and allowed to regenerate on hygromycin-containing regeneration media. 

Thirteen FLPwt, 16 FLPe, and 6 FLPo lines were successfully regenerated, and transferred to 

growth media to prolong shoot and root growth before growing in the greenhouse.  Some lines 

were infected with fungi or bacteria or had inefficient development of the root system; therefore, 

only 8 FLPwt-, 13 FLPe-, and 4 FLPo- plant lines were successfully transferred and grown in the 

greenhouse (Table 10, 11, 12 and 13). 

5.2. FLP Expressing Assay on Callus Nipponbare FLP lines 

 All 15 FLPwt, 18 FLPe, and 16 FLPo lines and Nipponbare cultivar were bombarded 

with the pRP9 vector and stained with GUS staining solution 72 h later.  FLP activity was 

determined through blue dots produced on the bombarded calli.  Two FLPwt, two FLPe and one 

FLPo lines showed blue dots, indicating the presence of FLP activity (Figure 22 and Table 11, 

12, and 13).  Other lines showed no GUS activity.  Nipponbare (negative control) did not show 

any GUS activity as expected. 
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Table 10: Summary of Nipponbare FLP lines 

FLP 
gene 

Bombarded 
plates 

No. of 
hygromycin 

resistant callus 
lines 

No. of 
regenerated 

lines 

No. of 
rooted lines 

 

No. of 
greenhouse 
grown lines 

FLPwt 4 15 13 12 8 
FLPe 5 18 16 16 13 
FLPo 4 16 6 6 4 
 

 
 
 
 

Table 11: List of Nipponbare FLPwt lines 

FLPwt 
(15) 

GUS 
T0 
calli 

Regenerated Rooted Greenhouse 

N7C1 - + lost  
N7C2 - + lost  
N7C3  + + + 
N7C4 - + + + 
N8C1 - + + + 
N8C3 - + + died 
N8C4 - -   
N9C1 - + + + 
N9C2 - + -  
N9C3 - + + + 
N9C4 - + + + 
N10C1 + + + + 
N10C2 - + + + 
N10C3 + -   
N10C4 - + + died 

Highlighted lines were analyzed to T1 generation 
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 Table 12: List of Nipponbare FLPe lines 
 
 

FLPe GUS T0 calli Regenerated Rooted Greenhouse 
N1C1 - + + + 
N1C2 - + + died 
N1C3 - + + + 
N1C4 - + + + 
N2C1 - + + + 
N2C2 - + + + 
N2C3 - + + + 
N2C4 - + + + 
N3C2 - -   
N3C3 + + + + 
N3C4 + + + + 
N4C1 - -   
N4C2 - + + died 
N4C3 - + + died 
N4C4 - + + died 
N13C1 - + + + 
N13C2 - + + + 
N13C3 - + + + 

Highlighted lines were analyzed to T1 generation 
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Table 13: List of Nipponbare FLPo lines 

 

FLPo FLP 
activity 
(callus) 

Regenerated Rooted Green 
house 

N5C1 - + + + 
N5C2 - + + + 
N5C3 - + + died 
N5C4 - + + + 
N6C1 - + + died 
N6C2 - -   
N6C3 - -   
N6C4 - -   
N11C1 - -   
N11C2 - + + + 
N11C3 - -   
N11C4 + -   
N12C1 - -   
N12C2 - -   
N12C3 - -   
N12C4 - -   
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Figure 22: FLP expression assay for Nipponbare FLP callus lines. Only the lines that showed 

GUS activity are presented. 
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5.3. Molecular Characterization of Nipponbare FLP Lines 

 FLP lines in the greenhouse (Table 11, 12, and 13) were analyzed for transgene 

integration using molecular analysis.  Genomic DNA of these lines was isolated from leaves by 

the CTAB method, and subjected to PCR and Southern hybridization. 

5.3.1. PCR analysis 

 PCR was used to determine the presence of FLP genes in FLP lines.  Genomic DNA was 

used to amplify FLP genes with suitable primers: primer pair a and e with annealing at 56oC 

amplified a 1.4-kb fragment of FLPwt; primer pair f and g with annealing at 60oC amplified a 

1.2-kb fragment of FLPe; and primer pair h and i with annealing at 60oC amplified a 1.3-kb 

fragment of FLPo (Table 4).  Bombarded plasmids (pUbiFLP; pAA8; pAA7) were used as 

positive controls, whereas the negative control was DNA from the non-transgenic Nipponbare 

plant.  Five out of 8 FLPwt, and 12 out of 13 FLPe lines showed amplification of the FLP genes. 

All lines showed amplification at the expected size, i.e. same as positive controls, except N3C4 

FLPe line that produced smaller bands (Figure 23, 24).  None of the four FLPo lines amplified 

whereas the expected band was present for the positive control, pAA7 (Figure 25). The PCR on 

FLPo lines was repeated twice.  Hence, PCR on hpt gene in FLPo lines was carried out with 

primer pair m and n (Table 4), and plasmid pHPT was included as the positive control. All 4 

FLPo-expressing lines amplified the 0.5-kb HPT fragment (Figure 26).  Therefore, FLPo lines 

were transformed by pHPT but not pAA7. 
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Figure 23: PCR analysis for the presence of FLPwt gene in Nipponbare FLPwt lines.  DNA 

from Nipponbare plant (Nip) was used as negative control, and  pUbiFLP as positive control.  

Five (N7C3; N7C4; N9C1; N9C3; N9C4) out of eight FLPwt lines amplified a 1.4-kb FLPwt 

fragment with primer pair a and e. 
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Figure 24: PCR analysis for the presence of FLPe gene in Nipponbare FLPe lines. DNA 

from Nipponbare cultivar (Nip) was used as negative control and  pAA8 as positive control.  

Twelve out of 13 FLPe lines (except N4C2 line) amplified the FLPe fragment, of which 11 

amplified the expected 1.2-kb band with primer pair f and g, whereas line N3C4 amplified 

smaller bands. 
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Figure 25: PCR analysis for the presence of FLPo gene in Nipponbare FLPo lines. DNA 

from the Nipponbare cultivar (Nip) was used as negative control and  pAA7 as positive control.  

None of the four FLPo lines (N5C1; N5C2; N5C4; N11C2) amplified any fragment with primer 

pair h and i, while pAA7 amplified a 1.3 kb fragment. 
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Figure 26: PCR analysis for the presence of hygromycin phosphotransferase (HPT) gene in 

FLPo lines. DNA from Nipponbare cultivar (Nip) was used as negative control, and pHPT as 

positive control.  All four FLPo- lines amplified a 0.5-kb fragment of the HPT gene with primer 

pair m and n. 

 

 

 

\ 
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5.3.2. Southern analysis 

 Nipponbare FLP lines were subjected to Southern analysis.  Genomic DNA from these 

lines was digested with EcoRI, and hybridized with probes for FLPwt,FLPe, or the Ubi 

promoter.  

 Two EcoRI sites were present in the FLPwt construct, one in FLPwt sequence and 

another beside the nos 3’ terminator  (Figure 27). The distance between these two EcoRI sites 

was 0.9-kb.  The probe used for FLPwt hybridized with FLPwt region that contains the EcoRI 

sites.  Hence, successful integration in FLPwt lines should produce a 0.9-kb hybridized band.  In 

addition, there should be one more band of an unpredictable size in single-copy lines.  

Hybridized blot revealed that four FLPwt lines (N7C4, N9C1, N9C4, and N10C1) had 0.9-kb, 

and one to two additional bands, 3 lines (N7C3, N8C1, and N9C3) had hybridized bands but 

none of these was 0.9-kb.  There was one line, N10C2, failed to produce a hybridization (Figure 

27).  Meanwhile, the Ubi promoter is located outside of the EcoRI segment (Figure 27); hence, 

hybridization with the Ubi probe is expected to generate only one band of undetermined size in 

the single-copy FLPwt lines.  Hybridization pattern showed on the blot indicated that these lines 

had zero to three copies of Ubi promoter (Figure 27).  Specifically, three lines (N7C3, N7C4, and 

N9C4) contained three copies; two lines (N9C1 and N9C3) contained two copies; one line 

N10C1 contained a single copy; however, this line did not contain FLPwt gene according to 

PCR. Therefore, this line may contain a truncated integration.  Finally, two lines (N7C4 and 

N10C2) did not hybridize with the Ubi probe (Figure 27).  The results from FLPwt and Ubi blots 

showed that there were a total of 6 transgenic lines with copy number ranging from 1–3.  

However, one of the lines, N10C1 was PCR negative, so it probably contains a truncated FLPwt 

gene.  Thus, a total of 5 FLPwt-Nipponbare lines were available for further analysis (Table 14).  
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In the FLPe construct, there is only one EcoRI site located beside the nos3’ terminator 

(Figure 28).  Therefore, EcoRI-digested DNA from single-copy lines is expected to produce only 

one band of undetermined size which should be > 4-kb on the blot with FLPe or Ubi probes (see 

Figure 28).  In other words, the number of hybridized bands on the blot would indicate the 

number of transgene copies.  Four Nipponbare FLPe lines (N1C1, N1C4, N2C3, and N13C2) 

were determined to be two-copy lines,  one (N13C3) to be three-copy line  in which one copy 

was truncated (< 4-kb); and three lines (N3C3, N3C4, and N13C1) to be multi-copy lines.  

Among FLPe lines, N4C2 had no hybridized band with either the FLPe or Ubi probes. With 

PCR, the presence of FLPe gene was not detected in this line. Therefore, this line may only be 

transformed with pHPT (not determined) or be non-transgenic but able to escape the selection 

with hygromycin. Two lines, N1C3 and N2C1, that were positive for the FLPe gene in PCR, did 

not hybridize with any of the two probes.  PCR analysis may have been flawed due to cross 

contamination from other samples or plasmid.  The remaining lines (N2C2 and N2C4) had one 

or two integrations, but the presence of < 4 kb bands in these lines suggested the presence of 

truncated fragments  (Figure 28 and Table 15). 
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a) 

 

b) 

 

Figure 27: Southern analysis for Nipponbare FLPwt lines. a) EcoRI sites in the pUbiFLP 

plasmid. b) Genomic DNA was digested with EcoRI and hybridized with the FLPwt probe and 

Ubi probe. Nipponbare DNA serves as the negative control; 1-kb ladder was used as the size 

marker. 
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Table 14: Summary of Southern analysis for Nipponbare FLPwt lines 

FLPwt 
lines 

PCR 
for 

FLPwt 
gene 

Presence of 0.9-kb 
band with FLPwt 

probe 

Additional bands 
with FLPwt 

probe 

No. of 
bands 

with Ubi 
probe 

Conclusion 

N7C3 + - > 2 3 Maybe truncated  
N7C4 + + > 2 3 3 copies line 
N8C1 - - - > 1 Maybe truncated 
N9C1 + + 1 2 2 copies line 
N9C3 + - 3 2 Maybe truncated 
N9C4 + + 2 3 3 copies line 
N10C1 - + 1 1 Single copy  

(maybe truncated) 
N10C2 - - - - Did not have FLPwt 

gene  
- : no band 
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a) 

 

 
 
b) 

 

 

Figure 28: Southern analysis of Nipponbare FLPe lines. a) EcoRI site in the pAA8 plasmid. 

b) Genomic DNA was digested with EcoRI and hybridized with FLPe and Ubi probes.  

Nipponbare cultivar was used as the negative control; 1-kb ladder was used as the size marker. 
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Table 15: Summary of Southern analysis for Nipponbare FLPe lines. 

FLPe lines Hybridized bands 
with FLPe probe 

Hybridized bands  
with Ubi probe 

Conclusion 

N1C1 > 1 2 2 copies line 

N1C3 - - negative for FLPe gene 

N1C4 1 2 2 copies line 

N2C1 - - negative for FLPe gene 

N2C2 - 1 Maybe truncated 

N2C3 2 1 2 copies line 

N2C4 - 2 Maybe truncated 

N3C3 Multi Multi Multi copies 

N3C4 Multi Multi Multi copies 

N4C2 - - negative for FLPe gene 

N13C1 > 1 Multi Multi copies 

N13C2 2 2 2 copies line 

N13C3 2 3 3 copies line, one maybe truncated 
- : no band 
* : in combination with PCR analysis 
 

 

The FLPo construct also has only one EcoRI site beside the nos3’ terminator (Figure 29).  

Therefore, EcoRI-digested DNA from single-copy lines is expected to produce only one band of 

an undetermined size  > 4-kb on the blot with the Ubi probe (Figure 29), and the number of 

hybridized bands on the blot would indicate the number of transgene copies.  Of four FLPo lines, 

N5C1 showed two hybridized bands with Ubi probe, whereas N11C2 had one hybridized band. 

The remaining two lines (N5C2 and N5C4) did not hybridize with the Ubi probe. PCR detected 

the presence of the hpt gene but not the FLPo gene in these four lines. Therefore, N5C1 and 
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N11C2 probably contained truncated integration of pAA7, whereas two lines N5C2 and N5C4 

were transformed with only pHPT.  From these results, hybridization with the FLPo probe was 

not carried out, and all four FLPo lines were removed from further analysis. 

 
a) 

 

b) 

 

Figure 29: Southern analysis of Nipponbare FLPo lines. a) EcoRI site in the pAA7 plasmid. 

b) EcoRI-digested genomic DNA of FLPo lines hybridized with the  Ubi probe.  
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5.4. FLP Expression Assay 

 FLPwt and FLPe lines were selected to determine FLP activity using the GUS expression 

assay.  Calli induced from T1 seeds of FLP lines were bombarded with the vector, pRP9, and 72 

hours later stained with GUS staining solution at 37 oC. Due to slow growth and partial sterility, 

N10C1 was not included; therefore, only three FLPwt lines (N7C4, N9C1, and N9C1) were 

tested.  Among the FLPe lines, N1C4 was not included because this line had only four seeds at a 

very late time point.  

 Calli from a single T1 seed per line was bombarded and stained separately. With 

sufficient calli for each seed used in each bombardment that was carried out with a single stock 

of pRP9-coated gold particles, the highest FLP activity was measured by the number of blue 

spots produced after staining for GUS activity per bombarded plate.  Figure 30 and Table 17 

present the results of the experiment.  Two out three FLPwt lines produced 15 blue spots per 

seed whereas three out of four FLPe lines produced 200 - 300 blue spots per callus plate, which 

is more than 15 fold higher than that of FLPwt line. The higher number of blue spots in FLPe 

lines may be based on (a) higher FLPe gene expression, and/or (b) higher recombinase activity 

of FLPe. FLP-expression assay was restricted to Nipponbare FLPwt and FLPe lines because 

there was no FLPo lines based on the negative PCR analysis (see above). 
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Figure 30: FLP assay in Nipponbare FLP lines.  T1 seed derived callus was bombarded with 

pRP9 and stained 72 h later for GUS activity, which directly correlates with FLP activity.  a) 

Nipponbare callus (negative control); b) FLPwt derived calli; c) FLPe derived calli.  
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5.5. Quantitative Real Time PCR (qRT-PCR) for FLP Gene Expression Analysis 

 In order to determine whether superior FLP activity of FLPe or higher FLPe gene 

expression contributed to higher observed FLP activity in FLPe lines, quantitative real time 

reverse transcriptase PCR (qRT-PCR) was carried out. Total mRNA was extracted from leaves 

of Nipponbare FLPwt and FLPe lines and the Nipponbare cultivar and subjected to qRT-PCR.  

For the FLPwt, the primer pair o and p (Table 16) was used and for FLPe, primer pair r and s 

was used. Phytoene Desaturase (PDS) gene (primer pair t and u) was used to normalize the 

amount of RNA added to the reactions. The qRT-PCR reactions for all genes were carried out at 

60 oC in duplicates.  From the CT value of qRTPCR, fold change in expression of FLPwt and 

FLPe (Table 17) was calculated using the ∆∆C(t) method (Livak and Schmittgen, 2001): 

Amount of target = 2-∆∆C(t) 

This analysis showed that FLPwt expression was at least 4 times higher than FLPe expression in 

their respective lines (Figure 31).  Therefore, higher FLP activity in FLPe lines was based on 

higher FLP recombinase efficiency rather than higher gene expression.    
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Table 16: Primers used for qRT-PCR analysis 
 

 

 

 

 

 

 

 

Table 17: FLP expression  
 

FLP type Lines Number of blue 
spots per callus 

plate (single seed) 

Fold change in gene 
expression 

FLPwt N7C4 0 1909 
N9C1 15 2387 
N9C4 15 2439 
Nipponbare 0 1 

FLPe N1C1 321 51 
N2C3 3 1.5 
N13C2 310 36 
N13C3 228 511 
Nipponbare 0 1 

 

  

Codes Primers Sequences 
o FLP FII 5’  GCATCTGGGAGATCACTGAG  3’ 
p FLP R641 5’  CTGTCACTAAACACTGGATTA  3’ 
r FLPe F796 5’  CCGGCAATTCTTCAAGCAAC   3’ 
S FLPe R980 5’  CAACTCCGTTAGGCCCTTCA   3’ 
t PDS F1306 5’  GCAGAGGAATGGGTTGGAC  3’ 
u PDS R1490 5’  AGAGGTCGGCAAGGTTCAC  3’ 
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a) 

 

b) 

 

Figure 31: FLP activity and FLP expression in FLPwt and FLPe lines. a) FLP recombinase 

efficiency as indicated by number of blue dots obtained upon pRP9 bombardment; b) Fold 

change in FLP mRNA abundance in FLPwt and FLPe lines compared to Nipponbare. 
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5.6. Discussion 

 In the random integration approach, a total of 15 FLPwt, 18 FLPe, and 16 FLPo  

hygromycin resistant callus lines were obtained. thirteen FLPwt lines, 16 FLPe lines, and 6 FLPo 

lines were regenerated. Although 12 FLPwt lines, 16 FLPe lines, and 6 FLPo lines were rooted, 

only 8 FLPwt line, 13 FLPe lines, and 4 FLPo lines were successfully grown in the greenhouse 

because of contamination and poor root system development in several lines.  

 All Nipponbare FLP lines in the greenhouse were subjected to PCR and Southern 

analysis to determine integration of FLP genes. Southern hybridization pattern indicated that 

most of the FLPe and FLPo lines were 2-3 copy lines (Table 14 and 15).  Only one single-copy 

line (N10C1) was produced, which was the FLPwt line. Of the four FLPo lines, two appeared to 

be truncated and two were untransformed; hence, these lines were removed from further analysis 

with FLP expressing assay.  

 FLP expression assays were carried out on primary transgenic calli (T0 calli), and later 

on calli derived from T1 seed of FLPwt and FLPe lines.  FLP assays on T0 calli revealed FLP 

activity in two FLPwt lines (N10C1 and N10C3), two FLPe line (N3C3 and N3C4), and one 

FLPo line (N11C4). This experiment showed that recombination activity of FLPe and FLPo was 

higher than that of FLPwt as they generated more blue dots on T0 calli upon pRP9 bombardment 

(Figuer 22).  All FLP lines that showed FLP activity on T0 calli were not available for the FLP 

assay on T1 calli later.  Particularly, N10C3 (FLPwt) and N11C4 (FLPo) were not regenerated, 

whereas two FLPe plant lines N3C3 and N3C4 contained multi-copy integrations. N10C1, the 

only single-copy line and that showed FLP activity in T0 calli, was sterile and therefore 

unavailable for T1 callus induction. Hence, FLP assay on T1 calli was carried out for only three 

FLPwt lines (N7C4, N9C1, and N9C4) and four FLPe lines (N1C1, N2C3, N13C2, and N13C3), 
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which did not show FLP activity on T0 calli (Table 13 and 17).  However, two of three FLPwt 

lines (N9C1 and N9C4), and all four FLPe lines (N1C1, N2C3, N13C2, and N13C3) showed 

FLP activity in T1 calli.  This means T0 calli of these lines was chimeric and these plant lines 

were developed from T0 calli that had FLP activity but this could not be represented in FLP 

assays on T0 calli.  Observation on pRP9-based GUS activity in T1 calli and FLP mRNA 

abundance indicated higher recombination efficiency for FLPe than FLPwt (Figure 30 and 31). 
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 The main objective of the present study was to assess efficiency of three types of FLP 

protein: FLPwt, FLPe, and FLPo for marker removal when they were stably expressed from a 

rice genomic locus.  Hence, FLPwt, FLPe, and FLPo transgenic rice lines had to be generated, 

confirmed with Southern hybridization, and screened for FLP expression.  FLP transgenic lines 

were generated by two approaches:  a site-specific integration (SSI) approach and a standard 

genetic transformation approach (random integration). This study, through the whole process 

from transformation to the assessment of FLP activity in the produced FLP lines, is summarized 

below 

(1) FLP assays on both FLP-SSI lines and Nipponbare FLP lines revealed that FLPe and 

FLPo have higher recombination activity compared with FLPwt in removing the marker 

from the introduced plasmid. A previous study based on transient FLP expression in rice 

cells also reported that FLPe and FLPo were more efficient than FLPwt in recombining 

FRT sites located in the rice genome (Akbudak and Srivastava, 2011). This study found 

FLPe and FLPo to be similar in recombination efficiency.  In two other studies, Nandy 

and Srivastava (2011, 2012) have successfully used FLPe for site-specific integration of 

foreign genes into FRT locus in rice genome. Thus, FLPe and FLPo have been tested in 

both stable and transient expression assays, and found to have superior recombination 

activity than FLPwt.  The higher stability of FLPe and FLPo at 37oC compared with that 

of FLPwt presumably contributed to the higher activity in these improved versions of 

proteins compared with FLPwt. In the present study, FLPo was found to display 

relatively higher efficiency than FLPe, indicating that mouse-codon optimization also 

contributed to improvement in recombination efficiency of FLP protein in rice. 
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Therefore, if rice-codon optimization may further improve FLP recombination efficiency 

for rice genetic engineering.  

(2) Two Nipponbare FLPwt lines (N9C1 and N9C4) and three Nipponbare FLPe lines 

(N1C1, N13C2, and N13C3) that showed FLP activity in the T1 generation can be 

utilized for further research or biotechnology applications (e.g. marker removal from rice 

genome). 

(3) T22C1 generated in the present study was non-transgenic; however, this line was able to 

escape the selection. T22C1 was likely generated from a chimeric transformed callus. 

The transformation process may generate chimeric transgenic callus lines. Hence, 

molecular confirmation of the generated transgenic lines is necessary to select the desired 

lines. 

(4) Site-specific integration (SSI) may also contain random integrations; however, this 

approach surely generates more single integrations compared with random integration 

approach which also was observed in this study. Single-copy integrations are known to 

display stable transgene expression (Chawla et al., 2006; De Buck et al., 2007; Srivastava 

and Gidoni, 2010).  Hence, the site-specific integration approach is more suitable for 

obtaining uniform protein expression; although in the present study, stable SSI lines were 

lost in early transformation stages.   
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Figure 32: PCR analysis for two integration junctions in FLP-SSI calli.  Primers a and b 

amplified 1.4 kb fragment at junction 1; primers c and d amplified 1.2 kb fragment at junction 2. 
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