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ABSTRACT 

The European woodwasp, Sirex noctilio F. (Hymenoptera: Siricidae) utilizes pine as its host 

during larval development.  Females drill through pine bark to deposit eggs, a symbiotic fungus, 

Amylostereum, and phytotoxic mucus into the tree.  In their native range, these insects are not 

viewed as primary pests because they attack dead or dying trees.  Over the last century, this 

woodwasp has been accidentally introduced into several countries in the southern hemisphere.  

Some regions have incurred millions of dollars in damage to large plantations of the widely 

planted pine species, radiata pine (Pinus radiata D. Don).  Sirex noctilio was discovered in 

northeastern United States and Canada in 2004.  Prior studies have focused on damage done to 

pine stands in the southern hemisphere and, because those pines are not native, these studies may 

not be applicable to native pines in the U.S.  The southeastern U.S. contains millions of hectares 

of possibly susceptible pine trees and, thus it is advisable to study the native Arkansas 

woodwasp, S. nigricornis F., (as a species with similar biology) in preparation for a possible 

invasion by its exotic counterpart.  The objectives of this research were to 1) examine how 

shortleaf pine (Pinus echinata Mill.) logs (bolts) in moderate drought conditions of Arkansas 

lose moisture over time, and 2) determine oviposition preferences of Sirex nigricornis females in 

aging pine bolts.  To complete these objectives, shortleaf pines were felled and moisture content 

was measured over a period of 45 days.  Moisture content results were used to create parameters 

for oviposition choice experiments.  After a cross-sectional cut was made, the most moisture loss 

occurs within 3-4 cm of bolt ends while the center of the bolt stays consistent during this time 

period.  Females prefer to oviposit in recently cut bolts.  Using these results, trap tree methods 

can be altered to create more efficient methods of siricid capture and laboratory rearing. 

Keywords: Sirex noctilio, shortleaf pine, moisture content, oviposition preference 
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INTRODUCTION 

 The European woodwasp (Sirex noctilio F., Hymenoptera: Siricidae) has been 

accidentally introduced into several countries in the southern hemisphere, many of which have 

seen millions of dollars in damage to commercial pine stands after its establishment.  This 

woodwasp is known to kill healthy, vigorous pines outside of its native range of Eurasia and 

North Africa.  However, in areas where severe damage has occurred – the Southern hemisphere 

– pines are not native and, therefore, natural enemies which keep these secondary pests at low 

levels are also not native.   

 Since the introduction of S. noctilio into the United States and Canada in 2004, there has 

been much concern about the potential impact of this invasive on our native pines, native 

woodwasps, and their natural enemies.  In contrast to the Southern Hemisphere, North America, 

has many native pine species as well as an array of natural enemies and other pine associates 

(e.g. long-horned beetles, metallic wood-boring beetles etc.)  These co-evolved relationships will 

likely have an effect on the establishment of S. noctilio and, therefore, its impact on the U.S.   

 The southeastern United States has approximately 54 million of hectares of commercial 

pine stands which are important to both the economy and culture of the southeast.  If the invasive 

woodwasp, if it is a successful colonizer southern pine forests, their impact could be significant.  

Thus, it is important to study our native woodwasps as well as their interactions with pines and 

pine insects to prepare for the introduction and management of S. noctilio. 

 This thesis contains two chapters: the first chapter consists of a compilation of previous 

literature describing the biology and ecology of S. noctilio and its natural enemies.  The second 

chapter includes two experiments to examine the relationships between our native Sirex and their 

pine hosts.  First, moisture loss of felled pine logs (bolts) was measured to examine how 

moisture status changes over time in felled pines.  Secondly, mating pairs were exposed to these 
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aging pine bolts to evaluate how their oviposition behavior changes in relation to differing ages 

and the moisture statuses of bolts.  These bolts were later dissected to evaluate the development 

of Sirex larvae within rearing bolts held in the laboratory.  
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LITERATURE REVIEW 

Insects in the family Siricidae are broad-waisted wasps whose larvae develop in the 

xylem of trees.  The genus Sirex consists of woodwasps that insert their ovipositor through pine 

bark and deposit eggs, along with a symbiotic wood-rot fungus, and a phytotoxic mucus into 

xylem tissue.  In the case of the single pine-infesting woodwasp species native to Arkansas, S. 

nigricornis F. (Hymenoptera: Siricidae), the associated fungus is Amylostereum chailletii (Fries) 

Boidin (Slippers et al., 2012).  Sirex nigricornis F. typically colonizes trees that are dead or 

dying, thus these insects are considered secondary pests.   

That is not the case, however, for the European woodwasp, Sirex noctilio F., which is 

well documented as a serious pest when introduced outside its native range (Madden, 1975; 

1977; Neumann & Minko, 1981).  Since its discovery in North America (New York and Ontario) 

in 2004 (Hoebeke et al., 2005), much concern has been raised, especially by those involved in 

the timber industry, about its potential to spread throughout the United States.  Wood damage 

and pine mortality occurs in the presence of a combination of phytotoxic mucus, symbiotic 

fungus, and long, winding galleries created by larvae within the sapwood in stressed pines.   

The flight period of S. noctilio in Eurasia occurs during the summer (July-August), when 

tree metabolism is at its lowest point of the year.  Their flight period in regions of the Southern 

Hemisphere begins in the late summer (December – February) with a peak in early fall.  That 

period overlaps with an increase in growth and cell differentiation of Pinus radiata D. Don, and 

therefore, a lack of resin production (Lorio, 1988, Spradbery, 1973).  These differences in the 

cycles of insect flight period and tree growth between Australasia and Eurasia may contribute to 

the severity of Sirex noctilio infestations in Australia and New Zealand, while the woodwasp 

remains a non-pest species in Eurasia.  
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Existing literature contains little information about the biology and ecology of S. 

nigricornis, its natural enemies, or how tree characteristics affect females’ oviposition behavior 

and survival.  Having information on these complex interactions would allow for the more 

efficient use of trap trees which are monitoring devices used to detect Sirex as well as lure them 

away from healthy, more valuable trees (Madden, 1988).  In addition, knowledge of log (bolt) 

conditions’ effects on siricid survival and fecundity could shed light on a complex issue 

scientists face: manipulating bolts in the laboratory and attempting to extrapolate that 

information to whole field trials.   

Pine is central to the economy and culture of the southeast (Elliott II et al., 2007), and it 

is thus imperative that we prepare for the establishment of a possibly dangerous invasive insect 

by examining interactions among pines, woodwasps, and their associates.  Information gathered 

from the literature about S. noctilio will be used to illustrate the biology and ecology of species 

native to the southeastern United States (Slippers et al., 2012).  My objectives were to determine 

how shortleaf pine and loblolly pine (Pinus taeda L.) bolts lose moisture over time under 

moderate drought conditions in Arkansas and whether S. nigricornis females change their 

oviposition behavior based on a changing moisture regime within pine bolts. 

BIOLOGY OF SIRICIDAE 

 Sirex noctilio F. (Hymenoptera: Siricidae) was chosen for this literature review for 

several reasons: it has been the focus of extensive research and thus has accumulated a very large 

knowledge base; it appears to have very similar biology to our native (e.g. development within 

Pinus species, native to temperate climates, production of a phytotoxic mucus) (Smith & Schiff, 

2002), and it has been recently introduced into the U.S.  In addition, the woodwasp is in 

association with  
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very similar species assemblages – i.e. multiple pine hosts (Kirkman et al., 2007; Rouget et al., 

2001; Urbieta et al., 2011), many parasitic Hymenoptera, and a sterilizing nematode (Kirk, 1975; 

Long et al., 2009) – and, therefore, are likely to behave in a similar manner.   

Siricid adults are variable in terms of color and body size but can be identified by a short 

spine at the terminal segment of the abdomen and lack of constriction at the “waist”.  Females 

have a modified ovipositor which is enclosed in a ventral sheath (Schiff et al., 2006).  Larvae 

also have a short spine at the end of their abdomen and different species of Sirex larvae are 

virtually indistinguishable.  The presence of this spine in both larval and adult forms explains the 

common name given to siricids of “horntail” (Wilson & Schiff, 2010). 

Morgan (1968) described the basic biology of several species of Sirex stating that 

different species have variable flight times and emergence patterns but the majority of adults 

emerge within a three to four week period beginning in late summer and continuing through the 

fall in temperate zones.  Keeler (2012) made observations of S. nigricornis that agree with these 

findings and suggests that our native may successfully serve as a proxy species for the study of S. 

noctilio. 

Males typically emerge before females and in higher numbers with a large amount of 

variation in sex ratios between regions, ranging anywhere from 1.2:1 to 32:1 (Slippers et al., 

2012).  Males then swarm to a light source and wait for females to emerge.  Females are 

facultatively parthenogenetic meaning they can oviposit without mating, and their unfertilized 

eggs will still develop (Morgan, 1968; Rawlings, 1951).  In the case of siricids, unfertilized eggs 

become males while fertilized eggs become females.  This form of parthenogenesis is known as 

arrhenotoky and is most likely the cause of inconsistent sex ratios among populations, especially 

at the front of invasions (Ryan & Hurley, 2012). 
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 Several studies (Madden, 1974; 1981; Morgan, 1968) show that females will drill with 

their ovipositor into pine trees without laying an egg – presumably checking for host suitability – 

and conversely, can lay multiple eggs in an individual drill hole.  The only way to determine if 

the drill was simply to probe or was to oviposit is by dissecting individual drill holes to examine 

the number of tunnels branching from that single drill hole and visually confirming the presence 

of an egg.  Madden (1974) describes the patterns of oviposition by S. noctilio in trees that have 

been successfully attacked stating that drill holes are distributed randomly but tend to become 

uniform over time with increasing density of drills.  Conversely, trees which resist attack tend to 

show an aggregated pattern of drilling by Sirex females.  Females drill while working their way 

up one side of the tree, flying back down to the bottom of the same tree, and working their way 

up another section (Slippers et al., 2012). 

Studies cite differing times of S. noctilio egg development, with eclosion times ranging 

from 10-28 days (Madden, 1981; 1988; Morgan, 1968).  Development of eggs is largely 

dependent on temperature, and eclosion times may vary considerably based on the local climate.  

After eclosion, larvae tunnel into the sapwood creating winding galleries which fall into four 

distinct patterns – i.e. looped, half-looped, kinked, and reversed – and begin feeding on their 

symbiotic fungus, Amylostereum (Fig. 1) (Madden, 1981).  

Mature larvae from the middle portion of the bole are much more abundant, but smaller 

across all measurement classes (i.e. weight, length, and size of head capsule) and have fewer 

instars than larvae developing in other sections of the tree.  In contrast, larvae in the lower 

portion of the bole are typically larger– presumably from a lack of intraspecific competition – 

but less abundant (Hurley et al., 2008).  The number of larval instars ranges anywhere from six 
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to twelve depending on transpiration of the wood, temperature, and other extraneous factors 

(Madden, 1981).     

Moisture content (MC) has been shown to differ along the height of coniferous trees as 

well as play a very important role in tree defenses (Lorio, 1988, Coutts, 1969a; Talbot, 1977).  It 

has also been shown to be an important factor in the choice of oviposition sites by female Sirex 

and in the development and survival of siricid larvae within the wood.  Spradbery and Kirk 

(1981) state that females prefer to oviposit in bolts of higher MC (up to 135%) but do not discuss 

in detail how survival is altered by different MC.   

Preferential oviposition by females in fresh bolts could also be related to the release of 

attractive volatiles, which can make up 1% of total volatiles released from a freshly cut tree, and 

may not always be related to MC (Simpson & McQuilkin, 1976).  Larvae often bore deeper into 

wood that has a lower MC and seem to bore along a ‘gradient of moisture content’.  Trees 

experiencing a rapid decline in moisture have exhibited higher S. noctilio survival (Morgan, 

1968; Morgan & Stewart, 1966).  Rawlings (1953) found that a large increase in MC proved to 

only slow the growth of siricid larvae while Zondag (1959) provides evidence of increased 

mortality in these high MC situations.  

  ASSOCIATED FUNGI 

 Amylostereum is a genus of filamentous white-rot fungi in the family Amylostereaceae.  

White rot fungi are characterized by degrading cellulose and lignin simultaneously by oxidative 

and hydrolysis processes which result in a pale color of the wood (Campbell, 1932; Hudson, 

1992).  Studies and surveys have failed to provide evidence of fruiting bodies in natural settings 

outside their native range and, therefore, it is thought that Amylostereum relies on clonal 

reproduction in other regions (Talbot, 1977).  Amylostereum must kill at least part of a living tree 
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to allow for successful development of siricid larvae but factors determining the success or 

failure of inoculations are not fully understood (Coutts & Dolezal, 1966; Gilmour, 1965). 

Siricid woodwasps are the only known means of dispersal for this fungus.  Siricid 

females have mycangia, internal sacs first described by Büchner (1928), located at the base of 

the ovipositor which are designed for transport and storage of fungal spores (Slippers et al., 

2003).  Oidia – thin-walled spores of some filamentous fungi – are contained within mycangia of 

female woodwasps.  There are three species of Amylostereum carried by different female Sirex 

species: i.e. A. chailletii, A. areolatum, and A. laevigatum – of which A. chailletii is the species 

purported to be the sole associate of the native North American Sirex (Nielsen et al., 2009; 

Slippers et al., 2003; Talbot, 1977).       

Talbot (1977) stated that the relationship between Amylostereum and Sirex is obligatory 

species-specific.  However, more recent surveys done by Nielsen et al. (2009) show that multiple 

species of Sirex in New England naturally carry more than one species of Amylostereum.  

Francke-Grossman (1939) had originally suggested that A. chailletii and A. areolatum may be 

found in many species of Sirex but this suggestion was largely ignored.  In addition, A. 

areolatum was initially thought to be introduced into the United States along with S. noctilio, but 

it has since been found in mycangia of native Sirex in Maine where there is not yet an established 

population of S. noctilio, indicating that this species was likely already native to the U.S.  The 

presence of A. areolatum in Louisiana has also been recorded (Canadian Forestry Service, Sault 

Ste. Marie, Canada. pers. comm.).  This could have serious implications with respect to the ease 

of establishment by the invasive woodwasp throughout the rest of the U.S.  Invasive insects that 

require a symbiotic fungus for their survival are limited by the successful establishment of their 

symbiont.  A pre-existing, coevolved relationship between the fungus and Sirex hosts may allow 
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for easier establishment of the woodwasp.  Current surveys and studies are being conducted in 

New England and the mid-Atlantic regions to determine the status of Amylostereum spp. in the 

United States (A. Hajek, Cornell University, Ithaca, New York, pers. comm.). 

How the fungus has been used by the siricid larvae during development has been widely 

debated.  Büchner (1928) states that siricid larvae do not directly ingest the fungus but ingest the 

wood after it has been broken down by fungal enzymes.  This conclusion was reached by 

examining frass of larvae and finding only trace amounts of the fungus.  However,  Müller 

(1934) states that digestion of the fungus has to take place within the gut of larvae based on his 

findings of fungus and wood within the gut during dissections, as well as observations of wood 

gnawing behavior by siricid larvae.  Boros (1968) then performed dissections of female larvae 

leading her to dispute claims by Clark (1933) that fungal carrying mycangia are present within 

the hind gut of female larvae.  These disagreements about the role of fungus and mechanisms of 

fungal use by larvae make it difficult to determine exactly how it relates to siricid development. 

Coutts (1969a; 1969b) describes the effects of the symbiotic fungus and phytotoxic 

mucus on radiata pine defenses.  After inoculating pines with A. areolatum and mucus from S. 

noctilio females individually, as well as in combination, he found that, separately, each would 

stress the tree but not directly kill it.  The combination of both, however, can be deadly for even 

a slightly stressed tree.  These tests were performed using a solution containing 50 mL of 1% 

mucus and 50 mL of “log extract”.  When trees were inoculated with both substances 

simultaneously, the tree was inevitably killed within a few months by the combination causing a 

sharp decrease in moisture at saturation (MC/S) as well as an accumulation of photosynthate in 

the leaf. 
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 Having an isolated culture of this symbiotic fungus is essential in completing studies 

examining Sirex-fungal interactions.  Thomsen and Harding (2010) describe a procedure that 

allows for isolation of Amylostereum directly from the mycangia of adult females.  They suggest 

using morphological characteristics to identify the fungus.  However, allowing the fungus to 

grow to the point of accurate morphological identification requires at least 6 weeks and obtaining 

the fungus in pure culture can be challenging.  Several approaches can be useful when attempting 

to identify the strain and origin of these symbiotic fungi.  These techniques include isolation of 

the fungus combined with polymerase chain reaction (PCR) and sequencing, or using vegetative 

compatibility groups (VCGs) (Vasiliauskas et al., 1998).   

Isolation of Amylostereum can be difficult due to a number of other genera of wood-rot – 

or saprophytic – fungi, which also occur in pines.  In instances of possible contamination, or 

difficulties in morphological identification, molecular identification can be a much simpler and 

objective method to obtain a correct identification of the fungus and typically requires much less 

time.  Nielsen et al. (2009) has developed primer sequences that have been successful in 

amplifying Amylostereum DNA for identification.  

When hyphae of two or more strains of fungi are able to fuse, or anastomose, they are 

considered to be vegetatively compatible, and therefore placed into the same vegetative 

compatibility group VCG (Leslie, 1993).  This ability to fuse can be used to test the relatedness 

of strains obtained from different areas and, in the case of Amylostereum, can determine the 

origin of fungal strains based on their vegetative compatibility with other, correctly identified, 

strains (Vasiliauskas et al., 1998).   

Using these VCGs, Slippers et al. (2001) found that all A. areolatum isolates from South 

Africa – one of the regions in which S. noctilio has caused millions of dollars in damage – were 
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compatible with each other as well as the South American isolates.  This supports previous 

suggestions that budding – or clonal – reproduction during symbiosis with Sirex may be the only 

form of reproduction for Amylostereum.  This method of reproduction does not allow for 

recombination of DNA which would have resulted in genetic differences between strains.   

Combining these methods of isolation and identification can allow for a continuous 

culture of Amylostereum.  Having a continuous – accurately identified – culture of Amylostereum 

would also allow for the rearing of a parasitic nematode commonly used as a biocontrol agent of 

S. noctilio – Deladenus siricidicola (=Beddingia) (Bedding). 

NATURAL ENEMIES 

Many Sirex natural enemies are native to North America including hymenopterous 

parasitoids, parasitic nematodes, and fungal pathogens (Cameron, 1962).  A few of these natural 

enemies –Rhyssa persuasoria L. (Hymenoptera: Ichneumonidae), Megarhyssa nortoni 

quebecensis Cresson (Hymenoptera: Ichneumonidae),  Ibalia leucospoides Hochenw. 

(Hymenoptera: Ibaliidae), and Deladenus (=Beddingia) siricidicola Bedding (Tylenchida: 

Neotylenchidae) – have been used very successfully in the control of Sirex noctilio in the 

southern hemisphere (Haugen, 1990; Iede et al., 1998; Taylor, 1978).  The main methods of 

control used as well as their efficacies in different areas of S. noctilio infestation will be outlined 

below. 

Deladenus siricidicola 

The most widely studied biocontrol agent of S. noctilio is the host specific nematode 

Deladenus siricidicola (Bedding).  While there are several described strains of the nematode, the 

most common strain used for control of S. noctilio, the Sopron strain, began to lose its virulence 

due to an extended period of time without being allowed to become parasitic, therefore, was 
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replaced by the Komona strain which was collected in the early 1990s from the Komona forest in 

Tasmania (Bedding & Akhurst, 1974; Hurley et al., 2007). 

Bedding (1968) first described the biology of D. siricidicola stating that the nematode 

can have two very distinct life cycles, both of which can continue indefinitely depending on their 

surrounding environment (i.e. within a pine tree or in the presence of a siricid host).  Eggs that 

hatch within wood always begin as mycetophagous, feeding on Amylostereum spp., but their life 

cycle becomes parasitic if they come into contact with conditions indicating the presence of a 

host larva.  

At the point that a fertilized adult female nematode enters the immediate vicinity of a 

host larva – typically sensing an increase in CO2
 
and a decrease in pH – it thrusts a tubular stylet 

into the cuticle of the larval siricid, sometimes reaching rates of 60 to 200 thrusts per minute.  

The head and oesophagous initially enter the cuticle quickly and then pause briefly, exploring the 

inside of the host.  After the initial pause, nematodes will enter the host about 20-100 µm at a 

time while pausing between thrusts until the entire nematode is inside the hemocoel of the larva.  

Anywhere from one to over 100 nematodes can enter a host but the number of nematodes in a 

single host is typically between five and twenty (Bedding, 1968). 

 Unlike their siricid hosts, Deladenus females need to mate while outside the larval host, 

as unfertilized eggs of D. siricidicola do not develop.  Once inside the host, adult female 

nematodes’ reproductive organs expand, producing thousands of eggs which hatch in 3 to 4 days 

while inside the parent nematode.  After hatching, juvenile nematodes move into the host’s 

haemocoel and migrate to the reproductive organs of the siricid host.  Before the end of host 

pupation, juvenile nematodes have begun to move into the ovaries or testes.  Moving to the 

ovaries results in transportation to a new host tree, but testes are considered a “dead end” for 



  

13 
 

nematodes as no transportation comes from their colonization.  Female siricids then deposit 

nematodes instead of viable eggs in the wood during oviposition.  Once nematodes are deposited 

in the wood, the free-living life cycle starts again assuming there is Amylostereum present 

(Bedding & Akhurst, 1974; Fenili et al., 2000; Nuttall, 1980; Yu et al., 2009).  

Just as MC of the wood plays a very important role in the development of siricid larvae 

and its symbiotic fungus, it is also critical in the development of the nematode.  Once the wood’s 

MC drops below 50%, juvenile nematodes begin to migrate further into the tree (Bedding & 

Akhurst, 1974).  Nematodes have been used as successful biocontrol agents in several parts of 

the world (Bedding & Akhurst, 1978), however, South Africa has not seen such success.  Even 

with adequate moisture content, success was relatively low, suggesting other factors may also 

affect parasitism rates (Hurley et al., 2008).  What these factors are and their interactions with 

pines are still under investigation. 

Parasitic nematodes are present in native S. nigricornis populations throughout Arkansas 

(Keeler, 2012) but their identity and influence on siricid fecundity are unknown.  Siricids have 

been shown to be completely sterilized by the nematode in previous studies (Bedding & Akhurst, 

1974) but dissections performed by Keeler (2012) show that not all females are sterilized and 

some still have many viable eggs even when infected by the native nematode.  During 

dissections she found several female siricids with nematodes present in the haemocoel 

surrounding the ovaries but not inside the eggs.  When female siricids were dissected in 2009, 

the percent of eggs parasitized by nematodes ranged from 10-100%.  This range was even larger 

in 2010 with a span of 0-100% of eggs being infected with nematodes. The percent of eggs 

infected was not significantly different among sites, suggesting large variability even within 

small geographic areas (Keeler, 2012). 
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 Preliminary testing for presence and abundance of nematodes in pine trees can be 

performed using the methods described by Haugen and Underdown (1991).  In that study, 

woodchips measuring 6 x 6 x 1.5 cm were removed from pines using a chisel and immersed in 

150 mL of tap water in an Erlenmeyer flask.  After 24 hours the water was slowly decanted 

leaving about 20 mL of water filled with debris.  The remaining water was poured into a Petri 

dish and examined for nematodes using a 40x dissecting microscope.  This method proved to be 

successful and was shown to be accurate in predicting the number of siricids infected with 

nematodes in Australia.  However, when this method was attempted using pines from the Ozark 

National Forest, it did not yield nematodes indicating that this may not be efficient for nematode 

surveys and detection in this region (J. Hartshorn, unpublished data).  

 If the methods described above yield a population of nematodes large enough to be reared 

on plates of isolated Amylostereum, methods described by Bedding and Akhurst (1974) can be 

used to rear these nematodes for release as biological control agents.  Bedding and Akhurst 

(1974) used isolated Amylostereum areolatum plated on potato dextrose agar (PDA) successfully 

to rear nematodes, as the fungus is their only food source while inside a tree.  They discovered 

that, when Amlyostereum grows on plated agar, it takes approximately 5 days at 22°C for 

nematodes to mature and mate and they can survive for several weeks in this environment.   

Several species of Ophiostoma – blue stain fungi – are present in the United States (Six & 

Paine, 1999; Zanzot et al., 2010) and may outcompete Amylostereum, potentially resulting in 

difficult isolation of the Sirex symbiont (Hurley et al., 2012).  Having a pure culture of 

Amylostereum allows for the mass rearing of Deladenus nematodes for the biological control of 

Sirex.  The inability to obtain a pure culture, possibly due to the presence of other, more 

aggressive fungi, may inhibit these rearing processes.  However, if nematode rearing is 
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successful, they can be very important in population control of S. noctilio.  After comparing 

several methods of inoculating nematodes into pine, Bedding and Akhurst (1974) found that a 

foam-gelatin media is best for inoculating pines with laboratory-reared nematodes when 

compared to other media such as water or agar.   

Nematodes in specific programs have been shown to be very important in the control of 

S. noctilio but there are many barriers to their effective use; i.e. a loss of virulence over time 

from continuing cultures without allowing them to become parasitic, use of an inoculation 

technique which may not be appropriate for the region, moisture content of the wood, and the 

possible incompatibility between populations of Sirex (Hurley et al., 2007).   

Another common option for control of invasive insects is the use of parasitoids.  If 

selected properly they can be very host specific, often destroy the host or virtually eliminate its 

ability to reproduce, and can be found almost anywhere (Sweetman, 1963).  Parasitoids that are 

most important to the control of S. noctilio populations will be discussed next.   

Parasitoids 

 Reuter (1913) coined the term “parasitoid” to distinguish between parasites and 

predators.  This definition includes insects which ultimately kill their host while parasites live in 

or on the host but keep it alive.  Other definitions have been suggested to include insects which 

inhabit plants (Price, 1975), and all organisms that complete their development on, and kill, a 

single animal host (Eggleton & Gaston, 1990).  Ulisse Aldrovandi was the first to document a 

parasitoid emerging from its host in 1602, and the first illustration of a parasitoid was done by 

Johannes Goedaert in 1662 (Godfray, 1994).   

From 1928 to 1968, 11 species of parasitic wasps were reared in New Zealand after being 

collected from the U.S., Europe, and Asia.  The first of which, Rhyssa persuasoria, was 
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introduced beginning in 1928 and collected from England.  This release represented the first 

attempt at controlling S. noctilio using a non-native parasitoid and, very soon after, other releases 

were attempted.  Ibalia leucospoides leucospoides was introduced several years later and was not 

successful until 1954 after several introductions.  Subsequent introductions included Megarhyssa 

nortoni nortoni from the U.S., I. leucospoides ensiger collected from the U.S. but reared in New 

Zealand, and R. p. himalayensis from Pakistan and India (Cameron, 1965; Hurley et al., 2007).   

Of the 11 parasitoids released, those previously listed were the most commonly studied 

parasitoids used in the control of the woodwasp.  The final parasitoid mentioned, R. p. 

himalayensis, was not considered successful, however, it is believed that these individuals may 

have hybridized with R. p. persuasoria still making them important possibly in biocontrol.  

Before the successful introduction of nematodes for control into Tasmania, these parasitoids 

infected anywhere from 55-80% of siricids (Hurley et al., 2007).   

Taylor (1978) suggested that these five parasitoids would differ in efficacy based on local 

climatic conditions and, therefore, would be complementary to each other, not competitive.  Two 

of these five species occur in the southwestern United States as natives and their ranges and life 

histories were evaluated by Kirk (1975). 

Long et al. (2009) recorded three hymenopterous parasitoids of siricids emerging from S. 

noctilio-infested pines in upstate New York including I. leucospoides, R. lineolata, and M. 

nortoni quebecensis.  Ibalia leucospoides was the most abundant parasitoid captured but all three 

species were found parasitizing native and introduced Sirex.  Long et al. (2009) also speculate 

that none of these parasitoids could independently be responsible for keeping Sirex noctilio 

populations low in the northeastern United States. 
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 Ibalia leucospoides is an egg-larval parasitoid of siricids.  The parasitoid female lays its 

eggs within the siricid egg and feeds internally.  When the parasitoid larva reaches the third 

instar, it exits the host and feeds externally.  Fourth stage larvae pupate within the tree, but 

outside the siricid host, and emerge from the tree as adults.  Their life cycle typically takes three 

years in New Zealand (Rawlings, 1951).  Taylor (1978) stated that Rhyssa persuasoria L. and 

Megarhyssa nortoni were responsible for keeping levels of Sirex noctilio low in Tasmania.  Long 

et al. (2009) and Taylor (1978) contradict each other’s findings in regards to population 

regulation, however, the differences between their results is most likely due to major 

dissimilarities between Tasmania and North America with respect to the presence of natural 

enemies of S. noctilio, climate, and native species composition.  These parasitoid species are 

present as natives in Arkansas, but their effects on native Sirex populations are not known 

(Keeler, 2012). 

Facultative Predators and Competitors 

 Native Sirex larvae feed in the xylem of pine trees, and the very common pine associates, 

long-horned beetles (Coleoptera: Cerambycidae) – specifically the pine sawyers Monochamus 

titillator F. and M. carolinensis Olivier – feed in the phloem as early instars, and in xylem as 

later stage larvae.  Stressed or damaged pine trees are often a limited resource, so it is likely that 

these insect species will inhabit the same host at some point during their life cycles.  

Cerambycids may have an effect on survival of siricid larvae much like they do on bark beetles.  

In a recent study done by Ryan (2011) it was discovered that siricid emergence was lower in 

beetle-infested trees, and average prothorax width of Sirex was larger in beetle-infested pines.  

The mechanisms behind these variations are not understood. 
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Walsh and Linit (1985) state that M. carolinensis oviposits more often in the middle to 

upper portion of the bole and aggregates oviposition pits around whorls of branches.  The bottom 

portion of the bole was largely ignored by M. carolinensis because the bark is too thick for them 

to chew an oviposition pit.  It has also been suggested that M. carolinensis, M. titillator, and 

Acanthocinus nodosus F. inhabit different heights of the tree to allow for successful resource 

distribution (Dodds et al., 2002).  Siricid oviposition sites are most commonly encountered 

starting at 3 m and dropping off around 17 m.  Distribution of oviposition sites by these 

facultative predators may have an effect on siricid oviposition and development. 

Dodds et al. (2001) studied some interactions between larval cerambycids and larval bark 

beetles (Coleoptera: Scolytidae) and found that, in laboratory experiments, 74% of Ips 

calligraphus was attacked when in the presence of M. carolinensis.  Of those attacked, 85% was 

killed and, of those killed, 76% was ingested.  M. carolinensis larvae also exhibited high levels 

of cannibalism when in the presence of other M. carolinensis larvae.  These studies suggest and 

aggressive behavior of Monochamus in pine and their tendency to attack other members of the 

pine-phloem feeding guild.  If this aggressive behavior were to continue into the xylem-

inhabiting stage, this could indicate a possible negative interaction with Sirex in the xylem 

during later instars of Monochamus. 

 Whether these interactions are inhibitory or complementary – allowing for quicker death 

of the tree or resulting in higher competition and mortality of Sirex – is unknown.  Several 

species of wood-boring insects are present within a single tree and can cause damage to wood by 

girdling, tunneling, or transmission of pathogens and diseases.  How pines respond to these 

different types of injury is discussed in the following section of this literature review. 
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PINE DEFENSES 

The major components of pine defenses have been divided into primary and secondary 

forms, also referred to as constitutive and induced (Berryman, 1988).  Vertical and radial 

preformed resin ducts contribute to the primary defense of pines which is the initial response to 

attack or injury.  Secondary responses include both biochemical and cellular changes after attack 

by an insect which can serve to encapsulate individuals (Cook & Hain, 1988; Paine et al., 1997).  

Many factors combine to make a tree more susceptible to attack by insects; these include a high 

density of trees in a single area, senescence of trees, possible root disease, a lack of natural 

enemies, and wood damage from natural disasters such as lightning, wind, or ice storms 

(Mattson et al., 1988).  Various authors cite different limiting factors as the main cause of stress 

in trees.  Major factors that are most commonly cited include water and nutrient availability, and 

abundance of suitable host material (Lorio, 1978; Lorio et al., 1982; Rudinsky, 1962).  While 

these factors most likely act together to create stressful situations for defenses to be overcome by 

insects and pathogens, Sharpe & Wu (1985) and Sharpe et al. (1985) express concern over the 

differentiation between the different kinds of stress and how they relate to each other. 

Lorio (1988) defines several models which may be used to describe how plants, 

specifically woody plants, defend themselves against attack by herbivores and wood-borers.  He 

states that, while these processes appear too complex to untangle, they are actually very regular 

and predictable physiological changes within the tree that may allow us to determine the 

susceptibility of a tree to an insect or pathogen at any given time.  There are several theories that 

have been suggested to explain how trees allocate nutrients, photosynthates, and water.   

The growth-differentiation theory was developed to expand on the notion that a 

mathematical formula calculating the carbohydrate:nitrogen ratio can determine how plants 
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develop.  The growth-differentiation theory places tissue development into three categories: cell 

division, cell enlargement, and cell differentiation.  Under optimal conditions, cell division and 

enlargement will dominate over differentiation.  How nutrients are allocated during times of 

stress also changes depending on the limiting factor.  During times of optimal temperature, 

oxygen, and sugars – and water as a limiting factor – nutrients are allocated towards proteins and 

cellulose while continuing cell growth.  During times of overall moderate stress, energy is 

focused on differentiation of cells to create secondary metabolites.  When water stress is severe 

and photosynthates are limited, both growth and differentiation are slowed.  This is only a small 

representation of a wide array of possible circumstances to illustrate the complexity of tree 

development (Loomis 1932). 

The plant apparency theory presented by Feeny (1976) describes how plant 

characteristics may make them more, or less, susceptible to attack by borers and herbivores.  

These characteristics may be size, growth form, or relative abundance within the community.  He 

describes the culmination of these characteristics as the “likelihood of discovery”.  This 

likelihood may also be different depending on the part of the plant.  Flowers, for instance, may 

be very apparent to attract pollinators while leaves and stems may be less apparent to protect 

against herbivores.  Apparency of the plant may also be a determining factor in how it allocates 

nutrients to growth or defense. 

Unapparent plants tend to contain compounds that, in small concentrations, can still be 

very effective.  These compounds are toxic to non-adapted enemies and can serve to deter 

harmful behavior.  However, these compounds may also allow for quick adaptation by their 

associates and, after a short period of time, have little effect on enemies’ fitness or growth.  

Meanwhile, apparent plants’ compounds are needed in much higher concentrations to be 
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effective against enemies.  However, these compounds may not allow for such quick adaptation 

as those described earlier.  These plants tend to have low nutritive value for herbivores 

(Berryman, 1986; Feeny, 1976; Rhoades & Cates, 1976).   

Seasonality is also important in determining a tree’s susceptibility to an insect or 

pathogen.  Resin duct formation is seasonal; during the spring months, trees may be very 

susceptible to insect attack while they are placing a large demand on photosynthates for growth 

instead of defense.  Conversely, during summer months, trees may be more resistant due to 

nutrients being allocated for defense purposes (Blanche et al., 1992).  Kozlowski (1969) 

describes this seasonality of tree physiology as a “window of vulnerability” during which time an 

insect or pathogen may successfully attack and overcome a tree’s defenses.   

Insect evolution to cope with these seasonal changes in tree physiology is evident in bark 

beetle behavior.  Southern pine beetles have “pioneer” individuals that disburse in the spring to 

attack these susceptible trees while in the summer, when trees’ defenses are at their maximum, 

re-emerging adults and new generations stay within a small “spot” continuing attack on already 

stressed trees.  After this period of tree defense, new “pioneer” beetles begin host searching 

again in the fall (Coulson & Klepzig, 2011).   

This seasonality of resin flow may also have an effect on siricid survival and fitness.  As 

described previously, native siricids emerge in the fall in the southeastern U.S. (Keeler, 2012) 

while S. noctilio in the northeast begins emerging in the summer (Long et al., 2009).  If S. 

noctilio’s summer emergence pattern continues after successfully spreading to the Southeast, the 

differences in seasonality (i.e. longer, hotter summers and shorter winters) in southern pine 

defenses may have a direct effect on the survival and fitness of individuals. 
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DETECTION, MONITORING, AND MANAGEMENT 

There are several steps to take before one can determine the most effective method for 

detection, monitoring, and control of any insect.  The first, and often most difficult, is to define 

the term “risk”.  The meaning is different depending on the observer and, therefore, many forms 

of risk mapping are needed depending on the individual map user.  Often, in terms of forest 

entomology, risk deals with tree mortality, or growth and volume loss.  After risk is defined, 

insects or diseases to be analyzed should be determined.  Sometimes this information is already 

known based on previous introductions.  Areas at risk are then defined which is often determined 

by the region’s climate and abundance of suitable host material (Lewis, 2002). 

Geographic information systems (GIS) are very powerful tools in risk mapping and have 

been used in mapping hazards of potential of forest fires, diseases of humans, tracking bird 

habitats and much more (Castro & Chuvieco, 1998; Daniel et al., 1998; Gobeil & Villard, 2002).  

Layers are created using a single parameter (e.g. area of hardwoods, slope etc.) and added one 

layer at a time to the GIS model.  The final map consists of many layers, each with a geographic 

characteristic indicating an area that is susceptible to the organism being analyzed.  Models can 

be developed for individual animals using data collected from surveys or by calculating 

parameters from estimates.   

The USDA Forest Service released a risk map in 2006 (Fig. 2) with a detailed image of 

the likelihood of establishment by S. noctilio.  This model was created using S. noctilio life 

history information; this consisted of its native climate, host species, and Sirex life cycle.  In 

addition to being in a favorable climate, there are millions of hectares of pine, the host of S. 

noctilio, in the southeast (Elliott II et al., 2007).  Using this information, areas of the United 
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States with suitable hosts and a similar climate to the native range of S. noctilio were identified 

as ‘at risk’.   

Another method of risk mapping, CLIMEX models, makes the fundamental assumption 

that species’ distribution is based solely on climate.  These models may use experiments or 

previous literature to determine climatic parameters, or can estimate these parameters, the first 

method being the preferred (Keller et al., 2009).  Using a CLIMEX model, Carnegie et al. (2006) 

predicted that S. noctilio could survive and establish throughout much of the United States, 

including the southeast, the Appalachian Mountains, and the northeast. 

  Dinkins (2011) performed experiments to determine host preferences of S. noctilio that 

included three pines, two of which are native to the southeastern U.S.  Pines included in these 

experiments were Virginia pine and loblolly pine (Pinus virginiana Mill. and Pinus taeda L. 

respectively).  Scots pine (Pinus sylvestris L.) was included as a positive control because it is a 

native host tree of S. noctilio (Kirkman et al., 2007).  There was a trend for S. noctilio to drill 

more in P. virginiana than P. taeda but there were no significant differences among the two 

native species.  Sirex noctilio females were found walking on larger bolts (18-26 cm diameter) 

23 times more than smaller bolts (11-17.8 cm diameter).   

The results of those studies contradict those of Madden (1975) and Neumann & Minko 

(1981) who observed S. noctilio attacking smaller diameter trees.  However, it was noted that 

these smaller diameter trees were often in overstocked stands, stressing them and limiting growth 

and also making them more susceptible to insect attack.  Dinkins (2011) also states that S. 

noctilio in the laboratory may be more attracted to the higher amount of volatiles being released 

from larger diameter bolts in a smaller area.  Host preferences of female S. noctilio determined 

by her study will allow for the more effective use of trap trees. 



  

24 
 

 Trap trees are felled to attract specific insects depending on the type of tree felled and 

possible lures used.  In many cases, they are strategically placed to draw insects away from 

healthy, more valuable trees but can also be used to concentrate populations to a specific area.  

There are many examples of trap trees being used effectively in different systems for control and 

monitoring purposes (Lanier & Jones, 1985; Lister et al., 1976; O'Callaghan et al., 1980; 

Prokopy et al., 2003).  In the case of the native Sirex, trees are felled to attract adults for capture 

and laboratory rearing. 

Trap trees can be created in ways other than felling.  Other methods include damaging the 

crown, girdling the tree, or treating it with herbicide.  Neumann et al. (1982) described 

techniques for early detection of S. noctilio including herbicidal treatment of pines in Victoria 

with Dicamba™ – an organochlorine compound.  Treating trees with an herbicide allows for the 

stressing – and possibly death – of the tree, creating an attractive environment for siricids.  In 

their study, spring treatment with herbicide resulted in the highest incidence of S. noctilio attack 

and was considered the best way to detect the pest in that area.  Several methods of capture, 

including trap trees, funnel traps or Lindgren traps along with lures, should be examined to 

determine the most effective way to monitor for the pest in the southeast.  While methods have 

been refined to make use of herbicides to create effective trap trees, methods of mechanical 

felling to create trap trees has not been examined as thoroughly (Dodds 2007). 

Regardless of the method used to monitor for Sirex noctilio, management practices 

should be strictly followed to prevent this insect from becoming a pest in the southeastern U.S.  

Common silvicultural practices, such as yearly thinning, have been shown to be very effective at 

controlling levels of S. noctilio (Bordeaux & Dean, 2012; Hurley et al., 2007).  It should, 

however, be reiterated that these studies focused on regions in the Southern Hemisphere and, 
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therefore, different methods of monitoring and control should be studied for use in the Northern 

Hemisphere.  Political, social, and economic situations often complicate the use of silvicultural 

practices, so a multifaceted approach will be required to have a successful monitoring and 

control program for S. noctilio in the Southeast (Slippers et al., 2012). 

OBJECTIVES  

The main objective of my thesis was to examine oviposition behavior of female Sirex in 

relation to pine bolt age and moisture status.  Moisture content is alleged to be the main driving 

force behind oviposition and survival of siricids in field conditions (Coutts & Dolezal, 1965; Dye 

et al., 2008; Madden, 1981; Morgan & Stewart, 1966).  To examine possible effects on the 

oviposition behavior of siricid females and survival of larvae in relation to differing moisture 

contents, two experiments were conducted and will be described in the following chapter.  With 

this thesis I intend to answer these questions: 1) how do shortleaf pine bolts lose moisture over 

time and 2) how does moisture content of the wood affect oviposition behavior and survival of 

Sirex?  This information is important to better understand survival of siricids in the laboratory 

and to create more efficient trap trees for capture in the field. 
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FIGURES  
 

Fig. 1.  Patterns created during larval development within the xylem tissues of pine trees 

(Madden, 1974). 

 
 

Fig. 2.  Risk map of the United States showing areas most likely to become infested with S. 

noctilio.  Forest Health Technology Enterprise Team.  

(http://www.fs.fed.us/foresthealth/technology/pdfs/sirexestablishment_surface.pdf) 
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 DECLINE IN MOISTURE CONTENT OF SHORTLEAF PINE (PINUS ECHINATA 

MILL.) BOLTS AND ITS EFFECTS ON OVIPOSITION BEHAVIOR AND SURVIVAL 

OF SIREX NIGRICORNIS F. (HYMENOPTERA: SIRICIDAE)  

ABSTRACT 

The European woodwasp, Sirex noctilio F. (Hymenoptera: Siricidae), was first discovered in the 

United States and Canada in 2004 and is currently spreading throughout the northeastern U.S.  In 

some areas of the Southern Hemisphere it has become a primary pest of commercially grown, 

exotic pines and has caused extensive damage.  The objectives of this study were to examine 

moisture content (MC) and moisture loss of felled pine logs, and evaluate the effects of varying 

moisture content on oviposition behavior and survival of S. nigricornis.  Five shortleaf pine trees 

(Pinus echinata Mill.) were felled in August of 2012 and cut into four, 75 cm long logs (bolts), 

and wrapped in a coarse mesh to prevent insects from colonizing bolts.  Bolts were separated 

into four 15-day treatment levels and held in the field during moderate drought conditions.  The 

final set of bolts was left in the field for 45 days.  Bolt cross-sections, each 3-4 cm thick, from 

each end as well as the center, were weighed and dried to calculate moisture content.  Data were 

compared among treatments as well as three positions (bottom, top, center) along the length of 

the bolt.  Average moisture content dropped significantly over time, leveling off after 30 days, 

with most of the water loss occuring at each end.  Bolts’ centers stayed consistently at, or above, 

80% MC even after 45 days of exposure to dry field conditions.  Six additional pines were felled 

and each cut into five bolts, 75 cm in length, that were randomly separated into three treatment 

levels (0, 15, 30 days old).  Mating pairs of S. nigricornis were exposed these bolts and their 

drilling behavior was observed.  Consistently high MC in the center of a 75 cm bolt suggests that 

the center of a felled tree several meters in length likely contains a high MC weeks after felling.  
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Females consistently drilled into fresh bolts indicating that, currently, trap trees may be felled too 

early to efficiently capture ovipositing females for laboratory rearing.  These results indicate that 

trap tree, or rearing bolt, felling methods may be altered to enhance laboratory rearing of adult 

siricids. 

Keywords: Sirex noctilio, trap tree, rearing bolt, moisture content, oviposition behavior 
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INTRODUCTION 

Siricidae 

Siricid woodwasp (Hymenoptera: Siricidae) females oviposit under the bark of trees and 

larvae develop within the xylem tissue.  Wasps in the genus Sirex L. inject a phytotoxic mucus as 

well as a symbiotic fungus, Amylostereum Boidin (Russulales: Amylostereaceae) into the tree 

during oviposition.  After egg eclosion, larvae create long, winding galleries throughout the 

xylem while feeding on their symbiotic fungus (Madden, 1974).  Pine mortality and damage to 

wood due to S. noctilio is often caused by a combination of larval galleries, Amylostereum, and 

phytotoxic mucus.  In the native range of S. noctilio, this damage usually occurs in dead or dying 

trees which makes them secondary pests in those regions (Coutts, 1965; Madden, 1974; Morgan, 

1968).  In some areas of accidental introduction and successful establishment of S. noctilio, it has 

caused severe damage and mortality to commercial exotic pine stands of the Southern 

Hemisphere (Dodds & De Groot, 2012).   

The European woodwasp, Sirex noctilio F. (Hymenoptera: Siricidae) is native to Eurasia 

and north Africa where it is not known to be a primary pest (Coutts, 1965; Morgan & Stewart, 

1966).  It has been introduced into several countries in the southern hemisphere beginning with 

New Zealand as early as 1900 (Kitching & Jones, 1981).  However, it remained undetected there 

until an outbreak occurred in the 1940’s which was most likely triggered by several years of 

severe drought (Coutts, 1965).  Following the accidental establishment in New Zealand and 

Australia, it has since spread to much of the southern hemisphere including Tasmania, Brazil, 

Chile, Uruguay, and South Africa (Hurley et al., 2007).  

Sirex noctilio was discovered in the United States and Canada in 2004 (Hoebeke et al., 

2005) and is spreading throughout much of the northeast including parts of Michigan, 
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Pennsylvania, Ohio, and Vermont (Dodds & De Groot, 2012).  Dinkins (2011) performed host 

preference experiments using several southeastern pine species, including loblolly pine (Pinus 

taeda L.), which is a species native to Arkansas, which was found to be very attractive to S. 

noctilio females.  The other pine species native to Arkansas, shortleaf pine (Pinus echinata Mill.) 

was not included in those studies.  However, this attraction does not indicate whether females 

were ovipositing or checking for host suitability.  The next step in the process of examining host 

preferences is to evaluate Sirex oviposition behavior in the presence of these attractive pine 

species.    

Keeler (2012) describes the biology and phenology of the only siricid woodwasp native 

to Arkansas, Sirex nigricornis F.  Her research suggests that S. nigricronis may be used as a 

proxy species to predict how S. noctilio may behave if, or when, it reaches the southeast.  Both 

species have similar flight patterns, closely related species, and are native to similar, temperate 

climates.   

Moisture Content 

Moisture content (MC) of wood and its relation to the defenses of pine has been well 

documented (Christiansen et al., 1987; Reid, 1961; Waring & Pitman, 1985).  The relationship 

between MC and tree defenses is very complicated; a severe lack of moisture as well as an over-

abundance of moisture can result in low resin flow, making trees more susceptible to injury.  

However, moderate moisture stress can increase resin production, making pines more resistant to 

insect attack (Lorio, 1988).  The fine balance between these levels of moisture stress make it 

unclear whether drought during the life of tree may affect how it dries after felling.   

While MC is important to tree defenses, it is also important to Sirex biology in many 

ways.  The wood needs to be at least partially dry (40-75% oven dry weight is ideal) to allow for 
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the development of larvae, and must be relatively dry to allow for the development of the 

woodwasps’ symbiotic fungus, Amylostereum.  The negative effects of high moisture content 

(70% and higher oven dry weight) and resin chemicals on the successful development of 

Amylostereum have been well documented (Dye et al., 2008; Madden, 1974; Talbot, 1977). 

Madden (1974) describes the oviposition behavior of females in a field setting and gives 

examples of external forces that may alter this behavior.  He describes MC as a major driving 

factor behind S. noctilio oviposition.  Logs (bolts) with a higher MC (above 80%)  were more 

likely to contain single drill holes indicating that females were only probing bolts.  On the other 

hand, bolts with lower (40-50%) MC tended to have a higher incidence of drill holes containing 

multiple tunnels indicating that females were ovipositing and not simply probing.  However, at 

very low MC (below 20%) no eggs were laid by females (Coutts & Dolezal, 1965). 

Trap Tree Methods 

Trap trees are those which are felled, or mechanically damaged, to attract certain insects.  

This attraction may be done to control populations, concentrate individuals to a certain area 

(Lister et al., 1976; Nagel et al., 1957), or to capture adults for laboratory rearing (Scott & 

Berryman, 1971) as is the case with our native Sirex species.   

Previous experiments showed optimal timing for chemical damage and mechanical 

girdling of pines to effectively attract Sirex females (Zylstra et al., 2010).  However, other 

studies examining felled trees for capture and rearing have failed to provide repeatable, effective 

methods that may be appropriate in the southeastern United States (Dodds, 2007, Hajek et al., 

2008).  Correctly defining the balance between high and low MC to create an attractive trap tree 

that also allows for successful development of larvae is difficult yet essential in performing 

laboratory experiments and rearing. 
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Objectives 

 The main objective of this study was to examine changes in moisture content of pine 

rearing bolts and oviposition behavior of S. nigricornis in relation to different-aged pine.  These 

studies aim to address two central questions: 1) how do shortleaf pine bolts lose moisture over 

time and 2) do female Sirex nigricornis show a preference for oviposition in certain ages and 

moisture regimes of pine bolts?  Two experiments were performed to answer these questions and 

will be discussed in the following sections. 

MATERIALS AND METHODS 

1. Moisture Loss in Pine Bolts 

1.1 Tree and Bolt Collection 

Five shortleaf pine trees 7-10 cm DBH (diameter breast height) were felled on August 

15
th

 2011 at the University of Arkansas Agricultural Research Station.  Trees were chosen based 

on shared characteristics; i.e. bark thickness, height and number of branches, and DBH.  Each of 

the five pines was cut into four logs (bolts), 75 cm in length, resulting in a total of 20 bolts.  

Bolts were randomly separated into four treatments.  Each treatment consisted of bolts being left 

in the field for a period of 15 days.  This resulted in an initial set of five bolts being cut and 

weighed immediately after felling.  The second set was left in the field for 15 days, then cut and 

weighed.  The third set was left in the field for 30 days and the final set was left in the field for a 

total of 45 days. Each set of treatment bolts was wrapped in a standard, coarse, fiberglass 

window mesh, closed at each end with zip ties.  Bolts wrapped in mesh were laid longitudinally, 

slightly elevated from the ground using two  5.0 cm x 10.2 cm x 30.0 cm (standard 2 x 4 in) 

boards at each end of each set of bolts to avoid fungal infection. 

1.2 Experimental Design 
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Moisture content was calculated by measuring the wet weight of wood at the end of each 

treatment period and the dry weight after 48 hours in a vacuum oven at 100˚C.  The following 

equation illustrates how these two measurements are applied to obtain a percent MC (de Groot et 

al., 2006): 

 
 

To obtain a range of moisture contents for the same bolt, three cross-sectional cuts of 

each bolt – top, bottom, and center – were measured.  Each cross-sectional cut was 3-4 cm thick 

and cut using a band saw.  This was performed on five bolts per replicate at four treatment dates 

resulting in a total of 60 cross-sections.   

1.3 Data Analysis 

All data were analyzed using R (R Development Core Team, 2010).  To determine the 

most appropriate statistical analysis, the distributions of these percent MC data were examined.  

Data were not normal and were thus transformed using log, ArcSin, and a Box-Cox 

transformation test (Southwood & Henderson, 2000).  These transformations failed to normalize 

data, thus, these data were ranked for future analyses.  After ranking data, a one-way ANOVA 

was performed to test significance among treatment levels of days left in the field and MC, as 

well as the position of each cross-sectional cut and MC (Sokal & Rohlf, 1995).  These tests 

examine statistical significance among treatment levels but do not explain which levels are 

significantly different from each other.  Significance of both tests permitted separation of means 

using a Tukey’s HSD test.   

A Tukey’s HSD test reveals that the bottom and top cross-sectional cuts had significantly 

lower MC than the center cuts.  To determine if the bottom and top data were significantly 
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different from each other across treatments, a pairwise t-test was performed to evaluate each 

treatment level as containing five replications (each individual bolt), each having two responses: 

bottom and top.  The extremely low MC of bolt ends suggested that these low values may have 

altered the original analysis.  To determine if similar results would be obtained without the low 

MC of the bottom and top cross-sectional cuts, these positions were removed from the data and a 

one-way ANOVA was performed examining only the center cross-sectional cut data in relation 

to days left in the field.   

Average MC of the center cross-sectional cuts did not significantly decrease over time 

which suggested that these data may have altered the original ANOVA, leading to less statistical 

significance.  To examine this alternative possibility, the center MC data were removed and a 

one-way ANOVA was performed examining only the bottom and top MC data over time.    

2. Oviposition Choice Tests 

2.1 Sirex Collection 

Several shortleaf and loblolly pine trees were felled in the Ozark-St. Francis and Ouachita 

National Forests beginning in mid-September continuing through October of 2010 to attract 

emerging adults.  Sirex females had the opportunity to oviposit in the trap trees throughout fall of 

2010.  These trees were collected the following spring and summer of 2011, cut into 75 cm bolts 

and placed in plastic rearing containers in a covered, but open outdoor shed.  This was done to 

ensure that the development and survival of siricid larvae were not compromised by differences 

between field and laboratory conditions.  Rearing containers were checked daily, numbers of 

both sexes were recorded, and live siricids were brought into the laboratory.  Immediately 

following extraction of siricid adults, randomly selected male/female pairs were placed in 
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individual cages for the following choice test experiment.  Females do not need fertilization by a 

male to produce eggs, thus mating was not controlled for. 

2.2 Experimental Design 

This split-block experiment designated siricid mating pairs as the blocking factor to 

account for any individual variation among randomly selected individuals.  Cages were 

designated as treatments and each cage contained three bolts of discrete ages which were 

considered sub-treatments.  Preliminary research showed a steady decline in MC over a 45 day 

period when exposed to dry field conditions and these results were used to assign MC parameters 

to bolts that were used to examine possible oviposition preferences of S. nigricornis females.  

These prior studies showed that, after 30 days in dry field conditions, MC levels of felled pine 

bolts did not continue to drop and, therefore, no treatment level past 30 days was included.   

An additional set of two shortleaf pines were felled in mid-September 2011, 

approximately 30 days prior to expected emergence (30 day bolts).  Two more pines were felled 

15 days later in early October (15 day bolts) with a final set of two trees was felled 15 days later 

in mid-October (0 day bolts).  Each tree was cut into five 75 cm long bolts immediately after 

felling resulting in 10 replications per treatment level.  These felling events were performed at 

the times suggested by Dodds (2007) for S. noctilio and adjusting them to climatic conditions of 

Arkansas.  

Three bolts, one from each sub-treatment, were exposed to a single siricid male/female 

pair in a cage within the laboratory.  The bolts had average MC of 75, 68, and 50% respectively 

based on previous experiments.  There were 10 replications (i.e. cages) resulting in a total of 30 

bolts.  Mating pairs typically lived for 7-10 days, and females were observed consistently 
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ovipositing throughout the duration of their adult life.  Adults were held in a photoperiod of 16:8 

D:L to mimic local late fall conditions. 

After death of the females, bolts were removed and siricid drill holes were counted under 

a dissecting microscope and marked with a permanent marker or grease pen for later 

examination.  Bolts were held at a constant temperature of 29˚C, within the optimal range (25-

33˚C) for siricid development (Madden, 1981).  Adult emergence began in February 2012 and 

both sexes were observed emerging which indicates successful mating occurred.   

2.3 Log Dissections 

Emergence was monitored beginning in February 2012 and continuing until mid-April at 

which point there had been several weeks without additional emergence.  Bark around each drill 

hole, which had been previously marked, was carefully peeled away.  Drill holes were dissected 

using a wood-carving tool kit and drill holes were slowly excavated until the xylem was 

encountered.  Presence of multiple tunnels, egg cases, and siricid development was recorded.   

After bark removal and drill hole dissection, a band saw was used to cut 0.5-1 cm 

longitudinal sections along the length of the bolt.  If any sign of insect development was 

encountered (e.g. galleries, frass, dead or live larvae etc.), the width of the cut was reduced to 

ensure all developing insects would be detected.  Stage and condition of all insects within the 

wood was recorded and insects were stored at -15˚C. 

  Drill holes on the surface of the bark are not necessarily an indication of oviposition – 

females may be testing for host suitability.  Multiple tunnels stemming from a single drill hole 

indicate successful oviposition.  Drill holes that branch into multiple tunnels typically have n-1 

eggs (n=number of tunnels), while single tunnels do not contain eggs (Coutts and Dolezal, 1969).  

Coutts (1965) describes “oviposition patterns” as a calculation of proportions of single, double, 
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triple, and quadruple tunnels to total drill holes.  Total number of drill holes in a single bolt was 

divided by the number of double, triple, or quadruple tunnels found during drill hole excavation 

to obtain S. nigricornis oviposition patterns. 

2.4 Data Analysis 

Data were analyzed using R (R Development Core Team, 2010).  To determine the most 

appropriate statistical test, distribution of drill hole raw data was examined.  These data were 

non-normal, thus a log transformation was used (Sokal & Rohlf, 1995) to normalize the data.  

Data were then analyzed using a one-way ANOVA and overall significance allowed for the 

separation of means using a Tukey’s HSD test. 

Oviposition patterns of multiple tunnels to drill holes were also non-normal.  Both log 

and ArcSin transformations failed to normalize data, thus proportion values were ranked before 

performing statistical analysis.  A one-way ANOVA was performed to test significance among 

treatment days on ranked proportion data.  Polynomial curves were also fit to determine if 

relationships existed between number of drills per bolt and proportion of multiple tunnels to 

drills. 

RESULTS 

1. Moisture Loss 

Moisture content averages of 0, 15, 30, and 45 day-old bolts were 73.4 68.3, 50.6, and 

52.7% respectively with standard errors of 4.4, 5.5, 6.0, and 6.2 respectively.  Moisture content 

was significantly different among treatment levels of days left in the field (Fig. 1; p=0.018*).  

This level of significance allowed for the separation of means using a Tukey’s HSD test.    There 

were significant differences between 0 and 30, and 0 and 45 day treatments (p=0.030*, 0.050* 

respectively).  The 15 day treatment was not significantly different from 0, 30, or 45 day 



  

48 
 

treatments (p=0.920, 0.120, 0.210 respectively).  There was no statistical significance between 

the 30 and 45 day bolts (p=0.990).   

Moisture content of the center, bottom, and top cross-sectional cuts averaged 84.8, 52.0, 

and 47.0% respectively with standard errors of 2.4, 3.9, and 4.3 respectively (Fig. 2).  The center 

position was significantly different from the bottom (p<0.0001*) and top cross-sectional cuts 

(p<0.0001*).  The bottom and top positions were not significantly different from each other 

(p=0.600).  There is a 5% difference between the bottom and top cross-sectional cuts when 

averaging all MC data.  This difference may have been significant if the variation caused by the 

center position was removed.  

To further illustrate that there were no significant differences between the top and bottom 

cross-sectional cuts, the data were re-analyzed excluding the center cross-sectional cut data.  

Data were evaluated as a single sample (each bolt) with two responses: bottom and top and, 

across all treatment levels – 0, 15, 30, and 45 days – there were no statistically significant 

differences (p=0.38).  There was more variation in the 0-day bolts but variation decreased over 

time with very little variation in the 45 day treatment (Fig. 3). 

The top and bottom cross-sectional cuts had a consistently lower MC than the center 

cross-sections which remained fairly high even after 45 days in dry field conditions.  A one-way 

ANOVA was performed to determine if the average MC of the center cross-sectional cut 

decreased significantly over time and results indicated that moisture in the center was constant 

throughout all treatments (Fig. 4; p=0.0945).  Center cross-section MC averaged 81.1, 94.4, 79.4, 

and 84.4% from 0, 15, 30, and 45 day bolts respectively.  Standard errors for these treatments 

were 9.7, 13.2, 7.5, and 5.7 for 0, 15, 30, and 45 day-old bolts.   
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The original analysis (Fig. 1) indicated a decreasing trend in average MC.  However, 

center cross-sectional cuts remained at, or above, 80% MC (Fig. 2) suggesting that these data 

may have skewed our original interpretation.   

Center cross-section data were removed and a one-way ANOVA was performed to the 

remaining bottom and top data which showed an overall significance (p<0.0001*) and sharp 

decreases in MC after 30 days in dry field conditions and leveling off after that (Fig. 5).  A 

Tukey’s HSD test was used to test for significance among treatment days using only these 

bottom and top cross-sectional data.  Means of the top and bottom cross-sections across 

treatments dates were 69.5, 73.4, 36.3, and 36.8% with standard errors of 19.0, 24.2, 10.6, and 

7.3 for 0, 15, 30, and 45 day-old bolts respectively.  The 0 and 30 day treatments, and the 0 and 

45 day treatments were significantly different (both p<0.0001*), as they were in the original 

analysis.  Significance was also observed between 15 and 30 day treatments (p=0.005*), and 15 

and 45 day treatments (p=0.010*).  The 30 and 45 day treatments, and 0 and 15 day treatments 

were not significantly different from each other (p=0.996, 0.060 respectively).  

2.     Oviposition Choice Tests 

Averages of siricid drill holes were statistically significant among treatment levels 

(p=0.00084*) which allowed for the separation of means using a Tukey’s HSD test.  Zero day-

old bolts averaged 44.3 drill holes, 15 day-old bolts averaged 18.1 drills, and 30 day-old bolts 

averaged 4.4 drills with standard errors of 13.7, 8.4, and 0.5 respectively.  The 0 and 30 day 

treatments were significantly different from each other (p=0.010*) while 0 and 15, and 15 and 30 

day treatments were not (Fig. 6; p=0.130, 0.560 respectively).   

After dissection of bolts to obtain “oviposition patterns” for S. nigricornis, proportions of 

multiple tunnels to drill holes were calculated and compared among treatment levels.  The most 
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recently felled bolts (0 days) had the highest proportion of multiple tunnels per drill (0.29).  The 

15 day-old bolts averaged a proportion of of 0.2 and the 30 day-old bolts had a proportion of 0.1.  

Standard errors for all were 0.1.  However, these decreasing proportions among all treatment 

levels were not statistically significant from each other.  To examine the relationship between 

multiple tunnels and drill holes, curves were fitted to these proportion data.  There was no 

statistical significance using a linear, quadratic, or cubic curve.  However, the trend that emerged 

was that the highest proportion of multiple tunnels to drill holes was seen in bolts with a median 

amount of drill holes (~20 holes).  Bolts with very high numbers of drills rarely had those with 

multiple tunnels and bolts with very low numbers of drills also had few with multiple tunnels.  

Eggs were found just below the bark but, in every instance, were dry and had not survived (Fig. 

7).   

3. Log Dissections 

A total of 33 siricid eggs were found in six 0 day-old bolts while no siricid larvae, pupae, 

or adults were present.  One 0 day-old bolt contained an Ips sp. adult and an Ips sp. larva.  These 

insects were not alive or intact to obtain a definite identification.  Only four Sirex eggs were 

recorded from the 15 day-old bolts.  However, a total of 36 siricid larvae were present but none 

were alive.  A single 15 day-old bolt contained two dead Sirex pupae and a single, live 

Monochamus farate adult.  The only adult siricids (5 total) were recovered from the 15 day-old 

bolts.  This same bolt was infected with blue-stain fungi.  A total of four siricid eggs were 

recorded from the 30 day-old bolts but these eggs were dried out and not developing.  Several 

buprestid (Coleoptera) were encountered and almost every 30 day-old bolt was infected with 

blue-stain. 
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DISCUSSION AND CONCLUSIONS 

Moisture content has been noted as being important in both tree defenses as well as in the 

development of siricid larvae, their symbiotic fungus, and associated nematodes (Madden, 1981).  

Sirex trap trees in Arkansas are felled by adjusting Dodds (2007) methods for creating S. noctilio 

trap trees to conditions common to the southeastern U.S.  How differing levels of moisture in 

pine bolts in the southeastern U.S. affect the survival and fecundity of female S. nigricornis is 

unknown.   

Shortleaf pine bolts felled in mid-August of 2011 at the University of Arkansas 

Agricultural Research Station, 75 cm in length, had a consistently high MC near the center of the 

bolt at, or around, 80% even after being left in moderate drought conditions for over 30 days.  

This suggests that a felled tree, kept whole, that is several meters in length, would also have a 

high MC even after weeks left in dry field conditions.   

Current trap tree methods propose felling whole trees for siricid capture a month prior to 

expected emergence (Dodds, 2007) and our results suggest that there may not be a significant 

change in MC in the center of the tree – where Sirex females concentrate their oviposition 

(Madden, 1974) –  to require this early felling.  Females significantly preferred to oviposit in the 

most recently cut, 0 day-old bolts.  In addition, insect development was only recorded in 0 day-

old and 15 day-old bolts.  No development or emergence was observed during dissection of the 

30 day-old bolts.  This suggests that the timing of tree felling, and bolt cutting, may not be 

critical in the attraction of adults.   

If felling of trees, or trees which are cut into bolts, can be delayed until emergence of 

adults is observed, monitoring can continue into the fall to focus time, energy, and funds on areas 

with definite siricid populations.  Therefore, areas lacking a definite population may be ignored 
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so as to not waste resources on regions that will not contain a high enough population of adults 

for laboratory rearing and experiments.   

 More efficient trap tree methods are necessary for successful monitoring and 

experimentation.  There have been no concrete solutions for mechanically creating trap trees that 

can then be used for laboratory rearing and experiments.  Results from these studies point to 

timing and length of rearing material (i.e. felled pines or bolts) as major factors in attracting 

female Sirex in field settings.  Trap tree methods may differ in various regions of the United 

States as well. 

 In addition to refining trap tree methods in a field setting, methods of laboratory rearing 

should also be examined.  Laboratory rearing is essential to maintain a continuous culture of 

insects.  Laboratory cultures allow more experiments to be performed and with more 

replications.  However, these methods may be more difficult to define because they vary based 

on many factors including space available, local humidity, and temperature.  Many trees, when 

left in field conditions, can quickly become infected with fungi, as was observed in the log 

dissections of this study.  In cases where laboratory space is not large enough for fast siricid 

development, rearing material may be left outdoors to allow for normal development of larvae.  

However, this does not allow for more than a single generation a year.   

 Researchers will most likely need to make adjustments in the techniques employed to 

obtain data that can be used to address their objectives.  These adjustments may include time 

spent in the field, money spent on monitoring, or working with fewer insect generations per year.  

However, even small changes in these areas may lead to an exponential increase in capture and 

rearing efficiency. 

  



  

53 
 

FIGURES 

 

Fig. 1. Average moisture content (%) of five logs per treatment level of days left in the field. 

Horizontal lines within gray boxes indicate means. Vertical lines above and below boxes indicate 

maximum and minimum values respectively. Diamonds above and below boxes indicate 5
th

 and 

95
th

 percentiles. p=0.018*. df=3. n=20. 
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Fig. 2. Average moisture content (%) of 20 logs among three treatment levels of cross-sectional 

slabs taken at the bottom, center and top of each log. Horizontal lines within gray boxes indicate 

means. Vertical lines above and below boxes indicate maximum and minimum values 

respectively. Diamonds above and below boxes indicate 5
th

 and 95
th

 percentiles. p<0.0001*. 

df=2. n=60. 
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Fig. 3. Moisture content (%) of bottom (●) and top (о) cross-sectional cuts from 20 logs among 

four treatment levels of days left in the field. Each circle indicates a single moisture 

measurement from a log. p=0.38. df=3. n=40. 
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Fig. 4.  Average moisture content (%) of center cross-sectional cuts among treatment of days left 

in the field. Horizontal lines within gray boxes indicate means. Vertical lines above and below 

boxes indicate maximum and minimum values respectively. p=0.0945. df=1. n=20. 
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Fig. 5.  Average moisture content (%) of bottom and top cross-sectional cuts from 20 logs, five 

per treatment level, among four treatment levels of days left in the field.  Horizontal lines within 

gray boxes indicate means. Vertical lines above and below boxes indicate maximum and 

minimum values respectively. Diamonds above and below boxes indicate 5
th

 and 95
th

 percentiles. 

p=1.4e-07. df=3. n=40.  
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Fig. 6. Average number of siricid drill holes from 10 logs among three treatment levels of days 

left in the field. Horizontal lines within gray boxes indicate means. Vertical lines above and 

below boxes indicate maximum and minimum values respectively. Diamonds above and below 

boxes indicate 5
th

 and 95
th

 percentiles. p=0.00084*. df=1. n=30.  
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Fig. 7.  Proportion of multiple tunnels over drill holes made by siricid females.  Open ciricles 

indicate a single data point (one log).  Y-axis is calculated by dividing the total number of 

multiple tunnels stemming from a single drill hole by the total number of drill holes in that bolt. 
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CONCLUSIONS 

Research has been performed to test the efficacy of herbicidal poisoning in the creation of 

trap trees for S. noctilio, but mechanical felling of pines has not been as thoroughly investigated 

(Dodds, 2007).  Having defined methods for insect capture and rearing is necessary to 

accomplish laboratory experiments.  Many times experiments cannot be completed to their full 

capacity due to a lack of replications, often caused by the need for defined rearing procedures.  

This is especially important in the case of siricids due to their short life span and short 

emergence period.   

My research has provided information that can be used to alter current trap tree methods.  

However, whether altered methods are efficient in a field setting is still unknown.  Field trials to 

test multiple methods of trap tree felling should be performed to compare combinations of bolt 

ages and lengths to determine the best technique to, not only attract females, but also allow for 

successful larval development.  However, efficiency of trap tree felling is only one aspect of 

laboratory rearing and experiments.   

Once the most efficient combination of age and bolt length is determined, methods of 

laboratory rearing can then be refined.  Moisture loss of bolts appears to be an extremely 

important factor in maintaining a continuous culture of Sirex (Madden 1981).  Using information 

gathered from previous and current studies for the successful rearing of siricids is complicated by 

a general lack of knowledge about our native woodwasps’ life histories and natural enemies.  

Temperature and humidity varies greatly by region, complicating the rearing process, and more 

research is needed to determine optimum laboratory settings to fully rear siricids. 
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FUTURE RESEARCH 

An important issue not addressed in this study is how MC changes across the entire 

length of a felled shortleaf pine bolt.  Moisture levels were only measured at three positions in 

each bolt and, therefore, much of the bolt was not taken into account in these data.  To 

investigate this further, pine bolts should have cross-sections cut every 3-4 cm along the entire 

length of the bolt, resulting in approximately 25 cross-sectional cuts per bolt.  Obtaining enough 

replications to allow for justifiable implications from this study would be extremely labor 

intensive and, thus, could not be undertaken in the short time allowed for this experiment.   

These results suggested that felling may be delayed until observed siricid emergence.  

The length of rearing material was also suggested to possibly alter females’ oviposition 

preferences.  To examine these suggestions further, two experiments should be performed.   

First, several sites should be monitored for siricid activity beginning in late summer and 

continuing through the fall.  Each site should contain a different method of trap tree, or bolt, 

felling which would consist of combinations of bolt lengths and ages, as well as trees with and 

without crowns.  Johnson and Zingg (1969) found that, of all combinations examined, Douglas-

fir trees with the greatest proportion of intact crown and the least amount of shade had the 

greatest water loss.  They also state that trees with limbs removed may actually gain water over 

time.  These experiments would determine if these drying patterns also apply to Pinus spp. 

In addition to obtaining a complete moisture loss curve of felled pine bolts, detailed 

information of siricid development and survival in these varying conditions should also be 

examined.  To determine how development differs in relation to different combinations of bolt 

ages and lengths, trees and bolts should be destructively sampled at consistent intervals.  Using 
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this sampling method, mortality rates and causes of this mortality can be determined and studied 

in greater detail. 
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