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Abstract

We build on the current consistent vehicle routing problem literature by formulating a novel multi-

objective mathematical model of the home health scheduling and routing problem that includes the

option of assigning some patient visits to remote monitoring devices, with the objectives of mini-

mizing total cost, achieving nurse consistency and creating balanced nurse workloads. A heuristic

solution approach that approximates the efficient frontier of this multiobjective problem is pre-

sented and validated, and the results of using this methodology to solve several realistic instances

are included. We also analyze the assignment of patients to devices and present some managerial

insights into making these assignments in practice.
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1 Introduction and motivation

Home health is a huge and growing component of the healthcare industry. There were an estimated

33,000 home health providers in the United States in 2009, which served a combined 12 million

patients that year (National Association for Home Care and Hospice [2010]). It is expected that by

2040, the number of people 65 or older will quadruple (US Census [2004]), creating additional strain

on an already overburdened healthcare system. Additionally, estimates hold that close to one half

of US adults suffer from at least one chronic medical condition (CDC [2009]). Home health is an

attractive option for these groups of patients, as it can provide care to the elderly and those with

recurring conditions at a fraction of the cost of traditional hospital care ($132 a day (NAHC [2007])

versus $1889 a day in the hospital (Agency for Healthcare Research and Quality [2009])). As the

population in the United States ages and suffers more chronic disease, there is greater demand for

cost effective home health services; as a result, home health jobs are expected grow almost 50% by

2018, which represents greater growth than any other healthcare sector (United States Department

of Labor [2010]).

In addition to being a fast-growing component of the nation’s healthcare system, the home

health sector stands to gain from operations research techniques, particularly in creating daily

routes and schedules for nurses. Home health workers drive an estimated 5 billion miles per year

to provide care to patients, over twice the total amount driven by all UPS drivers annually (NAHC

[2009]). Additionally, many home health agencies do not use scheduling software, but rely instead

on various ad hoc methods to assign patients to nurses (Datalytics LLC [2010]), and let nurses create

their own routes. The potential for improvement to routes and schedules through the use of decision

support technology is enormous, considering the multi-objective and combinatorial nature of the

underlying problems. Daily operations in the home health sector require the generation of routes

over a specified planning horizon (e.g., number of weeks), where each patient requires a prescribed

number of weekly visits for a prescribed number of weeks. While home health agencies are subject

to budgetary concerns and thus will be concerned with the total cost and travel time associated

with their nurse routes, favorable patient outcomes and nurse satisfaction are top priorities for

both for-profit and non-profit agencies. These competing objectives, described in Section 1.1, lead

to complex routing problem variants. Technological advances in the home monitoring market,
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described in Section 1.2, may help home care agencies to simultaneously satisfy these objectives.

The goal of this thesis is to evaluate the tradeoffs between the competing objectives when home

monitoring technologies are used.

1.1 Competing objectives in home health nurse routing and scheduling

Competing objectives in home health nurse routing and scheduling considered in this thesis include

minimizing travel cost, maximizing patient satisfaction, and maximizing nurse satisfaction. The

motivation for considering patient and nurse satisfaction when making routing and scheduling

decisions is described in this section. Additionally, the proxies used as satisfaction measures in our

model are presented. Travel cost is approximated simply as the total travel distance required to

perform patient visits.

The number of home health agencies in the United States has almost doubled from 18,000

agencies in 2005 to 33,000 in 2009 (National Association for Home Care and Hospice [2010]). With

the increasing number of home health care agencies available to choose from, patient satisfaction

and increasing levels of transparency will become even more crucial in attracting and keeping new

patients for those agencies that do operate for a profit (Steeg [2008]). Starting in October of

2012, new Medicare reimbursement regulations will take effect that will give bonuses to health care

providers that score above average on patient satisfaction surveys, providing yet another incentive

for home health agencies to be concerned with patient satisfaction (Rau [2011]). This satisfaction

level is often associated with consistency of the care provider, as well as predictable, consistent

service times. Thus, patient satisfaction may be measured using nurse consistency (related to

continuity of care) and time consistency. Studies indicate that higher levels of continuity of care

(that is, treatment administered by the same nurse or small set of nurses) lead to more favorable

patient outcomes, high patient satisfaction, and fewer emotional and behavioral issues at discharge

(Russell et al. [2011], D’Errico and Lewis [2010]).

It is predicted that by 2025, there will be an expected national system-wide shortage of 260,000

nurses (Buerhaus et al. [2009]). Therefore, nurse satisfaction will also necessarily become an impor-

tant goal of home health agencies that wish to attract and maintain adequate nurse staffing levels.

Additionally, the literature suggests that nurse satisfaction affects the quality of patient outcomes,

in particular, that strenuous workloads negatively affect patient outcomes (Navaie-Waliser et al.
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[2004]). Although the literature is replete with nonquantitative factors that affect nurse and home

health nurse job satisfaction (Best and Thurston [2004]), there are two measurable objectives that

may be considered in this problem setting: balanced nurse workload, and idle time. Excessive

workload is mentioned frequently as a dissatisfier of nurses (Navaie-Waliser et al. [2004], McNeese-

Smith [1999]), and it is apparent through conversations with home health professionals that nurses

are very concerned that the burden of workload be shared equally among all the nurses. We choose

to incorporate the balanced workload objective and assess the fairness of workload assignments

by evaluating the sum of all pairwise differences over the set of nurses in number of patient visits

completed over the planning horizon. The goal of minimizing idle time may be chosen as a counter-

weight to the time consistency objective, so that nurses do not need to wait idly for a long period

of their workday for an appointment time scheduled later in the day.

1.2 Technological advances in home monitoring market

Remote monitoring devices are a relatively new telehealth technology that allow home health nurses

to collect and monitor vital sign data without making an in-person visit to collect the data. There

are a wide variety of such devices on the market today, including both simple, single-purpose devices

such as scales, blood glucose monitors, pulse oximeters, and peak flow meters, and sophisticated

systems such as the Bosch Health Buddy and Philips TeleStation, which may be programmed to

address the needs of patients suffering from a number of different health conditions (Philips website

[2011], Bosch website [2011]). These more holistic systems take and transmit input from single-

purpose devices, and also interact with patients through questionnaires and promote education

through condition-specific lifestyle recommendations. See Figure 1 for an illustration of the rela-

tionship between these two types of devices. The daily measurements and responses from devices

are then transmitted back to the agency and/or directly to the patient’s nurse for monitoring.

Typically, home health agencies own the devices, which they then distribute to patients for the

duration of their episode of care. Agencies may differ greatly in the extent to which they employ

remote monitoring devices, and the specific configuration of devices used.

3



Figure 1: Example device illustration

Remote monitoring technology has been used to monitor myriad chronic health conditions,

including hypertension, congestive heart failure, diabetes, and coronary artery disease (Bosch web-

site [2011]). Management of these chronic diseases is very sensitive to small changes in various

vital sign data. Consistent monitoring of this data can alert care providers early if the patient’s

condition has suffered, and allow timely interventions that improve quality of life and save money.

Studies have consistently found that use of remote monitoring systems results in lower costs and

improved outcomes for patients. One such study found that over a six month period, the rate

of discharge from home health to more intensive care such as hospital or nursing home was only

15% for those patients issued a remote monitoring system, versus 42% under a traditional home

health care paradigm. These improved clinical outcomes came at a cost per visit that was about

70% of the cost of traditional visits (Finkelstein et al. [2006]). Another study conducted by In-

tel and health insurance company Aetna found that 164 out of 315 heart failure patients avoided

potential hospital stays through use of a remote monitoring device (Horowitz [2010]). In a survey

administered by Philips, 76.6% of home health agencies that use these remote monitoring devices

reported a reduction in unplanned hospitalizations, while 77.2% reported a reduction in emergency

room visits for patients issued devices. 49.7% of these agencies saw a reduction in the number of
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face-to-face visits through use of a remote monitoring system, and 88.6% reported improvement in

quality outcomes for patients (Philips national study on the future of technology & telehealth in

home care [2008]). Use of remote monitoring device systems is advantageous to both patients and

care providers, improving quality of life for patients and increasing both efficiency and effectiveness

of home health agencies.

Results of the Philips survey suggest that around 17% of home health agencies currently em-

ploy some form of remote monitoring system (Philips national study on the future of technology

& telehealth in home care [2008]). Although current Medicare/Medicaid guidelines enforce strin-

gent eligibility requirements for telehealth technology reimbursal which exclude many reasonable

applications of the devices, including any store-and-forward technologies like those of most remote

monitoring devices (Department of Health and Human Services [2009]), there has been recent move-

ment to relax remote monitoring reimbursement restrictions (Department of Health and Human

Services, Centers for Medicare and Medicaid Services [2011]). Perception of cost has discouraged

many home health providers from adopting new systems in the past (Philips national study on

the future of technology & telehealth in home care [2008]). But remote monitoring solutions are

becoming increasingly attractive as providers are becoming aware of cost benefits and government

reimbursement is becoming more inclusive, and as a result, the market is predicted to grow sub-

stantially in the near future, from a total market value of around $3 billion in 2009 to $7.7 billion

by the end of 2012 (King [2010]).

We wish to take advantage of remote monitoring technology to simultaneously achieve good

performance on the competing objectives of travel cost, patient satisfaction, and nurse satisfaction.

Allowing some patient visits to be satisfied by assignment to a remote monitoring device is, ab-

stractly, consistent with the experience of home health agencies that saw a reduction in the number

of in-person visits through use of such a system. We assume that device assignments do not need to

be assigned a particular start time, do not negatively affect a patient’s nurse consistency score, and

do not add to any nurse’s workload. While a device assignment for a particular visit will clearly

reduce travel costs since it eliminates the need for a nurse to travel to the patient’s home, it may

also improve patient and nurse satisfaction objectives by decreasing the opportunity for variability

in nurse assignment, time of visit, or nurse workload assignments.
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1.3 Small package shipping application

Although we are most concerned with home health routing applications, consistency of service

provider and service times are also important determinants of customer satisfaction in other freight

transportation applications. A critical task for small package delivery companies is the construc-

tion of low-cost routes for the delivery and pick-up of packages from customers in local service

areas. Many of these companies strive to deliver and pickup packages using the same driver at

approximately the same time every day. Wong [2008] explains that such consistency may be crucial

to customer satisfaction, and that customers grow to depend on consistent deliveries. He gives

the example of a video rental store that hires a part-time morning employee to deal with packages

received in the morning. If the delivery is late, it may adversely affect the video rental’s ability to

process the shipments (Wong [2008]). Some customers may have service contracts with the shipper

that establish a specific time window during which items should be delivered. Failure to abide

by those time windows may lead to decreased customer satisfaction, loss of the contract, as well

as opportunity costs associated with the loss of future business or referrals from that customer.

UPS, the United Parcel Service, is one company that uses consistency to maintain a competitive

advantage. UPS’s biggest competitor, FedEx, focuses almost exclusively on efficiency, automation,

and cost-reduction. In contrast, UPS emphasizes customer relationships, and as a result, their

customers are more likely to know to know their driver by name and retain loyalty to the UPS

company (Peppers and Rogers [2004]).

2 Problem description and research questions

We wish to provide a solution approach that finds the efficient frontier using three of the several

aforementioned potential objectives: total routing cost, nurse consistency, and balanced workload.

The reasons for choosing these particular objectives were twofold. First, it is clear through discus-

sions with home health professionals that these three objectives are routinely prioritized and that

agencies attempt to create routes that perform well with respect to all three. This set of objectives

has the added benefit of representing three possibly conflicting interests: those of the agency (total

cost), patients (nurse consistency), and nurse workforce (balanced workload). The second reason for

choosing these three objectives is that it results in a combinatorial problem well-suited to discrete
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neighborhood moves and a multiobjective heuristic solution approach. We hope to later incorporate

the complicating time related objectives like time consistency and minimization of nurse idle time

to this base set of three objectives.

We wish to answer the following questions regarding the problem of creating routes for home

health nurses:

• What are the trade-offs among objectives associated with creating nurse routes and schedules?

That is, can we find or approximate the efficient frontier for problem instances of realistic

size? Finding or approximating the efficient frontier allows decision makers from different

agencies who may have differing priorities to choose the solution best suited to their agency’s

situation.

• How should we choose which patients and/or patient visits to assign to remote monitoring

devices to create routes that perform well across multiple objectives?

To answer these questions, we define the problem of creating nurse schedules and routes to serve

patient demand with the option of assigning some visits to remote monitoring devices. In our

multiobjective home health nurse routing and scheduling problem, a home health patient requires

a physician-mandated number of weekly visits for a prescribed number of consecutive weeks during

a planning horizon. Furthermore, the days on which those visits occur must repeat periodically.

Given a set of patients and their required visits, each visit must be assigned to a day, and must

also be assigned to either a nurse or remote monitoring device. These assignments are subject to

workday length limits for each nurse, daily and horizon-oriented device capacity constraints, and

limits on the maximum number of times a specific patient’s visits can be performed by a device.

This ensures each patient still receives an acceptable number of in-person visits over the planning

horizon. Once visit day and nurse or device assignment decisions have been made, daily nurse

routes that start and end at each nurse’s home must be created, and start times must be assigned

for each patient visit. A set of visit start times corresponding to a single nurse for a single day are

feasible if, for each pair of consecutive visits (i, i+ 1), it is possible to start visit i at the assigned

time, complete the visit, and travel to visit i+ 1 no later than it is scheduled to begin. While the

concept of patient start times does not directly affect any of the three chosen objectives, we will

see in Section 4 that they are important in preventing subtours in each nurse’s daily route. Patient
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start times would also be required if time consistency and idle time are incorporated as additional

objectives in future work.

Characteristics of a good set of nurse routes and device assignments include low travel cost, a

high level of nurse consistency, and balanced nurse schedules across the planning horizon. Nurse

consistency is achieved when each patient receives as many of their visits as possible from either

the same nurse or by assignment to a remote monitoring device. This patient satisfaction objective

is balanced by the nurse satisfaction goal to create routes that give all the nurses approximately

the same amount of work over the planning period (for more detail, see Section 4.2). Specifically,

we calculate each of these objectives in the following manner:

• Transportation cost: total travel cost incurred by all nurses over the planning horizon.

• Nurse consistency: the sum over all patients of the number of different nurses that visit

each patient.

• Balanced workload: the sum of all pairwise differences among nurses of the total number

of patient visits completed over the planning horizon.

The problem is to create a set of visit day assignments and nurse or device assignments and

daily routes for each nurse that satisfy the set of patient demands over the planning horizon, sub-

ject to the aforementioned constraints, while creating good solutions with respect to total distance

traveled by all nurses, patient satisfaction, and nurse satisfaction objectives. This problem can be

modeled as a multiobjective multidepot vehicle routing problem variant with periodic and consis-

tent requirements. The problem studied in this thesis does not consider the periodic element of

complexity, for the reasons described below.

Depending on their prognosis, the specific days that a patient receives visits each week may be

subject to a number of scheduling restrictions, including:

• Patients may have a requirement that their visits each week are not scheduled on consecutive

days. This may occur if, for example, the patient needs physical therapy that is most effective

when the visits are spaced evenly throughout the week.

• Patients may have specific days they must receive care. For example, a patient needing precise

doses of IV medications to be administered three times per week may require those doses be
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administered at the same time each Monday, Wednesday, and Friday.

In addition to patients requiring specific visit day assignments for medical reasons as described

above, patients may also have preferences for which days of the week their visits occur, so visit

day assignments are often negotiated with the patient upon admission to home health care. For

these reasons, we assume visit day assignment decisions are exogenous, and treat them as input to

the planning and scheduling model considered in this thesis. This removes the periodic element of

complexity from the resulting routing models, allowing us to focus on providing insights into the

consistency requirements and tradeoffs between stated objectives.

3 Literature review

Because the problem studied in this thesis can be modeled as a multiobjective consistent vehicle

routing problem variant, we review the relevant literature on consistent vehicle routing problems and

multiobjective vehicle routing problem approaches. Home health routing and scheduling problems

that have been modeled as consistent vehicle routing problems are discussed in Section 3.1.

3.1 Consistent vehicle routing problem

Development of the consistent vehicle routing problem represents an important and relatively recent

extension of the traditional vehicle routing problem. The incorporation of consistency in the routing

problems associated with both home health and small package delivery can have favorable effects on

company and customer outcomes. Objectives of customer satisfaction, or consistency, may conflict

with cost objectives such as total time or distance traveled, but as will be seen in the applications

reviewed, explicitly modeling consistency can result in high measures of consistency with relatively

little increase in total route cost. This represents a contribution in the vehicle routing problem

literature, as previous attempts to incorporate consistency involved using fixed routes that led

to inefficiencies and capacity violations. Smilowitz et al. [2009] demonstrate the improvements

afforded by these models by showing that a two-phase approach that first minimizes distance and

then maximizes consistency does not achieve consistency as well as integrated approaches that

simultaneously consider both distance minimization and consistency maximization.

Each variant of the consistent vehicle routing problem includes a set of customers, N , with
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known demands over a period of days, D. There is a set of drivers, V , for which routes must

be generated to service this demand over the planning period. In some cases the drivers begin

from their respective homes, as is often the case in home health contexts, and in some cases the

drivers begin from a common depot, as in small package shipping contexts. Regardless, the routes

are generated for a complete graph on customer and depot locations that satisfies the triangle

inequality property. Costs of traveling between two locations i and j, as well as the time to do so

are given by cij and tij , respectively. Some variants assume the set of drivers V is homogeneous,

while others allow for a heterogeneous fleet, with service requests that require various degrees of

qualification. Route lengths must be less than some time constraint, and in applications where

goods are delivered or received from customers there are also capacity constraints on each vehicle.

Formulations of the consistent vehicle routing problem focus on different measures of consis-

tency, and some seek solutions that perform well for multiple of the following measures. Table 1

shows the metrics used in the various papers reviewed here. Some of the more common measures

are:

• Time consistency: Routes are constructed in which the customer is serviced at about the

same time every day that demand is requested. This may be modeled by defining consecutive

time windows of equal length for each day, and then beginning service to the customer within

the same time window each day, or in some formulations, during the patient’s preferred

window. Another method defines time consistency on the basis of the maximum difference in

start times for each patient over the planning period.

• Driver consistency: Routes are created that minimize the total number of different drivers

that service each customer’s demands over the entire planning horizon; the lower the number

of different drivers, the better the consistency.

• Customer familiarity: Preferred routes maximize the number of times a driver visits a

customer, based on the idea that there is a customer access cost for each customer that

decreases with customer familiarity, or increased frequency of visits. This goal is similar to

the driver consistency goal, although it is not identical - the customer familiarity problem

solves the drive consistency problem, while the converse does not necessarily hold (Smilowitz

et al. [2009]).
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• Region familiarity: Ideal routes will maximize the total number of times a driver visits a

predefined region, or subset of customers, over the planning horizon. This goal is based on

the idea that if a driver visits the same region of customers repeatedly then they exhibit a

learning behavior that decreases travel time and costs as they gain increased familiarity.

The aforementioned measures of consistency may be incorporated in different ways into the con-

sistent vehicle routing problem model. Some approaches (Groër et al. [2009]) model consistency

as a set of constraints, requiring a certain degree of time consistency, as well as perfect driver

consistency. Their metric is then the classic minimization of total travel costs for all routes. Others

(MacDonald et al. [2009], Smilowitz et al. [2009]) incorporate consistency as a “soft” constraint by

placing it in the classic travel cost objective and adding penalties for consistency violations.

Table 1: Measures of consistency

Time Driver Customer Region
Consistency Consistency Familiarity Familiarity

Groër et al. [2009] X X
Smilowitz et al. [2009] X X X

Zhong et al. [2007] X
MacDonald et al. [2009] X X

Francis et al. [2007] X X X
Steeg [2008] X X

3.2 Solution methodologies

Groër, Golden and Wasil Groër et al. [2009] model the consistent VRP as a set of additional

constraints requiring driver and time consistency, while maintaining the traditional VRP constraints

and objective of minimizing total distance traveled. They develop a two-stage heuristic for solving

this problem that is based on a modified record-to-record algorithm of Li et al. [2005]. The first stage

of the algorithm involves using a modified Clarke and Wright algorithm to generate a template using

all the customers that need service on multiple days. In the second stage, for each day, customers

that need service only that day are added and those that do not need service are removed. The

templates are then subjected to a series of diversification and improvement steps. Once no more

improvements have been found for a specified number of iterations, the entire process is repeated

up to three times, and the feasible solution with the lowest total routing cost is returned.
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The authors perform several computational experiments, first assessing their algorithm’s per-

formance by comparing it to small instances that may be solved to optimality. Their heuristic

performs well on these small instances containing 10-12 customers, achieving optimality in most

cases, and at worst experiencing a 6% gap. The authors note that the computing times for op-

timally evaluating even these small instances were on the order of several days. They also assess

the effect of the consistency constraints on total travel time for large instances by comparing the

total travel cost obtained from their heuristic to travel cost obtained from the generic record-to-

record (RTR) algorithm presented by Li et al. [2005] without consistency constraints. For the two

instance types the authors develop, they find that travel time is no more than 13.5% longer for the

consistent version of the vehicle routing problem. However, when the algorithm was applied to a

real-world instance containing 3,715 customers with demands over five weeks of five days each, the

algorithm performed very well, resulting in a slight 1% increase in total travel cost when compared

to the results of running a generic RTR algorithm without incorporation of consistency on the same

instance (Groër et al. [2009]).

Smilowitz, Nowak, and Jiang Smilowitz et al. [2009] present a modified Tabu search as a

heuristic for their three variants of the consistent vehicle routing problem dealing with driver,

customer, and region consistency. They begin by constructing an initial solution using a sweep

algorithm. They then allow the set of possible moves to be those that differ in the assignment

of customers to drivers by one customer. For a baseline comparison, Smilowitz et al. [2009] test

their heuristic using just the traditional cost objective on the set of instances developed by Groër

et al. [2009], to demonstrate that their heuristic comes within 4% of the generic RTR when seeking

minimum total cost on these instances. The authors use the Tabu search on the three variants,

each with an objective of the weighted sum of travel cost and consistency measure. They compare

these results to the problem with an only travel cost objective, as well as two problems where

routes minimizing travel cost are found in the first step, and then a post-processing step attempts

to achieve customer or region consistency by assigning drivers to the routes created in the first step.

They then show for a range of instance styles their several models that focus on driver, customer,

and region consistency increase total routing costs by at most 5.3% on those instances, and make

the observation that the models that focus on the consistency metrics do a better job of finding
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low-cost routes than the two-step models that focus on low-cost do with finding high-consistency

routes(Smilowitz et al. [2009]).

Zhong, Hall, and Dessouky Zhong et al. [2007] develop a two phase approach that seeks both

high route efficiency and driver familiarity within a service region. They group customers into

“cells” by postal code, and then treat the cells as the new customers in the model. They do this

both to decrease the size of the network, and to better model driver learning, as they feel drivers

“learn” more by frequent visits to a given neighborhood than to a given customer.

The first stage of their approach is the strategic planning model, in which “core areas”, or

groups of cells, are created to ensure that a portion of each driver’s route is the same over multiple

days. They define a “flex zone” as a user-defined percentage of the cells closest to the common

depot that are not assigned to core areas. In the initial stage the authors use a Tabu search to

assign cells to core areas using a learning function of expected driver performance as the objective.

The second stage involves creating driver routes to visit each of the cells based on partial routes

among cells in each of the core areas. The route creation method is based on a parallel insertion

heuristic already developed by UPS to account for the cell routing and driver learning effects.

They test their first strategic planning stage method on ten randomly generated 500 customer

instances, and report that their results are all within 3.5% of the lower bound taken to be the

solution of the linearized generalized assignment problem. The authors then demonstrate the value

of the strategic planning stage by comparing solutions generated in the second stage of their method

to those generated without the use of core areas. After incorporating driver learning into the no-

core area method, they find that their method uses on average 4% fewer drivers, routes that are

4% shorter, and a 78% visiting frequency for the highest frequency drivers (28% higher than that

of no-core area method). In effect, by explicitly modeling driver learning and its effect on travel

and service time, the authors show that more consistent routes may in fact be less expensive routes

(Zhong et al. [2007]).

MacDonald, Dörner, Gandibleux MacDonald et al. [2009] formulate a consistent vehicle

routing problem in the context of home health care. They require that patient visits be performed

during the patient’s preferred time window, and explicitly model varying levels of qualification
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of the “nurses”, where service requests submitted by patients must be served by a qualified or

overqualified nurse. They model nurse consistency as a soft constraint, and seek to find routes

over the planning period that minimize the weighted sum of the total distance traveled and the

maximum number of nurses assigned to any client, where the consistency portion is weighted more

heavily than the cost portion.

MacDonald et al. [2009] present a large neighborhood search metaheuristic to solve this problem.

They initialize by using a regret insertion heuristic to construct an initial set of routes. The following

improvement phase is based on a Simulated Annealing method, wherein algorithms are randomly

chosen to delete and then reinsert service requests from the solution. Greedy insertion, random

insertion, and regret insertion are used to choose service requests to insert into the solution, and

the authors use a consistency deletion operator, in which all requests belonging to the patient that

is least consistent are removed from the solution, random deletion operator, which does the same

thing for a random patient, and the distance deletion operator, which removes requests with the

largest average distance from any neighbor. The authors run this algorithm on the some of the

larger instances (up to 150 customers and 544 service requests) presented by Groër et al. [2009],

and define their objective such that each time a client is served by an additional server beyond

its first, a penalty of 1000 is added. They find that their method produces solutions with less,

although still relatively high, driver consistency (since it is in objective function versus constraint)

but overall lower cost routes than Groër et al. [2009] (MacDonald et al. [2009]).

Francis, Smilowitz, and Tzur Francis et al. [2007] do not model consistency outright, but

instead evaluate the trade-offs between cost reduction via operational flexibility, or the level of

constraint, and operational complexity, as defined from the point of view of the service providers

and their customers by the time and complexity involved in implementing a given solution. They

discuss several methods of incorporating operational flexibility, including the ability to decide how

many visits are scheduled above a customer’s minimum visit requirement, the ability to allow a

customer to be visited by multiple drivers over the planning horizon, the ability to increase the

number of possible scheduling options, and the ability to decide how much is delivered each visit.

The authors then evaluate the effect of incorporating operational flexibility on three measures of

complexity: arrival span, or difference in the time at which customers are served over the planning
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horizon, driver coverage, or the percent of the total service region visited by a given driver over the

planning period (which is related to Zhong et al. [2007]’s idea of driver learning associated with

several visits to the same region), and finally, crew size, or the number of different drivers that

serve a given customer over the planning period.

The authors develop a Tabu search algorithm which is used to find solutions that minimize the

traditional metric of total routing cost for various levels of flexibility for several instances with 200

customers over a five day period. The solutions are then used to evaluate a second set of metrics

corresponding to operational complexity, and the trade-off between flexibility and complexity is

analyzed. The authors find that additional operational flexibility leads to increased complexity,

with specific effects depending on the geographic distribution of the customers. They do conclude

that restricting crew flexibility, related to our discussion of driver consistency, tends to correspond

to a very limited increase in cost, and as a general rule driver consistency may be achieved without

significant cost increases (Francis et al. [2007]).

Steeg In what he terms the Home Health Care Problem, Steeg [2008] incorporates consistency

as a “soft” constraint in the objective by seeking to minimize the sum of number of drivers to visit

each customer, overtime costs for nurses, total travel costs, and unassigned tasks, which he allows

through use of a dummy driver. Since the factors of the objective are on different scales, Steeg

normalizes them by weighting each with a parameter such that the sum of these parameters is

one. Steeg [2008] also models qualification level of nurses, and enforces time consistency through

hard time windows for each patient visit. He constructs a simple routing heuristic to create an

initial feasible solution that is “good” with respect to all components of the objective except nurse-

patient loyalty. Steeg then uses an adaptive large neighborhood search mechanism in which patient

requests are deleted from and reinserted into the solution using random, shift combination, and

worst removal operations in conjunction with in-order, greedy, and regret insertion operations.

Solutions with improving objective function values are kept, and operations that led to acceptance

of a new solution are given a higher preference value for use in future iterations (hence the adaptive

LNS).

Steeg used his algorithm to compute solutions for two instances using real data from two home

health agencies in Germany. However, he found the ANLS portion was unable to make much
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headway in improving consistency, as more weight was placed on the overtime portion of the

objective for those instances. The home health agencies from which the instance data was obtained

also did not report their nurse consistency, so a comparison was impossible (Steeg [2008]).

3.3 Multiobjective vehicle routing problem

The most popular approach taken to solve multiobjective vehicle routing problems is the scalar

method, which includes weighted linear aggregation, goal programming, and the ε-constraint method.

The first of these involves combining all objectives into a single objective that is a weighted sum

of the others, which incurs the difficulty of choosing appropriate weights. A weighted linear ag-

gregation approach will in general find some, but not all of the Pareto-optimal solutions. Goal

programming involves choosing some target threshold for each of the objectives, and then minimiz-

ing the total distance from the objectives values to their respective goals. This approach also brings

the challenge of choosing appropriate goal values for the objectives. In the ε-constraint method,

one objective is optimized, while the rest are subject to the constraint that each objective i may

be no worse than εi. The ε values as well as the objective chosen for optimization is then varied to

produce multiple solutions. Any of these scalar methods has the advantage that all traditional opti-

mization techniques and/or heuristics may be employed to solve the modified problem (Jozefowiez

et al. [2008], Talbi [2009]).

Another popular approach to multiobjective vehicle routing problems relies on the concept of

Pareto dominance. These Pareto methods are often used in evolutionary algorithms and hybrid

evolutionary methods, and are based on the idea of assigning fitness scores to solutions that reflect

their quality as compared to the overall population on the basis of dominance among the multiple

objectives. Other methods include alternating which objective is under current consideration,

ranking objectives and solving the problem in rank order (where previously optimized objectives

become constraints for subsequent objectives), and various heuristic-specific methods, such as the

use of two types of pheromones based on the two objective functions in an ant colony algorithm

(Jozefowiez et al. [2008], Talbi [2009]).
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3.4 Contribution to existing literature

Incorporating remote monitoring devices and nurse satisfaction objectives (in this case, balanced

workload) into the consistent vehicle routing problem is a novel addition particularly well suited

to contribute to the home health application area. We are also interested in the Pareto optimal

frontier that results from our multiple objectives, while those who formulated this problem in the

past (Smilowitz et al. [2009], Steeg [2008], MacDonald et al. [2009]) simply combine the objectives

as a weighted sum and do not explicitly examine the trade-offs that result from consideration of

various consistency objectives, nor do they consider consistency measures as individual objectives.

4 Problem definition

We first define the notation used to express the home health nurse routing and scheduling problem

studied in this thesis.

4.1 Notation

We assume a set of nurses, V , available to serve a set of patients, N , over a set of days in a planning

horizon, D, where each patient n ∈ N and nurse v ∈ V is associated with a geographical location

in the service area representing their home. Because home health care nurses typically begin and

end their day in their own home, we allow each nurse v to have its own depot. Let T represent

the set of remote monitoring devices. Then the set of servers, S, that may serve patient demand

is defined as S := T ∪ V . The parameter L is the limit on the number of patients each device

can serve each day, and the parameter G is the limit on the number of patients the device can

serve over the course of the entire planning horizon. We let K represent the limit on the number

of visits via device each patient may incur over the planning horizon. We define the home health

nurse routing and scheduling problem on a complete network denoted by the underlying graph

G = (N0, A), with node set N0 representing the customers in set N and nurse depots V , and arc

set A connecting nodes in N0 with nonnegative travel costs cij , (i, j) ∈ A, as well as nonnegative

travel times, tij , (i, j) ∈ A. We define N{v} := N ∪ v to be the set of patient locations along with

nurse v’s depot, or the set of nodes that a given nurse v may visit over the planning period.

For a given day d ∈ D, the set of customers to visit and their respective demands are known a
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priori. Let rdn denote the demand of patient n ∈ N on day d ∈ D, which in our case is the time (in

minutes) needed for a nurse to care for that patient on that day.

We define the continuous variables sdn, n ∈ N, d ∈ D, to represent the time when care for patient

n begins on day d, and edv to represent the time at which nurse v returns home on day d. We model

a day as beginning at time 0, assume all nurses are available at that time, and that all nurses must

return home within Q, an input parameter representing workday length, minutes.

We define the following day-oriented binary variables:

xdijv =

 1 if nurse v traverses arc (i, j) on day d

0 otherwise

ydno =

 1 if patient n visited by server o ∈ S on day d

0 otherwise

The following horizon-oriented binary variables are used in the nurse consistency objective

function.

ynv =

 1 if patient n visited by nurse v ∈ V during planning horizon,

0 otherwise

The integer valued bookkeeping variables zv represent the number of patient visits that nurse

v completes over the planning horizon; zv =
∑
d∈D

∑
n∈N

ydnv for each nurse v ∈ V .

4.2 Objectives

To study the tradeoffs among cost-effectiveness, patient satisfaction, and nurse satisfaction, we

define the following five objectives:

• Transportation Cost:

min f1 = min
∑

(i,j)∈A

∑
v∈V

∑
d∈D

cijx
d
ijv

This objective represents the total travel cost of a solution.

• Nurse Consistency:

min f2 = min
∑
v∈V

∑
n∈N

ynv
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This objective represents the total number of different nurses seen by all patients.

• Balanced Workload:

min f3 = min
∑
v∈V

∑
u∈V :u>v

|zv − zu|

This objective represents the sum of pairwise differences in total nurse workloads over the

planning horizon. Note that this objective is easily linearized.

4.3 Model constraints

The constraints defining our feasible region are as follows:

∑
o∈S

rdny
d
no ≥ rdn ∀n ∈ N, d ∈ D, (1)

∑
j∈N{v}

xdnjv ≤ rdn ∀n ∈ N, v ∈ V, d ∈ D, (2)

∑
j∈N{v}

xdnjv = ydnv ∀n ∈ N, v ∈ V, d ∈ D, (3)

∑
j∈N{v}

xdvjv ≤ 1 ∀d ∈ D, v ∈ V, (4)

∑
j∈N{v}

xdijv =
∑

j∈N{v}

xdjiv ∀i ∈ N{v}, v ∈ V, d ∈ D, (5)

ydnv ≤ ynv ∀n ∈ N, d ∈ D, v ∈ V, (6)

ynv ≤
∑
d∈D

ydnv ∀n ∈ N, v ∈ V (7)

∑
v∈V

tvjx
d
vjv ≤ sdj ∀j ∈ N, d ∈ D, (8)

sdi + rdi + tij +M
∑
v∈V

xdijv ≤ sdj +M ∀i ∈ N, j ∈ N, d ∈ D, (9)

sdi + rdi + tinv +Mxdivv ≤ edv +M ∀v ∈ V, i ∈ N, d ∈ D, (10)

edv ≤ Q ∀v ∈ V, d ∈ D, (11)

zv =
∑
d∈D

∑
n∈N

ydnv ∀v ∈ V, (12)

∑
n∈N

ydnw ≤ L ∀o ∈ T, d ∈ D, (13)
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∑
o∈T

∑
d∈D

ydnw ≤ K ∀n ∈ N, (14)

∑
d∈D

∑
n∈N

ydno ≤ G ∀o ∈ T, (15)

xdijv ∈ {0, 1} ∀i, j ∈ N{v}, v ∈ V, d ∈ D, (16)

ydno ∈ {0, 1} ∀n ∈ N, o ∈ S, d ∈ D, (17)

ynv ∈ {0, 1} ∀n ∈ N, v ∈ V, d ∈ D, (18)

zv ∈ Z ∀v ∈ V, (19)

sdi ≥ 0 ∀i ∈ N, d ∈ D, (20)

edv ∈ [0, Q] ∀v ∈ V, d ∈ D, (21)

Constraints (1) ensure that customer i is serviced on any day service is requested, either by a

nurse or a device. Constraints (2) ensure that a patient is not visited on a given day unless its

demand for that day is nonzero. Constraints (3) connect the x and y variables. Constraints (4)

ensure that there is exactly one nurse per depot and that nurses do not visit depots which are not

their own. Constraints (5) ensure flow conservation through all nodes. Constraints (6) and (7)

relate the horizon-oriented nurse assignment variables, ynv, to the day-oriented variables ydnv. If a

patient n ∈ N is visited by nurse v ∈ V at least once during the time period, then ynv is set to 1,

otherwise, it is set to 0 if nurse v does not visit patient n. Note that there is no need for horizon-

oriented device assignment variables, since a device assignment does not contribute negatively to

the nurse consistency objective.

Constraints (8) help calculate the time sdi , when care for the first patient of the day for each

nurse begins. Constraints (9) ensure that the time, sdj , when care for patient j (other than the

first patient visited for the day) may begin is based on the time, sdi , that patient i’s care began,

the time required to care for this patient, rdi , and the time required to travel between the two

patients, tij . Constraints (10) calculate the time at which nurse v can end their day based on

the last patient they saw that day and (11) ensure that the length of nurse v’s work day is less

than Q. These constraints, taken together, prevent subtours by ensuring that the start times of

patient care are increasing for each successive patient of a nurse’s route. Constraints (12) link

the bookkeeping variables zv, v ∈ V to the horizon-oriented nurse assignment variables. Although
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the zv, v ∈ V variables are not technically necessary, conceptually they represent the total number

of patient visits assigned to nurse v over the planning horizon, and make the calculation of the

balanced workload objective more intuitive.

Constraints (13) enforce a daily capacity on each remote monitoring device, while (14) restricts

the number of each patient’s visits that may be served by a device visit. Constraints (15) enforce

a limit on the number of patient visits that may be assigned to a device over the planning horizon.

Assignments to the device incur no routing cost. The aforementioned objectives remain the same,

and thus patient assignment to a device may only improve objective values for all five objectives.

This seems reasonable, as we take as a given that devices will be used, and are most interested in

how their use affects the cost, patient satisfaction, and nurse satisfaction objectives.

Finally, constraints (16) and (17) define the day-oriented binary variables for assignment and

routing, constraints (18) define the associated horizon-oriented binary variables, constraints (19)

define the integer valued bookkeeping variables, and (20) and (21) define the continuous variables

for when patient care begins and a nurse’s day ends respectively.

5 Methodology

We first attempted to solve the five replications of an instance of realistic size optimally with respect

to each of the three objectives (this instance is detailed later in Section 6). We used Cplex via

Ampl with a five hour runtime limit for each of these five replications for each of the cost, nurse

consistency, and balanced workload objectives. In all fifteen combinations of replication number

and objective, Cplex failed to find a feasible solution, and we observed anecdotally that the linear

relaxation of our problem took around thirty seconds to run to optimality. This is not surprising,

since the generic vehicle routing problem, an NP -hard problem, is a special case of our problem,

and the size of the instance style is relatively large. Since generating the efficient frontier would

involve optimizing multiple times over the feasible set, we chose to pursue a heuristic approach to

approximate the efficient frontier.
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5.1 MOAMP

We here detail a solution approach for approximating the efficient frontier using our three objectives:

total routing cost, nurse consistency, and balanced workload. We model our multiobjective heuristic

solution approach after that of Caballero et al. [2007] (hereafter referred to as MOAMP, as it is

known in the literature). The authors describe an algorithm based on two phases of Tabu searches.

The first phase consists of a linked series of Tabu searches, where each of n single objectives is

minimized in turn, and the first objective is then minimized a second time. At each iteration

of each of these n + 1 Tabu searches, the current solution is checked against the set of efficient

points, which is updated as new nondominated points are found. This approach is based on the

premise that, in general, nondominated solutions may be found within a neighborhood or reasonable

neighborhood search of one another. The second phase then involves a series of Tabu searches which

seek to find compromise points that perform reasonably well with respect to all objectives. At each

Tabu search, we randomly generate normalized weights for the objectives, and the weighted sum

of the objectives normalized over their range in the current nondominated set is minimized, while

new nondominated solutions are added to the nondominated list as before. The number of Tabu

searches carried out in the second phase is determined by an input parameter that specifies the

number of searches that may be undertaken without any change in the efficient set.

Figure 2 shows an abstracted depiction of this two-phase process. The first phase is illustrated

with solid arrows, as the heuristic attempts to optimize the three objectives individually, and then

returns to optimize the first objective again, completing the cycle. The second phase is shown

with dotted arrows, where a series of linked Tabu searches are carried out to identify compromise

solutions. Figure 3 shows the nondominated points collected during this two-phase method. As

the search moves from one point (representing the best found solution with respect to the objective

currently being optimized) to another, each solution along the way is checked against the nondom-

inated set. Figure 3 shows that not only are the best found solutions for individual and weighted

sums of objectives added to the approximation set, but also many of the solutions found along the

way to optimizing the next objective. This entire two-phase process may be carried out multiple

times, although the authors only complete one cycle in their implementation.
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Figure 2: Linked Tabu searches

Figure 3: Adding nondominated points

5.2 MOAMP advantages

We chose to use this particular metaheuristic approach for several reasons. First, it has the advan-

tage of being easy to follow and having a clear implementation strategy. It is also general enough to

be used with multiple objectives, and requires only the design of a Tabu search capable of making

the appropriate neighborhood moves. MOAMP is general enough to be applied to any problem

that may be reasonably solved in the single objective using a Tabu search - it does not require any
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special problem structure (as in Pacheco and Marti [2006], where one integer-valued objective may

be used as an input to the solution procedure). In our case, this means that after implementing

the initial Tabu strategy for the three chosen objectives, the heuristic may be expanded at a later

time to include additional time-related objectives. Additionally, Caballero et al. [2007] and Garćıa

et al. [2011] achieved impressive results that either exceeded the results of previous methods or

achieved results of similar quality in less computational time on a wide variety of problem types.

They demonstrate that this solution procedure performs well on a variety of multiobjective combi-

natorial optimization problems, including biobjective knapsack, assignment, set packing, location

routing, and problems involving the optimizing of both routes and inventory levels.

The MOAMP solution approach is also attractive because it is based on a Tabu search heuristic

framework. There is more room to contribute to the multiobjective combinatorial optimization

problem heuristic literature in this area, as opposed to an evolutionary approach which has been

well-studied in the multiobjective setting (Jozefowiez et al. [2008]). For the consistent vehicle rout-

ing problems detailed in Section 3.1, variable neighborhood searches have also been successfully

used in Groër et al. [2009], Smilowitz et al. [2009], Steeg [2008] and MacDonald et al. [2009] as a

means of exploring the single (or weighted) objective versions of the problem. It is therefore natural

to extend this methodology to the multiobjective consistent vehicle routing problem. As compared

to other multiobjective Tabu search procedures, MOAMP has the potential to be more computa-

tionally efficient, as it requires moving only a single solution through improving neighborhoods of

the feasible set to find nondominated solutions, in contrast with other approaches which involve

the movement of a set of several solutions through the feasible space (Hansen [1997]).

5.3 Neighborhood moves

Our neighborhood moves involve the movement of patients among both nurse and device routes.

A given solution to our home health scheduling and routing problem has a set of nurse and device

routes for each day of the planning horizon. Each day, each nurse’s route contains an ordered list

of patient locations that are to be visited on the given day. Device routes are not physical routes

that incur any travel cost, but instead represent the set of patients assigned to a given device on a

given day. In our instances, devices may only replace one visit for up to one patient over the course

of the planning horizon, as a result, most of the device routes for a given day are empty.
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We establish two move types often used in vehicle routing contexts: remove-and-reinserts and

swaps. Remove-and-reinserts involve removing a patient from either a nurse or device route and

placing it in a new place in the set of nurse/device routes. We allow patients to be reinserted in

either their original, or a new, route as long as the patient is not placed in the exact position from

which it was removed. Swaps occur when two chosen patients are removed from their respective

places in the route set and replaced in the original place of the other patient. These swap moves

defined in our setting require that the the two patients are from different nurse/device routes,

since the rearrangement of patients within a route may be achieved using the remove-and-reinsert

operator.

5.4 Our implementation

Instead of examining all possible remove-and-reinsert and swap moves at each iteration of the

algorithm, we attempt to take advantage of the underlying problem structure to develop move

strategies well-suited to improve each of our three objectives: cost, nurse consistency, and balanced

workload. In Phase I, where we search for the optimal of each objective in turn, the algorithm

exclusively uses the objective move strategy of the current objective to be optimized. In Phase II,

where we seek compromise solutions, the algorithm chooses randomly among the three strategies

with an equal probability of selection.

5.4.1 Cost move strategy

In the cost move strategy, a list of all the arcs used in all days of the planning horizon for the set of

current routes is maintained, along with the associated arc cost. At each iteration, this list is sorted

based on increasing arc cost. One arc is chosen at random in the most costly α percent of arcs. The

patient from whom this arc emanates is selected, as is one of either the remove-and-reinsert or swap

moves (the move is selected randomly with equal probability). All possible remove-and-reinserts or

swaps involving this patient are evaluated, and the feasible move resulting in the minimal objective

value is taken. The arc list is then updated by removing arcs present only in the previous route

set and adding new arcs resulting from the recent remove-and-reinsert or swap, and the process is

repeated.

More formally, suppose arc (i, j) traversed on day d is chosen from the sorted arc list. Then,
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patient i is removed from between locations l and k in its route on day d and the algorithm

randomly chooses between a remove-and-reinsert or a swap move. If remove-and-reinsert is chosen,

then all possible reinsertions of patient i in all feasible places in all routes are evaluated, and the

one resulting in the best objective value is selected and implemented. If patient i is reinserted in

a nurse route between locations g and h, then arcs (l, i), (i, k), and (g, h) are removed, while arcs

(l, k), (g, i), and (i, h) are added to the arc list. There are no arcs associated with device routes,

so if i is reinserted in a device route, then only arcs (l, i) and (i, k) are removed, and only arc

(l, k) is added to the arc list. If a swap move is chosen, then all possible swaps involving patient

i are evaluated, and the best is taken. Assuming patient i is swapped with patient p, the arc list

updates are those that correspond to patient i being removed and reinserted in patient p’s place,

and patient p being removed and reinserted in patient i’s place. The arc list must be updated in

this way at each move of the Tabu search, regardless of the move strategy used.

5.4.2 Nurse consistency move strategy

In the move strategy motivated by the nurse consistency objective, a list of patients is maintained

throughout the algorithm. Each patient is associated with their individual nurse consistency score

(recall that this score must be at least 1 and is bounded above by either the number of visits that

particular patient requires over the course of the planning horizon, or the total number of nurses,

whichever is smaller). As in the cost strategy, this list is sorted based on increasing (less desirable)

nurse consistency scores, and one patient, say patient j, is chosen at random within the top β

percent of this list. The nurse route and day to be involved in the move are chosen based on their

incremental effect on total nurse consistency score, that is, the nurse will be chosen that visits the

given patient the fewest number of times over the planning horizon. For example, if nurse i visits

patient j only one time over the planning horizon, moving patient j to another nurse that already

visits the patient on a different day will improve the total nurse consistency objective. Once the

patient, nurse, and day have been chosen, a remove-and-reinsert or swap move is chosen randomly,

with total nurse consistency as the determining objective. If remove-and-reinsert is chosen, then

only patient j will require an update in the patient list. Patient j’s nurse consistency score in

the patient list is decremented if the new solution requires one less nurse to visit patient j over

the planning horizon, and incremented if one new nurse is added to the set of nurses that visit
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patient j. If a swap move takes place, the update process occurs both with respect to patient j,

and with respect to the other swapped patient, patient p. Visits from a device do not contribute

to an individual patient’s nurse consistency score. As with the arc list, the patient list must be

updated after every iteration of the Tabu search.

5.4.3 Balanced workload move strategy

In the balanced workload move strategy, a list of all nurses is maintained, along with their respective

number of assigned appointments over the entire course of the planning period. This list is sorted at

each iteration, and the nurse with the most assigned appointments is chosen, say nurse k. For that

nurse, a day in the planning horizon is chosen randomly; the probability of choosing each day is

proportional to the number of patients the nurse visits that day. Once the day is selected, a patient

is chosen randomly from the nurse’s route that day and is removed from the route and replaced in

a new nurse’s route so to minimize the balanced workload objective (note that a swap would not

change the balanced workload objective value). Nurse k’s balanced workload score, or number of

assigned appointments, is decremented each time a remove-and-reinsert is made. If the patient is

reinserted in another nurse route then that nurse’s balanced workload score is incremented. Swaps

do not affect any nurse’s balanced workload score.

5.4.4 Device moves

At predetermined intervals in the Tabu search, a device is randomly chosen and the patient assigned

to it is removed from the device route and reinserted in a nurse route. This is done to introduce

diversity in the search. While swapping a device patient with a patient in a nurse route may improve

the overall objective value, a neighborhood move that merely removes a patient from a device and

reinserts the patient in a nurse route would very rarely be improving (only possibly in the case of

the balanced workload objective), and is very rarely selected in cost and nurse consistency move

strategies. Forcing the removal of a patient from a device route creates the opportunity for other

patients to be assigned to the newly open device, or even for the same patient to be assigned to

the device on a different day.

27



5.4.5 Tabu definition

Once a remove-and-reinsert or swap neighborhood move has been made, the reverse move may not

be implemented for a defined number of Tabu search iterations. Researchers have used various

definitions of reverse moves in the context of vehicle routing problems, but we adopt a commonly

used definition (Cordeau et al. [2001], Smilowitz et al. [2009], Pacheco and Marti [2006]) that

associates reverse moves with moves that place the patient anywhere in its original route. At

the conclusion of a remove-and-reinsert, the recently moved patient, along with its previous care

provider (be it nurse or device), and the day of the planning horizon this move took place, are

added to the tabu list. The patient then may not be moved back to its previous care provider for

care on that same day of the planning horizon (although it may be moved to that care provider’s

route a different day of the planning period) while it remains on the tabu list. At the conclusion

of a swap move, two elements are added to the tabu list, one preventing each patient from being

returned to their previous route on the given day.

5.5 Assessing solution quality

In order to assess solution quality, and to choose an appropriate set of heuristic parameters for use

in running all twelve of our instance styles, we looked at both the hypervolume metric and lower

bounds on the best found solutions for some of the individual objectives.

5.5.1 Hypervolume metric

Hypervolume is a common metric used to assess the quality of an approximated efficient set found

by a multiobjective optimization heuristic scheme. It requires the user to choose a nonideal point in

objective space that has the property that each component is greater than the maximum individual

objective value that may be achieved within the feasible set of solutions (for a minimization prob-

lem). For a problem with n objectives, the hypervolume metric measures the n-dimensional volume

of the set of solutions dominated by an approximated efficient set in objective space and bounded

by this nonideal point. An illustration of this for a minimization problem with two objectives is

given in Figure 4, where the area of the shaded region gives the hypervolume measurement of the

set of solutions dominated by the approximation set {z1, z2, z3, z4}. Since the hypervolume metric
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measures the size of objective space dominated by the efficient set approximation, the approxi-

mation with the greater hypervolume measurement is taken to be the best approximation when

multiple approximations are compared. Hypervolume has several nice properties that make it a

natural choice for use in comparing the quality of two different efficient set approximations.

Figure 4: Hypervolume example

𝑁𝑜𝑛𝑖𝑑𝑒𝑎𝑙  
𝑃𝑜𝑖𝑛𝑡 

𝑧1 
𝑧2 

𝑧3 

𝑧4 

Advantages of using hypervolume metric The most useful property of the hypervolume

metric is that it is the only known unary quality measure (that is, its value may be calculated for

any approximation set independent of any other set) that can indicate that one approximation set

is not worse than another (Zitzler et al. [2003]). Put another way, the hypervolume metric has the

property that if set A dominates set B, then the hypervolume metric associated with set A will be

greater than that associated with set B. Set A is said to dominate set B if every solution in B is

either in A or is dominated by a solution in A.

This is particularly interesting in the context of our MOAMP heuristic solution approach to

approximate the efficient frontier. Since the current approximation set will dominate any previous

approximation set at any point in the heuristic run, the hypervolume metric will monotonically
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increase as the algorithm proceeds. Because the hypervolume metric assigns a scalar value to

each approximation set, we may use the sequence of increasing hypervolume measurements to

assess the relative improvement to the approximation set over various iterations of our MOAMP

implementation. Put simply, it would be reasonable to allow the heuristic implementation to run

until the hypervolume metric seems to converge; halting the search process while each iteration

still produces marked improvements in that metric would be premature. This is especially true in

light of the second useful property of hypervolume: the metric will be maximized if and only if

the approximation set is (exactly) the Pareto optimal set (Fleischer [2003]). This has motivated

some researchers to use maximization of hypervolume as a guiding strategy in heuristic solution

approaches (Emmerich et al. [2005], Bradstreet et al. [2006]).

Calculating hypervolume Unfortunately, there does not exist an algorithm that is capable of

calculating hypervolume efficiently. While some methods have been developed that run relatively

quickly in practice, all such methods are exponential in either number of solutions in the input

approximation set, or number of objectives in the worst case (While et al. [2006]). We used one

such method known as HSO, or the Hypervolume by Slicing Objectives algorithm, to find the

hypervolume associated with our various approximation sets. We then used this metric to assess

the effectiveness of various choices of parameters for our MOAMP implementation (see Section 7).

HSO works by iterating through each objective, and making slices in the set dominated by

the approximation set with respect to the current objective: each slice then represents a section

of hypervolume in the dimension of the remaining objectives. These slices are then again sliced

with respect to the next objective, in an iterative fashion. This process partitions the points in

the approximation set based on slices, and retains the weight associated with each slice as cuts

are made in more objectives. The result is a list of one dimensional slices, each with a weight

that represents the cumulative multiple of volume in the previously processed objectives. The total

sum of all one dimensional objective values multiplied by their weights gives the final hypervolume

measurement. The algorithm we implemented for this process, developed and detailed in While

et al. [2006] is given in Figure 5 (graphic from While et al. [2006]).

30



Figure 5: HSO pseudocode

5.5.2 Comparison to lower bounds

A second way we assess the quality of our approximation sets is to compare the best solutions for

each individual objective to lower bounds on those objectives. While this measure does not provide

much information about the quality of the approximation set as a whole, it may indicate the quality

of some members of that set, as the true Pareto frontier would certainly include solutions yielding

the optimal values for each individual objective.
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Due to the nature of our home health routing and scheduling problem, we can easily generate

intuitive lower bounds for both nurse consistency and balanced workload objectives. Recall that

nurse consistency is the sum over all patients of the total number of different nurses that visit

the given patient over the planning horizon. Since we require that each patient receive at least

one in-person during the planning period, we may conclude that the best possible routing scenario

with respect to nurse consistency would correspond to each patient being visited by exactly one

unique nurse over the planning horizon. Due to constraints on workday length, and the specific

nature of the patient demand schedule, it may not be possible to achieve this in reality, but the

nurse consistency objective value will be bounded below by this ideal case. In other words, nurse

consistency will always be greater than or equal to the number of patients in the problem.

The balanced workload objective is calculated by summing the pairwise differences among all

nurses in total number of patient appointments served over the course of the planning horizon.

The ideal scenario, in terms of the balanced workload objective, is that all nurses perform exactly

the same total number of visits over the planning period. In this case, all pairwise differences in

total number of visits for any two nurses will be zero, as will the total balanced workload objective.

Therefore, the optimal value of the balanced workload objective will be bounded below by zero for

all instance types.

6 Realistic instance development

We developed twelve instance styles that use one each of two geographic region sizes, three patient

location distributions, and two patient visit distributions. Each instance style has five replications

using the chosen parameters. These instances were developed to be as realistic as possible with

regard to all possible parameters. Information from National Association for Home Care and

Hospice [2010] was used to determine nurse staffing levels and daily average nurse productivity,

while the Medicare.gov [2010] database provided information for all agencies regarding their service

areas. We also used data available from U.S. Census Bureau [2012] to find the area in square miles

of various agency service areas, and the IRS [2011] for information regarding standard mileage

reimbursement rates.
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6.1 Common parameters

Each instance style has several parameters in common. We assume a ten day planning horizon for

all styles. Although home health patients often receive care for at least 60 days, the schedule of each

individual patient’s needed visits typically repeats itself. Since we are studying the deterministic

home health scheduling and routing problem, where all patient demand is known in advance, we can

assume that the complete schedule of all needed patient visits also has this property. Two weeks

is therefore a reasonable amount of time over which to create a set of nurse routes to be repeated

for both cost and nurse consistency objectives, as well as the set of patient visit assignments to

create balanced schedules for nurses. We assume that the agency has ten devices which may each

be assigned to exactly one patient over the planning horizon, and which may replace exactly one

in-person visit for that patient over the ten day period. Each nurse is given a full workday’s length

of nine hours in which to complete all patient visits for the day and return home. All instance styles

are constructed assuming that the agency employs nine full-time nurses (National Association for

Home Care and Hospice [2010]).

Table 2: Instance parameters

Parameter Description Value

D number of days in planning horizon 10
T number of remote monitoring devices 10
K planning period device visit limit per patient 1
Q workday length limit (minutes) 540
V number of nurses 9

6.2 Instance style dimensions

We define the following geographic region sizes, patient location distributions, and patient visit

distribution types.

Geographic region sizes We used two geographic regions sizes, which we denote as large and

small. Assuming that the service area of home health agencies may be represented with a square,

we used data available from the Home Health Compare database (Medicare.gov [2010]) to find the

list of zip codes serviced by each home health agency and cross-referenced this with the zip code
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tabulation area data available from the U.S. Census Bureau [2012]. We used this data to estimate

the size of service area in total square miles for each agency and took the 25th and 75th percentile

service area sizes in the list of all calculated agency service areas for our small and large geographic

regions, respectively. These correspond to a small geographic region that is 17 miles square, and a

large region that is 37 miles square.

Patient location distributions Within each of these two sizes of geographic service areas,

we chose to generate instances with three types of patient location distribution styles: uniformly

distributed (Figure 6), clustered (Figure 7), and clustered with uniformly distributed (Figure 8).

In the uniformly distributed style, all patient and nurse home locations are generated randomly

throughout the square service area from a continuous uniform distribution over both coordinates.

In the clustered style, three to five seed locations were chosen (depending on the size of the service

area), and patient and nurse home locations were generated randomly within a given radius of

those seed locations, resulting in three to five “clusters” of locations. Finally, the clustered with

uniformly distributed style generated half of patient and nurse locations within clusters, and the

other half uniformly randomly throughout the service area. Patient and nurse locations are not a

direct input to our model; instead, these locations were used to create both travel cost and travel

time matrices, assuming Euclidean distance between any two points, costs equal to the IRS mileage

reimbursement rate (IRS [2011]) for each trip, and travel times that assume travel will occur at 35

miles per hour on average.
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Figure 6: Example uniform patient location distribution for small geographic region
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Figure 7: Example clustered patient location distribution for small geographic region
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Figure 8: Example clustered with uniform patient location distribution for small geographic region

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

Patients

Nurses

Patient visit distributions To create our two different patient demand schedules, we developed

two sets of patient visit distributions. We assume that over the course of the ten day planning

horizon that there will be patients requiring anywhere from two to eight visits. The first style is

based on the assumption that most patients will require two to three visits per week, or around five

visits over the planning horizon, while the distribution of the second style corresponds to roughly

equal numbers of patients requiring each of 2, 3, . . . , 8 visits over the ten days. More formally,

let pi be the proportion of the N total patients that require exactly i visits over the course of

the planning horizon, where i = 0, 1, 2, . . . , 10. The two patient visit distributions used for our

instances are given in Table 3, along with the associated number of patients that correspond to

each distribution.

Table 3: Patient visit distributions

p2 p3 p4 p5 p6 p7 p8 N

Distribution 1 0.05 0.125 0.125 0.4 0.125 0.125 0.05 90
Distribution 2 0.14 0.14 0.14 0.16 0.14 0.14 0.14 92
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6.3 Schedule generation

In addition to cost and travel time matrices, the third model input is a complete schedule of

patient demand over the planning horizon. All patient visits are assumed to take 45 minutes to

complete. To generate a schedule of required patient visits from the patient visit distributions, we

develop a simple algorithm capable of making such assignments. Data suggests that there should

be enough patients that require visits each day that each nurse may be assigned 5 patient visits

per day, on average (National Association for Home Care and Hospice [2010]). If each home health

agency employs 9 full-time nurses on average, this corresponds to approximately 450 total needed

patient visits over a ten day period. The algorithm first uses the given patient visit distributions to

calculate N , the total number of patients in the model (note that some rounding may occur if the

patient visit distributions do not divide into the total number of patient visits). Note that different

patient visit distributions will correspond to different total numbers of patients in the instance.

For example, if all patients in the instance style require 8 visits over the planning horizon, there

will be fewer total patients needed to create a schedule with an average of 5 patient visits per

nurse per day than if all patients in the instance style require 2 visits over the planning horizon.

Starting with the patients that require the most visits and ending with those that require the fewest

visits over the planning horizon, the algorithm then randomly chooses which days the patient will

require visits (recall the number of days the patient will be visited is determined by the patient visit

distribution). Each day has a maximum number of patient visits that may be assigned to it, based

on the average number of needed patient visits per day (e.g., in our instances, each day should

have 45 patient visits per day, so this maximum was allowed to be 48 for each day). The result is

a schedule with approximately 45 patient visits assigned to each day, and relative proportions of

patients that match the given patient visit distribution requirements.
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Table 4: Instance styles

Code Patient Location Distribution Geographic Region Size Patient Visit Distribution

US1 Uniform Small Distribution 1
US2 Uniform Small Distribution 2
UL1 Uniform Large Distribution 1
UL2 Uniform Large Distribution 2
CS1 Clustered Small Distribution 1
CS2 Clustered Small Distribution 2
CL1 Clustered Large Distribution 1
CL2 Clustered Large Distribution 2
UCS1 Uniform and Clustered Small Distribution 1
UCS2 Uniform and Clustered Small Distribution 2
UCL1 Uniform and Clustered Large Distribution 1
UCL2 Uniform and Clustered Large Distribution 2

7 Heuristic tuning and validation

The three heuristic parameters we are interested in optimizing are Tabu tenure, or number of

iterations that each reverse move is prohibited, the Tabu stopping condition, or the maximum

number of iterations that are allowed to occur without improvement to the best known objective

value of the particular Tabu search, and N , the maximum number of Tabu searches allowed to occur

in Phase II of the algorithm without any change to the nondominated set. To promote diversity

in the neighborhood search, we set α to 0.2 and β to 0.25 (see Sections 5.4.1 and 5.4.2). We also

tune the heuristic using a relaxed version of the instance styles, that allows patients to be assigned

to multiple devices over the course of the ten day planning horizon. We may in the future wish to

run instances with a more abstract concept of devices that allows for the assignment of patients to

multiple devices or to take the place of multiple in-person visits. Since this more relaxed version

corresponds to a combinatorially more complex problem, if the heuristic converges using a given

set of parameters for this problem, it should also converge for the restricted version.

7.1 Heuristic parameter tuning

To assess the selection of heuristic parameter values, we examined their effect on runtime, hyper-

volume, and best found solutions with respect to each of the objective values. These experiments

were carried out using two of our twelve instances styles: CL2 and UL2 (see Table 4). For each of
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the two instance styles, we compared the results of eight heuristic runs resulting from each possible

combination of two Tabu tenure lengths (5 and 25) two Tabu stopping conditions (300 and 500)

and two values for N (35 and 50). The averaged results over each instance style’s five replications

are given in Tables 5 and 6. For example, when the five replications of UL2 are run with a Tabu

tenure of 25, a Tabu stopping condition of 500, and an N value of 35, the average runtime expe-

rienced is 2742.4 seconds, the average number of Tabu searches carried out in Phase II is 347.6,

the average of the hypervolume metrics is 5.714006E+09, an average of 239.2 solutions were in the

final approximation set, and the average of best found objective values over the five replications

are 1672.07, 101, and 0, respectively.

Table 5: UL2 Heuristic parameter experiments

Tabu Tabu Stop N Runtime No. Phase II Hypervolume Approx. Best Best Best
Tenure Condition (seconds) Searches Set Size Cost NC BW

25 300 35 1170 230 5.634168E+09 188 1722.14 103.6 0
50 1841.6 370 5.686672E+09 207.6 1706.5 102 0

500 35 2742.4 347.6 5.714006E+09 239.2 1672.07 101 0
50 3797.4 492 5.702654E+09 245 1656.55 103 0

5 300 35 921 167.4 5.774850E+09 202 1634.15 100.8 0
50 1520.6 277.8 5.772374E+09 223.6 1631.82 101.8 0

500 35 1640.8 196.8 5.803192E+09 249.4 1595.3 99.8 0
50 3150.6 365 5.816430E+09 257.4 1578.23 100.6 0

Table 6: CL2 Heuristic parameter experiments

Tabu Tabu Stop N Runtime No. Phase II Hypervolume Approx. Best Best Best
Tenure Condition (seconds) Searches Set Size Cost NC BW

25 300 35 1638.8 293.4 6.252764E+09 231.2 870.91 102.6 0
50 3088 648.6 6.239812E+09 207.6 898.33 104.2 0

500 35 2814.6 357.8 6.303204E+09 251.4 825 101.4 0
50 3370 424.8 6.289336E+09 265.8 830.33 101.2 0

5 300 35 1320 255.8 6.391530E+09 246.2 796.63 100 0
50 2664.6 502.2 6.388714E+09 283.2 820.73 100.2 0

500 35 2649.8 308 6.402850E+09 298.6 768.34 100.6 0
50 4752.4 596.8 6.460438E+09 324.6 754.83 98.8 0

It is clear in that in terms of average runtime for comparable Tabu stopping conditions and N

values, averaged hypervolume metrics, and averaged best found solutions for the three objectives,

that the shorter Tabu tenure yields better results than the longer Tabu tenure for both UL2 and

CL2 instance styles. We therefore conclude that the heuristic yields better results with the shorter

Tabu tenure, and we use a Tabu tenure length of 5 when we run the full set of twelve instance
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styles. Deciding the appropriate values of the Tabu stopping condition and N is not quite as

straightforward. It is clear from Tables 5 and 6 that, assuming a short Tabu tenure, a Tabu

stopping condition of 500 with an N value of 50 results in the best average hypervolume metric,

and best average individual objective values (with the exception of nurse consistency for the UL2

instance set) of the four combinations of heuristic parameters. However, this improved performance

comes at the expense of significant increases in average runtime for both instance styles. Tables 7

and 8 show the tradeoff in hypervolume improvement versus increase in average runtimes for the

four combinations of heuristic parameters assuming a short Tabu tenure. The percent improvement

in hypervolume and the runtime multipliers are calculated from the base case of a Tabu stopping

condition of 300 and an N of 35, so Table 8 illustrates that for the CL2 instance set, a Tabu

stopping condition of 500 with an N of 35 results in approximation sets that have 0.177% larger

hypervolume on average, but that take 2.01 times as long to run on average. Even when the runtime

is almost quadrupled, average hypervolume improves a mere 1.078%, on average. Since the base

case runs of UL2 and CL2 replications already average 15 to 20 minutes in runtime, respectively,

we chose to use these parameters (Tabu stopping condition of 300 and N of 35) to run the full set

of instances.

Table 7: UL2 Hypervolume improvement versus runtime increase

Tabu Stop N Runtime Hypervolume Percent Increase Runtime
Condition (seconds) in Hypervolume Multiplier

300 35 921 5.774850E+09
50 1520.6 5.772374E+09 -0.0429% 1.65

500 35 1640.8 5.803192E+09 0.491% 1.78
50 3150.6 5.816430E+09 0.720% 3.42

Table 8: CL2 Hypervolume improvement versus runtime increase

Tabu Stop N Runtime Hypervolume Percent Increase Runtime
Condition (seconds) in Hypervolume Multiplier

300 35 1320 6.391530E+09
50 2664.6 6.388714E+09 -0.0441% 2.02

500 35 2649.8 6.402850E+09 0.177% 2.01
50 4752.4 6.460438E+09 1.078% 3.6

40



7.2 Heuristic convergence and comparison to lower bounds

As noted in Section 5.5.1, we can be more confident about our heuristic implementation if the

hypervolume metric converges before the heuristic run comes to an end. To evaluate this, we graph

the hypervolume metric as a function of the the number of Tabu searches that have been carried out

for some example heuristic runs with a Tabu tenure length of 5. Refer to Figures 9 and 10 depicting

a single replication from the UL2 instance set, and Figures 11 and 12 depicting a single replication

from the CL2 instance set, where hypervolume is first calculated after the tabu search corresponding

to the first objective, travel cost, in Phase I of the heuristic. It increases dramatically through the

tabu searches corresponding to other objectives in Phase I of the heuristic, then converges after

approximately 25 to 100 Phase II tabu searches, depending on choice of Tabu stopping condition

and N .

Figure 9: Example replication of UL2
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Figure 10: Example replication of UL2
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Figure 11: Example replication of CL2
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Figure 12: Example replication of CL2

3.81E+09

4.31E+09

4.81E+09

5.31E+09

5.81E+09

6.31E+09

6.81E+09

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0
9

1
2
1

1
3
3

1
4
5

1
5
7

1
6
9

1
8
1

1
9
3

2
0
5

2
1
7

2
2
9

2
4
1

2
5
3

Tabu Stop Condition = 300; N = 35 

Hypervolume

We also compare the quality of the averaged best found solutions with respect to each of

the nurse consistency and balanced workload objectives with the lower bounds discussed in Section

5.5.2. We do not make any comparison regarding the total cost objective. Tables 9 and 10 show this

comparison across replications of UL2 and CL2 for the four combinations of heuristic parameters.

Since all replications of both UL2 and CL2 achieve the lower bound for the balanced workload

objective with any heuristic parameter setting, we know that the best solutions found with respect

to that objective are in fact optimal for balanced workload. While the best found nurse consistency

solutions do not achieve their lower bounds, they do come within 11% of those bounds over all

heuristic parameter settings. As an example, for the set of UL2 replications run with a Tabu

stopping condition of 500 and N of 35, the best found nurse consistency solutions are 8.48% greater

on average than the lower bound of 92 for those instances. Since we do not know the optimal nurse

consistency objective values for instances of this size, we may only conclude from this comparison

that on average, the optimality gap for this set of replications is no worse than 8.48%.
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Table 9: UL2 comparison to lower bounds

Stopping Averaged Best Lower Bound
Condition N Nurse Consistency Nurse Consistency Gap

300 35 100.8 92 9.57%
300 50 101.8 92 10.65%
500 35 99.8 92 8.48%
500 50 100.6 92 9.35%

Stopping Averaged Best Lower Bound
Condition N Balanced Workload Balanced Workload Gap

300 35 0 0 0.0%
300 50 0 0 0.0%
500 35 0 0 0.0%
500 50 0 0 0.0%

Table 10: CL2 comparison to lower bounds

Stopping Averaged Best Lower Bound
Condition N Nurse Consistency Nurse Consistency Gap

300 35 100 92 8.70%
300 50 100.2 92 8.91%
500 35 100.6 92 9.35%
500 50 99.8 92 8.48%

Stopping Averaged Best Lower Bound
Condition N Balanced Workload Balanced Workload Gap

300 35 0 0 0.0%
300 50 0 0 0.0%
500 35 0 0 0.0%
500 50 0 0 0.0%

8 Results

We present the results of our twelve instance styles, including an analysis of the tradeoff among

objectives and managerial insights regarding the assignment of devices to patients.
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8.1 General results

We used the heuristic described in Section 7, with a Tabu tenure of 5, Tabu stopping condition

of 300, and N of 35, to run 5 replications of each of our twelve instance styles detailed in Section

6. The average runtime, number of Tabu searches in Phase II, number of nondominated solutions,

hypervolume, and best found objective values are given in Table 11 for each instance style. The

first thing to note is that the heuristic is able to find optimal solutions with respect to the balanced

workload objective for all replications of all twelve instance styles. Table 12 shows the gap be-

tween the average best found solutions and their respective lower bounds for the nurse consistency

objective. The standard deviation in the hypervolume metric across the five replications for each

instance style is given in Table 13.

Table 11: Averaged results of all instance styles

Instance Average Average Approximation Average Average Average Average
Style Runtime Phase II It. Set Size Hypervolume Best Cost Best NC Best BW

UL1 1418.6 287.2 183.6 5.807318E+09 1662.06 98.8 0
UL2 1067.2 223 159.4 5.757016E+09 1669.94 101.2 0
US1 1290.2 283 201.2 6.517416E+09 725.62 97.2 0
US2 1253.4 236.4 219 6.393974E+09 777.72 99.8 0

CL1 1643.8 333.8 203.6 6.355052E+09 929.43 97.8 0
CL2 1875 410.6 243.8 6.342016E+09 869.99 100.8 0
CS1 2229.8 475.4 284.4 6.732122E+09 414.92 97.8 0
CS2 1787 369 332.6 6.676592E+09 436.09 98.8 0

UCL1 1245 247 223.2 6.025572E+09 1411.75 98.4 0
UCL2 1783.6 342.8 263.4 6.029044E+09 1316.48 101 0
UCS1 1242.4 243.4 272.4 6.549032E+09 628.71 98 0
UCS2 1497.4 294.6 239.2 6.530052E+09 643.83 99.4 0

45



Table 12: Best-case nurse consistency gap

Instance Average Lower
Style Best NC Bound Gap

UL1 98.8 90 9.78%
UL2 101.2 92 10.00%
US1 97.2 90 8.00%
US2 99.8 92 8.48%

CL1 97.8 90 8.67%
CL2 100.8 92 9.57%
CS1 97.8 90 8.67%
CS2 98.8 92 7.39%

UCL1 98.4 90 9.33%
UCL2 101 92 9.78%
UCS1 98 90 8.89%
UCS2 99.4 92 8.04%

Table 13: Variance in hypervolume metric

Instance Style Hypervolume Standard Deviation

UL1 8.138E+07
UL2 4.511E+07
US1 5.239E+07
US2 4.991E+07

CL1 2.065E+08
CL2 1.444E+08
CS1 8.548E+07
CS2 1.088E+08

RCL1 9.967E+07
RCL2 1.129E+08
RCS1 5.322E+07
RCS2 8.259E+07

The purpose of generating an approximated Pareto front is so that decision makers may choose

the solution that is most appropriate given their particular agency’s priorities. However, even

a high level analysis of the results presented in Table 11 show that the extent to which a home

health agency may achieve these various objectives of minimal cost, nurse consistency, and balanced

workload depends on the configuration of their service network. The instance styles developed in

Section 6 are twelve examples of possible configurations resulting from various service area sizes,
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patient location distributions, and patient visit distributions.

While it is likely intuitive that agencies with smaller service areas can experience much smaller

best-case total costs (and indeed is confirmed for small versus large service areas in the results

table above), it is interesting to note from Table 11 that patient location distribution also has a

significant effect on best-case total cost. For example, the average best-case cost for the uniformly

distributed instance set UL1 is 1662.06, while the best-case cost for the clustered set of instances,

CL1, is 929.43, almost a 45% decrease in cost simply as a result of the patients being clustered

in the service region as opposed to being uniformly distributed. Not surprisingly, the instance

style that combines these two patient distributions, UCL1, has a best-case average total cost of

1411.75, which falls between the averaged costs for the instance styles reflecting an only uniform

or only clustered patient location distribution. This trend holds for various patient distributions

controlling for both small and large geographic region size.

In addition to its obvious effect on cost, agency service area also seems to affect best-case nurse

consistency. For each combination of patient location distribution and patient visit distribution

style, the instance style with a smaller service region achieves better or equal average best-case

nurse consistency than the large service region style. As an example, the large service area with

uniform patient distribution style and patient visit distribution 1 (UL1) has an average nurse

consistency, 98.8, while the corresponding small service area instance set (US1) has better best-

case nurse consistency of 97.2. As can be seen in Table 12, this comparison between small and

large geographic areas holds for all instance sets, controlling for patient location and patient visit

distributions (the gap for UCL1 is 9.33%, while the gap for UCS1 is only 8.89%). This effect is

likely due to the reduced travel times among patients in instances with relatively small geographic

areas, which allows the nurses freedom to see more patients in a shorter period of time and more

likely to achieve nurse consistency. It is also worth noting that the best-case nurse consistency

scores appear to be better for some sets of instance styles with patient visit distribution style 1,

as can be seen in the comparison of CL1 with a nurse consistency of 97.8 to the nurse consistency

score of 100.8 for instance set CL2. In reality, instance styles with patient visit distribution 1 have

fewer patients than than those with distribution 2 (as detailed in Section 6). As shown in Table 12,

the best-case nurse consistency gap for instances with patient visit distribution 1 do not seem to

perform any better in comparison with their lower bound than those with patient visit distribution
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2.

Agency service area size and patient location distribution also seem to affect the variance in

hypervolume metric across the five replications of the various instance styles. Observe from Table

13 that controlling for patient location and patient visit distributions, the instance styles with

larger service regions have greater variability in hypervolume metric than do those with smaller

regions, as can be in seen the comparison of instance style CL1 with standard deviation 2.065E+08

with style CS1, which has a smaller standard deviation of 8.548E+07. This is likely because a

larger region size may contribute to a greater number of patient location and schedule options

than a smaller region size, thus increasing the variance in feasibility of various nurse routes (and

therefore variance in the approximation set) across the replications. The uniform patient location

distribution with patient visit distribution 1 styles are the exception to this trend. Note also that

when controlling for service area size and patient visit distribution, instance styles with uniformly

distributed patients have the least variability in hypervolume across the five replications, while the

clustered styles have the most variability, and the uniform with clustered styles fall between the

two. The increased variance in hypervolume metric for instance styles that involve the clustering

of some or all patients is likely due to the fact that for each style, there is at least one replication

in which at least one cluster does not contain a nurse. When all patient clusters contain a nurse,

the clustered instance styles may achieve better best found values for the individual objectives

(see Table 11), but replications where not all clusters contain nurses cannot perform as well with

respect to the various objectives. This necessarily drives down the hypervolume metric for these

replications, and increases variability across the instance style.

Figures 13, 14, and 15 depict examples of the three dimensional graph in objective space of the

approximation set generated by the heuristic procedure for three replications of the CS2 instance

style. These examples, which have an approximately similar shape in the solution space, may give

some indication as to the shape of the true efficient frontier for this instance style. They include

a number of compromise solutions, and a number of solutions in which near-optimal values for a

single objective are coupled with poor values for alternate objectives. For example, in Figure 13,

point (479.173, 129, 132) represents a compromise solution with relatively good objective values for

total cost, nurse consistency, and balanced workload. Alternatively, point (398.106, 228, 734) is a

solution with near-optimal total routing cost and poor nurse consistency and balanced workload.
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Figure 13: Approximation set from CS2 instance style
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Figure 14: Approximation set from CS2 instance style

400
600

800
Total Cost

100
120

140
160

180 Nurse Consistency

0

500

1000

Balanced Workload

49



Figure 15: Approximation set from CS2 instance style
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8.2 Compromise solutions

Decision makers are often interested in finding compromise solutions that perform relatively well in

all or multiple of the total cost, nurse consistency, and balanced workload objectives. We analyzed

the approximation sets of the five replications of our twelve instance styles to find the number and

quality of compromise solutions found by the heuristic. We defined compromise bins based on the

percent degradation allowed from the best found objective value, taken at 5% intervals for each of

the three objectives. Figures 16, 17, and 18 are histograms depicting the number of replications of

the sixty total replications solved by our heuristic that have at least one solution within each of the

compromise bins. For example, Figure 16 shows that only one replication of the sixty contained

a solution in the approximation set that was within 30% of the best found for cost, 15% of the

best found for nurse consistency, and 5% of the best found for balanced workload. The same figure

shows that no replications had a solution within 20% of best cost, 15% of best nurse consistency,

and 5% of best balanced workload. For each of the three histograms corresponding to balanced

workload objectives within 5%, 10%, and 15% of the best found, respectively, all sixty replications

had some solution within 50% of the best for both total cost and nurse consistency.

Note that increasing the allowed degradation of the balanced workload objective from 5% in

Figure 16 to 15% in Figure 18 does not appear to have a significant impact in compromise bin counts.

In fact, the overall shape of the histogram and the magnitudes of the compromise bins remain
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approximately the same as in Figures 16 and 17, where balanced workload is required to be closer

to its best found objective value. We may conclude that it is easier to achieve balanced workload in

compromise solutions than to simultaneously achieve low cost and good levels of nurse consistency.

Figure 18 shows that over half the replications contained some solution within 25% of the best

found for all three objectives. Therefore, we may conclude that using our solution methodology,

many agencies will be able to find nurse schedules and device assignments that perform relatively

well with respect to all of their total cost, nurse consistency, and balanced workload goals.

Figure 16: Compromise solution histogram (balanced workload 0.05)
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Figure 17: Compromise solution histogram (balanced workload 0.1)
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Figure 18: Compromise solution histogram (balanced workload 0.15)
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8.3 Device assignments insight

We are interested in providing insight into making device assignments for various instance styles.

To this end, we examined two replications, one each of the UL2 and CL2 instance styles. For each

replication, we first find for each patient in the instance replication the proportion of solutions in

the approximation set that make a device assignment to that patient. That is, for each patient we

have a measure, between 0 and 1, of the percent of nondominated solutions for which that patient

is assigned to a device. We then examine the top ten most frequently assigned device patients for

the replication to gain insight into the types of patient assignments that characterize the efficient

set approximation and hopefully result in good solutions with respect to the three objectives.

Figure 19 shows the set of patient and nurse locations for the example replication from the UL2

instance style, with the top ten patients most frequently assigned to devices in red. Most of the

device patients are clearly on the periphery of the agency service area, but those that are relatively

centrally located require either five to seven visits over the course of the planning horizon.
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Figure 19: UL2 device patients
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Figure 20 shows the set of patient and nurse locations for the example replication from the CL2

instance style, with the top ten patients most frequently assigned to devices in red. Observe that

the cluster in the upper left corner of the service region contains five of these ten most frequently

assigned patients, and that the cluster in the lower right corner of the region has another three.

It is not surprising that the cluster in the lower right corner contains so many device patients, as

only one nurse is located in that cluster, device assignments likely help ease the burden of fulfilling

patient demand without requiring many costly visits from nurses located in other clusters. Upon

analysis of the patient schedules for the various clusters, the reason for so many device assignments

in the upper left cluster also becomes clear. It so happens that the patients in that cluster tend

to require visits on the same days of the planning horizon, with an average of 11.4 required visits

per day. In fact, for three of the ten days of the planning period at least 14 visits are required for
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patients located in that cluster (well above the average 5 patient visits per nurse per day for the

two nurses located there). Contrast this with the cluster located in the lower left of the service

region, where an average of 6.6 visits are required per day, with a maximum demand of 9 visits on

days three and four. While nurses may serve patients located outside their cluster, it is reasonable

to assume that the best solutions, those found in the approximation set, minimize this behavior as

it drives up cost and takes travel time, reducing the likelihood of good nurse consistency.

Figure 20: CL2 device patients
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This analysis, based on two case studies, it does seems to indicate some preferred patient

assignment to device strategies when agencies are interested in achieving low cost, high nurse

consistency, and balanced workloads for their nurses. It suggests that agencies with patient location

distributions most resembling that of a uniform distribution should likely assign devices to patients

located on the geographic periphery of the service area (with farther distances to nurses), and/or
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to patients that require a relatively high number of visits over the planning horizon as compared

to other patients. For agencies with clustered patient location distributions, it seems important to

assess the unique attributes of each cluster, and assign devices to those patients who do not have

as many nurses located in their surrounding cluster, and/or to patients in clusters where patient

schedules happen to match frequently. We further investigate two of the hypotheses raised in

analysis of the example replications from the UL2 and CL2 instance styles: namely, that patients

with greater distances to the closest nurse will be assigned to a device more frequently, and that

more device assignments are made proportionally to patients requiring a greater number of visits

over the planning horizon.

8.3.1 Correlation of patient-to-nurse distance and device assignment

We test the first hypothesis by finding the correlation for the six large instance styles between the

distance from patients to their closest nurse and device assignment frequency. The data points,

represented by ordered pairs of distance and device assignment frequency for each patient, were

aggregated over replications for each instance style, and Figures 21 through 26 show the scatter

plots of minimum distance to a nurse versus device assignment frequency for all the patients of each

instance style. Note that there is a gap along the distance axis for both cluster instances (see Figures

23 and 24). This is because both clustered instance styles contain one or more replications in which

at least one cluster of patients does not contain a nurse. Table 14 shows the correlation coefficients

for each of the six instance styles; all six correlation coefficients are statistically significant using a

t-test, with p values of essentially zero. Not surprisingly, the correlation coefficients are greater for

uniformly distributed patient instance styles than for clustered patient styles, since most patients

in clustered styles are located very near a nurse. This was also illustrated in the CL2 case study

above, where distance from closest nurse did not seem to play as great a role in determining patient

device assignment as it did in the UL2 example replication.
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Figure 21: UL1 Nurse distance vs. device assignment frequency
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Figure 22: UL2 Nurse distance vs. device assignment frequency
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Figure 23: CL1 Nurse distance vs. device assignment frequency
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Figure 24: CL2 Nurse distance vs. device assignment frequency
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Figure 25: UCL1 Nurse distance vs. device assignment frequency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Device Assignment 
Frequency 

Distance to Closest Nurse (miles) 

Figure 26: UCL2 Nurse distance vs. device assignment frequency
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Table 14: Correlation coefficients

Instance Style Correlation Coefficient

UL1 0.473
UL2 0.422
CL1 0.337
CL2 0.238
UCL1 0.452
UCL2 0.352

8.3.2 Patient demand and device assignment

To investigate our hypothesis that patients with more frequent demand over the planning horizon

are proportionally more likely to be assigned to a device, we examine the frequency of device

assignment by patient visit type, where visit type is the number of visits required over the planning

period. The number of patients in each patient visit type is determined by the distributions

discussed in Section 6.2; for example, our instance styles of distribution 2 have approximately the

same number of patients in each patient visit type. We find the proportion of device assignments by

patient visit type for each of the six large instance styles. If the distribution of device assignments

by visit type is close to the distribution of patient types for each of distribution 1 and distribution

2, then we may conclude that patient visit type does not significantly affect device assignment. Let

Vi be visit type i, the set of patients requiring i visits during the planning horizon. Let Cj be the

number of solutions in the approximation set for which patient j was assigned to a device, T be the

number of devices available for assignment (10 for our instances), and A be the number of solutions

in the approximation set. Then proportion of device assignments to patient visit type i is found by

∑
j∈Vi

Cj

TA
.

Tables 15 and 16 show the proportion of device assignments by visit type averaged over the five

replications for instance styles of patient visit distribution 1 and 2, respectively.

While the device assignment proportions by visit type do not always exactly match the patient

distributions of the instance styles, they also do not seem to always be skewed towards the patients

with higher visit requirements. While we hypothesized that patients requiring more visits would

be more likely to be assigned devices, it is not clear from this analysis that this is always the
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case. Therefore, further investigation is needed to determine whether visit type should be used as

a criteria for device assignment in practice. It may instead be more appropriate to use visit type

in combination with location distribution or other demand characteristics as criteria for device

assignment.

Table 15: Distribution 1 device assignments by visit type

Patient Visit Type 2 3 4 5 6 7 8

Distribution 1 0.05 0.125 0.125 0.4 0.125 0.125 0.05
UL1 0.0431 0.1420 0.1203 0.3744 0.1262 0.1185 0.0692
CL1 0.0660 0.1166 0.1164 0.4416 0.1166 0.0811 0.0526
UCL1 0.0404 0.1404 0.1656 0.4606 0.0641 0.0773 0.0461

Table 16: Distribution 2 device assignments by visit type

Patient Visit Type 2 3 4 5 6 7 8

Distribution 2 0.14 0.14 0.14 0.16 0.14 0.14 0.14
UL2 0.1490 0.1085 0.1579 0.1305 0.1628 0.1223 0.1618
CL2 0.1399 0.1162 0.1225 0.1800 0.1562 0.1383 0.1439
UCL2 0.1258 0.1655 0.1977 0.2015 0.1171 0.1125 0.0760

9 Future research

We propose that future work focus on further assessment of the quality of solutions developed by

the heuristic, as well as the incorporation of time-related objectives.

9.1 Further heuristic validation

While our analysis supports our choice of heuristic and heuristic parameters, we would like to

compare the approximation set to the exact efficient frontier for instances of relatively small size.

One possibility is to create an enumerative approach that generates all possible feasible solutions

for a very small instance and then collects the nondominated solutions in a list. Another option

is to approximate the efficient set of the linear relaxation of our problem, as in Balachandran and

Gero [1985]. To pursue the latter option, some analysis regarding the quality of the lower bounds

elicited from the linear relaxation of our problem would be necessary to verify that generating the
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efficient set of that relaxation would provide a useful comparison to the Pareto front of our original

problem.

9.2 Incorporation of additional objectives

As described previously in Section 1, time consistency and idle time are two objectives that may

contribute to patient and nurse satisfaction, respectively, and therefore we are interested in in-

corporating these objectives into our problem. Time consistency is achieved when each patient is

visited at approximately the same time every day they require service over the planning horizon.

We divide each workday of the planning horizon into nonoverlapping time windows of equal dura-

tion, and model time consistency as beginning patients’ care in the same time window each time

service is required over the planning period. This method of assessing time consistency is new in

the consistent vehicle routing problem literature, as can be seen by comparing to the formulations

of time consistency detailed in Section 3.1.

Note with the attempt at scheduling patient visits in consistent time windows comes the possi-

bility of idle time in a nurse’s schedule, if the nurse arrives to a visit earlier than it is scheduled to

begin. We formulate minimizing this idle time over all nurses over the planning horizon as a nurse

satisfaction objective to balance the patient satisfaction objective of time consistency. It is modeled

as the total amount of time worked by all nurses over the planning horizon, less the number of

visits performed and travel time required to traverse the assigned routes.

To add these time-based objectives to our mathematical model in Section 4, we let the decision

variables md
v represent the time that nurse v’s workday begins on day d for v ∈ V, d ∈ D. We assume

a set W of non-overlapping appointment time windows (e.g. between 8 a.m. and 9 a.m., 9 a.m. and

10 a.m., etc.) during which a patient may be visited, and index this set by w ∈W. For each w ∈W

we let the input parameters [aw, bw] represent the start and end times of the window, respectively.

We then define the following day-oriented and horizon-oriented binary decision variables:

qwd
n =

 1 if patient n is visited during window w on day d

0 otherwise

qwn =

 1 if patient n visited in window w during planning horizon

0 otherwise

62



Then the additional two objectives may be given by:

• Time Consistency:

min f4 = min
∑
n∈N

∑
w∈W

qwn

This objective represents the total number of different appointment windows during which

all patients are seen.

• Idle Time:

min f5 = min
∑
v∈V

∑
d∈D

(edv −md
v)−

∑
(i,j)∈A

∑
v∈V

∑
d∈D

cijx
d
ijv −

∑
n∈N

∑
d∈D

∑
v∈V

rdny
d
nv

This objective represents the total amount of idle time incurred over the planning horizon;

that is, time between the starting and ending times of each nurse’s day not spent traveling

or serving a patient.

The addition of these two time-related objectives significantly complicates the neighborhood

moves established in Section 5.3. While the mathematical model developed in Section 4 calculates

the start time of care for each patient each day they are visited by a nurse, the heuristic procedure

does not need to directly address this issue when only the original three objectives are present.

When time consistency and idle time are added, the heuristic solution approach must now keep track

of all patient start times. Additionally, it is not immediately obvious how a remove-and-reinsert

or swap move should handle the assignment of patient start times. In the current implementation,

nurses visit all patients in succession on their route, one immediately after the other. Now there

exists the option of pushing the start time of the recently inserted patient back so that care will

begin in a different time window. It is apparent that the neighborhood moves developed for the

current three objectives must be expanded to handle the time concerns of these two new objectives,

as well move strategies motivated by each of the time consistency and nurse idle time objectives.
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