
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

8-2012 

Atomistic Simulations of Defect Nucleation and Intralayer Atomistic Simulations of Defect Nucleation and Intralayer 

Fracture in Molybdenum Disulphide During Nanoindentation Fracture in Molybdenum Disulphide During Nanoindentation 

James A. Stewart 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Other Materials Science and Engineering Commons, and the Polymer and Organic 

Materials Commons 

Citation Citation 
Stewart, J. A. (2012). Atomistic Simulations of Defect Nucleation and Intralayer Fracture in Molybdenum 
Disulphide During Nanoindentation. Graduate Theses and Dissertations Retrieved from 
https://scholarworks.uark.edu/etd/482 

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion 
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact scholar@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/292?utm_source=scholarworks.uark.edu%2Fetd%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/289?utm_source=scholarworks.uark.edu%2Fetd%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/289?utm_source=scholarworks.uark.edu%2Fetd%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/482?utm_source=scholarworks.uark.edu%2Fetd%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu


  



Atomistic Simulations of Defect Nucleation and Intralayer Fracture in Molybdenum 
Disulphide (MoS2) During Nanoindentation



Atomistic Simulations of Defect Nucleation and Intralayer Fracture in Molybdenum 
Disulphide (MoS2) During Nanoindentation 

 
 
 

 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

Master of Science in Microelectronics-Photonics 
 
 
 
 
 
 
 
 

By 
 
 
 
 
 
 
 
 

James A. Stewart, Jr. 
Alfred University 

Bachelor of Arts in Physics and Mathematics, 2009 
 
 
 
 
 
 
 
 

August 2012 
University of Arkansas 



ABSTRACT 

 

Molybdenum disulphide (MoS2) is a layered, hexagonal crystal that has a very low 

coefficient of friction. Due to this low coefficient of friction, MoS2 has become a well-known 

solid lubricant and liquid lubricant additive. As such, nanoparticles of MoS2 have been proposed 

as an additive to traditional liquid lubricants to provide frictional properties that are sensitive to 

different temperature and pressure regimes. However, to properly design these MoS2 

nanoparticles to be sensitive to different temperature and pressure regimes, it is necessary to 

understand the mechanical response of crystalline MoS2 under mechanical loading. Specifically, 

the fundamental mechanism associated with the nucleation and interaction of defects as well as 

intralayer fracture. This thesis addressed the mechanical response of crystalline MoS2 via contact 

deformation (nanoindentation) simulations, which is representative of the loading conditions 

experienced by these nanoparticles during synthesis and application. 

 There are two main tasks to this thesis. First, a Mo-S interatomic potential (a combination 

of the reactive empirical bond-order (REBO) interatomic potential and the Lennard-Jones 12-6 

interatomic potential) that has been parameterized specifically to investigate the tribological 

properties of MoS2 was implemented into the classical molecular simulation package, 

LAMMPS, and refined to provide improved predictions for the mechanical properties of MoS2 

via molecular statics calculations.  Second, using this newly implemented interatomic potential, 

molecular statics calculations were performed to investigate the mechanical response of MoS2 

via nanoindentation with specific focus on the nucleation of defects. Nanoindentation force - 

displacement curves were compared to the Hertzian contact theory prediction. It was shown that 

MoS2 does not follow the Hertzian prediction due it anisotropic nature. In addition, it was shown 



	  

that the initial sudden force drop event in the force - displacement curves corresponds to plastic 

deformation. It was hypothesized that the mechanism associated with plastic failure of MoS2 was 

the occurrence of broken bonds. However, it was proven that this initial plastic yield does not 

correspond to the occurrence of broken bonds in the MoS2 lattice; instead, a permanent slip 

occurred within or between the MoS2 layers. 
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CHAPTER 1:    INTRODUCTION 

 

1.1 Background and Motivation 

One of the oldest problems in science and technology that also has huge practical 

importance is that of friction [1, 2]. The friction created between mating surfaces (i.e., contacting 

surfaces interacting with each other by a relative sliding motion) is the primary cause of failure 

and increased degradation in mechanical components such as piston rings, engines, bearings, 

cutting machines, etc. [3, 4, 5, 6]. Friction requires excess energy to be consumed and the 

combination of friction and excess energy consumption is highly undesirable because as a result 

of these two effects there will be accelerated wear of mechanical components and a significant 

decrease in energy efficiency. An example of these problems in everyday life is the fuel 

economy of a vehicle and the life expectancy of the vehicle’s engine [3, 7]. It has been estimated, 

in developed countries, that approximately 5% of the gross national product (GNP) is wasted in 

friction and wear problems [1]. It has also been estimated that a developed country can save 1.0 - 

1.4% of its GNP if it incorporates tribological principles into its industries [8]. To achieve a 

reduction in the friction, wear and energy loss associated with mating surfaces, it is necessary to 

develop effective and durable low-friction surfaces and lubricants [4, 9]. 

The study of contacting surfaces that are in relative motion with each other and the 

related problems of friction and wear is the field of tribology [10]. When studying friction and 

wear and when developing a lubricant, it is necessary to know within which lubrication regime 

that the components and lubricants will be operating [11, 12]. There are three lubricating regimes 

that mechanical components can experience: (i) hydrodynamic lubrication, (ii) 

elastohydrodynamic lubrication, and (iii) boundary lubrication [12, 13, and 14]. The 
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hydrodynamic regime occurs when a lubricating film is thick enough to completely separate the 

mating surfaces and isolate the surface asperities (i.e., the distance between mating surfaces is 

much larger than the asperity size). Asperities are rough and uneven projections on the surface of 

a material. In this regime, the frictional properties of the system are controlled by the properties 

of the lubricant [12, 13]. The elastohydrodynamic (or mixed) regime occurs when the lubricating 

film is thin enough to allow the distance between the mating surfaces to approach the size of the 

surfaces asperities. In this regime, localized pressure can change the viscosity of the lubricant 

and elastically deform the sliding surface. Therefore, the controlling factors to characterize the 

frictional properties of the system are the lubricant viscosity, the viscosity-pressure coefficient 

and the elastic coefficient of the solid surface [12, 13]. The final regime, which is also known to 

be the harshest for components, is the boundary lubrication regime. This regime takes place 

when the mating surfaces are so close together that the lubricating film is unable to prevent 

significant surface contact, and only a few monolayers of the lubricant are present. This regime 

has the following main characteristics. First, the mating surfaces are in physical contact and 

interact at surface asperity locations. Second, the hydrodynamic lubricating effects of the bulk 

lubricant do not influence the frictional properties. Third, the frictional properties are dominated 

by the interactions of the asperities and the interaction of the asperities or surfaces with the 

lubricant [9, 12, 13, 14]. Figure 1.1a shows a schematic of the mating surface positions and the 

relative positions of the surface asperities in these three lubricating regimes. 

 Often, the relationship between friction and lubrication is described in a Stribeck curve 

[12, 13]. A Stribeck curve expresses the coefficient of friction (COF), f, as a function of the 

lubricant viscosity, !, the sliding velocity, V, and the normal force, FN [12, 13]. This relationship 

captures the characteristics of the three lubricating regimes discussed above. Figure 1.1b shows a 
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schematic representation of a Stribeck curve and the regions of the curve that correspond to and 

characterize the frictional properties of the three lubricating regimes. Note the region labeling in 

Figure 1.1 is the reverse of the region order mentioned above. 

 

      

Figure 1.1: (a) A schematic of the relative positions of the mating surfaces in the three 
lubricating regimes [13] (b) A Stribeck curve illustrating the COF in the three lubricating 

regimes [13]. 
 

 

Figure 1.1b illustrates that the COF in the boundary lubrication regime is higher during 

operation relative to the other regimes. This is because of the asperities that exist on the mating 

surfaces [12, 13, 14]. At low speeds and high loads the lubrication film decreases in thickness. 

(a) 

(b) 
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As a result, the asperities are able to come into contact and interact with each other and therefore 

deform. This is because the lubrication layer ruptures and no longer provides surface protection. 

This fact permits the boundary lubrication regime to be the harshest regime for mechanical 

components [12, 13, 14]. Therefore, with this harsh operating condition, the boundary regime 

will dominate the life cycle of engineering components and materials [15]. 

The fact that the asperities come into contact with each other means the normal force will 

not be supported by the entire mating surface (the apparent contact area) or the lubricant. Instead, 

the force will be supported by the contacting asperities and therefore a much smaller area (the 

true contact area). The true contact area can be determined by the sum of the contact areas of the 

surface asperities [9, 13, 14]. A schematic of the boundary lubrication regime in which asperities 

are in contact and in the presence of a ruptured lubricant is shown in Figure 1.2.  

 

 

 

Figure 1.2: (a) Schematic of true surface contact region with contacting asperities [13]  
(b) Schematic of asperity contact with ruptured lubricant [13]. 

 

 

As a result of the load being supported by the true contact area, an increase in the friction 

coefficient is accompanied by an increase in pressure and temperature at these contact points [10, 

(a) (b) 
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13]. Under these severe conditions (and in general) there are several types of wear that can occur. 

Adhesive wear is caused by adhesion of the asperities to the contacting surface. Abrasive wear is 

caused by the removal of material (debris) by the interacting asperities or by particles within the 

lubricant. Fatigue wear is caused by repeated application of stress to the surface. Chemical wear 

is caused by chemical reactions between the surfaces and the lubricant [10, 12, 13, 14, 16]. These 

types of wear can be accelerated by the severe temperatures and pressures introduced in the 

boundary lubrication regime. These local pressures and temperatures can reach 1-2 GPa and 700 

ºC respectively [5, 17]. 

Therefore, it is critical to apply appropriate lubricants such as solid lubricants, oils and 

greases, oils and greases with special additives (i.e., friction modifiers such as fatty acids, 

extreme pressure agents, graphite, molybdenum disulphide, etc.) to form lubricating films on 

components to prevent contact between the surfaces during operation and as a result reduce 

friction and wear and increase energy efficiency [6, 7, 12, 13]. Figure 1.3 shows a schematic of a 

Stribeck curve when friction modifiers are present in the lubrication fluid. This Stribeck curve 

shows a significant reduction of the COF in the boundary lubrication regime as a result of the 

presence friction modifiers. It is important to note that these lubrication solutions do not work the 

same way in different environments and operating conditions [18]. A lubricant that works for 

one system with a specific surface material, temperature and pressure will, in general, not work 

for another system with a different surface material, temperature and pressure. At the same time, 

within the same system, what works for one set of operating conditions will not work for another 

set of operating conditions (i.e., what works at high temperatures and pressures may not work for 

low temperatures and pressures) [18]. Therefore, it is necessary to be aware of possible operating 
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conditions and operating environments to be able to choose the most suitable lubricant and/or 

additive for a given application. 

 

      

Figure 1.3: A Stribeck curve illustrating the COF in the presence of friction modifiers for the 
three lubricating regimes [13]. 

 
 

A very popular and widely used solid lubricant that has been used in many different 

forms including as a dry lubricant applied directly to surfaces, dispersed in oils or greases and 

even used in self-lubricating composite components is the inorganic compound molybdenum 

disulphide (MoS2) [6, 7, 17, 19, 20, 21]. For many years MoS2 has been used and is still a 

popular choice in numerous applications such as metalworking, nuclear power plants, aerospace 

components, and automotive lubrication [16, 20]. MoS2 is well known for its lubricating 

properties in applications involving heavy loads [17, 22]. MoS2 is one of the softest materials 

with a value of 1.0 - 1.5 on Mohr’s scale [5]. The lubrication quality of MoS2 (as with graphite) 
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is widely attributed to the fact that it is a layered structure [17, 22, 23, 24]. However, having a 

layered structure does not necessarily imply a material will have a low coefficient of friction or 

good lubrication properties. For example, compounds such as CdI2 and Ca(OH)2 also have 

layered structures but are poor lubricants [17, 23]. 

The molybdenum atoms have a polarization effect on the sulfur atoms. This leads to 

strong covalent bonding within a S-Mo-S layer and relatively weak attractive forces between the 

S-Mo-S layers. This is also the reason for the arrangement of the MoS2 crystal structure and 

therefore the anisotropic cleavage and weak shear forces required to remove an S-Mo-S layer 

[17, 23, 24]. More details on MoS2 are provided in Section 1.2. In comparison, the CdI2 and 

Ca(OH)2 compounds have covalent and ionic bonds and no polarization effects within the 

crystal, which does not provide for the easy shearing of layers [23]. 

The importance of MoS2 as a lubricant has lead to significant fundamental and applied 

research [24], in particular, the study of the effects of operating and environmental conditions on 

the frictional properties of MoS2. A brief review of this work is provided below. The tribological 

properties of MoS2 can be affected by many factors such as purity, particle size, humidity and 

temperature [20, 24]. A more detailed review of MoS2 as a lubricant and its behavior under 

certain environmental conditions such as water vapor, temperature, vacuum, radiations, chemical 

effects, varying loads, etc. can be found in [17, 23, 24]. Papers that discuss the frictional 

modification properties of MoS2 when added as a friction modifier to various lubricants can be 

found in [3, 18, 19, 20, 21, 22, 25]. 

In 2008, Verma et al. [26] investigated the tribological behavior of MoS2 nanoparticles, 

synthesized in different conditions, as an additive to paraffin oil. These nanoparticles were 

designed to be intercalated with organic molecules, specifically canola oil, and lecithin as a 
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phosphorous source. These nanoparticles were developed specifically to be nano-sized and 

intercalated with canola oil and lecithin so that the particles would be able to traverse the nano- 

to micro- sized surface asperities to deliver lubricating films to the area where micro-sized 

additives were insufficient during surface sliding in extreme temperatures and pressures [26]. 

The specific reason for including lecithin is that it includes phosphorous. Phosphate molecules 

are exceptional anti-wear agents and were included in the MoS2 additive mixture so that they 

may be selectively applied to rubbing surfaces when the nanoparticles are sheared and removed 

during high-pressure use [26]. When these molecules are deposited at high pressures, the 

surfaces are still protected therefore reducing friction and preventing wear and seizure [26]. A 

schematic of a MoS2 nanoparticle with the intercalated fatty acids can be seen in Figure 1.4. 

 

 
Figure 1.4: A schematic of a MoS2 nanoparticle intercalated with fatty acids [5]. 

 

In the study by Verma et al. [26] two types of lubricants were tested. One lubricant was 

pure paraffin while the other lubricant had MoS2 nanoparticles dispersed in the paraffin oil. The 

lubricant with MoS2 as an additive was broken into three samples. The first sample was prepared 
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with commercially available MoS2 particles (c-MoS2). The second was prepared with dry (in air) 

ball milled MoS2 (d-MoS2) particles dispersed in the paraffin oil. The third sample was prepared 

with MoS2 particles (h-MoS2) that were first dry ball milled in air and then ball milled in canola 

oil. In all three samples, MoS2 was present at 1.0% concentration by weight in the paraffin oil. 

These four lubricants were tested with a four-ball tribometer to test their effectiveness in (i) 

reducing the wear scar diameter created during loading, (ii) reducing the coefficient of friction, 

and (iii) their performance at extreme pressures. Figure 1.5 shows a graph of wear scar diameters 

(WSD) created for each of the tested lubricants. The graph shows that the lubricants containing 

c-MoS2 and d-MoS2 additives had a minor effect on the wear scar diameter created. 

 

 
Figure 1.5: Reduction in WSD for MoS2 additives [26]. 

 

The wear scar diameter decreased from 1.03 mm in the pure paraffin oil case to 0.96 mm 

(c-MoS2) and 0.95 mm (d-MoS2). Also seen in the graph is the significant reduction in the WSD 

for the lubricant with the hybrid milled MoS2 additive (h-MoS2). With h-MoS2, the WSD 

decreased to 0.46 mm (more than a 50% decrease). As shown in Figure 1.5, and as was expected, 
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the pure paraffin oil produced the highest coefficient of friction. The lubricants with MoS2 

additives clearly produced a reduction in the COF while the h-MoS2 lubricant produced the 

lowest COF at 0.069. A summary of the wear scar diameters and coefficients of friction for their 

study can be found in Table 1. 

 

 
Table 1.1: Summary of WSD and COF reduction with MoS2 additives [26]. 

 

In studying the effects of extreme pressure on these lubricants, Verma et al. [26] also 

created lubricants with different amounts of added MoS2; MoS2 was added at 0.5%, 1.0% and 

1.5% concentration by weight to the paraffin oil for each of the three types of MoS2 particles. 

Verma et al. [26] reported that the c-MoS2 and d-MoS2 lubricants had no effect on the COF 

during the tests. This was attributed to the nanoparticles not being ideally suspended in the oil 

and becoming clumped together in sizes of ~10 microns. These micron-sized particles were not 

able to easily travel around the surface asperities during rubbing to deposit a protective 

lubricating film. However, the h-Mos2 lubricant had a significant impact as seen in the graph. In 

this case, the lubricant was able to support a higher load before seizure. This was because the 

nanoparticles were well suspended in the oil without any clumping occurring [26]. 

Studies of the tribological performance of MoS2 and MoS2 as an additive can be found in 

the following references [3, 6, 16, 18, 19, 20, 21, 22, 25, 27]. The incorporation of MoS2 as an 
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additive in lubricants plays a role in increasing the tribological properties of the lubricant, 

facilitating the development of a durable lubricant in the boundary lubrication regime. This 

allows for a reduction in friction, a reduction of component wear during use, and therefore will 

lead to an increase in energy efficiency. However, further research on the fundamental aspects of 

the physical and chemical behavior of MoS2 needs to be done. Some aspects that need to be 

investigated with regards to MoS2 and intercalated MoS2 particles are: (i) the chemistry 

dependent properties of the MoS2 nanoparticles when they are intercalated with organic fatty 

acid chains; (ii) the friction and wear experiments to investigate the behavior of the additives 

suspended in oils at the surface under high pressure conditions; and (iii) to study the defect based 

mechanisms associated with mechanical deformation encountered in boundary lubrication to 

explore the size and strain affects of these defects on the frictional characteristics of MoS2. 

 

1.2 Molybdenum Disulphide 

The impressive tribological properties of molybdenum disulphide (MoS2) are attributed 

to its lamellar and hexagonal crystal structure (more rarely in a rhombohedral crystal structure) 

created from the polarization and covalent bonding effects described in Section 1.1. A schematic 

and TEM image of the layered MoS2 crystal structure is shown in Figure 1.7. The layered 

structure of MoS2 can clearly be seen in Figure 1.7b. 

Each molybdenum (Mo) atom is surrounded by six sulfur (S) atoms that create a trigonal 

prism [17, 28]. Since Mo atoms have a strong polarization effect on the S atoms, covalent bonds 

are created between the Mo and S atoms within a S-Mo-S tri-layer. Since the S atoms are 

polarized, the surface of the sulfur layer has a distribution of weak dipoles. This distribution 

leads to the stacking of the S-Mo-S structures and a weak van der Waals attractive force between 
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the S-Mo-S tri-layers. This van der Waals attraction between the S-Mo-S layers leads to the easy 

cleavage of MoS2 and therefore good frictional characteristics [17, 23, 24]. The experimentally 

determined lattice constants of MoS2 are a = 3.16 Å and c = 12.29 Å with a bond length for Mo-

S is 2.42 Å [28]. The in-plane S-S and Mo-Mo distance in a layer is 3.16 Å. The S-S distance 

between tri-layers is 3.49 Å. The distance between interlayer S-S planes is 2.92 Å.  

 

 
Figure 1.6: (a) Schematic of MoS2 crystal structure [28]  

(b) TEM Image of MoS2 nanostructure [29]. 

 

MoS2 has a very low coefficient of friction between 0.01 and 0.08 depending on load and 

the environment. In vacuum, the coefficient of friction is reduced to 0.002 [21, 25]. Again, this 

low friction property is due to the layered structure and atomic bonding of MoS2. MoS2 is 

considered an “extreme pressure” lubricant and is therefore used in conditions where severe 

operating conditions and extreme pressures occur [17]. Between 0ºC and 100ºC, at constant load, 

the coefficient of friction decreases with increasing temperature. At temperatures above 700ºC, 

MoS2 will react with steel surfaces, which creates another layer of protecting and lubricating film 

[17]. The melting temperature of MoS2 is very high at 1185ºC [30], which makes it an 

appropriate choice for extreme temperature applications. In general, MoS2 does not react unless 
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it is physically or mechanically forced to react (i.e., “activated”) at high temperatures or 

pressures. 

With MoS2, it is essential to understand, at the atomic level, the formation, propagation, 

and interaction mechanisms of defects and how these defects may alter the tribological 

performance of MoS2. During synthesis or application of the nanoparticles deformation will 

occur, necessitating defects and dislocation nucleation [14]. As such, this work focused 

specifically on modeling the mechanisms associated with defect nucleation and intralayer 

fracture in crystalline MoS2 nanoparticles at the atomic level via mechanical deformation. 

Modeling this process at the atomic level provided insight into the structure-property relationship 

of defects and the tribological performance of MoS2. 

While a tremendous amount of experimental work has been done to investigate the 

frictional characteristics of MoS2 as a stand-alone lubricant and as an additive, there have also 

been computational studies focused on MoS2. With increasing computational power and 

capabilities being developed, computational materials modeling is becoming more popular and 

widespread as a predictive tool [31]. These computational studies have included atomistic 

simulations and quantum mechanical calculations to study the structural, mechanical, electronic, 

and frictional properties of crystalline MoS2. 

Wei et al. [32] used density functional calculations to calculate the band gap energy, 

density of states, lattice and elastic constants at pressures from 0 - 40 GPa. Wei et al. [32] 

reported a band gap energy of 0.79 eV, which they report is smaller than previous values in the 

literature of 1.2 - 1.29 eV. This underestimation is a known drawback of the method employed in 

their work. At 0 GPa, Wei et al. [32] calculated MoS2 lattice parameters of a = 3.199 Å, c = 

12.493 Å, a Mo-S bond length of 2.41 Å and elastic constants of C11 = 211.2 GPa and C33 = 36.7 
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GPa. They also determined that as the pressure was increased from 0 GPa to 40 GPa the band 

gap and lattice constants decreased to 0.4 eV, a = 2.955 Å and c = 10.71 Å while the elastic 

constants increased to C11 = 418.326 GPa and C33 = 382.437 GPa. Chermette et al. [33] also 

carried out density functional calculations to study the changes in the electronic structure and the 

frictional properties of MoS2 due to the oxidation of MoS2 and the substitution of sulfur by 

oxygen. 

Weber et al. [34, 35] implemented density functional calculations to study the structural 

and elastic properties of MoS2 and the adsorption of lithium ions on the (1010) face of a MoS2 

crystal. The adsorption study was done to address the catalytic properties of MoS2 since MoS2 is 

commonly used as a catalyst in hydrodesulphurization of oil. They compared the results of 

various density functional methods to find the best description of MoS2. Weber et al. [34] 

reported that the use of Hartree-Fock with the Perdew-Wang Generalized Gradient 

Approximation (HF + DW-GGA) provided the best results for reproducing lattice and elastic 

constants. Using this HF + DW-GGA method, they report lattice constants of a = 3.1 Å, c = 12.4 

Å and elastic constants of C11 = 255.05 GPa and C33 = 35.37 GPa (experimental values of C11 = 

238 GPa and C33 = 52 GPa). 

Stefanov et al. [36] used density functional calculations to study the effects of high 

compressive loads on the frictional properties of multi-walled MoS2 nanotubes. They found, in 

all of the nanotube cases, that as the applied load from a rigid substrate increased, the MoS2 

nanotubes would irreversibly deform and fracture. Once the nanotubes fractured, they began to 

organize themselves into layered structures onto the surfaces of the substrate. The organization 

of MoS2 onto the substrate in a layered form was indicative that MoS2 may provide a lubricating 

film during high loads and the mating surfaces will never come into contact. The authors also 
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stated that their findings showed it might be possible to “tune” the mechanical properties of 

MoS2 nanostructures to create nano-coatings during the use of MoS2 as a lubricant.  

Varshney et al. [37] used molecular dynamics simulations to model the thermal transport 

behavior of MoS2 in directions parallel and perpendicular to the basal plane. The interatomic 

potential used by Varshney et al. [37] included bonded, angle, and non-bonded interactions for 

the MoS2 crystal. In each simulation, the “hot” end of the crystal was held at 350 K while the 

“cold” end was held at 250 K. In each simulation direction, Varshney et al. [37] found the 

temperature profile of the MoS2 lattice to be linear (the temperature linearly decreased from hot 

to cold across the simulation cell). The thermal conductivity was also calculated for these to 

direction. The thermal conductivity for the parallel direction was calculated to be 18.06 ± 1.42 

W/m-K (experimental values of 1.2 - 1.5 W/m-K) while the perpendicular direction was 

calculated to be 4.17 ± 0.36 W/m-K (experimental values of 0.2 – 0.5 W/m-K). Varshney et al. 

[37] stated that the reason the computational results were higher than experimental values was 

because of their use of small (7,680 - 9,216 atoms) and ideal model MoS2 crystals. The 

anisotropy in the thermal conductivity is a result of the multi-layered structure of MoS2. 

Morita et al. [38] developed a molecular dynamics program to study the formation of 

MoS2 structures on iron surfaces (compressed and sliding) from initially amorphous MoS2 and 

their frictional properties. To model interatomic interactions, an interatomic potential was used 

that included bonded, angle, Coulomb, and van der Waals interactions. A simulation cell of size 

27.5 Å x 27.5 Å x 100 Å was used where the iron substrate applied a compressive load of 0.5 

GPa. During the simulation, Morita et al. [38] found that the amorphous MoS2 would self-

organize into layered structures in the iron surface. They also found that the COF significantly 

decreased from ~ 0.3 near the beginning of the simulation to 0.006 at the end of the simulation. 
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Brunier et al. [39, 40] developed an interatomic potential for the MoS2 structure that 

included bonded, non-bonded, angle and torsional interactions and was fit to experimentally 

determined lattice constants. Molecular mechanics (statics) calculations were then used to study 

the structure of crystalline MoS2, specifically the Mo-S bond lengths on a system of 181 atoms. 

They were able to accurately reproduce the hexagonal MoS2 structure with a Mo-S bond length 

of 2.419 Å. They then used this same interatomic potential and molecular mechanics approach to 

study the catalyst effects of MoS2 with the binding of thiophene to open (or “active”) sites on 

(1010) and (1010) surfaces. 

Liang et al. [28] parameterized a reactive bond order potential specifically for Mo-S 

systems to study the frictional property of a MoS2 structure sliding on a MoS2 substrate. They 

studied a small (551 atoms) MoS2 layer sliding on top of a larger (11,520 atoms) MoS2 substrate 

with a simulated compressive load of 2 GPa. As the smaller structure slid across the substrate, 

the displacement of the layer and changes in the perpendicular and parallel forces were 

determined. Knowing the perpendicular (F!) and parallel (F∥) forces allowed determination of 

the average COF [27, 28] i.e., 

µμ =
F∥
F!

 Equation 1.1 

 

In the study by Liang et al. [28], an average COF was calculated to be 0.17, which agreed very 

well with experimental data. This potential was developed specifically to study the tribological 

performance of MoS2 and was proposed to use this potential to gain insight into the structural 

and frictional characteristics of MoS2. 

While these previous computational studies provide useful information about the 

properties of MoS2, they do have their limitations, especially in being able to study mechanical 
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deformation and defect formation in MoS2. The number of atoms that can be modeled limits 

quantum mechanical calculations. While this limitation is fine for calculating electronic 

structures it is not very useful in modeling and predicting bulk material behavior. The molecular 

dynamics or molecular mechanics simulations remove this limitation by being able to model up 

to billions of atoms [41]. The limitation here comes from the interatomic potentials that are used 

in the simulation. The potential of Brunier et al. [39] is limited in the fact that bond and angles 

have to be defined prior to the simulation. This means that there is no reactive component to the 

potential since the atoms stay bonded to their initial neighbors during the whole simulation, 

which provides unrealistic energies and forces.  Therefore, with these types of potentials, it is not 

feasible to model bond breaking, bond formation and intralayer fracture. The ability to allow for 

bond breaking is essential for studying defect nucleation and motion. 

As such, this work focused on using the parameterized potential of Liang et al. [28] that 

provides a reactive component to the simulation. This work provides an advancement to previous 

work since the reactive ability of this potential allowed the simulation to accurately capture bond 

breaking and formation as well as defect movement during deformation of the MoS2 crystal. To 

this date, there have been no efforts reported in the literature to study the fundamental 

mechanisms of defect nucleation and interaction as well as intralayer fracture in crystalline 

MoS2. Understanding the impact of defects and intralayer fracture on the frictional properties of 

MoS2 is crucial to allow the design and synthesis of durable, reliable, and predictable 

nanoparticle MoS2 additives for lubricants. 
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1.3 Thesis Objectives  

There were two main objectives to this thesis: (i) to implement a modified bond order 

interatomic potential for Mo-S systems into an atomistic simulation package and (ii) to use this 

potential and molecular statics calculations to investigate defect nucleation and intralayer 

fracture by nanoindentation on the basal plane of crystalline MoS2 which together they provided 

insight into the formation of defects during nanoparticle synthesis or application of the 

nanoparticles in lubricating conditions. 

First, a reactive empirical bond order (REBO) interatomic potential that has been 

modified and parameterized for Mo, S and Mo-S (specifically MoS2) systems was incorporated 

into LAMMPS (Large-scale Atomic Molecular Massively Parallel Simulator), a classical 

molecular simulation package. It was important that the implemented interatomic potential 

calculate atomic energies and forces that were consistent with the derived energy and force 

equations (discussed in Chapter 3) as well as calculating the exact energy and force quantities 

that the Liang et al. [28] atomistic code calculates. Liang et al. [28] graciously provided their 

atomistic code for direct comparison with the LAMMPS implementation. In order to assure that 

the Mo-S potential was properly implemented into LAMMPS, atomic energies and forces as well 

as structural information including lattice and elastic constants were directly compared from the 

original Liang et al. [28] atomistic code and the LAMMPS code for small test structures. It was 

crucial to verify that LAMMPS properly reproduced information about the MoS2 structure so 

that atomic processes could be accurately captured. Accurately capturing these processes allowed 

precise predictions and conclusions to be drawn during mechanical deformation processes. 

Second, atomistic simulations of nanoindentation on the basal plane of crystalline MoS2 

were done to study defect formation mechanisms and intralayer fracture in this material under 
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mechanical deformation. This simulation was done using molecular statics (at zero temperature 

and therefore no kinetic energy) to keep the system in its minimum energy state (i.e., the relaxed 

crystal structure). A frictionless indenter was used to simulate the nanoindentation process. 

Molecular statics and a frictionless indenter were used in the simulations so that definitive 

conclusions could be made about the defect nucleation process of crystalline MoS2 without the 

influences of temperature and interactions with the indenter tip.  These simulations were done 

with varying sizes of the indenter diameter. Figure 1.7 shows a schematic of the atomistic 

simulation geometry that was used for the nanoindentation process. 

 

 

 

 

 

Figure 1.7: Schematic of the atomistic simulation geometry used to study defect nucleation 
during nanoindentation of MoS2 (Mo = Blue, S = Yellow). 

 
 
 

These calculations provided an understanding of: (i) the forces required to break bonds 

and (ii) the mechanism by which defects formed and propagated within the lattice; specifically, if 

the mechanism associated with defect formation and deformation during mechanical contact was 

the occurrence of broken bonds, which is the hypothesized failure mechanism. 
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CHAPTER 2:   THEORY OF ATOMISTIC SIMULATION 

 

2.1 Introduction 

Atomistic simulation is a method of modeling materials or a configuration of atoms and 

their properties at the atomic level. Atomistic simulations generally fall into three categories: 

Monte Carlo, molecular dynamics simulations and molecular mechanics (statics). These 

techniques make it possible to study physical configurations and assist in the development of 

experiments and theories. Atomistic simulations can [42 - 48]: 

(i) provide insight into the behavior of physical systems where theoretical 

approximations are untested as well as testing the validity of approximations 

against known model systems 

(ii) simulate conditions that may not be experimentally available or systems that are 

not seen in nature 

(iii) provide visualization of specific processes to study complex phenomena 

(iv) provide assistance in understanding existing materials and designing new 

materials 

In this work, the term atomistic simulation will specifically refer to the molecular 

mechanics (statics) technique. Section 2.2 will provide a brief discussion of the molecular statics 

technique used in this work. Detailed descriptions of Monte Carlo methods, molecular dynamics, 

and other techniques used within these simulation methods can be found in textbooks by Allen 

and Tildesley [43] and Frenkel and Schmidt [45] and in references [42, 44, 46, 47, 48]. 

In an atomistic simulation, the atoms are represented as point particles in a configuration 

space with mass, m. An interatomic potential function, U, provides an approximate model of the 
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interaction energy of the system of atoms. A common aspect of interatomic potentials is that they 

do not explicitly include the interactions associated with individual electrons. Instead, the 

potential energy of the system is generally determined exclusively as a function of the atomic 

positions. These simplifications make it computationally feasible to model large systems of 

atoms. Using the interatomic potential function, U, it is possible to calculate the force on any 

given atom. The force, Fi , on the ith atom due to its neighbors is determined by the negative 

gradient of the potential function i.e., 

 

Fi  = − !!
!!!

 Equation 2.1 

 

In Equation 2.1, ri is the atomic position vector for the ith atom. A detailed discussion of 

the interatomic potentials used in this work will be presented in an overview in Section 2.3 and 

specifically for MoS2 in Section 3.2. 

One of the limitations of atomistic simulations is that models are limited to relatively 

small systems of atoms because of computational resources [43, 44, 46]. This implies that one 

cannot model realistic macroscale system with a large number of atoms (on the order of 

Avogadro’s number of atoms). To alleviate this problem, periodic boundary conditions are used. 

Figure 2.1 shows a two dimensional illustration of periodic boundary conditions used in 

atomistic simulations.  

The primary cell is located in the center of Figure 2.1 and contains atoms within it that 

represent a small portion of a material. The atoms located in this primary cell are modeled using 

atomistic methods. The bordering cells contain replica images of the primary cell and atoms 

being studied. These image cells are periodically repeated to simulate an infinite crystal lattice.  
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Figure 2.1: Illustration of Two-Dimensional Periodic Boundary Conditions. 

 

As a particle within the primary cell moves during the simulation as described by the interatomic 

potential or by an external force, its corresponding image atom in all image cells will move in 

exactly the same way; as shown by the green atoms in Figure 2.1. If a particle were to leave the 

primary simulation cell, its image would enter the primary simulation cell through the opposite 

cell face with the same properties as the original primary atom. For example, suppose the red 

atom located in the primary cell moves outside of the primary cell, as illustrated in Figure 2.1 

with a solid arrow. The image of this atom will move into the primary cell through the opposite 

side of the cell, as shown with a dotted arrow in Figure 2.1. Atoms that are located near the 

boundary of the primary cell will interact with atoms across this boundary. As a result, there are 

effectively no walls constraining the primary cell, which gives the effect of an infinite lattice 

with the constraint that the number of atoms, N, must be conserved. These periodic boundary 

conditions can also be problematic in the case of long-range interactions where an atom could 

interact with its own image through the boundary [43]. This constraint needs to be taken into 

Image Cell Image Cell Image Cell 

Primary Cell 

Image Cell Image Cell 

Image Cell 

Image Cell 

Image Cell 
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consideration when simulating defect behavior. If periodic boundary conditions are used in three 

dimensions, then it is possible to remove any surface effects. 

The atomistic simulation code used in this work (LAMMPS) [49] was written by Steve 

Plimpton, Aidan Thompson and Paul Crozier at Sandia National Laboratories / Albuquerque, 

NM. The current version of the code is written in C++ and can be used on a single processor or 

on multiple processors by the use of message passing techniques and a spatial decomposition of 

the simulation cell. LAMMPS has a library of implemented interatomic potentials that allows the 

modeling of biomolecules, polymers, metals and semiconductors and the capability to simulate 

frictionless spherical indentation. In order to accurately model crystalline MoS2 and the 

nanoindentation of MoS2, it was necessary to modify specific subroutines in the LAMMPS code. 

The changes implemented into LAMMPS are: (i) the angular and coordination spline functions 

from the original REBO potential were replaced with polynomials, (ii) the coordination function 

was changed to allow for a pair of atoms (the ith and jth atoms) to have a force interaction within 

the bond-order function and (iii) to modify the Lennard-Jones interaction at small interatomic 

distances with an implemented spline function to terminate the Lennard-Jones interactions below 

a minimum cutoff distance. A more detailed discussion of these changes is given in Chapter 3. 

 

2.2 Molecular Statics 

One of the most common tasks in atomistic simulations is to find the stable equilibrium 

configuration of a given system of atoms or crystal structure. This corresponds to finding an 

atomic structure (close to the desired crystal structure) with a minimum potential energy [50]. In 

this work, molecular statics (MS) calculations were used to compute the minimum energy 

structure (the relaxed state) of the MoS2 crystal, within a given tolerance. The conjugant gradient 
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(CG) method was used to determine the minimum potential energy structure of MoS2. A brief 

overview of the conjugant gradient method is provided in the following discussion. A more 

detailed review of the conjugant gradient method that follows can be found in Shewchuk [51]. 

The most prominent method for solving sparse systems of linear equation is the method 

of conjugant gradients [51]. Given a function f(x), if f(x) is continuous, has a minimum and its 

derivative exists (i.e., it can be calculated) then the method of conjugant gradients can be used to 

find the minimum of f(x). The general concept of the conjugant gradient method is to start at an 

initial location on the surface of a function f(x) and repeatedly move in conjugant directions until 

the minimum of f(x) is determined. In atomistic simulations, this corresponds to moving atomic 

positions over the potential energy surface (the interatomic potential function U(r)) until they 

reach a minimum potential energy configuration. From Equation 2.1, we know that the force 

vector is determined by the negative gradient of the potential energy function, U(r). From 

calculus, the gradient of a function points in the direction of steepest increase of a function. Since 

the force vector is the negative of the gradient, the force vector points in the direction of steepest 

decrease of a function. In the conjugant gradient method, a quantity called the residual is defined. 

The residual determines how far the current approximate solution to the minimum is to the 

correct solution for the minimum, similar to the error. Therefore, in atomistic simulations, the 

residual is defined to be: 

 

gm =  − !! !
!!!

 Equation 2.2 

 

In Equation 2.2, m denotes the mth iteration in the conjugant gradient method. By comparing 

Equations 2.1 and 2.2, it is clear that the residual is equivalent to the force vector. Therefore, the 
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force vector is the residual associated with the potential energy function. With the residual 

defined, the atomic positions can be updated or moved to the potential energy minimum by an 

iterative process given by: 

 

rm+1 = rm + !!dm Equation 2.3 

  

In Equation 2.3, ! is a scalar that minimizes the potential energy along the current (mth) search 

direction and d is the current (mth) search direction that ! is chosen to minimize along. In the 

conjugant gradient method, the first search direction is taken to be the residual itself i.e., 

 

d0 = g0 = − !! !
!!!

 Equation 2.4 

 

To determine the alpha that minimizes the potential function, the derivative of the potential 

function, U, at the point rm+1 (Equation 2.4) is set to zero. Doing this requires the residual at rm+1 

and the search direction dm to be orthogonal i.e., 

 

(gm+1)T dm = 0 Equation 2.5 

  

In the conjugant gradient method, to calculate the value of ! that minimizes the potential 

function in the search direction, dm, and satisfies Equation 2.5, a line search procedure is 

commonly used. Common line search techniques are Newton-Raphson, Secant and backtracking 

methods. The backtracking line search algorithm is the method incorporated in LAMMPS, which 
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is computationally efficient since the gradient of the potential function does not need to be 

calculated. 

As stated above, the first search direction in the conjugant gradient method is taken to be 

just the residual of the potential energy function, Equation 2.4. With this initial search direction 

and !, the atomic positions are updated from their initial positions, r0, to new positions, r1. With 

the new positions determined and using Equation 2.2, a new residual can be calculated. To iterate 

this process, each following search direction is constructed from the new residual and the 

previous search direction (the search directions are constructed by conjugation of the residuals 

[51]) and is given by: 

 

dm+1 = gm+1 + !!!!dm  Equation 2.6 

 

These new search directions are determined from the previous search direction by use of 

the parameter !. The values of ! are chosen so that each successive search direction is conjugate 

to the previous search direction with respect to U (or U-orthogonal) [51] i.e.,  

 

(dm+1)TUdm = 0  Equation 2.7 

 

There are two methods to estimate the value of !: the Fletcher-Reeves and Polak-Ribiere 

formulas. The Polak-Ribiere formula has better convergence properties over the Fletcher-Reeves 

formula and is the method used in the LAMMPS code. It is given by: 
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!!!!!" = !"#
!!!!! !!!! − !!

!!! !!
, 0      Equation 2.8 

 

Convergence of the Polak-Ribiere method is guaranteed by choosing !PR with Equation 

2.8 [51]. Note that if ! = 0, the method of steepest decent is recovered (and the search directions 

become just the residual of the potential energy function). The method of conjugant gradients is 

an advancement upon the steepest decent method because in steepest decent numerous steps can 

be taken in the same search direction whereas conjugant gradients limits one step in each 

conjugant search direction. 

 

2.3 Interatomic Potentials 

In atomistic simulations, it is necessary to calculate the forces acting on each atom to 

predict the evolution of the configuration. The atomic energies and forces are calculated with the 

use of an interatomic potential. As such, the success of an atomistic simulation is determined by 

the accuracy of the interatomic potential used. Although there is a trend to use accurate quantum 

mechanical methods for interatomic interactions, this method is restricted by computational 

resources to small systems and large computing times. Examples of material properties that are 

too complex to use quantum mechanical method are: surface phase transitions, grain boundary 

structure and dislocation motion [44]. Therefore, an interatomic potential that is fit to material 

properties that capture the underlying atomic processes is used. These empirical interatomic 

potentials are designed to allow easy and rapid calculation of interatomic forces to model large 

systems of atoms and the above problems become easy to study [44, 52]. 

 Generally, interatomic potentials can be categorized into four different classes: (i) pair 

potentials, (ii) cluster potentials, (iii) pair functionals and (IV) cluster functionals [53]. These 
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classes of interatomic potentials have an increasing level of complexity. The increasing level of 

complexity in these potentials allows for a more accurate description of the interatomic 

interactions and therefore a better model of material properties. In the simplest class, the pair 

potentials, the force between a given pair of atoms is only a function of the separation distance of 

these two atoms. These simple pair potentials do not incorporate the environment (location and 

number of neighbors) of an atom to alter the interaction of a pair of atoms. In the most complex 

potential class, the cluster functionals incorporate sophisticated descriptions of the local 

environment of an atom in determining the interatomic interactions [53]. A more detailed review 

of interatomic potentials can be found in Carlsson [53] and Finnis [54]. Sections 2.3.1 and 2.3.2 

will provide a brief discussion of the reactive empirical bond order (REBO) and Lennard-Jones 

interatomic potentials, as they are critical to this research. 

 

2.3.1 The Reactive Empirical Bond-Order (REBO) Interatomic Potential 

Abell first developed an analytic form for the reactive bond-order potential in 1985 to 

describe metallic and covalent bonding [55]. This bond-order potential models the attractive 

contributions to the potential energy through the use of a many-bodied bond-order function. This 

bond-order function controls the strength of the pairwise interactions by being a function of the 

local environment of a given atom. According to Abell, the coordination of an atom is the major 

component in determining the bond-order function [52, 55]; for example, an atom with many 

neighbors forms weaker bonds than an atom with few neighbors. With the bond-order potential 

in place, Tersoff [56, 57, 58] advanced Abells bond-order formalism to provide a better model of 

atomic environments and therefore a better description of bonding energies for realistic covalent 

systems of different bonding geometries. Brenner et al. [52, 59] developed a second-generation 
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reactive bond-order potential, which gave a better description of bond energies, bond lengths, 

elastic properties, defect and surface energies for hydrocarbons and diamond. Stuart et al. [60] 

extended this reactive bond-order potential of Brenner even further to include non-bonded and 

torsional interactions. This potential is empirical in that it is fitted to data from experiments or 

quantum mechanical calculations. This potential has been parameterized (fitted) to study silicon, 

carbon, germanium, hydrocarbons and fluorocarbons [57, 58, 59, 61, 62]. The REBO potential 

has been used to study many problems such as growth of hydrocarbon thin films [63], 

tribological properties, fracture and nano-indentation carbon of nanotubes [64, 65]. The REBO 

potential has been shown to always be qualitatively accurate when compared to quantum 

mechanical methods an often quantitatively accurate [66]. The following will provide a brief 

overview of the second-generation reactive bond-order potential of Brenner et al. [52, 59], which 

was the basis of the parameterized Mo-S REBO potential discussed in Section 3.2. 

Brenner et al. [52, 59] developed the REBO potential to (i) be computationally efficient, 

(ii) provide better descriptions of bonding energies, force constants and bond lengths for carbon 

and hydrocarbon systems as well as being transferable to other systems and (iii) allow for bond 

breaking and formation of covalent bonds. In the REBO potential, the potential energy is written 

as the sum over the nearest neighbors of an atom i.e., 

 

! =    !!(!!") V!(!!") − !!"V!(!!")
!!!

                                                                                             

= !!(!!") 1 +
!!"
!!"

!!"!!!!"!!" − !!" !!"!!
!!!"

!!!"

!!!,!!!!

 

 

 

Equation 2.9 
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In Equation 2.9, !!" is the interatomic separation distance between atoms i and j; !! is a 

cutoff function that limits the atomic interactions to first and possibly second nearest neighbors; 

VR and VA are pairwise functions that model the repulsive and attractive atomic interactions, 

respectively; and !!"  is the many-body bond-order term that is a function of the local 

environment (coordination and angular interactions) of an atom and modifies the pairwise 

interactions accordingly. The parameters !!" , !!" , !!" , and !!"  are pairwise parameters that 

depend on the atom types of atom i and atom j and are fit to reproduce specific material 

properties. The parameter !!" can be regarded as the screened Coulomb interaction [52]. The 

bond-order term is given by: 

 

!!" =
1
2
!!"!!! + !!"!!! + !!"!  Equation 2.10 

 

The !!"!!! and !!"!!! terms are functions of the local environment of an atom, the angular 

interactions and the local coordination of an atom. The !!"!!! term (similarly for !!"!!!) has the 

expression: 

 

!!"!!! = 1 + !!"! (!!")G(cos  (!!"#))
!!!,!

!!!"# + !!"(!!! ,!!!)

!!
!

 Equation 2.11 

 

In Equation 2.11, !!"!  is a cutoff function that limits the angular interactions to first and 

possibly second neighbors with the summation excluding the i-j angular interaction. The function 

G(cos  (!!"#)) accounts for the angular interactions of a set of atoms i, j and k. The parameter 
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!!"# is used to provide a smooth potential energy surface by removing false energy wells that 

would cause unrealistic attractions to occur in certain geometries. The function, !!", depends on 

the coordination number of an atom where !! is the number of neighbors of atom i. The function 

!!"!  is written as: 

 

!!"! = Π!"!" + !!"!" Equation 2.12 

 

In Equation 2.12, the !!"!" term is a function that describes rotational forces associated 

with dihedral angles while the Π!"!"  term accounts for energy influences from atoms that have 

open electron shells (radical energies) and systems where a p-orbital overlaps a !-bond or double 

bonded states (!-bond conjugated systems) [52, 59]. 

In the REBO potential, the local environment of an atom determines the interatomic 

interactions. As such, atomic bonding in this potential is described by the local bonding of 

nearest neighbors and non-local double bonding effects [52, 59].  This allows for the effects of 

hybridization (mixing of atomic orbitals) to be incorporated into the bonding energy during bond 

breaking and forming events [52, 59]. Advantages of this potential are that it incorporates 

mechanisms of covalent bonding into the descriptions of atomic interactions such as many-body 

effects and Coulomb interactions [52]. It also allows for the realistic modeling of the breaking 

and formation of atomic bonds that occur during a simulation. It can be used to model large 

systems of atoms for hundreds of picoseconds [52]. Disadvantages of this potential are that it 

does not explicitly treat electronic interactions and it is purely empirical [52], which means it 

needs to be fit to experimental or quantum mechanical data sets. However, the REBO potential is 
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still used for studying problems that are too computationally expensive for quantum mechanical 

methods [52]. 

 

2.3.2 The Lennard-Jones Interatomic Potential 

The simplest realistic pair potential is the Lennard-Jones (LJ) 12-6 interatomic potential. 

J. E. Jones first developed this potential energy function in 1924 [66, 67]. The LJ potential 

describes the energy and force interactions between two neutral non-bonded atoms. The LJ 

potential is considered one of the simplest pair potentials because it is only a function of the 

atomic separation distance, ignoring angular or torsional effects, i.e., 

 

!!" = 4!
!
r!"

!"

−   
!
r!"

!

   Equation 2.13 

 

In Equation 2.10, r!"  is the separation distance between the ith and jth atoms. The 

parameter ! controls how strongly the two atoms interact with each other (the depth of the 

potential well). Therefore, if the value of ! is large (a deep potential well) then the atoms 

strongly interact. The parameter ! corresponds to the distance at which the potential energy 

between two atoms is zero (the point where the potential function crosses the horizontal axis). 

When the potential energy is equal to zero, r = !. The values of ! and ! are specifically chosen 

to fit basic material properties [45]. 

 The 1 r!" term describes the repulsive force between a pair of atoms and dominates the 

interaction at small distances, r. The origin of this term can be seen from the Pauli exclusion 

principle: as two atoms come closer together, their electron clouds begin to overlap and the 

energy of the system sharply increases making it an unstable state. The 1 r! term describes the 
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attractive forces between a pair of atoms and dominates at large distances, r. The term models the 

weakly attractive dipole-dipole interactions that arise in neutral atoms from the electron-electron 

and electron-core interactions [45]. The LJ potential is most useful for modeling atoms with 

filled electron shells such as the noble gases. The LJ potential fails for atoms that have partially 

filled electron shells where strongly localized bonds can occur or the electrons are not localized 

as in metals [45]. The LJ potential is used very often in atomistic simulation to model 

electrostatic interactions between atoms that are fully coordinated by bonds within a molecule or 

crystal lattice, as will be done in this work between the S-Mo-S tri-layers. 

 

2.4 Simulating Nanoindentation 

Using a hard, nano-sized object to indent a crystal is one of the most popular methods for 

investigating the mechanical properties of materials. This technique provides information about 

the mechanical properties of materials by measuring the force exerted on an indenter tip as a 

function of the indenter displacement during indentation and retraction of the indentation tip [68, 

69, 70]. With the development of sensitive experimental techniques such as the atomic force 

microscope, it is possible to measure the indenter displacement with nanometer accuracy [71]. 

With this nanoindentation technique, it is possible to create a force - displacement curves for a 

material. From these force - displacement curves, it is possible to determine the hardness of a 

material and the energies and forces required to create a defect or to initiate plastic flow [72, 73].  

While nanoindentation experiments provide useful information about a material, it is 

difficult to infer what fundamental processes are occurring at the atomic level from this data in 

the initial stages of the experiment [69]. Atomistic simulations can be very helpful in studying 

the material response during nanoindentation because they are able to model discrete phenomena 
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and systems that are comparable to experimental sizes. The goal of atomistic nanoindentation 

simulations is to identify fundamental mechanisms in the early stages of deformation [74, 75]. 

These simulations, combined with visualization tools, allow atomic processes such as defect 

formation and plastic deformation to be connected with measurable macro-scale quantities [69, 

74, 75]. 

 Nanoindentation has become the focus of numerous atomistic studies of materials 

properties. For example, atomistic simulations of nanoindentation have been used to study: the 

nucleation and structure of defects in gold [72, 74], gold surface step effects on indentation load 

required for defect formation [70], the effects of indenter velocity on the hardness of nickel [68], 

dislocation nucleation, grain boundary structure and evolution and its effect on the plasticity of 

aluminum [76], the effect of the atomic structure on the hardness of amorphous silicon carbide 

[77], defect generation and pileup in single crystal iron [78], grain boundary effects and plasticity 

of nickel nanowires [79, 80], the effect of vacancies on defect nucleation in iron [73], and the 

mechanical properties of diamond, graphite, and fullerene thin films [81]. This list is not 

exhaustive but is used to demonstrate that the variety of uses and the increasing use of simulating 

nanoindentation. 

In this work, a frictionless spherical indenter was used to model the nanoindentation 

process. This is an idealized indentation case where there are no attractive forces between the 

indenter and the atoms in the material being modeled, only repulsive forces [49, 72].  The 

repulsive force exerted by the indenter is given by: 

 

F = −K r! − R ! Equation 2.14 
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In Equation 2.11, K is the force constant (effective stiffness) of the indenter, R is the 

radius of the indenter and r! is the distance from the center of the indenter to the ith atom. During 

the simulation, if r > R for a given atom, then the force felt by that atom due to the indenter was 

zero. If a given atom came into contact with the indenter during the simulation, r ≤ R, then the 

atom felt a repulsive force given by Equation 2.14. The x, y, and z components of the force 

applied to all of the atoms contacting the indenter were determined and summed in each 

direction. This gave the total force experienced by the indenter tip in each direction, which was 

used to generate a force - displacement curve. The positions of the atoms are then updated to 

reflect the fact they had experienced an external force. 
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CHAPTER 3:   A PARAMETERIZED POTENTIAL FOR Mo-S SYSTEMS 
 

This chapter provides an overview of the Liang et al. [28] interatomic potential that was 

parameterized for Mo-S systems and specifically for MoS2 that was used in this work. Section 

3.1 will provide a discussion of the reactive empirical bond-order (REBO) potential that has been 

parameterized to describe the covalent bonding that occurs within an S-Mo-S tri-layer. Section 

3.2 provides a discussion of the modified Lennard-Jones 12-6 potential that was parameterized to 

describe the interlayer van der Waals interaction between the S-Mo-S tri-layers to study 

interlayer sliding and the tribological properties of MoS2. With the Liang et al. [28] potential 

programmed into LAMMPS it was necessary to validate that the LAMMPS atomistic code that 

calculates the exact same values for energy and force quantities as the Liang et al. [28] atomistic 

code. Therefore, Section 3.3 will provide a description of the test cases and procedures used to 

compare energies and forces of the LAMMPS and Liang et al. [28] atomistic codes. With the 

LAMMPS atomistic code validated, a final test of its accuracy was to calculate lattice and elastic 

constants of body center cubic (BCC) molybdenum and MoS2. Section 3.4 provides a discussion 

and the results of these calculations. 

The Liang et al. [28] potential for Mo-S systems was implemented into LAMMPS for 

two main reasons. First, LAMMPS is a nationally maintained and open source classical 

molecular simulation tool. Second, LAMMPS has many more atomistic simulation features for 

studying materials. Some of the features of LAMMPS are: (i) it can model gaseous, liquid, or 

solid systems such as: polymers, biological or metallic structures, (ii) it was developed for 

efficient computing on single and multiple processors, (iii) it can model dozens to billions of 

atoms, (iv) the source code is designed to be easily modified to suite specific problems, (v) a 

large number of interatomic potentials are implemented to allow simulation of a variety of 
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materials and (vi) it has built in capabilities for studying mechanical properties of materials such 

as nanoindentation. A full list and description of the features of LAMMPS can be found at the 

LAMMPS website maintained by Sandia National Labs [49]. Therefore, incorporating the Liang 

et al. [28] potential into LAMMPS allowed for it to be distributed with the open source 

LAMMPS package so that it may be used and improved upon by other scientists and engineers 

that want to study this material with a very functional and highly maintained simulation tool with 

many capabilities. 

 

3.1 The REBO Potential for Mo-S Systems 
 

Liang et al. [28] modified and parameterized the REBO potential of Brenner et al. [59] to 

describe the covalent bonding that takes place within the S-Mo-S tri-layer. This Liang et al. [28] 

potential was fit to parameters of various prototype structures for pure molybdenum, pure and 

low coordinated sulfur and Mo-S to allow for transferability between Mo-S systems. Crystal 

properties such as bond length, energy per atom, energy per bond and bond stiffness were used in 

the fitting database for the REBO potential. These Mo, S and Mo-S properties were determined 

using quantum mechanical calculations. This potential was specifically parameterized to study 

MoS2; therefore, not only was this potential fit to best reproduce the database of various 

structural properties, the properties of MoS2 were given the largest weight during the fitting 

procedure by Liang et al. [28]. The database of structural properties for Mo, S, and Mo-S used 

during the fitting procedure of Liang et al. [28] can be found in Table 3.1. 
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Table 3.1a: The fitting database for molybdenum structures [28]. 

 
 

 
Table 3.1b: The fitting database for sulfur structures [28]. 

 
 

 
Table 3.1c: The fitting database for Mo-S structures [28]. 
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Following the analytic form of the second generation REBO potential of Brenner et al. 

[59], the Liang et al. [28] potential for Mo-S systems has the following form: 

 

                                                      ! =    !!"!(!!") !!(!!") − !!"!!(!!")
!!!

 

 

= !!"!(!!") 1 +
!!"
!!"

!!"!!!!"!!" − !!"!!"!!!!"!!"
!!!

 

 
 

Equation 3.1 

  

In Equation 3.1, !!" is the interatomic separation distance between the ith and jth atoms, 

!!(r!") describes the repulsive interaction between atoms and !!(r!") describes the attractive 

interactions between atoms. It should be noted that this attractive term is simpler than the 

attractive term given in Equation 2.9, as there is no summation. The function !!"!(!!") is the cutoff 

function that limits the REBO interactions to a maximum cutoff distance that only allows nearest 

neighbors to interact and !!" is the many-body bond-order term. The parameters !!", !!", !!", and 

!!" are pairwise parameters that depend on the types atoms i and j that are interacting. The 

parameter !!" can be regarded as the screened Coulomb interaction [52]. These parameters are fit 

to reproduce specific material properties, which in this case are fit to reproduce lattice and elastic 

constants of MoS2. In the following description of this potential, it will be seen that this REBO 

potential is in fact only a function of the atomic positions. 

 The cutoff function, !!"!(!!"), only allows first and second nearest neighbor pairwise 

REBO interactions to occur within a defined range of distances (!!"!"# to !!"!"#) depending on 

what pairwise interaction is being considered. The cutoff function has been designed to gradually 

reduce the pairwise REBO interactions from a full interaction to a partial interaction to no 

interaction over the range !!"!"# to !!"!"#. The cutoff function is given by: 
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!!"! !!" =

  1                                                                                                                      !!" < !!"!"#                                

1
2
1 + cos

! !!" − !!"!"#

!!"!"# − !!"!"#
          !!"!"# < !!" < !!"!"#

  0                                                                                                                      !!" > !!"!"#                                 

 Equation 3.2 

 

 

To show that this function smoothly goes to zero to gradually reduce atomic interactions 

(energies and forces) over the range !!"!"# to !!"!"#, Figure 3.1 illustrates this function for Mo-Mo 

interactions. 

 

 
Figure 3.1: Graph of the Mo-Mo cutoff function illustrating the smooth decrease of the 

functions. 
 
 
 

The bond-order term, !!" , which can be viewed as the degree of bond strength, is 

determined by the many-body interactions of the local surroundings of atom i, such as any 

angular interactions and the coordination of atom i. The bond-order term rapidly decays as the 

coordination increases, which according to Abell is the dominant variable in determining the 
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bond-order [52]. In the Liang et al. [28] potential, the bond-order term has a similar form as 

Brenner et al. [59] and is given by, 

 

!!" =
1
2
!!"!!! + !!"!!!  Equation 3.3 

 

Following the Brenner et al. [59] potential, the !!"!!! and !!"!!! terms are functions of 

bond angles and atomic coordination. As such they have a similar form and are given by (a 

similar form is given for !!"!!! by interchanging the i and j subscripts), 

 

!!"!!! = 1 + !!"! !!" G cos !!"#
!!!,!

+ ! !!

!!
!

 Equation 3.4 

 

 

The function, !!"! (!!"), in Equation 3.4 is a cutoff function that limits the range of angular 

interactions that are considered. It has the same form as the cutoff function given in Equation 

3.2. In Equation 3.3, the bond-order term is an average of !!"!!! and !!"!!! because of the use of 

Newton’s Third Law in calculating atomic interactions. Therefore, given an atom i and a 

neighbor j, all angular interactions, !!"#, over all the neighbors, k, of atom i (with the exception 

of atom j) are considered as the summation in Equation 3.4 dictates. However, since Newton’s 

Third Law is used, to properly average the bond-order terms, atoms i and j are interchanged and 

atom j is considered as the central atom. In this situation, all angular interactions, !!"#, must be 

considered with the nearest neighbors, k, of atom j being considered as the angular interactions. 

This situation is illustrated in Figure 3.2. Note that in Figure 3.2 the neighbors of atom j are 

denoted as l to distinguish them from the neighbors of atom i. 
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Figure 3.2: Illustration for determining angular interactions with nearest neighbors [52]. 

 

In Equation 3.4, the coordination function, which is the main variable in controlling the 

bond-order term, is represented by ! !! . ! !!  is a function of the coordination, !!, (the total 

number of nearest neighbors within a given distance) of a given atom i. Therefore, as the 

coordination of an atom increases, the number of interactions increases and is therefore reflected 

in the value of the bond-order term, which will decrease and accordingly adjust the pairwise 

energy and force contributions. The function,  ! !! , is given by, 

 

! !! = −!! !! − 1 − !!!!!!!! + !! Equation 3.5 
 

 

 In Equation 3.5, the parameters !! (i = 0, 1, 2, 3) are determined by the chemical species 

of the ith (or central) atom. These parameters are fit to reproduce bond-order values that will 

appropriately describe atomic energies and forces of given atomic configurations with increasing 

or decreasing coordination values. Figure 3.3 illustrates the response of the coordination 

function, ! !! , for Mo or S as a central atom. 
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Figure 3.3: Coordination functions for Mo (Blue) and S (Red). 

 

To describe energy and force contributions due to angular interactions from a set of 

atoms, an angular function is used and is represented as G(cos  (!!"#)) in Equation 3.4. The 

function G depends on the cosine of the angle created by a set of atoms i, j and k. By using the 

Law of Cosines or the definition of the Dot Product, !!"# can be determined from the atomic 

positions. Therefore, the REBO potential as given in Equation 3.1 is solely a function of the 

atomic positions in the given system. The angular function, G(cos  (!!"#)), is given by: 

 

G cos !!"# = G! cos !!"# + ! cos !!"# ! cos !!"# − G! cos !!"#  Equation 3.6 
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The functions G! cos !!"#  and ! cos !!"#  shown in Equation 3.6 are given by sixth 

order polynomials that are a function of the cosine of the angle created by a set of atoms i, j and 

k and are written as: 

 

      G! cos !!"# =   !! + !!cos !!"# + !!cos !!"#
! + !!cos !!"#

! + !!cos !!"#
!

+ !!cos !!"#
! + !!cos !!"#

! Equation 3.7a 

            ! cos !!"# = !!! + !!!cos !!"# + !!!cos !!"#
! + !!!cos !!"#

!                           

+ !!!cos !!"#
! + !!!cos !!"#

! + !!!cos !!"#
! Equation 3.7b 

 

As with the !! parameters in Equation 3.5, the parameters !! and !!" (i = 0 - 6) are fit to 

produce appropriate bond-order values to describe atomic configurations to accurately reproduce 

material properties. The function G! cos !!"#  in Equation 3.7a is used over the range 

0 ≤ cos  (!!"#)   ≤ 1
2. However, this function cannot be used over the range 1 2 < cos  (!!"#)   ≤ 1 

because this function creates a false energy well that causes atoms to become unrealistically 

aligned. Therefore, the function ! cos !!"#  is used in this region. The function ! cos !!"#  in 

Equation 3.6 is used to provide a smooth transition from G! cos !!"#  to ! cos !!"#  in this 

region. Figure 3.4 illustrates the function G! cos !!"#  (Equation 3.7a) with its false energy wells 

for Mo and S as well as G cos !!"#  (Equation 3.6) which incorporates the additional function 

! cos !!"#  (Equation 3.7b) to remove these energy wells. The function ! cos !!"#  is given by, 

 

! !"# !!"# =
0                                                                                                                          , cos !!"# <

1
2                        

1
2
1 − cos 2! cos !!"# −

1
2

,        
1
2
≤ cos !!"# ≤ 1

 Equation 3.8 
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Figure 3.4: The angular functions for Mo and S (Blue = Mo, Red = S, Green = Mo Spline, 

Purple = S Spline). 
 

 

 All together, Equations 3.1 - 3.8 require 25 parameters for each unique interaction (Mo-

Mo, S-S and Mo-S). The parameters used in this work for these interactions are listed in table 

3.2. 

 

Parameter Mo-Mo S-S Mo-S 
!!"# 3.50 2.30 2.75 
!!"# 3.80 3.00 3.05 

Q 3.41912939000591 0.254959104053671 1.50553783915379 
A 179.008013654688 1228.43233679426 575.509677721866 
! 1.0750071299934 1.10775022439715 1.1926790221882 
B 706.247903589221 1498.64815404145 1344.46820036159 
! 1.16100322369589 1.1267362361032 1.2697375220429 

Table 3.2a: The pairwise parameters for the Mo-S REBO potential used in this work. 
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Parameter Mo S 
!! 0.132684255066327 0.00684876159675 
!! -0.007642788338017 -0.02389964401024 
!! 0.034139577505937 0.13745735331117 
!! 0.252305097138087 0.03301646749774 
!! 0.122728737222567 -0.3106429154485 
!! -0.361387798398897 -0.08550273135791 
!! -0.282577591351457 0.14925279030688 
!!! 0.12019430103528 -0.2850852 
!!! 0.04523828735819 1.6710248 
!!! 0.06792280724403 -3.5678516 
!!! -0.03672511378682 3.4505499 
!!! 0.10751647751386 -1.2186289 
!!! 0.00496471198494 0.0 
!!! -0.12997598358652 0.0 
!! 0.138040769883614 0.062978539843324 
!! 0.803625443023934 2.47861761987825 
!! 0.292412960851064 0.036666243238154 
!! 0.640588078946224 2.38643137248671 

Table 3.2b: The many-body parameters for the Mo-S REBO potential used in this work. 

 

3.2 The Lennard-Jones Potential for Mo-S Systems 

 Not only was the REBO potential parameterized for Mo-S systems, but the Lennard-

Jones 12-6 potential described in Section 2.3 was also parameterized for Mo-Mo, S-S and Mo-S 

interactions. The Lennard-Jones potential was parameterized to describe the van der Waals 

interaction between the S-Mo-S tri-layers. This allows for the frictional properties of MoS2 to be 

accurately investigated. In the Liang et al. [28] atomistic code, the Lennard-Jones potential was 

separated into two regions. Region I is defined as 0.95!!" ≤ !!" ≤ !!"!"# while region II is defined 

as !!"!"# ≤ !!" < 0.95!!" . Here !!"  is the atomic separation distance, !!"!"#  and !!"!"#  are the 

minimum and maximum cutoff distances for pairwise interactions as defined by the REBO 

potential and !!"  is the corresponding Lennard-Jones pairwise parameter determined by the 

chemical species of atoms i and j. When the atomic separation distance is within region I, the 
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atomic interactions are described by the Lennard-Jones potential as given in Equation 2.13. 

However, at small atomic separation distances, the Lennard-Jones potential has an unrealistic 

repulsive wall with corresponding large repulsive forces. Therefore, when atomic separation 

distances fall within region II, a spline is used to describe the atomic interactions and at the same 

time to remove this unrealistic repulsive wall. This spline is designed to smoothly terminate the 

Lennard-Jones interactions at !!"!"#. The use of this spline allows for a better description of the 

interlayer interactions of MoS2. The spline used to describe the Lennard-Jones interactions 

within region II has the following expression, 

 

 

!!"! !!" =
!!" − !!"!"#

!

0.95!!" − !!"!"#
!!" − !!"!"#

−2!!" 0.95!!"
0.95!!" − !!"

!"# ! +
!"!"(0.95!!")
0.95!!" − !!"!"#

+
3!!"(0.95!!")
0.95!!" − !!"!"#

− !"!"(0.95!!")  

 
 
 

Equation 3.9 

 

 

In Equation 3.9, !!" is the atomic separation distance, !!"!"# is the minimum REBO cutoff 

distance, !!" is the Lennard-Jones parameter for the i –j interaction as determined by their atom 

types, !!" 0.95!!"  is the normal Lennard-Jones potential (Equation 2.13) evaluated at the 

location 0.95!!"  and !"!"(0.95!!") is the derivative of the Lennard-Jones potential (Equation 

2.13) evaluated at the location 0.95!!". To illustrate the Lennard-Jones potential as a function of 

atomic separation distance, Figure 3.5 provides a graph of the Lennard-Jones potential and spline 

for S-S interactions for regions I and II.  
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Figure 3.5: Lennard-Jones potential for S-S interactions (L-J Spline = Red, L-J Potential = 

Blue). 
 

 

The Lennard-Jones parameters used in this work for Mo-Mo, S-S and Mo-S interactions 

are listed in Table 3.3. It should be noted that the Lennard-Jones parameter ! used by LAMMPS 

in this work for S-S interactions is different than the value of ! used by Liang et al. [28]. The 

value of ! for S-S interactions was chosen to best reproduce the value of C33 for MoS2. However, 

Liang et al. [28] calculated elastic constants for MoS2 at with their simulation equilibrated to 300 

K. The method of calculating elastic constants in the LAMMPS package is done with the system 

at 0 K. This temperature difference in determining an appropriate value of ! will cause different 

elastic constants to be calculated. Therefore, a new value of ! for S-S interactions will be needed 

for the LAMMPS implementation and this work to accurately model the interlayer van der Waals 

interactions during energy minimization, i.e., at 0 K. As such, a value of ! was chosen to best 
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reproduce the elastic constants of MoS2 as determined by the DFT work carried out by Weber et 

al. [34], as discussed in Section 1.2. The elastic constants and the method for calculating them 

will be discussed in Section 3.4. 

 

Parameter Mo-Mo S-S Mo-S 
! (eV) 0.00058595 0.01386 0.0028 
! (Å) 4.2 3.13 3.665 

Table 3.3: The pairwise parameters for the Lennard-Jones potential used in this work. 

 

3.3 Validation of the Implemented LAMMPS Mo-S Potential 
 
 With Equations 3.1 - 3.9 programmed into LAMMPS, it was necessary to validate that 

this implementation accurately reproduced these equations and matched the Liang et al. [28] 

atomistic code. In order to validate that these codes produced the same result, each quantity 

associated with Equations 3.1 - 3.9 were directly compared between the LAMMPS and Liang et 

al. [28] codes. To compare these quantities, special three-atom test cases with a known geometry 

was chosen as shown in Figure 3.6. 

 

 

Figure 3.6: Three-atom test geometry for LAMMPS validation with corresponding Cartesian 
axis. 
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This three-atom case was chosen because it is simple and the quantities calculated with 

Equation 3.1 - 3.8 could easily be compared. Also, the three-atom system was situated in such a 

way that the force components were known to be zero in certain directions. In Figure 3.6, the 

atoms i, j and k were located in the x-z plane. Three sets of comparisons were done with this 

geometry using different atom types. The first calculation compared this three-atom geometry 

with three molybdenum atoms, the second calculation compared three sulfur atoms, and the third 

calculation compared one molybdenum atom and two sulfur atoms. Using this configuration and 

Equations 3.1 - 3.9, the energy per atom and the individual quantities comprising Equations 3.1 - 

3.9 were calculated using the Liang et al. [28] and LAMMPS atomistic codes. Using this 

procedure it was verified that the LAMMPS implementation accurately reproduced the energies 

and energy quantities associated with Equation 3.1 - 3.9 that the Liang et al. [28] code 

calculated. With both codes verified to calculate the same energetics of a given system, next it 

was necessary to compare the force calculations associated with Equations 3.1 - 3.9 (the 

derivatives of these expressions shown in Appendix H) to ensure that the LAMMPS 

implementation produced the same atomic forces and mechanical properties as predicted with the 

Liang et al. [28] code. Using the same three-atom configuration in Figure 3.6 and the same 

procedure as with the energy validation, the x, y and z components of the atomic forces were 

compared. Using the three atom configuration in Figure 3.6 and comparing the energy and force 

calculations for the Liang et al. [28] and LAMMPS atomistic codes, it was determined that the 

Liang et al. [28] potential that was parameterized for Mo-S systems was properly programmed 

into the LAMMPS simulation package. 
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3.4 Structural and Elastic Properties of BCC Molybdenum and MoS2 

Once it was determined that the LAMMPS implementation of the Liang et al. [28] Mo-S 

potential was properly programmed and calculating correct atomistic quantities, it was necessary 

to calculate the structural and elastic properties of the main structures that Liang et al. [28] used 

to parameterize their potential; mainly body centered (BCC) molybdenum and crystalline MoS2. 

It should first be noted that Liang et al. [28] used a different method to calculate these quantities 

than is done in this work with the LAMMPS implementation. Therefore, minor differences were 

expected to arise in the resulting values of these quantities. In calculating the lattice and elastic 

constants, Liang et al. [28] first applied a strain of +/- 1% from the known equilibrium bond 

lengths to their simulation cell. They then equilibrated the simulation cell, with the applied 

strain, to a temperature of 300 K. With the simulation cell at 300 K, the simulation was run for a 

period of time, during which the energy of the system was recorded at each time step. Using this 

energy information, the average energy of the system during the simulation run was then 

computed. With the average energy of the simulation crystals known at 0% strain and +/- 1% 

strain, a quadratic equation was then fit to this data as a function of bond length, r, i.e., 

 

! r =    !! + !!r+ !!r! Equation 3.10 
 

 

 In Equation 3.10, !!, !! and !! are constants from fitting the quadratic polynomial to the 

energies of the strained and unstrained structures. Using Equation 3.10, Liang et al. [28] 

calculated the equilibrium lattice constants and the elastic constants, which are related to the 

second derivative of Equation 3.10, for BCC molybdenum and crystalline MoS2 at 300 K. 
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 To calculate the lattice and elastic constants for BCC molybdenum and MoS2 using 

LAMMPS, an energy minimization (Section 2.2) procedure was used. Using energy 

minimization means that the lattice and elastic constants were computed at 0 K. To calculate the 

lattice constants, energy minimization was done to ensure the structures were in their minimum 

potential energy state. Once the energy of the structures was minimized, the distances between 

atoms corresponding to the lattice parameters for BCC molybdenum (a) and MoS2 (a and c) as 

well as the energy per atom for BCC molybdenum and energy per unit for MoS2 were calculated. 

To calculate the elastic constants for BCC molybdenum and MoS2, a strain of +/- 1% was 

applied to the simulation cells. The elastic constants C11 and C12 were calculated for BCC 

molybdenum and the elastic constants C11 and C33 were calculated for MoS2. Figure 3.7 shows 

the MoS2 structure with the corresponding Cartesian axes that define the directions that the strain 

was applied. 

 

	  
Figure 3.7: MoS2 structure and corresponding Cartesian axes. 

 

For BCC molybdenum, to calculate C11 the simulation cell was expanded and 

compressed by 1% in the x-direction, while the box was expanded by 1% in the x-y direction 

(the simulation cell diagonal) to calculate C12. Similarly for MoS2, the simulation cell was 
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expanded and compressed by 1% in the x and z directions to calculate C11 and C33 respectively. 

By calculating the pressures (equivalently the stresses) of the initial, compressed and expanded 

crystal configurations it was then possible to determine the elastic constants C11, C12 and C33. To 

calculate these constants, the following equations [49, 82] were used: 

 

!!!
!!!!

= C!!!!! Equation 3.10a 

!!!
!!!"

= C!"!!" Equation 3.10b 

!!!
!!!!

= C!!!!! Equation 3.10c 

 

 

In Equation 3.10, the variable !  is the strain applied to the simulation cell in a 

corresponding direction as given by the subscripts, assuming zero strain in all other directions. 

The quantity !!! !" defines the change in the pressure (or stress) of the crystal in the direction 

the strain is applied. The lattice and elastic constants for BCC molybdenum and crystalline MoS2 

as determined by the methods described above for Liang et al. [28] and this work are compared 

in Table 3.4. 

 

BCC Molybdenum Liang et al. [28] This Work 
Energy per Atom (eV) -10.38* -10.77 
a (Å) 3.16 3.16 
C11 (GPa) 319 319.9 
C12 (GPa) 214 220.5 
Bulk Modules (GPa) 249 253.6 
Table 3.4a: Lattice and elastic constants for BCC molybdenum from Liang et al. [28] and this 

work (* denotes DFT calculation used in the Liang et al. [28] fitting procedure). 
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MoS2 Liang et al. [28] This Work 
Energy per Unit (eV) -21.23* -21.59 
a (Å) 3.15 3.17 
c (Å) 12.26 12.29 
C11 (GPa) 222 255.24 
C33 (GPa) 23 36.99 

Table 3.4b: Lattice and elastic constants for MoS2 from Liang et al. [28] and this work (* 
denotes DFT calculation used in the Liang et al. [28] fitting procedure). 

 

 

3.5 Summary 

 In summary, a parameterized reactive empirical bond-order (REBO) potential that has 

been parameterized by Liang et al. [28] has been incorporated into the LAMMPS molecular 

simulation package. The LAMMPS implementation was tested on small three atom test cases to 

verify that it was mathematically equivalent to the Liang et al. [28] atomistic code and calculated 

the same values for corresponding energy and force quantities. Additionally, the lattice and 

elastic constants of BCC molybdenum and crystalline MoS2 were calculated in this work using 

LAMMPS and compared to the lattice and elastic constants as determined by Liang et al. [28] to 

determine the ability of the parameterized Mo-S potential to model MoS2. With this Mo-S 

potential properly programmed into LAMMP, this potential was used to model crystalline MoS2 

during nanoindentation simulations discussed in Chapter 4. 
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CHAPTER 4:   NANOINDENTATION OF CRYSTALLINE MoS2 
 

 
 

This chapter provides simulation results of nanoindentation on the MoS2 basal plane (the 

plane perpendicular to the c-axis) using the Liang et al. [28] Mo-S potential. Section 4.1 provides 

a brief discussion of Hertzian contact theory [83], which is widely used in atomistic simulations 

of nanoindentation. Section 4.2 provides the nanoindentation simulation procedures used in this 

work. Section 4.3 discusses the elastic response of MoS2 during nanoindentation and the 

resulting initial plastic event. Section 4.4 discusses the deformation mechanisms associated with 

the initial plastic event. Finally, Section 4.5 discusses the effect of the indenter size on the 

stresses and depths required for failure. 

 

4.1 Nanoindentation Simulation Background 

Nanoindentation experiments and simulations can provide information about the 

mechanical properties of materials at the nanometer and atomic length scales. Atomistic 

simulations of nanoindentation allow for easy identification and visualization of defects, defect 

nucleation and defect structure with the aide of visualization tools [75]. In nanoindentation 

simulations, an indenter, which can be perfectly spherical (as was used in this work) or modeled 

using atoms with different shapes such as a pyramidal indenter, is pushed into a simulated 

infinite film of material. The displacement of the indenter is controlled during the simulations, 

and the indenter force is computed at each indenter displacement. This allows the determination 

of the force required for a material to plastically deform. During displacement-controlled 

indentation simulations, a sudden drop in the indenter load identifies plastic deformation of a 

material. The sudden drop in the indenter force (or point plastic deformation) is a consequence of 
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the nucleation of defects or a phase transition [75]. With the indenter displacement and indenter 

force at each displacement position, a force-displacement curve can be generated to study the 

elastic and plastic responses of the material. The ideal elastic deformation regime of contacting 

materials (resulting force as a function of displacement) is predicted by the Hertzian contact 

theory. Therefore, the elastic response of a material as determined by a simulation can be 

compared to the predictions of Hertzian contact. 

In Hertzian contact theory [68, 72, 74, 83], for a spherical indenter contacting an infinite 

slab of elastic material the indenter load can be related to the displacement of the indenter. The 

indenter force, !, is related to the displacement, !, of the indenter by: 

 

! =
4
3!

∗!! !!! ! Equation 4.1 

 

 

where ! is the radius of the indenter and !∗ is the reduced modulus of the system (indenter and 

sample). The reduced modulus is a function of the elastic moduli of the indenter, !!, and sample, 

!!, as well as the Poisson ratios for the indenter, !!, and sample, !!, and is determined by 

 

1
!∗ =

1+ !!!

!!
+
1+ !!!

!!
 Equation 4.2 

 

 

Recall that the elastic modulus is a measure of the stiffness of a material and Poisson’s ratio is a 

measure of how much a material will contract laterally when a tensile force is applied the 

material and depends on the axial and perpendicular strains [84]. Equation 4.2 expresses the 
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reduced modulus for an indenter and sample that are both elastic. With a perfectly rigid indenter 

the reduced modulus becomes a function of the sample only i.e., 

 

1
!∗ =

1+ !!!

!!
 Equation 4.3 

 

As the indenter is displaced further into the material, the contact area, !! , between the indenter 

and sample increases and is determined by [68] 

 

!! = !(2!" − !!) Equation 4.4 
 

Using Equations 4.1 and 4.4, it is also possible to calculate the mean contact pressure 

experienced at each displacement depth of the indenter. The mean contact pressure is equivalent 

to the indentation hardness, H, and is defined in experiments to be ! = !! = !/!! [68, 74]. 

 The Hertzian contact model describes the elastic response of a material. When the 

indenter load drops suddenly due to the formation of defects, the Hertzian description is no 

longer valid. In nanoindentation simulations, the Hertzian contact description is generally used to 

compare against the force-displacement data generated during the simulation for the elastic 

regime. For example, Lilleodden et al. [74] studied the initial stages of nanoindentation on (111) 

Au and (001) Au using the embedded atom method (EAM) potential, an indenter of radius of 40 

Å and force constant, K, of 10 eV/Å3. The indenter force-displacement graph generated by this 

nanoindentation simulation is shown in Figure 4.1a. The black dots and circles represent the 

force-displacement data for (111) Au and (001) Au respectively. The solid and dashed lines 

represent the best fit of Equation 4.1 (the Hertzian description) to these (111) Au and (001) Au 

force-displacement indentation responses respectively. 
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Figure 4.1: (a) Load-displacement curves for nanoindentation of (111) Au and (001) Au [74] (b) 

Partial dislocations associated with the load drop in (111) Au nanoindentation [74]. 
 
 

From Figure 4.1a, it is clear that there is a sudden drop in the indenter load at 4.6 Å for 

(110) Au and 5.4 Å for (001) Au, which corresponds to the formation of a defect. From the best-

fit curves in Figure 4.1a, Lilleodden et al. [74] calculated a reduced modulus of 110 GPa for 

(111) Au and 89 GPa for (001) Au. It was also calculated that the pressure of the (111) Au 

system was 18 GPa before the indenter load dropped. 

To investigate the mechanism associated with the formation of a defect, Lilleodden et al. 

[74] used a combination of the centro-symmetry parameter and the slip vector along with the 

force-displacement nanoindentation data. The centro-symmetry parameter is a quantity that 

provides a measure of the local disorder around an atom in a BCC or FCC structure. It can be 

used to determine if an atom is in a perfect lattice, near a defect (dislocation or stacking fault) or 

at a surface location [49, 72, 74]. The slip vector is a measure of the displacement of atoms from 

their original positions relative to their nearest neighbors [70, 74]. The slip vector is used to 

determine the Burgers vector (a vector defining the magnitude and direction of lattice distortion) 

of a dislocation created from nanoindentation so that elastic and plastic strains can be separated 
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and the slip direction can be determined [70, 74]. The defects produced by Lilleodden et al. [74] 

for (111) Au indentation are shown in Figure 4.1b and correspond to the sudden load drop in 

Figure 4.1a. The partial dislocations shown in Figure 4.1b were characterized by a slip-vector 

analysis and the associated atoms were colored according to their centro-symmetry parameter 

[74]. The light blue and yellow atoms correspond to the leading and trailing edges of the defect; 

the green atoms correspond to a stacking fault being created and the red atoms denote the region 

of space where the dislocation has fully passed through and left behind a perfect lattice with 

atoms that have moved a full lattice vector [74]. 

It should be noted that MoS2 doesn’t have the required constraints to allow the use of 

traditional defect nucleation analysis tools such as the centro-symmetry parameter, which 

requires every point in the system to have inversion symmetry [49, 72, 74], or common neighbor 

analysis, which works only with materials that contain a single atomic species [49]. As such, it 

was necessary to investigate crystal disorder by a different method. In this work, this was done 

mainly by explicitly analyzing the atomic bonding of nearest neighbors to determine the 

existence of broken bonds. Doing this allowed the sudden drop in indenter force to be correlated 

to the creation of broken bonds or indicate another type of deformation mechanism. 

 

4.2 Nanoindentation Simulation Procedure 

In order to study defect nucleation in MoS2 during nanoindentation, a single crystal film 

of MoS2 was created with dimensions of 500 Å x 500 Å x 227 Å and consisting of 3,267,840 

atoms (Figure 4.2). Periodic boundary conditions were applied in the x and y direction while the 

basal plane (z direction) was represented by a free surface. The large size of this simulation cell 

was chosen to remove any effects of the finite size of the simulation on the nanoindentation 
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results. The bottom layer of atoms was defined to be fixed (rigid) to provide a stable 

nanoindentation substrate [68, 74]. To simulate nanoindentation of MoS2, a rigid spherical 

indenter (as described in section 2.4) was used [72]. To study defect nucleation and deformation 

(the initial plastic event) of MoS2, indenter sizes of 50 Å, 75Å and 100 Å were used. The force 

constant for all indenter sizes was taken to be 10 eV/Å3 [72, 74]. Before the nanoindentation 

process, the MoS2 crystal was energetically relaxed using the energy minimization procedure 

described in Section 2.2. During the nanoindentation process, the indenters were moved in 0.2 Å 

increments. After each indenter displacement, the energy of the system was minimized and the 

resulting force experienced by the indenter was determined [72, 74]. Visualization of these 

nanoindentation simulations was done with OVITO (The Open Visualization Tool) [85]. 

 

 

 

 

Figure 4.2: Illustration of the MoS2 crystal slab used in the nanoindentation simulations (Sulfur 
= Yellow, Molybdenum = Blue). 
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4.3 Nanoindentation of the MoS2 Basal Plane 

To investigate the mechanisms associated with defect nucleation and plastic deformation 

due to nanoindentation, it was necessary to displace the three indenters into the MoS2 simulation 

crystal to ensure that elastic and plastic events occurred and were captured. This was done by 

displacing the three indenters to a depth of 10 Å (1 nm) during the simulation. In doing this, 

three relatively large and sudden drops in the indenter force occurred for each of the indenters. 

The resulting force-displacement curves for these three indenter sizes are shown in Figure 4.3. 

The focus of this work was the initial deformation event due to this nanoindentation. Therefore, 

the first sudden force drop region, which occurs at 1.8 Å for the 50 Å indenter and 1.6 Å for the 

75 Å and 100 Å indenters, is the region of interest for investigating the initial defect and/or 

deformation formation. 

 
Figure 4.3: The force - displacement curves for nanoindentation of MoS2 with 50, 75 and 100 Å 
indenters to a displacement depth of 10 Å. (The dotted lines show trend of data and not physical 

quantities). 
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 To verify that these initial sudden force drops were associated with permanent plastic 

failure events, indentation and retraction simulations were performed. Once the indenters were 

displaced to the depths corresponding to the sudden force drops, they were retracted and the 

indenter force was calculated at each displacement. It was found that as the indenters were 

retracted, the indenter force quickly dropped to zero. This meant that the indenter was no longer 

in contact with the MoS2 crystal, which meant that the MoS2 crystal did not recover from the 

deformation. Therefore, the deformation associated with these sudden force drops corresponded 

to permanent deformation that was energetically stable. The force - displacement curves for the 

indentation and retraction simulations are shown in Figure 4.4. Also shown in Figure 4.4 are 

minor force events at displacements of 1.2 Å and 1.4 Å. These events corresponded to elastic 

movement of atoms below the indenter. This was determined by indenting and retracting to these 

displacements. As the indenters were retracted, the force on the indenter at each displacement 

was the same as the corresponding indentation displacement force. 

 
Figure 4.4: The force - displacement curves for indentation and retraction of MoS2 with 50, 75 

and 100 Å indenters. (The dotted lines show trend of data and not physical quantities). 
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With the elastic and initial plastic regions determined, the elastic response of MoS2 

during nanoindentation was then compared to the Hertzian description (Equation 4.1) of elastic 

material response. The best fit of the Hertzian description to the force - displacement data during 

indentation to the displacement depths right before the sudden force drop are shown in Figure 

4.5. The solid lines represent the best fit of the Hertzian description. By substituting the indenter 

radius into the best-fit curves of the force - displacement profiles, it was possible to calculate 

effective reduced moduli (Equation 4.3) for each indenter size. The effective reduced moduli for 

each indenter were found to be 12.6 GPa for the 50 Å indenter, 13.4 GPa for the 75 Å indenter 

and 15.6 GPa for the 100 Å indenter. It is important to note that the Hertzian contact description 

assumes isotropic elastic behavior of the indented material. However, MoS2 is not an isotropic 

material but rather highly anisotropic (recall the MoS2 elastic constants: C11 = 255.24 GPa and 

C33 = 36.99 GPa). Therefore, these reduced moduli are not directly relevant to the physical 

properties of MoS2. However, these reduced moduli reflect the fact that MoS2 is a soft material 

in the direction of nanoindentation. 

 
Figure 4.5: The force-displacement curves for the 50, 75 and 100 Å indenters with the best-fit 
Hertzian prediction curves. (The dotted lines show trend of data and not physical quantities). 
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 Also shown in Figure 4.5 is that, for small indenter displacements, the force - 

displacement curve exhibits smooth elastic behavior. However, as expected and indicated above, 

these results did not follow the Hertzian relation within the elastic response regime. This was 

attributed to the fact that MoS2 is a layered and highly anisotropic material. Therefore, as the 

indenter is displaced into the MoS2 film, the layers compress since there is only a weak van der 

Waals interaction between layers and the resulting indenter force would be lower than would be 

predicted in the Hertzian contact theory. Initially the planar S-S distance within the top MoS2 

layer is 3.214 Å while the planar S-S distance between the top two MoS2 layers is 2.9 Å. At the 

point right before the sudden force drop, the top MoS2 layer had compressed to a new S-S planar 

distance of 2.99 Å and the planar S-S distance between the top two MoS2 layers had compressed 

to a distance of 2.89 Å. As the MoS2 layers compress closer together the atomic repulsion forces 

increase and prevent further compression of the layers and as a result the indenter force starts to 

quickly increase until failure occurs. In addition, using Equation 4.4, the maximum contact 

pressure is approximated to be 0.62 GPa, 0.51 GPa and 0.51 GPa for the 50 Å, 75 Å and 100 Å 

indenters, respectively, at the indenter displacement immediately before plastic yield. 

 Visualization of these atomistic simulations allows for explicit observation of the atomic 

configurations during the simulation as well as the forces experienced by each atom within the 

system or any physical quantity that can be calculated. In this work, OVITO [85] (The Open 

Visualization Tool) was used to visualize the nanoindentation simulations. OVITO was used to 

visualize the atomic configurations and force magnitude on each atom located under the indenter 

tip immediately before and immediately after the sudden drop in the indenter force. Figure 4.6 

illustrates the atomic configurations and the magnitude of the force on each atom before the first 

drop in force for the nanoindentation simulation with the 50 Å indenter, while Figure 4.7 
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illustrates the atomic configuration and the magnitude of the force on each atom after the first 

force drop event. It is clearly seen in these images and the corresponding inlayed force - 

displacement curves that when the indenter force suddenly drops, the force that had built up on 

the atoms located directly under the indenter has dissipated and its position has moved to within 

the MoS2 crystal, which is an indication of permanent deformation within the MoS2 lattice. Also 

shown in Figure 4.7 is that the MoS2 layers have bent as a result of the force dissipation. 

 

 
Figure 4.6: Atomic configurations and atomic force magnitudes for the 50 Å nanoindentation 

simulation before the indenter force drop shown in the force - displacement curve. 
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Figure 4.7: Atomic configurations and atomic force magnitudes for the 50 Å nanoindentation 
simulation after the indenter force drop shown in the force - displacement curve. 

 

 

 With it shown that these initial sudden force drop events corresponded to energetically 

stable plastic deformation of the MoS2 crystal, it was necessary to determine the mechanism 

associated with these plastic events. As mentioned in Section 1.3, the hypothesized deformation 

mechanism was proposed to be the occurrence of broken bonds. As such, the approach taken in 

this work was to explicitly analyze the atomic bonding between atoms before and after the 

sudden force drop event (elastic to plastic transition). This was done to specifically determine if 
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the sudden drop in the indenter force was due to the breaking of atomic bonds within a MoS2 tri-

layer. To do this analysis, a MATLAB script was written that would compare the atomic bonding 

distance between all pairs of atoms in the system. If a pair of atoms that was considered a bonded 

pair of atoms before the plastic event had increased in atomic separation to a distance outside the 

maximum cutoff defined by the REBO potential, then those atoms were considered to have 

broken bonds. Surprisingly, in analyzing the bonding of atoms before and after the plastic events, 

it was observed that no broken bonds occurred during the first force drop event (plastic 

deformation event). However, as the indenter is displaced further into the MoS2 crystal, broken 

bond were observed to occur at depths of 7.8 Å for the 50 Å indenter and 8.6 Å for the 75 Å 

indenter. There were no broken bonds observed for the 100 Å indenter with a 10 Å 

nanoindentation depth. Therefore, it has been shown that the primary deformation mechanism 

associated with the initial indenter force drop event is not a result of broken bonds. As such, 

another deformation mechanism must occur for this sudden force drop to occur and be 

energetically stable and permanent. Using OVITO [85] to visualize these deformation events, 

other possible mechanisms were identified as (i) a relative slip between sulfur atoms within 

neighboring MoS2 layers and (ii) a local phase transformation where the atoms or layers move 

into another related MoS2 structure that is energetically stable. 

 To initiate a study of possible relative slip between sulfur atoms between MoS2 tri-layers, 

a slip vector analysis [70] was used. Zimmerman et al. [70] developed the slip vector to identify 

a dislocations Burgers vector due to nanoindentation. Using the slip vector it is possible to 

differentiate elastic and plastic strains [70, 74]. The slip vector is defined as the relative 

displacement of atoms from their neighbors in an initial configuration to some current 

configuration during a simulation [70, 74] and is given by the following expression [70]: 
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!! = −
1
!!

!!" − !!"
!!!

 Equation 4.5 

 

 

In Equation 4.5, ! are the atomic neighbors to atom !, !! is the total number of slipped 

neighbors, !!" is the vector difference between atoms ! and ! in the initial atomic configuration 

and !!" is the vector difference between atoms ! and ! in a current configuration. 

 To perform the slip vector analysis, a MATLAB script was written to compare the atomic 

configurations of the MoS2 system before plastic deformation (maximum indenter force), after 

plastic deformation and with the indenter fully retracted to its initial position before 

nanoindentation occurred. Figure 4.8 shows the atomic configurations for these three indenter 

displacements for the 50 Å indenter. In Figure 4.8, the top image shows that slip only occurs in 

the sulfur atoms directly below the indenter. The middle image shows that there is a ring of 

relatively large slip that occurs off the indenter axis, while the atoms directly under the indenter 

return to a less slipped state. In the bottom image of Figure 4.8, the indenter is fully retracted 

from the MoS2 crystal. However, as shown in this image, there is permanent slip left in the 

lattice. Therefore, this slip vector analysis has shown, in agreement with the force - displacement 

curves, that there is permanent deformation (slip) of the MoS2 lattice due to nanoindentation that 

is energetically stable. 
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Figure 4.8: Top: Atomic configuration before sudden force drop, Middle: Atomic configuration 
after sudden force drop, Bottom: Atomic configuration with fully retracted indenter. Atoms are 

colored according to their relative slip magnitude. 
 

 

4.4 Summary 

In summary, nanoindentation simulations of crystalline MoS2 were performed with three 

different indenter sizes to study the elastic response of MoS2 and the mechanism associated with 

plastic deformation. In these simulations, it was found that MoS2 did not follow the Hertzian 

prediction of a materials elastic response. This was attributed to the fact that MoS2 is not 

isotropic but rather highly anisotropic due to its layered structure. In investigating the plastic 

deformation events due to nanoindentation, it was found that three large and sudden drops in the 

indenter force occurred, which correspond to plastic deformation events. It was observed that 
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broken bonds were not the main mechanism associated with the first plastic deformation event 

contrary to the initial hypothesis. However, broken bonds were observed for two of the three 

indenters as they were displaced to a depth of 10 Å. From the force - displacement curves and 

the slip vector analysis, it was shown that there is permanent deformation that occurs due to 

nanoindentation and permanent slip between atoms even when the indenter is fully retracted that 

is energetically stable. From the force - displacement curves, the slip vector analysis and using 

OVITO possible deformation mechanisms identified for further study are (i) relative slip 

between sulfur atoms in neighboring MoS2 layers and (ii) a local phase transformation to an 

energetically stable structure. 

 



 71 

CHAPTER 5:   CONCLUSION 

 

5.1 Summary of Work 

 In this work, a reactive empirical bond-order (REBO) potential that has been 

parameterized for Mo-S systems and specifically to study the tribological properties of MoS2 has 

been successfully programmed into the LAMMPS (Large-scale Atomic Molecular Massively 

Parallel Simulator) classical atomistic simulation package. It was verified and shown that the 

LAMMPS implementation of this Mo-S REBO potential is consistent with the energy and force 

expressions associated with the REBO potential as well as the Liang et al. [28] atomistic code. 

Using this newly implemented LAMMPS potential, the lattice and elastic constants of BCC 

molybdenum and MoS2 were calculated and shown to be consistent with the Liang et al. [28] 

atomistic code results as well as experimental [28] and density functional theory [34] results. To 

achieve this consistency, a new parameter, !, for the S-S Lennard-Jones interactions was chosen 

to better reproduce the C33 elastic constant of MoS2 for molecular statics calculations. As such, 

the LAMMPS implementation of the Mo-S REBO potential accurately described the structural 

and mechanical properties of MoS2. 

In addition to implementing this Mo-S potential into LAMMPS, this Mo-S potential was 

used to investigate defect nucleation via nanoindentation simulations with a spherical indenter 

using LAMMPS. Nanoindentation simulations were carried out on the basal plane of crystalline 

MoS2 with three different sized indenters. From these nanoindentation simulations, it was shown 

that MoS2 does not follow the Hertzian theory of contact deformation due to its layered structure 

and highly anisotropic behavior. It was also shown from these simulations, using the force - 

displacement curves and slip vector analysis that the first sudden indenter force drop does 
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correspond to permanent plastic deformation with permanent slip occurring. It was shown, by 

explicit bond distance analysis, that the breaking of atomic bonds is not the main mechanism 

associated with the initial plastic deformation event of MoS2. From the visualization of the 

nanoindentation simulations it was hypothesized that other possible deformation mechanisms are 

(i) a relative slip between sulfur atoms and (ii) a local phase transformation to a related and 

energetically stable MoS2 structure. Additional investigations into the relative slip of interlayer 

atoms and the local phase transformation of the MoS2 crystal will need to be performed to 

determine the precise deformation mechanism due to nanoindentation. 

 

5.2 Recommendations for Future Work 

The main focus of this work was the nucleation of defects in an infinite MoS2 crystal. To 

gain a more thorough understanding of how MoS2 nanoparticles may be tuned for use in 

different lubricating conditions, it will be necessary to study defect nucleation in MoS2 

nanoparticles of varying sizes. This can be accomplished by nanoindentation simulations of 

MoS2 crystals of different sizes with free surfaces.  

Since the main focus of this work was the nucleation of defects via nanoindentation, no 

simulations were carried out on the effects of defects on the interlayer frictional properties of 

MoS2. As such, to understand how these defects alter the frictional properties of MoS2 it is 

necessary to investigate how existing defects migrate within a MoS2 crystal and how the mobility 

of the defect can change the interlayer sliding of MoS2 layers. The effects of these defects can be 

studied via nanoindentation or by application of a shearing force to the MoS2 crystal with a 

defect introduced into the system beforehand. 
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The proposed use of MoS2 is to have it intercalated with organic molecules to provide 

better boundary lubrication performance. However, it is unknown how intercalated organic 

molecules alter the nanostructure of MoS2 nanoparticles. Therefore, it is necessary to understand 

how the organic molecules interact with MoS2 and what role the organic molecules have on the 

nanoparticle structure and the interlayer interactions. Also, since the main lubricating property of 

MoS2 is exfoliation of the tri-layers, it is necessary to study how the intercalated molecules affect 

the exfoliation of the tri-layers as well as the frictional sliding of the tri-layers during mechanical 

deformation and shearing. 

Recently it has been discovered that grain boundaries exist in MoS2 nanoparticles [89]. 

The presence and movement of grain boundaries can affect the structural and mechanical 

properties of materials such as: deformation ability, elasticity, and plasticity. The presence of 

grain boundaries may therefore alter the way MoS2 nanoparticles perform in lubricating 

situations. As such, it will be necessary to study how the presence of grain boundaries alters the 

mechanical and tribological performance of MoS2 nanoparticles in pure MoS2 and MoS2 

intercalated with organic molecules via nanoindentation and shearing simulations. 
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Better Lubrication with Supercomputers 
 

By: James Stewart 
 
 
 

Friction is a part of everyday life. Friction prevents cars from sliding off of the road and 

helps keep you standing upright when walking. It is very useful and needed in life but it also has 

its disadvantages in that it can cause mechanical components such as engine pistons to wear at 

faster rates than desired and cause a reduction in efficiency. At the University of Arkansas, 

James Stewart, a M.S. student in the interdisciplinary Microelectronics-Photonics graduate 

program, is working under Dr. Douglas Spearot to investigate ways to reduce this friction. 

Surfaces of mechanical components that slide against each other during operation are not 

flat, containing rough patches called asperities. As the surfaces slide against each other, the 

asperities collide and hinder the movement of the components. This process causes mechanical 

components to wear down and become dangerous or impractical for continued use. Therefore, 

lubrication is applied to these components to prevent these asperities to come into contact. 

However, Mr. Stewart says, “There are two problems with traditional lubricants used at 

high temperatures and pressures. First, as the temperature and pressure increase, the lubricant 

could break down or even rupture. Thus, the lubricant would no longer provide a low friction 

barrier between components and the asperities would start colliding. Second, if the asperities are 

to small, the additives in the lubricant, which are normally micron sized, will not be able to 

navigate the surface of the components and properly cover the asperities.” 

As such, it is important to develop a nanoparticle-additive-based lubricant that can work 

at high temperatures and pressures and at the same time navigate the surface asperities. Dr. 

Spearot and his collaborators at the University of Arkansas have proposed Molybdenum 
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disulphide (MoS2) nanoparticles integrated with organic fatty acids as a possible solution to these 

problems. While experimental studies have shown that this novel nanoparticle based lubricant 

does provide desired lubricating properties, the studies are not able to examine how these 

nanoparticles deform under mechanical contact, which the nanoparticles experience during 

synthesis and application. 

Mr. Stewart continued, “To be able to design these nanoparticle additives to work in 

specific temperature and pressure regimes, it is necessary to understand how defects nucleate in 

these nanoparticles.” To achieve this, Dr. Spearot’s group is employing atomistic simulations.  

Atomistic simulations model materials at the atomic level and can therefore capture the 

fundamental mechanisms associated with failure. Using visualization software, it is possible to 

observe the formation of defects in MoS2 nanoparticles during an applied load such as 

nanoindentation as shown in Figure 1. 

 

 
Figure 1: Atomic configurations (colored by atomic force magnitude) of thin film MoS2 before 

and after failure due to nanoindentation. Images were created and provided by Mr. Stewart using 
OVITO. 

 

Mr. Stewart noted, “In using atomistic simulations, it is easy to change environmental 

conditions such as the temperature and pressure or even the size of the nanoparticles and observe 

the behavior of the nanoparticles.” Therefore, atomistic simulations allow for an insight into the 
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fundamental mechanisms of deformation in the nanoparticles at different environmental 

conditions that are characteristic of the synthesis and application of the nanoparticles that cannot 

be captured experimentally. 

This information will allow for the researchers at the University of Arkansas to control 

the synthesis parameters to tune the frictional properties of the nanoparticles to specific 

temperature and pressure regimes and in turn provide better lubrication to everyday mechanical 

components. 

 
Figure 2: Picture of the Arkansas High Performance Computing Center used by Dr. Spearot and 

his group along with other researchers at the University of Arkansas. 
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The following list of new intellectual property items were created in the course of this 

work and should be considered from both a patent and commercialization perspective. 

 

1. A C++ code to compute a reactive empirical bond-order (REBO) potential that has 

been parameterized for Mo-S systems (specifically tribological properties of MoS2) to 

be used and distributed with the LAMMPS simulation package. 

2. A MATLAB script to use a given neighbor list and atomic position data to determine 

the separation distance of nearest bonded neighbors and determine if these distances 

correspond to broken bonds during failure.  

3. A MATLAB script to use a given neighbor list and atomic position data to determine 

a triplet of atoms and the angles corresponding to this atom triplet to determine if a 

redistribution of angles occurs during failure. 

4. A MATLAB script to perform a slip vector analysis using atomic position data output 

at each indentation depth.  
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Appendix C: Potential Patent and Commercialization Aspects of Listed IP Items
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C1: Patentability of Intellectual Property 

1. The C++ code designed to be used with the LAMMPS simulation package is not 

patentable because it is part of an open source license. 

2. The MATLAB script to determine the occurrence of broken bonds during the 

nanoindentation simulation is not patentable because the idea is not new. However no 

open source code was available and an in house code was produced. 

3. The MATLAB script to determine the redistribution of angle interactions during the 

nanoindentation simulation is not patentable because the idea is not new. However no 

open source code was available and an in house code was produced. 

4. The MATLAB script to perform a slip vector analysis from the atomic position data 

from the nanoindentation simulation is not patentable because the idea is not new. 

However no open source code was available and an in house code was produced. 

C2: Commercialization Prospects 

The implemented version of the Mo-S REBO potential will be submitted to the 

developers of LAMMPS at Sandia National Labs / Albuquerque, NM to be incorporated 

into the open-source distribution of LAMMPS. 

C3: Possible Prior Disclosure of IP 

Information regarding the implemented version of this potential into LAMMPS was 

disclosed to the MicroEP community during Research Communications Seminar in the 

spring 2011 semester as well as Dr. Susan Sinnott’s research group at the University of 

Florida during the potential validation procedure. The MATLAB scripts were disclosed 

in private meetings with Dr. Spearot. 
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D1: Applicability of Research Methods to Other Problems 

The main idea of simulating nanoindentation of MoS2 was to determine how defects form 

and deformation occurs to design nanoparticles for certain uses. It is possible to use 

nanoindentation (and in fact has been used) to study how a variety of materials generate 

defects during an applied load. It may also be possible to investigate the generation of 

broken bonds in defect nucleation in addition to traditional defect and dislocation analysis 

tools.  

 

D2: Impact of Research Results on U.S. and Global Economy 

The presented research has the potential to benefit and advance nanoparticle based 

lubricants by allowing the lubricating properties of the nanoparticles to be controlled 

during synthesis (tunable nanoparticles). This would allow for an increased reduction in 

the wear of mechanical components and the excess energy consumed by these machines; 

therefore decreasing the amount of money spent on these issues. 

 

D3: Impact of Research Results on Environment 

The creation of tunable nanoparticle based lubricants would allow for improved energy 

efficiency in machines and components requiring lubrication. Since MoS2 is 

environmentally friendly and unreactive, there is no foreseeable harm to the environment 

with the use of this material. 
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Appendix E: Microsoft Project for MS MicroEP Degree Plan
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Appendix F: Identification of All Software Used in Research and Thesis
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Computer #1: 
Model Number: Dell Precision T3500 
Serial Number: 6772145113 
Location: NANO Building Room 213b 
Owner: University of Arkansas (Dr. Douglas Spearot) 
Software #1:  

Name: Microsoft Office 2010 
Purchased by: University of Arkansas Site License 

Software #2:  
Name: MATLAB R2011b 
Purchased by: University of Arkansas Site License 

Software #3:  
Name: Microsoft Project 2007 
Purchased by: University of Arkansas Site License (MicroEP Program) 

Software #4:  
Name: OVITO 
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Appendix H: Force Expressions for the REBO and Lennard-Jones Potentials
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Lennard-Jones Forces: 
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Lennard-Jones Spline Forces: 
 

!!"
!!!" !!" =

!!" − !!"!"#

0.95!!" − !!"!"#
3 !!" − !!"!"#

−2!!" 0.95!!"
0.95!!" − !!"

!"# ! +
!"!"(0.95!!")
0.95!!" − !!"!"#

+ 2
3!!"(0.95!!")
0.95!!" − !!"!"#

− !"!"(0.95!!")  

 
 
 
REBO Forces: 
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and using the Dot Product: 
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