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ABSTRACT 
 

 Subsurface planetary investigation techniques are of high interest and importance for the 

scientific community. Not only they can enhance our knowledge of the history of planetary 

formation but also can lead to information about its future. Whether the investigation is being 

conducted remotely using imagers, radars or physically using penetrometers or drills, a pre-

existed knowledge of the mechanical and electrical properties of the subsurface regolith should 

be acquired for better data interpretation and analysis. Therefore, the main objective of this work 

is to investigate the mechanical and electrical properties of planetary analogs, understand their 

role for assessing the subsurface structure and identify their character for subsurface 

investigation techniques. Through-out this research, we investigated the mechanical and 

electrical properties of regolith analogs with emphasis on testing the feasibility of using 

penetrometer to explore the subsurface of planetary bodies and estimate their structure and 

layering. We found probe’s diameter and regolith density are the most dominant factors which 

affect penetration forces. We correlated the mechanical and electrical properties of regolith 

analogs to geomorphological shape formation. An increase in gully total length corresponds to an 

increase in dielectric constant, friction angle and formation bulk density which will enhance 

previous, current and future modelling, interpretation and analysis of optical imagery and radar 

data. We performed dielectric permittivity and hardness measurements for volcanic rocks in 

order to provide a cross relation between the dielectric constant of the investigated material and 

its hardness property. A linear increase in dielectric constant observed along with an increase in 

rock hardness. This will enhance characterization of the shallow subsurface when investigated 

using radar and drill/penetrometer.   
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CHAPTER 1: INTRODUCTION 

 

1.1. Regolith on planetary bodies  

Investigation of the physical and mechanical properties of regolith is highly important for 

in situ planetary exploration. Planetary regolith is a layer of loose, incoherent, fragmental 

materials of whatever origin that cover most of our planetary bodies (Gary et al., 1972). Under 

this definition, cratered planetary bodies formed by impacts are enveloped by regolith layers due 

to the transform of coherent surfaces to fragmental debris (Pike, 1980). Since most of our 

planetary bodies have signs of impacts, therefore, regolith layers are observed on most them, 

Mercury (Matson et al., 1977; Langevin, 1997; Killen et al., 2004), Venus (McGill et al., 1983; 

Sprague et al., 1995), Mars and its satellites (Thomas, 1979; Veverka and Burns, 1980; Fanale et 

al., 1982; Plumb et al., 1989), the Moon (Heiken et al., 1981; McKay et al., 1991), satellites of 

Jupiter and Saturn (Simonelli et al., 1997) and asteroids (Housen et al., 1979; Housen and 

Wilkening, 1982). 

Geomorphological processes such as gullies and crater formation, erosion (Schultz, 2002; 

Sullivan et al., 2011) landslides and lithology of the subsurface layers (Lucas and Mangeney, 

2007; Perko et al., 2006) are observed on most of our planetary bodies. Their formation is still 

speculative; however, their current form and stability depend on the mechanical properties of the 

regolith on which they are developed. 

Stability of water ice, salts and some volatiles on planetary bodies is affected by regolith 

mechanical properties (Zolotov and Shock, 2001; Mellon et al., 2004). Diffusion of volatiles 

from the subsurface layers on Mars is affected by regolith porosity and tortuosity where both 

parameters are being strongly function of regolith compaction (Bryson et al., 2008; Chevrier et 
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al., 2007; Chevrier et al., 2008; Hudson et al., 2007). Therefore, understanding the mechanical 

properties of regolith analogs can help models of water ice stability.  

Planetary regolith strength is commonly described in terms of regolith density, porosity and 

angle of internal friction (Schofield and Wroth, 1968). These parameters are relevant for 

understanding science issues concerning regolith origin, history, layering, regolith characteristics 

and composition. The angle of internal friction, is term used to describe the degree of regolith 

compaction (Gibson, 1953), is measured from the tangent of the slope of shear stress versus 

normal stress curve when the regolith fails (Terzaghi et al., 1996). 

 

1.2. Regolith mechanical properties of the Moon 

The Surveyor program successfully sent seven landers to the Moon in the period of 1966 to 

1968 (Fragments, 1969). The main objective of the program was to investigate and demonstrate 

the feasibility of soft landing on the Moon (Scott and Roberson, 1969). Five out of the seven 

landers reached the surface of the Moon while Surveyor 2 crashed and Surveyor 7 lost its contact 

(Rennilson and Whitaker, 1969). Most of the Surveyor landers housed the Soil Mechanics 

Surface Sampler Experiment (SMSSE) which was used to investigate the mechanical properties 

of the subsurface of the Moon (Turkevich et al., 1967). Using the robotic arm as a penetration 

device, the robotic arm penetrated the subsurface of the Moon to a depth of 3 cm and the 

required force to reach that depth was about 30 N (Fig. 1.1) (Scott and Roberson, 1969). 

Estimation the angle of internal friction ranged from 35 to 37° from trench analysis and the 

regolith density was 1500 kg m-3 from picking up and weighting regolith (Scott and Roberson, 

1969).  
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Russia designed and launched four rovers to the Moon in the period 1969 to 1977 to 

determine the feasibility of supporting manned missions to the Moon (Leonovich et al., 1971). 

Lunokhod 1 was destroyed during launch and Lunokhod 1977 was never launched (Leonovich et 

al., 1972). Both of the other two Lunokhods were equipped with a cone penetrometer called 

PROP to investigate the mechanical properties of the lunar soil (Leonovich et al., 1972). The 

penetrometer was cone in shape with a diameter of 5 cm and 60° apex angle (Cherkasov and 

Shvarev, 1973). During instrument penetration, information about the regolith bearing capacity, 

the ratio of vertical load to the area of the penetration of the cone, and density was recorded 

(Leonovich et al., 1976). From the forces of penetration, information about the subsurface 

stratigraphy as well as subsurface density was determined. Lunokhod 1 conducted penetration 

testing into the crater wall (curve 1), penetration into the crater slope (curve 2), penetration into a 

crater rim (curve 3) and penetration into an area covered with small rocks (curve 4, Fig. 1.2 A, 

Leonovich et al., 1972). Penetration into the crater wall was observed to have the minimum 

penetration resistance ~26 N with a maximum penetration depth of ~8 cm while the maximum 

force of penetration was recorded when penetrating into an area covered with small rocks (~38 

N) with the minimum penetration depth (~6 cm).  

Lunokhod 1 performed another penetration experiment in order to study the effect of 

packing of the lunar soil through multiple penetration of the penetrometer at the same point (Fig. 

1.2 B, Leonovich et al., 1972). The regolith resistance increased significantly with repeated 

penetration. After the first penetration, the maximum force of penetration was ~22 N 

corresponded to a depth of ~8 cm. After repeating the penetration at the same point, the same 

maximum force was achieved at ~3 cm deep for the second and third trials. Lunar regolith 
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quickly compacted after the first penetration and roughly reached its maximum compaction state 

(Fig 1.2 B).  

Lunokhod 2 conducted some penetration experiments on the surface of the Moon using the 

same technique to allow comparing the results obtained at different time and localities 

(Leonovich et al., 1976). Figure 1.3 shows the results obtained by the PROP penetrometer on-

board Lunokhod 2 after penetrating at 6 different places (Leonovich et al., 1976). Curve 4 

corresponds to penetration into a homogeneous regolith layer as shown by the linear increase in 

force along the penetration depth. Penetration into two different density levels was observed in 

curve 3 and 5 from the character of the penetration curve. For curve 3, the force of penetration 

increased at the beginning of penetration and then became constant while for curve 5, force of 

penetration showed steady increase up to 4 cm in depth then an abrupt increase in the force was 

observed after 4 cm. Curve 6 showed a steady increase of force as a function of depth. Curve 2 

had a high penetration force due to high subsurface density. In some cases, the penetrometer 

managed to destroy subsurface aggregates and penetrate through the subsurface as shown in 

curve 1 at a depth of 1 – 3 cm (Leonovich et al., 1976). 

The Apollo Simple Penetrometer (ASP) and Apollo Self-Recording Penetroemter (SRP) 

were used to investigate the mechanical properties of the lunar surface and subsurface on 

Apollo14, 15 and 16 missions (Mitchell et al., 1971). ASP was part of the Apollo 14 Lunar 

Surface Experiment Package (ALSEP) which landed in the Fra Mauro highlands 500 km from 

the edge of the Imbrium Basin. The ASP was a metal rod 68 cm long and 0.95 cm in diameter 

with a 30° cone angle (Fig. 1.4 A). The ASP was used in three penetration tests by manually 

pushing it into the lunar subsurface. The ASP reached depths of 42, 44 and 50 cm and the 

penetration force was in the range of 70–135 N using one hand. A second deployment of the 
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ASP reached a depth of 62 cm and required a force of 225 N using both hands (Mitchell et al., 

1971). From the analysis of the penetration results conducted by Apollo 14 ASP, a clear 

distinction in the penetration forces as a function of depth is observed.  A change in the 

subsurface density between the first deployment and the second one can be seen from the 

difference in penetration forces. An increase in the subsurface density as a function of depth can 

be concluded from the increase of the penetration forces between both deployments.  

The Self-Recording Penetroemter (SRP) was used on the Apollo 15 and 16 missions. 

Apollo 15 mission landed in Hadley-Apennine region is the main boundary of the Imbrium Basin 

while Apollo 16 mission landed in western edge of the Descartes Mountains approximately 50 

km west of the Kant Plateau. The SRP was a rod with a cone at the end pushed manually by the 

astronaut into the subsurface of the Moon (Fig. 1.4 B). The depth of penetration was recorded by 

a scriber on a metal cylinder in the upper housing assembly. The drum rotation was proportional 

to the amount of force exerted on the penetrometer. The independent motion of the drum and 

stylus produced a continuous force-depth curve on the surface of the drum (Carrier et al., 1991). 

At a maximum depth of 76 cm, the Apollo 15 SRP recorded a force of 111 N and the Apollo 16 

SRP recorded a maximum force of 215 N (Mitchell et al., 1974). At the same depth of 

penetration, penetration forces increased from Apollo 15 to Apollo 16 which can be accounted 

for an increase in the subsurface density. From penetration forces conducted by ASP and SRP, 

the estimated angle of internal friction of the lunar regolith ranged from 46.5 to 50° and the 

regolith density associated with these parameters ranged from 1.9 to 2 gm cm-3 (Mitchell and 

Houston, 1974).  
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Figure 1.1. Penetration force as a function of depth using the robotic arm on board Surveyor 4 

(Scott and Roberson, 1969). 
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Figure 1.2 A. Penetration forces of cone penetrometer into lunar regolith (Leonovich et al., 

1976). B. Penetration forces during investigation of lunar regolith packing capacity (Leonovich 

et al., 1976). 

A 

B 
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Figure 1.3. Penetration forces using Prop penetrometer: P, vertical load (kg); h, penetration depth 

(mm). 1, destruction of stone; 2, outcroppings of a hard base; 3, soil with enhanced passing-

through capacity; 4, homogeneous layer of soil; 5, layer of loose soil on a hard base; 6, loose soil 

(Leonovich et al., 1976). 
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Figure 1.4 A. Apollo Simple Penetrometer (ASP) (Mitchell et al., 1971). 

 

 

Figure 1. 4 B. Apollo Self-Recording Penetroemter (SRP) on board Apollo 15 and 16 (Carrier et 

al., 1991). 

 

 

A 

B 
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 1.3. Regolith mechanical properties of Mars 

Some of the mechanical measurements of the Martian surface and subsurface were 

conducted using the Viking (VL-1 and VL-2) landers footpad and surface sampler (Levin and 

Straat, 1976; Moore et al., 1977). VL-1 landed at a velocity of 2.3 m/s where the landers 

footpads measured the penetration forces and its corresponding depth. For VL-1, footpad 1 was 

not visible while footpad 2, 3 penetrated a depth of 16.5 and 3.6 cm and the penetration forces 

were ~4000 N and  ~6000 N for footpad 2 and 3 respectively (Fig. 5 A) (Moore et al., 1977). 

VL-2 landed at a velocity of ~ 1.9 m/s, footpad 1 was not visible while footpad 2 and 3 

penetrated a depth of 2.3 and ~ 0 – 0.3 cm. VL-2 landed on rocky material which explains the 

shallow depth of penetration and no information about penetration forces was recorded (Moore 

et al., 1977). Drift, blocky and crusty to cloddy are three different surface materials proposed at 

Viking landing sites (Moore and Clow, 1982).  Several trenches formed using the landers surface 

sampler through excavation. Some of the mechanical properties of the Martian surface were 

estimated from the dimensional analysis of trenches. The angle of internal friction for drift and 

crusty to cloddy materials were 14° – 21° and 28° – 39° while a friction angle of 27° – 33° was 

estimated for blocky materials based on trench analysis (Fig. 5B, Moore and Clow, 1982).   

The Sojourner rover was on board the Mars Pathfinder lander (Rover team, 1997). The 

mission aimed to investigating and analyzing the Martian atmosphere, climate, geology and the 

composition of its rocks and regolith (Bell III et al., 2000). Using the rover wheels as a 

trenching, excavating and scraping tool, some mechanical measurements were conducted at the 

landing site (Rover team, 1997). The friction angle of the Martian deposits was estimated from 

the correlation of the electric current in the wheel motor during a digging and trenching 

experiment. 
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Figure 1.5 A.  Footpad penetration force as a function of penetration depth for VL-1 (Moore and 
Clow, 1982). 

 

Figure 1.5 B. Cohesion versus angle of internal friction for sample trenches (Moore and Clow, 
1982).    
 

A 

B 
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Drift and mixed materials showed low (28.2°) to moderate (34° – 38°) angle of internal 

friction while cloddy materials showed higher values (33.3° – 42.4°) assuming the angle of 

internal friction is equal to the angle of repose (Rover team, 1997). 

Mars Exploration Rover (MER) mission used two rovers, Spirit and Opportunity to 

investigate and explore the Martian surface and geology with the main goal of searching for 

clues of past water activity on Mars (Rieder et al., 2003). The rover wheels was used as a shear 

device which allowed estimation of the regolith angle of internal friction which ranged from 30° 

– 37° (Sullivan et al., 2011).  

The Mars Phoenix Lander launched in May, 2008 and operated until November, 2008 

(Smith et al., 2008). The Phoenix Lander objected to search for environments suitable for 

microbial life, and to research for the history of water on Mars (Arvidson et al., 2008). The 

lander was equipped with a 2.4 m robotic arm that used to excavate and acquire samples from the 

subsurface of Mars and deliver it to other on-board instruments for analysis (Bonitz et al., 2008). 

The angle of internal friction was estimated by the Phoenix lander robotic arm based on the 

assumption of the slope of dump piles equal to the angle of internal friction and it was estimated 

to be 38° ± 5° (Shaw et al., 2009). 

 

1.4. Regolith mechanical properties of Titan 

The Cassini-Huygens mission objected to investigate Saturn and its largest satellite Titan 

(Matson et al., 2002). The Huygen probe housed instruments to explore the surface and the 

subsurface of Titan, the Surface Science Package (SSP, Fig. 1.6 A, Zarnecki et al., 2002). 

Among the instruments and sensors on board the SSP, the ACC-E penetrometer (Fig 1.6 B), was 

assigned to measure the mechanical properties of the surface and the subsurface of Titan (Lorenz 
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et al., 1994). From the impact force profile of the thumb-size sensor (mass of 15 g) the density, 

cohesion and particle size distribution of the subsurface materials were estimated during the first 

40 mm of penetration (Zarnecki et al., 2002). Figure 1.7 shows the penetration force as a 

function of depth measured by ACC-E penetrometer (upper panel) and the other three panels for 

other laboratory tests conducted in pebble, crust and sand materials. The results indicate that the 

surface has a weak crust and, beneath that, a structure consisting of wet sand and embedded with 

pebbles (Zarnecki et al., 2005). 
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Figure 1.6 A. ACC-E penetrometer sensor head (Lorenz et al., 1994). 

 

Figure 1.6 B. ACC-E penetrometer mounted on the Surface Science Package (Lorenz et al., 

1994). 
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Figure 1.7. Penetration force as a function of depth measured by ACC-E penetrometer (upper 

panel) and the other three panels for other laboratory tests conducted in pebble, crust and sand 

materials. 
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CHAPTER 2: PENETRATION TESTING FOR THE OPTICAL PROBE FOR 

REGOLITH ANALYSIS (OPRA) 

 

2.1. Introduction 

Much of the history of rocky planetary bodies is revealed by studying the records of past 

events that are preserved in their surface geology. Younger layers are present on the top of older 

layers, based on the principle of superposition, which reveals the chronological order of 

geological events. According to the principle of original horizontality, each layer is formed 

horizontally but their orientation can be modified by various processes that can result due to 

uplifting and folding (Longwell and Flint, 1962). 

Investigating microgravity planetary bodies (i.e. comets, asteroids) is of high interest 

since they are remnant of the solar system.  Not only could they provide information about the 

history of the solar system but also they could enhance our understanding of its evolution. Due to 

space weathering, surface compositions of asteroids are altered from its internal structure. 

Therefore, telescopic measurements of asteroids rarely match laboratory reflectance spectra. 

Regolith layer on asteroids vary according to the size of the asteroids. For moderate size (100 – 

300 km diameter) asteroids, they have about 1 km depth of regolith material (Housen et al., 

1982).    

A penetrometer is a cone on the end of a cylinder which is used to investigate the surface 

and subsurface of planetary bodies by pushing it into granular material (Lunne et al., 1997). 

Cone Penetration Testing (CPT) is the technique of measuring the resistance force which 

encountered by a penetrometer. CPT is widely used for terrestrial applications. CPT was earlier 

named the static penetration test, quasi-static penetration test and Dutch sounding test. The first 
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Dutch cone penetrometer test was made in 1932 by P. Barentsen in Holland and it was pushed 

down by hand where the penetrometer had a cone diameter of 10 cm2 and 60° tip angle . 

However, CPT can be used to determine subsurface stratigraphy, estimate some geotechnical 

parameters and to predict future changes of the soil due to loading (Lunne et al., 1997). In fact, 

two American Society for Testing and Materials (ASTM) (ASTM D3441 - 05) and (ASTM 

D5778 – 07) are describing the methodology of CPT. 

 

2.1.1. Apollo 14 (ASP) and Apollo 15, 16 (SRP) 

 The Apollo Simple Penetrometer (ASP) was part of the Apollo 14 Lunar Surface Experiment Package 

(ALSEP) and was used to investigate soil mechanics on the moon. ASP was a metal rod 68 cm long and 0.95 cm in 

diameter with a 30 degree cone angle.  ASP was used in three penetration tests by manually pushing it into lunar soil 

by an astronaut. ASP reached to a depth of 42, 44 and 50 cm and the penetration force was in the range of 70 to 135 

N using one hand.  A second deployment of ASP reached a depth of 62 cm and required a force of 225 N using both 

hands (Mitchell et al., 1971). 

  A Self-Recording Penetroemter (SRP) was used on the Apollo 15 and 16 missions. This 

instrument was connected to a recording drum which recorded the force versus depth. At a 

maximum depth of 76 cm, the Apollo 15 SRP recorded a force of 111 N and the Apollo 16 SRP 

recorded a maximum force of 215 N (Mitchell et al., 1974).  

 

2.1.2. Example of Impact Penetrometer (Huygens Probe) 

ACC-E is a piezoelectric force sensor (impact penetroemter) which was part of the 

Surface Science Package (SSP) onboard the Huygens probe which is used to investigate the 

subsurface of Saturn’s moon Titan (Lorenz et al., 1994). From the impact force profile of the 

thumb-size sensor (mass of 15 g) an estimation of the density, cohesion and particle size 
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distribution of the subsurface materials was estimated during the first 40 mm of penetration 

(Zarnecki et al., 2002). The results indicated that the surface had a weak crust and, beneath that, 

a structure consisted of wet sand and embedded pebbles (Zarnecki et al., 2005). 

 

2.1.3. Example of Dynamic Penetrometer (PLUTO Mole) 

Planetary Underground Tool (PLUTO) mole, was an instrument on-board the Beagle 2 

lander, was part of the Mars Express mission to Mars (Richter et al., 2002). It was considered as 

a dynamic penetrometer (Stoker et al., 2003). The mole was capable of delivering a maximum 

force of 50 N per shock where it reached to a depth of 3.9 mm in loose sand and 0.8 mm in 

stiffish sand on earth (Kochan et al., 2001). 
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2.2. The Optical Probe for Regolith Analysis 

OPRA (Optical Probe for Regolith Analysis, Fig. 2.1A) is a static penetrometer with 

vertically-stacked windows that would be inserted from either a lander or rover into regolith or 

unconsolidated ices on the surface of a planet, asteroid, moon or comet. These windows are 

connected by fiber optics to an IR spectrometer located in the body of the spacecraft.  The 

spectrometer will address each window individually, providing swept frequency illumination to 

subsurface material outside the window and simultaneously returning the reflected signal to the 

unit.  The result will be a spectral composition profile of the subsurface material sampled every 

couple of centimeters down to a maximum depth of about 50 cm.  If a borehole is already 

available, OPRA could be lowered into it. The accuracy of subsurface investigation will depend 

on the diameter of the borehole, and in turn the distance between the embedded sensors inside 

OPRA and the borehole wall.  Because the probe will be thin and since the heat-producing 

electronics are in the spacecraft, disturbance of the subsurface layers should be minimal.  There 

are no moving parts in the probe and all electronics may be located in the warm-box within the 

rover or spacecraft body.  The spectral range of the instrument is nominally 0.5 to 5 µm (20,000 

– 2000 cm-1) which is suitable for the mineralogical and chemical characterization of the 

subsurface, including the water band at ~ 3 µm and various ices (CO2, clathrates) 

 In order to meet intended science objectives, OPRA will have the shape of a 

penetrometer with windows placed laterally along the side (Fig. 2.1B). These windows will 

protect the fiber optic cables from being in direct contact with subsurface material. Some fibers 

will carry illumination to the windows and others will carry the returning signal to the IR 

instrument. The number of windows is a function of the probe diameter, length and fiber optic 

diameter (Pilgrim et al., 2009).  
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Figure 2.1 A.  The Oprical Probe for Regolith Analysis (OPRA). B. OPRA as a penetrometer 

like shape with windows placed on the side. 
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2.2.1. Purpose of Research 

The principal objective of the experiments described in this work is to determine the 

optimized diameter and tip angle which correspond to minimum insertion and withdrawal forces 

of OPRA. This is done by measuring the amount of force needed to insert and extract various 

probes covering a range of these key variables into unconsolidated material. Sand was our choice 

of analogue material because it is a well-studied material, has a bulk density and particle size 

distribution similar to that is found on some planetary bodies such as Mars and the Moon. Apollo 

11 reported a minimum and maximum bulk densities of 1360 and 1800 kg/m3 on the moon 

(Mitchell et al., 1974). On Mars, an average bulk density of 1520 kg/m3 is indicated by Mars 

Pathfinder rover (Matijevic et al., 1997). Many valid models such as bearing capacity model 

which is used in geotechnical engineering can be applied to sand in the essence of explaining the 

penetration resistance (Terzaghi, 1943), (Vesic, 1963), (Hansen, 1970) and (Puech et al., 2002). 

In addition to the engineering requirements to minimize the force necessary to insert the probe, 

key properties of the regolith can be inferred from the force measurements, including density, 

compaction and porosity. Table 2.1 shows symbols used through the work and their definition. 
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Table 2.1. List of symbols used in the paper 

 

Symbol Def. 

Ac Area of the cone (m2) 

As Area of the sleeve (m2) 

B  Cone diameter (m) 

D Probe diameter (cm) 

rD  Relative density (dimensionless) 

e Void ratio (dimensionless) 

maxe  Maximum possible void ratio (loosest condition) 

mine  Minimum void ratio (densest condition) 

fs Sleeve friction (N m-2) 

FT Total resistance force (N) 

K  Coefficient of lateral pressure at rest (dimensionless) 

Kp  Passive coefficient of lateral stress (dimensionless) 

L  Lateral extension of the slip lines (m) 

sm  Mass of sand (kg) 

Nq  Bearing capacity factor (dimensionless) 

qc Cone resistance (N m-2) 

SV  Volume of solid particles (m3) 

TV  Total volume (m3) 

Vv Volume of voids(m3) 
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Z  Penetration depth (m) 

  Effective unit weight of sand (N m-3) 

φ Friction angle of sand (degree) 

s  Particle density of sand (kg m-3) 
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2.3. Experimental Apparatus 

A list of probes was used to simulate the OPRA probe in the penetration tests. We used 

sixteen different probes categorized into four groups (Table 2.2). These probes vary in diameter, 

length and tip apex angle to envelop most of the variables potentially affecting the penetration 

force. They cover the expected size ranging from (0.9 – 1.9 cm diameter), and tip angle ranging 

from (30, 60, 90 and 120°).  

A specific apparatus was designed and built to measure the insertion and withdrawal forces 

of the OPRA probe in unconsolidated materials. A general illustration of the setup is shown in 

Figure 2.2. A parallel shaft gear motor drives a lead screw. The lead screw housing is made of 

steel with an outside diameter of 4 cm, thickness of 5 mm and length of 80 cm. The role of the 

housing is to move up and down in correspondence with the forward and backward movement of 

the motor. The housing is equipped with two reflective laser sensors, one at the top of the 

housing and the other one is at the bottom as shown in Figure 2.3 A, to stop the automated 

program if one of the lasers hits the reflective plates. This constraints the range of positions 

(depth) in which our apparatus can be safely operated.  The motor is capable of working in 

reversible modes. The coupling between the motor and the lead screw is realized by using a two-

way metal sleeve connector. The coupling piece provides high holding capacity between the 

motor shaft and the lead screw as seen in Figure 2.3B. 

A Transducer Techniques compression load cell (MLP-1K), with a capacity of 450 kg, is 

attached at the bottom of the housing. A DPM-3 output panel is used as the load cell meter and 

calibrated to give output reading in kg with an accuracy of 0.01%. An ultrasonic depth sensor is 

placed on the top of the penetration stand. By measuring the distance between the sensor and the 

top of the regolith, the penetration distance of the probe into the regolith is measured  
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Table 2.2. List of probes 
 

Series Diameter (cm) Length (cm) Tip length (cm) Tip angle (°) 

Series 1     

Probe 1 0.9 50.8 1.8 30 

2 0.9 50.8 0.9 60 

3 0.9 50.8 0.6 90 

4 0.9 50.8 0.3 120 

Series 2     

Probe 1 1.2 51 2.4 30 

2 1.2 51 1.2 60 

3 1.2 51 0.7 90 

4 1.2 51 0.4 120 

Series 3     

Probe 1 1.9 50.8 3.4 30 

2 1.9 50.8 1.7 60 

3 1.9 50.8 1 90 

4 1.9 50.8 0.6 120 

Series 4     

Probe 1 2.5 51 4.6 30 

2 2.5 51 2.2 60 

3 2.5 51 1.35 90 

4 2.5 51 0.8 120 

 
 



 30

 

Figure 2.2. The OPRA penetration testing apparatus.  
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Figure 2.3 A. The lead screw housing with the laser reflectors, trapezoidal nut and depth   

 reflector. B. coupling piece connecting the gear motor to the leas screw. 
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continuously. At the top of the housing, a reflective aluminium surface is mounted in order to 

reflect the ultrasonic waves generated by the sensor. 

An automated control system was designed using a logic micro-controller (PLC) 

programmed using a ladder logic program Proficy HMI/SCADA-CIMPLICITY [IC200UAL006] 

which has a Human Machine Interface (HMI) where the whole penetration experiment can be 

monitored and controlled through a personal computer. During penetration two parameters are 

being monitored: the penetration force and penetration depth. The Graphical Human Interface 

(GHI) of the data collecting software is composed of one main screen with three other sub-

screens. Three outputs are shown in the main screen, the motor speed in mm/sec, the penetration 

depth in cm and penetration force in Newton (Fig 2.4). The Insert/Remove buttons activate the 

probe downward and upward movement. The insert probe condition is deactivated when the 

probe reaches a desired depth configured by the user. The remove probe button stops its 

functionality when the probe is fully removed. The results of the penetration experiment are 

automatically saved in an Excel file. 

 

2.4. Experimental Procedures 

Before starting the experiments, Force displayed on GHI screen is calibrated by comparing it to 

the compression forces measured out of a balance. Balance output reading in kg is converted to 

Newton. A probe attached to the load cell is pushed down at different forces against a 200 kg-

capacity balance placed on the floor.   The plot of force measured by the load cell (GHI screen) 

versus force measured by the balance shows a slope equal to 1 (Fig. 2.5) indicating that the load 

cell gives accurate readings and is thus perfectly calibrated for further experiments. Moreover, 

the error from the load cell is small enough (~1%) to be ignored. 
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Figure 2.4. Graphical User Interface (GUI) screen 
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Figure 2. 5. Calibration of the readings out of the load cell (GHI) with the balance reading.
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 Samples are prepared by filling a 25 cm diameter and 65 cm deep cylindrical bucket with 

dry playground sand. The particle size distribution of sand was determined by sieving as shown 

in Figure 2.6. The results show that the sand contains 36 % medium size particles (>0.5 mm) and 

64 % fine grained particles (< 0.3 mm). The sand is poured in the bucket in 5 kg layers and the 

bucket is vigorously shaken in order to homogenize and compact the regolith. The height is 

measured after each compaction step to be sure that each layer has the same bulk density. Based 

on the effect of speed of penetration, Penetration experiments were run at a constant speed of 2 

mm s-1. All results are presented as measured force as a function of penetration depth. 
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Figure 2.6. Particle size distribution curve for playground sand 



 37

2.5. Experimental results 

2.5.1. Effect of Compaction 

 In regolith materials, the required insertion force is generally a strong function of the 

density and thus of compaction (Murthy, 2002). To test the effect of compaction, a minimum 

bulk density of about 1550 kg/m3 (similar to that is indicated on Mars (Matijevic et al., 1997) 

and a maximum one of about 1700 kg/m3 (similar to that is indicated on the moon (Mitchell et 

al., 1974) was chosen. A cylindrical container was filled with sand with a measured bulk density 

of 1550 kg/m3. Three insertion and removals were conducted at this bulk density and the average 

error % of the three runs was 24%. The container was then shaken in order to compact the 

material to a higher bulk density, followed by three more penetration measurements. This 

procedure was repeated three times and the bulk density was determined at each step. At a bulk 

density of 1550 kg/m3, the 0.9 cm diameter, 60 degree tip angle probe required about 50 N to 

penetrate to a depth of 50 cm while it took about 1000 N to reach the same depth when the bulk 

density was 1700 kg/m3 where the average error % was 13% (Fig. 2.7). A change of about 9% in 

the bulk density between 1550 kg/m3 and 1700 kg/m3 induces a factor of 20 in the penetration 

force. The effect of compaction did not appear at the beginning of the experiment (the first 10 

cm), the force value of all of the four bulk densities are with-in the same range. After 10 cm 

depth, the effect of compaction appeared according to each bulk density. Penetration forces 

linearly increased with depth for 1550, 1600 and 1660 kg/m3 because of pore spaces where sand 

particles can expand. After 45 cm depth for 1700 kg/m3, penetration force curve has an 

exponential increase with depth which is due to the high level of compaction where it is hard for 

sand particles to dilate and that the probe is getting closer to the bottom of the container. 

Therefore, compaction has a profound impact on the forces required for probe penetration. The 
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insertions and withdrawals of the probes themselves did not seem to compact the sand to a 

measurable degree. 

2.5.2 Effect of Penetration Speed 

Four different motor speeds were tested (Fig. 2.8): 1, 2, 3 and 4 mm s-1 in sand with a 

bulk density of 1700 kg/m3 using the same 0.9 cm probe with a tip angle of 60° from the 

previous experiment.  In the first 30 cm, the penetration force data for all speeds overlapped, and 

reached 380 N at a depth of 30 cm. We did not observe any significant difference in the required 

forces between each speed. Thus, for the rest of the experiments, we decided to use an insertion 

speed of 2 mm s-1 since the actual penetration rate from a planetary lander or rover will probably 

be slow. 

2.5.3 Effect of Tip Angle 

Each probe was made with four tip angles: 30, 60, 90 and 120° since we expected that the 

tip angle would influence the penetration force to reach a given depth, we found that the required 

forces were insensitive to tip angle (Fig.2. 9). The average error is about 13% which is about ± 

150 N where the four curves are falling under the standard error of measurements and then their 

difference is not statistically significant. 

2.5.4. Effect of Diameter 

Five different circular probes were made with different diameters (2.5, 1.9, 1.2 and 0.9 

cm) and tested. A 30° tip angle was fixed in each experiment. The results show that the diameter 

strongly affects the penetration force (Fig. 2.10). Indeed, to reach a depth of 20 cm, a 0.9 cm 

probe requires about 200 N while the 1.9 cm probe needs about 1000 N. Thus, doubling the 

diameter (increasing the area by a factor of four) results in an increase of penetration force by a 

factor of five. 
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Figure 2.7. Penetration force as a function of depth in sand under different bulk density (D = 0.9 

cm, T.A = 60°). 
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Figure 2.8. Penetration force as a function of depth in sand for different motor speeds. (D = 0.9 

cm, T.A = 60°). 
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Figure 2.9. Penetration force as a function of depth in sand for different tip angles and the same 

probes diameter (D = 0.9 cm). 
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Figure 2.10. Penetration force as a function of depth in sand for different diameter probes (Tip 

angle is 30°; bulk density is 1700 kg/m3). 
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2.6. Discussion 

2.6.1 Bearing Capacity Theory 

The axial downward movement of the penetrometer through regolith is closely related to 

the problem of CPT in geotechnical engineering where it uses bearing capacity theory for 

explanation (Mitchell et al., 1974). The total resistance force (FT) during probe insertion into the 

subsurface is the sum of two forces; cone resistance (qc) and sleeve friction (fs): 

SSCCT AfAqF                                                                                                                 (1) 

Where Ac is the area of the cone, As is the area of the sleeve. For sands, the cone resistance can be 

calculated from (Puech et al, 2002): 



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
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L

Z
KNqZqC  sin1                                                                                    (2) 

Where is the effective unit weight of sand (N m-3), Z is the penetration depth (m), φ is the 

friction angle of sand (degree), rD  is the relative density, K is the coefficient of lateral pressure 

at rest (dimensionless), Nq is the bearing capacity factor (dimensionless), L is the lateral 

extension of the slip lines (m) (lateral distance where sand was moved due to penetration) and 

B is cone diameter (m). 

The friction angle is defined as (Harr, 1977) 

φ = 25 + (0.15 × Dr)                                     (3) 

The coefficient of lateral pressure is defined as (Harr, 1977) 

 sin1K                                                                                                                       (4) 

Bearing capacity factor Nq is defined as (Puech et al, 2002) 

tanbeaNq                                                                                                      (5) 

For sand, a = 1.0584 and b = 6.1679 (Puech et al, 2002)   
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tan1679.60584.1 eNq        

 The lateral extension of the slip lines L is defined as (Puech et al, 2002) 

  )
24

tan(
)tan

2
( 




eBL                                                                                       (6) 

The relative density is an index that quantifies the degree of compaction (packing 

between loosest and densest state) of coarse-grained soils (Lunne et al., 1997): 

minmax

max

ee

ee
Dr 


                                                                                   (7) 

Where e is the void ratio of the sample, maxe  is the maximum possible void ratio (loosest 

condition) and mine  is the minimum void ratio (densest condition) of the sand (Lunne et al., 

1997). For sand, the values of emax and emin are 0.71 and 0.34, respectively. The void ratio is the 

ratio between the volume of void and the volume of solid: 

s

v

V

V
e                                                    (8) 

From the knowledge of particle density of sand, the volume of solid particles can be calculated 

from: 

s

s
S

m
V


                                               (9) 

Where SV  is the volume of solid particles (m3), sm  is the mass of sand (kg) and s is the particle 

density of sand (kg m-3). The particle density (s) determination for sand is carried out by filling 

a beaker with water to a specific volume, pouring a weighted amount of sand into the beaker and 

measure the change in volume. The resulting sand particle density is s = 2556 kg m-3. From the 

volume of solid particles (VS), the volume of voids (Vv) is calculated by: 

STv VVV                                              (10) 
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Where TV is the total volume of regolith. 

Using the previous values for emax and emin, and combining with the value of e, we 

determine Dr. Theoretical friction resistance of the sleeve Fs  (Harr, 1977)                        

3

AsZKp
Fs





                                                                                                                 (11) 

Where  is the effective unit weight of sand (N m-3), Z is the penetration depth (m), As  is the 

area of sleeve (m2) and Kp is the passive coefficient of lateral stress (Harr, 1977) 




sin1

sin1




Kp                                                       (12) 

  Then we calculate the total force (FT, eq. (1)) to insert the probe in the regolith simulant. 

The results are displayed in Figures 2.11 and 2.12 and compared to the experimental data for two 

different diameter probes (D = 0.9 cm and D = 1.2 cm). Theoretical results fit very well the 

experimental data which verifies the validity of the model. We observe a divergence between the 

model and the experimental data around 45 cm depth. After 45 cm, we are reaching the bottom 

of the cylinder and there is no place for the regolith to expand which increases the resistance 

force.  

In the model, the relative density of the tested samples and the probes diameter are the 

most dominant effects which affect the cone resistance. Experimental data are in agreement with 

the theoretical model regarding these two dominant effects. 

 

2.6.2 Application to other planetary bodies 

Gravity plays an important role in the performance of penetrometers whether they are fast 

or slow. Fast penetrometers may not be able to obtain sufficient kinetic energy from free-fall in 

the gravity field to achieve the desired degree of penetration. Therefore, there may be a need for 
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added propulsion specifically to increase the impact velocity. Also, a body with weak gravity 

would likely lack an atmosphere that could be used to orient the falling penetrometer with 

respect to the surface. Gravity also affects the mechanical properties of the subsurface material. 

A low gravity environment such as that found on asteroids and comets reduces the required 

penetration force because the required force is proportional to the overburden pressure and thus 

to gravity. Results from Deep Impact mission revealed a low-density material on comet Temple 

1 (Kerr, 2005) which would ease the penetration process. On the other hand, an anchor system 

may be used in order to hold the lander or the rover with the body of the asteroid during 

penetration. The maximum force for penetration would be the weight of the lander and rover on 

their targeted planetary surface.  Table 2.3 shows the weight for past, present and future vehicles 

on their planets, which represents the maximum applicable force before tilting the rover. 

Penetration forces are directly proportional to the lithostatic pressure which is affected by 

gravity. 
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Figure 2.11. Theoretical versus experimental data in sand (D = 0.9cm). 
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Figure 2.12. Theoretical versus experimental data in sand (D = 1.2cm). 

 

 

  



 49

Figure 2.13 shows the theoretical penetration forces as a function of depth which are 

needed to penetrate Earth, Venus, Mars, Moon and Titan. In this model, we assume that sand 

covers about the first meter of the subsurface of these planetary bodies and has a bulk density of 

about 1800 kg/m3 and the gravity is scaled according to each planetary body. When the gravity 

of the planetary body decreases, density, porosity, friction angle and relative density will 

decrease and therefore, force needed for penetration will decreases as well. Figure 2.14, shows 

the moon theoretical model and the results obtained by Apollo 14, 15 and 16 lunar data. Results 

from Apollo 14 are in good agreement with the theoretical model while the data of ASR on 

board Apollo 15 and 16 are less than the theoretical model by about 145 N. The reason is that the 

subsurface of the Moon is not homogenous all over and its subsurface layers vary in thickness 

from one place to another.   

Figure 2.14 supports our assertion that the driving factor for penetration on other 

planetary bodies is the gravity. A spacecraft weighing about 200 N on the Moon or Titan is 

capable of delivering penetration forces for a 1-cm diameter probe to reach a depth of about 0.5 

m; a rover weighting about 500 N on Mars would reach the same depth. For the planetary bodies 

of interest (mostly Mars, Titan and the Moon), the maximum force to penetrate down to 0.5 

meters is below 400 N (Fig. 2.13). This means that most landers / rovers would be able to do 

penetration experiments on their respective planetary bodies. The only exceptions would be the 

smallest rovers like Sojourner and Beagle-2 (Mars). This also demonstrates that the weight of 

static landers (Phoenix and Huygens, for example) would be enough to insert a probe in the 

subsurface during landing. 
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Table 2.3. Rovers and their weights on the target planetary body. 

Vehicle  Planetary Body  Weight (N) 

Luna 13  Moon 184 

Surveyor  Moon 480 

Lunokhood Moon 1360 

Viking  Mars 2210 

Sojourner   Mars 39 

Beagle 2  Mars 123 

Spirit/Opportunity  Mars 683 

Mars Science Lab  Mars 3320 

Venera 13  Venus 6740 

Huygens  Titan 431 
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Figure 2.13. Theoretical penetration forces as a function of depth for different planetary bodies 

under their own gravity. 
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Figure 2.14. Theoretical penetration force as a function of depth for the moon along with Apollo 

14, 15 and 16 lunar data. Thick black line is the theoretical calculation.
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2.7. Conclusions 

This research was conducted to investigate and quantify different factors which affect the 

insertion process of different probes in sand. To capture most of the effects, probes of different 

diameter, length, penetration speed and tip angle were used.  

It was found that compaction levels play an important role on the required forces for 

probe penetration. An increase in bulk density from 1550 kg/m3 to 1700 kg/m3 resulted in 

increase in penetration force from 10 N to 200 N at 20 cm depth. 

The diameter of the probes is the second most dominant effect. It was found that by 

increasing the diameter of the probe, the corresponding penetration force increases linearly with 

depth 

No noticeable effect relating the speed and probe tip angles on the corresponding forces 

of penetration was found. Since there is no significant effect of tip angle, we can add a down 

looking hemispherical window in place of the tip which can provide spectra of any material the 

probe is going to touch.   

    Mars Science Lab (MSL) will be weighting about 3320 N on Mars.  A 9 mm probe 

would be a good choice for OPRA to reach to about 0.5 m down into the subsurface of Mars or 

the Moon. These conclusions are based on conditions of dry regolith, icy soils are not 

considered. 
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CHAPTER 3: PENETRATION TESTING FOR SUBSURFACE REGOLITH PROBES IN 

MARTIAN ANALOG MATERIAL 

  

3.1. Introduction 

Regolith mechanical properties of planetary bodies affect both landing of spacecraft and 

exploring planetary surfaces. Planetary geotechnical parameters are of high importance for 

scientists and missions designers. Scientists use these parameters to understand the formation 

and evolution of planetary profiles while mission designers use this information to decide 

landing sites and target areas of investigations. Likely, most soil mechanical properties are 

interrelated. Knowledge of one parameter could lead to estimate the rest of the mechanical 

parameters. Level of compaction, consolidation and others useful information can be known 

from geotechnical parameters such as density, porosity, void ratio which are indicative of the 

nature and condition of the surface and subsurface structure. Determination of these parameters 

will improve future mission success and will provide required information to further understand 

the history and evolution of planetary surface and subsurface.  

On all the surveyor lunar landers, a strain gauge is attached on its three legs to measure the 

force of penetration into lunar regolith during landing (Scott and Robertson, 1968). Their landing 

velocities ranged from 1.4 to 4.2 m s-1 and the penetration depth ranged from 2.1 to 10.5 cm. It 

was concluded that the force of penetration at the surface is zero and it increase with increasing 

depth at the rate of 1.87 ± 0.33 MPa m-1 (Mitchell et al., 1971). The Soil Mechanics Surface 

Sampler (SMSS) which was carried on surveyors 3, 4 and 7 indicated that the lunar regolith has a 

bulk density of about 1.5 g cm-3, an angle of friction range from 35 to 37º and the bearing 

capacity was about 2.1 N cm-2 at a depth of about 3 cm (Mitchell et al., 1971). The Apollo 



 57

Simple Penetrometer (ASP) on board Apollo 14 was part of the Apollo Lunar Surface 

Experiment Package (ALSEP) which used to investigate the lunar regolith soil mechanics 

(Mitchell et al., 1974). ASP was a metal rod 68 cm long and 0.95 cm in diameter with a 30 

degree cone angle used in three penetration tests on the Moon by manually pushing it into lunar 

regolith by astronaut. ASP reached to a depth of 42, 44 and 50 cm and the penetration force was 

in the range of 70 to 135 N using one hand.  A second deployment of ASP reached a depth of 62 

cm and required a force of 225 N using both hands (Mitchell et al., 1974). A Self-Recording 

Penetrometer (SRP) was on board Apollo 15 and 16 missions. This instrument was connected to 

a recording drum which recorded the force versus depth. At a maximum depth of 76 cm, the 

Apollo 15 SRP recorded a force of 111 N and the Apollo 16 SRP recorded a maximum force of 

215 N (Mitchell et al., 1974).  PROP-M (Pribori Ochenki Prokhodimosti-Mars, Martian cross-

country capability evaluation instrument)  is a tethered walking rover with a mass of 4.5 kg on 

board Mars 2, 3, 6 and 7 missions to Mars in the period between 1971 to 1973 (Harvey, 2007). 

PROP-M was designed to make penetrometry and densitometry measurements along its path. 

The maximum tethered length was 15m; therefore, the rover was programmed to stop and to take 

measurements every 1.5m (Harvey, 2007). At each measurement point, the penetrometer would 

be hammered into the regolith and the results would be recorded. Results from Mars 2/3 indicate 

the surface of Mars had a surface density of 1.2, 1.6 and in some places up to 3.5 g cm-3 (Harvey, 

2007). Venera 9 and 10 brought valuable data about Venus. The landers equipped with density 

meter as one of the soil mechanics instruments. Venera 9 and 10 reported a surface density 

ranging from 2.7 to 2.9 g cm-3 (Harvey, 2007). ACC-E is a piezoelectric force sensor (impact 

penetroemter) which was part of the Surface Science Package (SSP) onboard the Huygens probe 

which is used to investigate the subsurface of Saturn’s moon Titan (Lorenz et al., 1994). ACC-E, 
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an impact penetrometer, was the first instrument touched down the surface of titan for soil 

mechanics investigation. The miniature probe (mass of 15 g, 14 mm diameter) has a sensing 

element of 2mm. The force sensor can measure the force in the range of 0 – 2000 N.  The results 

indicated that the surface had a weak crust and, beneath that, a structure consisted of wet sand 

and embedded pebbles (Zarnecki et al., 2005). Based on the knowledge of the densities of other 

extraterrestrial planetary bodies, prediction of the forces of penetration as a function of depth can 

be accomplished.  

The downward movement of the penetrometer through regolith is opposed by two reaction 

forces: the base or cone resistance, which pushes against the cone and sleeve friction, which acts 

up on the lateral side of the penetrometer (Vesic, 1963). Penetration into regolith materials is 

directly proportional to the effective unit weight of the regolith (γ), bearing capacity factor (Nq), 

depth of penetration (D) and friction angle (φ). The main objective of this research is to estimate 

the bearing capacity factor (Nq) experimentally based on forces of penetration for Martian analog 

material (JSC Mars-1). From penetration forces as well as the knowledge of some mechanical 

properties of JSC Mars-1, one can estimate the bearing capacity factor (Nq) under different levels 

of compaction. (Nq)  varies from one type of material to another due to intrinsic regolith 

properties. Knowledge of (Nq) will help us approximate the force of penetration under different 

levels of compaction to simulate the conditions on Mars such as density and gravity. 

 

3.2. Experimental Apparatus 

A specific apparatus was designed and built to measure the penetration forces in 

unconsolidated materials. A general illustration of the setup is shown in Figure 3.1. An 

automated control system was designed where the whole penetration experiment can be  
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Figure 3.1. The penetration testing apparatus 
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monitored and controlled through a personal computer. Two parameters are being monitored 

during penetration testing: the penetration force and penetration depth. The results of the 

penetration experiment are automatically saved in an Excel file. A complete description of the 

penetration rig and its automated control system can be found in (ElShafie et al., 2010). 

 

3.3. Experimental Procedures 

The particle size distribution of JSC Mars-1 was determined by sieving as shown in Figure 

3.2. The results show that JSC Mars-1 contains 17% medium size particles (>0.5 mm) and 83% 

fine grained particles (<0.3 mm). Penetration experiments were run at a constant speed of 2 mm 

s-1. Samples are prepared by filling a 16 cm diameter and 24 cm deep cylindrical bucket with 

27.5 kg of dry JSC Mars-1. Then, the bucket is shaken in order to homogenize and compact the 

regolith to the desired height. All possible care was taken to obtain a uniform density throughout 

the column regolith. Penetration testing is done only once per sample preparation.   

To determine the bearing capacity factor Nq from forces of penetration, a cylindrical 

container was filled with JSC Mars-1 with a measured bulk density of 1120 kg m-3. Insertion and 

removals were conducted at this bulk density using 1.2 cm diameter probe. JSC Mars-1 poured 

out of the container and re-poured in for each penetration test. JSC Mars-1 was adjusted to the 

same bulk density of 1120 kg m-3 for two more penetration testing. The average force of the 

three penetration testing is calculated and Nq factor is determined at each data point. The average 

of Nq was determined and implemented in a Matlab code to determine the theoretical force of 

penetration based on the knowledge of bulk density. Table 3.1 shows symbols used through the 

paper and their corresponding definition. Table 3.2 shows test probes used throughout the 

research.  
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Figure 3.2. Particle size distribution for JSC Mars-1. 
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Table 3.1. List of symbols used in the paper 
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Table 3.2. List of probes and their experimental parameters. 
 

 

 

 

 

Symbol Def. 
Ac Area of the cone (m2) 
As Area of the sleeve (m2) 
B Cone diameter (m) 
D Probe diameter (cm) 
Dr Relative density (dimensionless) 
e Void ratio (dimensionless) 

emax  Maximum possible void ratio (loosest 
condition) 

emin Minimum void ratio (densest condition) 
fs Sleeve friction (N m-2) 
FT Total resistance force (N) 
K Coefficient of lateral pressure at rest 

(dimensionless) 
Kp Passive coefficient of lateral stress 

(dimensionless) 
L Lateral extension of the slip lines (m) 
ms Mass of JSC Mars-1 (kg) 

Nq Bearing capacity factor (dimensionless) 
qc Cone resistance (N m-2) 
Vs Volume of solid particles (m3) 
VT Total volume (m3) 
Vv Volume of voids(m3) 
Z Penetration depth (m) 
γ Effective unit weight of JSC Mars-1 (N m-3) 
φ Friction angle of sand (degree) 
p Particle density of JSC Mars-1 (kg m-3) 
b Bulk density of JSC Mars-1 (kg m-3) 

Probe Diameter (cm) Length (cm) Tip Length (cm) Tip Angle (º) 
1 1.2 23 1 30 
2 2 23.5 1.5 30 
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3.4. Experimental results 

Penetration force is a strong function of the density of regolith materials (Robertson et al., 

1997) and increase with increasing bulk density (ElShafie et al., 2010). Five different levels of 

compaction were prepared to achieve a bulk density of 1120, 1158, 1167, 1184 and 1241 kg m-3. 

Figure 3.3 shows the forces of penetration as a function of depth under different bulk densities. 

Solid line represents the theoretical force of penetration based on the knowledge of the bearing 

capacity factor Nq and bulk density. Penetration forces increase with increasing the compaction 

level. Figure 3.3 F shows the penetration force versus depth using a 1.9 cm diameter probe under 

a bulk density of 1184 kg m-3. The Nq factor used for the theoretical force is the same as 

determined by 1.2 cm diameter probe (Fig. 3.3 D). Theoretical penetration curve is in agreement 

with the experimental data which supports the validity of the Nq factor under the same bulk 

density for different diameter probes.     

Penetration energy is determined using two different diameter probes (D = 1.2 and 1.9 cm) 

under the same level of compaction (B.D = 1184) (Fig. 3.4). Penetration energy is determined by 

integrating the area under the curve for the experimental penetration forces. To reach to about 20 

cm depth, a 1.2 cm probe requires about 90 J while the 1.9 cm probe needs about 180 J. 

Increasing the area by about a factor of two correspond to doubling the penetration energy. 
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Figure 3.3. Penetration forces as a function of depth for different bulk density (D = 1.2 cm for  

               A, B, C, D, and E, T.A = 60º) (For F, D = 1.9, T.A = 60º). 
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Figure 3.4. Penetration energy as a function of depth for two different diameter probes under  

               the same bulk density (B.D = 1184 kg m-3).  
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3.5. Discussion 

Terzaghi (1943), Vesic (1963), Meyerhof (1963) and Hansen (1970) developed the bearing 

capacity theory. The bearing capacity factors are affected by the level of compaction as well as 

regolith friction angle (Vesic, 1963). Estimating the force of penetration using the current 

bearing capacity factors with JSC Mars-1 regolith material did not show good agreement 

between the experimental and theoretical values. Therefore, determination of the bearing 

capacity factor Nq for JSC Mars-1 was essential from forces of penetration. 

Bearing capacity theory can be used to explain the movement of the penetrometer through 

regolith materials. The total penetration force (FT) during probe insertion into the subsurface is 

the sum of two forces; the cone resistance (qc) and the sleeve friction (fs): 

SSCCT AfAqF                                                                                                                 (1)                               

Where Ac is the area of the cone, As is the buried area of the sleeve. The cone resistance can be 

calculated from (Puech and Foray, 2002): 















 

L

Z
KNZq qC  sin1                                                                                         (2)                               

Where γ is the effective unit weight of sand (N m-3), Z is the penetration depth (m), Nq is the 

bearing capacity factor (dimensionless), K is the coefficient of lateral pressure at rest 

(dimensionless), φ is the friction angle (degree) and L is the lateral extension of the slip lines 

(m). The friction angle is defined as (Harr, 1977). 

φ = 25 + (0.15 × Dr)                                                                                                                 (3)                              

Where Dr is the relative density. The coefficient of lateral pressure is defined as (Harr, 1977). 

sin1K                                                                                                                             (4)                             

 Finally, the lateral extension of the slip lines L is defined as (Puech and Foray, 2002): 
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Where B is the cone diameter (m). From the knowledge of particle density of JSC Mars-1, the 

volume of solid particles can be calculated from: 

p

s
s

m
V


                                                                                                        (6)  

Where Vs is the volume of solid particles (m3), ms is the mass of JSC Mars-1 (kg) and p is the 

particle density of JSC Mars-1 (kg m-3). The particle density (s) determination for JSC Mars-1 

is carried out by filling a beaker with water to a specific volume, pouring a weighted amount of 

JSC Mars-1 into the beaker and measure the change in volume. The resulting JSC Mars-1 

particle density is p = 1900 kg m-3 and the values of emax and emin are found to be 1.16 and 0.53, 

respectively. Table 3.3 shows the particle density, bulk density and void ratio for JSC Mars-1 

compared with (Allen et al., 1998) and (Perko et al., 2006).  

Based on Figure 3.3, a relation between bearing capacity factor Nq and bulk density can be 

extrapolated for JSC Mars-1 regolith material. Figure 3.5 shows the average of the bearing 

capacity factor Nq and bulk density for JSC Mars-1. The bearing capacity factor Nq varies under 

each level of compaction which increases with increasing the bulk density of the prepared 

samples. The error in the caption of the bulk density measurement is about 1% which smaller 

than the symbol. 
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Table 3.3. JSC Mars-1 regolith properties. 

 

 

 

 

 

 

 

* This paper 

A uncompacted regolith 

B compacted regolith  

 

 

 

 

 

 

 

 

 

 

 

Author ρp (kg m-3) ρb (kg m-3) E 

A B emax emin 

[14]  1910 870 1070 1.19 0.78 

[15] 1920 900 1160 1.13 0.65 

* 1900 879 1240 1.16 0.53 
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Figure 3.7. Average bearing capacity factor Nq as a function of bulk density. 
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Determination of the force of penetration is highly important for trafficability of 

lander/rover and feasibility of subsurface investigations. Viking lander 1 estimated Mars regolith 

bulk density of 1000 – 1600 kg m-3 while Viking lander 2 estimated a bulk density of 1100, 1480 

and 2600 kg m-3 (Moore et al., 1977). Sojourner, the Mars Pathfinder rover investigated Mars 

regolith material. The rover used its wheels to do a number of turns and to determine some 

regolith mechanical properties. The rover applied different turns and reached to different depths. 

The maximum depth reached by the rover wheels is 6 cm with 1.5 turn. The regolith bulk density 

is estimated to be 1520 kg m-3 (Rover team, 1997). Based on the knowledge of bearing capacity 

factor Nq and the corresponding bulk density, Figure 3.6 shows the penetration force as a 

function of depth under Martian gravity for two different bulk densities (B.D = 1160 and 1250 

kg m-3). 

Regarding the penetration power, Spirit and Opportunity each can generate a peak of about 

150 W of solar power.  Over an average sol with fairly clean panels, they can produce about 600 

W-hrs of power, which is equal to 2.2 MJ.  MSL will produce 125 W continuously from its 

radio-isotropic thermal generator, giving up to 3000 W-hrs/sol or 10.8 MJ. The energy of 

penetration under Martian gravity is shown in Figure 3.7. Our measurements in compacted JSC 

Mars-1 simulant (B.D = 1250 kg m-3) with probe diameter of 1.2 cm indicate a requirement of 45 

J to achieve about 20 cm. The peak rate of required power for probe insertion will be only about 

1.2 W (600 N time’s 0.002 m s-1). 
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Figure 3.6. Penetration testing under martian gravity under bulk density of 1160 and 1250 kg  
               m-3. 
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Figure 3.7. Energy of penetration as a function of depth based on penetration forces under   

               Martian gravity for bulk density of 1160 and 1250 kg m-3. 
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3.6. Conclusions 

Bearing capacity equation is used to estimate the force of penetration of regolith materials. 

Using bearing capacity factor Nq from previous theories did not show agreement between 

experimental data and theoretical model. Therefore, there was a need to determine this factor in 

order to best estimate the force of penetration on extraterrestrial planetary bodies. Different 

penetration forces under different levels of compaction were carried out in order to determine the 

bearing capacity factor directly from experimental data. The results of this investigation showed 

that the bearing capacity factor Nq vary under each level of compaction which increase with 

increasing the bulk density of the prepared samples. Knowledge of regolith mechanical 

properties determined from previous mission such as bulk density on Mars were used and 

applied in a theoretical model for estimating the force of penetration under Martian conditions. 

Under Martian gravity and a bulk density of 1250 kg m-3, 600 N of force are enough to drive a 

1.2 cm diameter probe to about 20 cm of the subsurface on Mars with about 1.2 W of power.  

Estimating the force of penetration would enhance future landing and subsurface planetary 

investigation which is a success to the whole mission.   
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CHAPTER 4: APPLICATION OF PLANETARY ANALOG MECHANICAL 

PROPERTIES TO SUBSURFACE GEOLOGICAL INVESTIGATIONS  

 

4.1. Introduction  

Determination of the mechanical and physical properties of planetary analogs is of high 

importance for scientists and missions designers. Scientists use these parameters to understand 

the formation and evolution of planetary surfaces, layering and geomorphological features while 

mission designers decide landing sites and target areas. Most soil mechanical properties are 

interrelated, so the knowledge of one parameter can lead to estimating the others: level of 

compaction, consolidation and others useful information can be determined from mechanical 

parameters such as density, porosity, void ratio which are thus indicative of the physical and 

chemical properties of the surface and subsurface. Therefore, Studying the mechanical properties 

of planetary analog materials will improve future mission success and will enhance landing site 

selection, rover landing and its trafficability; and the feasibility for accessing the subsurface 

using drills and penetrometers. 

Mars soil mechanical properties also affect geomorphological processes such as gullies and 

crater formation, erosion (Schultz, 2002; Sullivan et al., 2011) landslides and lithology of the 

subsurface layers (Lucas and Mangeney, 2007; Perko et al., 2006). Regolith mechanical 

properties are important because they control the stability of water ice (and other potential 

volatiles like CO2) in the Martian subsurface. Indeed, significant deposits of water ice have been 

recently observed in the shallow subsurface of regions where they are thermodynamically 

unstable (Bandfield, 2007; Byrne et al., 2009). This is due to slow diffusion of water vapor 

through the regolith, which acts like a kinetic barrier (Schorghofer and Aharonson, 2005; 
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Schorghofer, 2007). However, the diffusion coefficient of water vapor through a regolith layer is 

mainly dependent on porosity and tortuosity, both parameters being strongly affected by 

compaction (Bryson et al., 2008; Chevrier et al., 2007; Chevrier et al., 2008; Hudson et al., 

2007). Therefore, understanding the mechanical properties of regolith analogs can indirectly help 

models of water ice stability, by providing additional constraints on the diffusive properties of 

the soil.   

Successful investigations of the subsurface using penetrometers have been used on the 

Moon and will be used for future Mars missions. The success of Apollo Simple Penetrometer 

(ASP), the Self-Recording Penetrometer (SRP) and the drill activities on the Moon in conducting 

core samples and interpretation of its data are based on a detailed investigation of the mechanical 

properties of the Moon soil simulant (Rowe and Selig, 1962; Mitchell, 1964; Christensen et al., 

1967). Changes in the penetration forces have been used as indicators for the inhomogeneities of 

the subsurface profile (Roscoe, 1970; Costes et al., 1970; Houston and Namiq, 1971), which in 

turn give information on the nature of the regolith. 

The downward movement of the penetrometer through regolith is opposed by two reaction 

forces: the base or cone resistance, which pushes against the cone and sleeve friction, which acts 

up on the lateral side of the penetrometer (Vesic, 1963). Penetration into regolith materials is 

dependant on the effective unit weight of the regolith, bearing capacity, depth of penetration and 

angle of internal friction. Angles of internal friction have been estimated from different missions 

and using different techniques, such as trench analysis through dumping the regolith and 

calculating the angle of repose or using the rover wheels as a shear device (Viking landers 

(Shorthill et al., 1976, Moore et al., 1977, Moore and Clow, 1982), Mars Exploration Rovers 

(Sullivan et al., 2011), Phoenix lander (Arvidson et al., 2009, Bonitz et al., 2008, Shaw et al., 



 80

2009) and Mars Pathfinder (Rover team et al., 1997, Moore et al., 1999)). These estimates 

enhanced our knowledge of the regolith geological context but the measurements techniques are 

not relevant for friction angle since the angle of repose describe the uncompacted condition of 

the regolith and not the compacted state which is often the case with natural regolith. Therefore, 

laboratory measurements are necessary to understand how compaction affects the friction angle.    

Previous experiments on sand (Terzaghi, 1943; Hansen, 1970) showed good agreement 

between the measured penetration forces and theoretical calculations (ElShafie et al., 2010); 

however, no agreement was observed when we used Martian analogs. This discrepancy is due to 

the bearing capacity factor which is a function of the angle of internal friction and probably 

depends on nature of the regolith analog. Perko et al., 2006 conducted some mechanical 

measurements for different regolith analogs for the purpose of geomorphological modeling. 

Unfortunately, for the measurements of the angle of internal friction for JSC Mars-1, only two 

data points were presented which are not sufficient to build a complete relationship between the 

penetration force, the bearing capacity factor and the angle of internal friction.  

Therefore, the main objective of this paper is to measure the mechanical properties of 

planetary analogs (palagonite JSC Mars-1, an unaltered basaltic soil from Mojave desert and a 

composite analogue JSC Mars-2), and determine the effect of the angle of internal friction on the 

bearing capacity factor. This will help us build a theoretical framework from which important 

mechanical properties can be determined by in situ penetration measurements on future missions. 

We chose JSC Mars-1, JSC Mars-2 simulate and Mojave soil because they simulate several 

properties of the Martian regolith (porosity, density and particle size distribution, Evans and 

Adams, 1979; Allen et al., 1998; Yen et al., 2005; Peters et al., 2008).  
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4.2. Experimental Apparatus 

A specific apparatus was designed and built to measure the penetration forces in 

unconsolidated materials. A complete description of the penetration test rig and its automated 

control system can be found in (ElShafie et al., 2010). A general illustration of the setup is 

shown in Figure 4.1. An automated control system was designed where the whole penetration 

experiment can be monitored and controlled through a personal computer. Two parameters are 

being monitored during penetration testing: the penetration force and penetration depth. The 

results of the penetration experiment are automatically saved in an Excel file.  

 

4.3. Martian regolith analogues 

In order to better design and test future instrumentation that are going to be used on future 

missions to Mars or any other planetary body, regolith simulants that adequately represent 

various dust, soil and rock properties that exist on these bodies are required. JSC Mars-1 is a 

common palagonitie soil (Allen et al., 1998), previously used in various studies.  Mojave Mars 

simulant (MMS) is a basaltic sand (Peters et al., 2008) which contrary to JSC Mars-1, is not 

altered. JSC Mars-2, is a synthetic simulant composed of 45% basalt, 45% montmorillonnite, and 

10% hematite (Famale et al., 1982). These basaltic in nature regolith materials proved to be good 

spectral and mineralogical analogs for Mars (Evans and Adams, 1979; Singer, 1982; Morris et 

al., 2000; Goetz et al., 2005; Yen et al., 2005; Morris et al., 2006a, 2006b; Peters et al., 2008) 

and therefore, were chosen for this research.  
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Figure 4.1. The penetration testing apparatus. 
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4.4. Experimental Results 

Penetration forces are a strong function of the bulk density of regolith materials (Lune et 

al., 1997; ElShafie et al., 2010). Penetration testing was performed in the three different analogs 

and for various bulk densities. However, JSC Mars-2 appeared to be almost  

impossible to compact and therefore, we could not determine any of its mechanical properties 

(friction angle) except the penetration force as a function of depth at bulk density of 1180 kg m-3 

using 1.2 cm diameter probe for reference (Fig. 4.2). At this density (1180 kg m-3), a force about 

140 N was required to penetrate down to 20 cm while it took about 250 N to reach to the same 

depth at density of 1700 kg m-3 in sand (ElShafie et al., 2010).   

Four different compaction levels were prepared to achieve a bulk density of 1120, 1167, 

1184 and 1241 kg m-3 in JSC Mars-1 and 1330, 1365, 1474 and 1504 kg m-3 in Mojave soil. 

Penetration testing was carried out at the assigned bulk densities for both analogs. For Mojave 

soil, the penetration force was observed to increase with bulk density. At about 12 cm depth, the 

penetration forces were 40, 65, 150 and 225 N for bulk densities of 1330, 1365, 1474 and 1504 

kg m-3, respectively (Fig. 4. 3). At 12 cm depth in JSC Mars-1, the penetration forces were 50, 

300, 600 and 900 N for bulk densities of 1120, 1167, 1184 and 1241 kg m-3, respectively (Fig. 

4.4).  

 

4.5. Determination of the bearing capacity factor Nq 

The bearing capacity factor Nq was determined from penetration forces in Martian analog 

regolith materials. A cylindrical container was filled with the desired regolith material and the 

bulk density was measured. Insertion and removals of a 1.2 cm diameter probe was conducted at 

a constant penetration speed of 2 mm s-1. The regolith material was removed from the container 
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and re-poured in for two more penetration test at the same bulk density by weighting specific 

mass and achieving the desired heigh. The average force versus depth of the three penetration 

tests was determined and Nq factor was then calculated at each data point. The average Nq factor 

was determined and implemented in a MatLab code to determine the average theoretical force 

versus depth profile based on the knowledge of the regolith mechanical properties (bulk density, 

porosity, void ratio and friction angle). Symbols used through out the paper and their 

corresponding definition are shown in Table 4.1.  
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Figure 4.2. Penetration force as a function of depth in JSC Mars-2 (B.D = 1180 kg m-3, D = 1.2 
cm).  
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Figure 4.3. Experimental and theoretical forces versus depth under different bulk densities for 
Mojave soil. 
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Figure 4.4. Experimental and theoretical forces versus depth under different bulk densities for 

JSC Mars-1. 
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Table 4.1. List of symbols used in the paper. 

Symbol Def. 

Ac Area of the cone (m2) 

As Area of the sleeve (m2) 

B Cone diameter (m) 

D Probe diameter (cm) 

Dr Relative density (dimensionless) 

e Void ratio (dimensionless) 

emax  Maximum possible void ratio (loosest condition) 

emin Minimum void ratio (densest condition) 

fs Sleeve friction (N m-2) 

FT Total resistance force (N) 

K Coefficient of lateral pressure at rest (dimensionless) 

Kp Passive coefficient of lateral stress (dimensionless) 

L Lateral extension of the slip lines (m) 

Nq Bearing capacity factor (dimensionless) 

qc Cone resistance (N m-2) 

Vs Volume of solid particles (m3) 

VT Total volume (m3) 

Vv Volume of voids(m3) 

Z Penetration depth (m) 

γ Effective unit weight (N m-3) 

φ Friction angle (degree) 
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4.6. Discussion 

The bearing capacity theory has been used to explain the downward movement of 

penetrometers through regolith materials (Terzaghi, 1943; Hansen, 1970). The total penetration 

force (FT) during probe insertion into the subsurface is the sum of two forces; the cone resistance 

(qc) and the sleeve friction (fs): 

                                                             (1) 

Where Ac is the area of the cone, As is the buried area of the sleeve. The bearing capacity factor 

Nq can be calculated from (Puech and Foray, 2002 ): 

                                                                 (2)                                  

 

Where γ is the effective unit weight of the regolith (N m-3), Z is the penetration depth (m), K is 

the coefficient of lateral pressure at rest (dimensionless), φ is the friction angle (degree) which is 

function of the relative density (Dr) and L is the lateral extension of the slip lines (m). The 

coefficient of lateral pressure is defined as (Harr, 1977) 

sin1K                          (3) 

The lateral extension of the slip lines L is defined as (Puech and Foray, 2002): 
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  BL                                  (4)                                           

Where B is the cone diameter (m). The relative density (Dr) is an index that quantifies the degree 

of compaction (packing between loosest and densest state) of coarse-grained soils (Lunne et al., 

1997): 
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Where e is the void ratio of the sample. emax is the maximum possible void ratio (loosest 

condition) and emin is the minimum void ratio (densest condition) of the sand (Lunne et al., 

1997). The void ratio is the ratio between the volume of void (VV) and the volume of solid (Vs): 

s

v

V

V
e                                    (6) 

From the knowledge of particle density, the volume of solid particles can be calculated from: 

s

s
s

m
V


                                          (7) 

Where Vs is the volume of solid particles (m3), ms is the mass of sand (kg) and s is the particle 

density (kg.m-3). The particle density (s) is determined using the specific gravity measurements. 

Most of the previous bearing capacity investigations were carried out on sand, because of its 

extensive Earth’s applications (Terzaghi, 1943 and Vesic, 1963). Using the current tabulated 

bearing capacity values to predict the forces of penetration in Martian analogs, under friction 

angle of 44 and 45°, the bearing capacity factor Nq is (173.3 and 115.3) respectively (Terzaghi, 

1943 and Vesic, 1963). The predicted penetration forces at 20 cm deep in JSC Mars-1 (1120 kg 

m-3) are (113 and 70 N), respectively, compared to a measured value of 1400 N. Therefore, 

calculated penetration forces using the current bearing capacity factors based on sand friction 

angles for JSC Mars-1 and Mojave do not show good agreement with the measured experimental 

values. Therefore, determination of the bearing capacity factor Nq, friction angle, specific gravity 

and void ratios for JSC Mars-1 and Mojave was essential for correct prediction of penetration 

forces.       
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4.7. Friction angle measurements 

Direct shear tests were performed on JSC Mars-1 and Mojave soil in order to determine the 

angle of internal friction (using the standard method ASTM D-3080). For sample preparation, 

the mass and volume of each prepared sample was measured and soil density was determined. 

The regolith sample was placed in a shear box which has two movable parts. The contact 

between the top and lower parts of the shear box is approximately the height of the sample. A 

confining stress is applied vertically on the top part of the box and the lower part of the shear box 

is pulled laterally until the regolith sample fails. The applied load and strain induced is recorded 

at specific intervals to determine the stress-strain curve at specific confining stress. The 

procedure was repeated three times for each applied stress under the same density. From the 

slope of shear stress-stress curve, the angle of internal friction (φ) of the soil samples was 

determined by a best fit linear regression (Fig 4.5, 4.6). The angle of internal friction of the 

studied regolith analogs is found to increase with increasing relative density. For the Mojave soil 

(Fig. 4.7 A),  the angle of friction varied from 32 to 41.3° for bulk density between 1300 and 

1500 kg m-3 and from 39.4 to 54.7° for bulk density between 900 and 1120 kg m-3 for JSC Mars-

1(Fig. 4.7 B).  

 

4.8. Specific gravity, maximum and minimum void ratios measurements 

Specific gravity (Gs) measurements for JSC Mars-1 and Mojave soil were measured 

according to the standard method ASTM D854 – 02. A weighted amount of regolith was poured 

into a pycnometer (a bottle which can be precisely filled to a specific volume). A specified 

amount of water was added to the regolith and then shaked. The mass of the pycnometer, water 

and regolith was then determined.  Air filling the voids was extracted with a pump for about 20 
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minutes. The final mass of the pycnometer, water and regolith after air extraction was 

determined and the specific gravity was calculated (equation 8).  
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Where W0 is the mass of dry regolith, Wa
 is the mass of bottle filled with water to a specific 

volume and Wb the total mass (water + regolith + pycnometer). Specific gravity of Mojave soil 

and JSC Mars-1 was found to be 2.47 and 2.69 , respectively (Table 4.2). 

The void ratio is defined as the ratio between the volume of voids and the volume of solid 

particles in porous materials. The maximum and minimum void ratios are values for materials in 

their loosest and densest state. Based on the knowledge of specific gravities of JSC Mars-1 and 

Mojave soil, a weighted amount of regolith was poured into a stud with a known volume using a 

funnel in order to be sure that the material is in its loosest state. The volume of solids was 

determined and the maximum void ratio (emax) was calculated. For Mojave soil and JSC Mars-1 

emax was found to be 1.54 and 1.78 at bulk densities of 1059 and 887 kg m-3, respectively. For the 

minimum void ratio (emin) measurements, the regolith samples were prepared into five layers. 

After loading each layer into a mould, compaction was achieved by applying several blows from 

a standard weighted hammer at a specified height using a modified proctor (43.2 cm height with 

25 blows/layer, ASTM D1557). The volume of solids was then determined and the minimum 

void ratio calculated. For Mojave soil and JSC Mars-1, emin was found to be 0.562 and 0.863 at 

bulk densities of 1720 and 1325 kg m-3, respectively (Table 4.2).  

After determination of the angle of internal friction, specific gravity and void ratios for JSC 

Mars-1 and Mojave, we implemented all of these input parameters into a MatLab code and 

loaded our penetration forces data for both analogs in order to determine the bearing capacity 
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factor Nq (equation 2). We determined the bearing capacity factor Nq and it was used to 

determine the theoretical force of penetration (Fig 4.3 and 4.4).  

We observed a positive correlation between the bearing capacity factor Nq and the angle of 

internal friction for Mojave soil and JSC Mars-1 (Fig. 4.8). The bearing capacity factor (Nq) 

showed an exponential dependency with the angle of internal friction for Mojave soil, Nq 

increased from 64 to 338 with increasing φ from 32 to 41.3° respectively. For JSC Mars-1, we 

fitted the results using an exponential and linear fit. Exponential fit was used since nearly all the 

previous tested soils on Earth showed an exponential trend and friction angles does not exceed 

50°. However, JSC Mars-1 showed higher friction angles where Nq increased from 161 to 3347 

with increasing φ from 39.4 to 54.7° respectively for JSC Mars-1 and we found that a linear fit 

suited the results with R2 of 0.95 (Fig. 4.8).   
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Figure 4.5. Shear stress versus normal stress under different bulk densities for Mojave soil (A to 

D). 
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  B.D = 900 kg m-3 
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Figure 4.6. Shear stress versus normal stress under different bulk densities for JSC Mars-1 (A to 
D). 
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Figure 4.7. The angle of internal friction as a function of relative density for Mojave soil (A) and 
JSC Mars-1 (B). 
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Table 4.2. Specific gravity, maximum and minimum void ratios values for JSC Mars-1 and 

Mojave soil.  

Type of regolith Gs emax emin 

JSC Mars-1 2.47 1.78, ρ = 887 kg m-3 0.863, ρ = 1325 kg m-3 

Mojave soil 2.69 1.54, ρ = 1059 kg m-3 0.562, ρ = 1720 kg m-3 
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Figure 4.8. Bearing capacity factor Nq versus angle of internal friction for Mojave soil (A) and 
JSC Mars-1 (B). 
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The variations in the friction angle, void ratios and specific gravity between Mojave soil 

and JSC Mars-1 are due to the difference in the particle size distribution between both analogs. 

The particle size distribution of JSC Mars-1 was determined by sieving while the particle size 

distribution of Mojave soil was determined from (Peters et al., 2008) (Fig. 4.9). As shown in 

Figure 4.9, JSC Mars-1 and Mojave soil are in two different particle size categories. JSC Mars-1 

contains 17% medium size particles (>0.5 mm) and 83% fine grained particles (<0.3 mm) which 

cover the range from 2 to 0.063 mm while Mojave soil dominates the range from 0.15 to < 0.001 

mm. Due to the wide range in particle sizes and shape structure of JSC Mars-1 (resulting from 

alteration), small dust particles can fill in the voids when the regolith under compaction which 

leads to a higher friction angle than Mojave soil which explains the difference in friction angles, 

void ratios and specific gravities.        

Due to the difference in the particle size distribution between JSC Mars-1, Mojave soil 

simulant and JSC Mars-2, variation in the penetration forces was noticeable. At the maximum 

achieved compaction of JSC Mars-1 (1240 kg m-3), it required about 1000 N to reach to 15 cm 

depth and going from the lowest compacted to the most compacted state (1120 to 1240 kg m-3), 

forces were from 60, 600, 800 and 1000 N. However, Mojave soil showed a different penetration 

resistance force category, from the lowest prepared sample density (1330 kg m-3) to the 

maximum compaction (1504 kg m-3) of Mojave soil, forces of penetration required were from 

60, 80, 160 and 240 N. While, it required about 80 N to reach to the same depth in JSC Mars-2 at 

density of 1180 kg m-3. Therefore, less force was required to penetrate in JSC Mars-2, Mojave 

soil and then JSC Mars-1. Based on this correlation, prediction force of the penetrated regolith 

can be indicative of its density and internal structure.  
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Figure 4.9. Particle size distribution for JSC Mars-1 and Mojave soil simulant (Peters et  al., 
2008).  
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4.9. Implications for Martian investigation 

Using the Viking Landers surface sampler, drift and crusty to cloddy materials showed 

friction angles of 14° – 21° and 28° – 39° while, a friction angle of 27° – 33° was estimated for 

blocky materials based on trench analysis (Moore and Clow, 1982). Using the Sojourner wheels 

as a shear device on the Mars Pathfinder mission, friction angle of the Martian surface was 

estimated from the correlation of the electric current in the wheel motor during digging and 

trenching experiment. Drift and mixed materials showed low (28.2°) to moderate (34° – 38°) 

friction angles while cloddy materials showed higher values (33.3° – 42.4°) assuming the angle 

of internal friction is equal to the angle of repose (Rover team, 1997). The angle of internal 

friction was estimated by the Phoenix lander based on the assumption of the slope of dump piles 

equal to the angle of internal friction and was estimated to be 38° ± 5° (Shaw et al., 2009). The 

Mars Exploration Rovers Spirit and Opportunity investigated the mechanical properties of the 

Martian regolith using rover wheel trenches and wheel scuffs where an estimation of the friction 

angle ranged from 30° – 37° (Sullivan et al., 2011).  

Our friction angle measurements of JSC Mars-1 and Mojave soil are high, 39.4 to 54.7° at 

bulk density of 900 to 1120 kg m-3 for JSC Mars-1 and 32 to 41.3° at bulk density of 1300 and 

1500 kg m-3 for Mojave soil, compared to that estimated by previous missions (Table 4.3).  

Indirect measurements of the friction angle (angle of repose) obtained from different 

missions are good based on the used tools and techniques, however, variation in the friction 

angle measurements between this research and estimates from other missions can be accounted 

for the non compacted state of the regolith measured technique (angle of repose, slope of dump 

piles) by these missions. This implies the uncertainty of the used techniques. Therefore, these 
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measurements can not be used for predicting the feasibility for in situ exploration of the 

subsurface or correlating to the variation in the subsurface density or porosity.    

Based on the friction angle measurements and knowledge of the bearing capacity factor Nq, 

we can predict the penetration forces under Martian gravity. Figure 4.9 shows the penetration 

force as a function of depth under Martian gravity for JSC Mars-1 and Mojave soil at bulk 

densities of (B.D = 1330 and 1500 kg m-3 for Mojave, B.D  = 1150 and 1240 kg m-3 for JSC 

Mars-1). To reach to about 20 cm depth under the Martian gravity, a force of 50 N and 170 N is 

required to penetrate in a Mojave type soil at a bulk density of 1330 and 1500 kg m-3 and, a force 

of about 100 N and 700 N is required on penetrate in JSC Mars-1 at bulk densities of 1150 and 

1240 kg m-3, respectively.  

Regarding the penetration power, Spirit and Opportunity each can generate a peak of about 

150 W of solar power.  Over an average sol with fairly clean panels, they can produce about 600 

W-hrs of power, which is equal to 2.2 MJ.  MSL will produce 125 W continuously from its 

radio-isotropic thermal generator, giving up to 3000 W-hrs/sol or 10.8 MJ. The energy of 

penetration under Martian gravity is shown in Figure 4.10. Our measurements in Mojave soil and 

JSC Mars-1 (B.D = 1330 and 1500 kg m-3 for Mojave, B.D = 1150 and 1240 kg m-3 for JSC 

Mars-1) with probe diameter of 1.2 cm indicate a requirement of 3 to 14 J to achieve about 20 

cm in Mojave soil and from about 5 to 55 J was required to reach to the same depth in JSC Mars-

1. The peak rate of required power for probe insertion will be 0.34 W (170 N time’s 0.002 m s-1) 

for Mojave soil and only about 1.4 W (600 N time’s 0.002 m s-1) for JSC Mars-1. 
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Table 4.3. Friciton angle and bulk density at different Martian landing sites compared to this 

study.  

Mission 

Friction angle 

(Deg) 

Bulk density 

(Kg m-3) References 

Viking Lander-1 drift  14-21 1150 

(Moore and Clow, 

1982) 

Viking Lander-1 blocky  28-39 1600 

(Moore and Clow, 

1982) 

Viking Lander-1 crusty  27-33 1400 

(Moore and Clow, 

1982) 

Pathfinder drift & mixed  26 - 28 1066 - 1269 (Rover team, 1997) 

Pathfinder moderate 34 - 38 1285 - 1518 (Rover team, 1997) 

Pathfinder cloddy  40 - 41 1422 - 1636 (Rover team, 1997) 

Phoenix lander  38 ± 5 1235 (Shaw et al., 2009) 

Mars Exploration Rover  30 - 37 1630 (Sullivan et al., 2011) 

JSC Mars-1 39.4 - 54.7 900 - 1120 (This investigation) 

Mojave soil  32 - 41.3  1300 - 1500 (This investigation) 
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4.10. Conclusions 

The successful exploration of planetary bodies depends on our understanding and 

prediction of the performance of landers, rovers, and any other subsurface investigating 

instruments with the regolith of on the surface and the subsurface. Regolith mechanical 

properties and the bearing capacity factors are the primary factors in the estimation of the 

penetrability, stability, trafficability on the surface of these planetary bodies. Mechanical 

properties of planetary analog materials (JSC Mars-1 and Mojave soil) have been investigated to 

determine the angle of internal friction, specific gravity, and minimum and maximum void ratios. 

This information have been used along with the results of the penetration testing in both regolith 

analogs to determine the bearing capacity factor (Nq) which is a crucial factor for the 

predications of penetration forces. Prediction of the penetration forces under the Martian gravity 

using a 1.2 cm diameter penetrometer was estimated using the bulk densities of 1150 – 1240 kg 

m-3 in JSC Mars-1 and 1330 – 1500 kg m-3 in Mojave soil; 100 – 700 N and 50 – 170 N was the 

estimated force to reach to about 20 cm in JSC Mars-1 and Mojave, respectively. The forces of 

penetration varied due to the variation in the intrinsic properties of regolith analogs, mainly the 

angle of internal friction.  

Due to the variation in regolith materials due to particle size distribution, density, 

penetration forces can be used to differentiate between different layers and to characterize the 

subsurface regolith with minimum penetration. From lowest to highest possible compaction 

levels, penetration force in JSC Mars-1 was categorized in the range of (60 to 1000 N) while 

Mojave soil forces ranged from (60 - 240 N). Therefore, differentiation between JSC Mars-1 and 

Mojave soil was observable and appeared in the resulting penetration forces. On the other hand, 

JSC Mars-2 did not require much force for penetration which could make it easy to penetrate to 
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great depth on the surface of Mars.  The same procedure can be used for future Mars subsurface 

investigation and analysis.  

Prediction of the penetration forces for Mars can place a threshold to the weight of the 

lander or the rover. Spirit and Opportunity rovers each weighted about 683 N on the surface of 

Mars while MSL is weighting about 3320 N. If Spirit and Opportunity had such a penetrometer 

on board, they would not penetrate more than 15 cm in a regolith similar to JSC Mars-1 but can 

penetrate to more than 20 cm in Mojave type materials. MSL on the other side will have enough 

weight to penetrate to great depth. Penetration forces should not exceed the weight of the lander 

or the rover on the surface of the planetary body, otherwise, the whole lander or rover will lose 

its contact with the surface and place the whole mission in danger. The results of this 

investigation will improve future subsurface investigations of the Martian surface in terms of 

mission design, landing site selection and will be helpful the interpretation of physical, 

mechanical and geomorphological investigations as well.  
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CHAPTER 5: INTERPRETATION OF GEOMORPHOLOGICAL SHAPE 

FORMATIONS SUPPORTED BY MECHANCAL AND ELECTRICAL REGOLITH 

PROPERTIES 

 

5.1. Introduction 

Processes responsible for the formation of gullies, slope streaks, linear and landslides 

remain speculative (Sullivan et al., 2001, Dickson et al., 2006; Thomas et al., 2003; Lucchitta et 

al., 1979). Gullies have been proposed to form as a result of aquifer outflow from near surface 

water (Malin and Edgett 2000; Heldmann et al.,2005) or brought up by cryovolcanic activity 

(Gaidos, 2001), melting of surface or subsurface ice at high obliquity (Costard et al., 2002; 

Gilmore and Phillips, 2002; Mangold et al., 2003), debris flow (Iverson, 1997), brines (Andersen 

et al., 2002; Knauth and Burt 2002; Chevirier and Altheide, 2008), granular flow (Treiman 2003; 

Shinbort et al., 2004) or during seasonal snowmelt (Reiss and Jaumann, 2002; Kossacki and 

Markiewicz,2004; Williams et al., 2009; Dixon and Head 2009).  

Internal angle of friction which is one of the most important parameters for understanding 

the movement of the granular material as it contributes to the strength of the formations. It has 

been theoretically estimated for interpretation and modelling of Martian geomorphological 

features (Parsons et al., 2008; Lucas and Mangeney, 2007; Mangold and Costard, 2003; 

Miyamoto et al., 2004). Friction angle is not a material property; however, it is a property that 

depends on other mechanical input parameters such as void ratio and density (Rowe, 1962; 

Bolton, 1986). Therefore, understanding the of gully formations, dynamics of Martian landslides, 

slope streaks and slope stability through interpretation of optical imagery or modelling is based 

on our knowledge of the mechanical properties of the regolith in which surface forms develop.  
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Dielectric constant is a measure of how much energy is stored and re-radiated by the 

material; therefore, calculating the two way travel time of electromagnetic wave can help 

estimating the dielectric constant which used for radargram inversion (Strangway and Olheft, 

1977). Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) and Shallow 

Subsurface Radar (SHARAD) sounding radars are currently probing the Martian surface and 

subsurface to detect subsurface water (Picardi, et al. (2005); Seu, et al. (2007). One of the key 

elements for quantitative radar data analysis is the comprehensive understanding of how radar 

waves interact with the nature and structure of the planetary surfaces and subsurfaces.  This can 

be achieved through knowledge of the dielectric constant of the investigated material (Heggy et 

al., 2003; Heggy et al., 2004; Grimm et al., 2006).  

For better interpretation and analysis of geomorphological features observed by radar and 

optical remote sensing instruments, knowledge of the mechanical properties of the surface and 

the subsurface is mandatory. Correlating between data sets obtained from different instruments 

would enhance our current and future modelling and interpretation. Therefore, the objective of 

this research is to examine the relationship between mechanical and electrical regolith properties, 

and geomorphological formation which will enhance previous, current and future modelling 

interpretation and analysis of optical imagery and radar data. 

 

5.2. Experimental method 

5.2.1. Flume Experiment 

In order to investigate the relationship between shape form and mechanical and electrical 

regolith properties, flume experiments were conducted using the flume apparatus (Coleman et 

al., 2009).  During our flume experiments, we assumed that liquid water is stable; though, we did 
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not account for the influence of low atmospheric pressure. Regardless of scaling effect, we 

concentrated on the relative importance of the investigated parameters and their effect on 

geomorphological features. Therefore, we conducted our gully experiments in a flume 1 x 0.8 x 

0.15 m3 which has the ability to be adjusted to the desired slope angle (Fig. 5.1). Different 

degrees of density were examined with a homogenous distribution layers, therefore, a specific 

sampler test structure was built (0.7 x 0.45 x 0.04 m3) with a top movable plate (Fig. 5.1). Before 

loading the regolith, the top movable plate is clamped to the lower test structure. Regolith is 

poured into the sampler and compacted to the desired density. Density samples covered the range 

from 974 to 1130 kg m-3. Sliding the top movable plate took place to remove the excess of 

regolith, to fill the gaps and to have a one homogenous sample test. Once the sample is prepared, 

it is placed into the flume with the adjusted slope and connected to the water supply. Our 

experiments were carried out at slope of 10° and water flows of 10 GPH for 25 sec. Gully total 

length measured from the top of the alcove to the end of the apron using a meter stick with 

millimetre precision. After finishing the experimental test, regolith emptied from the sampler and 

new dry fresh regolith was used for subsequent tests.  

 

5.2.2. Mechanical measurements 

Regolith mechanical properties are primary factors affect geomorphological and radar 

interpretation and modelling. Direct shear tests were performed on JSC Mars-1 regolith simulant 

in order to determine the angle of internal friction (using the standard method ASTM D-3080). 

For sample preparation, the mass and volume of each prepared sample was measured and soil 

bulk density was determined.  Regolith sample placed in a shear box which has two movable 

parts. The contact between the top and lower parts of the shear box is approximately the height 
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of the sample. A confining stress (2.7, 4.2 and 8.4 Kg) is applied vertically on the top part of the 

box and the lower part of the shear box is pulled laterally until the regolith sample fails. The 

applied load and strain induced is recorded at specific intervals to determine the stress-strain 

curve at specific confining stress. The procedure was repeated three times for each applied stress 

under the same density. From the slope of shear stress-stress curve, the angle of internal friction 

(φ) of the soil samples was determined by a best fit linear regression. 

 

5.2.3. Electrical measurements 

Using a hydraulic press, JSC Mars-1 samples were compacted into pellets where the mass 

and height was measured and the density was determined. Electrical measurements of the thin 

samples < 3mm in thickness were carried out at room temperature using a dielectric material test 

fixture attached to an Impedance/Material Analyzer. The analyzer is connected to a central 

command unit to extract data and calculate, in real-time, the real and imaginary part of the 

complex dielectric constant. The samples were placed between the parallel plates of a guarded 

capacitive cell to reduce edge errors. Sweeping over the frequency range of observation, the real 

and imaginary parts of the relative complex permittivity were calculated from the capacitance 

and admittance knowing the thickness of the sample. Values of relative permittivity were 

measured over the entire frequency range (10 MHz to 1 GHz). 

 

5.3. Results  

In order to test the effect of mechanical and electrical properties of regolith analogs on 

gully shape formations, we set the slope angle (10°), flow rate (10 GPH) and flow time (25 sec) 

to be the same along the whole gully experiments. Gully shape formation is observed to vary due 
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to the mechanical and electrical properties of regolith analogs. Regolith bulk density is found to 

be the most sensitive factor affecting gully morphology.  

Over the range of prepared bulk density from 974 to 1130 kg m-3, gully total length is 

affected by the density of the prepared samples. A linear increase in the formation total length is 

observed as a function of change in bulk density (Fig. 5.2 A). Total gully length increased from 

~25 cm at the lowest bulk density level (~970 kg m-3) to ~50 cm for the highest bulk density 

(~1130 kg m-3) for JSC Mars-1. Low density imply greater void ratios, therefore, there is more 

space for the water to flow in all possible ways which produces short formations. However, at 

high bulk density (low void ratio) water could not push against the regolith. Therefore, it went up 

into the surface and form longer formations. R2 calculated for the regression line is ~ 0.92. 

The movement of water through regolith is affected by different levels of bulk densities 

which are controlled by the angle of internal friction. Small angle of internal friction indicates 

low void ratio and porosity and both of these parameters increase along the increase of the angle 

of internal friction. To investigate such assumption, we correlated the angle of internal friction to 

regolith bulk density (Fig. 5.2 B). The angle of internal friction of JSC Mars-1 is found to be a 

function of bulk density. Increasing the angle of internal friction corresponded to an increase in 

regolith bulk density. Going from 900 to 1120 kg m-3 in JSC Mars-1 bulk density, an increase of 

39.4 to 54.7° in angle of internal friction is observed (Fig. 5.2 B).  Therefore, shorter and longer 

formations correspond to a small and big angle of internal friction respectively.   
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Figure 5.1. Gully simulation flume and test sampler. 

Empty and loaded sampler 



 120

               Total length  = 0.1461   - 115.01 
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Figure 5.2. Total length, friction angle and dielectric constant as a function of different bulk 
density for JSC Mars-1. 
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 In an attempt to correlate the gully formation to electrical properties of regolith analogs, 

the dielectric constant of JSC Mars-1 is measured at different levels of prepared bulk densities.  

Regolith dielectric constant is found to decrease with increasing detection frequency range and to 

increase with increasing density of regolith samples (Fig. 5.2 C). The dielectric constant 

increased from ~ 3 to ~ 8 with an increase in bulk density from 1200 to 1860 kg m-3. From 

regression line, the calculated R2 is 0.90. Therefore, short and long gully formations indicate low 

and high dielectric constant value.  

 

5.4. Discussion 

Stability of slopes on Earth is affected by regolith strength which related to the angle of 

internal friction. If stress increased due to loading exceeding the angle of internal friction, failure 

will occur and the resulted formation is observed to be similar to gullies found on Mars. 

Therefore, the shape of the resulted gully is affected by the mechanical properties of the 

formation.  

Gullies on Mars are hypothesized to be formed by action of liquid water (Mellon and 

Phillips, 2001; Christensen, 2003). Surveying gullies by radar can test such hypotheses since the 

dielectric constant of liquid water is about one order of magnitude higher than that of most 

silicates and crustal rocks (Ulaby et al., 1986). (Nunes et al., 2010) surveyed 65 different 

locations within the two Martian mid‐latitudes using SHARAD radar looking for strong 

subsurface reflections which can be indicative of the presence of subsurface water. No strong 

reflections are found within the surveyed areas which may weaken the water hypotheses but still 

not disproving it.  
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Liquid water may exist; however, its detection was not possible due to uncertainty of the 

dielectric constant of Martian surface and subsurface materials, surface scattering and surface 

irregularities all caused radar reflections to be below SHARAD threshold detection range. In 

order to better interpret the radar data, pre-existed information about the dielectric constant of the 

investigated material must be assessed. Currently, such information is not available; therefore, 

correlating the dielectric constant to shape formation and mechanical properties of regolith will 

enhance radar inversion.  

Since friction angle and dielectric constant of the regolith is found to be function of the density 

of the prepared samples, where they increase with increasing the density. We used their relations 

with bulk density to correlate with formation total length. We correlated between the calculated 

friction angle, dielectric constant and the formation total length (Fig. 5.3 A and B). Based on this 

correlation, regolith friction angle ranged from ~45 to ~52° and regolith dielectric constant 

ranged from ~1.8 to ~2.5 along an increase in gully total length from 25 to 50 cm. This 

correlation can enhance radar dielectric inversion which may solve ambiguities which appeared 

in SHARAD data (Nunes et al., 2010). 

 

5.5. Conclusions 

Simulations of gully formations are conducted in order to understand which factors affect 

gully shapes. Testing the effect of the mechanical and electrical properties of regolith analogs 

along with gully formations showed that both properties play an important role in controlling 

gully morphology. This work confirms that gully total length, regolith dielectric constant and 

angle of internal friction are found to be function of the density of the formation. An increase in 

the subsurface density will correspond to an increase in formation total length, regolith angle of 
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internal friction and dielectric constant. Our experiments suggest that the morphology of the 

gullies observed on the surface of Mars can be interpreted using orbital cameras and/or radar will 

be possible as well as estimation of the electrical and mechanical properties of the subsurface, 

which will enhance previous, current and future Martian gully investigation. 
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Figure 5.3. Calculated friction angle (A) and dielectric constant (B) as a function of total length 
for JSC Mars-1. 
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CHAPTER 6: DIELECTRIC AND HARDNESS MEASUREMENTS OF PLANETARY 

REGOLITH ANALOG ROCKS IN SUPPORT OF IN-SITU PLANETARY 

SUBSURFACE SAMPLING  

 

6.1. Introduction 

Dielectric properties as inverted from radar subsurface sounding are increasingly suggested 

to assess the ground mechanical properties as rock hardness, density and porosity for several 

planetary surfaces. Of particular interest is the in situ sampling from Mars, comets, asteroids and 

icy satellites as their shallow subsurface hold key information in understanding the volatiles 

occurrence, geological compositional and geophysical evolution of these planetary bodies.  

Conjugating penetrometer and/or drill with sounding radars have been widely suggested to 

optimize subsurface investigation and sampling (e.g. Kofman et al., 2004; Safaeinili et al., 2007). 

Radar sounders will be used to probe the subsurface and assign localities of high scientific 

interest with the minimum drill and penetration risk as the CONSERT radar supporting the 

MUPUS penetrometer and SD2 drill on board the Rosetta lander (Biele, 2002) and the potential 

future ground penetrating radar experiment as the proposed WISDOM radar which will support 

ExoMars drill on future ExoMars mission to targets of investigations (Plettemeier et al., 2009; 

Winnendael et al., 2005; Ciarletti et al., 2009). In addition, drilling and subsurface sample returns 

has also been suggested for asteroid missions (Lauretta et al., 2012; Bowles et al., 2012). In all 

these different planetary surfaces the drilling capabilities strongly depend on identifying optimal 

locations where rock hardness permits penetration to subsurface sample. Such identification can 

be made using sounding radars radargrams where observed anomalic bulk dielectric constants 

can indicate locations with subsurface inclusion of ice and porous materials (Heggy et al., 2003; 
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Campbell et al., 2009). Hence an accurate assessment of the subsurface mechanical properties 

(i.e. rock hardness, density and porosity) and how they correlate to dielectric properties is crucial 

to future drill investigations.  

While the porosity and density dependency of the dielectric property of planetary analogs 

have been explored (e.g. Ulaby et al., 1990; Heggy et al., 2004; Stillman and Olhoeft, 2008), 

their dependency on rock hardness remains poorly known for volcanic material that are 

considered as the more accurate analog to planetary regolith (Weren et al., 2004; Brady et al., 

2005). Such ambiguities can compromise the accuracy of the dielectric inversion leading to miss 

assessment of ground hardness, reducing the performance of the drill and potentially missing or 

altering targets of interest especially those related to volatile exploration. Therefore, the main 

purpose of this research is to perform dielectric permittivity and hardness measurements for 

planetary analog volcanic rocks to provide a cross relation between these two parameters. These 

findings will help use the dielectric inversion from past, present and future radar experiments to 

assess the subsurface rock hardness to support and optimize the drill operation for sampling 

purposes as well as the physical characterization of the shallow subsurface.   

  

6.2. Experimental method and sample description 

6.2.1. Sample preparation and measurements procedure 

To simulate the different mechanical properties of planetary analogs, we use eight different 

types of volcanic rocks for dielectric and hardness measurements. Of which, six were basaltic 

rocks (Belleville, flood, Olivine rich, Mojave, Saddleback and lava basalts), one sample of 

welded tuff and another for pumice. Core and thin sliced specimens are cut and prepared for each 

sample. Hardness and dielectric measurements are performed on each sample. Both 
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measurements are conducted at room temperature for desiccated and undesiccated samples. 

Moisture affects rock strength; rock strength decrease with increasing the moisture content 

(Rehbinder et al., 1948).  For this reason measurements are performed on desiccated samples. 

Desiccation is carried by heating samples for 24 h at 100 ºC to eliminate residual moisture. The 

full description of the dielectric measurement setup and sample preparation can be found in 

(Heggy et al., 2001). 

 

6.2.2. Hardness measurements 

Hardness is a measure of the resistant of material when it is under confined stress by 

overcoming the mineral constituents of the rock and the bond strength that exist between the 

mineral grains (Parkhomenko and Keller, 1967). The mechanical behavior of volcanic rocks 

under stress forces is complex; therefore, there are different measurement techniques for 

hardness: scratch, indentation, and rebound hardness (Atkinson et al., 1978).  

 Our hardness measurements are performed for desiccated and undesiccated samples using 

the rebound technique as it is a non destructive technique which does not leave any imprints on 

the test sample and is sensitive in differentiating the hardness between two closely density 

related samples (Hucka, 1965; Brown, 1981; ASTM, 2001; Ericson, 2004; Goudie, 2006).  We 

used Proceq Schmidt hammer type-L with hammer impact energy of 0.735 Nm. Core Specimens 

are checked to be free of visible cracks and representative of the rock mass. For data gathering, 

10 rebound tests are recorded per sample and averaged to determine the rebound number (R) 

with a repeatability of ± 2 R.  
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6.2.3. Dielectric measurements 

Laboratory dielectric measurements of thin sliced samples < 3mm in thickness carried at 

room temperature for desiccated and undesiccated samples using a dielectric capacitive cell and 

a test fixture attached to an impedance analyzer. The analyzer is connected to a central command 

unit to extract data and calculate, in real-time, the real and imaginary part of the complex 

dielectric constant. Samples are placed between the parallel plates of a guarded capacitive cell to 

reduce edge errors (ASTM, 1999). Sweeping over the frequency range of observation, the real 

and imaginary parts of the relative complex permittivity is calculated from the capacitance and 

admittance knowing the thickness of the sample. Values of relative permittivity are measured 

over the entire frequency range; 200 to 1500 MHz hence covering the frequency ranges of 

several of the previous, current and future sounding radar experiments. 

 

6.3. Experimental Results  

Dielectric and hardness measurements are carried out on desiccated and undesiccated 

samples (residual moisture ranges from 0.2 to 1.3% of mass) in order to determine the effect of 

minor volatile presence on hardness and dielectric properties.  

Schmidt hammer hardness number ranged from R= 14.16 to 69.65 at the density of ρ ~ 

0.85 and 3.018 gm/cm3 for pumice and Olivine basalt, respectively for undesiccated samples. For 

desiccated samples, Schmidt hammer hardness number ranged from R= 12.8 to 68 at the density 

of ρ ~ 0.83 and 3.012 gm/cm3 for pumice and Olivine basalt, respectively. For volcanic materials 

used in this study, the residual moisture is observed to have no-significant impact on the rock 

hardness.  For each samples category, the lowest and highest R-values (pumice and Olivine 

basalt) correspond to the lowest and highest density of the samples. For volcanic rocks, we 
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observed that as the density increase, the hardness increases which implies the strong effect of 

density on hardness measurements (Table 6.1).  

Dielectric measurements for undesiccated and desiccated samples with a given density are listed 

in Table 6.2 at three frequency ranges (100, 500 MHz and 1 GHz). Dielectric constant is 

observed to decrease with increasing the frequency and to increase with increasing the density of 

the rock samples. Desiccation was observed to decrease the dielectric constant with different 

amplitudes for the different samples. The dielectric constant decreased from ~12 to 6 for 

Saddleback basalt, corresponding to a 50 % variation due to desiccation eliminating the residual 

moisture which constitutes 1.1% of the sample mass. Such high variation is related to the 

presence of conducting iron oxides in the sample (Heggy et al., 2001). For lava basalt, we do not 

observe a significant change in the dielectric constant due to the minimal moisture content 

constituting 0.1% of the sample mass.   

(Parkhomenko and Keller, 1967) suggested an inverse relation between molecular 

polarizability and binding energy of minerals, which suggests an inverse relationship between 

the dielectric constant and the hardness of minerals; hence the harder the mineral, the lower 

should be the dielectric constant; based on Mohs scale of hardness. Figure 6.1 shows the 

dielectric constant as a function of Schmidt hammer hardness number at room temperature for 

volcanic rocks at three frequency ranges (100, 500 MHz and 1 GHz). Dielectric constant was 

observed to increase with increasing rock hardness for volcanic material. Measurements suggest 

that for volcanic rocks and pyroclasts, the harder the rock, the higher is the dielectric constant. A 

possible explanation for this linear increase instead of a decrease as mentioned above is due to 

the variation of the density of the samples. We observed that both the hardness and the dielectric 

constant are linearly increasing with the increase of the density of the materials.  
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Table 6.1. Schmidt hammer hardness measurements of volcanic rocks for desiccated and 

undesiccated samples. 

 
 

 

a Undesiccated 

b Desiccated  

Rock types ρ (gm/cm3) a R a 

 
Slandered 
deviation ρ (gm/cm3) b Moisture %  R b 

 
Slandered 
deviation 

Belleville 
basalt 2.73 51.4 

 
2.5 2.71 0.51 66.43 

 
3.7 

Saddleback 
Basalt 2.75 68.14 

 
1.5 2.73 0.72 64.45 

 
2.8 

Flood basalt 3.01 68.96 3.2 2.99 0.79 68 2.9 

MMS 2.90 64.87 3.1 2.88 0.65 61.2 3.4 

Olivine basalt 3.01 69.65 2.2 3.01 0.19 67.9 2.5 

Welded tuff 1.60 33.37 3.3 1.59 0.35 39.7 2.8 

Pumice 0.85 14.16 3.5 0.83 1.33 12.83 2.2 

Lava basalt 2.23 20.22 3.4 2.22 0.29 18.30 1.9 
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Table 6.2. Dielectric measurements of volcanic rocks for desiccated and undesiccated samples 
 
 

 
a Undesiccated 

b Desiccated  

 

  

Rock types 

ρ 
(gm 

/cm3) 
a 

έ (100 
MHz) a 

έ (500 
MHz) 

a 
έ (1 

GHz) a 
ρ  (gm 
/cm3) b 

έ 
(100 

MHz) 
b 

έ 
(500 

MHz) 
b 

έ (1 
GHz) b 

Moisture 
% b 

Belleville basalt 3.25 8.56 7.89 7.73 3.22 6.48 6.46 6.49 0.37 
Saddleback 

Basalt 3.29 12.23 10.65 10.26 3.25 6.87 6.86 6.89 1.01 
Flood basalt 2.88 10.11 8.83 8.46 2.85 8.09 7.64 7.47 0.92 

MMS 2.87 6.68 6.41 6.63 2.85 6.35 6.28 6.28 0.15 
Olivine basalt 3.22 8.32 8.01 7.95 3.21 7.42 7.37 7.41 0.12 
Welded tuff 1.43 2.73 2.73 2.72 1.42 2.58 2.57 2.57 0.33 

Pumice 0.74 1.95 1.94 1.94 0.72 1.91 1.9 1.9 1.07 
Lava basalt 2.23 4.73 4.58 4.49 2.22 4.56 4.41 4.31 0.10 
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In order to validate our dielectric versus hardness measurements, we use (Aydin and Basu, 

2005) Schmidt hammer rebound hardness (R) results,	uniaxial compressive strength (σUCS) and	

dry density (ρ) for desiccated granitic rocks. We then apply the density model provided by 

(Olhoeft, 1979) to calculate the corresponding dielectric constant (έ) for a given densities as 

provided by (Aydin and Basu, 2005) (Table 6.3). 

 919.1'                         (Olhoeft, 1979)                                                                         (1) 

Figure 6.2 shows the measured dielectric constant at three frequency ranges 100, 500 

MHz and 1 GHz and hardness values after desiccating the basaltic samples at 100 ºC for 24 h as 

well as the calculated dielectric constant based on dry density measurements done by (Aydin and 

Basu, 2005). Our measurements suggest a linear correlation between the dielectric constant and 

the hardness (R) for both basalts and granitic samples. Dielectric constant varied from ~2 for a 

given hardness of ~12 to ~8 for hardness of ~ 68. Moisture removal by heating caused a decrease 

in the dielectric constant. The calculated values of the dielectric constant suggested a similar 

linear trend as supported by our laboratory measurements. Equation 2 describes the correlation 

between the dielectric constant and rock hardness based on our laboratory measurements and 

validation from Aydin and Basu, 2005. 

126.2)0674.0('  R                                                                                                        (2) 

While this empirical equation can be used to describe the dielectric-hardness function for 

volcanic rocks, it cannot be applied as is to sedimentary rocks, loose sediments and icy surfaces. 

Further measurements will be needed to achieve such goal. 

 

 



 136

' =  0.1204 R + 0.6392
R = 0.8638
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Figure 6.1. Dielectric constant versus Schmidt hammer hardness number (R) of volcanic rocks at 

different frequency ranges for undesiccated samples. 
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Table 6.3. Rebound values and some other physical properties of granitic rocks (Aydin and Basu, 

2005). 

 

Sample No R  ρ (gm/cm3) dry ucs (MPa) έ (predicted) 
1 64.67 2.69 196.45 6.111796 
2 62.83 2.68 160.2 6.070805 
3 62.6 2.63 157.22 5.869937 
4 61.75 2.65 155.7 5.949474 
5 61.42 2.57 148.36 5.63765 
6 65.76 2.66 136.15 5.989646 
7 61.84 2.59 133.55 5.714039 
8 61.84 2.62 123.25 5.830569 
9 62.13 2.63 139.45 5.869937 
10 60.43 2.62 121.4 5.830569 
11 60.24 2.58 116.3 5.675716 
12 60.48 2.57 106.34 5.63765 
13 61.4 2.65 88.2 5.949474 
14 59.53 2.62 83.13 5.830569 
15 58.02 2.49 68.21 5.342169 
16 52.74 2.59 59.36 5.714039 
17 49.15 2.57 53.19 5.63765 
18 43.29 2.57 45.67 5.63765 
19 42.45 2.42 32.16 5.096355 
20 39.94 2.36 31.14 4.89468 
21 48.86 2.47 26.83 5.270751 
22 35.01 2.46 24.35 5.235401 
23 34.91 2.42 22.96 5.096355 
24 33.43 2.41 22.32 5.062175 
25 43.99 2.52 14.7 5.451114 
26 43.65 2.52 13.66 5.451114 
27 36.39 2.37 13.61 4.92773 
28 34.24 2.4 18.84 5.028223 
29 32.24 2.26 17.3 4.576134 
30 35.67 2.32 7.64 4.764684 
31 33 2.24 23.15 4.514957 
32 34 2.28 19.7 4.63814 
33 34.91 2.36 25.14 4.89468 
34 32.28 2.35 22.16 4.861852 
35 34.39 2.34 11.67 4.829245 
36 20 2.13 6.32 4.192812 
37 50.33 2.55 33.86 5.562282 
38 51.46 2.56 41.73 5.599839 
39 48.48 2.47 25.38 5.270751 
40 46.69 2.46 22.66 5.235401 
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6.4. Implication for future planetary sampling experiments  

Sampling planetary bodies provide insight into their history of formation and evolution. 

The amplitude of the gravity field defines the optimal sampling mechanisms for planetary 

bodies. At micro-gravity environments such as asteroids and comets, anchoring the surface, and 

capturing surface samples is the most adequate technique as suggested for Rosetta in 2014. 

Additionally, other method such as firing the surface using bullets and collecting fragments is 

used on the Hayabusa mission. Drilling, penetrating and harpooning the surface and collecting or 

casing samples are suggested techniques for sampling bodies with substantial gravity field such 

as planets and satellites. All the above-mentioned sampling techniques require interaction with 

the surface and the shallow subsurface. Feasibility of accessing and sampling is function of the 

hardness of the investigated planetary body.  

Sampling from unknown surfaces entitles challenges on the capability of the sampling 

technique; therefore, assigning localities of possible sampling using dielectric inversion from 

radar probing can provide an insight to subsurface hardness. This result in constraining drilling 

and sampling operational risks and maximise the scientific return from properly targeting the 

subsurface. As suggested by our laboratory measurements, the dielectric constant can be used to 

estimate the surface and subsurface hardness, which define the drilling rate to reach targets. 
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' = 0.0674 R + 2.126
 R = 0.8338

0

2

4

6

8

10

12

14

0 20 40 60 80

Schmidt hammer hardness (R) 

D
ie

le
ct

ric
 c

on
st

an
t 

( 
'

 )

100 MHz
500 MHz
1 GHz
calculated

 
Figure 6.2. Dielectric constant versus Schmidt hammers hardness values for desiccated samples 

and the calculated dielectric constant (Aydin and Basu, 2005). 
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 For a given weight on bit (WOB), as the subsurface hardness increases, the rate of 

penetration for the drill would decrease (Gstalder et al., 1966). Anttila (2005) conducted 

hardness and drill experiments on carbonates and volcanic rocks using a rotary drill. The drill 

operation power was 10 – 20 W and the WOB was in the range from 140 – 170 N. We converted 

(Anttila, 2005) hardness values from unconfined compressive strength (UCS) to Schmidt 

rebound hardness using equation 3 to determine the relation between the drill penetration rate 

and Schmidt hammer hardness method. 

 

903.21))(2324.0(  MPaR        (Kılıç and Teymen, 2008)                                (3)	

 

Table 6.4 shows the UCS, drill penetration rate (DPR) (Anttila, 2005), sample density, 

calculated Schmidt hammer rebound number and computed dielectric constant of volcanic rocks 

(equation 2). 

Figure 6.3 shows the drill penetration rate in cm/hr of (Anttila, 2005) samples as a function of 

the computed dielectric constant based on our relation (equation 2). A decrease in the drill 

penetration rate was observed with the increase in both rock hardness and the dielectric constant. 

Equation 4 shows the correlation between drill penetration rate using rotary drill and dielectric 

constant for volcanic rocks.  
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Table 6.4. Unconfined compressive strength, drill penetration rate, density, Schmidt rebound 

hardness number and dielectric constant of some volcanic rocks. 

 
 

 

 

 

 

 

 

a Calculated Schmidt hammer hardness based on (Aydin and Basu, 2005). 

b Computed dielectric constant based on equation 2.  

 
 
 
 
 

Rock types ucs (MPa) DPR (cm/hr) ρ (gm/cm3) R a έ b 
Calcite 50 8.1 2710 50.18826 4.38545 

Diopside 120 5.75 3260 62.58867 5.481913 
Diabase 220 3 3080 71.17416 7.048289 
Mafurite 250 0.04 2545 72.98483 7.518202 



 142

615.18)'3561.2(  DPR                                                                                    (4) 

Using our dielectric constant measurements of desiccated volcanic rocks and assuming a 

WOB of 100 – 200 N; we calculate the drill penetration rate based on equation 4 (Figure 6.4). 

Pumice and welded tuff have low dielectric constant and low hardness, therefore, they have high 

drill penetration rate of 12 and 14 cm/hr. Basalt from Lava sources have intermediate hardness 

and dielectric constant values where it’s predicted drill penetration rate is about 8 cm/hr. The rest 

of the other types of basalts have high dielectric constant (6.4 – 7.5), higher hardness rebound 

number, which corresponded to low drill penetration rate (1 – 3.8 cm/hr). The future ExoMars 

rover will be weighting about 700 N on Mars (Brunskill et al., 2011); therefore, a WOB of 100 – 

200 N, about 27% of the rover weight, will be stable and safe for drilling and sampling from the 

Martian subsurface. 

 

6.5. Conclusions 

In this research, we suggest a quantitative method to estimate ground hardness from radar 

dielectric inversion for drilling and sampling purposes. Radar probing is suggested to locate 

regions with highest drilling penetration rate in the subsurface based on retrieving low dielectric 

constant. The utility of such approach is crucial for not missing targets of opportunities such as 

shallow subsurface volatiles, losing drilling performance and saving power for the continuity of 

the investigation. An inverse correlation between drilling penetration rate based on rotary drill 

method and dielectric constant of volcanic rocks was concluded. This would minimize 

investigation ambiguities and enhancing sampling for future science return.    
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               DPR = -2.3561' + 18.615
R = 0.9754
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Figure 6.3. Drill penetration rate versus dielectric constant for carbonates and some volcanic 

rocks using rotary drill.  
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Figure 6.4. Calculated drill penetration rate for rotary drill versus dielectric constant of 

desiccated volcanic rocks. 
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CHAPTER 7: DISCUSSION  

Penetration and sampling from planetary bodies provide insight into their formation and 

evolution history. The amplitude of the gravity field defines the optimal penetration and 

sampling mechanisms for planetary bodies. Sampling from the subsurface of planetary bodies 

(comets, asteroids, satellites and planets) is considered as one of the main objectives of planetary 

exploration missions since accessing the subsurface and obtaining  pristine samples will 

enhances our understanding of the geology, morphology and history of the investigated planetary 

body.   Anchoring the surface and capturing surface samples is the recommended technique for 

micro-gravity environments such as asteroids and comets. Additionally, other method such as 

firing the surface using bullets and collecting fragments is used on the Hayabusa mission. For 

planetary bodies which has substantial gravity field, Drilling, penetrating and harpooning the 

surface and collecting or casing samples are the suggested technique. All the above-mentioned 

sampling techniques require interaction with the surface and the shallow subsurface. Feasibility 

of accessing and sampling is function of the mechanical properties of the investigated planetary 

body.  

The lack of knowledge of mechanical and physical regolith properties on other planetary 

bodies affected previous mission operation and will influence any future mission design and 

sampling activities. Due to the limited information about the lunar regolith before sending 

lander/rovers to investigate the Moon, there was a concern that the first lander/rover would sink 

into the lunar regolith. The Apollo Lunar Roving Vehicle (LRV) got bogged down in the lunar 

regolith during one of its traverse and the astronauts had to lift the vehicle and move it onto 

firmer ground (Carrier, 2008). The Soviet Lunokhod rover encountered a wheel sinkage up to 

200 mm while roving on the Moon (Carrier, 2008). The MER Opportunity stuck in a regolith 
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trap on the surface of Mars but was able to free itself while the MER Spirit, got definitively stuck 

in the regolith in Gusev crater which led to the end of the rover (Showstack, 2010).  

  

In order to assure the success of current and future mission, landing, roving, traversing, 

exploring and sampling the surface and the subsurface using in situ instruments, a considerable 

understanding of the nature of the regolith material and their behavior under planetary 

environmental conditions must be fully investigated. Therefore, discussion on the physical and 

mechanical properties of planetary regolith is grouped as: 

1. Discussing the data provided by Lunokhod 2 on its mission to the Moon and testing 

our penetration model for better analyses the results. 

2. Correlating the mechanical and electrical properties of planetary analogs to 

penetration testing for possible subsurface stratigraphy assessment.  

 

7.1. Analysis of the penetration data provided by the Lunokhod rovers 

Lunokhod 1 and 2 rovers were on-board Luna17 and 21 missions to the Moon. A 5 cm 

diameter penetrometer was equipped on Lunokhod 1 and 2, assigned to penetrate up to 10 cm 

deep with a maximum penetration mass of 23 kg in order to investigate the mechanical 

properties of the lunar subsurface (Leonovich et al., 1972). Along the traverse of Lunokhod 2 in 

the region of Lemonnier crater in the transitional zone from the sea region to the highland on the 

Moon; Lunokhod 2 conducted penetration testing using its cone penetrometer (Leonovich et al., 

1972).  

Figure 7.1 shows the penetration forces as a function of depth for various tests conducted 

on the Moon by the Lunokhod 2 penetrometer (Leonovich et al., 1976). Analysis of the 
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penetration curves suggested that curve 6 and the first part of curve 1 correspond to the 

maximum and minimum penetration forces on the Moon (Leonovich et al., 1976). These curves 

correspond to penetration into the hardest and loosest regolith materials (Leonovich et al., 1976). 

Up to that level of interpretation, no further analyses were reported about using the Lunokhod 

penetration forces to interpret the subsurface stratigraphy. 

Luna 16 and 20 were equipped with a drill which was capable of drilling and sampling 

from the subsurface of the lunar regolith. These samples placed in a sealed capsule and sent to 

Earth for analysis. Table 1 shows mechanical and physical testing results performed on lunar 

regolith delivered to Earth by Luna 16 and 20 missions (Leonovich et al., 1976). Luna missions 

provided bulk density, angle of internal friction and void ratio for lunar regolith which 

correspond to the maximum and minimum penetration curves (curve 1 and 6) in Figure 7.1. 

Regolith bulk density found to have a minimum and maximum value of 1.04 and 1.798 kg m-3 

corresponding to regolith void ratio of 1.88 and 0.67 and angle of internal friction of 25 and 50° 

respectively for Luna 20 samples and; a minimum and maximum bulk density of 1.115 and 

1.793 kg m-3 with void ratio of 1.70 and 0.67 respectively reported for Luna 16 samples with 

minimum and maximum angle of internal friction of 25 and 50° (Table 1, Leonovich et al., 

1976).  

As shown in Figure 7.1, sudden changes in the penetration forces as a function of depth are 

observed from the character of the penetration curves which indicate inhomogeneities in the 

subsurface regolith. The main objective of this work is to theoretically reproduce the penetration 

forces as function of depth as in Figure 7.1 in order to estimate the subsurface densities which 

correspond to each penetration curve. The following theoretical frame work is used in the 

reproduction scheme: 



 151

The total penetration force (FT) during probe insertion into the subsurface is the sum of two 

forces; the cone resistance (qc) and the sleeve friction (fs): 

                                                                                                                                                (1) 

Where Ac is the area of the cone, As is the buried area of the sleeve. The cone resistance can be 

calculated from (Puech et al, 2002): 
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Solving for the bearing capacity factor Nq (Puech and Foray, 2002 ): 

                                                                                                                                                 (3)                               

 

Where γ is the effective unit weight of the regolith (N m-3), Z is the penetration depth (m), K is 

the coefficient of lateral pressure at rest (dimensionless), φ is the friction angle (degree) which is 

function of the relative density (Dr) and L is the lateral extension of the slip lines (m). The 

coefficient of lateral pressure is defined as (Harr, 1977).  

sin1K                                                                                                                             (4) 

The lateral extension of the slip lines L is defined as (Puech and Foray, 2002): 

  )
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  BL                                                                           (5)                               

Where B is the cone diameter (m). The relative density (Dr) is an index that quantifies the degree 
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Where e is the void ratio of the sample. emax is the maximum possible void ratio (loosest 

condition) and emin is the minimum void ratio (densest condition) of the sand (Lunne et al., 

1997). 

 

In order to reproduce curves in Figure 7.1; we 

1) Theoretically calculate the maximum and minimum bearing capacity factors using 

the penetration force curves 1 and 6; and their properties which are listed in Table 

1 as input data and apply it into equation 3. 

2) Correlate the maximum and minimum bearing capacity factors and regolith bulk 

densities to the angles of internal friction (Fig. 7.2). 

3) Theoretically calculate the penetration forces using the estimated bearing capacity 

factors for curves 1 and 6 based on knowledge of the bulk density, void ratio and 

angle of internal friction (Table 1); and Plot them along the data provided by 

Lunokhood 2 (Fig. 7.3).  

4) For the other curves (2 to 5) in Figure 7.1, we suggest a bulk density as input data 

in correlation with the mechanical properties in Figure 7.2 and apply it into 

equation 1 in order to calculate the theoretical penetration force at a specific bulk 

density. Once we get the theoretical force data, we plot it along the experimental 

data provided by Lunokhood 2 for each curve. 

5) If there is no good matching between the theoretical force and the Lunokhood 2 

data, we suggest another bulk density to get another theoretical force curve, until 

we get a good fit between the theoretical penetration forces and Lunokhood 2 data 

(Fig 7.4 to 7.8). 
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Curve 1 in Figure 7.4 showed two increasing trends of force as a function of depth, from 0 

to ~5 mm, it is fitted and the bulk density is found to be 1798 kg m-3 and from ~ 20 to ~30 mm; it 

is fitted with a bulk density of 1570 kg m-3. This indicates a decrease of density as a function of 

depth is at this location. 

An increase in penetration force as a function of depth is observed for curve 2 (Fig. 7.5), 

the first 30 mm for curve 3 (Fig. 7.6) and the first 32 mm for curve 5 (Fig. 7.7). The fitted bulk 

density is 1650 kg m-3 for curve 2, 1350 kg m-3 for curve 3 and 1100 kg m-3 for curve 5.  

Two density levels are observed for curve 4 (Fig. 7.8). From 0 to 30 mm the density is 

estimated to be 1200 kg m-3 while the rest of the curve is fitted with a density 1330 kg m-3. 

The rest of the penetration depth for curve 3 (~30 to 100 mm) and curve 5 (~38 to 43 mm) 

could not be reproduced using the model due to limitation in the model. Therefore, the density 

corresponding to the depth of ~30 to 100 mm in curve 3 is less than 1350 kg m-3 and the depth of 

~38 to 43 mm for curve 5 is greater than 1100 kg m-3 since the data are below the fit for curve 3 

and above the fit for curve 5.   

 

 



 154

Table 7.1. Bulk density and coefficient of porosity (void ratio) of lunar regolith (Leonovich et 

al., 1976). 

 

 Luna 20  Luna 16 

Parameters Losse  Packed  Losse Packed 

Bulk weight (g cm-3) 1.04 1.798 1.115 1.793 

Coefficient of porosity (void ratio)*  1.88 0.67 1.70 0.67 

Angle of internal friction (Deg) 25 50 25 50 

  
*Assuming regolith specific weight of 3 g cm-3 
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Figure 7.1. Penetration forces as a function of depth on the Moon conducted by Lunokhod 2.



 156

 

 = 0.0303  + 0.282
R2 = 1

Nq = 0.8672 e0.1311

R2 = 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

20 30 40 50 60

Angle of internal friction

B
ul

k 
de

ns
ity

 (
g 

cm
-3

)

0

100

200

300

400

500

600

700

B
ea

rin
g 

ca
pa

ci
ty

 f
ac

to
r 

 

Figure 7.2. Regolith bulk density and bearing capacity factor as a function of the angle of 

internal friction for lunar regolith.  
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Figure 7.3. Maximum and minimum force as a function of depth conducted by Lunokhod  2 as 

well as the theoretical predicted force of penetration for part of curve 1 and curve 6. 
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Figure 7.4. Cure 1 of penetration force as a function of depth conducted by Lunokhod 2 and its 

corresponding theoretical forces.  
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Figure 7.5. Cure 2 of penetration force as a function of depth conducted by Lunokhod 2 and its 

corresponding theoretical forces.  
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Figure 7.6. Curve 3 of penetration force as a function of depth conducted by Lunokhod 2 and its 

corresponding theoretical forces.  
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Figure 7.7. Curve 5 of penetration force as a function of depth conducted by Lunokhod 2 and its 

corresponding theoretical forces.  
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Figure 7.8. Curve 4 of penetration force as a function of depth conducted by Lunokhod 2 and its 

corresponding theoretical forces.  
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 Table 2 shows the calculated density and porosity which correspond to curves 1 – 6 in 

Figure 7.1. The calculated porosity varied from a minimum of 0.4 to a maximum of 0.65 along a 

change in the density from a minimum of 1040 to a maximum of 1798 kg m-3. Figure 7.9 shows 

a subsurface stratigraphic section of bulk density as a function of depth for curve 1 – 6 after 

processing the curves conducted by Lunokhood 2 penetrometer. As seen from Figure 7.9, the 

second part of curves 1, 5 and 3, 6 have a close bulk density values of ~ 1570 and ~ 1040 kg m-3. 

Since curves 1 through 6 in Figure 7.1 are conducted at different locations along the path of 

Lunokhood 2. We can assume that a subsurface fault may be causing the similarity signatures 

seen on the second part in the penetration forces curves 1, 5 and 3, 6. 

 Based on the analysis of Lunokhod 2 data, increasing in the subsurface density correspond 

to an increase in the force of penetration. As shown in Figures 7.3 through 7.8, huge 

inhomogenitites of the subsurface are observed where density varied from a minimum of 1040 to 

a maximum of 1798 kg m-3 which are due to variation of subsurface porosity along the route of 

Lunokhod 2 at different depth. Therefore, it is possible to predict the subsurface density from 

penetration force curves.  
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Table 7.2. Processed density and porosity of curves 1 – 6 conducted by Lunokhood 2 

penetrometer. 

 

Curve No Density (kg m-3) Porosity 

1 1798 

1570 

0.40 

0.47 

2 1650 0.45 

3 1350 0.55 

4 1330 

1200 

0.55 

0.60 

5 1100 0.63 

6 1040 0.65 
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Figure 7.9. Stratigraphic section of the bulk density as a function of depth for curve 1 – 6 

conducted by Lunokhood 2 penetrometer.  
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7.2. Correlating the mechanical and electrical properties to penetration forces 

Penetrometer design can be adjusted to sample from the subsurface of planetary body with 

minimum disturbance into the subsurface layering. Uncertainty of the subsurface of planetary 

bodies, place a lot of constrains on the performance of the penetrometer especially if it is 

assigned for sampling. If the density of the formation where penetration will take place is high, 

this means more force for penetration is needed to compensate the high density. In such a case, 

penetration into this area may be over the penetrometer capability and there is a probability that 

the penetrometer may get stuck. Therefore, estimation the required force to penetrate and sample 

from the subsurface is mandatory for the success of the penetration and sampling mechanism.  

Dielectric properties as inverted from radar subsurface sounding can be used to assess the 

ground mechanical properties as rock hardness, density and porosity. Penetration into the 

subsurface with emphasis on subsurface sampling return strongly depends on mechanical 

properties of the subsurface (density and porosity). Inversion of radargrams depends on the 

dielectric constant which is function of material density and porosity. Therefore, conjugating 

penetrometer supported by radar will enhance subsurface investigation and sampling. If we 

correlated between the forces required for penetration and sampling to dielectric properties of 

regolith materials, a pre-existed knowledge of the subsurface density can be drawn before taking 

the action of penetration. Radar can be used to probe the subsurface and assign localities of high 

scientific interest with the minimum penetration risk such as the CONSERT radar supporting the 

MUPUS penetrometer on board the Rosetta lander (Biele, 2002).  

 

We here discuss the applicability of estimating the forces required for penetration and 

sampling based on knowledge of the dielectric constant of the investigated material. Based on 
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previous parts in the dissertation, it is observed that forces of penetration and dielectric constant 

of regolith material are both function of the density and porosity of the material under 

investigation.  

In order to achieve our goal, we are going to: 

1. Perform some penetration testing in JSC Mars-1 regolith analog at different 

prepared bulk densities. 

2. Measure the dielectric constant of JSC Mars-1 at different bulk densities. 

3. Correlate between the forces of penetration and dielectric constant of JSC Mars-1. 

Figure 7.9 shows the dielectric constant of JSC Mars-1 measured at three frequency ranges 

(100, 500 MHz and 1 GHz) as a function of regolith bulk density. Dielectric constant is observed 

to increase from ~ 2 to ~ 9 along with an increase in regolith bulk density from 1200 to 1900 kg 

m-3. Equation 1 shows the relationship between dielectric constant and bulk density of JSC Mars-

1 regolith analog Figure 7.10. 

 = 0.0059  - 3.9217                                                                                                               (1) 

Four different bulk densities of JSC Mars-1 are prepared for penetration testing and the 

used penetrometer is 1.2 cm in diameter. Figure 7.11 shows the effect of variation of regolith 

bulk densities on penetration forces. The forces of penetration increased from ~100 N at a bulk 

density of ~1120 kg m-3 to ~1600 N with bulk density of 1240 kg m-3. The density effect is 

highly seen on penetration forces where it is observed to increase with increasing regolith bulk 

density. 

Using equation 1, we calculated the dielectric constant of JSM Mars-1 regolith analog for 

the measured bulk densities used for penetration testing (Table 3).  At the measured bulk 

densities, the calculated dielectric constant is found to increase from 2.68 to 3.39 corresponding 



 168

to an increase in bulk densities from 1120 to 1240 Kg m-3 which implies an increase in 

penetration forces (Fig 7.11).  

 

Based on this investigation, estimating the regolith density and predicting the possible 

penetration forces for subsurface investigation can be assessed from knowledge of the dielectric 

constant. Combining a radar and penetrometer on a rover or lander will enhance subsurface 

exploration by assigning localities of high scientific return and minimization of penetration risks. 
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Figure 7.10. Dielectric constant versus regolith bulk density for JSC Mars-1. 
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Figure 11. Variation of bulk density and dielectric constant for different penetration testing in 
JSC Mars-1. 
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Table 7.3. Bulk density and calculate permittivity for JSC Mars-1 
 

Bulk density (Kg m-3) Calculated permittivity 

1120 2.68 

1167 2.96 

1184 3.06 

1240 3.39 
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CHAPTER 8: CONCLUSIONS 

This dissertation demonstrated that knowledge of the mechanical and electrical properties 

of planetary analogs is crucial for subsurface investigation, interpretation, and protection for 

future planetary exploration.  

 

Penetration testing experiments in planetary regolith analogs showed that the total 

resistance penetration is affected by the mechanical properties of regolith. An increase in 

penetration force indicates an increase in the subsurface density. From assessment of the 

subsurface density, estimation of mechanical properties can be predicted such as porosity, void 

ratio and friction angle. An increase in the subsurface density indicates lower porosity, higher 

friction angle and higher bearing capacity. Using the penetration experiments conducted in JSC 

Mars-1 and Mojave soil as well as knowledge of their mechanical properties allowed correlating 

the mechanical properties to forces of penetration. This correlation will allow sensing and 

differentiating between different subsurface layers and inversion of subsurface density and 

porosity from penetration forces.  

 

Estimation of the penetration forces on the Moon using penetrometers is possible using 

regolith analogs and the penetration model is verified with in-situ penetration experiments. 

Based on measurements of the density and void ratio of lunar regolith samples conducted on the 

Earth brought by Luna 20, we were able to reproduce the penetration testing performed by 

Lunokhod penetrometer and we estimated the subsurface density. Analysis of the results showed 

that the lunar subsurface is heterogeneous and a shift in the subsurface density as a function of 

depth is observed which may be due to faulting.  
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Penetration forces should not exceed the weight of the lander or the rover on the surface of 

the planetary body, otherwise, the whole lander or rover will lose its contact with the surface and 

place the whole mission in danger. Prediction of penetration forces for Mars can place a 

threshold to the weight of the lander or the rover. Therefore, simulating force of penetration on 

planetary analogs will constrain the mass of the lander or the rover which will prevent it from 

over penetration.  Results of this investigation will improve future subsurface investigations of 

the Martian surface in terms of mission design, landing site selection and will be helpful the 

interpretation of physical, mechanical and geomorphological investigations as well. 

  

Since penetration testing is highly affected by regolith bulk density as well as the dielectric 

constant, we correlated the penetration testing to regolith dielectric constant. An increase in 

penetration force is observed with an increase in the dielectric constant. Based on this 

correlation, estimation of the required penetration force or assessment of the subsurface 

dielectric constant is feasible. Therefore, combining radar and penetrometer on the same 

platform and coordination between both instruments will enhance subsurface exploration and 

will reduce penetration risks.   

 

We simulated gully formation under different bulk densities with the objective of 

correlating mechanical and electrical properties of the regolith to gully shape. Simulation of 

gully experiments using JSC Mars-1 regolith analogs as a function of different bulk densities 

showed a correlation as function of gully total length existed. Gully total length, regolith 

dielectric constant and angle of internal friction found to be function of the density of the 

prepared sample. An increase in the subsurface density will correspond to an increase in gully 
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total length, regolith angle of internal friction and dielectric constant. Based on this investigation, 

geomorphological features such as gullies can be interpreted in terms of morphometrics, density 

and dielectric constant using orbital camera and radar which will enhance previous, current and 

future geomorphological investigation. 

  

Drill penetration rate of planetary bodies for sampling purposes is function of subsurface 

hardness. Dielectric properties as inverted from radar subsurface sounding can be used to assess 

the ground mechanical properties as rock hardness, density and porosity. We suggest a 

quantitative method to estimate ground hardness from radar dielectric inversion for drilling and 

sampling purposes. We found the dielectric constant to increase with increasing rock hardness.  

An inverse correlation between drilling penetration rate based on rotary drill method and 

dielectric constant of volcanic rocks was concluded. The utility of such approach is crucial for 

not missing targets of opportunities such as shallow subsurface volatiles, losing drilling 

performance and saving power for the continuity of the investigation. This would minimize 

investigation ambiguities and enhancing sampling for future science return.    
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Appendices 

Appendix A: Penetration Testing of the Optical Probe for Regolith Analysis (OPRA) 
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