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ABSTRACT 

The potential of in situ rumen undegradable dry matter (RUDM), indigestible neutral-

detergent fiber (INDF), indigestible acid-detergent fiber (IADF), acid-detergent insoluble ash 

(ADIA), alkaline-peroxide lignin (APL), and acid-detergent lignin (ADL) to predict digestibility 

(DMD) and fecal output (FO) by cattle fed bermudagrass [Cynodon dactylon (L.) Pers.] hay-

diets categorized by their low (L), medium low (ML), medium high (MH), or high (H) CP 

concentrations (79, 111, 131, and 164 g/kg DM, respectively) was evaluated. The second 

objective was to evaluate the effects of time (0600, 1200, 1800, and 2400 h) of fecal sampling on 

the prediction of FO and DMD. A replicated 4 × 4 Latin-Square with one period missing was 

employed where diets were offered in three 15-d periods to provide 2 replicates per diet per 

period (n = 24). Actual DMI, FO, and DMD were determined based on hay offered, orts, and 

feces excreted. Hay, orts, and feces were analyzed for RUDM, INDF, IADF, ADL, APL, and 

ADIA concentrations. Fecal recoveries of internal markers were expressed as the ratio of the 

quantity of marker excreted per unit of marker consumed. Estimate of FO and DMD were 

calculated by the marker ratio technique.  

All in situ markers and ADL recoveries differed from 1. Estimates of DMD were 

underestimated while FO estimates were overestimated for all in situ markers. Recovery of APL 

tended to differ from 1, but ADIA recovery was not different from 1. Estimates of FO and DMD 

derived using APL and ADIA were not different from TC. Time of sampling affected the 

concentration of IADFa while ADIA and APL concentrations in fecal samples were not different. 

Estimates of FO and DMD by all fecal sampling times and their different combinations were not 

different from actual FO and DMD. Therefore APL and ADIA have the potential to predict FO 

and DMD of bermudagrass of various qualities fed to cattle and fecal sampling time may not be 

an issue when using internal markers. 
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Chapter I 

 

Introduction 

Bermudagrass [Cynodon dactylon (L.) Pers.] is a warm-season perennial grass that is 

widely grown in the southeastern US. This grass is adapted to a wide range of soil types, is 

drought tolerant, and persists under high grazing pressure (Burton and Hanna, 1995). In 

Arkansas, bermudagrass constitutes the backbone of beef farms and is either grazed or used as 

hay. Approximately 809,400 ha of bermudagrass exist in the state (UACES, 2006).  

In addition, the abundance of non-commercial fertilizer sources, largely from poultry 

litter, has improved soil fertility to an extent that bermudagrass hay now often exceeds crude 

protein (CP) concentrations of 160 g/kg. This led to hay with CP concentrations exceeding those 

of samples used to develop the bermudagrass energy equation currently used in Arkansas. Also, 

data compilation of the last 20 years from different laboratory analyses report a large range of 

bermudagrass CP contents with an average of 132 g/kg with a normal range (± 1 SD) of 95 to 

170 g/kg of CP (Gadberry and Gunsaulis, 2010). Furthermore, Coblentz et al. (2001) and 

Gadberry et al. (2005) have reported an overestimation of bermudagrass energy based on 

predicted TDN obtained using the current Arkansas energy equation and the digestible organic 

matter (DMO). 

One of the most effective ways to estimate energy value of the feed is to conduct an in 

vivo digestion study and determine organic matter digestibility (OMD), which is theoretically 

equal to TDN (Lofgreen, 1953). However, in vivo techniques to determine dry matter (DM) 

intake (DMI), fecal output (FO), and DM digestibility (DMD) are labor-intensive, expensive, and 

require large amounts of test forage (Weiss, 1994; Ordakowski et al., 2001, Coleman et al., 
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2003). Alternatively, indirect methods using external and internal markers can be used (Penning 

and Johnson, 1983 a & b; Cochran et al., 1986; Cochran et al., 1987; Pond et al., 1987; Owens 

and Hanson, 1992). Internal markers present advantages of being an integral part of the forage or 

feed consumed by the animal, and can be fed with minimal effects on the normal animal’s 

feeding behavior (Ferret et al., 1999). However, fecal recovery of an internal marker for any 

novel feedstuff must be validated before its use (Titgemeyer, 1997) because of varying results 

observed when a particular marker is applied across a wide range of forages (Sunvold and 

Cochran, 1991). Therefore, the global objective of this dissertation research was to evaluate the 

potential of different internal markers to predict FO from and digestibility of bermudagrass hay 

of varying quality fed to cattle, and to determine the fecal sampling frequencies that can provide 

adequate estimates of daily fecal excretion.  
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Chapter II 

Literature review 

 

Intake, digestibility, and energy value of bermudagrass 

Generally, DMI and DMD of warm season-grasses such as bermudagrass are lower than 

those of cool-season grasses (Minson, 1990). Consequently, energy and CP supply are the most 

limiting factors for the performance of cattle consuming warm-season grasses (Minson, 1990). 

Energy deficiencies occur most often in forage-fed animals due to limited digestible energy 

intake, especially with high-fiber and low-energy forages where physical fill limits intake 

(Mertens, 1994). Prolonged periods of energy deficiency result in slow growth, weight loss, 

delayed puberty, decreased fertility, and reduced milk or fiber production (Pond et al., 1995). 

Knowledge of forage intake and digestibility is important to determine if daily nutrient 

requirements are being met and to decide whether a warm-season grass-based diet requires 

supplementation. Traditionally, DMI and DMD are determined by conducting in vivo digestion 

trials where total collections of feed, orts, and feces are performed (Cochran and Galyean, 1994). 

However, the in vivo method requires total fecal collection (TC) which is laborious and often 

unfeasible for testing a wide range of samples with a large number of animals. Alternatively, 

external and internal markers can be applied to estimate DMI, DMD, and FO of the feedstuff by 

ruminants.  

 

Use of markers to estimate intake, digestibility, and fecal output 

There are two types of markers: external markers which are substances added to the diet 

at a known rate per day or at known concentration in the diet, and internal markers which are 
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inherent constituents of feedstuffs offered to the animal (Cochran et al., 1987). The criteria that 

characterize an ideal marker were summarized by Owens and Hanson (1992). Such a marker 

should not be absorbed, affect or be affected by the gastro-intestinal tract (GIT) of the animal or 

its microbial population. Additionally, markers should be intimately associated with the material 

they mark and should exhibit the same flow through the GIT, and be specific and sensitive to the 

method of analysis (Nelson et al., 1990; Lippke, 2002). All marker calculations are based on the 

same principle that the amount of marker excreted equals the amount of marker consumed, 

because they are considered indigestible and the degree of concentration of marker is 

proportional to the degree of digestion (disappearance) of feed. Markers can be used to estimate 

DMD according to the following relationship (Burns et al., 1994): 

DMD (%) = 100-[100 × (Mfd / Mfc)] [1] 

where Mfd is the marker concentration in feed, and Mfc is the marker concentration in feces. 

It is also possible to use an external marker or internal marker to determine FO. Fecal 

output can then be calculated for either external or internal markers using the following formulas 

(Cochran and Galyean, 1994): 

FO (kg/d) = marker dose (mg/d) / Mfc (mg/kg) [2] 

FO (kg/d) = DMI (g/d) × Mfd (g/kg) / Mfc (g/kg) [3] 

Estimates of FO and DMD can then be combined to predict DMI as follows: 

Intake (DMI, kg/d) = FO/1-(DMD / 100) [4] 

If intake is unknown, the digestion coefficient for different nutrients in the feed can be 

measured as follows (Cochran and Galyean, 1994): 

Digestibility (%) = 100-100 (%Mfd / %Mfc) × (% Nfc / %Nfd) [5] 
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where Nfc is the concentration of a particular nutrient in the feces, and Nfd is the concentration of 

a particular nutrient in the feed.  

 

External markers 

External markers are indigestible substances added to the diet at a known rate (Van Soest, 

1994). They may be administered orally, infused into the rumen through fistula, or given by 

controlled-release devices (Marais, 2000; Lippke, 2002). In an attempt to overcome the difficulty 

and expense in conducting conventional in vivo digestion trials, the use of inert markers to 

predict the digestibility of feeds and to estimate digesta flow and FO has received attention 

(Undersander et al., 1987; Owens and Hanson, 1992). Each external marker has its own 

particular benefits and limitations. A discussion of these individual markers is therefore 

warranted.  

 

Chromic oxide (Cr2O3) 

This compound (or similarly chromium sesquioxide) has been the most extensively used 

external marker to estimate intake and digestibility in confined and grazing animals during the 

past 50 years (Lippke, 2002), before the discovery of rare earth elements and the utilization of 

elements such as titanium dioxide (TiO2). Chromic oxide is orally administered to animals as 

gelatin capsules or mixed with the ration.  

The primary disadvantage of chromic oxide is that it moves through the digestive tract of 

the animal independently of undigested particles of the diet, and consequently fecal 

concentrations of Cr2O3 exhibit diurnal variation (Lippke, 2002). In an attempt to solve that 

problem, several doses per day have been proposed by different authors (Brandyberry et al., 
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1991; Luginbuhl et al., 1994) by inserting chromic oxide into the rumen through a cannula, but 

increased dosing up to six times a day is considered impractical. Another solution to chromium 

daily variation in feces has been the development of controlled-release devices (CRD) for 

continuous release of the marker into the gut. The CRD reduced diurnal variation of Cr2O3 

considerably; however, the release rate appeared to be diet-dependent which requires prior 

validation with a small number of animals before the trial. Luginbuhl et al. (1994) achieved a 

constant fecal excretion of chromium after 8 d dosing with a controlled release bolus containing 

chromic oxide. However, Hatfield et al. (1991) reported that both the continuous release bolus 

and dosing twice a day overestimated the actual FO in sheep fed alfalfa (Medicago sativa L.). 

Santos and Petit (1996), however, reported that grab samples taken once a day provided reliable 

estimates of FO (R = 0.96, P < 0.05) with a slow-release bolus of chromic oxide. With this 

protocol, an adaptation of at least 10 d was required before samples could be taken when using 

chromic oxide as an external marker. Additionally, chromic oxide analysis requires calibration 

with fecal samples from animals free of chromium ingestion and on the same diet as that one 

used in the experiment (Holt, 1993). Titgemeyer et al. (2001) reported that chromic oxide 

recovery deviated from 1 in several experiments, while Myers et al. (2006) raised concerns about 

carcinogenic properties of Cr2O3 and potential human health hazards due to Cr2O3 inhalation. 

 

Titanium oxide (TiO2) 

This compound was proposed as an alternative to Cr2O3 and presents less negative health 

properties than Cr2O3 (Myers et al., 2004). In addition, the United States Food and Drug 

Administration (FDA) recommends the use of TiO2 while the use of Cr2O3 is not approved as a 

dietary additive in the United States (Titgemeyer et al., 2001). Studies comparing Cr2O3 and 
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TiO2 in pigs (Jagger et al., 1992), cattle (Titgemeyer et al., 2001), and sheep (Myers et al., 2006) 

revealed that TiO2 can be an appropriate alternative to Cr2O3. Furthermore, Glindemann et al. 

(2009) reported an overall TiO2 recovery of 1.04 in sheep (ranging from 0.96 to 1.09), but during 

stall feeding, TiO2 had different recoveries (P < 0.001; between 0.99 and 1.08) due to different 

diets (unsupplemented hay diet vs. hay supplemented with concentrate). Intake and TiO2 

excretion reached equilibrium after 5 d of TiO2 administration. The administration of TiO2 twice 

per day reduced the variability in fecal TiO2 concentration and increased the accuracy of FO 

prediction than dosing once a day or fecal sampling at different time periods. 

 

Ytterbium (Yb) 

Like other rare earth elements (Er, Dy, and Y), Yb can be added to feed to increase its 

total concentration in the diet and to facilitate analysis. Ytterbium oxide was proposed as an 

alternative to Cr2O3 in animal nutrition studies and presents satisfactory biological properties 

with no major health problem or carcinogenicity (Delagarde et al., 2010). Brandyberry et al. 

(1991) reported that continuous release of ytterbium acetate and ytterbium chloride yielded the 

same estimates as chromium oxide for fecal flow. Delagarde et al. (2010) reported that ytterbium 

oxide had the same accuracy as chromic oxide for estimating daily FO variations in cows fed a 

total mixed ration (TMR) at variable feeding levels. Also, rare earth elements (La, Yb, and Tb) 

applied to a particular feed can be flow markers for undigested particles from the marked feed 

(Ellis et al., 2002). 

 

Internal markers 

Internal markers are plant constituents that are neither digested nor absorbed by the 

animal. These markers help to estimate intake and digestibility of a given feed by animals with 
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minimal disturbances in feeding behavior (Ferret et al., 1999).The use of internal marker 

assumes that the content of indigestible feed material (marker) gradually increases while the 

ingested feeds pass through the GIT due to the removal of digestible feed components by 

digestion and absorption processes (Sampaio et al., 2011b). Current indigestible feed 

components that have been tested as internal markers (Undersander et al., 1987) can be 

categorized into the following groups: 1) in situ or in vitro markers, rumen undegradable dry 

matter (RUDM), indigestible NDF (INDF), and indigestible ADF (IADF); 2) lignin-based 

markers, acid-detergent lignin (ADL); permanganate lignin, acetyl bromide-soluble lignin, and 

alkaline peroxide lignin (APL); 3) ash-based markers, acid-insoluble ash (AIA) and acid-

detergent insoluble ash (ADIA); and 4) n-alkanes. 

 

Rumen undegradable DM 

The RUDM is obtained by incubation of feed or feces samples in the rumen (in situ) or 

incubated with rumen fluids (in vitro) for extended periods of time to allow the rumen microbes 

access all potentially digestible material. The remaining portion, after washing and drying, is the 

RUDM. Furthermore, the indigestible DM residue can be sequentially refluxed in neutral-

detergent solution and acid-detergent solution to obtain INDF and IADF, respectively. Huhtanen 

et al. (1994) and Detmann et al. (2001) recommended the use of RUDM as an internal marker 

because of low analytical cost compared to INDF and IADF. However, error from in situ 

procedure has been associated with contamination from microbial debris, feed, and rumen 

contents (Huhtanen et al., 1994; Casali et al., 2009), and the removal of these contaminants on 

the in situ residue requires detergent solution (Van Soest, 1994). Sample contamination during in 

situ evaluation of RUDM has been found to be variable among different bags used and replicate 
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samples (Casali et al., 2009; Sampaio et al., 2011b). This pattern can cause inconsistencies in 

marker recovery, which indicates that caution should be observed when using RUDM as an 

internal marker.  

Graham and Aman (1984) reported that in vitro and in situ methods produced similar 

kinetics of ruminal degradation for barley straw constituents (Hordeum vulgare). On the other 

hand, Varel and Kreikemeier (1995) reported, based on a study comparing in vitro with in situ 

methods, that lag time was 3.5 h less, rate of disappearance was 0.03/h faster, and extent of 

digestion was 6.0% greater for in situ than for the in vitro method for determining NDF digestion 

kinetics of alfalfa or bromegrass in cattle. Low concentration of microorganisms in the in vitro 

inocula may increase lag time, slow the rate of digestion, and lower the extent of digestion 

compared with the in situ method. 

 

Indigestible ADF and NDF 

Indigestible NDF and ADF have been proposed by Lippke et al. (1986) and Judkins et al. 

(1990) to overcome the problem of low concentrations and variable recovery of lignin and AIA 

contamination in consumed forages. Indigestible ADF was the best predictor of organic matter 

digestibility (OMD) of several forages in sheep (Penning and Johnson, 1983b) compared to in 

vitro technique. Indigestible ADF was also used with success in another experiment with sheep 

and steers (Nelson et al., 1990). Indigestible ADF and NDF provided acceptable estimates of 

digestibility of alfalfa cubes, tall wheatgrass (Agropyron elongatum), and soybean meal diets 

(Cochran et al., 1986). However, further investigations have been recommended by these authors 

for the applicability of IADF and INDF as markers for use in cattle consuming a diverse range of 

diets or fresh, immature forage. Berchielli et al. (2005) concluded that INDF and IADF can be 
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used as predictors of FO and digesta flow in cows by using in situ techniques. In a study using 

IADF, Vanzant et al. (2002) reported that acceptable fecal marker recovery was obtained from 

cattle consuming tall fescue hay (Festuca arundinacea Schreb.) by using bulk in vitro incubation 

with either Ankom #1020 or Ankom #F57 (ANKOM Technology Corp., Fairport, NY, USA) 

polyester bags. Indigestible NDF could be a useful marker if measured using standardized in 

vitro and in situ methods and if recovery is satisfactory (Lund et al., 2007); and has the 

advantage of being degraded at a predictable rate (Ellis et al., 1999). Using in vitro incubation 

(144 h) with either an acid/pepsin pretreatment or control of feed, ort, and feces, Sunvold and 

Cochran (1991) reported a fecal recovery of IADF-based markers in the range of 0.70 to 0.80 in 

steers limit-fed various grasses, leading to an underestimation of OMD. 

 

Acid-detergent lignin (ADL) 

Lignin has been considered to be indigestible and recoverable in feces (Ellis et al. 1946; 

Forbes and Garricus, 1948; Elam and Davis, 1961) for many years because no enzyme for lignin 

degradation appears to exist in ruminants. As a part of the fiber fraction, forage lignin increases 

in concentration as plants mature. Also, as an end product of routine fiber analyses, some authors 

have considered ADL as a potential internal marker (Waldo et al., 1972; Van Soest, 1982), while 

others have reported inconsistencies in lignin recovery (Fahey and Jung, 1983; Cochran et al., 

1986). According to Van Soest (1987), acceptable results can be obtained for ADL as an internal 

marker when its concentration is at least 60 g/kg of DM. Lignin may not be an adequate internal 

marker because of potential degradability or complex formation with carbohydrates during its 

transit in the GI tract of ruminants (Jasra and Johnson, 2000). Incomplete lignin recovery 

resulted in underestimation of digestibility when ADL was used as an internal marker (Merchen, 
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1993). In addition, variable positive and negative digestion coefficients were obtained using 

sheep and goat rumen liquor on forage samples (forbs, shrubs, and grass) of three phenological 

stages (Jasra and Johnson, 2000). Positive ADL recoveries have been reported by Fahey et al. 

(1979) and Fahey and Jung (1983), and are attributable to the formation of an artifact during the 

gastrointestinal transit of consumed forage. Furthermore, Neilson and Richards (1978) reported 

that nearly 50% of the lignin in forage may conjugate with carbohydrates and form a complex 

that will be measured in feces as lignin. Another issue for lignin is that its lower concentration in 

immature forage and the variability in lignin content in different plants make analysis difficult 

with drastic variability across the range of particular forages due to maturity. Finally, 

Muntifering (1982) reported that lignin [permanganate (KMnO4) lignin], ADL, and acetyl 

bromide-soluble lignin appeared to have low and variable recovery regardless of method of 

determination. 

 

Alkaline-peroxide lignin (APL) 

Alkaline peroxide lignin constitutes a core portion of lignin more indigestible (Marais, 

2000). Treatment of crop residues with alkaline hydrogen peroxide improved digestibility due to 

the removal of up to half of the lignin (Lewis et al., 1988; Bhargava et al., 1989; Amjed et al., 

1992). Alkaline hydrogen peroxide (AHP) incubation in the ADL procedures, particularly when 

incorporated before the acid-detergent extraction, improved the recovery rate of lignin in feces 

(Cochran et al. (1988). Fecal recoveries of APL averaged close to 1 (0.978 and 0.959) in two 

experiments with sheep and cows fed mature prairie grass hay (Momont et al., 1994), but were 

more variable (0.989, 1.060, and 0.925) in steers limit-fed (17.5 g/kg BW) alfalfa, bromegrass 

[Bromus inermis Leyss.], and prairie hay (Sunvold and Cochran, 1991). 
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Acid-insoluble ash (AIA) 

Acid insoluble ash (AIA) is obtained by drying and ashing samples in a muffle furnace 

followed by boiling the ashed samples in 2N HCl for 5 min, filtering, and rinsing to neutral pH, 

and finally drying and re-ashing the remaining residue (Van Keulen and Young, 1977). The 

DMD estimates by AIA ratio were similar to those measured by total fecal collection (Van 

Keulen and Young, 1977).The mean recovery rates in feces estimated by AIA using concentrated 

HCl, 2N HCl and 4N HCl procedures were 0.97 ± 0.067, 0.97 ± 0.061, and 1.03 ± 0.071, and 

were not statistically different from 1. In a study comparing AIA and permanganate lignin as 

potential internal markers to predict digestibility of cattle diets, the average recovery of 

permanganate lignin were 0.52 ± 0.018 and 0.59 ± 0.018, compared with an average recovery of 

AIA of 1.02 ± 0.048 and 0.99 ± 0.030 for early cutting and late cutting dates of mixed grass hays 

(Thonney et al., 1979); consequently, the permanganate lignin ratio underestimated the 

digestibility while predicted values of DMD by AIA were similar to the TC values. However, 

different results were obtained when AIA was used to estimate OMD of alfalfa fed to wether 

sheep (Penning and Johnson, 1983a). Diets containing less than 7.5 g/kg of AIA may yield 

biased results when used to estimate digestibility (Thonney et al., 1985). Furthermore, AIA as 

internal marker should be used with caution because fecal recovery rate can be affected by soil 

contamination of ingested feed (Sunvold and Cochran, 1991). 

 

Acid-detergent insoluble ash (ADIA) 

The acid-detergent insoluble ash (ADIA) is a preferred method, shorter, and less 

expensive to analyze (Van Soest, 1994). Acid-detergent insoluble ash is obtained by ashing the 

remaining DM after acid-detergent extraction in a muffle furnace at 500oC for 8 h. The ADIA 
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procedure has been recommended for use as the most reliable internal marker technique 

(Undersander et al., 1987; Van Soest, 1994; Bodine et al., 2002). In a study comparing ADIA 

with TC, Bodine et al. (2002) found similar estimates of DMD of alfalfa, bermudagrass, and 

unsupplemented prairie hay diets fed to steers. In addition, Stafford et al. (1996) reported 

excellent recovery rates of ADIA (average of 1.02) by cattle fed low-quality, tallgrass-prairie hay 

with different supplements. The ADIA recovery was not impacted by the type of supplement and 

their level. However, due to its relation with inorganic matter, ADIA is susceptible to soil 

contamination during the feeding process (Appeddu and Bodine, 2002). Soil ingestion by grazing 

animals can account for up to 11.5 % of total intake (Mayland et al., 1977) and feces can be 

contaminated during sample collection, processing and storage, which may result in over-

estimated digestibility. 

 

Plant alkanes 

Alkanes are components of the plant-cuticular wax and are relatively indigestible in the 

ruminant digestive tract. They are saturated straight-chain hydrocarbons with a chain length of 

21-35 carbons (Dove and Mayes, 1996). They are found in most forage species (Russell et al. 

2000), and the n-alkanes with odd-numbered carbons predominate (90%). 

The use of n-alkanes as an internal marker has been proposed by Mayes et al. (1986) and 

is based on the same principle of analyzing n-alkanes in feed consumed and feces to estimate 

DMD. Fecal recovery increased with increased chain length, and tritriacontane (C33H68) is 

commonly used to predict digestibility (Mayes et al., 1986). According to Laredo et al. (1991), 

concentrations of some long chain n-alkanes such as tritriacontane and pentatriacontane (C35H72) 

are very low in some tropical forage species. Casson et al. (1990) recommended that odd-chain 
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n-alkanes concentration should be at least 50 mg/kg for accurate prediction of DMD to avoid 

lack of column sensitivity which can allow the detection of lower n-alkanes concentration. Even 

and odd-chained alkanes are determined by capillary gas chromatography (Marais, 2000) and the 

concentration is computed according to the below formula (Russell et al., 2000): 

mg of n-alkanes/kg sample = (Palkane × 0.6 mg × 100)/(Pis × SW × DM) [6] 

where Palkane is the peak area of alkane; 0.6 mg represent 0.6 ml of a standard solution containing 

1.0 mg of dotria-contane per ml of n-hexane; Pis is the peak area of internal standard; SW is the 

sample weight; and DM, is the dry matter of the sample. 

Several studies have reported incomplete recovery of n-alkanes in feces, which suggests 

that long chain n-alkanes disappear during gastrointestinal passage (Mayes et al., 1988). To 

overcome the problem of low recovery of n-alkanes in feces, Mayes et al. (1986) proposed 

dosing an animal with an external marker (even-chain alkanes) for estimation of FO while 

closely related odd-chain alkanes can be used to estimate digestibility. The combination of 

external and internal marker allows the prediction of DMI, because recoveries of the two 

markers would cancel out when performing intake calculations (Dove and Mayes, 1991). In a 

study comparing n-alkanes and IADF as internal markers to predict digestibility, Russell et al. 

(2000) reported that neither marker was completely recoverable in feces and was not consistent 

across forage species tested, although the recovery of n-alkanes was greater in general than 

IADF. Both markers underestimated (P < 0.05) the actual digestibility values of the forages 

tested. 
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Summary 

Different internal markers have been developed and tested to estimate DMI, DMD, FO, 

rate of passage (Kp), rate of digestion (Kd), and energy content of feeds (TDN). Until now, no 

marker has presented 100% quantitative recovery across wide varieties of diets. Therefore, it is 

imperative that researchers validate or define recovery of internal markers for the diets they are 

studying before calculating digestibility, FO, and DMI. A large number of samples can be 

evaluated by external and internal markers to estimate nutritive value and save labor. However, 

variability in these estimations can be largely due to differences in forage species, stage of 

maturity, and marker types. One of the concerns with internal markers is that most components 

used are available in small quantities in forages, potentially magnifying errors in analytical 

procedures. In addition, some internal markers, such as silica, acid insoluble ash (AIA), and acid 

detergent insoluble ash (ADIA) can easily be contaminated by soil present on the forage or fecal 

sample or if animals consume soil intentionally. Finally, the direct method of fecal collection is 

always the most accurate whenever feasible. 
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Chapter III 

Evaluation of in situ internal markers for predicting digestibility and fecal output in cattle 

fed bermudagrass hays of varied nutrient composition 

 

Abstract 

The potential of in situ rumen undegradable dry matter (RUDM), indigestible neutral-

detergent fiber (INDF), and indigestible acid-detergent fiber (IADF) for predicting digestibility 

(DMD) and fecal output (FO) by cattle offered bermudagrass [Cynodon dactylon (L.) Pers.] hay 

of varying qualities was evaluated. Eight ruminally cannulated cows (594 ± 100.3 kg) were 

allocated randomly to 4 bermudagrass hay diets categorized by their low (L), medium low (ML), 

medium high (MH), and high (H) crude protein (CP) concentrations (79, 111, 131, and 164 g 

CP/kg DM, respectively). Diets were offered in 3 periods to provide 2 replicates per diet each 

period (n = 24). Cows were housed in individual pens and offered their respective hay at a total 

of 20 g DM/kg of BW in equal feedings at 0800 and 1600 h for a 10-d adaptation period 

followed by a 5-d total fecal collection (TC) in each period. Duplicate samples of each of the 

hay, ort, and fecal samples from each period were incubated in Dacron bags for 144 h in the 

rumen of 2 cows for each of the digestion periods, followed by a sequential analysis of NDF and 

ADF. Recovery of RUDM, INDF, and IADF and their respective adjusted values (RUDMa, 

INDFa, and IADFa, respectively) were expressed as the ratio of the quantity of marker excreted 

in the feces per unit of marker consumed. Data for in vivo DMI, DMD, FO and the chemical 

composition of the diets were analyzed as a replicated 4 × 4 Latin-Square design with one period 

missing using PROC GLM of SAS. Effects of cow, diet, and period were included in the model. 

Data for recovery, estimates of DMD, and FO were also analyzed using PROC GLM of SAS, 
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where diet, method, and diet by method interaction were included in the model. Diet affected 

DMI (P = 0.01) but did not affect FO (P = 0.12) and apparent DMD (P = 0.18). All fecal 

recovery rates differed by marker (P < 0.01) and diet, but not by the diet × marker interaction (P 

= 0.99). Fecal output estimates were affected (P < 0.01) by diet and marker while DMD was 

affected by the diet × marker interaction (P = 0.019). Indigestible NDF, ADF, and RUDM 

determined by in situ incubation appeared to be inadequate internal markers because of 

incomplete recovery and potential variability in DMD prediction across diets. 

Key words: Bermudagrass, digestibility, in situ internal markers, cattle. 

 

1. Introduction 

In forage-based ruminant feeding, knowledge of the nutritive value of the basal diet is 

crucial to decide whether supplements are needed to meet the animal’s energy and other nutrient 

requirements. One way of estimating energy values of feed is to conduct an in vivo digestion 

study and to determine organic matter digestibility (OMD), which is theoretically equal to total 

digestible nutrients (TDN) or digestible energy (DE; Lofgreen, 1956). However, the in vivo 

method requires total fecal collection, which is laborious, and in addition unfeasible to test a 

wide range of samples with a large number of animals (Undersander et al., 1987). Alternatively, 

indirect measurements using external and internal markers can be used to estimate digestibility 

of consumed feeds, especially forages. The use of reliable internal markers offers more 

advantages than external markers as long as they are fully recoverable and thus indigestible. 

When this assumption is not fulfilled, an adjustment for incomplete recovery can be applied 

(Owens and Hanson, 1992; Cochran and Galyean, 1994). 
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Several studies have evaluated internal markers with in vitro disappearance techniques to 

compare the results with in vivo responses (Undersander et al., 1987). However, few researchers 

have evaluated indigestible feed components using the in situ disappearance technique. 

Comparing in vitro and in situ procedures for RUDM, INDF, and IADF determination, Huhtanen 

et al. (1994) recommended the use of the in situ procedure. However, the in situ procedure has 

produced variable results (Judkins et al., 1990) while promising results were obtained by 

Fondevila et al. (1995) and Ferret et al. (1999). In addition, the variability of internal markers in 

predicting digestibility and FO across different types of forages (Sunvold and Cochran, 1991) 

requires a validation of marker recovery on a specified diet before its application in research. 

Therefore, our objective was to evaluate the potential of in situ RUDM, INDF, and IADF as 

internal markers in predicting apparent FO and DMD of bermudagrass hay of varying qualities 

by cattle.  

 

2. Materials and Methods 

2.1. Location, treatments, and experimental design for in vivo digestion 

The study was conducted at the University of Arkansas Division of Agriculture 

Watershed Research and Education Center (WREC) located in Fayetteville, AR. Eight ruminally 

cannulated cows (n = 8, BW = 594 ± 100.3 kg) were stratified by weight and allocated to 1 of 2 

blocks containing 4 cows each. Each block of 4 cows was assigned to a replicated 4 × 4 Latin-

Square experimental design with one period missing. Four diet treatments of bermudagrass hay 

(Table 3.1) were duplicated in the 2 squares. The 4 bermudagrass hays varied in nutritional 

quality and were designated as follows based on their CP concentrations: low (L, CP = 79 g/kg 

DM); medium low (ML, CP = 111 g/kg DM); medium high (MH, CP = 131 g/kg DM); and high 
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(H, CP = 164 g/kg DM).The combination of 8 cows used for 3 periods resulted in 24 total in vivo 

observations, or 6 observations per hay treatment. Each period consisted of a 10-d adaptation 

period followed by 5-d of total fecal collection. 

Cows were housed individually in 3.0 × 4.3 m pens with solid concrete floors covered 

with rubber mats. Cows were allowed to move freely within their respective pens. Each pen was 

fitted with plastic sheets on the rails between pens to avoid inadvertent cross-contamination of 

feces across pens. Cows were moved from their pens and allowed to graze for 14 d between each 

period to exercise and reduce the carryover effects of the previous hay treatment. The protocol 

used in this research was approved by the Institutional Animal Care and Use Committee of the 

University of Arkansas (IACUC approved protocol #10016).  

 

2.2. Hay acquisition 

Bermudagrass hay used in this study was harvested at 3 different locations: The 

University of Arkansas Livestock and Forestry Research and Extension Station near Batesville, 

AR (3 bales), WREC (5 bales), and the University of Arkansas Southeast Research and 

Extension Center in Monticello, AR (4 bales) to represent a wide range in quality and maturity. 

The bales were large round bales weighing between 364 to 500 kg with average bale dimensions 

of 1.2 × 1.5 m. Core samples from each bale (n = 3) were taken with Star Quality Samplers 

(Edmond, AB, Canada) at the round side in different directions in each bale to a depth of 0.46 m. 

The core samples were analyzed for CP, and then the bales were grouped based on CP 

concentration, irrespective of location, into 1 of the 4 groups described previously. One bale 

from each treatment (total of 12) was fed to 2 cows during each period. A total of 12 large round 

bales were used for the 45 d feeding of the 3 periods. 
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2.3. Feeding and sample collection 

 

A total of 20 g/kg BW was offered as long hay in equal amounts at 0800 and 1600. This 

feeding level was chosen to minimize refusal. Water was provided for ad libitum consumption 

via rubber water tanks and each cow received 114 g of a commercial cattle mineral supplement1 

(Purina Wind and Rain® All Season 7.5 Complete) per day. Feed sampling began on d 9, orts on 

d 10, and feces on d 11. Samples of each hay offered were taken at each feeding sequence, 

placed in paper bags, weighed immediately, and dried in a forced-air oven at 50oC until no 

further weight loss was detected. Orts (refusals) were collected each morning before feeding 

(0700 h), weighed, and a representative sample was placed in paper bags. Samples were then 

weighed and dried in a forced-air oven at 50o C until no further weight loss was detected. Total 

feces from each cow were collected throughout the day beginning at 0800 on day 11 by scraping 

them directly from the pen rubber mats. Feces were stored temporarily in plastic-lined trash cans. 

At 0800 each day, total feces per cow were weighed, mixed in a commercial concrete mixer 

(Mixer Model 043206 Type A, Monarch Industries Inc., Canada), and a representative fecal 

sample (approximately 300 g of fresh feces) from the individual total daily fecal excretion was 

taken and placed on paper or aluminum plates, and dried in a forced-air oven at 50o C for 

determination of total FO and subsequent analysis of chemical composition and marker 

concentrations. 

                                 
1 Contained 135-160 g/kg Ca, 75 g/kg P, 182.5-217.5 g/kg salt, 5 g/kg Mg, 10 g/kg K, 3600 
µg/kg Zn, 2115 µg/kg Mn, 1100 µg/kg Cu, 50 µg/kg Co, 115 µg/kg I, 27 µg/kg Se, 660,000 
IU/kg Vitamin A, 66000 IU/kg Vitamin D, and 660 IU/kg Vitamin E 
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Fecal grab samples were taken directly from the rectum of each cow at 0600, 1200, 1800, 

and 2400 daily during the 5-d total collection period for a subsequent study. Total FO of each 

cow was corrected to include the dry weight of the 20 fecal grab samples taken per period. 

2.4. In situ analysis 

After drying samples of hay, orts, and feces to a constant weight for dry matter (DM) 

determination, samples of each period were composited by diet treatments for hay offered, and 

by cow for orts and feces. Then, samples of hay, orts, and feces were ground to pass a 2-mm 

screen of a Wiley mill (Thomas Scientific, Swedesboro, NJ). Duplicate Dacron bags (10 × 20- 

cm; 53 ± 10-um pore size; ANKOM Technology Corp., Fairport, NY, USA) were filled with 5 g 

of each ground forage, ort, or fecal sample and closed with rubber bands. In total, there were 24 

samples of hay offered, 48 samples of feces, and 36 samples of orts (3 cows in period 2, and 3 

cows in period 3 did not have orts). 

Six ruminally-cannulated cows were used for the in situ evaluation. During the 

incubation, cows were offered a total of 20 g DM /kg of BW of a bermudagrass hay-based diet 

(17.5 g/kg BW of hay, 2.5 g/kg BW of concentrate mix) in equal meals at 0800 and 1600 h and 

had ad libitum access to water. The composition of the diet fed during the in situ trial is 

summarized in Table 3.2.  

Individual bags of hay, ort, and fecal samples were placed in 36 × 50-cm mesh bags and 

inserted into the ventral rumen immediately prior to feeding on d 10 of the study. Samples from 

each period were inserted into the rumen of 2 cows in order to provide replication of the rumen 

environment for each period. After 144 h of incubation, the Dacron bags were removed from the 

rumen and were subjected to a hand washing (rinsing) with cold-water until the water was clear 

(approximately 10 times) to prevent any loss of sample due to washing machine use. All rinsed 
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bags were dried to a constant weight at 50o C and allowed to equilibrate to ambient temperature 

prior to weighing. 

 

2.5. Dry matter loss analysis and adjustment of concentrations of markers 

The lack of uniformity of particle size of forage, ort, and feces may result in variable and 

incomplete in situ INDF and IADF recovery rates (Lippke et al., 1986; Lund et al., 2007). 

However, once the marker is not completely recoverable in feces, an adjustment for incomplete 

recovery can be made (Owens and Hanson, 1992; Cochran and Galyean, 1994). In this study, 

after initial evaluation of RUDM, INDF, and IADF, recovery rates were adjusted based on the 

proportion of each marker that washed out of the sample bags that were not incubated in the 

rumen, but were subjected to washing procedures similar to those used for the bags incubated in 

the rumen. The correction (adjustment) factor (CF) was calculated as the ratio of DM remaining 

after washing to the initial sample weight on a DM basis. The initial DM incubated for in situ 

RUDM, INDF, and IADF evaluation was then multiplied by CF to obtain the initial DM 

corrected for differential DM loss of forage, ort, and feces. 

 

2.6. Chemical analysis of forages, orts, feces and internal markers 

Forage samples were analyzed for DM, total ash (TA), and total N by AOAC (2001) 

procedures 2001.12 and 2001.11, respectively. Organic matter was calculated as the weight lost 

from combustion of DM. Neutral-detergent fiber, ADF, and ADL in forage, ort, and feces were 

analyzed sequentially by the methods of Van Soest et al. (1991) and the batch procedure outlined 

by ANKOM Technology Corp. (Fairport, NY, USA). Sodium sulfite or heat-stable α-amylase 

was not added to the neutral-detergent solution. The same method was used to analyze INDF and 
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IADF on the residual DM from the in situ procedure by placing 0.5 ± 0.01 g in filter bags and 

analyzing these sequentially for NDF and ADF. Hemicelluloses were estimated from the values 

obtained in sequential analyses of NDF and ADF and was calculated as the difference between 

NDF and ADF. 

 

2.7. Recovery rate, digestibility, and fecal output calculation 

 The concentration of marker in consumed forage (Mfd) was expressed as follows: 

M fd = [(Mof × Qof)-(Mor × Qor)] / DMI [1] 

where Mof is the concentration of marker in hay offered; Qof is the amount of hay offered; Mor is 

the concentration of marker in orts; Qor is the amount of orts refused (Qor), and DMI is the actual 

DMI. 

The recovery of RUDM, adjusted RUDM (RUDMa), INDF, adjusted INDF (INDFa),  

IADF, and adjusted IADF (IADFa) were expressed as the ratio of the quantity of marker excreted 

in the feces per unit of marker consumed according to the following relationship: 

R (recovery) = (Mfc × FO) / (Mfd × DMI) or  

R = (Mfc × FO) / [(Mof × Qof) - (Mor × Qor)] [2] 

where FO is the fecal DM excreted; Mfd is the marker concentration in consumed feed; Mfc is the 

marker concentration in feces. 

Apparent dry matter digestibility (DMD) was calculated by the following formula: 

DMD = 1000 × (DMI-FO) / DMI [3] 

The estimate of dry matter digestibility (DMD) using internal markers was given by the 

following expression: 

DMD = 1000 × (1- Mfd / Mfc) [4] 
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Estimate of FO using internal markers was given by the following expression: 

FO = DMI × Mfd / Mfc  [5] 

2.8. Statistical analysis 

Data for intake, digestibility, chemical composition and DM loss from the in situ bags 

due to washing were analyzed as a replicated 4 × 4 Latin-Square design with one period missing 

using PROC GLM of SAS (SAS Int. Inc., Cary, NC, USA, 2009). Effects of cow, diet and period 

were included in the model. Cow was considered as the experimental unit for the diet effects and 

differences were considered significant at P < 0.05. Data of internal marker recovery and 

estimates of apparent DMD and FO were analyzed using PROC GLM of SAS, where diet, 

marker, and diet by marker interaction were included in the model and significant differences 

were noted at P < 0.05. Treatment means were reported as least squares means and were 

estimated and separated by the LSMEANS and PDIFF options in SAS when the overall 

treatment effect was significant (P < 0.05). When diet × marker interaction was not significant, 

the comparisons of the LSMEANS among themselves and with the means of observed values of 

FO and DMD were conducted using the ESTIMATE statement in GLM which calculated the 

difference of each pair of means and tested if it differed from zero. The F-protected t-test was 

used to determine if the marker ratio estimates differed from 1. 

 

3. Results 

3.1. Intake, digestibility, and fecal output 

Data for DMI, FO, and apparent DMD for the different bermudagrass hay qualities are 

presented in Table 3.3. Forage DMI was affected by diet (P = 0.01), while FO (P = 0.12) and 
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apparent DMD (P = 0.18) were not affected by diet. Forage DMI was greater on MH and H than 

the L diet. 

 

3.2. Internal marker concentration 

The marker concentrations in consumed feeds and feces before and after adjustment are 

presented in Table 3.4. The concentrations of all internal markers in forage consumed were 

affected by type of diet (P < 0.01), and generally decreased as forage CP increased. Diet tended 

(P = 0.05) to affect the concentrations of RUDM in the feces but did not affect (P ≥ 0.14) the 

fecal concentrations of the other internal markers. 

 

3.3. Recovery of internal markers  

The recovery rates of each marker before and after adjustment are presented in Table 3.5 

and were affected by marker (P < 0.01) and diet (P < 0.01) but not by the diet × marker 

interaction (P = 0.99). Adjusting marker concentrations for the amount of marker loss due to 

washing resulted in an improvement (P < 0.05) in marker recovery. However, recoveries of all 

markers differed from 1 (Table 3.6; P < 0.01).  

Results of 0-h (A fraction analysis) are presented in Tables 3.7 and 3.8. Dry matter loss 

and CF were affected by sample type (P < 0.01) and diet quality (P < 0.01), but not the diet 

quality × sample type interaction (P ≥ 0.62). Dry matter loss was greater (P < 0.05) for feces 

than for hay or orts and was lower (P < 0.05) for L hay than for the other qualities of hay. The 

resulting CF was a reflection of DM loss. 

 

3.4. Estimates of FO and apparent DMD  
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Estimates of FO (Table 3.9) were affected by type of marker (P < 0.01) and diet (P < 

0.01), but not by the diet × marker interaction (P = 0.90). In general, FO was overestimated (P < 

0.01) because of incomplete recovery of these in situ markers in feces. However, there was an 

improvement (P < 0.001) in prediction of actual FO when the markers were adjusted for washing 

losses. Adjusted IADF was the closest in predicting FO (4207 vs. 4588 g/d; CV = 8.7 %). 

Estimates of DMD (Table 3.10) were impacted by diet (P < 0.01), marker (P < 0.01), and 

the diet × marker interaction (P = 0.019). Adjusted IADF accurately predicted the DMD of ML, 

MH, and H hays, but failed to predict the DMD of L bermudagrass hay. Also, RUDMa and 

INDFa accurately predicted DMD on MH and H diets but not on L and ML diets. 

 

4. Discussion 

4.1. Effect of diets on DMI, DMD, and FO 

Our diet treatments were categorized by their L, ML, MH, and H CP concentration in hay 

and were offered at fixed feed intake (20 g/kg DM). In this study, DMI was affected by diet, 

which was unexpected because bermudagrass hay was offered at restricted intake, indicating that 

ad libitum intake was less than 20 g/kg on most of these hays. There were no differences in 

forage DMD among treatments. Cows on lower CP diets consumed less feed (263, 118, 42, and 

72 g of orts/kg DM offered, respectively for L, ML, MH, and H CP content diets) and 

consequently the low DMI may have lowered the rate of passage (kp; Thonney et al., 1985) of 

consumed feed, which in turn mitigated the expected difference in DMD. Also, the NDF in high 

quality hay was not in agreement with CP concentration. However, a numerical increase in DMD 

was observed when CP content increased. 
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4.2. Marker concentration and recovery 

The fecal recovery rates of unadjusted and adjusted RUDM were incomplete. However, 

RUDM measured with 7 d in situ incubation (nylon bags 125 × 100-mm, 50 µm pore size) was 

the best internal marker with the average recovery rate of 0.992 in ryegrass and 1.000 in alfalfa 

fed alone (Ferret et al.,1999). Also, Sampaio et al. (2011b) obtained a RUDM recovery rate of 

0.990 with cattle consuming different diets. In comparison to our results, differences may be due 

to different diets and bags used (non-woven textiles bags, 100 g/m2; 4 × 5 cm) along with an 

incubation period of 264 h instead of 144 h as in our study. Furthermore, an average recovery 

rate for RUDM (96-h incubation) in sheep on cereal straw-based diets of 1.080 was reported by 

Fondevila et al. (1995), who cautioned the use of RUDM as an internal marker when used on 

different diets in different feeding conditions. Although RUDM can be used as a lower cost 

internal marker compared to INDF and IADF (Huhtanen et al., 1994; Detmann et al., 2001), 

sample contamination during in situ evaluation of RUDM is one of the shortcomings of this 

procedure, and can cause greater variability of results (Valente et al., 2011). Contamination can 

differentially affect the RUDM residues due to differences in bags and feed utilized and is not 

uniform among replicates (Casali et al., 2009). Therefore, caution should be observed when 

using RUDM as an internal marker. 

The fecal recovery of unadjusted and adjusted INDF was also incomplete in this study. 

Incomplete fecal recovery (0.86) was observed from alfalfa fed to lambs by Undersander et al. 

(1987). Large ranges (0.830 to 1.11 and 0.781 to 0.997) of fecal recovery rates of INDF, either 

measured by in situ (6 d incubation) or in vitro, were observed on bermudagrass from different 

varieties (Lippke et al., 1986). However, there was less variation, but incomplete (0.868) fecal 

recovery due to cutting age (maturity). In addition, the in vitro INDF (IVNDF) fecal recoveries 
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were 1.012, 0.432, 0.966, and 0.915, respectively for alfalfa cubes, tall fescue, tall wheatgrass 

and soybean meal (SBM), and prairie hay (Cochran et al., 1986). In contrast to our results, an 

average recovery rate for INDF (96-h incubation) of 0.964 in sheep on cereal straw-based diets 

was achieved by Fondevila et al. (1995) while Sampaio et al. (2011b) obtained a fecal recovery 

of 0.989 from cattle fed various diets with an in situ incubation of 264 h using non-woven 

textiles bags (100 g/m2; 4 × 5 cm). 

The adjusted IADF recovery was the best among the in situ markers evaluated, even 

though their recoveries differed from 1. The recovery of IADF was consistently least among the 

markers evaluated (ADL, APL, AIA, IADF) in a study by (Sunvold and Cochran, 1991). In their 

study, the recovery of IADF-based markers fell in the range of 0.70 and 0.80 (0.803, 0.801, and 

0.702 for alfalfa (Medicago sativa L.), bromegrass (Bromus inermis Leyss.), and prairie hay, 

respectively). Different recovery rates of IADF were observed on ryegrass fed alone with hays of 

varying quality (0.881, 0.741, and 1.050; high, medium high and low quality, respectively) and 

on alfalfa (0.937) in ewes (Ferret et al., 1999). Complete IADF recovery was achieved with 

alfalfa fed to lambs (1.01; Undersander et al., 1987), and with cattle fed various diets (1.02, 

Sampaio et al., 2011b) using a 264 h incubation and bags with different pore size (non-woven 

textiles bags; 100 g/m2; 4 × 5 cm). 

As mentioned previously, one of the main shortcomings of in situ markers is sample 

contamination during the in situ procedure. The main sources of contamination are microbial 

contamination, substrates (feed), and bag characteristics (Vanzant et al., 1998), and in addition, 

contamination is not homogenous for all replicate samples incubated (Casali et al., 2009; 

Sampaio et al., 2011a&b). The contamination issue is more problematic for RUDM than for 



36 

other in situ markers because neutral- and acid-detergent solutions remove many contaminants, 

and in particular, microbes.  

The second limitation to the use of in situ techniques is the initial particle loss often 

described as the soluble fraction of DM (Huhtanen and Sveinbjörnsson, 2006), which differs 

between forage and feces (Lippke et al., 1986). Differences in particle size between hay, ort, and 

feces lead to incomplete recovery of in situ internal markers (RUDM, INDF and IADF; Lippke 

et al., 1986; Huhtanen et al., 1994; Lund et al., 2007). During the in situ process, sample material 

that disappears from the Dacron bags is considered as being digested while a fraction of the 

sample may leave the bag actually due to small particle size. These differences in particle size 

between feeds and feces after grinding to 2-mm screen could be responsible for the variable and 

generally less than complete fecal recovery of the in situ internal markers observed. Furthermore, 

using bags of different porosity (nylon, 50 µm; F57 (ANKOM), and non-woven textile (NWT-

100 g/m2) may yield varying results of marker recovery (Valente et al., 2011). Thus, selecting 

the appropriate bag type is of utmost importance. To overcome the problem of difference in DM 

loss, marker recovery rate should be calculated using an INDF: NDF ratio instead of INDF: DM 

ratio (Huhtanen et al., 1994) if it is assumed that particles leaving the nylon bags come from only 

potentially degradable NDF (pdNDF) in feed and in feces. In this study, after adjusting for 0-h 

DM loss, there was an improvement in recovery rates on all 3 internal markers, but still the 

recovery rates were incomplete and different from 1. Another source of error may be associated 

with loss of particles that is higher for feces than feed during NDF or ADF analysis (Lund et al., 

2007) and Udén (2006). Average particle loss of NDF (g/kg NDF) was 40 and 120, respectively 

for forage and feces (Lund et al., 2007).  
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4.3. Marker effects on prediction of FO and DMD 

Fecal output estimates from markers overestimated actual values of FO obtained from the 

TC trial. Similar overestimation of FO by in situ indigestible fiber components, measured after 

incubation of 144 d, was reported by Soares et al. (2011) for buffalo fed elephant grass 

(Pennisetum purpureum). Estimated and actual FO were in perfect agreement for RUDM, INDF, 

and IADF measured from 264 h in situ incubation in cows consuming different diets (Sampaio et 

al., 2011b). However, IADF measured by in situ incubation (144 h) predicted FO (1.83 vs. 1.73 

kg/d, respectively for TC and IADF) on Tifton-85 [Cynodon dactylon (L.) Pers. x C. 

transvaalensis Burtt Davy] hay fed to cattle (340 kg BW) while INDF overestimated fecal output 

(1.83 vs. 2.32 kg/d; Berchielli et al., 2005). 

Dry matter digestibility was variable among diet treatments and was underestimated by 

all in situ markers. Similarly, IADF yielded estimates of forage OMD that differed (P < 0.05) 

from that of TC for alfalfa, bromegrass, and prairie hay diets (Sunvold and Cochran, 1991). 

Thus, further investigations were warranted for the applicability of IADF and INDF as markers 

for cattle consuming diverse ranges of diets or fresh, immature forage. In addition, Judkins et al. 

(1990) and Sunvold and Cochran (1991) came to the conclusion that indigestible fiber fractions 

underestimated the DMD of forages. The OMD estimation of grass-hay diets (bromegrass, and 

prairie hay) and alfalfa were consistently less (P < 0.05) than those derived from TC. 

Furthermore, Arthington and Brown (2005) found that IADF measured by in vitro technique 

underestimated bermudagrass OMD compared with TC (502 vs. 538 g/kg DM, respectively).  

In contrast to our results, some studies have reported promising results when using in situ 

or in vitro markers. According to Ferret et al. (1999), RUDM was the best predictor of DMD 

with the prediction equation (0.132 + 0.80x, n = 26, R = 0.91), explaining 83% of the variation in 
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DMD. The IADF was the best marker in predicting digestibility of several forages in sheep 

(Penning and Johnson, 1983). In addition, ash-free IADF determined by 48-h ruminal fluid 

incubation, 24-h pepsin-HCl hydrolysis, and then a 96-h in vitro incubation appeared to be a 

suitable marker to estimate digestibility by forage fed or grazing cattle (Nelson et al., 1990). The 

estimate of OMD was 631 vs. 646 g/kg DM from TC. Indigestible ADF and NDF provided 

acceptable estimates of digestibility with alfalfa cubes (Medicago sativa L.) and tall wheatgrass 

[Agropyron elongatum (Host) P. Beauv.] plus soybean meal diet although a variable relationship 

between in vivo DMD and DMD estimates by these markers was observed (Cochran et al., 

1986). 

In addition to the problem of incomplete fecal recovery in the present study, the fact that 

there was a diet × marker interaction becomes a hindrance to the use of these in situ markers on 

varied qualities of bermudagrass. Therefore, one in situ-based marker may not be able to predict 

the DMD digestibility of bermudagrass hay across a wide range of protein concentrations. 

In summary, for in situ indigestible fiber fractions to have the potential to be used as 

internal markers, several conditions or assumptions must be met. These conditions and 

assumptions include adequate incubation period, accounting for particle loss during in situ and 

fiber analysis, grinding samples with a proper diameter screen and using proper nylon bags with 

acceptable pore sizes. 

 

5. Implications 

Based on the results of this study, RUDM, INDF and IADF and their corresponding 

adjusted markers (RUDMa, INDFa and IADFa), determined by in situ incubation, are not 

adequate internal markers for varying qualities of bermudagrass hays fed to cattle because of low 
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and variable marker recovery. Consequently, none of the in situ internal markers accurately 

predicted apparent digestibility and fecal output. However, an adequate adjustment based on DM 

loss occurring during in situ process and fiber analysis due to differences in particle sizes among 

forage, ort, and feces may provide acceptable fecal recovery for fecal output and digestibility 

prediction. 
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Table 3.1 
Chemical composition (g/kg dry matter, DM) of bermudagrass hay fed during an in vivo 
experiment for estimating marker recovery based on different crude protein (CP) levels.  
 
Itemb 

Treatmentsa  
SEMc 

 
P-value L ML MH H 

DM 885 872 867 875 10.6 0.754 
OM 946d 913e 912e 919e 8.2 0.038 
TA 57 82 83 76 6.0 0.052 
CP 79f 111e 131e 164d 6.4 <0.001 
NDF 768 712 690 740 19.1 0.085 
ADF 428d 348e 332e 370de 19.4 0.035 
HEM 340 364 358 370 9.1 0.191 
ADL 45d 33ef 31f 41de 2.9 0.029 
aL, low CP hay (CP = 79 g/kg DM); ML, medium low CP hay (CP = 111 g/kg DM); MH, 
medium high CP hay (CP = 131 g/kg DM); and H, high CP hay (CP = 164 g/kg DM). 
bDM, dry matter; OM, organic matter; TA, total ash, CP, crude protein , NDF, neutral-
detergent fiber, ADF, acid detergent fiber; HEM, hemicellulose; ADL, acid-detergent lignin. 
cSEM, standard error of the mean. 
defMeans with different superscripts in the same row differ at P < 0.05. 
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Table 3.2 
Chemical composition (g/kg DM) of the diet fed during the in situ trial to estimate marker 
recovery from bermudagrass hays with differing concentrations of crude protein. 
 

Components 

Chemical compositiona 

DM TA OM CP NDF ADF 

Bermudagrass hay 875 79 921 108 673 287 
Concentrateb 920 99 901 210 218 57 
aDM, dry matter; TA, total ash, OM, organic matter; CP, crude protein, NDF, neutral-detergent 
fiber, and ADF, acid-detergent fiber  
bConcentrate contained (on as-fed basis): cracked corn (372 g/kg), wheat shorts (200 g/kg), 
soybean meal (347 g/kg), molasses (40 g/kg), limestone (3 g/kg), TM salt1 (33 g/kg), and 
vitamin A, D, and E premix2 (2 g/kg), and vitamin E premix (3 g/kg) and was offered at 2.5 g/kg 
BW. 
1TM salt contained 135-160 g/kg Ca, 75 g/kg P, 182.5-217.5 g/k salt, 5 g/kg Mg, 10 g/kg K, 
3,600 µg/kg Zn, 2,115 µg/kg Mn, 1,100 µg/kg Cu, 50 µg/kg Co, 115 µg/kg I, 27 µg/kg Se, 660, 
000 IU/kg Vitamin A, 66000 IU/kg Vitamin D, and 660 IU/kg Vitamin E. 
2Vitamin A, D, and E premix contained 88,000,000 IU Vitamin A/kg, 1,760,000 IU Vitamin 
D/kg, and 1,100 IU Vitamin E/kg. 
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Table 3.3 
Dry matter intake (DMI), fecal output (FO), and dry matter digestibility (DMD) of 
bermudagrass hay with differing concentrations of crude protein (CP) fed to cattle for 
estimating internal marker recovery based on total collection (TC). 
 
Item 

Treatmentsa  
SEMb 

 
P-value L ML MH H 

DMI (g/d) 7736d 9015cd 10205c 9780c 423.7 0.01 
FO (g/d, on DM basis) 3755 4081 4719 4275 254.3 0.12 
DMD (g/kg DM) 511 544 535 567 16.4 0.18 
aL, low CP hay (CP = 79 g/kg DM); ML, medium low CP hay (CP = 111 g/kg DM); MH, 
medium high CP hay (CP=131 g/kg DM); and H, high CP hay (CP = 164 g/kg DM). 
bSEM, standard error of the mean. 
cdMeans with different superscripts in the same row differ at P < 0.05. 
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Table 3.4 
Concentration (g/kg dry matter, DM) of various internal markers in consumed bermudagrass 
hays with differing concentrations of crude protein and associated feces as determined by total 
collection and in situ procedures (144 h incubation) before and after correction for DM loss. 
 
Itemb 

Treatmentsa  
SEMc 

 
P-value L ML MH H 

Uncorrected1 
RUDMc  

 
401d 

 
349e 

 
329e 

 
324e 

 
9.4 

 
0.01 

RUDMf  575 591 595 619 12.4 0.17 

INDFc  320d 267e 252e 245e 9.0 0.01 
INDFf  444 442 450 469 9.8 0.30 
IADFc  180d 133e 127e 125e 6.6 0.01 
IADF f  250 234 233 251 6.4 0.14 

Corrected2       

RUDMa  471d 439e 417e 409f 8.4 <0.001 
RUDMfa  788e 870d 852de 871d 21.5 0.05 

INDFa  375d 336e 319ef 310f 7.9 <0.001 
INDFfa  609 652 644 661 15.7 0.15 
IADFa  211d 167e 161e 158e 5.9 <0.001 
IADF fa  343 345 334 354 8.7 0.49 
aL, low CP hay(CP = 79 g/kg DM); ML, medium low CP hay (CP = 111 g/kg DM); MH, 
medium high CP hay (CP=131 g/kg DM); and H, high CP hay (CP = 164 g/kg DM). 
bRUDMc, rumen undegradable dry matter concentration in the consumed diet; RUDMf, rumen 
undegradable dry matter concentration in feces; INDFc, indigestible neutral-detergent fiber 
concentration in the consumed diet; INDFf, indigestible neutral-detergent fiber concentration in 
feces; IADFc, indigestible acid-detergent fiber concentration in the consumed diet; and IADFf, 
indigestible acid-detergent fiber concentration in feces; RUDMa, adjusted rumen undegradable 
dry matter concentration in the consumed diet; RUDMfa, adjusted rumen undegradable dry 
matter concentration in feces; INDFa, adjusted indigestible neutral-detergent fiber concentration 
in the consumed diet; INDFfa, adjusted indigestible-neutral detergent fiber concentration in feces; 
IADFa, adjusted indigestible acid-detergent fiber concentration in the consumed diet; and 
IADF fa, adjusted indigestible acid-detergent fiber concentration in feces. 
cSEM, standard error of the mean. 
deMeans with the same superscripts within row differ at P < 0.05. 
1Marker in hay and feces before correcting for differences in dry matter loss. 
2Marker in hay and feces obtained after correcting for difference in dry matter loss.  
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Table 3.5 
Recovery (g/kg) of internal markers in feces from cattle fed bermudagrass hays varying in crude 
protein concentrations. Values are given for markers pre- and post-correction for particle loss 
during the analytical procedures.  
 
Itemb 

Treatmentsa   P-value d 
L ML MH H Average SEMc D M D × M 

RUDM 0.709 0.777 0.845 0.824 0.789f 0.0136 <0.01 <0.01 0.99 
RUDMa 0.824 0.904 0.951 0.926 0.901e     
INDF 0.696 0.771 0.844 0.829 0.785f     
INDFa 0.801 0.890 0.941 0.924 0.889e     
IADF 0.713 0.840 0.870 0.885 0.827f     
IADFa 0.811 0.957 0.968 0.960 0.924e     
Average 0.759i 0.856h 0.903g 0.891g      
aL, low CP hay (CP = 79 g/kg DM); ML, medium low CP hay (CP = 111 g/kg DM); MH, 
medium high CP hay (CP = 131 g/kg DM); and H, high CP hay (CP = 164 g/kg DM). 
bRUDM, rumen undegradable dry matter; RUDMa, adjusted rumen undegradable dry matter; 
INDF, indigestible neutral-detergent fiber; INDFa, adjusted indigestible neutral-detergent fiber; 
IADF, indigestible acid-detergent fiber; IADFa, adjusted indigestible acid-detergent fiber.  
cSEM, standard error of the mean. 
dD, diet; M, marker; and D × M, diet by marker interaction. 
efMeans with different superscripts within column differ at P < 0.05. 
ghiMeans with different superscripts row differ at P < 0.05. 
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Table 3.6 
Recoveries of corrected and uncorrected internal markers and their corresponding confidence 
intervals (95%). Fecal recovery of a particular marker is considered complete if its confidence 
interval includes the theoretical value (1) of TC. 
 
Parametera 

 
Fecal recovery (g/kg) 

Confidence interval  
SEMb 

 
P-valuec Low limit Upper limit 

RUDM  0.789 0.750 0.828 0.0187 <0.001 
RUDMa  0.901 0.863 0.939 0.0184 <0.001 
INDF  0.785 0.745 0.825 0.0193 <0.001 
INDFa  0.889 0.850 0.928 0.0189 <0.001 
IADF  0.827 0.782 0.872 0.0219 <0.001 
IADFa 0.924 0.878 0.970 0.0220 0.0022 
aRUDM, rumen undegradable dry matter; RUDMa, adjusted rumen undegradable dry matter; 
INDF, indigestible neutral-detergent fiber; INDFa, adjusted indigestible neutral-detergent fiber; 
IADF, indigestible acid-detergent fiber; IADFa, adjusted indigestible acid-detergent fiber.  
bSEM, standard error of the mean. 
cProbability that the fecal recovery mean of a particular marker differ from 1. 
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Table 3.7 
Average dry matter loss (DM loss, g/kg DM) and resulting correction factor (CF) for forage, ort, 
and fecal samples hand-washed prior in situ incubation. Values are averages from all diet 
treatments.  
 Particle typesa   
Itemb Forage Ort Feces SEMc P-value 
DM loss  192e 175e 294d 6.0 <0.01 
CF 0.808d 0.822d 0.706e 0.0060 <0.01 
aForage, ort, and fecal samples ground to 2-mm screen put in Dacron bags (Dacron bags, 10 cm 
by 20 cm; 53 ±10-um pore size ) and hand-washed.  
bDM loss, dry matter loss (g/kg DM) at 0-h incubation; CF, correction factor. 
cSEM, standard error of the mean. 
deMeans with different superscript within a row differ at P < 0.05. 
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Table 3.8 
Average dry matter loss (DM loss, g/kg DM) and resulting correction factor (CF) for different 
treatment samples hand-washed prior in situ incubation. Values are averages for each diet 
treatment. 
 
Itemb 

Treatmenta  
SEMc 

 
P-value L ML MH H 

DM loss 188e 237d 227d 230d 7.0 <0.01 
CF 0.812d 0.762e 0.770e 0.770e 0.0070 <0.01 
aL, low CP hay (CP = 79 g/kg DM); ML, medium low CP hay (CP = 111 g/kg DM); MH, 
medium high CP hay (CP = 131 g/kg DM); and H, high CP hay (CP = 164 g/kg DM). 
bDM loss, dry matter loss (g/kg DM) at 0-h incubation for each diet type; CF, correction factor, 
(the ratio of remaining DM after washing over initial sample weight). 
cSEM, standard error of the mean. 
deMeans with different superscripts within a row differ at P < 0.05. 
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Table 3.9 
Fecal output (g/d) estimates derived from different internal markers including both unadjusted 
and adjusted values. Means comparisons were made between all markers and TC.  
 Treatmentsa  P-valued 
Itemb L ML MH H Average SEMc D M D ×M 
TC 3663 4055 4764 4347 4207g 105.7 <0.01 <0.01 0.904 
RUDM 5305 5302 5643 5241 5373e     
RUDMa 4552 4556 5010 4691 4702f     
INDF 5461 5405 5682 5245 5448e     
INDFa 4687 4648 5047 4695 4769f     
IADF 5375 5025 5520 5053 5243e     
IADFa 4605 4319 4902 4526 4588f     
Average1 4807i 4759i 5223h 4828i      
aL, low CP hay (CP = 79 g/kg DM); ML, medium low CP hay (CP = 111 g/kg DM); MH, 
medium high CP hay (CP = 131 g/kg DM); and H, high CP hay (CP = 164 g/kg DM). 
bRUDM, rumen undegradable dry matter; RUDMa, adjusted rumen undegradable dry matter; 
INDF, indigestible neutral-detergent fiber; INDFa, adjusted indigestible neutral-detergent fiber; 
IADF, indigestible acid-detergent fiber; IADFa, adjusted indigestible acid-detergent fiber. 
cSEM, standard error of the mean. 
dD, diet; M, marker; and D × M, diet by marker interaction. 
efgMeans with different superscripts within a column differ at P < 0.05. 
hiMeans with different superscripts within a row differ at P < 0.05. 
1Averages for treatments across the different markers.  
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Table 3.10 
Least square estimates of digestibility (DMD, g/kg DM) derived from the diet × marker 
interaction, presenting values based on both unadjusted and adjusted values. Mean comparisons 
were made between all markers and TC. 
 Treatment means (g/kg DM)a   
Itemb L ML MH H SEMc Effectd 
TC 519eH 537eH 532eH 568eH 20.3 D × M 
RUDM 287fJ 411eJ 448eI 474eI   
RUDMa 398fI 489eI 511eH 533eH   
INDF 267gJ 400fJ 443efI 473eI   
INDFa 381fI 480eI 506eH 532eH   
IADF 272gJ 440fJ 457efI 494eI   
IADFa 386fI 514eHI 519eH 550eH   
aL, low CP hay (CP = 79 g/kg DM); ML, medium low CP hay (CP = 111 g/kg DM); MH, 
medium high CP hay (CP = 131 g/kg DM); and H, high CP hay (CP = 164 g/kg DM). 
bRUDM, rumen undegradable dry matter; RUDMa, adjusted rumen undegradable dry matter; 
INDF, indigestible neutral-detergent fiber; INDFa, adjusted indigestible neutral-detergent fiber; 
IADF, indigestible acid-detergent fiber; IADFa, adjusted indigestible acid-detergent fiber. 
cSEM, standard error of the means. 
d D, Diet (P < 0.001); M, Marker (P < 0.001); D × M, diet by marker interaction (P = 0.019). 
efgMeans with different superscripts within row differ at P < 0.05. 
HIJMeans with different superscripts within column differ at P < 0.05. 
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Chapter IV 

Using acid-detergent lignin, alkaline-peroxide lignin and acid-detergent insoluble ash to 

predict fecal output and digestibility by cattle offered bermudagrass hays of varying 

nutrient composition  

 

Abstract 

The potential of acid-detergent insoluble ash (ADIA), alkaline-peroxide lignin (APL), 

and acid-detergent lignin (ADL) to predict fecal output (FO) and dry matter (DM) digestibility 

(DMD) by cattle offered bermudagrass [Cynodon dactylon (L.) Pers.] hay of different qualities 

was evaluated. Eight ruminally cannulated cows (594 ± 100.3 kg) were allocated randomly to 4 

bermudagrass hay diets categorized by their low (L), medium low (ML), medium high (MH), or 

high (H) crude protein (CP) concentrations (79, 111, 131, and 164 g CP/kg DM, respectively). 

Diets were offered in 3 periods to provide 2 replicates per diet per period (n = 24). Cows were 

offered hay individually at a total of 20 g/kg of BW in equal feedings at 0800 and 1600 h for a 

10-d adaptation followed by a 5-d total fecal collection (TC) each period. Hay, ort, and feces 

from each period were analyzed for ADL, APL, and ADIA concentrations. Actual DM intake 

(DMI), DMD, and FO were determined based on hay offered, ort, and feces excreted. Recovery 

of APL, ADL, and ADIA were expressed as the ratio of the quantity of marker excreted per unit 

of marker consumed. Data for ADL, APL, and ADIA recovery and marker-based estimates of 

FO and DMD were analyzed as a replicated 4 × 4 Latin-Square with one period missing using 

PROC GLM of SAS, where the effects of diet, marker, and the diet by marker interaction were 

included in the model. Average ADL recovery differed from 1 (P < 0.01), and that of APL 

tended to differ (P = 0.081) from 1, but ADIA recovery was not different from 1 (P = 0.204). 
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Estimates of FO and DMD derived using APL and ADIA were not different (P ≥ 0.28) from TC 

while those using ADL differed (P < 0.05) from that of TC. In addition, there was no diet by 

marker interaction (P ≥ 0.224) for both FO and DMD. Therefore ADIA and APL are potential 

internal markers to predict FO and DMD of bermudagrass of varying nutrient composition fed to 

cattle. 

Key words: Bermudagrass, digestibility, alkaline-peroxide lignin, acid-detergent insoluble ash, 

cattle 

 

1. Introduction 

Diet formulation with accurate energy and nutrient digestibility values requires reliable 

methods of obtaining these values (Sales et al., 2004). Traditionally, dry matter digestibility 

(DMD) and that of corresponding nutrients are determined by the in vivo total fecal collection 

(TC) procedure. Although considered the most accurate, this procedure is labor intensive, time 

consuming, and quasi unfeasible to evaluate a wide range of feed samples requiring a large 

number of animals. In an attempt to overcome this problem, indirect methods using internal 

markers have been proposed (Penning and Johnson, 1983 a&b; Cochran et al., 1986; Cochran et 

al., 1987; Pond et al., 1987; Owens and Hanson, 1992). The use of internal markers requires the 

determination of the concentration of the marker and any other nutrient in representative samples 

of diet consumed and feces excreted. In addition, the use of internal marker ratio to estimate 

DMD is possible under the assumption that the marker is completely recoverable in feces.  

Although lignin has been considered to be indigestible and recoverable in feces (Ellis et 

al., 1946; Forbes and Garrigus, 1948; Waldo et al., 1972) for many years, recent studies indicate 

that lignin may not be an adequate internal marker because of potential degradability or 
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formation of insoluble carbohydrate complex during its transit in the gastrointestinal tract (GIT) 

of ruminants (Cochran et al. 1986; Jasra and Johnson, 2000). According to Van Soest (1987), 

successful results can be obtained for ADL as an internal marker when its concentration is at 

least 60 g/kg of the DM. The addition of alkaline hydrogen peroxide (AHP) solution before ADF 

analysis appeared to improve the recoveries of lignin from plants and feces (Cochran et al., 

1988). Digestibility estimates using APL in their trial were similar to those of total collection 

estimates when sheep were fed either immature or dormant grasses. In later digestion trials using 

lambs, APL gave variable digestibility estimates, even though lignin recovery was estimated to 

be near 100% (Momont et al., 1994). On the other hand, acid-detergent insoluble ash (ADIA) has 

been presented as a t reliable internal marker (Van soest, 1994), but is susceptible to soil 

contamination during the feeding process (Appedu and Bodine, 2002). In the previously-

conducted experiment described in Chapter 3, none of the in situ-based internal markers 

presented a satisfactory fecal recovery to estimate fecal output (FO) and DMD. Therefore, the 

objective of this study was to evaluate the potential of ADL, APL and ADIA to be used as 

internal markers to determine FO and DMD of bermudagrass hay of various qualities by cattle. 

 

2. Materials and Methods 

A total collection experiment was conducted for 3 periods using 8 cows offered 

bermudagrass hay of varied crude protein (CP) concentrations (Chapter 3, Table 3.1). Location, 

experimental design, treatments, feeding and sample collection were described in detail in 

Chapter 3. 

 

2.1. Chemical analysis of ADL, APL, and ADIA in forage, orts and feces 
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ADL procedure: Forage, ort, and fecal samples collected during the in vivo experiment 

were ground to pass a 1-mm screen Wiley mill (Arthur H. Thomas Scientific, Philadelphia, PA, 

USA) and sequentially analyzed for NDF, ADF and ADL using neutral-detergent solution, acid-

detergent solution, and 72% sulfuric acid, respectively, according to the batch procedures 

outlined by ANKOM Technology Corp. (Fairport, NY, USA) and Van Soest et al. (1991). 

Samples were run in duplicate and when the coefficient of variation (CV) was greater than 5%, 

samples were rerun again until the CV was equal to or less than 5%. 

APL Procedure: To overcome the problem of inconsistencies in lignin recovery, the ADL 

procedure was modified to include an alkaline-hydrogen peroxide (AHP) pretreatment of 

samples before the acid-detergent analysis (Cochran et al., 1988). Alkaline-peroxide lignin was 

isolated by pre-treating forage, ort, and fecal samples in AHP solution (1% H2O2 + NaOH) with 

pH adjusted to 11.5. The new procedure is an updated combination of procedures for fiber 

analysis (Van Soest et al., 1991; Cochran et al., 1988; and Sunvold and Cochran, 1991). One 

half-gram (0.5 ± 0.01 g) of each sample of forage, ort, and feces was put directly into filter bags 

(ANKOM Technology Corp. #F57, Fairport, NY, USA) instead of incubating samples in filter 

tubes. The bags were sealed, and samples were spread uniformly inside the filter bags. Filter 

bags (n = 24) were placed into a 2000 mL beaker and AHP solution was added at a rate of 50 mL 

AHP solution per bag. The bags were incubated for 24 h with agitation. After 24 h, bags were 

rinsed with hot distilled water (100oC) until the pH became neutral (pH = 7). The filter bags were 

soaked in acetone for 3-5 min. After soaking, the filter bags were spread out on a plate and 

placed under a ventilation hood for at least 30 min to evaporate the acetone before drying the 

filter bags in oven at 100oC for 8 h. Samples were cooled in desiccators for 20 min prior to 

weighing and recording the filter bag and sample residue. The weight obtained minus the initial 
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bag weight constituted the AHP residue. The AHP residue was analyzed sequentially for ADF 

and ADL content using acid-detergent solution and 72% sulfuric acid according to the batch 

procedures outlined by ANKOM Technology Corp. (Fairport, NY, USA) and Van Soest et al. 

(1991). The ADL residue was ashed in a muffle furnace at 500oC for 8 h, and the mass of ash 

from the ADL residue was subtracted from the mass of the ADL residue. The residue was then 

divided by the original sample weight to obtain ash-free APL. Samples were run in duplicate and 

where the CV between replicates was greater than 5%, samples were rerun again until the CV 

was equal or less than 5%. In addition, samples were incubated 24 h instead of 48 h as it was 

suggested by Sunvold and Cochran (1991) because the difference in AHP residue was not 

significantly different to justify the long incubation based on preliminary samples we analyzed. 

Procedure for ADIA: Approximately 0.5 ± 0.01g of forage, ort, and fecal samples were 

put in filter bags (ANKOM Corp. #F57) and analyzed for ADF according to Van Soest et al. 

(1991). The ADF residue was then burned in a muffle furnace at 500oC for 8 h. The ADIA 

concentrations were calculated as the residual ash after ashing divided by the initial sample 

weight. 

 

2.2. Marker recovery calculation, digestibility and fecal output estimation 

The concentration of marker in consumed forage was calculated using the formula [1] in 

Chapter 3. The recovery rates of ADL, APL and ADIA, which are the ratios of the quantity of 

marker excreted in the feces per unit of marker consumed, were calculated using formula [2] of 

Chapter 3. The estimated DMD by internal marker was given by one minus the ratio of marker 

concentration in feed divided by marker concentration in feces according to the formula [4] of 
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Chapter 3. Estimates of FO were expressed as the ratio of the unit of marker consumed per unit 

of marker excreted multiplied by the actual DMI according to the formula [5] of Chapter 3. 

 

2.3. Statistical Analysis  

Data for chemical composition (Table 3.1), DMI, FO, and apparent DMD (Table 3.3) of 

the diet treatments were analyzed in Chapter 3. Data for marker recovery (ADL, APL, and 

ADIA) and estimates of FO and DMD were analyzed using PROC GLM of SAS (SAS Int. Inc., 

Cary, NC, USA, 2009), where diet, marker, and diet × marker interaction were included in the 

model. Results are reported as the least-squares means (LSMEANS). When significant 

differences were detected (P < 0.05), means were separated using the LSMEANS, PDIFF option 

in SAS (SAS Institute). Also, the correlation (PROC CORR) function was used to determine the 

best predictors of FO and DMD. When the diet × marker interaction was not significant, the 

comparisons of the LSMEANS among themselves and with the means of observed values of FO 

and DMD were made by the ESTIMATE statement in PROC GLM. This calculates the 

difference of each pair of means and tests if it is different from zero. A t-test was run to 

determined if the marker recovery rates were different from 1. 

 

3. Results  

Actual in vivo data for DMI, DMD, and FO were reported and discussed in Chapter 3 (Table 3.3) 

and were used to calculate marker recoveries and accuracy. 

 

3.1. Internal marker concentration 
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Hay and fecal marker concentrations are presented in Table 4.1. Concentrations of ADL 

differed by diet (P < 0.001) and were greater for L and H diets and lower for ML and MH diets. 

The ADL concentration in feces tended to be impacted by diet (P = 0.10). The APL in hay and 

feces was not affected (P ≥ 0.121) by diet. Diet tended (P < 0.09) to affect the ADIA 

concentration in hay consumed and affected (P < 0.001) the ADIA content in feces.  Fecal ADIA 

concentrations did not appear to be related to forage CP concentrations, as the greatest (P < 0.05) 

concentrations of ADIA were from cows offered the ML and MH treatments. 

 

3.2. Recovery of internal markers 

Results for marker recovery are presented in Tables 4.2 and 4.3. In general, diet 

treatments did not alter (P = 0.51) the recovery of ADL, APL, and ADIA, but recovery 

differences were observed among markers (P < 0.004). In addition, the diet × marker interaction 

tended to affect marker recovery (P < 0.062). Recovery of ADL differed (P < 0.05) from that of 

ADIA and APL, and that of ADIA and APL did not differ (P > 0.05) from each other. The 

overall average ADL recovery differed from 1 (Table 4.3; P < 0.001) while that of ADIA was 

not different from 1 (P = 0.204) and that of APL tended to differ from 1 (P = 0.081).  

 

3.3. Estimates of FO and apparent DMD 

Estimates of FO differed by marker (P = 0.011, Table 4.4) and diet (P < 0.01), but the 

diet × marker interaction did not affect estimates of FO (P = 0.497). Fecal output estimates by 

APL and ADIA were not different from each other (P = 0.74, Table 4.5) and not different (P ≥ 

0.39) from that of TC, while that of ADL differed (P = 0.002) from that of TC and 

underestimated FO. Estimates of DMD were affected by marker (P = 0.002, Table 4.6) and diet 
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(P = 0.002), but not the diet × marker interaction (P = 0.224). The DMD estimates of ADIA and 

APL were not different (P = 0.54, Table 4.7) from each other and not different (P ≥ 0.28) from 

that of TC values, while ADL overestimated (P < 0.001) DMD. In general, estimates of ADL 

were different from all other estimates and overestimated the apparent DMD by over 10% while 

underestimating FO by over 13%. Furthermore, the correlation coefficients between actual DMD 

values vs. estimated indicated that ADL and APL had low and similar coefficients of correlation 

(r = 0.45 and 0.43) while ADIA had a high correlation coefficient (r = 0.72). For FO, the 

correlation coefficients between actual and estimated values were 0.76, 0.85 and 0.88, 

respectively for ADL, APL, and ADIA. 

 

4. Discussion 

4.1. Diet effect on marker concentration 

The ADL concentrations obtained from the forages used in this study varied between 32 

to 43 g/kg DM. Similar to our results, Bass et al. (2012) reported an average ADL concentration 

of 38 g/kg DM in bermudagrass hay baled at normal moisture concentration after 42 d storage in 

a study conducted in Northwest Arkansas.  

The average APL concentration in feeds and feces excreted in this study was 24.4 and 

56.0 g/kg DM; respectively. A fecal APL concentration of 49 ± 2.4 g/kg was reported by 

Momont et al. (1994) for cows fed prairie hay. Furthermore, the APL concentrations in that study 

did not show any significant variability (P = 0.94) over sampling time, and daily fecal excretion 

of APL was not affected by DMI (P = 0.52). Slightly lower APL concentrations were obtained 

by Sunvold and Cochran (1991). The APL concentrations (g/kg) in forage and feces were 18 and 

46 for bromegrass, and 19 and 45 for prairie hay. Greater values for APL concentrations were 
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obtained by Cochran et al. (1988). The APL concentrations determined by incubation of forage 

samples in AHP solution before acid-detergent extraction were 39 and 55 g/kg in immature and 

dormant grass, respectively. The high APL concentration in that study may have resulted from 

the analytical method used (incubation of samples in filter tubes and use of Whatman paper for 

filtration). As expected, APL concentrations were less than ADL concentrations due to the 

removal of core and non-core lignin fractions (Amjed et al., 1992) when forage samples were 

incubated in AHP before ADF extraction. It is estimated that up to 50% of the lignin in roughage 

may be removed with AHP treatment (Lewis et al., 1988; Bhargava et al., 1989). 

Average concentrations of ADIA in feed and feces for this study were 26 and 58 g/kg 

DM. Fecal ADIA concentration of 59 g/kg DM was reported from lambs fed alfalfa 

(Undersander et al.,1987), or  prairie hay (57.5 g/kg DM; Stafford et al. 1996), and steers fed tall 

grass prairie hay ( 52.5 g/kg DM; Olson et al., 2008), while lower fecal ADIA concentrations (46 

g/kg DM) were found from steers fed alfalfa (Stafford et al., 1996) and from dairy cattle diets 

(Porter, 1987).  

 

4.2. Marker effect on recovery  

The closest fecal recovery rates to 1 were obtained with ADIA (1.029) and APL (1.061) 

while that of ADL was greater than 1. Furthermore, ADL and APL recoveries were more 

variable than the ADIA. Steers fed alfalfa cubes had incomplete ADL recovery rate (0.519), 

while steers consuming tall wheatgrass plus soybean meal (SBM) had a positive recovery (1.164, 

Cochran et al., 1986). Fecal recoveries of ADL were 0.920, 1.065 and 1.145 in steers fed alfalfa, 

bromegrass and prairie hay, respectively (Sunvold and Cochran, 1991). Incomplete ADL fecal 

recoveries (0.776 and 0.938) were obtained from lambs fed prairie hay and lucerne hay, 
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respectively (Krysl et al., 1988). However, Ferret et al. (1999) achieved ADL fecal recovery 

close to 1 in ryegrass diets. The positive and incomplete recovery of ADL is attributable to the 

formation of an artifact during the transit of ingested forage in the GIT of a ruminant 

(Muntifering, 1982; Fahey and Jung, 1983).The biodegradation of lignin during its transit in the 

GIT may also occur (Jasra and Johnson, 2000), and is due to the formation of a soluble lignin-

carbohydrate complex in the rumen environment (Fahey et al. 1979; Merchen, 1993). 

Furthermore, nearly 50% of the lignin in forage may conjugate with carbohydrates and form a 

complex that will be measured in feces as lignin (Neilson and Richards, 1978). On the other 

hand, Elam and Davis (1961) reported that up to 12.9% of lignin in consumed feed was digested. 

Incomplete fecal recovery of lignin as an internal marker may be associated with its low 

concentration in immature forages and the variability in lignin content in different plant species. 

According to Van Soest (1987), ADL should only be used as an internal marker when its 

concentration is at least 60 g/kg of the DM. While some authors consider lignin an inadequate 

internal marker, other argues that lignin can be used with certain types of diets. 

The overall APL fecal recovery was 1.06. Closer fecal APL recovery (0.98 ± 0.025) with 

a range from 0.824 to 1.180 was obtained in lambs fed prairie hay (Momont et al., 1994); 

supplementation with SBM, urea and sulfur, or urea and methionine did not affect APL recovery 

(P = 0.47). Also, Cochran et al. (1988) found a mean fecal APL recovery of 0.976 using steers 

fed dormant bluestem grass(Andropogon gerardii Vitman), and noted that the addition of AHP 

improved the recovery of lignin from plants and feces, and the AHP incubation in ADL 

procedure should be incorporated before the acid-detergent extraction. In a subsequent study 

(Sunvold and Cochran, 1991), average fecal APL recovery rates were 0.892, 1.064, and 0.925 

from steers fed alfalfa, bromegrass, and prairie hay, respectively. Excellent APL fecal recovery 



63 

of 1.00 was achieved in sheep fed ad libitum fescue hay, although actual and predicted 

digestibility values differed (Judkins et al., 1990). However, incomplete APL fecal recovery 

(0.788) was observed on cows fed finger millet (Eleusine coracona) straw with supplements 

(Renuka et al., 2003). 

In this study, the ADIA fecal recovery was 1.03. Similar fecal recovery (0.993) was 

reported by Bodine et al. (2002) on steers fed alfalfa, bermudagrass and prairie hay without 

supplements. The fecal recovery rate of ADIA was also close to 1(1.052 ± 0.0248) from lambs 

fed alfalfa (Undersander et al., 1987), and from steers fed forage-based diets with different levels 

of supplements (Stafford et al., 1996). Supplementation did not have an effect on ADIA 

recovery. However, ADIA recovery of 0.937 was reported in cattle consuming supplemented 

finger millet straw (Renuka et al., 2003). Although over-recovery may occur due to soil 

contamination, ADIA had the potential to perform as an internal marker due to rapid analysis, 

low cost, and low analytical error compared to ADL or APL (Van Soest, 1994). 

 

4.3. Marker effect on prediction of DMD 

The results of the study showed that ADIA and APL are potential internal markers that 

can predict FO and DMD of bermudagrass hay with a wide range of CP concentrations, while 

ADL underestimated FO and overestimated the DMD. Generally, the ability of an internal 

marker to estimate FO and DMD reflects its fecal recovery. Underestimation and overestimation 

of DMD by ADL was reported on steers fed various diets (Cochran et al., 1986). In another 

study, ADL digestion coefficients differed from those of TC (Cochran et al., 1988). According to 

Miraglia et al. (1999), apparent DMD cannot be estimated by ADL because of incomplete 

recovery and subsequent underestimation of digestibility. Underestimation of DMD was also 
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reported on lambs fed prairie and lucerne hay due to incomplete lignin recovery (Krysl et al., 

1988; Merchen, 1993). 

In this study, APL produced estimates of FO and DMD similar to those of TC. Similar 

results were reported on steers fed bluestem-range grass when AHP incubation was performed 

before acid-detergent extraction (Cochran et al., 1988). Estimates of digestibility by APL were 

also similar to TC values when sheep were fed either immature or dormant grasses (Momont et 

al., 1994). However, in a later digestion trial using lambs, APL exhibited variable digestibility 

estimates even though lignin recovery was estimated to be near 1. In addition, Sunvold and 

Cochran (1991) observed that APL ratio performed similarly to ADL ratio in estimating forage 

OMD. Both predicted the actual OMD of bromegrass but failed to predict the actual OMD of 

alfalfa diets. Estimates of DMD were underestimated in cattle consuming finger millet with 

supplement due to the incomplete fecal recovery observed (Renuka et al., 2003).  

Among the markers evaluated, ADIA was the best in predicting FO and DMD. The 

ADIA was the most accurate internal marker in predicting in vivo DMD of alfalfa fed to lambs 

(Undersander et al., 1987). The mean estimates of DMD and OMD by ADIA were 604 and 650 

g/kg DM and were similar to 595 and 643 g/kg DM from in vivo DMD, which resulted in the 

highest correlation and least mean differences between predicted DMD and actual DMD values 

(Undersander et al., 1987). Values of digestibility derived from ADIA were similar to TC values 

on 3 different diets fed to dairy cattle (Porter, 1987). However, ADIA underestimated DMD by 

26.9% with steers fed prairie hay supplemented with corn and soybean meal. No differences 

were found with steers fed alfalfa, bermudagrass and prairies without supplements (Bodine et al., 

2002).  
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5. Implications 

Estimates for digestibility and FO using ADL were different from all other estimates and 

overestimated the apparent digestibility (597 vs. 539 g/kg) while underestimating FO (3655 vs. 

4207 g/d). However, ADIA and APL are potential internal markers for predicting FO and DMD 

by cattle fed bermudagrass hay of varying quality while ADL should be used with caution. 

Estimates of APL presented more variability and correlated less with TC values than those of 

ADIA. 
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Table 4.1 
Concentration (g/kg dry matter, DM) of internal markers in consumed bermudagrass hays of 
varying crude protein concentrations and associated feces.  
 
Itemb 

Diet treatmentsa  
SEMc 

 
P-value L ML MH H 

ADLc 42.8d 32.4e 32.2e 37.6d 1.60 0.001 
ADL f 93.3 84.8 86.6 94.7 3.02 0.100 
APLc 26.4 24.4 22.4 24.4 1.12 0.121 
APLf 59.5 52.8 52.4 59.4 3.20 0.257 
ADIA c 25.4 31.9 26.9 20.0 1.28 0.09 
ADIA f 51.4e 65.1d 60.3d 53.5e 1.73 0.001 
aL, low crude protein hay (CP = 79 g/kg DM); ML, medium low crude protein hay (CP = 111 
g/kg DM); MH, medium high crude protein hay (CP = 131 g/kg DM); and H, high crude protein 
hay (CP = 164 g/kg DM). 
bADLc, acid-detergent lignin in the forage; ADLf, acid-detergent lignin in feces; APLc, alkaline-
peroxide lignin in the forage; APLf, alkaline-peroxide lignin in feces; ADIAc, acid-detergent 
insoluble ash in the forage; ADIAf, acid-detergent insoluble ash in feces. 
cSEM, standard error of the mean. 
defMeans with different superscripts within a row differ at P < 0.05. 
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Table 4.2 
Recovery (g/kg) of internal markers relative to the value 1 (for 100% recovery) in feces for 
each bermudagrass hay treatment. 
 
Itemb 

Treatmentsa   P-valued 
L ML MH H Average SEMc D M D × M 

ADL  1.09 1.20 1.29 1.07 1.16f 0.028 0.51 0.004 0.062 
APL  1.09 1.02 1.06 1.07 1.06e 0.028    
ADIA 1.00 0.96 1.02 1.13 1.03e 0.028    
Average1 1.06 1.06 1.12 1.09      
aL, low crude protein hay (CP = 79 g/kg DM); ML, medium low crude protein hay (CP = 
111 g/kg DM); MH, medium high crude protein hay (CP = 131 g/kg DM); and H, high 
crude protein hay (CP = 164 g/kg DM). 
bADL, acid-detergent lignin; APL, alkaline-peroxide lignin; ADIA, acid-detergent insoluble 
ash. 
cSEM, standard error of the mean. 
dD, diet effect, M, marker effect, and D × M, diet by marker interaction. 
efMeans with different superscripts in the same column differ at P < 0.05. 
1Average per treatment across different markers. 
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Table 4.3 
Internal marker recoveries and their corresponding confidence intervals. Fecal recovery of a 
particular marker is complete if its confidence interval (95%) contains the theoretical value (1) of 
TC. 
 
Parametera 

 
Fecal recovery (g/kg) 

Confidence interval  
SEMb 

 
P-valuec Low limit Upper limit 

ADL  1.163 1.090 1.235 0.172 <0.001 
APL 1.061 0.992 1.131 0.165 0.081 
ADIA 1.029 0.983 1.075 0.023 0.204 
aADL, acid-detergent lignin; APL, alkaline-peroxide lignin; ADIA, acid-detergent insoluble ash. 
bSEM, standard error of the mean. 
cProbability that the fecal recovery mean of a particular marker  is not different from 1. 
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Table 4.4 
Estimates of fecal output (FO, g/d) using different internal markers compared with values 
derived from total collection (TC).  
 
Itemb 

Treatmentsa   P-valued 
L ML MH H Average SEMc D M D × M 

TC 3788 4090 4734 4218 4207e 122.2 <0.01 0.011 0.497 
ADL  3369 3472 3739 4040 3655f     
APL  3510 4088 4593 4046 4059e     
ADIA  3712 4289 4656 3806 4116e     
Average 3595i 3985h 4430g 4028h      
aL, low crude protein hay (CP = 79 g/kg DM); ML, medium low crude protein hay (CP = 
111 g/kg DM); MH, medium high crude protein hay (CP = 131 g/kg DM); and H, high 
crude protein hay (CP = 164 g/kg DM). 
bADL, acid-detergent lignin; APL, alkaline peroxide lignin; ADIA, acid-detergent insoluble 
ash. 
cSEM, standard error of the mean. 
dD, diet effect; M, marker effect; D × M, diet by marker interaction. 
efMeans with different superscripts in the same column differ at P < 0.05. 
ghiMeans with different superscripts in the same row differ at P < 0.05. 
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Table 4.5 
Comparison of different internal markers for predicting fecal output (FO). Estimates are the 
difference among marker values and between marker values and those values from total fecal 
collection (TC). 
Parametera Estimate (g/d) SEDb P-value 
ADIA vs. TC -91 173.0 0.60 
ADL vs. TC -552 173.0 0.002 
APL vs. TC -148 173.0 0.39 
ADIA vs. ADL 461 173.0 0.009 
ADIA vs. APL 57 173.0 0.74 
ADL vs. APL -404 173.0 0.02 
aComparison of estimates of fecal output (g/d) by different markers (ADL, acid-detergent. 
lignin, APL, alkaline-peroxide lignin, ADIA, acid-detergent insoluble ash with total collection 
(TC) or among themselves. 
bSED, standard error of the difference of the means. 
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Table 4.6 
Estimates of dry matter digestibility (DMD, g/kg DM) from different internal markers 
compared with total collection (TC). 
 
Itemb 

Treatmentsa   P-valued 
L ML MH H Average SEMc D M D × M 

TC 506 543 534 572 539f 11.1 0.002 0.002 0.224 
ADL  547 613 635 592 597e 11.1    
APL  543 539 552 590 556f 11.1    
ADIA  507 520 543 617 547f 11.1    
Average 526i 554hi 566gh 593g      
aL, low crude protein hay (CP = 79 g/kg DM); ML, medium low crude protein hay (CP = 
111 g/kg DM); MH, medium high crude protein hay (CP = 131 g/kg DM); and H, high 
crude protein hay (CP = 164 g/kg DM). 
bADL, acid-detergent lignin; APL, alkaline-peroxide lignin; ADIA, acid-detergent insoluble 
ash. 
cSEM, standard error of the mean. 
dD, diet effect, M, marker effect, and D × M, diet by marker interaction. 
efMeans with different superscripts in the same column differ at P < 0.05. 
ghiMeans with different superscripts in the same row differ at P < 0.05. 
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Table 4.7 
Comparison of different internal markers for predicting apparent dry matter digestibility (DMD). 
Estimates are the difference each pair of marker values, and between marker values and those 
values from total fecal collection (TC) 
Parametera Estimate (g/kg) SEDb P-value 
ADL vs. TC 57.8 15.75 <0.001 
APL vs. TC 17.0 15.75 0.28 
ADIA vs. TC 8.0 15.75 0.64 
ADL vs. APL 40.8 15.75 0.012 
ADL vs. ADIA -50.0 15.75 0.002 
ADIA vs. APL -9.1 15.75 0.54 
aComparison of estimates of digestibility by different internal markers (ADL, acid-detergent 
lignin, APL, alkaline-peroxide lignin, ADIA, acid-detergent insoluble ash with total fecal 
collection (TC) or among themselves. 
bSED, standard error of the difference of the means. 
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Chapter V 

Diurnal variation in fecal concentrations of indigestible-acid detergent fiber, acid-detergent 

insoluble ash, and alkaline-peroxide lignin from cattle fed bermudagrass hays of varying 

nutrient content 

 
 
Abstract 

The effect of time of fecal sampling on the accuracy of adjusted indigestible acid-

detergent fiber (IADFa), acid-detergent insoluble ash (ADIA), and alkaline-peroxide lignin 

(APL) for the prediction of fecal output (FO) in cattle was evaluated. Eight ruminally cannulated 

cows (594 ± 100.3 kg) were allocated randomly to 4 bermudagrass [Cynodon dactylon [L.] Pers.] 

hay diets having a wide range of crude protein concentrations (79-164 g/kg DM) with 2 

replicates per diet for 3 periods (n = 24). Cows were offered their respective hay individually at a 

total of 20 g/kg of BW in equal feedings at 0800 and 1600 h for a 10-d adaptation period 

followed by a 5-d total fecal collection (TC) period in 3.0 × 4.3-m pens fitted with rubber mats. 

Fecal grab samples were taken each day during the fecal collection period at 0600, 1200, 1800, 

and 2400 h either directly from the rectum or from fresh feces, and were composited by cow and 

time across the 5 d of total fecal collection. Duplicate samples of each hay, ort, and fecal sample 

were incubated for 144 h in the rumen of 2 cows for each period (n = 6 cows), followed by a 

sequential analysis of neutral-detergent fiber and acid-detergent fiber (ADF) to obtain IADFa. 

Additionally, forage, ort, and fecal samples were analyzed for concentrations of APL and ADIA. 

Time of sampling affected (P < 0.05) the fecal concentrations of, and estimates of DMD from 

IADF, but not those of ADIA and APL (P ≥ 0.16), and did not affect (P ≥ 0.14) estimates of FO 

using either marker. Estimates of FO and DMD by in vivo TC or markers from different 
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sampling times and all different combinations of sampling time were not different (P ≥ 0.29) 

across internal markers. Therefore, there is little variation in concentrations of ADIA and APL in 

daily fecal excretion giving researchers greater flexibility in their fecal grab sampling schedules 

to be used in the prediction of FO and DMD. 

Key words: Digestibility, fecal sampling time, internal markers, bermudagrass, cattle 

 

1. Introduction 

Due to the expense and difficulty involved in testing a large number of forages using in 

vivo techniques for measuring DMI, FO, and DMD in ruminant animals, indirect methods using 

external and internal markers can be applied (Penning and Johnson a & b, 1983; Cochran et al., 

1986; Cochran et al., 1987; Pond et al., 1987; Owens and Hanson, 1992). Internal markers, 

which are inherent constituents of feed that are neither digested nor absorbed by the animal 

(Cochran et al., 1987), are the best options for estimating DMI, FO, and DMD. These markers 

are expected to have a flow through the gastrointestinal tract similar to that of the digesta they 

mark (Owens and Hanson, 1992; Sampaio et al., 2011a).  

The experiment described in Chapters 3 and 4 determined that APL, ADIA, and adjusted IADF 

were the most suitable internal markers to predict DMD and FO by cattle fed bermudagrass hays 

with a range of CP concentrations. Several studies have reported diurnal variation in fecal 

concentration of external markers (Titgemeyer, 1997), but few studies (Momont et al., 1994; 

Sampaio et al., 2011a) have evaluated diurnal fecal concentration patterns of internal markers. 

Bias in estimating fecal excretion can have two sources; firstly, failure of markers to be totally 

recoverable in feces (long term bias), and secondly, failure or inconsistencies in obtaining a 

representative sample of the total feces excreted (Sampaio et al., 2011a&b). Diurnal fecal 



78 

variation can be overcome by collecting enough samples throughout the day to provide a 

composite sample in which the marker concentration is close to the concentration of the entire 

day (Titgemeyer, 1997). To alleviate the tedious work of total fecal collection for estimating 

apparent DMD of cattle feeds, information is needed on the variation of internal markers during 

a 24-h period to determine whether or not sampling time affects marker recovery. Therefore, the 

objective of this study was to evaluate the effect of time of fecal sampling on the accuracy of 

IADFa, ADIA, and APL in predicting FO and DMD in cattle fed bermudagrass hays with a range 

of CP concentrations. 

 

2. Materials and Methods 

The site of the study, the experimental layout, and diet treatments were described in 

Chapter 3. Values of DMI, DMD, and FO based on TC were also described in Chapter 3. All 

other procedures used in this part of the study were approved by the Institutional Animal Care 

and Use Committee of the University of Arkansas (IACUC approved protocol #10016).  

 

2.1. Fecal grab sample collection and preparation for in situ analysis 

Fecal grab samples (approximately 300 g for each sample) were taken 4 times daily 

(0600, 1200, 1800, and 2400 h) directly from the rectum of each cow or from freshly excreted 

feces and were oven-dried at 50oC. Dried fecal grab samples were composited by cow and time 

of sampling within period, then ground to pass a 2-mm screen of a Wiley mill (Thomas 

Scientific, Swedesboro, NJ). Dacron bags (10 × 20 cm; 53 ± 10-µm pore size; ANKOM 

Technology Corp., Fairport, NY, USA) were filled with 5 g of ground feces and closed with 
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rubber bands. Duplicate bags (n = 24 × 4 × 2 = 192) were prepared for each fecal sample 

representing each cow and sampling time within each period.  

 

2.2. In situ experiment for analyzing IADF  

A total of 6 cows (585 ± 37.8 kg) were used for in situ marker determination, with 

samples from each period in the digestion study assigned to 2 of the 6 cows. Duplicate fecal grab 

samples along with hay and ort samples were incubated for 144 h (6 d), and the remaining DM 

over initial sample weight was RUDM. The INDF and IADF were analyzed by extracting the 

residue in NDF and ADF solution (Cochran et al., 1986). A complete description of the in situ 

diets and procedures can be found in Chapter 3. 

 

2.3. Chemical analysis of IADFa, APL, and ADIA in fecal grab samples 

Residual DM from the in situ incubation was analyzed sequentially for NDF and ADF by 

the method of Van Soest et al. (1991) and the batch procedure of ANKOM Technology Corp. 

(Fairport, NY, USA) to determine indigestible ADF. Adjusted IADF (IADFa) was obtained by 

dividing the IADF concentration by the corresponding correction factor (CF) obtained as 

described in Chapter 3.  

Hay, ort, and fecal grab samples were ground to pass 1-mm screen Willey mill and 

analyzed for ADIA (Van Soest et al., 1991) using the ANKOM procedure (ANKOM Technology 

Corp., Fairport, NY, USA), for which 0.5 ± 0.01 g of sample was analyzed for ADF, and the 

remaining ADF residue was ashed in a muffle furnace (Thermolyne Sybron, Thermolyne 

Corporation, Dubuque, IA, USA) at 500oC for 8 h. Alkaline-peroxide lignin analysis was 

performed by the modified procedure of Cochran et al. (1988) and Sunvold and Cochran (1991), 
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for which 0.5 ± 0.01 g of sample were placed in filter bags (ANKOM Corp., #F57) instead of 

using filter tubes, then incubated in alkaline-hydroxide peroxide (AHP, pH = 11.5) solution for 

24 h, and rinsed to neutral pH with hot distilled water after incubation instead of filtration using 

Whatman filter paper. The AHP residue was then sequentially analyzed for ADF and ADL to 

obtain APL concentrations in fecal grab samples. 

 

2.4. Calculation of DMD and FO using IADFa, ADIA, and APL from fecal grab samples 

The concentrations of IADFa in consumed forage were reported in Chapter 3 (Table 3.4), and 

those of APL and ADIA were reported in Chapter 4 (Table 4.1). Apparent in vivo FO was 

determined directly, and DMD was calculated using formula [3] of Chapter 3. The estimated 

DMD using the fecal grab samples taken at different times was calculated by the following 

formula: 

DMD = 100 × (1 - Mfd / Mftime) [1] 

where Mfd is the marker concentration in consumed feed; Mftime is the marker concentration in 

each fecal grab sample at a particular sampling time. 

Estimates of FO by fecal grab samples taken at different times were calculated according 

to the following expression: 

FO = DMI × Mfd / Mftime [2] 

As we had 4 sampling times, the resulting single sample times and all possible 2-, 3-, and 

4-way combinations of the 4 sampling times resulted in 15 different combinations of sampling 

time means to compare to in vivo total collection data (TC). These values were compared to 

determine diurnal variation in marker concentration as well as to determine how close the 

concentrations of markers in the grab samples were to those obtained by TC, and to determine 
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which time or combination of times of sampling could provide the closest prediction of FO and 

DMD to those from TC. 

 

2.5. Statistical analysis  

Data for marker concentrations in grab samples, and FO and DMD estimates derived 

from the marker concentration at different sampling times and their different combinations (15) 

were analyzed as a replicated 4 × 4 Latin-Square design with one period missing using PROC 

GLM of SAS (SAS Inst. Inc., Cary, NC, USA, 2009). Effects of period, cow, diet, marker, 

sampling time, and the 2- and 3-way interactions among diet, marker, and sampling time were 

included in the model and significance was noted at P < 0.05. In cases where no marker × time 

or diet × marker × time interaction was detected, each individual marker was analyzed separately 

to determine if there was any potential diet × time interaction within each individual marker. The 

model included diet, time and a diet × time interaction term.  

 

3. Results  

The analysis of the entire data set (period = 3; diet = 4, cow within diet = 2, time with all 

sampling time combinations = 15, marker = 3; n = 1080) where diet, marker, and time were 

included in the model revealed that diet, marker, and the interaction diet × marker affected (P < 

0.001) the estimates of FO and DMD, but time of sampling had no effect (P ≥ 0.96) on the 

prediction of FO and DMD. In addition, the interactions of marker × time, diet × time, and diet × 

marker × time of sampling were not significant (data not shown; P ≥ 0.99). Therefore, it was 

concluded that the three markers behave similarly regarding their prediction of FO and DMD. 
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Thus, the following results are related to the analysis of data for each individual marker for 

which diet, time, and diet × time interaction were included in the model. 

 

3.1. Marker concentration in feces by sampling time 

The chemical composition of the diet treatments and values of DMI, DMD, and FO 

derived from TC have been presented and discussed in Chapter 3. Concentrations of internal 

markers in feces and effects of time of grab-sampling are displayed in Table 5.1. There was no 

diet × time of sampling interaction (P ≥ 0.60) for all 3 markers. Fecal concentrations of IADFa 

were affected by sampling time (P < 0.01) and diet (P = 0.01). Concentration of IADFa in fecal 

grab samples taken at 0600, 1200, and 1800h were greater (P < 0.05) than those derived from 

TC. The concentrations of ADIA and APL were not affected by sampling time (P = 0.45 and P = 

0.22, respectively), but diet affected (P < 0.01) fecal ADIA and APL concentrations.  

 

3.2. Fecal output estimation and digestibility by sampling time 

Estimates of FO and DMD by different fecal grab sampling times (1, 2, 3, and 4) are also 

presented in Table 5.1. Diet (P < 0.01), time (P < 0.03), and the diet × time (P < 0.02) interaction 

affected predictions of DMD using IADFa. Time of sampling (P ≥ 0.16) and diet × time (P ≥ 

0.86) had no effect on the prediction of DMD by ADIA and APL.  

Estimates of FO derived using the mean marker concentrations across the 4 fecal grab 

samplings per day for the 3 internal markers (IADFa1234, ADIA1234, APL1234) differed among 

markers (P = 0.03, Table 5.2) but estimates of FO from all 3 markers were not different from the 

FO value obtained by TC procedure. Also, estimates of DMD determined from a combination of 

the 4 fecal grab samplings per day differed (P = 0.002) by internal markers but only the DMD 
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estimated by APL differed (P < 0.05) from that of TC. Diet affected (P < 0.01) DMD and FO (P 

< 0.001) estimates, and the diet × marker interaction affected DMD (P = 0.003) but not FO (P = 

0.16) estimates. Alkaline peroxide lignin (APL1234) overestimated (575 vs. 509), and IADFa1234 

underestimated (399 vs. 509) the DMD of low quality bermudagrass (Table 5.3). The DMD 

estimates derived from the mean of the 4 sampling times from the different markers were not 

different (P > 0.05) from those from TC within the ML, MH, and H bermudagrass hays. 

Estimates of FO and DMD (Table 5.4) by IADFa, ADIA, and APL using samples from 

different fecal sampling times (1, 2, 3, 4) and their different 2-, 3-, and 4-way combinations were 

not different from in vivo values (P ≥ 0.60 and P ≥ 0.29; respectively). Diet had an effect (P < 

0.01) on the prediction of FO and DMD for all internal markers while time (P > 0.29) and diet × 

time did not impact (P ≥ 0.82) FO and DMD prediction.  

 

4. Discussion 

4.1. Effects of diet and sampling time on marker concentration 

There was little variation in concentration of ADIA and APL within a 24 h sampling 

period, whereas, the concentration of IADFa presented some variability. Other researchers have 

reported concerning diurnal variation of internal markers. Fecal lignin concentrations were 

relatively uniform within day and not impacted by a sampling schedule of 3-h intervals for 48 h 

(Elam and Davis, 1961), and daily variation in lignin (72 % sulfuric acid) content of feces from 

sheep on a diet of timothy [Phleum pratense L.] hay was also very small (Ellis et al., 1946). 

Furthermore, no interaction between diet and time was detected in their study.  

No differences in fecal concentrations of IADF and INDF were observed among samples 

taken 4 times daily (0130, 0730, 1330, 1930 h) when compared with the IADF and INDF 
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concentrations provided by a representative sample from TC (Sampaio et al., 2011b). Also, 

uniformity of fecal excretion patterns of indigestible dry matter, INDF, and IADF in a digestion 

trial with cattle fed different diets such as elephant grass (Pennisetum purpureum Schumach.) 

silage, corn (Zea mays L.) silage, and signal grass (Brachiaria decumbens Stapf) hay, led to 

recommendations that 4 fecal samplings that are evenly distributed during the day can help to 

obtain FO estimations free of bias (Sampaio et al., 2011a). Also, fecal IADF content from 

grazing sheep varied little across 5 d within a period (Nelson et al., 1990), further supporting that 

variation in fecal concentrations of IADF may have little fluctuation. 

In this study, fecal APL concentrations showed very small diurnal fluctuations across 

sampling times. Sampling time had no effect on APL concentrations in feces, resulting in no 

diurnal variation in APL excretion in previous work (Momont et al., 1994). A lack of diurnal or 

day-to-day variation was also reported on acid-insoluble ash (Van Keulen and Young, 1977; 

Thonney et al., 1985) and ADIA (Porter, 1987) concentrations in feces. 

Comparing external (chromium and titanium dioxide) and internal markers (RUDM, 

INDF, and IADF), Sampaio et al. (2011a) noted that external markers presented a higher 

oscillation range (between 23.0 and 21.2%) than internal markers (6.6, 5.8, and 8.5%), meaning 

that fecal concentrations of internal markers from samples gathered throughout the day are closer 

to the average fecal concentrations than those of external markers. These same authors reported 

an oscillation rate of 8.5% for IADF; while in this study, the oscillation rate was 6.1% for IADFa, 

5.0% for ADIA, and 5.7% for APL. The oscillation rate, which is calculated as the difference 

between the maximum fecal concentration of a marker (Cmax) and the minimum (Cmin) divided 

by the overall mean fecal marker concentration (Ao, Sampaio et al., 2011a), provides information 

on the variability of the marker around the mean fecal concentration. Ideal markers should flow 
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similarly to and be physically associated with the digesta they mark (Owens and Hanson, 1992). 

Internal markers, which are natural components of feeds, are expected to flow similarly with the 

digesta through the gastrointestinal tract of the animal (Sampaio et al., 2011a&b); which may 

explain why there was little variation of fecal content of the internal markers studied. 

Furthermore, some variations observed in marker concentrations in feces may have been caused 

by differences in diet and the feeding frequencies (Vanzant et al., 1998), and also by the natural 

event of transit and degradation of consumed feed, although continuous in the rumen, there is a 

time when ruminant animal may be processing greater amounts of feed (Sampaio et al, 

2011a&b), and this may explain why there was some variability in fecal concentrations.  

 

4.2. Estimates of FO and DMD  

In this study, all sampling times (4 times with a 6-h interval) and their different 

combinations produced similar results that were not different from TC, thus, fecal sampling time 

had little effect on the prediction of FO and DMD. No differences between actual and predicted 

values of DMD, FO, DMI using fecal grab samples and representative samples from total fecal 

collection were reported in previous work (Momont et al., 1994), which supports the findings 

from this study. Porter (1987) reported that 2 fecal grab samplings per day for 14 d can provide 

acceptable estimates of DMD on individual cows with 95% confidence. 

 

5. Implications 

The results of this study revealed that time of sampling affected the concentration of 

IADFa but did not alter the ADIA and APL concentrations in fecal grab samples across sampling 

times or from that in TC. Consequently, estimates of DMD by a representative sample from TC 
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and that from all grab sampling times and their different combinations were not different from 

actual DMD regardless of which internal marker was used. Similarly, FO estimated by in vivo, 

samples from TC, or samples from different sampling times, and all different combinations of 

sampling times were not different across internal markers. Therefore, there was little variation in 

concentrations of ADIA and APL in daily fecal excretion and multiple daily fecal samplings may 

not be necessary to obtain a representative sample of cow fecal excretion. 
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Table 5.1 
Mean fecal concentrations (g/kg dry matter, DM), and estimates of fecal output (FO, g/d), and dry 
matter digestibility (DMD, g/kg DM) using adjusted indigestible acid-detergent fiber (IADFa), 
acid-insoluble ash (ADIA), and alkaline-peroxide lignin (APL) from feces sampled at different 
times compared with actual fecal concentrations, FO, and DMD values from total collection (TC). 
 

Markerb 
Time of samplinga   

SEMd 
P-valuee 

1 2 3 4 TCc D T D × T 
Fecal concentrations (g/kg DM)        

IADFa 363f 372f 361fg 350gh 345h 4.1 0.01 <0.01 0.96 
ADIA 59 58 61 58 58 1.5 <0.01 0.45 0.60 
APL 55 59 58 58 56 1.2 <0.01 0.22 0.92 

FO (g/d)         
IADFa 4366 4242 4363 4526 4207 94.0 <0.01 0.14 0.35 
ADIA 4036 4069 3928 4071 4207 125.4 <0.01 0.64 0.78 
APL 4105 3903 3907 3922 4207 135.8 <0.01 0.38 0.99 

DMD (g/kg DM)        
IADFa 516fg 530f 518fg 500g 539f 9.1 <0.01 0.03 0.02 
ADIA 557 554 573 551 539 9.6 <0.01 0.16 0.86 
APL 550 576 571 574 539 13.5 0.30 0.20 0.98 

aDifferent sampling times (1 = 0600, 2 = 1200, 3 = 1800, and 4 = 2400 h). 
bIADFa, adjusted indigestible acid-detergent fiber; ADIA, acid-detergent insoluble ash; and APL, 
alkaline-peroxide lignin. 
cTC, total fecal collection. 
dSEM, standard error of the mean. 
eD, diet; T, sampling time; D × T, diet by sampling time interaction. 
fghMeans with different superscripts in the same row differ, P < 0.05. 
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Table 5.2 
Comparison of in vivo dry matter digestibility (DMD, g/kg DM) and fecal output (FO, g/d) with 
estimates obtained by different internal markers using the mean of 4 fecal grab samples per day. 
 Markera  P-valuee 
Itemb IADF1234 ADIA 1234 APL1234 TCc SEMd D M D × M 
FO (g/d) 4370f 3990g 3930g 4207fg 111.4 <0.001 0.03 0.16 
DMD (g/kg) 517g 561fg 571f 539g 10.5 <0.001 0.002 0.003 
aIADFa, adjusted indigestible acid-detergent fiber; ADIA, acid-detergent insoluble ash; APL, 
alkaline-peroxide lignin. Each value represents the mean from four grab samples per day (0600, 
1200, 1800, and 2400). 
bFO, fecal output; DMD, dry matter digestibility. 
cTC, total fecal collection. 
dSEM, standard error of the mean. 
eD, diet effect; M, marker effect; D × M, diet by marker interaction.  
fgMeans with different superscripts in the same row differ at P < 0.05. 
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Table 5.3 
Dry matter digestibility (DMD, g/kg DM) of bermudagrass hay diets varying in crude protein 
concentrations estimated using total collection or the mean concentration of different internal 
markers across 4 fecal grab samples daily. 
 
Methodb 

Treatmentsa  
SEMc 

 
Effect L ML MH H 

TC 509e 543de 535de 570de 21.4 D × M 
ADIA 1234 545de 531de 563de 607d   
APL1234 575d 557de 559de 591d   

IADFa1234 399f 546de 547de 574d   
aL, low crude protein (CP = 79 g/kg DM); ML, medium low crude protein (CP = 111 g/kg DM); 
MH, medium high crude protein (CP = 131 g/kg DM); H, high quality diet (CP = 164 g/kg DM). 
bTC, total collection, IADFa1234, adjusted indigestible acid-detergent fiber using 4 sampling times 
; ADIA 1234, acid-detergent insoluble ash using 4 sampling times; and APL1234, alkaline-peroxide 
lignin using 4 sampling times. Each marker value represents the mean from four grab samples 
per day (0600, 1200, 1800, and 2400). 
cSEM, standard error of the mean. 
defMeans with different superscripts within row and column differ at P < 0.05. 
 
 



 
 

 
Table 5.4 
Comparison of the actual in vivo estimates of fecal output (FO, g/d) and dry matter (DM) digestibility (DMD,g/kg DM) and their 
corresponding estimates determined using adjusted indigestible acid-detergent fiber (IADFa), acid-detergent insoluble ash (ADIA), 
and alkaline-peroxide lignin (APL) using samples from different sampling times and their combinations.a  
 Time of samplingb   P-valuef 

Itemc Marker 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234 TCd SEMe D T D × T 
FO                      
 IADFa 4366 4242 4363 4526 4300 4361 4439 4299 4439 4440 4318 4369 4412 4370 4367 4207 85.5 <0.01 0.60 0.99 

 ADIA 4036 4069 3928 4073 4039 3945 4046 3952 4057 3962 3967 4043 3975 3979 3986 4207 100.0 <0.01 0.94 0.99 

 APL 4105 3903 3907 3922 3987 3992 3995 3896 3888 3895 3954 3888 3955 3887 3934 4207 125.5 <0.01 0.94 0.99 

DMD                     

 IADFa 516 530 518 500 523 517 508 524 508 509 522 516 512 517 517 539 8.6 <0.01 0.29 0.82 

 ADIA 557 554 573 551 557 565 555 565 555 563 564 556 562 562 561 539 9.2 <0.01 0.83 0.99 

 APL 550 576 571 574 565 554 564 575 578 575 568 578 568 576 571 539 12.7 0.003 0.72 0.99 

aThere was no diet × time interaction for DMD and FO (P > 0.82) on all markers. 
b1, sampled at 0600; 2, sampled at 1200; 3, sampled at 1800, 4, sampled at 2400, and their different combinations of sampling times. 
cFO, fecal output; DM, dry matter digestibility.  
dTC, total collection. 
eSEM, standard error of the means. 
fD, diet; T, time effect; D × T, diet by time interaction. 

92 



93 
 

Chapter VI 

Conclusion 

 

The objective of this study was to evaluate the potential of different internal markers in 

predicting the nutritive value of bermudagrass hay of varying quality fed to cattle with the long-

term goal to improve the accuracy of currently used bermudagrass TDN equation for Arkansas. 

An additional objective was to determine the fecal sampling frequencies that can provide an 

adequate estimate of daily fecal excretion. The results of this investigation showed varying 

results in marker recovery, in particular for the in situ indigestible components of feed materials. 

This is mainly due to differential loss of particles among hay offered, ort, and feces during the in 

situ procedure. The results of this study revealed that incomplete recovery of the in situ markers 

can be improved by appropriate adjustments of marker recovery. 

Incomplete and positive recoveries were also noted for acid-detergent lignin, alkaline-

peroxide lignin, and acid-detergent insoluble ash, with greater variability for acid-detergent 

lignin and alkaline-peroxide lignin. However, the overall recovery rates for alkaline-peroxide 

lignin and acid-detergent insoluble ash were the closest to 1, and derived fecal output and dry 

matter digestibility using those markers were similar to the actual values. Furthermore, this study 

found that time of fecal grab sampling within a 24-h period had little effect on fecal 

concentrations of alkaline-peroxide lignin and acid-detergent insoluble ash. The predicted fecal 

output and dry matter digestibility were not different from the actual in vivo values regardless of 

time of sampling or their combination, which suggests that researchers have considerable 

flexibility in developing a multiple daily sampling schedule to predict fecal output and dry matter 

digestibility in cattle consuming bermudagrass hay of varying crude protein concentrations. 
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With the two potential internal markers identified (ADIA and APL), their estimates of 

DMD or OMD can be used to update the current TDN equation without conducting total 

collection. This can be achieved by sampling forage offered and feces at any particular time of 

the day and analyze the concentration of the internal marker in feed and feces and then apply the 

marker ratio formula to calculate the digestibility of the bermudagrass hay diets. But, before 

applying the selected internal marker, an attempt was made to assess the relationship between 

actual DMD and estimated TDN using the current bermudagrass TDN equation for Arkansas. 

The data consisted of 24 in vivo DMD observations of the four diet treatments (L, ML, 

MH, H) fed during the 3 periods, the chemical compositions (CP, NDF, ADF) of the diet 

treatments, and estimated TDN using the current bermudagrass TDN equation for Arkansas 

[111.8 + 0.95 CP - 0.70 NDF - 0.36 ADF]. The relationship between observed DMD and TDN 

estimated using the Arkansas TDN equation for bermudagrass is presented in the Figure 6.1 and 

in Table 6.1. There was a positive relationship between DMD from TC and calculated TDN (Y = 

0.84x + 133.7; R2 = 0.337). Also, the simple correlation coefficient between DMD and TDN 

estimates was positive and significant (r = 0.58, P = 0.002). The current bermudagrass TDN 

equation accurately predicted the energy content of L diet (Table 6.2; 501 vs. 511 g/kg DM), but 

overestimated the energy content of ML, MH, and H diets. Overestimation of bermudagrass 

energy by the current TDN energy equation was also reported by Gadberry et al. (2005), and bias 

increased as hay CP increased up to the MH level. The decline in bias from MH to H diet was 

mainly due to the relatively high NDF observed on that hay, which decreased the calculated 

TDN. It appears from these results that the current TDN equation for bermudagrass predicted 

accurately the energy of low quality hay, but not that of higher quality hay. The overestimate of 
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energy content by the current TDN equation of ML, MH, and H diets may be associated with the 

narrow range of bermudagrass hay quality used to develop the current TDN expression. 
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Figure 6.1
Relationship between observed dry matter digestibility (DMD, g/kg DM) and predicted 
total digestible nutrient (TDN, g/kg DM) estimates using the Arkansas TDN equation for 
bermudagrass
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Table 6.1 
Correlation coefficient among different variables and their corresponding P-values 
Itema  DMD CP NDF ADF 
CP 0.50b 

0.013c 
   

NDF -0.46 
0.024 

-0.28 
0.19 

  

ADF -0.47 
0.02 

-0.48 
0.017 

0.93 
<0.001 

 

TDN 0.58 
0.002 

0.75 
<0.001 

-0.84 
<0.001 

-0.93 
<0.001 

aCP, crude protein; NDF, neutral-detergent fiber; ADF, acid-detergent fiber; TDN, total 
digestible nutrient calculated using the Arkansas TDN equation for bermudagrass. 
bCorrelation coefficient. 
cP-value, probability that the correlation coefficient is significant.  
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Table 6.2 
Estimates of energy of varying qualities bermudagrass hays using the Arkansas total digestible 
nutrient (TDN) equation 
 Diet treatmentsa   
Itemb L ML MH H SEMc P-value 
CP g/kg 79f 111e 131e 164d 6.4 <0.001 
NDF, g/kg 768 712 690 740 19.1 0.085 
ADF, g/kg 428d 348e 332e 370de 19.4 0.035 
TDN, g/kg 501f 600e 640d 623de 16.4 <0.01 
DMD, g/kg 511 544 535 567 13.4 0.180 
Bias TDN vs. DMD, g/kg -10 56 105 56   
aL, low CP; ML, medium low CP; MH, medium high CP; H, high CP diet. 
bCP, crude protein; NDF, neutral-detergent fiber; ADF, acid-detergent fiber; TDN, total digestible 
nutrient estimated using current bermudagrass TDN equation [111.8 + 0.95CP - 0.7 NDF - 0.36 
ADF]; DMD, dry matter digestibility; Bias, difference between TDN calculated and the actual 
values of DMD. 
cSEM, standard error of the mean. 
defMeans with different superscripts within a row differ at P < 0.05. 
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