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ABSTRACT 

Urban areas constitute complex spatial entities where biophysical and socioeconomic 

environments interact through processes that determine the distribution of land use in the 

territory. Given Chile’s variety of landscapes, water erosion, and mass movement, and rapid 

expansion of its medium-sized cities, straightforward techniques for assessment of land use 

suitability are essential. Through evaluation of water erosion susceptibility, it is possible to 

efficiently determine suitability of land use in medium-sized cities and their adjacent 

environments. The adaptation and application of the Erosion Response Units (ERU) concept 

(Märker et al., 2001) in the cities of Colina and Melipilla, Metropolitan Region of Santiago, 

enabled an improved understanding of the relationship among erosion and land use potential 

variables in urban environments. Since publicly available remote sensor and ancillary GIS data 

were incorporated, this approach has application beyond the cities studied. The results indicate 

that it is possible to assess the land use suitability of medium-sized urban areas based on water 

erosion susceptibility by using an integrated modeling framework. Thus, the highest degrees of 

land use suitability are associated with lowest degrees of erosion susceptibility. 

 

KEYWORDS: land use suitability, medium-sized cities, water erosion susceptibility, Erosion 

Response Units (ERU) 
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I. INTRODUCTION 

An ecosystem is a set of species interacting seamlessly with each other and their 

environment. Urban areas are not excluded from ecosystems because they are subject to many of 

the same processes that operate in natural systems. In cities and their surrounding areas, the 

territory has been transformed and organized to support human survival, and interactions are 

affected by various landscape processes on the terrain. For this reason, urbanized ecosystems are 

an ongoing large-scale natural experiment that could be utilized to assess ecological theories 

empirically (Chiari et al., 2010).   

As a manifestation of human intervention in territory land use is important and serves as 

a generalized descriptor of anthropogenic activities and interactions with the natural 

environment. In that context, land use planning does not only depend on demographic and 

economic features, but also on complex combinations of biophysical factors. The end result is a 

specific form of exploitation of the territory, which is manifested in patterns of occupation within 

the landscape.  

Territorial planning implies that spatial problems are being addressed. It is a technique 

that provides a model for organizing urban landscapes. Planners will not just develop general 

guidelines but will aim to improve urban development of specific cities. A systematic, multi-

scale evaluation of the impacts of urban land use transition is important, especially for the 

housing sector (Nuissl et al., 2009). One of the most important aspects of this kind of spatial 

organization is the evaluation of erosion processes in the urban and peri-urban areas because 

these can produce a negative impact on the quality of life of urban inhabitants. During recent 

decades, several studies have revealed the importance of soil erosion in various distinct land use 
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or land cover conditions by soil surveys that provide data on ecological characteristics in urban 

areas (Martı́nez-Casasnovas & Sánchez-Bosch, 2000 and Schleufl et al., 1998). 

In reality, each model of territorial planning may uniquely describe soil, vegetation cover, 

topography, and other natural features which influence landscape processes. These in turn affect 

the how we understand potential runoff and dynamics of sedimentary systems. Regardless of the 

modeling techniques used, soil erosion is a key factor in some environments, and is not only 

associated with topographic conditions, but is also controlled by land use and plant cover 

changes (García-Ruiz, 2010). Some changes in land use may introduce major impacts on 

biophysical dynamics that at the same time control the spatial organization of humans. 

Consequently, an early evaluation of geographic features and processes may facilitate planning 

because this information could be synthesized into an overall environmental strategy that is 

clearly understood and followed. 

Thus, the assessment and determination of water erosion susceptibility in urban 

environments is necessary in order to develop an accurate plan of optimal land use not only for 

urban and suburban areas, but also for the landscapes that are part of surrounding watersheds. 

This is particularly noteworthy in medium-sized cities because these constitute complex spatial 

mosaics. Therefore, it is essential to apply environmental management and land planning to 

determine and minimize the impact of erosion in and around such cities. 

The procedure used to map soil erosion can be adapted to other situations and may be an 

effective tool for land use planning (Nicholas & McColl, 1976). In the last twenty years not only 

have numerous studies identified current erosion, but also to the prediction of future erosion. The 

concept of Erosion Response Units (ERU), proposed by Märker et al. (2001) emerged from the 
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overlap of physical and natural variables for a given area, including a water erosion layer (rill, 

gully, and some types of mass movements), providing information on the erosive susceptibility.  

The objective of this study was to evaluate the susceptibility of terrain to water erosion 

processes using the ERU concept, and its potential as a tool for identification of land use 

suitability in the urban environments of the cities of Colina and Melipilla in the Metropolitan 

Region of Santiago, Chile. Map overlays were used for analyzing and aggregating continuous 

raster GIS data such as land cover, soil texture, and vegetation. In addition, various factors were 

evaluated using a multi-criteria scoring system called the Analytical Hierarchy Process (Saaty & 

Kearns, 1991), as a technique for analyzing complex decisions. These scores assisted in the 

identification of erosion susceptibility and land use suitability.  

Land use planning of medium-sized cities in Chile is rarely practiced. The type of 

planning demonstrated in this study is important for Chile because of the great variety of 

environments, ecosystems and water erosion processes in this territory. Urban planning in 

Central Chile must involve the development of diagnostics to identify the impact of water 

erosion that occur periodically not only in mountainous areas, but also in the bottom valley. 

II. HYPOTHESIS 

This study addressed the following hypothesis: Assessment of ERU-based water erosion 

in and surrounding medium-sized cities is an effective approach to their land use suitability due 

to both environmental impacts as well as the distribution of human activities. 

 

 

http://en.wikipedia.org/wiki/MCDA
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III. BACKGROUND AND LITERATURE REVIEW 

Land Use and Land Use Planning Concepts 

According to the definition from the Food and Agriculture Organization of the United 

Nations (2003), land use is characterised by the arrangements, activities and inputs people 

undertake in a certain type of land cover to produce, change or maintain it. Thus, land use is the 

representation of the anthropogenic activities that are practiced at a place, such as agricultural or 

urban uses. This idea of land use differs from the land cover concept because some types of uses 

are not always associated with physical-natural features.  

However, urban land use is one of the key attributes affecting biodiversity around the 

world and there is an increased interest among ecologists in remnant nature within and around 

cities. Some ecological effects of urbanization are known including habitat degradation, 

fragmentation and loss, pollution, and the alteration of biodiversity patterns (Chiari et al., 2010). 

Therefore, urban land use can produce some cumulative effects on the natural environment on 

many spatial scales.  

Along the same lines, the goal of land use planning is creating the prerequisites to 

achieve a territory that is sustainable, environmentally compatible, and socially and 

economically desirable. It is orientated to local conditions in terms of method and content 

because it considers cultural viewpoints and it is built on local environmental knowledge. Land 

use planning takes into account traditional strategies for solving issues based on a dialogue 

between different types of professionals (Amler et al., 1999). 
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Traditionally there are some aspects of urban planning that designers simply do not 

consider. For example, many plans focus on the site that they are planning, but rarely consider 

the situation of ecological issues outside the planning area. In this paradigm, a certain parcel of 

terrain is either in or out of the study area based on arbitrary boundaries. In another scenario, the 

design process is created on the assumption that human beings will control the study area in the 

future (Perlman & Miller, 2005). In reality, natural factors sometimes have the capacity to alter 

plans even for urban areas. 

Nuissl et al. (2009) proposed a model of “Driving Forces, Pressure, State, Impact and 

Response” (DPSIR model) which is widely used in environmental research. It conceptualizes 

human-environment interaction as the exertion of pressure on the environment, leading to a 

certain state of the environment that exerts particular impact (Figure 1). 

 

Figure 1. Conceptualization of land use transition from Nuissl et al. (2009). 
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Land Use Suitability 

The incorporation of feedback between changing environmental and land use condition is 

a promising development in land use planning. However, dynamic feedback between the 

socioeconomic and biophysical components at most only partially in current land use models and 

in many cases not at all (Veldkamp & Verburg, 2004). In addition, there is much evidence of 

deficient management of ecosystems where traditional methods do not result in sustainability; as 

a reaction many approaches are seeking to reduce the impact of traditional resource management 

(Berkes et al., 2000).     

One of the preferred approaches to supporting sustainable land use planning is land 

evaluation because it aims to compare each potential land use with the properties of individual 

land units, which are areas that differ from the surrounding land and have homogeneous 

geographic properties that affect their suitability for different land uses (Van Niekerk, 2010). 

Nevertheless, the challenges of this process is to prove its importance to the current pressing land 

use issues because these predictions are only useful if they are used by planners, land users or 

governments (Rossiter, 1996).  

As stated above, a traditional method utilized by planners and researchers for land use 

suitability assessment is using individual units in homogeneous zones (Figure 2). This method 

starts with a classification based on layered criteria maps that produce some areas with clustered 

pixels.  After that, the different classes are separated in relation to the discontinuous spatial 

limits. Next, these sub classes are called zones that are reclassified in new homogenous zones of 

land use (Joerin et al., 2001).   
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Figure 2. Procedure of homogeneous zones (Joerin et al., 2001). 

Thus, the land capability or land suitability approach determines the potential to utilize an 

area of territory for various purposes or management practices (Brown et al., 2008). In other 

words, the determination of land capability is an important condition for land use planning to 

proceed on a rational and sustainable basis because it involves assessment and classification of a 

unit of area according to its suitability for different activities (Kılıç et al., 2003 and Malczewski, 

2006).  

It is essential that land use planning be compatible with sustainable use, and management 

sustained productivity of resources and environmental degradation. These aspects assist planners 

and researchers in ensuring that the territory is used according to its capacity to satisfy human 

needs. Consequently, it suggests that the land use suitability concept can be defined as the latent 

capacity of a unit of territory to support natural uses or human activities, due to the spatial 

configuration of its biophysical and socio-economic components. 
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In recent decades several approaches to land suitability evaluation have been developed. 

However, one of the first approaches was developed by the Food and Agriculture Organization 

of the United Nations (1976), which analyzed suitability based not only on land qualities and 

water availability, but also on erosion-hazard assessment, which was used as one of the inputs 

for land suitability classification. Therefore, the determination of land suitability was done 

mainly by assessing and grouping the land types in orders and classes. The order ranges were 

from suitable (S), which characterizes land that provides suitability for a specific use and will 

result in positive benefits, to not suitable (N), which indicates land qualities that are 

inappropriate for the considered type of use. 

According to Ziadat (2007), the accuracy of suitability maps depend on soil attributes, 

which are used as a basis for making land utilization and management decisions. Thus, in his 

research in Mafraq City, Jordan, the Ziadat explored the quality of land suitability classifications 

derived from predicted soil attributes. The research emphasized that the use of soil attributes 

derived from the prediction model provide an alternative source of soil data in areas where soil 

maps are not available. 

De Baets et al. (2009) present a methodology to evaluate the suitability of plants for rill 

and gully erosion control for semi-arid Mediterranean landscapes. The authors argued that a 

standard approach to evaluating different types of plants for erosion control strategies is lacking. 

In their methodology, determination of suitable vegetation for controlling concentrated flow 

erosion is based on a multicriteria analysis, and it can be applied to other areas suffering from rill 

and gully erosion. 
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Medium-Sized Cities Concept 

Worldwide, a large proportion of the urban population lives in small and medium-sized 

cities, and more than half of that urban population is in urban centers of less than half a million 

inhabitants, with a sizeable number in towns and administrative areas which have between 5,000 

and 100,000 inhabitants (Satterthwaite & Tacoli, 2003).  

In Latin America and the Caribbean, the urbanization process that tends to concentrate 

people in the cities has been intensified in recent decades. For example, between 1972 and 2000 

the urban population rose from 176.4 million to 390.8 million, prompted by employed 

opportunities and better services when compared with rural areas. This level of urbanization puts 

Latin America and the Caribbean on par with Europe and not far behind the United States and 

Japan. Additionally, in this region about 47% of the cities’ population (35% of the total 

population) lives in small and medium sized urban areas of less than 500,000 inhabitants (De 

Vries et al., 2001 and United Nations Population Division, 2001). 

According to the evolution of intermediate cities in Chile and Latin America, there is a 

common criterion for standard sizes in the urbanization process. Urban centers that have between 

50,000 and 1,000,000 inhabitants are considered to be medium-sized cities. In fact, in Latin 

America the intermediate cities are divided into two categories: under 500,000 inhabitants and 

those between 500,000 and 1,000,000 inhabitants. This is because since the 1950’s the smaller 

group of cities has tended to grow faster than the second category. For example, in Chile, 

Argentina and Venezuela this difference is striking, is moderate in country such as Mexico and 

Peru, and practically nonexistent in Colombia (Rodríguez & Villa 1998). 
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However, trying to delimit the medium-sized city concept using only quantitative criteria 

would be almost impossible because it is not only defined in terms of demographics and 

territorial dimensions, but also on the basis of their systemic functions. Thus, it is possible to say 

that one essential aspect that defines the medium-sized city concept is its role in the mediation of 

the flow of goods, information, administration, and people, between rural and urban components. 

Therefore, demographic and spatial sizes are the factors that mostly contribute to the definition 

of the medium-sized city, but these variables are now considered too rigid and static due to the 

fact that the level of connection between urban and rural spaces has a great relevance (Bellet & 

Llop, 2004). 

In this context, there are two important elements associated with urbanization: the nature 

of land use, which is related to what activities are taking place, and the level of territorial 

accumulation, which shows the intensity and concentration of different land uses. Central zones 

of cities have a high level of accumulation, while surrounding urban areas have lower levels of 

accumulation of land use activities (Rodrigue, 2011).  

The urbanization process itself occurs as a diffuse growth extending from existing urban 

zones to rural areas. An important part of the growth might occur in surrounding areas 

immediately adjoining consolidated urban sectors. Therefore, the rural areas bordering the outer 

urban area limits are subjected to the pressures of urbanization and industrial development. Rural 

zones are not only perceived in connection to their current agricultural utilization, but also in 

terms of their potential urban capabilities (Aguayo et al., 2007). While all of these concepts are 

associated with the process of spatial expansion and distribution of land uses in medium-sized 

city environments, such areas produce environmental problems, from minor natural resources 
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degradation to severe constraints on the quality of life and health. Unfortunately, these problems 

most affect the economically poorest areas of cities (Romero & Vázquez in Robertson, 2007). In 

these types of cities, there is a continuous process of degradation of the natural environmental 

and socio-economic-cultural components, manifested in the increased spatial heterogeneity of 

ecosystems and the increasing levels of socio-spatial differentiation (Romero et al., 2001).  

Negative impacts, multidimensional in nature and including the economy, society and 

natural environment, inevitably accompany the positive contribution of urban areas. In other 

words, the accumulation of human activities in the cities leads to environmental, social and 

economic impacts (Bithas & Christofakis, 2006). In medium-sized cities the natural and 

cultivated vegetation are degraded or eliminated because these surfaces are covered by 

urbanization. This process involves reducing the green zones and the environmental services 

they offer such as the regulation of heat islands, groundwater recharge, humidification of the 

atmosphere, cleaning and recycling of air, and bio-filtration of contaminated soil and water 

(Romero et al., 2001).  

Urbanization is a multidimensional process that not only involves a rapid change in 

human population density, but also an alteration in land cover (Jorgensen, 2009). Land use 

planning and environmental assessments are important for medium-sized urban areas because 

they have more interaction with their surrounding biophysical environments than larger cities, 

particularly with regard to land use changes on the limits of the intermediate urban areas.  
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Water Erosion Process 

The processes and forms caused by the action of water are mainly influenced and related 

to the hydrological dynamics of a drainage basin (Märker et al., 2001). Worldwide, water erosion 

is the most abrasive type of erosion facilitated not only by environmental deterioration, but also 

by soil degradation. However, because of climate change, human activities, and changes in 

rainfall, soil erosion and hydrological processes can intensify, making an accurate prediction of 

erosion difficult (Wei et al., 2009).  

The three main types of surface water erosion by flowing water including interrill, rill, 

and gully formation, but their mechanisms are different. First, the detachment in interrill erosion 

is caused and enhanced by rain drop-impact and the soil's intrinsic characteristics. Thus, it 

depends mainly on rainfall intensity because it occurs when a storm exceeds the capacity of 

storage of a surface depression, either by a prolonged rain or because rainfall intensity exceeds 

the infiltration capacity. It is rare that the surface flow is presented as a uniform sheet, but rather 

it corresponds to a mass of braided streams depression that do not have marked channels 

(Morgan, 1995 and Wirtz et al., 2011).  

Secondly, rill erosion is result from the effect of flowing water exceeding a particular 

threshold of terrain resistance, by the action of a concentrated flow of water, which occurs on 

natural hill slopes and on agricultural soils by tillage. Rill erosion is considered to be the most 

significant process of sediment production worldwide (Bryan, 2000 and Wirtz et al., 2011). 

Third, gullies are the relatively continues flows of water produced during rainfall. When 

this kind of erosion is compared to permanent streams, which are relatively concave in profile, 

gullies are characterized by falls along its course. They also are deeper and narrower than stable 
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channels and transporting a greater amount of sediments because, over short periods, gullies 

remove the soil from considerable depths (Morgan, 1995 and Poesen et al., 2003). Along the 

same lines, Van Zuidam (1985) elaborated a classification of rills and gullies based on depth 

(cm), and modified by Märker et al. (2001) (Figure 3).  

 

 

Figure 3. Schematic representation of the classification of rills and gullies by depth (cm) 

elaborated by Van Zuidam (1985) and modified by Märker et al. (2001). 
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However, some types of landslides or mass movements are caused by the action of water. 

These terms describe a variety of processes which result in the downward and outward 

movement of slope-forming materials, such as soil, rock, or a combination of these. The different 

kind of landslides can be classified by the material involved and the type of movement (U.S. 

Geological Survey, 2004).  

The most common two kinds of landslides associated with water action are described as 

follows. One of them is slides, which are mass movements where there is a distinct area of 

weakness which separates the slide material from the stable underlying material (Figure 1.4). 

The next type is the flows, which are mass movements of non-cohesive materials, which occur in 

soils which are susceptible to loss of resistance, the materials involved temporarily acting as a 

fluid and undergoing continuous deformation without showing a break defined (Figure 4) 

(United States Geological Survey, 2004). 

 

 
 

Figure 4. Pictures showing various types of slides and flows (British Geological Survey, 2011) 
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Terrain Erodibility to Water Degradation  

The erodibility of terrain is influenced by different parameters, and it may be associated 

with the concepts of exposure to degradation of a landscape and its natural resistance to be 

erodes. In other words, erodibility depends on resistance to erosion, the erosion of the material 

and its subsequent evacuation (Ferrando, 1992). Consequently, evaluating and analyzing spatial 

distribution of terrain erodibility is determined as a function of factors including soil resistance to 

water erosion processes, vegetation cover, land use types, and topographic and geological 

characteristics.  

Along the same lines, because soil erosion potential is increased if the surface has no or 

very little vegetative cover, vegetation plays an important role as a protective coating. Vegetation 

protects the soil from raindrop impact and splash, tends to slow down the movement of runoff 

and allows excess water to infiltrate, which contributes to soil stability. The erosion-reducing 

effect of vegetation depends on the type, extent and quantity of cover, i.e. forests or permanent 

grasses (Ministry of Agriculture, Food, and Rural Affairs of Ontario, 2003 and Morgan, 1995).  

In addition, land use affects soil properties through the effects of the vegetation cover 

involved and soil management practices, particularly in the case of agricultural lands. The 

erosion potential is affected by tillage, depending on the depth, direction and timing of plowing, 

the type of tillage equipment and the number of passes. Thus, the fewer the disturbances of 

vegetation over or near the surface, the more effective the tillage practices in reducing erosion 

(Giovannini et al. 2001 and Ministry of Agriculture, Food, and Rural Affairs of Ontario, 2003). 

On the other hand, soil erodibility represents the inherent susceptibility of the soil to be 

degraded by detachment and transport processes triggered by water, and it is one of the factors 
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that affect the likelihood and severity of soil degradation. Soil erodibility is a function of diverse 

soil properties, such as particle size composition, stability of aggregates, permeability, organic 

matter content, and chemical composition (Diodato et al., 2011 and Morgan, 1995). In this 

context, the effect of soil texture greatly modifies the erodibility of soils because it is well known 

that soil materials that subsurface pore water pressure can significantly modify surface soil losses 

and erosion rates within rills (Wells et al., 2009). 

In relation to the lithological factors, differences in erodibility of rocks clearly affect the 

shape of drainage patterns, which strongly controls the relief and key aspects of the drainage 

network (Kuhni & Pfiffner, 2001). This important lithologic control on erosion demonstrates that 

rock strength is relevant for deciphering the effect of topographic indices on the rate of 

denudation. Factors that determine the mechanical strength of a certain lithology are grain size, 

degree of cementation and metamorphism, as well as the density and orientation of fractures and 

joints (Palumbo et al., 2009).  

 However, one of the most important factors of the terrain erodibility is topography, 

particularly slope. By increasing the slope, erosion increases with the increasing speed and 

volume of runoff, favoring the displacement of soil particles to lower topographic locations, 

resulting in a net loss of soil in the highest areas (Morgan, 1995). Flow patterns are determined 

by the spatial variability of runoff, which are topographic characteristics that determine flow 

concentration and accumulation of water in the terrain (Vieira & Dabney, 2011).  
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Water Erosion Processes in Relation to Land Use 

Interactions between elements in the land use system produce hazards not only for 

society, but also the environment, including soil erosion as a result of deforestation that reduces 

the surface for forestry and farming. In general, erosion is the source of sediment that fills 

streams, pollutes water, kills aquatic life, and shortens the useful life of reservoirs (University of 

Michigan, 2001).  

Soil erosion is determined by the absence of protective land cover and sloping areas, 

whereas sediment exported is determined by on site production and the connectivity of sediment 

sources, which is also a function of the utilization of territory because transport capacity is 

different for each type of land use (Van Rompaey et al., 2002). On the other hand, the 

deintensification of land use commonly implies the transformation from a low protection land 

cover (e.g. arable land) to a higher protection cover (e.g. grassland or forest), or the regeneration 

of natural cover. Deintensification of land use might be beneficial in relation to a reduction of 

on-site soil erosion and sediment export to rivers and lakes (Vanacker et al., 2005). 

Globally, water erosion generates negative impacts on agricultural production, 

infrastructure, and water quality. Regional-scale water erosion evaluation is relevant, but it is 

limited by data quality and availability. During the past 30 years several studies have been 

published that fully or partially apply satellite imagery that provides spatial information for 

assessment of erosion controlling factors, such as soil and vegetation attributes at the scale 

(Vrieling, 2006).  

According to Märker et al. (2001), the interaction among soil, vegetation and atmosphere 

(SVAT interface) acts as an ecosystem where its geographic features control its behavior and 

http://0-www.sciencedirect.com.library.uark.edu/science?_ob=ArticleURL&_udi=B6V93-4NS0KH7-7&_user=1942757&_coverDate=06%2F15%2F2008&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1653872285&_rerunOrigin=scholar.google&_acct=C000055513&_version=1&_urlVersion=0&_userid=1942757&md5=4d3b3e6d4b6a75c5510e5f378bff12e9&searchtype=a#bib29
http://0-www.sciencedirect.com.library.uark.edu/science?_ob=ArticleURL&_udi=B6V93-4NS0KH7-7&_user=1942757&_coverDate=06%2F15%2F2008&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1653872285&_rerunOrigin=scholar.google&_acct=C000055513&_version=1&_urlVersion=0&_userid=1942757&md5=4d3b3e6d4b6a75c5510e5f378bff12e9&searchtype=a#bbib31
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determine the erosive response of the terrain (system response). In other words, the ecosystem is 

stimulated by the relationship between the system of input and the system of characteristics, and 

it responds in a specific way of erosion (Figure 5). 

 

Figure 5. Erosion Response Units concept (Märker et al., 2001) 

In the scheme of Märker et al. (2001), the areas that develop similar erosion processes 

(system response) and that have the same spatial interaction between inputs (atmosphere) and 

terrain system (vegetation, land use, topography, soil, and geology), have been designated as 

Erosion Response Units (ERU). One important component for the final delineation of these units 

is the description of existing water erosion processes, such as rill, gully, and mass movements, 

by the determination of Erosion Reference Units (ERefU). The latter are classified in relation to 

vegetation cover mostly using remote sensing and GIS. 
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The spatial patterns of land use change seem to have a relevant impact on the response of 

soil erosion and sediment export factors (Bakker et al., 2008). Landscape processes and land use 

changes are interrelated and influenced by socio-economic and biophysical factors, resulting in a 

complex system. Therefore, in areas with active landscape processes such as erosion, land use 

changes ought to be analyzed accounting for onsite and offsite effects on landscape processes, 

which is evaluated by performing map overlays comparing the results for the different scenarios 

(Claessensa et al., 2009). 

Soil erosion from cities is by far the largest source of sediment in the runoff of urban 

areas under development. The erosion of the surface soil is the worst onsite damage in 

urbanization as it eliminates the soil’s ability to regulate water flow. As a result, the eroded soil 

inundates sedimentation basins in downstream areas (Maniquiz et al., 2009). Sediment affects 

transport and deposition of soil eroded in downstream rivers and morphological changes in the 

stream channels (Vanacker et al., 2003). In addition, episodic slope fractures are common in 

landscapes such as mountains surrounding urban areas. These become an issue when interacting 

with human activities in which some disasters result in damage and loss of life (Hansens, 1984).  

Erosion needs to be identified by maps that show its localization and distribution because 

it is useful in providing regional and/or national perspectives (Mitra et al., 1998). Nevertheless, 

these kinds of products are not only important for the determination and study of erosion 

susceptibility in a particular area, but also for the evaluation and analysis of land use suitability 

in urban environments. There is a relationship between the factors that determine both 

geographic phenomena. 
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IV. METHODOLOGY 

The Analytical Hierarchy Process (AHP) and the concept of Erosion Response Units 

(ERU) were applied and adapted to evaluate erosion susceptibility in the urban environments of 

the cities of Colina and Melipilla in the Metropolitan Region of Santiago, Chile. ERU units were 

used as landscape model entities identifying relative homogeneous water-related erosion 

processes, and a GIS overlay procedure of weighed data layers was applied to also incorporate 

present erosion. The procedure is similar to that of Märker et al. (2001) which addressed the 

Mkomazi-river catchment in South Africa through analysis of five parameters (Figure 6). In 

addition, the level of land use suitability was determined by associating each category of water 

erosion susceptibility with some types of suitability that were defined by the Food and 

Agriculture Organization of the United Nations (1976).     

 

Figure 6. Layers used for the ERU delineation for the upper Mkomazi catchment. 
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General Features of the Areas of Study 

Chile has a special topography and climate not only due to its position adjacent to the 

Pacific Ocean and Andes Mountains, but also for its long and narrow profile. In Northern Chile it 

is possible to see the Atacama Desert, which has one of the lowest rainfall totals in the world. 

The cold and wet southern area of the country is covered with forests, while the coast is a maze 

of fjords, peninsulas and islands. By contrast, the capital of Chile, called Santiago, lies in a 

Mediterranean temperate valley and it has dry summers and wet winters (Briney, 2010). 

The Metropolitan Region of Santiago of Chile is located between 33° 00’ and 34º 15’ 

South and between 70º 00’ and 71º 30’ West (Figure 7). It is the most densely populated region 

in the country. It covers an area of 15,403.2 km² and there are approximately 6,000,000 

habitants. In addition, this regions urbanization is very high at 97%. The Metropolitan Region of 

Santiago is the main political, industrial, commercial and cultural center of Chile, particularly in 

the city of Santiago, while the rural areas are more likely characterized by agriculture and mining 

activities (Gobierno Regional Metropolitano de Santiago et al., 2005). 

Overall, the Metropolitan Region has a Mediterranean climate, characterized by a dry 

season of drought of six to seven months. In relation to its topography, it is noteworthy that over 

85% corresponds to mountain systems, 65% of which have slopes greater than 20°. Such systems 

of mountains correspond to the Andes Mountains (east) and the Chilean Coast Range (west), 

enclosing the intermediate depression that is a plateau formed by alluvial deposits from the 

Maipo and Mapocho rivers (Gobierno Regional Metropolitano de Santiago et al., 2005). 

http://geography.about.com/library/weekly/aa052597.htm
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Figure 7. Locations of cities within Chilean territory (Central Intelligence Agency, 2009 and 

University of Texas at Austin, 2011) 

https://www.cia.gov/library/publications/cia-maps-publications/index.html
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The study area of the medium-sized city of Colina, which was determined by defining the 

basin surrounding the urban zone that covers an area of approximately 70 km2, is located 14 

kilometers northeast of the metropolitan area of Santiago. Additionally, it is bounded by the 

UTM coordinates 6,620,000m S and 6,630,000m S and 440,000m E and 448,000m E (Zone 19, 

Southern Hemisphere). Colina lies in the intermediate depression valley between the Chilean 

Coast Range and the Andes Mountain Range, at an approximate elevation of 600 meters above 

sea level, and it is crossed by the Colina River from North to South, which has a low flow and is 

born at the confluence of several streams in the Andes Mountains (Figure 8 and Figure 9). The 

weather of the Colina area is warm with a long dry season in summer and rainfall averages 100 

mm between April and September. According to the 2002 census, Colina area has a population 

of 78,000 inhabitants, of whom 63,000 belong to the urban population and 15,000 to the rural 

population (Municipality of Colina, 2010a). 

 

Figure 8. Panoramic view of a residential area of Colina City, flanked by the Andes Mountains 

(Municipality of Colina, 2010a) 
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Figure 9. Location of Colina City within the Metropolitan Region of Santiago (Google Earth, 2011)
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The area of study of the medium-sized city of Melipilla, which was determined by 

defining the basin surrounding the urban zone that covers an area of approximately 60 km2, is 

situated on the coastal axis of the Metropolitan Region, about 60 kilometers west of the city of 

Santiago. In addition, Melipilla is approximately bounded by the UTM coordinates 6,667,000m 

S and 6,675,000m S and 292,000m E and 302,000m E (Zone 19, Southern Hemisphere). In 

addition, it is developed in the valleys in the middle of the Coastal Range; Melipilla lies at an 

approximate elevation of 170 meters above sea level, and it is crossed by the Maipo River, which 

is the main river flowing through the Metropolitan Region of Santiago (Figure 10 and Figure 11). 

The study area is classified as a warm temperate climate zone, with a long dry season lasting 

from seven to eight months. According to the 2002 census, the Melipilla has a population of 

98,000 inhabitants, of whom 62,000 belong to the urban population and 36,000 to the rural 

population (Municipality of Melipilla, 2011).  

 

Figure 10. Panoramic view of the south side of Melipilla City in contact with the Chilean 

Coastal Range (Municipality of Melipilla, 2011) 
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Figure 11. Location of Melipilla City within the Metropolitan Region of Santiago (Google Earth, 2011)
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Geographic Data  

In order to evaluate the potential use of land based on erosion susceptibility in Colina and 

Melipilla medium-sized cities, the parameters used by the ERU concept, such as erosion, 

morphometry, lithology, and soil texture, had to be taken into consideration. Although satellite 

imagery was used, the majority of the geographic data came from Chilean government agencies 

(referenced below). In addition, because the study areas were defined at a local level, the scales 

for the mapping of results were made on that spatial level.  

The primary surfaces of geographic data used in this research were in raster and vector 

format. However, all the data was converted into a grid. First, in order to calculate the Soil-

Adjusted Vegetation Index (SAVI), to delineate temporal and spatial variations of vegetation 

biomass and erosion, it was necessary to obtain a LANDSAT TM scene warehoused by the US 

Geological Survey (USGS) dated January 31, 2010, with a nominal spatial resolution of 30 x 30 

m.  These data were downloaded from the Global Landcover Facility (2011) or GLCF developed 

with support from NASA. 

Next, the terrain or morphometric parameter called Stream Power Index (SPI), used to 

reflect the erosive power of the stream, was obtained using the System of Automated 

Geoscientific Analysis (SAGA) software, with a nominal spatial resolution of 30 x 30 m, from a 

Digital Elevation Model (DEM) developed in 2010 by the United States Geological Services 

(USGS), with a nominal spatial resolution of 30 x 30 m, also downloaded from the Global 

Landcover Facility (2011). 
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Third, in relation to the current vegetation types and land uses covering both cities, and 

their surrounding areas were determined using the governmental geospatial data belonging to the 

Chilean project called “Ordenamiento Territorial Ambientalmente Sustentable de la Región 

Metropolitana de Santiago” (OTAS) or “Environmentally Sustainable Land Use Planning in the 

Metropolitan Region of Santiago.” It was focused on an environmental assessment in the 

Metropolitan Region of Santiago for land management and regional planning, and was published 

by the Gobierno Regional Metropolitano de Santiago et al. (2005). In addition, in order to 

improve the quality of the data used for land cover analysis, the maps belonging to the regulatory 

plans of the urban areas, published by the Municipality of Colina (2010b), with a geographic 

scale of 1:20,000, and Municipality of Melipilla (1988), with a geographic scale of 1:5,000 were 

used as references. 

Fourth, the information on the lithological characteristics of the terrain in the study sites 

was determined using the lithological formation spatial data from the geologic map of Chile, 

created and published by the Servicio Nacional de Geología y Minería de Chile (2003) at a 

geographic scale of 1:1,000,000. This was the result of a multidisciplinary project that collected 

two decades of geological mapping and scientific data of Chile. 

Finally, in order to evaluate the soil texture in the urban environments of the cities of 

Colina and Melipilla, it was necessary to use the geospatial data from the soil series that is shown 

in the Agrological Study of Metropolitan Region project, elaborated by the Centro de 

Información de Recursos Naturales (1996), which is composed of a set of maps of soils with a 

geographic scale of 1:25,000.  
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Conceptual Strategic Models in GIS 

GIS processes utilized in this research, and applied to determine the potential land use in 

the urban environments in the study areas in relation to water erosion process’ susceptibility for 

both medium-sized cities, can be divided into three main parts. This is because a portion of the 

modeling was conducted with the ArcGIS software, a portion with IDRISI Taiga, and a portion 

with SAGA GIS.  

The first step was the editing of the Landsat TM satellite imagery in the IDRISI Taiga 

software. One process was the atmospheric correction of the red band (band 3) and the infrared 

band (band 4) for the satellite scene, using the Atmosc tool that corrects remotely sensed images 

for atmospheric effects with the information acquired from the metadata file which is contained 

in the imagery. Immediately after that processing, these corrected-bands were used to calculate 

and determine the Soil-Adjusted Vegetation Index (SAVI), by utilizing the Vegindex tool (Figure 

12).  

 

Figure 12. Model showing atmospheric correction and determination of Soil-Adjusted 

Vegetation Index (SAVI) using IDRISI Taiga 
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The second part was the computation of the Stream Power Index (SPI), which was 

directly derived from the DEM, developed in 2010 by the United States Geological Services 

(USGS), using the Standard Terrain Analysis tool, belonging to the Terrain Analysis module in 

the SAGA GIS software. This tool generates several raster layers of terrain related data that 

include some parameters such as slope, aspect, curvature, hill shading, and watershed basins 

among other surfaces of information, and a single vector layer of the watershed channel network 

(Figure 13).  

 

Figure 13. The process for the determination of the Stream Power Index (SPI) using SAGA GIS 

The third step, conducted in ArcGIS 10, was mostly based on the definition of geographic 

datum and map projection, conversion of information from vector to raster format, and 

reclassification and weighing of raster layer data. Thus, using the Define Projection tool it was 

possible to set each data layer on the same coordinate system. Next, another sub-step was the 

process of transforming the polygon features to a raster dataset by using the Polygon to Raster 

tool. After that conversion, it was necessary to reclassify and changed cell values, using the 

Reclassify tool, not only to process the primary data surface to determine erodibility, but also to 

identify the water erosion susceptibility and the land use suitability categories. Weighting was 

the addition of several weighted raster surfaces to determine the ERU values, by using the AHP 

extension and Weighted Sum tool (Figure 14). 
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Figure 14. Model showing the method used to determine land use potential based on the erosion susceptibility in software ArcGIS 

1 Stream Power Index, 2 Soil-Adjusted Vegetation Index, 3 Erosion Reference Units, and 4 Erosion Response Units 
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Preprocessing of the Satellite Data 

An integral part of this research project was its capacity to utilize an organized approach 

for pre-editing and processing the satellite imagery acquired for the study areas of Colina and 

Melipilla before it had been used as an input of information not only in the IDRISI Taiga 

software, but also in the ArcGIS software. In other words, any satellite imagery into a GIS model 

required some kind of editing for further processing and utilization in geographic issues. 

The remote sensing data used in this research corresponded to the red band (band 3) and 

the infrared band (band 4), derived from the Landsat TM January 2010, which were corrected by 

the Atmosc tool using the IDRISI Taiga software to retrieve the surface reflectance from imagery 

by removing the effects produced by the atmosphere. The following equation shows the 

mathematical processing for the correction, where  is the reflectance for each pixel, 

for each band;  is the sun-earth distance;  is the spectral solar irradiance; and  

is the solar zenith angle (Chávez, 1996): 

 

Thus, these red and infrared bands, obtained from the Landsat TM imagery, were 

corrected for the atmospheric effects by using the Cos(t) model, which is an improvement of the 

Dark-object Atmospheric Correction model that is applied to Landsat 5 TM multispectral data 

with bands 1-5 and 7. The input image file is assumed to have only these 6 bands for the 

processing (Chávez, 1996). 
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Later, the SAVI was calculated by the Vegindex tool in the IDRISI software using the red 

band (band 3) and infrared band (band 4), assuming that healthy vegetation absorbs most of the 

visible light and reflects a large portion of the near-infrared light. This index is an improvement 

of the Normalized Difference Vegetation Index (NDVI) used to determined vegetation cover, 

biomass, and leaf area index (Outtara et al., 2009). The SAVI is represented by the following 

equation, where L is the incorporation of a soil factor correction (value 0.5) into the NDVI 

equation (Qi et al. (1995) in Jensen, 2007):  

 

Preprocessing of the Topographic Data 

In the model used by Märker et al. (2001), one relevant factor was the topography, 

including slope gradient, slope length and curvature. However, in this project the SPI was just 

used in order to have an integral evaluation of the terrain, processing and editing by the Standard 

Terrain Analysis tool in the SAGA GIS software. It is utilized to reflect the erosive power of 

streams based on the assumption that the denudation of water increases proportionally with an 

increase in the catchment area, which is the function of the product of flow accumulation and 

slope (Hrvatin et al., 2006). Since a number cannot be divided by zero, all zeros must be 

eliminated from the data set in this index. It is done by adding 0.001 to all information layers in 

the calculation that can be represented by the following equation (Center for Advanced Spatial 

Technologies, 2010):  
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Setting and Editing of the Geographic Data 

Editing is an essential step for managing, analyzing and displaying geographic 

information. Thereby, in order to set the primary surface of geo-data for determining land use 

potential based on the erosion susceptibility, it was necessary that each layer was set in the same 

map coordinate system. Not only the Universal Transverse Mercator (UTM) Zone 19 South 

projection, but also the World Geodetic System (WGS) 1984 datum was specified using the 

Define Projection tool in the ArcGIS software. This step is not only useful if the input dataset 

does not have a projection defined, but also is helpful if the feature class's projection parameters 

are unknown or incorrectly specified (ESRI, 2007).  

The next editing stage was sectoring the areas of the project based on water parting 

criteria. It was done using two types of processes in the ArcGIS software that pick up the data 

that corresponded to the area defined. Thus, one of them was the Clip tool for vector data layers, 

such as land cover, lithology, and soil texture, which extracts existing data by using a polygon 

shapefile as a reference. The other was the Extract by Mask tool for SAVI and SPI layers, which 

removes the cells of a raster that correspond to the areas defined by a mold (ArcGIS, 2007). 

Each vector data set was transformed to raster format in a nominal spatial resolution of 

30 x 30 m, using the Polygon to Raster tool in the ArcGIS software. This processing converts a 

polygon shapefile into a raster format, for advanced spatial assessment and environmental 

management, by using a raster file as an input feature as a reference model that determines the 

cell size in the output raster dataset that was created (Olivera & Koka, 2003).  
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Reclassification of Geographic Data and Assessment of Erodibility 

The reclassification of the primary surface of geo-data into the secondary surface of 

information was done using the Reclassify tool in the ArcGIS software. In this study, it was used 

to recognize not only the different levels of susceptibility of erosion in each raster data layer, but 

also the types of the current water erosion on the terrain (ERefU). It is a useful tool when 

researchers and professional map makers want to replace the values in the input raster data set 

into a new category of reclassified values by the creation of an output raster layer (ArcGIS, 

2007).   

First of all, to perform an analysis of the spatial distribution of vegetation, in order to 

determine the current water erosion processes, based on the adaptation of the ERefU concept 

from Märker et al. (2001), SAVI values were reclassified into five categories of vegetal biomass, 

which are associated with current erosion types, using a basic statistical thresholding method, 

where σ is standard deviation and X̅ is the mean (Table 1):  

Table 1. Vegetation biomass and current water erosion category  

SAVI threshold Biomass category Current erosion 
(ERefU category) 

Erosion type 

> 2σ Very high Very slight Interrill 

Between 1σ to 2σ High Slight Rill and interrill 

Between X̅  to 1σ Medium Moderate Rill and gully 

Between -1σ to X̅ Low Severe Gully and landslides 

< -1σ Very low Very severe Gully and sever mass 
movements 

Source: After Märker et al. (2001) 



36 

 

Secondly, SPI numbers were reclassified into five categories using the criteria that were 

elaborated by Hrvatin et al. (2006) in order to determine topographic erodibility. Thus, high SPI 

values show areas of both upper slopes and high flow accumulation in the terrain. In other words, 

high SPI numbers represent a greater potential for erosion risk. On the other hand, low SPI 

numbers represent areas of soft slope and low levels of flow accumulation in the surface, which 

is interpreted as a lower erodibility (Table 2). 

Table 2. Stream Power Index (SPI) category 

SPI threshold General description Erodibility 

≥ 2,000 Very high slope and flow accumulation Very strong 

Between 1,000 and 1,999 High slope and flow accumulation Strong  

Between 100 and 999 Moderate slope and flow accumulation Moderate 

Between 10 and 99 Low slope and flow accumulation Weak 

Between 0 and 9 Very low slope and flow accumulation Very weak 

Source: Based on Hrvatin et al. (2006)  

Next, in order to describe the water erosion processes and potential land utilization, land 

use in the project areas of the mid-sized urban areas had to be taken into consideration. Thereby, 

another stage of this research was to create and edit a layer of existing land uses and cover in the 

terrain, using data from a set of information documented by the OTAS project (Gobierno 

Regional Metropolitano de Santiago et al. (2005). Consequently, based on the criteria of Märker 

et al. (2001) and Platt & Rapoza (2008), the following six categories of land uses, and four of 

erodibility, were determined (Table 3).  
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Table 3. Land use category 

Category General description Erodibility 

Riverbed Stream bank Very strong 

Industrial/transport  Industrial, military, and road Infrastructure Strong 

Residential Single or multifamily housing  Strong  

Cultivated  Cropland and pasture  Moderate  

Bushland/prairies Opened canopy of bushes or grassland Moderate 

Bushland Closed canopy of bushes Weak 

Source: After Märker et al. (2001) and Platt & Rapoza (2008) 

Fourth, superficial soil texture controls the soil susceptibility of erosion. Along the same 

lines, soils high in silt and very fine sand tend to have high erodibility because they show low 

cohesion force and are more prone to transportation, but erodibility is low for soils abundant in 

clay (ÓGeen et al., 2006 and Aba Idah et al., 2008 in Neyshabouri et al., 2011). Therefore, the 

following five categories of soil texture are erodibility were classified (Table 4). 

Table 4. Superficial soil texture category 

Category General description Erodibility 

Fluvial material Gravel, boulder, and sand Very strong 

Sandy loam Approx. 10% of clay and 70% of sand Strong  

Loam Approx. 20% of clay and 40% of sand Moderate 

Clay loam Between 30% and 40% of clay Weak 

Clay ≥ 55% of clay Very weak 

Source: After Neyshabouri et al. (2011) 
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Finally, one of the most relevant parameters was lithology because this feature shows the 

types of rocks in the terrain, using the data from the Servicio Nacional de Geología y Minería de 

Chile (2003). The reclassification of the lithological units was based on criteria designed by 

Kuhni & Pfiffner (2001) for the Swiss Alps, used to examine the relationship between the 

hydrology and formation of the mountains. Thus, the lithological levels of erodibility descend 

from sedimentary to intrusive rocks, reclassified into four categories (Table 5). 

Table 5. Lithology category 

Category General description Erodibility 

Alluvial sediments Gravel and fine material Strong 

Colluvial sediments Mainly gravel Moderate 

Extrusive igneous rocks Volcanic igneous rocks  Weak 

Intrusive igneous rocks Rocks from molten earth material Very Weak 

Source: After Kuhni & Pfiffner (2001) 

Multivariate Analysis of Geographic Data 

The third level of information in this research corresponded with the surfaces of geo-data 

derived from the secondary surface of information created by reclassification. Thus, each 

category in every layer was weighed in relation to the level of susceptibility of erosion. This was 

done using the Analytic Hierarchy Process (AHP), which according to Saaty & Kearns (1991), is 

a procedure used to represent a problem hierarchically. It is a rational, efficient and organized 

graphical system, clearly stating the objective pursued as well as the variables and decision 

criteria considered, using a hierarchical model (Figure 15). 
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Figure 15. Analytic Hierarchy Process (Saaty & Kearns, 1991) 

Thus, it was necessary to weigh the component parts, determining the relative importance 

each element has on the total value or percentages of the problem, through the contrasting of the 

pairs of elements by a matrix of pairwise comparison, using the AHP extension in the ArcGIS 

software. In other words, it was making a contrast among every reclassified layer with respect to 

their relevance for the susceptibility to erosion (Table 6), based on the scale of importance 

proposed by Saaty & Kearns (1991) (Table 7). 

Table 6. Peer comparison matrix 

 ERefU  Topography Land use Soil texture Lithology 

ERefU  ERefU/ERefU  T/ ERefU  LU/ERefU ST/ERefU L/ERefU 

Topography  ERefU/T  T/T LU/T ST/T L/T 

Land use ERefU/LU T/LU LU/LU ST/LU L/LU 

Soil texture ERefU/ST T/ST LU/ST ST/ST L/ST 

Lithology ERefU/L T/L LU/L ST/L L/L 

Source: Based on Saaty & Kearns (1991) 
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Table 7. Scale of importance 

Importance (numeric scale) Definition  (verbal scale) 

1 Both elements have the same importance 

3 Moderate importance of an element over another 

5 Strong importance of an element over another 

7 Very strong importance of an element over another 

9 Extreme importance of an element over another 

2, 4, 6, 8 Value intermissions between two adjacent trials 

1/2, 1/3,1/4, etc. Reciprocals or values for inverse comparison 

Source: Saaty & Kearns (1991) 

Saaty & Kearns (1991) provided the Consistency Ratio (CR), which is a value calculated 

to check for the logical consistency of a pairwise comparison matrix. Thus, when CR=0.0, there 

is no inconsistency among the pairwise comparison judgments, or the judgment is considered 

100% consistent. As the value of CR grows, the degree of inconsistency is also considered to 

grow. A review of the preference matrix is recommended if the consistency ratio CR exceeds a 

value of 0.1. It is defined as the ratio of the Consistency Index (CI) to an average consistency 

index Ratio Index (RI), thus it is represented by the following equation:   
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When all the parameters or variables and their categories of erodibility were weighed, 

these percentages were combined to determine the ERU, which are the sum of all the weighted 

layers. It was done by the Weighted Sum tool, which provides the ability to add all input raster 

data together to create an output raster (ArcGIS, 2007). For this reason, the ERU correspond to 

the present erosion and contain a particular combination of parameters, which influences the 

erosion response in each unit of the terrain. 

Water Erosion Susceptibility and Land Use Suitability 

Next, this multivariate classification analysis for determining the ERU units in the study 

areas was used as a source for this research. Consequently, the following five categories of water 

erosion processes’ susceptibility were reclassified from the ERU data, from very weak to very 

strong categories, using a basic statistical thresholding method, where σ is standard deviation, by 

utilizing the Reclassify tool in the ArcGIS software (Table 8). 

The last stage was the determination of the land use suitability by the association of each 

water erosion susceptibility category with a type of land suitability for the urban environments of 

the cities of Colina and Melipilla. Thereby, the categories of the susceptibility of water erosion 

were reclassified into six new classes, from not suitable to highly suitable, based on an 

adaptation of the classification defined by the Food and Agriculture Organization of the United 

Nations (1976), which considers erosion conditions as a layer of information in the evaluation 

processing of suitability (Table 8). 
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Table 8. Water erosion processes’ susceptibility and land use suitability category 

ERUs threshold Erosion 
susceptibility 

Land use 
suitability 

General description 

> 11/2 σ Very strong Not suitable 

 

Land that cannot support some types 
of uses on a sustained basis 

Between -½ to ½ σ Strong Marginally 
suitable 

Land with limitations so severe that 
benefits are reduced 

Between -11/2 to -½ σ Moderate Moderately 
suitable 

Land that is clearly suitable but 
which has limitations  

Between -21/2 to -11/2 σ Weak Suitable Land without significant limitations 

 < -21/2 σ Very Weak Highly suitable  

 

Land that can support different land 
uses 

Source: After the Food and Agriculture Organization of the United Nations (1976) and Märker 

et al. (2001)  

Pearson Correlation Coefficient   

An additional statistical processing determined not only the relationships between 

erodibility from four of the factors, but also quantitatively tested the erosion susceptibility and 

land use suitability results with current erosion data (based on the SAVI).  For this reason, the 

Pearson’s R statistical correlation was used, by the Regress tool in the IDRISI software, which is 

a measure of the strength of a linear association between two variables and is indicated by r. The 

Pearson correlation attempts to draw a line of best fit through the data of two variables, and it 

shows how far away all these data points are to this line of best fit (Laerd Statistics, 2011).  
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The equation to calculate r in order to examine the correlation between two variables, x 

and y, which have a normal distribution and standard deviations, sx and sy, where n is the number 

of observations, is (Kalogirou, 2011):   

 

Laerd Statistics (2011) has proposed guidelines to interpret Pearson's correlation 

coefficient (Table 9).  

Table 9. Guidelines for the interpretation of Pearson's correlation coefficient 

 Coefficient, r 

Strength of association Positive Negative 

Weak 0.1 to 0.3 -0.1 to -0.3 

Moderate 0.3 to 0.5 -0.3 to -0.5 

Strong 0.5 to 1.0 -0.5 to -1.0 

Source: Laerd Statistics (2011) 

V. RESULTS 

Vegetation and Erosion 

The distribution of vegetation and different erosion types and their intensities was 

provided for the study areas with classes of present erosion, ERefU, using LANDSAT TM scene 

analysis. The SAVI values in the catchment surrounding Colina ranged between -0.078 and 

0.767, with a mean and standard deviation of 0.231 and 0.138 respectively, indicating that plant 
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distribution is very heterogeneous with some sectors having extended coverage and others 

having low coverage. From a detailed spatial analysis, it can be seen that values close to the 

maximum SAVI numbers are mainly located in the southern area of the intermediate depression 

valley, indicating a higher vegetation density compared to areas located on the mountains and 

urban sectors around the Colina riverbed, which have negative SAVI values (Figure 16). 

Figure 16. Map showing the SAVI values of the catchment surrounding Colina City  

In relation to the catchment surrounding Melipilla, the SAVI values ranged -0.505 and 

0.808, with a mean and standard deviation of 0.309 and 0.168 respectively, showing that 

vegetation distribution is very heterogeneous with areas of low density and others with great 
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vegetal density (Figure 17). Thereby, it appears to have a similar spatial pattern to the Colina 

urban environment because the highest SAVI values are located at the bottom of the valley not 

only around the Maipo River, but also in the northwestern sector. On the other hand, the negative 

SAVI values correspond to steeper areas in the mountains and the urban areas of Melipilla city.  

Figure 17. Map showing the SAVI values of the catchment surrounding Melipilla City 

Reclassifying the SAVI values for both study areas, based on the vegetation density 

classes of Mark et al. (2001), it was possible to group sectors with similar vegetal coverage into 

five categories, from very low to very high coverage, which were associated with water erosion, 

from very slight to very severe current erosion, defined as Erosion Reference Units (ERefU).  
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In the basin surrounding Colina City, the distribution of current erosion depends not only 

on vegetation density, but also on the geomorphologic localization of biomass (Figures 18 and 

19). Very severe erosion due to very low or no vegetal covering was identified mainly in the 

upper part of the Colina river valley, where the stream has eroded the base of river terraces by 

severe rotational landslides that create steep walls around some sections of the riverbed, and in 

the urban area of Colina where the terrain is degraded by human intervention, producing erosion 

in the form of gullies, with a surface coverage of 3% (Figures 20). 

However, because of low vegetation coverage, about 63% of the catchment of the urban 

environment of Colina City is directly affected by severe erosion, including gullies and 

landslides. It should be noted that the zones with this category of erosion are situated along a 

north-south running system on the Chilean Coast Range and the Andes Mountain Range (Figure 

21), which is covered by a sparse shrub surface. Furthermore, it was possible to identify severe 

present water erosion in the urban and sub-urban areas in contact with the agricultural area. 

On the other hand, the areas which have the lowest categories of current water erosion are 

located not only in the contact zones between mountains and the bottom valley, but also on the 

alluvial terraces in the southern part of the basin surrounding Colina City. Moderate erosion by 

rill and gully erosion affects about 19% of the entire area and it is mainly in the natural 

landscapes outside the densely populated patches of urbanization, including farm land and some 

colluvial fans that are covered by scrubs vegetation. In relation to the slight and very slight 

ERefU categories, of rill and interrill erosion, these represent together about 15% of the 71.17 

square kilometers, corresponding to cultivated areas with an extends vegetation coverage of 

crops and the rural residential areas of Chicureo and Las Brisas, which include urban parks.   
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Figure 18. Map showing the current erosion of the catchment surrounding Colina City 

 
Figure 19. Graph showing the surfaces for current erosion categories of the catchment 

surrounding Colina City 
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Figure 20. View of a gully in the urban zone of Colina City (Roberto Fernández, 2011) 

 

 

Figure 21. Picture showing landslides in the Chilean Coastal Range belonging to the study area 

of Colina City (Google Earth, 2011) 
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In the case of the basin surrounding Melipilla City, distribution of present water erosion 

processes depends on the geomorphological distribution of vegetation in the landscape (Figures 

22 and 23). Only about 14% of the study area is affected by very severe erosion, associated with 

gullies and mass movements within the catchment due to a very low influence of vegetation; 

particularly in the wide Maipo, where rotational landslides produce steep walls, and in the 

densely populated urban area of Melipilla has contributed to the erosion the terrain for decades in 

the downtown and western neighborhoods.  

A large portion of the study area, an area of 43%, displaces severe water erosion in the 

form of gullies and landslides in the mountains of the Chilean Coast Range (Figures 24), which 

are covered by a spare distribution of shrubs and bushes. In addition, this category was also 

identified in areas without agricultural terraces or dense vegetation and in the areas belonging to 

new urbanizations, from downtown Melipilla to the eastern neighborhoods of Los Castaños. 

The areas with the lowest categories of current water erosion are mainly located in the 

piedmont of the mountains and the valley bottom on the fluvial terraces of the Maipo River 

surrounding Melipilla City. Moderate erosion by rill and gully affects about 22% of the 59.94 

square kilometers in the natural landscapes and farmlands, which is covered by low and very low 

biomass (Figures 25). Outside the urbanized are of Melipilla, mainly in the northwestern part of 

the study area, where slight and very slight current erosion, about 21%, is associated with 

agricultural terraces around the Maipo River, flanked by the Chilean Coast Range in the north 

and the south of the basin. 
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Figure 22. Map showing the current erosion of the catchment surrounding Melipilla City 

 
Figure 23. Graph showing the surfaces for current erosion categories of the catchment 

surrounding Melipilla City 
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Figure 24. Picture showing landslides in the Chilean Coastal Range belonging to the study area 

of Melipilla City (Roberto Fernández, 2011) 

 

 

Figure 25. Panoramic view of rill erosion in the bottom valley belonging to the study area of 

Melipilla City (Municipality of Melipilla, 2011) 
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Description of the Geographical Parameters 

Based on the analysis of four geographical parameters, Stream Power Index (SPI), land 

use, soil texture, and lithology, in the urban environments of the city of Colina, it was possible to 

identify the main characteristics that configure the frame for the erosion processes (Figure 26 and 

Table 10). According to the morphology, about 85 % of this area of study presents the strongest 

SPI values, above 1,000, and about 15 % of the territory has the lowest SPI values, below 1,000. 

Observing these morphometric properties and their spatial distribution, it is clear that runoff 

tends to concentrate in intermountain streams in the Chilean Coast Range and the Andes 

Mountain Range, where it develops a stronger erosion capacity than the flatter areas.  

In relation to the current land use, most of the basin of the city of Colina, with a surface 

of 63%, is used by a variety of human activities, such as industrial areas, transport ways, 

residential areas, or farmland (Figure 27). The remaining 37% of the area is cover by natural 

landscapes. The farmlands in the bottom of the valley dominate the area surrounding urbanized 

areas, with a total extent of 38% and 22% respectively, which are flanked by the mountains 

ranges that are covered by a surface of bushland and prairies, about 35% (Figure 28). 

The urban environment of Colina City shows an abundance of clay texture, with an area 

of 44%; often over extrusive igneous rocks which belong to the Chilean Coast Range, and the 

Andes Mountain Range, which represent the consolidated material of this study area with about 

24%. The alluvial sediments which are located on the bottom of the valley of the Colina River, 

with a surface of 66%, mainly covered by a superficial soil texture of loam and clay loam that 

covering an area of 52%.        
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Figure 26. Maps showing the geographical parameters of the catchment surrounding Colina City

SPI Land use 

Soil texture Lithology 
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Figure 27. Picture showing the urban area of Colina City (Roberto Fernández, 2011) 

 

 

Figure 28.  Panoramic view of farmland in the study area of Colina City (Google Earth, 2011) 
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Based on the assessment of the same four geographical parameters, Stream Power Index 

(SPI), land use, soil texture, and lithology, in the urban environments of the city of Melipilla, the 

features that set the frame for the water erosion processes were identified for the entire study area 

(Figure 29 and Table 10). According to the morphology, about 89 % of this study area shows the 

strongest SPI values, above 1,000, and about 11 % of the area has SPI values, below 1,000. Thus, 

examining the topographic characteristics and their spatial distribution in the area, it is evident 

that runoff tends to concentrate in intermountain streams localized in the Chilean Coast Range, 

where it develops a stronger erosion capacity compared to the valley bottom due to the 

relationship between flow accumulation and slope. 

The current land utilization, 33 %, of the study area belongs to natural areas of mainly 

bushland. However, most of the catchment of Melipilla City, a surface of 67 %, is occupied by 

human activities, such as farmland, industrial areas, transport, or urban areas (Figure 30). The 

farmlands, mainly vineyards and orchard, located in the bottom of the valley dominate the area 

surrounding urban areas, with a surface of 51 % and 14 % respectively, which are flanked by the 

Chilean Coast Range that are mainly covered by a densely bushland, about 14 % (Figure 31). 

The catchment of Melipilla City presents a large extent of clay loam, about 36 %; over 

intrusive and extrusive igneous rocks belonging to the Chilean Coast Range, which correspond to 

the consolidated material of this urban environment with a surface of 28 %. The unconsolidated 

alluvial sediments which are located in the terraces of the Maipo River, with a total area of 65 %, 

which is mainly covered by soils of loam and sandy loam texture that cover a total surface of 54 

%. 
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Figure 29. Maps showing the geographical parameters of the catchment surrounding Melipilla City 

SPI Land use 

Soil texture Lithology 
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Figure 30. Picture showing the Central Square in the urban area of Melipilla City (Municipality 

of Melipilla, 2011) 

 

 

Figure 31. Panoramic view of farmland surrounding the urban areas of Melipilla City (Google 

Earth, 2011) 

57 



58 

 

Table 10. Spatial coverage of the mapped geographical parameters and their categories 

 Colina City Melipilla City  

Parameter Area (Km²) Area (%) Area (Km²) Area (%) 

Topography (SPI)     

Very high slope and flow accumulation 0.18 0.26 0.03 0.05 

High slope and flow accumulation 0.53 0.76 0.14 0.24 

Moderate slope and flow accumulation 9.61 13.5 6.43 10.72 

Low slope and flow accumulation 22.18 31.14 17.4 29.03 

Very low slope and flow accumulation 38.67 54.34 35.94 59.96 

Land use     

Riverbed 1.11 1.56 5.85 9.76 

Industrial/transport  2.02 2.84 1.32 2.2 

Residential 15.56 21.86 8.27 13.8 

Cultivated  27.19 38.2 30.74 51.29 

Bushland/prairies 24.56 34.51 5.60 9.34 

Bushland 0.73 1.03 8.16 13.61 

Soil texture     

Fluvial material 2.72 3.82 6.20 10.34 

Sandy loam 0.00 0.00 6.64 11.08 

Loam 21.71 30.5 25.5 42.54 

Clay loam 15.17 21.32 21.6 36.04 

Clay 31.57 44.36 0.00 0.00 

Lithology     

Alluvial sediments 47.12 66.21 38.67 64.51 

Colluvial sediments 5.20 7.3 4.50 7.51 

Extrusive igneous rocks 17.00 23.89 7.70 12.84 

Intrusive igneous rocks 1.85 2.6 9.07 15.14 

Source: Elaborated by author 
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Estimation of Terrain Erodibility 

Based on the evaluation of the erodibility data in the basin surrounding Colina City, 

obtained through the reclassification of its geographical parameters, it was possible to identify 

not only some patterns of distribution, but also correlation among the four types of erodibility 

(Figure 32 and Table 11). It is evident that the highest topographic erodibility categories are 

associated with the mountainous areas. The lowest categories are present in the valley between 

the Chilean Coast Range and the Andes Mountain Range. This spatial distribution is opposite the 

patterns of the other types of controls of erosion because the topographic erodibility shows a 

weak and moderate correlation with them.  

The strong and very strong categories of land use erodibility occurs on the flatter area at 

the bottom of the valley, associated with urbanization, such as the consolidated urban zones of 

Colina City and the rural residential areas in the southeastern sector. In addition, it was possible 

to identify moderate erodibility of land use in flatter sectors and the mountainous ranges, 

farmland and sparse bushland respectively. Because this pattern of distribution is associated with 

some of the other types of controls of erodibility, it has a moderate correlation with the soil 

texture and lithology, 0.46 and 0.35 respectively. 

In the catchment of Colina City the lowest categories of soil texture and lithological 

erodibilities are in the two mountain ranges and contact areas between the mountains and bottom 

valley, associated with clay and clay loam soils over extrusive igneous rocks. Conversely, the 

strongest erodibility categories are in the unconsolidated sediments located in the terraces which 

of the Colina River. For this reason, these two erodibilities have a strong correlation to each 

other, which is 6.1. 
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Figure 32. Maps showing the terrain erodibility of the catchment surrounding Colina City

Topographic 
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In the case of Melipilla City, the assessment of erodibility patterns of distribution and 

correlation among the four types of terrain erodibility was similar to the situation of Colina City 

(Figure 33 and Table 11). Thus, the highest levels of topographic erodibility are located on the 

slopes and streams belonging to the mountainous systems of the Chilean Coast Range, and the 

lowest categories of topographic erodibility are in the bottom of the valley. Nevertheless, due to 

the fact that this pattern is different than the other patterns of erodibility, the topographic 

erodibility in the environment of Melipilla City shows a moderate correlation with them. 

In relation to the land use erodibility, the strong and very strong categories are located on 

the flatter area at the bottom of the valley, associated with the consolidated urban area of 

Melipilla City and the wide riverbed of the Maipo River that crosses the catchment from east to 

west. However, the moderate erodibility mainly corresponds to agricultural land, over terraces 

surrounding the riverbed, and the weak erodibility associated with areas covered by a dense 

bushland on the slopes and stream of the mountains. Consequently, it particularly presents a 

strong correlation with the soil texture and lithological erodibilities, 0.66 and 0.53 respectively. 

The urban environment of Melipilla shows that the lowest categories of soil texture and 

lithological erodibilities are in the Chilean Coast Range and contact sectors between the 

mountains and bottom valley. On the other hand, the strongest erodibility categories of these two 

parameters are in the sediments of the bottom valley. These two erodibilities have a moderate-

strong correlation of 5.4.  
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Figure 33. Maps showing the terrain erodibility of the catchment surrounding Melipilla City
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Table 11. Matrix of Pearson's correlation coefficient between erodibility types 

Colina City 

 Topographic 
erodibility 

Land use 
erodibility 

Soil texture 
erodibility 

Lithological 
erodibility 

Topographic erodibility 1.00 -0.25 -0.51 -0.59 

Land use erodibility -0.25 1.00 0.46 0.38 

Soil texture erodibility -0.51 0.46 1.00 0.61 

Lithological erodibility -0.59 0.38 0.61 1.00 

Melipilla City 

 Topographic 
erodibility 

Land use 
erodibility 

Soil texture 
erodibility 

Lithological 
erodibility 

Topographic erodibility 1.00 -0.36 -0.40 -0.58 

Land use erodibility -0.36 1.00 0.66 0.53 

Soil texture erodibility -0.40 0.66 1.00 0.54 

Lithological erodibility -0.58 0.53 0.54 1.00 

Source: Elaborated by author 

Definition of the Erosion Response Units (ERU) 

The hierarchical model of the parameters and erodibility categories considered in the 

evaluation of the erosion susceptibility in the urban environments of the cities of Colina and 

Melipilla, using a multicriteria processing, shows the weights in relation to their importance to 

the stated objective (Figure 34 and appendices tables 1-6). Because of the evident influence of 

the ERefU on the erosion susceptibility of the terrain, it was assigned with the greatest weight in 

the hierarchy, about 46 %. However, the topographic features are essential for water erosion 

processes compared to other geographic characteristics; consequently, it is around 25% of the 

total importance in the hierarchical model. Finally, because the land use, soil texture, and 
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lithological erodibilities have a moderate spatial correlation among each other, and they have 

lower influence than the current erosion and topographic erodibility, these parameters were 

assigned with the same weight, which is about 10 % each one.     

 

Figure 34. Graph showing the objective pursued, water erosion susceptibility, as well as the 

parameters considered, using a hierarchical model 

The Consistency Ratio (CR) calculated for this hierarchical model was 0.023. Therefore, 

the model and the weight of the each element have a logical structure, which it is acceptable with 

respect to the stated objective of this thesis because the CR does not exceed the value 0.1. In 

other words, the judgments have been relative consistent to problem statement of the project. 

After this weighting, it was possible to define the ERU by a map overlay of the weighted 

parameters for the areas of Colina City, where the ERU values are from 0.068 to 0.428, with a 

mean and standard deviation of 0.311 and 0.087 respectively (Figure 35). By performing a 
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spatial analysis of these ERU in the terrain, it is clear that the largest ERU values are not only 

located in the urbanized area of the city of Colina, but also in the mountains systems that flank 

the valley bottom. Conversely, the lowest ERU values are placed in the bottom valley associated 

with flatter areas of the catchment belonging to the Colina River.     

Figure 35. Map showing the ERU of the catchment surrounding Colina City 

Using the same map overlay process, it was possible to determine the ERU of the 

weighted parameters and their categories of erodibility for the Melipilla City urban environment, 

where the ERU values are from 0.072 to 0.428, with a mean and standard deviation of 0.307 and 

0.081 respectively (Figure 36). In a brief evaluation of these ERU in the terrain, it is evident that 
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the largest ERU numbers are not only in the urbanizations belonging to Melipilla City and the 

Maipo riverbed, but also in some mountainous system. On the other hand, the lowest ERU values 

are mainly located in the mountain range which flanks the bottom valley.     

Figure 36. Map showing the ERU of the catchment surrounding Melipilla City 

Water Erosion Susceptibility and Land Use Suitability 

By reclassifying ERU values obtained for the basins belonging to the urban environments 

of the medium-sized cities of Colina and Melipilla, this research project not only determines the 

susceptibility of water erosion processes, but also categories of land use suitability of the terrain. 
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Colina City, the very strong water erosion susceptibility is in the valley bounded by 

mountains belonging to the Chilean Coast Range and the Andes Mountain Range, with about 25 

% of the 71.17 square kilometers. It is related to the consolidated urban zone of Colina City and 

the rural residential properties, over partly consolidated sediments, which present very severe or 

severe current erosion produced by gullying. As a result of all these characteristics, the areas 

within this category of susceptibility do not have suitability to support non-urban land uses 

(Figures 37 and 38). 

 On the other hand, the spatial distribution of the strong and moderate categories of water 

erosion susceptibility, 36 % and 34 % respectively, shows an increasing trend from the bottom of 

the valley to high altitude. Along the same lines, the strong category is situated along a north-

south running system on the Chilean Coast Range and the Andes Mountain Range covered by 

sparse bushland, which have severe erosion associated with gullies and landslides on moderate 

and steep slopes. Thus, even though the mountains are natural environments, they present 

marginal suitability because they have limitations so severe that benefits are reduced for other 

land uses. The moderate category is completely situated in the bottom valley on the farmland and 

the suburban sectors surrounding the urban areas, over partly consolidated soil and alluvial 

sediments from the Colina River. Therefore, these lands are clearly suitable for several uses, but 

they have limitations. 

Landscapes with weak and very weak categories of erosion susceptibility just represent 

about 5 % of the area, without a particular spatial distribution. Because of this condition, these 

areas are suitable and highly suitable for several types of land uses. 
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 Figure 37. Water erosion processes’ susceptibility and land use suitability of the catchment 

surrounding Colina City 

 
Figure 38. Graph showing the surfaces for water erosion processes’ susceptibility and land use 

suitability of the catchment surrounding Colina City 
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In the basin of Melipilla City, the very strong water erosion susceptibility is located in the 

valley bounded by mountains belonging to the Chilean Coast Range, with about 19 % of the 

59.94 square kilometers, and it is related not only to the consolidated urban zone of Melipilla 

City, but also the wide Maipo Riverbed, which presents very severe and severe current erosion 

associated with gullying and land sliding. For this reason, with all these features, the area within 

this category cannot support non-urban uses (Figures 39 and 40). In addition, the strong erosion 

susceptibility category, with a surface of 54 %, is located in the farmland patches of vineyards 

and orchard, over alluvial terraces surrounding the Maipo River that are covered by a 

unconsolidated soils of loam and sandy loam, with current erosion processes dominated by 

gullies. Therefore, these landscapes have marginal land use suitability because they present 

limitations so severe that the benefits are reduced for other utilizations. 

The spatial distribution of the moderate category of erosion susceptibility in the terrain, 

about 19 %, shows that it is located on the intrusive and extrusive igneous rocks which belong to 

the Chilean Coast Range, with very weak and weak erodibility respectively. They are covered by 

bushland associated with severe current erosion by gullying in clay loam soils. As a result of 

these features, the areas within this category of susceptibility have moderate suitability to support 

several uses, but they have limitations. 

The areas with weak and very weak categories of erosion susceptibility only represent 

about 8 % of the entire area of study, with a particular spatial distribution in the mountain 

systems that flank the bottom valley. Because of this situation, these lands are suitable and 

highly suitable for several types of uses.  
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Figure 39. Map showing the water erosion processes’ susceptibility and land use suitability of 

the catchment surrounding Melipilla City 

 
Figure 40. Graph showing the surfaces for water erosion processes’ susceptibility and land use 

suitability of the catchment surrounding Melipilla City 
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Quantitative Correlation Analysis 

In order to sharpen the analysis from the final results in both areas of study, the current 

erosion was statistically correlated to water erosion susceptibility and land use suitability data, 

derived from the ERU. It was calculated using Pearson’s R statistical correlation. In the 

catchment of Colina City, the positive linear relationship between these two variables was 

strong, with a value of 0.75, because many points fall near a straight line for strong correlation 

on the scatter-plot (Figure 41).  In the catchment of Melipilla City, the positive linear correlation 

between the existing erosion and erosion susceptibility/land use suitability was moderately-

strong, with a value of 0.54, due to the fact that the localization of the points in the scatter-plot 

diverges moderately from a straight line (Figure 42).  

 

Figure 41. Correlation between current erosion and water erosion susceptibility/land use 

suitability in the study area of Colina city.  
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Figure 42. Correlation between current erosion and water erosion susceptibility/land use 

suitability in the study area of Melipilla city. 

VI.       DISCUSSION 

The data derived from the methodology and results presented in this study indicate that it 

is possible to assess and analyze the land use suitability of medium-sized urban areas based on 

water erosion susceptibility by embedding an integrated modelling framework. The following 

discussion details the results and is primarily an analysis of the parameters that compose the 

overall geographic characteristics of the terrain which not only determine landscape processes, 

such as erosion, but also the human interaction with the natural environment by farming and 

urbanization. Therefore, this methodological framework can be applied to other cities in other 

environments, but caution should be made with features such as urban area size because this 

X-axis 

Y-axis 
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methodology was used in medium-sized cities in Chile and in the case of longer urban areas this 

methodological approach probably requires adaptation. 

By using the Analytical Hierarchy Process, AHP, defined by Saaty & Kearns (1991), and 

the weighted overlay technique, it was possible to analyze the problem statement of this research, 

which required the analysis of different parameters. This analysis allowed organization of the 

elements of the environment because which may not be equally important in erosion 

susceptibility and land use suitability for a particular activity. In other words, the weighted 

overlay approach allowed different weights to be applied to the thematic layers of geographic 

information (current erosion, topography, land use, soil, and lithology), which is shown in Figure 

26. After processing, the output data is a raster grid file containing the Erosion Response Units 

(ERU), where each cell stores a number which indicates its level of importance in relation to 

water erosion, providing an accurate modelling structure for the areas of study. 

The importance of the interaction between geographical factors for determining the 

erosive response of the terrain, from the point of view described by to Märker et al. (2001), was 

ratified in relation to the spatial distribution of the erosive susceptibility levels in the landscape 

of the urban environments of Colina and Melipilla, which reflects the principle of exchange of 

energy and matter between the elements of the environment, considered as a system that tends to 

equilibrium. Along the same lines, the homogeneous areas analysis of current and potential 

erosion dynamics, by incorporation of the concepts of Erosion Reference Units (ERefU) and 

Erosion Response Units (ERU), was essential for recognizing the role of these phenomena at 

different spatial scales, from interrill to landslides process. Once the ERU were identified, this 

information could be used in the erosion modelling. 
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The spatial distribution of the erosion susceptibility and land use suitability categories 

can be correlated with certain patterns. The results showed that vegetation cover and topographic 

patterns have greater influences on the current and future water erosion dynamics than other 

geographic parameters because, especially in the study area of the City of Colina, these delineate 

the localization of the erosion processes in the terrain, which is corroborated by authors such as 

Morgan (1995) and Vieira & Dabney (2011). Nevertheless, land use affects water erosion, 

particularly on farmland and in urban areas for both areas of study (Giovannini et al., 2001 and 

Van Rompaey et al., 2002). 

Thus, in the basin surrounding the city of Colina, shown in Figure 37, lets the highest 

degrees of erosion susceptibility are associated with relief associated with mountain ranges and 

the lower levels that are located at the bottom of the valley on the alluvial sediments of the 

Colina River, which is due to the stabilizing condition of vegetation and topography. It was 

corroborated by the correlation analysis, Figure 41, which shows that the presence of biomass 

strongly controls the landslides and water erosion. However, for this scenario, it was possible to 

identify that spatial configuration of the land uses and the materials that support them, soil 

texture and lithology, produces an influence on some sector of the valley, particularly in the 

urban areas where all these characteristics configure a landscape with a high potential for water 

erosion processes. As a result, the highest categories of land use suitability associated with 

lowest degrees of erosion susceptibility are limited to agricultural fields surrounding the 

consolidated urban zone and the Colina River because in general these can support different land 

uses. In contrast, the sectors without the influence of agricultural terraces showed major impacts 

from water erosion at the catchment scale and the lowest degrees of land use suitability to 

support a different use from the current. 
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In the case of the urban environment of the Melipilla City, Figure 39 demonstrates that 

not only the location of current erosion and topography, but also the superficial soil texture and 

lithology within the landscape has an impact on the spatial distribution of erosion susceptibility 

categories in the study area, similar finding are reported by Morgan (1995) and Kuhni & Pfiffner 

(2001). It was corroborated by the correlation statistical analysis, Figure 42, which basically 

shows that biomass moderately correlates with water erosion. The strong categories of water 

erosion susceptibility are connected to the bottom valley, and some slope on the mountains 

belonging to the Chilean Coast Range, which showed the important function of the materials that 

compose especially the agricultural terraces surrounding the Maipo River. However, similar to 

the situation in the Colina City basin, the consolidated urban zones display the highest degrees of 

water erosion susceptibility because these areas represent a very strong impact on the natural 

environment by human buildings. Consequently, the sectors that showed lesser impacts from 

erosion and the major degrees of land use suitability are located on some slopes of the 

mountains, where soil and lithological material are much more consolidated than the valley. 

VII. CONCLUSIONS 

This work has shown the importance of the evaluation of water erosion susceptibility and 

its relationship to land use/cover characteristics on the terrain, fundamentally in urban areas 

belonging to a Mediterranean climate environment. Water erosion has a significant capacity to 

modify the landscape and can influence the distribution of anthropogenic activities. Thus, it was 

possible to model the land use suitability of medium-sized cities and their surrounding 

environment based not only on the assessment of their geographic potentialities and weaknesses, 

but also on water erosion. For this reason, the application of different methodologies to analyze 
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erosion in complex scenarios lets one recognize its potentialities and weaknesses regarding land 

use suitability. However, the model demonstrated in this study can be improved by adding new 

criteria specific to the problem. 

This research proposed a hierarchical approach (AHP) to solving a layout design 

problem. It was observed that AHP can be used in the theme area of selection and evaluation of 

geographic parameters. These results showed that the parameters of water erosion susceptibility 

have different effects on land use suitability in the terrain. In the same way, it was observed that 

the relative importance of the parameters varies among urban areas, thus generating immediate 

effects on the suitability of landscapes in urban environments. 

The applied methodology, based on GIS analysis of geographic data, made it possible to 

locate the areas where erosion exists as well as to obtain an estimation of potential erosion. The 

example of the Chilean test catchments shows that areas subject to different water erosion 

processes can be identified using Erosion Reference Units (ERefU) and Erosion Response Units 

(ERU) concepts. In addition, it has also been useful to identify whether the land use suitability in 

relation to regions is affected by erosion because the ERU permits the evaluation of those critical 

areas for different land uses. Consequently, the high potential for the identification of ERU can 

be systematically enhanced in similar studies, having a closer look at parameters and scale.  

This study has presented an application of a GIS technique, based on the interactions 

among geographic factors, which is capable of providing a degree of accuracy in assessing the 

suitability of landscapes for sustainability of human and natural uses. Thus, improvements in 

these kinds of analysis are critical issues for land planners not only for making a decision 

modelling framework, but also in the interpretation of holistic data of a specific region.  
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Appendix table 1. Peer comparison matrix between parameters 

 ERefU Topography Land use Soil texture Lithology 

ERefU 1 3 4 4 4 

Topography 0.33 1 3 3 3 

Land use 0.25 0.33 1 1 1 

Soil texture 0.25 0.33 1 1 1 

Lithology 0.25 0.33 1 1 1 

 

Parameter Importance 

ERefU 0.464209 

Topography 0.248861 

Land use 0.0956434 

Soil texture 0.0956434 

Lithology 0.0956434 

Total 1 

Consistency Ratio (CR): 0.023 
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Appendix table 2. Peer comparison matrix between current erosion categories (ERefU) 

 Very slight Slight Moderate Severe Very severe 

Very slight 1 0.5 0.33 0.25 0.2 

Slight 2 1 0.5 0.33 0.25 

Moderate 3 2 1 0.5 0.33 

Severe 4 3 2 1 0.5 

Very severe 5 4 3 2 1 

 

Category Importance of 
category 

Importance of 
parameter 

Total weight (category * parameter) 

Very slight 0.0617666 0.464209 0.028673 

Slight 0.0972536 0.464209 0.045146 

Moderate 0.159923 0.464209 0.074238 

Severe 0.262518 0.464209 0.121863 

Very severe 0.418539 0.464209 0.19429 
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Appendix table 3. Peer comparison matrix between topographic erodibility categories 

 Very weak Weak Moderate Strong Very strong 

Very weak 1 0.5 0.33 0.25 0.2 

Weak 2 1 0.5 0.33 0.25 

Moderate 3 2 1 0.5 0.33 

Strong 4 3 2 1 0.5 

Very strong 5 4 3 2 1 

 

Category Importance of 
category 

Importance of 
parameter 

Total weight (category * parameter) 

Very weak 0.0617666 0.248861 0.015371 

Weak 0.0972536 0.248861 0.024203 

Moderate 0.159923 0.248861 0.039799 

Strong 0.262518 0.248861 0.06533 

Very strong 0.418539 0.248861 0.104158 
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Appendix table 4. Peer comparison matrix between land use erodibility categories 

 Weak Moderate Strong Very strong 

Weak 1 0.5 0.33 0.25 

Moderate 2 1 0.5 0.33 

Strong 3 2 1 0.5 

Very strong 4 3 2 1 

 

Category Importance of 
category 

Importance of 
parameter 

Total weight (category * parameter) 

Weak 0.095435 0.0956434 0.009128 

Moderate 0.160088 0.0956434 0.015311 

Strong 0.277181 0.0956434 0.026511 

Very strong 0.467296 0.0956434 0.044694 
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Appendix table 5. Peer comparison matrix between soil texture erodibility categories 

 Very weak Weak Moderate Strong Very strong 

Very weak 1 0.5 0.33 0.25 0.2 

Weak 2 1 0.5 0.33 0.25 

Moderate 3 2 1 0.5 0.33 

Strong 4 3 2 1 0.5 

Very strong 5 4 3 2 1 

 

Category Importance of 
category 

Importance of 
parameter 

Total weight (category * parameter) 

Very weak 0.0617666 0.0956434 0.005908 

Weak 0.0972536 0.0956434 0.009302 

Moderate 0.159923 0.0956434 0.015296 

Strong 0.262518 0.0956434 0.025108 

Very strong 0.418539 0.0956434 0.04003 

 

 

 

 

 

 

 

 



90 

 

Appendix table 6. Peer comparison matrix between lithology erodibility categories 

 Very weak Weak Moderate Strong 

Very weak 1 0.5 0.33 0.25 

Weak 2 1 0.5 0.33 

Moderate 3 2 1 0.5 

Strong 4 3 2 1 

 

Category Importance of 
category 

Importance of 
parameter 

Total weight (category * parameter) 

Very weak 0.095435 0.0956434 0.009128 

Weak 0.160088 0.0956434 0.015311 

Moderate 0.277181 0.0956434 0.026511 

Strong 0.467296 0.0956434 0.044694 

 

 

 

 

 

 

 


	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2012

	Assessment of Land Use Suitability Based on Water Erosion Susceptibility in Medium-Sized Urban Areas of the Metropolitan Region of Santiago, Central Chile
	Roberto Fernandez
	Recommended Citation


	tmp.1466718485.pdf.yVeWN

