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Abstract 

Solid State nanopores that are fabricated by the ion beam sculpting process and electron beam 

drilling have shown great promise as a sensing device for DNA and protein molecules. Even 

though biological pores such as the α-Haemolysin have been in use for quite some time, the use 

of solid state Nanopores in single biomolecule detection has been on the rise since the mid 

1990s. Solid State nanopores have an advantage over biological pores in that they are more 

robust, stable, and can be sculpted to any desired size for use in translocation experiments. One 

of the major challenges in Nanopore fabrication by ion beam sculpting has been limited by the 

user’s ability to control the closure rate of pores in the fabrication process. Another challenge in 

nanopore sensing is the resolution limitation due to the thickness of the pore. This is because 

most of the nanopores fabricated by the ion beam sculpting method are often thicker than they 

should. This thesis will focus on the modification of nanopore fabrication using the ion beam 

sculpting system at the University of Arkansas by first baking the samples in vacuum under 

specified temperature conditions. Baking the samples will give the user better control over pore 

closure. This Thesis will also focus on thinning the sculpted pores by Reactive Ion Etching in an 

attempt to increase its resolution for single biomecule translocation experiments.   
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1. Introduction 

Since the establishment of the Human Genome project in 1989, billions of dollars have been 

spent with the primary goal of sequencing and identifying all three billion chemical units in the 

human genetic instruction set. As recently reported by Genome.gov, DNA Sequencing costs 

have dramatically dropped over the past 10 years for most large-scale programs. Many different 

sequencing techniques have been developed over the years with one of them being Single-

Molecule DNA Sequencing using Nanopores. In nanopore strand sequencing, a single strand of 

DNA moves through a narrow pore and the bases are identified as they pass a reading head. 

Biological Pores such as the α-Haemolysin has been in use for quite some time (Mid 90s) since 

they are protein transport channels that occur naturally. On the other hand, solid state nanopores 

are a more recent invention first developed by Li et al at the Harvard Nanopore lab. There are 

several advantages of solid state nanopores over the biological ones in that they are more robust, 

stable, and can be sculpted to any desired size for use in experiments. Current nanopore 

fabrication techniques are promising but there are some challenges in obtaining relatively thin 

pores that are especially suitable for DNA translocation experiments.  The Ion Beam sculpting 

process used by the Nanopore group at the University of Arkansas is a technique that employs a 

low energy (1keV-5keV) ion beam  to close an existing FIB(100nm) to a smaller nanometer 

sized hole of about 5-10nm in internal diameter. One of the main challenges with regards to this 

method has been to control the closure rate of pores in the sculpting process. This is because 

pores often close too fast there by rendering the closed pore diameter too small, or too large than 

the desired pore diameter. Other Fabrication techniques such as electron beam irradiation of 

samples in a transmission electron Microscope have also been employed in order to obtain 

specified pore diameters. In this technique, the Ion Beam sculpting system is used to close a 
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nanopore all the way after which a condensed electron beam in a Transmission Electron 

Microscope is used to drill a nanometer sized hole through a very thin membrane of the closed 

pore. One other technique employed in the sculpting of a nanopore by the Ion Beam sculpting 

system is to sputter open an already closed pore under very low temperature conditions in the 

sculpting chamber. This is done by flowing liquid nitrogen at very low temperatures into the 

main chamber in order to keep it cool as the sculpting is in progress. 

 

 

Figure 1: Left is a 100nm sized FIB that is sculpted to about 5nm (Right) 

1.1 Motivation 

One of the main reasons for baking Nanopores under vacuum conditions prior to closure has 

been to be able to exert a proper control over their closure rates. Baked pores have been shown to 

close slower than unbaked pores and this property would give the user the ability to obtain the 

target pore size or diameter needed. Pores fabricated by the Ion Beam sculpting process would 

normally have a thickness greater than 14nm and would require thinning them. The main goal for 

thinning nanopores is to be able to get a better resolution of DNA molecules through them in 

translocation experiments. A much thicker pore would imply a Low spatial resolution. When the 
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pore is thinned, the amount of the DNA averaged over the nanopore for a signal will be lowered 

giving it a high resolution. When a DNA molecule passes through such a pore, it reads about 40 

base pairs of DNA segments with lots of details hidden within it. The Nanopore can be thinned 

by reactive ion etching which is a dry etching method and the principal technique used in the 

thinning of pores for this research at the High Density electronics center (HiDEC) of the 

University of Arkansas. Reduction in pore thickness has the benefit in that it will increase the 

current drop when a DNA molecule is inside a Nanopore and also increase the resolution by 

increasing the pore’s ability to read individual base pairs in the DNA molecule in a translocation 

process. A DNA translocation experiment using a nanopore can normally be carried out by 

driving a DNA molecule in an ionic solution through the pore by the application of an electric 

field. Since a DNA molecule is negatively charged, it will move through the pore toward the 

anode upon the application of an electric field. Once inside the pore, the DNA reduces the 

amount of ions that was present in the open pore thus effectively reducing the open pore current. 

This blockage of ions causes the current to drop and further confirms a translocation has indeed 

taken place. The current blockade equation further supports the above hypothesis since the 

change in current is inversely proportional to the thickness of the pore. 
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Where I  is the overall current drop as the DNA molecule blocks ions inside the pore, I0 is the 

open pore current, ADNA is the area of the DNA, V is the applied voltage ,σ is the conductivity of 
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the solution and Lpore  is the nanopore thickness. 

 

Figure 2: Comparing DNA Translocation through a thick and a thinner Pore 

The above figure suggests the current-time graph for the thinner pore has a better resolution than 

with the thicker pore. When the pore thickness is between 1-2nm, individual base components 

such as GG A C G ATT AC A can be read thus making sequencing of the DNA molecule 

possible. 
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1.2 Organization of this Thesis 

This thesis will describe the various techniques employed toward the realization of the above 

stated goals. The initial wafer preparation techniques such as photolithography, Reactive Ion 

Etching, Wet KOH Etching, Ion Beam milling  will be discussed. Other follow up methods such 

as Transmission Electron Microscopy imaging of closed pores and the baking of Pores under 

vacuum conditions in the Ion Beam Sculpting system prior to their closure will also be discussed. 

The thinning of Nanopores by Reactive Ion Etching as well as a thickness map analysis of the 

Nanopore geometry will also be examined. This thesis will conclude by examining the results 

arising from the implementation of the above stated fabrication techniques. 
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2. Nanopore Fabrication 

There are several important steps involved in the preparation of Silicon Nitride wafers before 

they can be sculpted by the ion beam sculpting technique or drilled by the TEM. A simple silicon 

wafer is the standard from which all processes begin. A 4X4 inch wafer of about 100mm in 

diameter with a thickness of about 380 micro meters( m  ) is used. This is made of a single 

silicon crystal with a {100} plane defined on both sides of the wafer 

2.1 Low Pressure Chemical vapor Deposition 

The initial stage in the fabrication process is done at Cornell University. The process starts with 

four inch silicon. Silicon nitride coating each with a thickness of about 275nm low stress 

amorphous Si3N4 deposited by the process of Low Chemical Vapor Deposition (LPCVD). Once 

this process is completed, the wafers are then brought to the Nanopore Lab at the University of 

Arkansas for further processing.  

 

 

 

Figure 3: Side view of Silicon wafer with Si3N4 deposited on both sides 

2.2 Inspection and Photolithography 

The wafers are inspected and cleaned by placing them in a sonicator using arrow shaped holders. 

They are then sonicated using acetone, Isopropyl alcohol and methanol each for about 15 

minutes.  After the sonication process, the wafers are rinsed in a Sitek Rinser and carefully dried 

using Nitrogen. The wafers are then coated by using hexamethyldisiloxane(HMDS)  in a Yes 

oven for about 45 Minutes after  which  they are  then spin coated with a positive photoresist 

forming a 2.5µm polymer matrix.The wafer is then removed from the spin coater and soft baked 

275nm S3N4 

380um Si 

275nm Si3N4 
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on a Hot plate for time duration of about 120 seconds and at a hot plate temperature of   110
o
C. 

Baking ensures the evaporation of any solvents in the resists and also ensures that it glues firmly 

or tightly to the wafer. After the wafer is cooled, the backside is again coated with resist and 

baked in exactly the same process as outlined above. Once this process is completed, the wafer is 

going to appear as shown in the figure below 

 

Figure 4: Wafer with layer of resist coating on both sides 

2.3 Alignment and Exposure 

The wafer is again inspected for any contamination or defects that may have occurred during the 

photoresist application. The next step in the fabrication process is to align wafer and mask. A 

glass chrome mask is carefully aligned on top of the wafer by taping it to three different 

positions separated by 120
o 

spacing. The mask is aligned to the wafer to ensure that the RIE 

process that follows, will only etch those portions of the wafer that have been exposed to the UV 

light. The wafer is then exposed in UV for about 18-20 seconds based on the Exposure time 

calculations. The chrome portion of the mask blocks light from the mask aligner and prevents the 

underlying resist from being exposed while all resist underneath the glass portion are exposed. 

2.4 Wafer Development 

After the wafer is exposed, it develops the pattern of the mask. The wafer, mask and glass plate 

are then separated, and the wafer is placed in a wafer cassette and immersed in a developer 

solution and the timer is turned on. After the wafer has been in the developer for about 90 

minutes, it is then placed in a dump rinser for about 3 minutes to remove any leftover developer 
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from the wafer.  When the resist is developed, patterns produced will consist of either 3mm by 

3mm squares with 560 µm by 560 µm squares inlays or 4mm by 6mm rectangles with 560 µm 

by 560µm square inlays, as shown in figure 5.  The developed wafers are then inspected prior to 

the reactive ion etch (RIE) step 

 

 

Figure 5: shows a side view of wafer after exposure and Development 

2.5 Reactive Ion Etching 

The Reactive Ion Etching process (RIE) is an etching technology used in Micro fabrication. It 

uses chemically reactive plasma to remove material deposited on wafers. This is a dry etching 

technique as opposed to the wet etching or other known etching methods. The goal of this step is 

to remove the silicon nitride now exposed according to the mask pattern by photolithography. 

Removal of the silicon nitride is achieved by generating plasma in the RIE system. The RIE 

system is composed of parallel plates one of which is capacitively coupled to an RF source, a 

vacuum chamber and a wafer platter located at the bottom portion of the chamber. The wafer 

platter or the lower plate is electrically isolated (grounded) from the rest of the chamber. Gas 

enters through small inlets in the top of the chamber and exits to the vacuum pump system 

through the bottom. An oscillating electric field RF (13.56 Megahertz) ionizes the gas molecules 

by stripping them of electrons creating plasma. High-energy ions from the plasma attack the 

wafer surface and react with it. 
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.  

Figure 6: (1) and (4) are electrodes that create the electric field (3) meant to accelerate ions 

(2) towards the surface of the samples (5) 

The ions react chemically with the material on the wafer but can also knock off some material by 

sputtering resulting in etching. Physical etching of the wafer surface is done by ions present in 

the plasma. Because of the voltage drop between the plasma and each electrode and the resulting 

electric field, positive ions such as Cl
+
  or Ar

+
 will  strike the wafer surface by knocking off 

atoms in a more directional manner resulting in Physical etching. The sputtering process tends to 

etch the wafer in an anisotropic manner thereby narrowing the features of the wafer downward. 

 

Figure 7: Side view of wafer after the sputtering process in the RIE 
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Chemical etching of the wafer is commonly done by free radicals and is isotropic. Because of 

their incomplete bonding structure, free radicals are highly reactive chemical species. 

The following chemical reaction is very typical of chemical etching in the recipe 

  eFCFCHe 34  

And                     44 SiFSiF   

 

Figure 8: Side view of after the chemical etching process 

It must be understood that these two etching processes take place simultaneously and a 

combination of both methods results in straight side walls of the wafer as shown below 

 

Figure 9: Side view of wafer after the RIE Process is complete 

One can see from the above figure that one side of the wafer has the silicon nitride removed in 

the exact pattern of the mask. Before beginning the RIE process, the RIE chamber must be 

cleaned. Cleaning the chamber will also help get rid of any impurities that might have been left 

over in a previous etching process. Cleaning will also help warm-up and stabilize the system.  
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When the system is stable prior to etching, it can help avoid early etching and wrong etch rate 

values. The table below gives the cleaning recipe for the RIE 

 

STEP TIME(MIN) PRESSURE

1 0:10 0.002Torr

2 0:30 40mTorr

3 5:00 40mTorr

4 0:30 600mTorr

5 5:00 500mTorr

6 1:00 10mTorr

7 0:15 0.001mTorr

 

Table1: Recipe used to clean RIE Chamber with Oxygen as the Plasma 

After the cleaning process is complete, the chamber is vented and the lid opened.  The Wafer can 

be loaded into the main chamber either manually or by an automated process from the Loadlock. 

In the automated process, the wafers are placed in a vacuum sealed load lock that contains a 

wafer loading tray. A command is initiated by pressing the appropriate button. The tray then 

transfers the wafer into the RIE plasma chamber. Once the wafer is in the chamber, the 

appropriate program is then loaded and run to etch the wafer. The manual process is done by 

raising chamber lid and bracing with a PVC pipe. An Aluminum shield in the chamber is then 

removed and replaced by an Ardel shield with a clean 5in dummy wafer at the center. The wafer 

to be etched is placed in the chamber with the side to be etched facing up on the center of the 

dummy wafer. Close lid and pump down system until sufficient vacuum has been established. 

System pressure can be read on the monitor as it pumps down. It takes about 15 minutes to 

complete the pump down process. Once system pump down is complete, the Etching recipe is 

then loaded and run to etch the sample. The recipe used to etch the sample is composed of 15 

sccm of Ar, 15sccm of CH4, 2 sccm of O2 and an RIE power rating of 100W. 
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STEP TIME(MIN)
PRESSU

RE
   CH4 Ar    SF6 O2 POWER

1 0:10 0.01mTorr 0 0 0 0 0

2 0:30 20mTorr 15 15 0 2 0

3 VARIES 20mTorr 15 15 0 2 100W

4 1:00 10mTorr 0 0 0 0 0

5 1:00 10mTorr 0 0 0 0 0

6 0:30 7mTorr 0 0 0 0 0  

Table2: Recipe used to Etch Wafer 

As can be seen from the recipe, the first two steps control the flow of gas into the system while 

the etching actually occurs in the third step. The etching time can be adjusted as needed and 

would normally depend on the etch rate calculation preferably from test samples of the same 

wafer. Using test samples from the same wafer set will help minimize etch-rate errors that might 

have resulted from having to use a different wafer set of samples. The formula for calculating the 

etch time is as given 

TIME

REMOVEDTHICKNESS
RATEETCH

..
...   

Once the etching process is completed, an alarm will sound or a report will be displayed on the 

computer screen to indicate the end of the process. The main chamber is then vented and the 

wafer unloaded. The wafer is then taken again to the nanospec to ascertain the success of the 

etching. The nanospec thickness value would normally serve as a verification as to whether all 

the silicon nitride in the trench has been removed. If the silicon nitride is not completely 

removed, then the etch-rate and RIE parameters would be adjusted as necessary and the process 

repeated. The RIE system must be shut down once you’re done using it. Remove the Ardel 

electrode and replace it with the Aluminum electrode. Close the lid and pump down the system. 

Once the pump down is complete, run chamber clean to clean the chamber, fill process log , 

check gasses and their pressures before leaving the RIE. Once the RIE step has been completed, 
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the wafer is then brought back from the HiDEC Center to the Nanopore lab for the next 

processing step which is Wet KOH etching. 

2.5.1 Effects of Temperature and Pressure on the RIE 

Increasing the pressure causes more gas-phase collisions to occur, decreasing the directionality 

of the etching. Plasma densities decrease at a higher pressure resulting in a decrease in Ion 

energy and sputter yield. This implies that the Etch rate decreases with an increase in Pressure. 

The effect of increasing the pressure on the ion-flux is less clear cut and different systems show 

different relationships. Usually the temperature of the etch system; including the wafer is not 

intentionally raised during the etching. The plasma supplies the energy for the etch process and 

heating the gas or wafer would not significantly increase the etch rate or improve the process. 

2.5.2 Effects of RF Power and Gas Composition on the RIE 

Increasing the RF power increases the plasma density and the self bias voltage. This gives rise to 

an increase in the Ion energy and the sputtering yield which results in a higher physical 

component of etching and an increase in the Etching-rate. The RF power was varied from 50W 

to 100W and the corresponding etch-rate values were determined as depicted in figure10. 

 

Figure 10: Etch-Rate  Vs RIE Power 
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The flow rate often have a minor effect on the etch rate. Increasing the flow rate will initially 

increase the etch rate by producing more reactive species. But the actual supply of reactant 

species depends on the balance between generation and loss of species in the plasma, and a 

steady state is reached where the etch rate is independent of gas flow. 

2.6 Wet Chemical Etching 

This part of the fabrication is done by submerging the wafers in a solution of specially prepared 

30 wt KOH at 90
o
C for about 4hours.  Stir and monitor wafer every 20 minutes until you see 

clean squares. During this process any remaining photoresist will be etched from the Si3N4 

surface. The KOH solution also etches the (100) face of the exposed silicon along the [111] 

plane thus creating a pyramidal shape inside the silicon at an angle of 54.74 degrees with respect 

to the surface. After the wet etching process is over, the wafer would have been etched through 

one layer of Si3N4 and through the silicon crystal layer leaving a freestanding membrane of Si3N4 

on the other side  

Figure 11: KOH etching with a free standing membrane of Si3N4 

2.7 Focused Ion Beam Milling 

The Focused Ion beam milling of the free standing membrane is done at Harvard University. In 

the FIB milling process, the user aims for an FIB diameter mostly in the range from 80nm-

100nm because it gives a margin of error for larger and smaller FIB holes that can be closed 
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from 100nm or less to a nanopore. The final step is to image and measure the diameter of the 

individual FIBs using a transmission electron microscope. 

 

Figure12: Focused Ion Beam Milling 
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3. Steps Involved in Nanopore Scupting 

There are four primary techniques available for the fabrication of solid-state nanopores in thin 

Si3N4, SiO2, Al2O3 or polymer membranes. These include surface tension driven oxide reflow, 

ion beam sculpting, track-etch method and electron beam based decompositional sputtering.  The 

principal method of interest used in this experiment is the Ion Beam Sculpting technique that 

uses energetic noble gas ions to bombard the surface of a silicon nitride membrane around the 

FIB hole. These heavy ions will knock off atoms around the FIB and as a result of a 

concentration gradient, the more energetic surface adatoms will migrate towards the FIB hole 

leading to the formation of a Nanopore. 

3.1 Sample Alignment and Placement in System 

Before beginning the sculpting process, the system must be powered up and the deflection plates 

and lenses set to the appropriate voltages. The neon gas line must then be purged to ensure it is 

free from contaminations. The sample which could either be a 3X3mm or a 4X6mm chip is 

placed in a fitting of the sample holder and held tight by means of spring fingers on top of the 

sample holder. This keeps the sample from falling off when placed inside the main chamber. The 

sample holder also consists of a thermal resistive device (RTD) attached to it to help keep track 

of the temperature of the sample during the sputtering process inside the main chamber. The 

sample is then aligned by placing the holder on the mock stage of an inverted microscope. The 

mock stage is a replica of the one on which the sample sits when inserted into the main chamber. 

The alignment is done by manually tightening the holder with a screw on the mock stage on the 

Alignment stage of the microscope. The alignment is completed by centering the cross hairs of 

the microscope glass lens on the 30µmX30µm free standing membrane. The sample is then 

placed in the load lock and pumped down to about 10
-7

mbar. The load lock system is pumped by 
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a Pfeiffer TMU 261 turbomolecular pump backed by a Pfeiffer DUO 005M rotary vain pump. 

The turbo pump is separated from the load lock by a gate valve so the load lock can be brought 

to atmospheric pressure without shutting down the turbo pump. Pumping down from 

atmospheric pressure, the load lock is first rough pumped with a Varian SH-100 dry scroll pump 

to about 10
-2

mbar before the gate valve is opened and the turbo pump is allowed to pump down 

to a high vacuum pressure of 10
-7

mbar. The pump down process normally takes about 30 to 

45minutes and may be shorter depending on how well evacuated the system is. 

 

Figure 13: Alignment microscope used in aligning the sample 

A Pfeiffer TPR 265 pirani gauge monitors the pressure in the vacuum line between the scroll 

pump and the load lock. The load lock is also equipped with a magnetic transporter to slide the 

sample holder into the main chamber. The flange across from the load lock contains a pressure 

gauge, a heating element, and a quadrupole mass spectrometer. The pressure gauge is a Pfeiffer 

PBR 260 hot cathode gauge. This gauge measures the pressure of the main chamber. 

Once the pump down process is complete, the sample is then moved into the main chamber by 

use of the magnetic transporter. The sample sits on a sample holder in the main chamber and it is 

from this position that it sculpted by ion bombardment. 
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3.2 The Vacuum system Overview 

 

Figure 14: The Feedback controlled Ion Beam Sculpting System at the U of A 

The main components of the system are housed in a chamber which is kept at about  10
-9

mbar 

vacuum. The Chamber is a six way cross with 8 inches flanges from the MDC vacuum products 

Corporation. There is a Turbo Molecular pump at the bottom of the chamber that is responsible 

for creating the vacuum. It is backed by a Varian DS102 dual stage rotary vane pump. At the top 

flange of the chamber, there are electrical and liquid nitrogen feed-throughs and supports for the 

sample stage and ion lens components. The sculpting chamber is also equipped with a load lock 

to prevent venting the entire chamber from one sample to the next. Thus it is more convenient 

and safe to vent the load lock while the main chamber remains pumped down. This is possible 

since the load lock is separated from the main chamber by a gate valve so the load lock can be 

brought to atmospheric pressure without venting the main chamber. 
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3.3   The Nanopore Sculpting Process 

Once the sample is securely placed in the main chamber, the ion gun pressure is set to

mbarx 610)2.02(  . This can be adjusted by turning the leak valve slowly. The channeltron 

voltage is set to 2.20keV and the einzel lens to 2.35keV ion acceleration. These numbers 

represent the settings that gave the most counts of ions passing through the sample during the 

beam alignment process. The beam switch voltage control is powered on by setting the control 

state as low. Low implies the ion beam is deflected away from the sample. Power on the ion gun 

filament and wait three minutes before setting the emission current. At this point, a check must 

be done to ensure the ion beam is not hitting the sample. This can be verified by checking that 

there are no counts on the counter. The High voltage button on the ION GUN supply is then 

powered on to accelerate the ion beam. The current measured in the keithley picometer initially 

goes up so a wait time must be observed for the current drop to stabilize. After the current and 

the beam have stabilized, the counter is restarted to ensure it is properly initialized by 

LabVIEW
TM.

 The electron gun power supply is turned on. Run the LabVIEW
TM

 counting 

program. This program initiates the digital counter and the number of counts recorded by the 

channeltron. The number of dark counts should be somewhere between 0-3counts/500ms. Flip 

the control stage as Ext to allow the ion beam to hit the sample. The LabVIEW
TM

 program will 

record the ion counts. The ion bombardment with 3KeV neon ions is achieved by means of a VG 

Microtech EX05 differential pump ion gun capable of generating an Ion beam of energy 0.5 to 

6.0keV with a minimum diameter of 120µm depending on the gun parameter adjustments. As the 

ions strike the surface around the nanopore, it produces a sputtering effect that generates surface 

adatoms. The more energetic adatoms will diffuse as a result of a concentration gradient around 

the pore by forming a thin layer of material that result in its closure. The Ion Beam sculpting 
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apparatus not only uses ions as a nanopore sculpting tool, but also uses the ions transmitted 

through the pore as a measure of the area or diameter of the pore under fabrication. The initial 

ion counts are large and gradually reduce as the pore closes indicating a smaller pore area. Ions 

transmitted through the pore, are refocused by the einzel lens to the energy analyzer. The Energy 

analyzer plates are curved at an angle of 60° and are kept at voltages of ± 280V for 3keV 

incident ions. The angle and voltages only allow the ions with the proper energy to enter the 

Channeltron to be counted. The einzel lens is composed of three elements, of which, the first and 

third are held at the same voltage. The outer two lens parts are grounded to help act as a shield 

for the energy analyzer plates and the Channeltron thus blocking stray ions in the sculpting 

chamber from contaminating the ion beam count. The second lens element is held at 2.35kV for 

3keV ions. After the einzel lens refocuses the ion beam, the ions travel through a post-einzel 

deflection plates.  The single Ion detector measures the ions and converts every detected ion into 

an electronic pulse. The electronic pulses are then counted by a digital counter and read by a 

LabVIEW™ program which also controls the voltage that will deflect the ion beam away from 

the sample. The sculpting process is thus terminated when the required number of counts for 

pore closure is attained. The constant bombardment of the free standing silicon nitride membrane 

with ions from the ion gun will cause a build of positive ions on the sample since it is an 

insulator. This will cause the undesirable effect of repulsion of the incoming ions. To combat this 

problem, a Kimball Physics FRA-2x1-1 electron gun is used to saturate the surface with 

electrons to neutralize the positive charges. A diagrammatic overview of this process is shown in 

figure 14 
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Figure 15: Schematic of the feedback control tool. 

3.4 Closing Area and Diameter of a Sculpted Nanopore 

In order to determine the final diameter or area of the fabricated pore, one must first find the 

diameter of the FIB and the flux of the incident beam. The diameter of the FIB can be found 

from the equation 

)(
)101()( 6

mmW
M

xmmd



, 

where d is the diameter of FIB in millimeters,                                  

M= magnification of microscope and W is the width of the FIB in millimeters. The 

magnification most frequently used is 250,000 times but other magnifications have been used as 

well. The area of the FIB is calculated by assuming it to be an ellipse with a major and a semi 

minor axis. The FIB diameter can also be measured along both axis using Image J and the actual 

diameter is the geometric mean of the two values. The area is calculated from the following 

formula 
4


FIBA (d1) X (d2).Where d1 = diameter across major axis, d2 = diameter across minor 

axis and AFIB = Area of FIB. The FIB area is then used to calculate the initial area of the pore 
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from the given flux measurements. The flux
FIBA

BC
1

, Where Ф1 is the initial flux, BC= 

beginning counts and AFIB = area of FIB. Once the sculpted nanopore diameter or area has been 

decided upon, a direct proportionality relation can be used to determine the number of counts 

that will give the desired pore area or diameter as can be shown from the following calculations. 

If the Flux through the Nanopore is given by Ф2 = (End counts)/ (APORE), then we can determine 

the closing pore area from the end counts by constancy of the flux since   Ф1 = Ф2.  

FIB

pore
A

BC
AEndcounts  . We can thus calculate the number of counts that gives the desired pore 

area and hence the diameter of the fabricated pore. 

3.5 Post Sculpting Analysis of Pore 

Once the pore sculpting process is complete, the Sample is then removed from the sculpting 

system for further TEM imaging to determine if the desired pore diameter was achieved or if 

there were other parameters or defects that may have occurred as a result of the sculpting 

process. Precision or exactness of pore size is always difficult since some pores close too fast 

and control is often very difficult. There could be many causes such as dirt in the pore, water in 

the main chamber or some other contamination which will normally require a separate analysis 

such as X-ray photoelectron Spectroscopy (XPS) or electron energy loss spectroscopy (EELS) to 

determine the elemental composition of the material or using the residual gas analyzer to track 

vacuum contamination of the Ion beam sculpting system. Other attempts to control the closure 

rate of nanopores such as baking and thermal annealing have been used to control pore closure 

rate to some extent. It has been shown that baked pores would close slower than those not baked 

though this is not generally true for all pores examined in this study. In order to bake pores under 

vacuum conditions, the system must be calibrated. The motivation for calibrating the system is to 
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be able to keep track of the baking temperature of pores before they are closed. This is because 

temperature plays a vital role in the closure rate of pores. The next section describes the system 

calibration process. 

3.6 Temperature Calibration 

Before the baking of pores began, a temperature calibration of the system was performed in order 

to be able monitor sample temperature at all stages of the baking process. A thermal resistive 

device was glued to the sample holder by using Epothek – Tek glue confirmable to vacuum 

conditions as shown in figure 16. 

RTDs uses electrical resistance and require a power source to operate. The resistance ideally 

varies linearly with temperature. They produce a positive change in resistance for a positive 

change in temperature as in the equation below. 

 

 

 

RT = Resistance at temperature T, R0 = Resistance at 0
0
C 

  = 1.49(typical for platinum),        temperature at T = 0
o
 

  = 0 for T> 0 and 0.11 for T< 0 

Only the linear part of the above equation has been assumed for all calculations in this 

experiment since higher powers of T are very small and as such can be neglected. 
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Figure 16:  Overview of RTD attached to sample Holder by Glue 

The sample holder was then placed in the load lock and a connection between the RTD, and the 

Micro Controller device (Calibrated for 100ohms at zero degrees) was established.  After 

pumping down the load lock to 10
-7

mbar, the light bulb was turned on at a variable auto 

transformer rating of 10%. Temperature values were then read off every 10-15 minutes from the 

micro controller device until a steady state condition was reached. Since the sample (chip) is 

glued to the RTD, the RTD temperature is generally assumed to be the same with that of the 

sample at any given time in the baking process. The sample is baked by turning on the light bulb 

in the load lock and keeping the Variac transformer power rating at 10%. As the brightness of the 

bulb is increased, the heat from the bulb is then used to heat the sample and the RTD. The 

change in temperature for the RTD device was then recorded for different trials and the result for 

the first 10 minutes is shown in table 3. Figure 17 shows a graph of Average temperature Vs time 

for different trials as the sample was being baked in the load lock. The temperature steadily 

increases until it reaches constant value after which a steady state is reached. The temperature of 

the sample at any specified time can be calculated once the slope of the graph is determined. The 

Micro controller reading will give slightly higher than expected values and as such a calibration 
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of the RTD outside of the load lock will help find a correction factor for the actual Sample/RTD 

temperature. 

Power Time(Mins) Time(seconds)
Average 

temperature

10% 0 0 37.86

10% 1 60 51.86

10% 2 120 66.36

10% 3 180 80.12

10% 4 240 91.64

10% 5 300 104.46

10% 6 360 116.62

10% 7 420 128.06

10% 8 480 138.98

10% 9 540 149.18

10% 10 600 159  
 

Table 3: Temperature values with RTD in Loadlock 

 

 

Figure 17: Average temperature Vs Time for sample in load lock 

The Idea of a second calibration outside of the load lock is to correct for any temperature errors 

that may have resulted from the previous calibration.  The thermal resistive device (RTD) 

together with the sample holder was then taken out of the load lock and a connection between 

RTD and the micro controller device established by means of steel wires. At a room temperature 
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of 25
0
C, the initial RTD temperature at the micro-controller read 38

o
C. This reading from the 

controller is clearly above room temperature suggesting a correction to the controller reading. 

The RTD was next placed in ice water with a glass thermometer inside. The glass thermometer 

gave a reading of 2
o
C while the Micro controller gave a reading of 14.1

o
C. It is to be assumed 

that the glass thermometer reading when the RTD is in the ice water is the correct reading since 

the glass thermometer and RTD are both in the water. There was a wait time of about ten 

minutes for the controller to reach room temperature. The above process was then repeated with 

boiling water at 100
o
C and at other temperatures values with the following results and graph. 

 

Glass Thermoter temperature RTD Temperature

2 14.1

24 36.4

25 38

87.2 101.9

88.5 103.3

92.1 106.6

96.8 110.2

97.4 110.5

100 111.3  

Table 4 
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Figure 18: RTD Temperature Vs Glass Thermometer Temperature 

The linearity of the above figure is in excellent agreement to what was expected since the 

resistance of RTDs varies linearly with temperature. The above graph also gives us an intercept 

value a = 12.262±0.98 which is the error for this experiment. This therefore suggests subtracting 

12.262±0.98 from every temperature reading on the micro-controller device to get the actual 

sample temperature when baking pores in the load lock. 

3.7 Temperature control in the Main Chamber 

In order to investigate the effects of temperature on the closure rate of pores, a steady 

temperature needs to be established on the sample. Pores tend to close much faster at higher than 

at lower temperatures. When the temperature is too low, pores tend to open up when they are 

bombarded by a stream of ions. This suggests keeping the temperature of the main chamber 

controlled. The temperature of the sample can be directly controlled by using the Micro-Mega 

controller device which is incorporated in the Ion Beam Sculpting system. A complete circuit 

description of the control mechanism is as shown below. 

 

Figure 19: Temperature Control Circuit for Sculpting System 
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The RTD on the sample holder is connected to two of the conducting spring fingers while the 

1watt resistor heater is connected to the other two spring fingers in the center. When the sample 

holder is placed in the main chamber, a connection between the RTD, the heating element and 

the Micro-controller device is established. The DC power supply connects both the internal 

resistor of the holder and the solid state relay located inside the controller.  When the controller 

accepts a temperature signal from the RTD as an input; it compares this temperature value to the 

set point value. If it is less than the set point value(normally room temperature), the controller 

turns on the relay which connects the power to the heater to heat up the sample to the desired 

temperature. If the RTD temperature is higher than the set point value, the controller output 

(Relay) turns off the power supply to the internal resistance thus allowing the sample to return to 

the set point temperature.  The on/off process of the controller thus helps to keep the sample at a 

controlled temperature  

Figure 20: On/Off Temperature Control Action of the Micro-Mega Device 
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3.8 Baked and unbaked Pores 

The motivation for the baking of Pores prior to closure is that baked pores have been shown in 

general to close much slower than unbaked pores. One other reason has been to be able to control 

their closure rate. This is generally not true in all cases as some baked pores have been shown to 

close much faster than predicted. There are still lots of unknowns at the nano-scale as to why this 

is so. There have been some suggestions that unclean pores would not close slower even if they 

are baked because of contaminants at the surface of the material. While this may be true in some 

cases, it has never been substantiated by solid experimentation or any known spectroscopic 

methods such as XPS. 

TEM images of Samples were taken to determine FIB diameter before the baking procedure was 

performed. All pores in this study were backed at a 10% power rating for 10 minutes. According 

to the calibration data previously obtained, this will correspond to a sample temperature of 122
0
C 

after all correction factors are considered.Figure21 shows the TEM images of a pore before and 

after baking for 10 minutes at 10% power rating of the transformer up to a temperature of about 

122
o
C. 

 

Figure 21: Left is the FIB picture before baking. Right is the Pore image after baking and 

closure 
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Graphs for the closure rate of baked pores and pores that were not baked have been plotted in 

figure 22. 

 

Figure 22: Closure time for baked (Left) and unbaked pores (Right) 

As can be seen from the graphs, the baked pore took a relatively longer time to close than the 

pore which was not baked. The graph for the baked pore is somewhat concave suggesting a 

slower closure rate initially and a faster rate toward the end. The overall closure time took about 

820s. The Graph for the closure rate for the unbaked pore is almost entirely linear with an overall 

closing time of about 50s. The result from the above graphs suggests that the pore closure could 

more easily be controlled when it was baked prior to the closing process. The above study was 

extended by examining the closing time for several baked and unbaked pores and a Histogram to 

compare their closing time is shown in figure 23. 

As can be seen from the Histogram of baked pores, there is a wide spread in time for the number 

of pores baked at 122
0
C for a 10% power rating of the sculpting experiment. It also shows some 

baked pores took as long as 3000s to close. The Histogram for the unbaked pores shows that all 

the pores had closed by the time we get to 1500s.  From the  Histograms below, it can be 

concluded that when pores are baked, they closed much slower than if they are not. 
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Figure 23: Histogram of baked pores(top) and Unbaked Pores(bottom) 

3.9 Surface Adatom Diffusion MODEL 

This is one of the fundamental models governing the sculpting of Nanopores. This model 

assumes that when an incident ion beam or any noble gas ion strikes the silicon nitride surface of 

a sample in a Fabrication process, some mechanical damage is done resulting in the generation of 

surface adatoms. The collision of these energetic ions with the surface atoms result in a transfer 

of energy from the ions to the atoms. Some of these surface atoms may lose energy as a result of 
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multiple collisions with neighboring atoms and don’t make it to the FIB area. The more energetic 

atoms are ejected from the surface altogether while some atoms have enough energy to travel 

around the surface as surface adatoms. The surface adatoms are primarily responsible for the 

closure of pores. 

When surface adatoms are created, a concentration gradient is established on the sample surface 

since the FIB acts as a sink and the rest of the surface around it is populated with atoms. As a 

result this gradient, surface adatoms will tend to diffuse toward the FIB and will form a thin layer 

of material around it in a growth pattern resulting in its closure. 

The Concentration of Surface Adatoms C(r,t) is governed by the two dimensional diffusion 

equation 

 
CD

C
CY

t

trC

trap

a

2,







  

Where C(r,t) is the concentration of surface adatoms  at time t, r represents the surface position 

of adatoms from the pore. The first term to the right  aY  is the adatom creation term, where   

is the flux and Ya is the adatom diffusion yield which is the average number of adatoms 

generated per incident ion. The second term C  is the annihilation by ion impingement term 

and represents the probability that the adatom is ejected from the surface. In this term,   

represents the surface area of the adatom. The third term 
trap

C


 is the annihilation of adatoms at 

defects in the material where trap
  

is the life time of an adatom. This term would normally 

represent an adatom that is ejected but trapped for a while due to defects in the material. The last 

or fourth term CD 2 is the diffusion term representing the flow of adatoms to the pore boundary 
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as a result of the concentration gradient. D represents the diffusion coefficient. This term is 

responsible for the closing of the nanopore. 

 

Figure 24: Creation and annihilation process from the adatom diffusion model 
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the concentration of surface adatoms gives a change in nanopore thickness with respect to area 

according the equation below 
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Where Ω represents the adatom cross section, H = pore thickness,    R = radius,  aY  is the adatom 

yield, mX  = diffusion length,  pY = sputtering term from the nanopore edge, 1K  and oK  are the 
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modified Bessel function of the second kind. The above equation can be rearranged into two 

processes that describes the nanopore area changing rate as follows 
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This equation shows that the nanopore area changing rate is governed by two processes. The first 

term to the right represents the closing rate from surface diffusion while the second term 

represents the opening rate from ion sputtering. The closing rate of the nanopore area is the 

difference between the closing rate from surface diffusion and the opening rate from Ion 

sputtering. The surface adatom diffusion model is incorporated into a program called IGOR, 

which is used to analyze the data from the pore closing process. IGOR uses an algorithm to 

calculate the time required to close a pore to the radius that was entered at the beginning of the 

calculation. The area of the pore is then graphed versus the time from the modeling algorithm. 

Pore closing and opening rate is also highly dependent on temperature as has been shown from 

experiments using the sculpting system. At room temperature only the closing term dominates 

and a pore will close as shown in the figure below 
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Figure 25: Pore closing slowly at room temperature 

The above closing profile is a concave shaped graph in which the area of the pore slowly 

increases before reaching and inflexion point and then decreases linearly. A plausible 

explanation could be the removal or cleaning of some material from the edges of the FIB at the 

beginning of the sculpting process, yielding an increase in the number of counts detected. After 

this material is removed, the pore closes normally. 

The Sculpting chamber can also be cooled to below room temperature by flowing liquid nitrogen 

through the copper cooling tube until the temperature of the sample is below the desired closing 

temperature. Previous research indicates that the temperature at which the two processes are 

equally important is in the range of 0-10
0
C, under the proper conditions. The pore can be made 

to close or open when it is above or below this temperature range under the same flux conditions. 

This suggests that Ion beam sputtering dominates at temperatures below zero while adatom 

diffusion and pore closure dominates above 10
0
C. Ion beam sculpting at low temperatures has 

been used to open already closed pores by bombarding them with neon ions at 3keV until some 

counts are recorded on the channeltron. 

Pores have also been shown to thin down when they are bombarded with neon ions at low 

temperatures of about -100
0
C. In order to thin down a pore to a specific thickness, the sputtering 

yield must be known. The formula that relates the sputtering yield and Nanopore thickness is as 

shown below 

H = F.t.Ys0.01nm
3
/atom 

Where H= thickness, F = flux, t = sputtering time and Ys is the sputtering yield. The sputtering 

yield is the number of atoms removed per ions hitting the surface of the membrane. Ys can be 

determined theoretically from the TRIM program. If the sputtering yield Ys, the time t and the 
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Flux F are known, the thickness H of the sculpted pore can be predicted. The setup window for 

this program and how it works is shown in figure 26.  

 

Figure 26: TRIM Setup window 

The specific ion required for sputtering can be selected from the list of elements in the periodic 

table PT menu. Neon ion of energy 3kev is selected from the Ion Data since it is the Ion and 

energy used in our fabrication experiments. The Target layer is Si3N4 and this is selected by 

adding the new layer tab. The type of TRIM calculation can be chosen by selecting Detailed 

Calculation with full Damage Cascades. The program has the option of displaying the sputtering 

process in a variety of plots and the basic plot of choice for the run is the Ion Distribution with 

Recoils projected on the Y-Plane. Once every parameter has been set up as shown in figure 26, 

the program is run by clicking on the Save Input and run TRIM. As the program runs, a detailed 

analysis of the ion motion inside of the target material can be monitored on the XY longitudinal 

plot as shown in figure 27. The program displays the theoretical value of the sputtering yield for 

Neon and these values would continue to change until the ions hit their desired target distance 
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within the silicon Nitride membrane. 

 

Figure 27:  The full damage of ions in Silicon Nitride and the Ion penetration depth 

 

Figure 28: Sputtering Yield Vs Energy 

A curve of sputtering Yield versus Energy is plotted as shown in figure 28. This curve shows that 

only sputtered surface adatoms of Si3N4 of energy greater than 3.4ev leave the surface while 

those not sputtered remain on the surface. 

The Sputtering yield for Si3N4 can be calculated at the end of the program by adding the 

individual sputter yields for nitrogen and Silicon. This gives a value of 2.1 atoms/ion for Si3N4 

when the right energy parameters are applied in the program. Factors that affect the sputter yield 

are the surface roughness of the material, compound stochiometry and the surface binding energy 
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which you input into the calculation. The sputter yield determined from TRIM was used to 

estimate the thickness of a pore after it was sputtered in the Ion Beam sculpting system. A closed 

pore AR#07201001 was sputtered open by bombarding it with 3kev Ne ions at -100
0
C. The pore 

opening was monitored by using the lab view program. The thickness of the pore was determined 

from   H = F.t.Ys0.01nm
3
/atom, where the flux F is calculated by dividing the last number of 

counts when the nanopore opened by the measured area of the opened nanopore. Since the 

number of counts fluctuates, last number of counts may not accurately represent the final size 

needed for the flux calculation used for determining the nanopore thickness. Taking an average 

of the last 5 data points, should give a better representation of the final counts. However, fluxes 

calculated with the average number of counts are not significantly different from fluxes 

calculated with just the final count. A graph of counts versus time is shown in figure 29. 

 

Figure 29: Pore opening by sputtering at -100
o
C 

As can be seen from the graph, the counter initially records zero counts until after about 2800s 

when the counts suddenly increased indicating an opening of the pore.  Given the time t, the Flux 

F and the sputter yield as obtained from TRIM, the thickness of the pore can now be calculated.  
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By plugging in the values for F, t and Ys, it was shown that the pore thickness H = (0.48 

ions/0.5s (nm
2
)) X (2800s) X (2.1atoms/ions)X0.01nm

3
/atoms = 56.4nm. This value is less than 

the EELS thickness value of 58nm before the sputtering was applied to the sample. This shows 

that when pores are sputtered at low temperatures, there is an opening and a thinning effect on 

the pore. 
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4. Transmission Electron Microscopy 

Transmission Electron Microscopes are very powerful and versatile tools used for the 

characterization of materials. TEMs were developed because of the limited image resolution in 

light microscopes which is imposed by the wavelength of visible light. This technique transmits 

a beam of high energy electrons through an ultra thin specimen, interacting with the specimen as 

it passes through. An image is formed from the interaction of the electrons transmitted through 

the specimen; the image is magnified and focused onto an imaging device, such as a fluorescent 

screen. 

4.1 Basic Operating Principle 

The "Virtual Source" at the top of a TEM represents the electron gun, producing a stream of 

monochromatic electrons.  As the electrons move down the microscope column, its path can be 

controlled by means magnetic and electrostatic lenses such as the condenser, objective and the 

projector lenses. The condenser lenses controls the spot size while the objective lenses focus the 

transmitted beam through the specimen into an image. The image strikes the phosphor image 

screen and light is generated, allowing the user to see the image. These lenses also have the 

capability of controlling the intensity, magnification, astigmatism and energy dispersion of the 

image. The most common mode of operation for a TEM is the bright field imaging mode. In this 

mode the contrast formation, when considered classically, is formed directly by occlusion and 

absorption of electrons in the sample. Thicker regions of the sample or regions with a higher 

atomic number will appear dark, while regions with no sample in the beam path will appear 

bright hence the term "bright field”. 
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Figure 30: Electron path as it travels down a TEM Column 

4.2 TEM Resolution 

TEM resolution is the ability of the microscope to make points, which are closely adjacent in the 

object, distinguishable in the image. TEM resolution is then defined to mean the “minimum 

resolvable distance” in the object. The image resolution in the TEM is governed by the ability of 

the objective lens to image the object. The resolution can be limited by Chromatic aberration, 

Spherical aberration and astigmatism. Spherical aberration is caused by the lens field acting in 

homogeneously on the off axis rays. Chromatic aberration results in electrons with a range of 

energies being focused in different planes. Electrons emerging from the specimen with no loss of 

energy are less strongly focused by the objective lens than those that suffered energy loss in the 

specimen, so a point is imaged as a disk. Astigmatism occurs when the electrons sense a non-

uniform magnetic field as they spiral round the optic axis. Astigmatism can be corrected by using 
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stigmators, which are small octopules that introduce a compensating field to balance the 

inhomogeneities causing the astigmatism 

By changing the parameters of the lenses, the user is changing the angles in which the beam 

above and below is collected .Figure 31 gives a diagrammatic description of the beam collection 

process. α is  the image collection half-angle and β is  the object collection half-angle.  The 

object collection angle is the most important for it determines the range of energies that are 

collected as spectra for analysis. 

 

Figure 31: Object and Image collection half angles 

When the apertures are inserted, usually after the condenser, objective, or projective lenses, they 

limit β by blocking highly scattered electrons and can increase the resolution of the image. 

The main advantage of the Electron microscopy over other imaging techniques is its ability to 

image at a very high resolution. The relationship between the accelerating voltage and the 

wavelength of the electrons above 100keV is a relativistic one because the velocity of electrons 

becomes greater than half the speed of light. The accelerating voltage of the FEI Titan TEM 
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located at the University of Arkansas has a setting of 300kV. This gives a relativistic wavelength 

limit of about 2pm according to table 1.2 in Williams and Carter. Since most of the samples used 

for this project were imaged using the Titan TEM, one can infer that a sub angstrom resolution 

less than that of the diameter of an atom was attained. TEM has also been used to image various 

biomolecues and the chart below shows the various resolution limits of the TEM to different 

biomolecules. 

 

Figure 32: Resolution limits of the TEM 

The relationship between the accelerating voltage and the wavelength is given by the equation
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 . Where    is the electron wavelength is, h = Planck 

constant, V = the accelerating voltage of the electron microscope, m0 = rest mass and c is the 

speed of light in vacuum. By increasing the accelerating voltage of the microscope, we decrease 

the relativistic wavelength of the electrons and hence an increase in the resolution of microscope. 
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5. Thin Film Thickness Measurement 

Thickness measurement and analyses of nanopores fabricated by the ion beam sculpting 

technique is extremely important since the thickness of a pore determines its resolution 

capabilities in translocation experiments. The Nanospec is one such equipment used in 

measuring the thickness of the bulk membrane of silicon nitride samples in the wafer preparation 

process and also in the thinning of fabricated pores during the RIE process. 

5.1   The Nanospec 

The NanoSpec at the HiDEC Center is a computerized Film Thickness Measurement System for 

bulk membranes. It is used for measuring the thickness of optically transparent thin films (10nm-

4000nm) on silicon wafers. It is based on the principle that the Intensity of reflected 

monochromatic light depends strongly on film thickness. Typical Nanospec thicknesses for Si3N4 

samples used for this research ranged from 2750-3311A
0
. The NanoSpec is unable to measure 

thicknesses less than 100A
0
 and would normally display an “Out of Range” result for such 

thicknesses. The NanoSpec would also give an “Out of Range thickness” measurement if the 

sample is dirty and if it can’t recognize the thin film type under study. The film thicknesses are 

comparable to the wavelength of light. The equipment is composed of a spectrophotometer head, 

photo-intensity display, wavelength dial, fine and course focus and a reference silicon wafer. 
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Figure 33: Overview of the NanoSpec 

The  Spectrophotometer head mounts unto a customized microscope with vertical reflected light 

using a regulated  tungsten lamp, variable field diaphragm, 10X, 100X and 40X objectives. The 

Spectrophotometer head has a diffraction grating monochromator that rotates. Reflected light 

coming from the sample, passes through the slit to the collimator and then to the grating. As the 

grating rotates, it shines different frequencies of light unto the detector. Each wavelength of light 

is focused to a different position at the detector, and the wavelength which is transmitted depends 

on the rotation angle of the grating. The lights reaching the detector interfere with one another to 

form a sinusoidal pattern of intensity Vs wavelength. A curve-matching algorithm is used in the 

computer to yield rapid and precise thickness readings. This algorithm will try to match the 

sinusoidal pattern from the sample to that of the reference wafer. Given the index of refraction 

for a thin film and the two measured spectrums, the computer will analyze the interference 

pattern to determine the film thickness. 
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Figure 34: The Spectrophotometer Head 

5.2 Determination of the Etch-Rate of Silicon Nitride 

In order to thin nanopores, the etch–rate of the Silicon Nitride used in its fabrication must be 

determined. The most common technique used in this process is the reactive Ion etching 

technique already described above. Nanospec measurements were performed at different parts of 

each silicon nitride sample and the average calculated. Taking measurements at different parts of 

the sample and averaging the results helps minimize errors. Each of these samples were then 

etched repeatedly by reactive Ion etching with the results as shown in table 5 

Measurement

Pre-Etch 

Thickness 

(0S)

Post-Etch 

Thickness 

(30s)

Post-Etch 

Thickness 

(60s)

Post-Etch 

Thickness 

(90s)

Post-Etch 

Thickness 

(120s)

1 2457A 2286A 2171A 2065A 1898A

2 2456A 2289A 2167A 2063A 1896A

3 2446A 2286A 2168A 2040A 1905A

4 2453A 2287A 2186A 2036A 1901A

5 2472A 2314A 2190A 2050A 1912A

Average Thickness 2456A 2292.4A 2176.4A 2050.8A 1902.2a

Thickness Removed 0 164.4A 280A 406A 554.6A  
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Table 5: Nanospec measurements of thickness removed Vs Etch Time. 

The amount of thickness of Si3N4 removed was determined by first calculating the average of 

thickness after every RIE Process and subtracting it from the previous thickness measured. A 

graph of thickness removed Vs Etch-time was then plotted as shown in figure 35 

 

Figure 35: Graph of Thickness of Si3N4 removed Vs etch time at 60W RIE Power 

The linearity of the above graph is as expected and the etch-rate was found to be 4.5 A
0
/S. An 

image analysis of a TEM image before and after the RIE process is shown in figure36. The post-

RIE image looks much brighter than the Pre-RIE Image. The brightness suggests the post RIE is 

thinner than the pre-RIE image since more light (electrons) can pass through the post RIE 

without being absorbed. The success of the RIE can be further investigated by doing a thickness 

map analysis of the pre and post RIE images to ascertain exactly how much material was 

removed 
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Figure 36: Post and Pre-RIE Images 

 Figure 37 below shows the thickness map analysis of the images in figure 36. 

 

Figure 37: Thickness Map analysis of pre-RIE (Left) and post-RIE (Right) 

The above figure shows that the membrane thickness decreased from 244nm to 192 nm implying 

52nm of the membrane was etched away. The red rectangle on the figure shows the area were the 

measurement of pore thickness before and after the RIE was taken. Pore thickness decreased 

from 67nm to about 4nm indicating that about 63nm of material was etched away. When the 

244nm 

192nm 
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differences in the amount of material etched between the membrane and pore regions are 

compared we see a difference of about 11nm. This is not much at the Nanoscale and so we 

conclude that the etching by RIE was indeed successful. 

5.3 Nanopore Thinning by Reactive Ion Etching 

From the current blockade equation
pore

DNA

L

A
VI  , thinner pores would measure a higher 

current drop and would help enhance the resolution of DNA molecules when passing through 

them. The main goal of this project was to thin select samples of Nanopores with pits to a 

specified thickness by using the reactive Ion Etching technique. Samples with pits are those 

whose FIBs have been closed all the way in the fabrication process. 

Before the RIE Process was performed, a TEM EELS pre-thinning measurement was done by 

taking pictures at about 160kx magnification. Thickness maps were taken at about 10µm from 

pore. The TEM imaging also gives us information as to which FIB have pits on them and what 

the thickness of these pits are.  In order to etch the select samples, an etch-rate check was 

performed by etching various test samples of Si3N4. The main reason for running an etch-rate test 

is to verify consistency with the previously determined etch-rate value of silicon nitride. The 

system is set running for sometime before beginning the etching process in order to ensure 

stability. Once the system is stable, the etch-rate values become very consistent and repeatable. 

Each sample slated for etching is first primed for about 20s before running the actual etching 

recipe. The priming helps clear the sample of any dirt or impurities. The cleaning is evident since 

the samples emerge from the RIE looking cleaner than before they were put inside. As can be 

seen in figure 38, the etching rate dropped to about half its value at 100W when the RIE power 

was halved to 50W. This is a clear indication that the etching rate is directly proportional to the 

RIE power. The Idea of using a smaller etch-rate is to be able to have a greater control over the 
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amount of material removed from the sample. The etching process was carried out by etching the 

samples, taking Nanospec measurements and computing the etch-rate at different times. The 

average etch-rate for a 50W power setting of the RIE was about (10±2)nm/min for the samples 

examined and was highly repeatable. 

 

Figure 38: Etch-rate test Data for samples separately etched at different instances of time 

The red points on the graph shows etch-rate calculations at 100W power rating of the RIE while 

the blue show etch-rate calculations at 50W power. The blue dots show a deviation of about ± 

4% in the etch-rate data. With this information, four selected samples with pits on them were 

then etched and the results shown in table 6. 

Pore name

Etching 

time in 

seconds

EELS pre 

etch 

thickness 

of pit (nm)

 Post Etch 

desired  

thickness 

of pit

EELS Post- 

etch  

thickness 

of pit

Change in 

thickness 

of pit

Percent 

Deviation

09-03-11-036 126 81 60 75.6 9.4 20.63

09-03-11-080 198 43 10 16.6 26.6 39.76

09-03-11-060 282 92 45 44.6 47.4 -0.90

09-03-11-072 360 32 Blast open 21.9 10.1 X

09-03-11-092 360 30 Blast open 22.4 7.6 X
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Table6 

As can be seen from the above table, sample 09-03-11-060 gave the smallest percent deviation of 

0.89% while sample 09-03-11-080 gave the highest percent deviation of 39%. The reason for 

high deviation for sample 09-03-11-080 could be due to dirt or some other impurities within the 

edges the pore. TEM pictures of the samples before and after the RIE process were analyzed in 

order to ascertain the impact of the RIE on the pores. The results of this analysis are shown in 

figure 39. 
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Figure 39: TEM Images of pore before and after RIE 

As can be seen from the above pictures, the post RIE TEM pictures have some ripples at the 

edges leading to the conclusion that an etching effect has indeed taken place. 

5.4 The Nanopore Geometric Analysis 

A TEM Nanopore thickness map Image of a sculpted pore can be analyzed based on the simple 

geometric model comprising of the FIB, a nanopore and a cone-like part of the geometry 

connecting the nanopore and the FIB. Information such as the FIB diameter, pore diameter, FIB 

thickness, Pore thickness and the cone can be obtained using the EFTEM mode of the TEM, 

ImageJ and Igor programs. The following procedure outlined below gives a step by step guide as 

to how these measurements can be carried out. When the thickness map image from the TEM is 

opened in ImageJ, the thickness the pore can be calculated by: 

1) Using ImageJ, draw a rectangle on region of interest on the thickness map. 

2) Hit Ctrl-M to measure the relative thickness of the selected region.  

3) Multiply the relative thickness by 185nm to get the thickness. 185nm is the scale factor 

(Mean free path). The mean free path was calculated by taking a 30μm by 30μm window without 

an FIB hole and measuring the thickness. 

4) Repeat steps 1 to 3 two more times on other parts of the membrane and take the average 

of the results to get the thickness. 

The diameter of the pore or FIB can be calculated by using the free hand /line tool 

Figure 40: Image J Tool bar 
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The FIB or pore diameter is determined by drawing a line across the desired diameter using the 

line tool shown in figure 40. Since the FIB or pore image is often elliptical, the actual diameter 

of the FIB or Pore is computed by taking the geometric mean of the diameter values across both 

axes. 

The cone angle can be calculated from the thickness map profile from ImageJ and Igor. The 

profile is found from Image J by using the rectangle tool to draw across the thickness map as 

shown in figure41 and hitting ctrl+k to obtain the profile data. 

 

. 

Figure 41: Scan of Thickness map using imageJ 

This profile data obtained from ImageJ is then imported into Igor and used to plot a graph of 

relative thickness versus distance as shown below. 
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Figure 42:  Thickness Vs distance profile for the thickness map as plotted from Igor 

The relative thickness = actual thickness/mean free path. The mean free path is obtained from the 

TEM log ratio calibrations. The slope of the line from the center of the profile corresponding to 

the cone part of the model and is obtained by selecting that part of the profile and doing a linear 

fit to get the slope. 

The arctangent of the slope then gives the angle of the cone. The height of the cone can then be 

determined from trigonometry since the angle is known. The thickness of the actual nanopore 

can be obtained with some accuracy by subtracting the membrane thickness from the sum of the 

FIB and cone thicknesses. 
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6. Conclusion 

Nanopores have been successfully sculpted by using the Ion Beam sculpting system at the 

University of Arkansas. Pore closure rate can be controlled by baking them under vacuum 

conditions up to a temperature of 122
0
C for about 10 minutes. A temperature of 122

0
C is not 

sufficient enough to break the bonds between the atoms in a silicon nitride membrane. This can 

be validated by the fact that TEM Images of pores taken before and after the baking process does 

not change leading one to suggest other factors must have been responsible for the decrease in 

pore closing rate after they are baked. When the time between baking a sample in the load-lock 

under vacuum conditions and closing is small, the closing rate is faster. If the sample is allowed 

to cool for a longer amount time before the closure, the closure rate is slower. The reason for this 

change is not well understood at the moment but can be attributed to the growth of an oxide layer 

on the sample when it is left to cool for a longer time before it is closed. Another reason  could 

possibly be dirt or some other impurities on the surface of the membrane  A residual gas analysis 

of the main chamber for system contamination showed higher composition of water in the 

chamber when pores closed too fast as opposed to when there was no water. This seems to 

suggest that water or a moist environment affects pore closure rate.  It has also been shown that 

pores tend to open up when they are cooled to very low temperatures of about -100
0
C and 

therefore suggests that temperature plays a key role in the opening and closing of nanopores. 

There has also been the successful thinning of nanopores using the reactive ion etching technique 

at the High Density electronic Center ( HiDEC). Open pore currents for thinned pores are greater 

than those for thick pores since there is an inverse relation between the current and thickness 

from the current blockade equation. The thinner the pore, the greater the blockade current would 
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be in a translocation experiment and the greater the spacial resolution of DNAs passing through 

the pore. 
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