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ABSTRACT 

One major concern with urban development is the increasing amount of stormwater 

runoff from large expanses of impervious surfaces. These impervious surfaces reduce the ability 

of stormwater to infiltrate into the soil and eventually groundwater, which leads to greater 

amounts of surface runoff. Green technology serves as a viable solution to many of the 

environmental problems presented by modern development. Fifteen mock, extensive green roofs 

were built in the fall of 2008 at the Watershed Research and Education Center in Fayetteville, 

Arkansas. The goals of this project were to (1) measure the amount of stormwater runoff from 

varying treatments and control roofs, (2) measure the stormwater runoff quality from varying 

treatments, and (3) study the release of nutrients over time from the green roofs with added 

compost. Our results show that after an initial flush of nutrients from green roofs with added 

compost, many nutrient concentrations, such as total organic carbon (TOC), total nitrogen (TN), 

nitrate-N (NO3-N), and other physiochemical properties have been reduced. However, even after 

two years, P concentrations in runoff water still exceed 1 mg/L from green roofs using compost 

in the growing matrix. Analysis of the remaining nutrients in the compost shows that TP loads 

from green roofs with added compost could be elevated for a number of years. The results from 

this study provide a benchmark for developing green roofs in Northwest Arkansas or other 

similar climactic regions.  
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CHAPTER 1: INTRODUCTION 

 

BACKGROUND 

Over the past century, urban development has changed the natural landscape in a number 

of ways. One major concern is the increasing amount of stormwater runoff from large expanses 

of impervious surfaces present in urban areas. These impervious surfaces reduce the ability of 

rainfall to infiltrate into the soil and eventually recharge groundwater, leading to greater amounts 

of surface runoff. The United States Environmental Protection Agency (USEPA) has estimated 

that nearly five times more runoff is generated from an urban city block than a wooded area of 

the same size (USEPA 2003). Impervious surfaces also increase peak flow and reduce the time it 

takes stormwater to reach peak flow (i.e., time to concentration). These effects combine to cause 

a number of environmental problems, including: higher rates of stream degradation, loss of 

ecosystem functions, higher peak flow events, more frequent flooding, and the addition of 

pollutants such as oils, petroleum products, chemicals, nutrients, and sediment into streams 

(Berndtsson et al. 2006, 2009; Mallin 2009; USEPA 2003). 

One way to counter act these effects is through low impact development that minimizes 

the hydrologic impact of urban areas. Green roof technology has been around for centuries but 

still serves as a viable solution to many of the environmental problems caused by modern 

development. A green roof consists of plants, a growing matrix, and a drainage system. Green 

roofs exist in two main types: intensive and extensive. Intensive green roofs have a growing 

matrix deeper than 15 cm. The added weight of this matrix must be accounted for in the design 

of the green roof. Extensive green roofs have a growing matrix with depths between 5 to 15 cm. 

Extensive green roofs support smaller plants with shallow fibrous root systems such as grasses 

and small succulents. These extensive green roofs can be retrofitted to previously constructed 
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buildings, because the shallow soil depth and smaller plants are relatively lightweight (Carter and 

Butler 2008). Green roofs are growing in popularity in the United States but have been prevalent 

in many European countries for several decades now. In fact, it is estimated that 14% of all flat 

roofs in Germany are green roofs (Kohler and Keeley 2005). 

The most important benefit generated from green roofs is increased water retention 

(VanWoert et al. 2005, Hathaway et al. 2008, Bliss et al. 2009). Green roofs can also possibly 

improve stormwater runoff quality (Berndtsson et al. 2006, 2009; Hathaway et al. 2008) and 

delay the initial time of runoff by distributing the stormwater over a longer period of time by 

releasing the water at a slower rate (Mentens et al. 2006; Hathaway et al. 2008). Research has 

also shown that green roofs not only reduce stormwater runoff, but offer a number of other 

benefits. These benefits include increasing and protecting biodiversity in urban areas 

(Oberndorfer et al. 2007; Cuffney et al. 2009). Research has also shown that green roofs can 

improve the energy efficiency of buildings (Hilten 2005), increase the lifespan of the roof 

membrane (Dunnett and Kingsbury 2004), sequester carbon (Getter et al. 2009), and help to 

mitigate the urban heat island effect (Alexandri and Jones 2008). However, green roof efficiency 

to provide these benefits varies, based upon green roof design and climate conditions. This 

project will specifically focus on green roofs for climactic conditions representative of the Ozark 

Highlands in Northwest Arkansas. 

 

PROBLEM STATEMENT 

 Over the past 10 years a number of studies have been done on the water retention 

capabilities of green roofs and nutrient runoff from green roofs. However, only a couple of 

studies have been conducted in the Ozark Highlands (Toland et al. 2012). The establishment and 

function of green roofs is dependent on the climate conditions in the region. Therefore, it is 
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important to understand that water retention and nutrient runoff vary from climate to climate or 

region to region. While some studies have observed the effects of adding compost to the media 

versus the green roofs with no compost added, very few studies include media size as a factor 

(fine vs. coarse). Furthermore, most green roofs studies have focused on a one-year period. This 

study includes first year data from Toland 2010, as well as new second year data measuring the 

changes in water retention and nutrient runoff annually.  

 

STUDY SITE DESCRIPTION 

Fifteen mock green roofs were built in the fall of 2008 at the Watershed Research and 

Education Center located on the UA Division of Agriculture-Arkansas Agricultural Research and 

Extension Center in Fayetteville, Arkansas. The green roofs were built at a 2% slope, to mimic 

standard commercial roof construction. This study site contained five treatments with 3 

replicates: coarse media with compost, coarse media without compost, fine media with compost, 

fine media without compost, and a control. Commercially available mushroom compost was 

added to the specified treatments at 15% by volume.  

A water proofing membrane was the bottom layer of all fifteen roofs such that 

stormwater was collected using a gutter and funnel and stored on site. The 12 mock green roofs 

were each fitted with a drainage layer between the traditional roofing surface and the growing 

media to minimize the amount of soil transported into the collecting barrels. Plants were 

established on each of the mock green roofs at the start of the study. Plant growth was monitored 

throughout the study without the addition of any fertilizers after establishment. 
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OBJECTIVES 

 

The goals of this project were to (1) evaluate nutrient leaching from growing media with 

and without added compost on green roofs, and (2) evaluate water retention as a function of 

growing media, total precipitation and precipitation intensity. This study should provide valuable 

data on the benefits of green roofs in the Northwest Arkansas area or in similar climactic regions. 
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CHAPTER 2: LITERATURE REVIEW 

 

Impervious surfaces can represent up to 60% of the landscape in urban areas. 

Furthermore, urban land area is projected to reach 8.1% of total land area in the United States by 

2050 (Nowak and Walton 2005). Impervious surfaces do not allow rainwater to infiltrate the soil 

surface to recharge groundwater or cycled through plant transpiration. As a result, a large amount 

of stormwater runs off directly into urban streams. Degradation of these streams occurs because 

impervious surfaces increase peak discharge and reduce the time to concentration over the runoff 

hydrograph. There are a number of different best management practices (BMPs) to help mitigate 

this high urban runoff, including: rain gardens, wet and dry retention ponds, bioswales, sand 

filters, and constructed wetlands. However, many of these mitigation strategies can be expensive 

and may require a large surface area making wide spread use of these BMPs unfeasible for 

densely populated urban areas.  

 

STORMWATER RUNOFF 

One possible solution to the increased runoff in densely populated areas is green roofs. 

Green roofs can utilize otherwise limited-use space on rooftops to help mitigate these hydrologic 

effects of urban development. Studies have shown that green roofs can reduce runoff by up to 

100% for individual rainfall events depending on the characteristics of the rainfall event 

(antecedent moisture conditions, intensity, duration, etc.), slope of the roof, and the type of green 

roof (DeNardo et al. 2005). VanWoert et al. (2005) reported that stormwater runoff was reduced 

by 96% when cumulative rainfall was less than 25 mm. Carter and Rasmussen took this even 

further by reporting that when total rainfall is < 25 mm, there is a 90 % reduction in stormwater, 
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rainfall between 25mm and 76mm results in a 54% reduction, and rainfall greater than 76mm 

results in > 48% reduction (Carter and Rasmussen 2006). Hathaway et al. (2008) reported an 

average retention of 64% of all rainfall on green roofs, as well as a 75% reduction in peak 

discharge from roof tops. 

Green roofs not only reduce the volume of stormwater runoff (Bliss et al. 2009; 

Berndtsson et al. 2006, 2009; Hathaway et al. 2008), but also delay the initial time to runoff and 

slow the time it takes stormwater to reach waterways. The reduced runoff volume and time to 

runoff ultimately decrease peak discharge reaching urban streams. Reduced peak discharge can 

decrease stream bank degradation such as erosion and down cutting by reducing the number of 

channel forming events that occur in urban streams. This is important because large amounts of 

money are spent on stream restoration projects in urban areas. In 2005, it was estimated that an 

average of $66.7 million a year has been spent on stream restoration projects in the United States 

since 1990 (Bernhardt et al. 2005). 

There are a number of factors that can affect green roof performance such as plant 

species, media composition, media depth, roof slope, and climate (Dunnett and Kingsbury 2004; 

VanWoert et al. 2005). Plant species is an important factor in green roof performance, because 

plants selected specifically for the climate of the area will be easier to establish because they are 

adapted to the local climate.  Substrate composition and depth is also an important factor that can 

play a role in how much storm water is retained by the green roof, as well as the survival of the 

plants on the green roof. Green roofs can be built on as slope as great as 45
o
, however as the 

slope of a green roof increases, the capacity of the roof to store stormwater decreases. All of 

these factors need to be considered when designing green roofs. Climate may be the single most 

important factor that influences green roof performance. Temperature extremes and precipitation 
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affects plant growth. Rainfall intensity is also a factor that can be highly influential, with water 

retention decreasing with increasing intensity. This is due to the storage capacity of the green 

roofs being reached more quickly with more intense precipitation events.  

 

WATER QUALITY 

While green roofs have shown great promise in reducing the volume of stormwater 

runoff, there are still several questions surrounding stormwater runoff water quality. Green roofs 

can present a potential source of nutrients to runoff and in order for green roofs to become a 

viable stormwater mitigation option, the potential nutrient concentrations and loading from green 

roofs needs to be quantified. This can be difficult however as there are a number of factors that 

could potentially influence nutrient loading from roofs. Climate, roof slope, substrate 

composition, rainfall characteristics, and antecedent moisture conditions could all potentially 

affect nutrient loading from green roofs. The variability in green roof design is in part due to the 

lack of quantifiable research on those various green roof designs, resulting in very few industry 

standards for green roofs construction.  

There have been several studies focused on this issue of the quality of stormwater runoff 

from green roofs (Camm 2011, Berndtsson et al. 2006, 2009; Getter and Rowe 2006; Dunnett 

and Kingsbury 2004; Hathaway et al. 2008, Bliss et al 2009). Runoff water from green roofs has 

been shown to have elevated levels of a number of different nutrients, including: phosphorus (P), 

dissolved organic carbon (DOC), potassium (K), calcium (Ca), zinc (Zn), and in some cases 

nitrogen (N) (Camm 2011, Bliss et al. 2009, Berndtsson et al. 2006, 2009; Hathaway 2008). This 

is due in part to the addition of organic matter to the substrate to promote plant growth. Elevated 

nutrients in stormwater runoff could lead to a number of problems, such as eutrophication in 
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urban streams, ponds, and lakes. Berndtsson et al. (2006, 2009) suggested that green roofs could 

be a potential sink for nitrate-N (NO3-N) and ammonium-N (NH4-N).  Researchers at North 

Carolina State University documented increases in total N (TN) in green roof runoff to be 1.3 

mg/L greater than that of the control roofs (no substrate), as well as a 0.8 mg/L increase in total P 

(TP) concentrations (Hathaway et al. 2008). However, TN loads decreased in the runoff from the 

control roof due to the reduction in the volume of runoff.  Gregoire and Clausen (2011) showed 

that TN concentrations in runoff from modular green roofs decreased from 0.896 mg/L in the 

control roofs to 0.490 mg/L in the green roofs. Similarly, TP concentrations were also shown to 

decrease from 0.197 mg/L in the control roofs to 0.043 mg/L in the modular green roofs.  One 

further study focusing on runoff concentrations, reported runoff P concentrations from green 

roofs to be 2 – 3 mg/L without measurable TN from the green roofs or control roofs (Bliss et al. 

2009). Clearly, there are varying results when it comes to measuring green roof water quality and 

variations in green roof design makes it difficult to discern the effect green roofs have on runoff 

water quality. 

There are, however, trends that have been observed in recent green roof studies. One such 

trend that has been observed in a number of studies is the “first flush” effect (Toland 2010, 

Berndtsson et al. 2006, Van Seters et al. 2009). Initial samples taken in these green roof studies 

show very high concentrations of many nutrients, including P, N, and C. Some studies have even 

reported initial nutrient concentrations in runoff of 104 mg/L TN, 4 mg/L TP, and 119 mg/L of 

TOC (Toland 2010). However, these concentrations quickly recede to levels more typical of 

stormwater runoff, hence the first flush of nutrients. This first flush of nutrients is concerning 

because N and P are limiting nutrients in many aquatic systems. Toland et al. (2012) showed that 

nutrient levels could remain elevated for several months after green roofs were built.  
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There are various ways to remove P from runoff and several recent studies have aimed at 

utilizing these technologies to help mitigate elevated nutrients in green roof runoff. Many of 

these technologies use the processes of phosphorus adsorption, ion exchange, and precipitation 

reactions (Zhang et al. 2008). A 2011 study in Canada showed that by utilizing these natural 

processes, engineered media consisting of mineral aggregates, blond peat, perlite, sand and 

vegetable based compost could reduce P concentrations in green roof runoff from 1.30 mg/L to 

0.97 mg/L in 2009 and 1.18 mg/L to 0.16 mg/L in 2010 (Camm 2011).  

Conventional rooftops themselves can represent a potential threat to runoff water quality. 

Typical roof construction commonly calls for some petroleum based product to be used in 

commercial roof construction. These roofs degrade over time contributing heavy metals and 

petrochemicals to runoff and ultimately urban streams. Green roofs can prevent the premature 

weathering of roofing membranes and extend the life span of the roof (Dunnett and Kingsbury 

2004). This would reduce the need to replace the roof every 20 years or so, as well as reducing a 

potential pollutant source when the roof material degrades from ultraviolet light exposure and 

time.  

Atmospheric deposition can also represent an important source of pollutants to rooftops. 

A study by Wu et al. (1998) in the Piedmont region of North Carolina reported that atmospheric 

deposition could account for as much as 10% to 30% of TP and NO3-N, and 30% to 50% of 

orthophosphates (PO4-P). Atmospheric deposition and rainfall nutrient concentrations vary 

constantly across the US, and the effect of this source on stormwater runoff is locally dependent. 

Concentrations not only vary spatially, but also yearly. The National Atmospheric Deposition 

Program (NADP) reports that atmospheric deposition of inorganic N in Northwest Arkansas and 

the Piedmont region of North Carolina are similar, with deposition of P being insignificant.  At 
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the NADP site approximately 0.5 km from our study site in Fayetteville, Arkansas, N deposition 

measured approximately 5 kg/ha/yr with an average concentration of 1.0 mg/L while P measured 

less than 0.1 kg/ha/yr or less than 0.01 mg/L. This nutrient source should be considered when 

evaluating nutrient loss from green roofs during rainfall events. 

The potential loading of N and P are the greatest concern with green roofs, because they 

have historically been the most common nutrients associated with causing impairment in streams 

(Bannerman et al. 1993; Line et al. 2002). Nitrogen and P leach from the growing media of green 

roofs most commonly in the forms of NO3 and PO4. Runoff from green roofs can contain 

concentrations of NO3 and PO4 that is much greater than that contributed from rainfall. In an 

effort to prevent this nutrient loss, many green roof designs contain a nutrient retention barrier 

(Hathaway et al. 2008, Berndtsson et al. 2009, VanWoert et al. 2005, Carter and Butler 2008). 

This research has shown that these retention barriers generally cannot reduce nutrient 

concentrations to that of rainfall or green roofs that do not contain added compost.  

When evaluating nutrient concentrations and loads from green roof runoff, these values 

need to be put into context with runoff from the landscape (both urban and agriculture). Massey 

et al. (2010a,b,c) showed that in Northwest Arkansas TN loads in stormwater runoff from urban 

areas range from 16 – 19 kg/ha/yr and loads of TP range from 1.0 – 1.6 kg/ha/yr. Furthermore, 

loads from unfertilized pasture ranged from 9 – 18 kg/ha/yr and 1.2 – 2.2 kg/ha/yr for TN and 

TP, respectively, and 1.1 – 1.5 kg/ha/yr and 0.07 – 0.12 kg/ha/yr for forest for TN and TP, 

respectively. This data is specific to Northwest Arkansas, and the unit area loads could be 

directly compared to that from green roofs.  
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ECOLOGICAL BENEFITS 

Replacing traditional roofs with green roofs can also provide a number of ecological 

benefits to urban areas. Drought tolerant plant species that are specifically adapted to the 

regional microclimate work best to provide habitat and improve the water retention capabilities 

of the roof during the growing season. Plant species is also an important factor in providing 

habitat and can also increase the retention of nutrients in the growing media (Ewel et al. 1991). 

Green roofs also provide habitat for many insects, spiders, beetles, and even birds and some 

researchers are looking into using green roofs to help re-establish native plant species to an area 

(Dewey et al. 2005). 

The ecological benefits of green roofs can also spread downstream to the urban channels 

receiving the stormwater runoff. Cuffney et al. (2010) showed that benthic macroinvertebrate 

assemblages were directly related to urban intensity, because land use influences the biological, 

chemical, and physical properties of streams. This study also showed that streams were degraded 

relative to undeveloped conditions even at very low levels of urbanization. Land use changes 

affect watershed hydrology, but green roofs could be used to help restore some of the 

predevelopment conditions in urban areas in an attempt to protect streams and aquatic 

communities. 

The urban heat island effect is a phenomenon that has been documented for decades, 

where increases in day and night ambient air temperatures in urban areas are observed relative to 

surrounding rural areas due to large expanses of impervious surfaces in urban areas reflecting the 

sun’s radiation (Arnfield 2003; Akbari 2005). Plants on green roofs can help mitigate the urban 

heat island effect through the cooling effects of plant transpiration. Excess heat has been reported 

to cause psychological disorders, organ damage, and death in humans (USEPA 2003). The 
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implementation of green roofs on a large-scale basis could help reduce the effects of the urban 

heat island. 

Green roofs also have the ability to assist in the mitigation of carbon footprints, because 

increasing the energy efficiency of a building reduces the amount of energy consumed. Energy 

Plus is a building simulation model supported by the United States Department of Energy, which 

was used to predict the reductions in energy consumption when green roofs are in place. The 

model was used to predict the typical energy savings of a building with 2000 m
2
 of green roof in 

Houston, TX and Chicago, IL. The model estimated total energy reductions of approximately 

2%, and a 9-11% reduction in natural gas consumption (Sailor 2008). The energy reductions 

were much greater in the winter than the summer, ranging from savings of 2800 MJ to 200 MJ 

and 800 and 250 MJ per month for Chicago and Houston, respectively (Sailor 2008). In a study 

conducted by Getter et al. (2009), extensive green roofs were shown to sequester 375 g C/m
2
 in 

above and below ground biomass over a 2-year period. As previously stated, the urban heat 

island effect can increase the ambient air temperatures in an urban area and therefore increase the 

amount of energy that is consumed in an effort to cool these temperatures during warmer 

months. Akbari (2005) estimated that by reducing the urban heat island effect, green roofs 

implemented on a wide scale basis could reduce energy consumption in urban areas by 25%. 

This wide scale implementation of green roofs could play a major factor in reducing energy 

needs. 

ECONOMIC INCENTIVES 

Increased energy efficiency in buildings from the use of green roofs can translate to 

economic savings. Green roofs act as insulation for a building, intercepting the hot summer sun 

before it reaches the building and trapping heat inside the building during winter months. 
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Typically a majority of the energy savings with green roofs will come during the summer months 

by reducing heat transfer into buildings. This is because of the thermal properties of the air filled 

pores within the growing media. Typically during the summer months rainfall is less and soil 

pores are less saturated, versus saturated soil pores in winter months when rainfall is generally 

greater. This could also be due to the cooling effect of plant transpiration on green roofs. Wong 

et al. (2005) showed air temperatures to be up to 14 °C lower on roofs with vegetation, reducing 

energy consumption and saving up to 15% on costs per year. For example, Laberge (2003) 

estimated that energy savings for the Chicago city hall could be $4,000 annually and $100 

million annually for the city of Chicago if all roofs were converted to green roofs. 

Federal, state, and local governments are beginning to promote the construction of green 

roofs through policy and incentive programs under the stormwater management provisions set 

forth by the Clean Water Act. Approval for NPDES (National Pollutant Discharge Elimination 

System) permits is contingent on the implementation of BMPs for stormwater management, 

which includes green roofs. Tax credits and other economic incentives are also being offered to 

cities that are integrating green roofs into the design of government buildings. Universities such 

as the University of Arkansas and federal departments such as the United States Department of 

Defense are requiring all newly constructed buildings to meet Leadership in Energy and 

Environmental Design (LEED) Silver Certification. Green roofs can account for up to 15 LEED 

points (Carter and Fowler 2008). It is apparent that green roofs will become more prevalent in 

urban environments, and research needs to understand and quantify the effects of BMPs on 

hydrology and pollutant transport.  
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CHAPTER 3: NUTRIENT DYNAMICS IN STORMWATER RUNOFF  

FROM GREEN ROOFS WITH VARYING SUBSTRATE 

 

INTRODUCTION 

 Green roof technology has been around for centuries, but can still be used to solve the 

ecological challenges we face today. There are a number of ecological benefits associated with 

green roofs, including: stormwater runoff reduction, potentially improved runoff water quality, 

enhanced biodiversity in urban areas, reduced erosion and stream degradation in urban streams, 

and many more. The ecological benefit with the greatest impact from green roofs is the reduction 

of the volume of stormwater runoff, however studies have shown increases and decreases in 

chemical concentrations and loads from green roofs during rainfall (Hathaway et al. 2008, 

Berndtsson et al. 2006 & 2009, Bliss et al. 2009).  

 There are two types of green roofs, extensive and intensive. Extensive green roofs have a 

shallower media depth, support smaller plant species, and can be retrofitted to existing structures. 

Intensive green roofs have a greater media depth, support larger plants, and typically need to be 

considered in the design of the building or structure. Extensive green roofs have been the greater 

focus of research because of the ease of retrofit and the relatively low maintenance required to 

maintain the roofs. Green roofs can be effective at reducing stormwater runoff from slopes 

ranging from 2 – 45%, with the greatest runoff reduction resulting from green roofs built at the 

commercial standard of 2% (VanWoert et al. 2005). Studies have shown that green roofs can 

reduce stormwater runoff up to 100% depending on the intensity and length of the rainfall event, 

depth of media, slope of the roof, along with several other factors (Berndtsson 2010).  

 There have been a number of recent studies on the effects of nutrient runoff from green 

roofs. Some studies report green roofs to be a source of a number of nutrients to stormwater, 
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most importantly nitrogen (N) and phosphorus (P), while others report green roofs to be a sink 

for N (Berndtsson 2010, Toland 2010, Berndtsson et al. 2009, Hathaway et al. 2008). This in part 

is due to the numerous variations in green roof media composition, design, data collection 

techniques, and climactic factors. Study length could also have an effect on the nutrient runoff 

from green roofs as several studies have shown evidence of a “first flush” in green roofs where 

initial runoff concentrations are very high but quickly return to near base levels after only a few 

weeks or months (Toland et al. 2012, Van Seters, 2009, Berndtsson et al. 2006). 

 The goals of this project were to compare stormwater reduction and nutrient transport in 

stormwater runoff between four green roof treatments and the control over a 2.5-year period. 

There have been a number of studies conducted on green roofs in the last 10 years; however, a 

green roof’s function is highly dependent on regional climate and rainfall characteristics. This 

study should provide data for the Ozarks Highlands in Arkansas, Oklahoma, and Missouri and 

other similar climates. This project focused on nutrient dynamics over a 2-year period in order to 

quantify the chemical quality of stormwater runoff from green roofs and observe changes in 

nutrient loading and concentrations annually. 

 

METHODS 

Fifteen 1.22 m x 1.22 m mock extensive green roofs were constructed at the UA Division 

of Agriculture Watershed Research and Education Center in Fayetteville, Arkansas in the fall of 

2008. The roofs were built with a 2% slope and a 2.54 cm gap down slope to allow water to drain 

to a gutter placed on the roofs, and down to a 75.7 L collection barrel. The arrangement for the 

green roofs was a randomized block design with 3 replicates. Twelve of the green roofs were 

fitted with a with a green roof drainage layer provided by JDR Enterprises, Inc. (Alpharetta, GA) 
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directly above the waterproofing membrane. This drainage layer consists of a root barrier, plastic 

corrugated drainage material, and filter fabric. Covering the drainage layer was a lightweight 

aggregate growing matrix provided by Chandler Materials (Tulsa, OK). Six of the roofs had 7.62 

cm deep media, three fine textured (75% of particles < 2.4 mm) and three coarse textured (75% 

of particles > 4.8 mm). Six roofs had a 7.62 cm growing matrix composed of 85% (by volume) 

media, three fine textured and three coarse textured, along with 15% (by volume) mushroom 

compost (Toland 2010).  Material analysis of the media and compost was performed at the 

Agricultural Diagnostic Laboratory on the University of Arkansas campus in Fayetteville, 

Arkansas (Toland 2010). Plants were donated by Emory Knoll Farm (Street, MD) and were 

selected for drought tolerance, because these roofs were not irrigated. 

Stormwater runoff measurements were taken after every rainfall event. In the first year of 

the study, the volume of runoff was estimated by weighing the collection barrels. Due to the ease 

of measuring, during the second year of the study, volume was calculated by measuring the 

height of the water in the barrels and using the known barrel dimensions to determine a runoff 

volume. When runoff exceeded 1 L, water samples were collected for water quality analysis. 

This was done by mixing the runoff for 15 seconds and field washing the collection bottles 3 

times before collecting the sample. These samples were brought back to the lab, refrigerated in 

the dark at 4
o 

C, and then composited each week based on event runoff volumes for water quality 

analysis. 

Turbidity, pH, and electrical conductivity of the composite water samples were measured 

at the laboratory. Turbidity was measured using a VWR Model 800 Turbidity Meter, VWR 

International (Radnor, PA). The pH of the samples was measured using an Oakton waterproof 

double junction pH Meter, Oakton Instruments (Vernon Hills, IL). Electrical conductivity was 
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measured using a Thermo Orion Model 105 conductance meter, Thermo Fisher Scientific 

Incorporated (Waltham, MA). Concentrations of total nitrogen (TN), total phosphorus (TP), and 

organic carbon (TOC), as well as soluble reactive (SRP), ammonium (NH4-N), nitrate (NO3-N) 

plus nitrite NO2-N, and chloride (Cl
-
) were analyzed at the Arkansas Water Resources Center 

Water Quality Lab. This lab is certified for the above constituents by the Arkansas Department 

of Environmental Quality, and methods, equipment and detection limits are available at 

http://uark.edu/depts/awrc/waterqualitylab.htm. 

The runoff water volume (Q) collected and the nutrient concentrations (C) were used to 

determine load (L) for select periods of time by the equation: 

          n  

L = Σ Qi * Ci 

            i=1  

 

where (i) represents the weekly composite and (n) represents integer sample size. The flow-

weighted concentration (FWC) or event mean concentration for select time periods was 

calculated using the equation: 

FWC = 
L 

ΣQi 

 

where (L) represented constituent load. Nutrient concentrations, loads, and trends were 

compared over the 2.5-year study period (September 2008 – March 2011), and stormwater runoff 

was compared between water years 2009 and 2010. JMP 9.0, Statistix 9, and Microsoft Excel 

were used for statistical analysis conducted for each runoff parameter measured using the 

logarithmic transformed data. All data was analyzed using a one-way analysis of variance 
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(ANOVA) and means were separated using significant difference (LSD) based on an alpha (α) of 

0.05. 

 

RESULTS AND DISCUSSION 

Stormwater Runoff 

One of the primary objectives of this study was to evaluate water retention as a function 

of green roof treatment and total precipitation. Total rainfall near the study site was 1134 mm in 

2009 and 1186 mm in 2010, similar to that which is typically observed for Northwest Arkansas 

(2005 – 2011 water year range: 886.3 – 1324.1 mm, NADP, 2011). The control roofs stored 22 

and 33 mm of rainfall for 2009 and 2010, respectively, resulting in 98% of the total precipitation 

leaving as stormwater (Table 1). The control roofs had a small amount of storage, likely due to 

the uneven surfaces of the membrane materials on the roofs resulting in surface detention and 

possible evaporation from the roof surface depending on air temperature and time between 

rainfall events. Water quantity measurements were made soon after rainfall occurred, to limit 

possible evaporation from the collecting barrels.  

On an annual basis, green roofs retained significantly more stormwater than the control 

roofs (Table 1). Among the green roof treatments, the fine with compost (FN) treatment retained 

the most rainfall with an average of 55% retention in 2009 and 52% in 2010. The fine with no 

compost (FC) treatment was the second most effective treatment with 50% retention in 2009 and 

47% in 2010. This was followed by coarse with compost (CC) with 37% in 2009 and 37% in 

2010 and coarse without compost (CN) with 34% retention in 2009 and 31% in 2010. There was 

no statistical difference in stormwater reduction from 2009 to 2010 between the individual 

treatments showing that as time passes, the hydrologic function of the green roofs is maintained.  
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These annual runoff and retention characteristics are similar to those found in other green 

roof studies of similar design. Berndtsson (2010) compared a number of retention and runoff 

studies and found the range of average stormwater retention to be 45 – 78% between six studies. 

Furthermore, retention for individual rainfall events from the six studies ranged from 5 – 100% 

based on the rainfall and roof characteristics. Monterusso et al. (2004) also reported rainfall 

retention to range from 39 – 58% of total rainfall during the study period. Annual rainfall 

retention from the green roofs in this study ranged from 30 – 46%.  

Interestingly, the addition of compost had no effect on the total volume of runoff retained 

during the first year (2009). There was, however, increased stormwater retention in the fine 

media treatments (FN and FC) as compared to the coarse media treatments (CC and CN) during 

2009. This can be expected as smaller particle size increases surface area and micropore space to 

retain water molecules more tightly and increase storage. The addition of compost may have the 

ability to decrease the rate at which stormwater runs off, but it does not likely affect total runoff 

in subsequent years based on the lack of differences observed in 2010 between FN and FC. 

Compost likely plays an important role in stormwater runoff mitigation because the rate of runoff 

is one of the most important factors when determining the impact of a given rainfall event on a 

watershed or area of study, and other studies have suggested similar benefits from a hydrologic 

perspective (Hilten et al. 2008, VanWoert et al. 2005).  

Total rainfall was greater in 2010 than 2009 leading to an increase in runoff in 2010 as 

expected. After initial rainfall storage, runoff seems to increase linearly as total rainfall 

increased. This linear increase was documented in each green roof treatment (Figure 2). This is 

to be expected as once the roof media reaches storage capacity, runoff would be proportional to 

rainfall. Average storage for the green roof treatments during the 2-year study ranged from 3 mm 
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across the coarse media to 5 mm across the fine media, based on the x-intercept of the linear 

regressions (Figure 1). The maximum storage estimated from the data varied 5 – 11 mm for 

green roofs with coarse media and 9 – 12 mm for fine media.  It is well documented that green 

roofs can retain near 100% of rainfall during smaller rainfall events.  For example, DeNardo et 

al. (2005) reported that when rainfall was less than 25 mm, there was a 96% reduction in 

stormwater runoff. In a similar study, VanWoert et al. (2005) reported a 99% reduction when 

rainfall was <2 mm and an 83% reduction when rainfall was between 2 – 6 mm. This is 

congruent with the data presented in this study with 100% retention when rainfall was <3 mm for 

the coarse media and <5 mm for the fine media.  

It is evident that total rainfall and rainfall intensity play an important role in the percent 

of stormwater retained in green roofs. Plant cover and evapotranspiration could also play a small 

role in the percent of stormwater retained. This would result in greater retention in the summer 

months when plant growth is increased and higher temperatures increase evapotranspiration. 

However, VanWoert et al. (2005) reported that plant growth did not play a significant role in 

stormwater retention and that the characteristics of the media, such as particle size and percent 

compost, play the more important role in stormwater retention. Based on this study, it was 

evident that the green roof media plays the largest role in determining retention characteristics 

and runoff volumes. These green roofs provide an excellent urban BMP to capture all the rainfall 

during small events, resulting in no runoff.  

Water Quality  

 Carbon 

Mean TOC concentrations measured over the study period were variable across 

treatments at the beginning of this study, where the greatest TOC concentrations (up to 100 
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mg/L) were observed in the runoff from green roofs with compost in the growing media (CC and 

FC).  The least TOC concentrations were observed in runoff from the control roofs the first 

month, but mean TOC from the control roof runoff approached that of the green roofs without 

added compost (CN and FN) within the first year.  By the second year of the study (2010), mean 

TOC concentrations were still variable across treatments but relatively similar (same order of 

magnitude) across treatments (Figure 2).  However, differences in TOC transport in runoff from 

the roofs were apparent in the second year when hydrology was considered. 

The loads of TOC showed contrasting trends between years across the treatments. During 

2009, the TOC loads were greatest from the green roofs that included compost in the growing 

media (CC and FC). The loads exceeded 28 kg/ha/yr when compost was added to the growing 

media. The TOC loads were almost three times less from the control roofs (9.9 kg/ha/yr) during 

2009 (Table 2). The least TOC loads were observed from the green roofs without compost added 

to the growing media. These results showed that green roofs can reduce TOC loads relative to 

these control roofs during the first year, except when compost is included in the growing media 

at the rate used in this study.  

 The trends in annual TOC loads across green roof treatments changed during the second 

year (2010) relative to the control roof. The green roofs with compost in the growing media (CC 

and FC) had greater TOC loads compared to the green roof without added compost (CN and 

FN), showing the continued loss of TOC from the compost in runoff. However, the greatest TOC 

loads (24.0 kg/ha/yr) were observed from the control roofs during the second year, despite 

having mean TOC concentrations within the same order of magnitude of the other treatments.   

 These results suggest that over the long-term, the conventional roofs could be a greater 

potential source of TOC relative to green roofs. This could be due to two reasons: degradation of 
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the roofing membranes over time, and green roofs serving as a sink for C that is being deposited 

on the roofs through atmospheric deposition. The conventional roofs are exposed to sunlight and 

the UV rays degrade the roofing material over time (Line et al. 2002). Green roofs can increase 

the life span of roofs by serving as a protective barrier between the rooftop and UV rays 

(Dunnett and Kingsbury 2004). Green roofs also might have the ability to store TOC relative to 

the control roofs from atmospheric deposition.  

 Phosphorus 

Mean TP concentrations in runoff water varied across the green roof treatments and 

control roofs during the study period (Figure 3). The differences were distinct in the first runoff 

events, where mean TP concentrations varied from 1.45 – 4.75 mg/L in the runoff from green 

roofs with compost (FC and CC, respectively), 0.05 – 0.30 mg/L in runoff from green roof 

without compost added (FN and CN, respectively), and 0.03 mg/L in the runoff from the control 

roofs. The differences in runoff TP concentrations remained distinct until March 2009, when TP 

was relatively similar between the two compost treatments (FC and CC) and even between the 

green roofs without compost (FN and CN). After March 2009, mean TP concentrations were 

greatest in runoff from green roofs with added compost added (1.58 – 1.93 mg/L), and generally 

less than 0.30 mg/L for the other treatments (FN, CN, and control). Toland et al. (2012) observed 

mean TP concentrations (1.57 – 1.82 mg/L) in runoff from green roofs with added compost was 

also elevated ~2 years after establishment. The runoff concentrations observed in our study were 

within the range of other studies, where green roofs contained compost (0.6 – 1.4 mg/L, 

Hathaway et al. 2008; 0.8 – 2.1, Bliss et al. 2009; 0.46 – 4.39, Monterusso et al. 2004). The 

majority of the TP concentrations in runoff water was in the dissolved form, representing up to 
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90% of TP across the roof treatments; and consistent with other studies (Toland et al. 2012, 

Berndtsson et al. 2009).  

The loads of TP showed similar trends to that of concentrations in the runoff from green 

roofs with added compost as compared to the no compost and controls (Table 2). In 2009, TP 

loads were greatest from the green roofs with added compost (CC), with 21.5 kg/ha/yr, which 

was 23 times greater than loads from the membrane control (0.9 kg/ha/yr). The FC treatment 

followed with an annual load of 14.4 kg/ha/yr, 16 times greater than the control. On an annual 

basis, there was no significant difference between the control and the no compost treatments (FN 

and CN) with loads ranging from 0.9 – 2.1 kg/ha/yr. Toland (2010) documented seasonal loads, 

showing that TP loads were more than 10 times times greater from the green roofs with added 

compost compared to controls during the first three months after establishment. The loads from 

green roofs might be seasonal due to changes in rainfall runoff, but is apparent that leaching 

from compost would be greatest when the green roofs are established.  

During the second year (2010) of our study, annual TP loads continued to be significantly 

greater from the green roofs with added compost (FC and CC) compared to other treatments (FN, 

CN, and control) (Table 2). However, annual TP loads from the CC treatment decreased from 

21.5 kg/ha/yr in 2009 to 15.1 kg/ha/yr in 2010, showing no significant difference from that of the 

FC treatment measuring 14.6 kg/ha/yr. The green roofs with compost added to the growing 

media still produced TP in excess of 14 times greater than the range of the green roofs without 

the added compost and membrane control roofs (0.8 – 1.0 kg/ha/yr). Annual TP loads were not 

significantly different across the treatments FN, CN, and control during 2010, which was similar 

to 2009 results.  
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While few studies have looked at green roofs on a multiple year basis, a number have 

reported increased P concentrations and loads similar to those shown in our study (Hathaway et 

al. 2008, Bliss et al. 2009, Berndtsson et al. 2006 & 2009, Toland 2010). Hathaway et al. (2008) 

focused on a 15-month study period, while Toland (2010) and Berndtsson et al. (2006 & 2009) 

focused on a 12-month period, and Bliss et al. (2009) chose 15 storm events over several months. 

This focus on P loss from green roofs over multiple years is important because as shown above, 

green roofs with added compost at 15% by volume represent a potential P source for not only 

one year, but also potentially several years into the future. The relationship between P 

concentration and time was used to estimate the return to background levels at ~0.2 mg/L 

(P=1.8617e
0.0005t

, R
2
=0.231, P=0.0001) for the green roofs with added compost. It was estimated 

that P concentrations would not reach background concentrations until October 2020, which is 

more than a decade after establishment. Although green roofs provide a reduction in stormwater 

runoff, it is clear that the addition of compost needs to be further studied to maximize plant 

growth and establishment while minimizing the potential for P loss.   

The altering of the landscape by urban development is causing a shift from pervious to 

impervious surfaces, with previous land use varying from forest to pastures among other 

classifications. It is important to put the concentrations and loads from green roofs with compost 

(in particular) into the context of these other land uses, especially pastures. For example, several 

studies have shown that pastures represent a P source to runoff because of P stored in the soil 

(Sharpley et al. 2008), land-applied animal manure and fertilizers (Lentz and Westermann 2010, 

Slaton et al. 2004, Withers et al. 2001, Sauer et al. 1999), and even deposition from grazing 

cattle.  The P concentrations from green roofs with 15% compost were similar to that in runoff 

from a pasture with poultry litter application (1.20 mg/L; Sauer et al. 1999) or liquid cattle 
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manure and inorganic P fertilizer (3.8 and 6.5 mg/L; Withers et al. 2001). Phosphorus loads from 

the green roofs with 15% compost were shown to be greater than those typically observed from 

pasture and agricultural soils. For example, Sharpley et al. (2008) reported average P loads of 

0.64 kg/ha/yr (range: 0.12 – 1.57) from an agricultural watershed containing managed crop land, 

forest, and pasture.  Furthermore, P losses of 3.1 kg/ha from agricultural soils in Northwest 

Arkansas were reported by Slaton et al. (2004), which was similar to P losses from a furrow 

irrigated field in Indiana (3.4 kg/ha; Lentz and Westerman, 2010); even these P losses are less 

than that typically observed from the green roofs with 15% compost. Green roofs provide many 

benefits, but we need to keep in perspective the effects of compost addition to P losses during 

rainfall events. 

Nitrogen 

Nitrogen concentrations in runoff from green roofs varied over the study period. Similar 

to TOC, TN showed a “first flush” of nutrients from the added compost treatments (FC and CC). 

During the initial rainfall events, runoff concentrations from the compost added treatments (FC 

and CC) measured nearly 105 mg/L for TN with NO3-N representing up to 95% of TN.  After 

the “first flush” nitrogen concentrations then decreased and began to approach the concentrations 

observed in runoff from FN, CN, and control roofs (Figure 4).  

After the first 6 months concentrations of TN and NO3-N continued to vary, ranging from 

0.05 – 10 mg/L for TN and 0.01 – 8 mg/L for NO3-N. These concentrations are similar to those 

found in other studies. Hathaway et al. (2008) reported TN concentrations in runoff from green 

roofs with 15% compost to range from 0.7 – 6.8 mg/L, while Berndtsson et al. (2009) reported 

TN concentrations in green roof runoff in the range of 2.3 mg/L and NO3-N concentrations of 

1.03 mg/L, which was similar to our study. Looking at other land uses, Sauer et al (1999) 
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measured TN in runoff from pasture plots in Northwest Arkansas and found that TN 

concentrations in runoff from poultry litter amended pasture were 64.9 mg/L, which was similar 

to the initial rainfall events in our study. However, in the same study, NO3-N concentrations in 

poultry litter runoff measured 2.94 mg/L. However, unlike our study, NO3-N only represented a 

small portion of TN. Lentz and Westerman (2010) reported runoff concentrations of NO3-N of 

0.21 – 0.27 mg/L for irrigated cropland, while Qing et al. (2011) reported NO3-N concentrations 

of 4.8 – 5.5 mg/L in runoff from a mixed use watershed in the Appalachian Valley. The 

concentrations of TN in the green roof treatments (1.10 – 2.23 mg/L) in 2010 were also within 

the range of concentrations found in local and regional streams in Northwest Arkansas (0.60 – 

3.67 mg/L) (Massey et al. 2010).   

In 2009, average TN loads from the compost added green roofs (FC and CC) ranged from 

154 – 190 kg/ha/yr, respectively (Table 2). Loads from control roofs and green roofs without 

added compost averaged significantly less (P < 0.05) than the compost added treatments, ranging 

from 11.9 – 16.2 kg/ha/yr. A similar relationship was found with loads of NO3-N from the green 

roofs where the compost added green roofs contained significantly greater N loads compared to 

the no compost treatments in 2009 (Table 2). However, there was very little NH4-N loss relative 

to TN and NO3-N.  The control and CC treatment showed the greatest loss, with the other 3 

treatments not being significantly different. This is interesting because it shows that NH4-N loss 

is not correlated to compost and may be explained by another factor. In 2009, NO3-N accounted 

for approximately 72% of the TN in runoff from the compost added green roofs and 

approximately 45% of the TN from the no compost roofs while NH4-N represented between 1.5 

and 14 % of TN in runoff. In the same time period, NO3-N from the control accounted for 27% 

of the TN in runoff while NH4-N from the control represented 43% of the TN in runoff.  
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In 2010, average TN loads decreased significantly from 2009. The green roofs with 

added compost (FC and CC) ranged from 14.6 – 15.1 kg/ha/yr, approximately 9% of their 2009 

loads. This was also the trend among the no compost green roofs (CN and FN) and the control 

roofs with 2010 TN loads of approximately 5 – 8% of their 2009 loads (Table 2). There was also 

a significant decrease in loads of NO3-N from 2009 to 2010 in the compost added green roofs, 

with 2010 loads ranging from 2.1 – 7.1 kg/ha/yr for the FC and CC treatments, respectively. This 

was approximately 2 – 5% of their 2009 loads. There was not a significant decrease among the 

no compost and control treatment from 2009 to 2010. The decrease in NO3-N loads could be a 

result of a number of different factors. After an initial flush of NO3-N, the green roofs could be 

storing NO3-N compared to the green roofs. From 2009 to 2010 atmospheric deposition of NO3-

N ranged from 6.9 – 8.5 kg/ha/yr while NO3-N loads from the green roofs were generally less 

(2.1 – 7.1 kg/ha/yr). This could be a result of microbial activity in the green roof substrate storing 

NO3-N or plant uptake.  

The only treatment to show a significant decrease from 2009 to 2010 in terms of NH4-N 

was the CC treatment, decreasing from 6.7 kg/ha/yr in 2009 to 2.6 kg/ha/yr in 2010. 

Interestingly, the runoff from the control roof contained the greatest NH4-N load with 6.5 

kg/ha/yr and all other treatments containing significantly less NH4-N in the runoff. Atmospheric 

deposition of NH4-N in 2010 near our study site was approximately 3.0 kg/ha/yr. Loads of NH4-

N from the green roofs were generally less than atmospheric deposition in 2010 while loads from 

the control roofs were nearly double. This would suggest that the green roofs could be storing 

NH4-N in 2010.  

There have been mixed results when it comes to N loading from green roofs (Gregoire 

and Clausen 2011, Berndtsson 2010, Toland 2010, Berndtsson et al. 2006 & 2009, Hathaway et 
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al. 2008). While green roof studies can vary based on a number of factors, the N loads from our 

study were similar to other green roof studies. Berndtsson et al. (2006) estimated an annual TN 

load of approximately 3.8 kg/ha/yr from established vegetative roofs, which were similar to the 

green roofs without compost in 2010. Similarly, Gregoire and Clausen (2011) reported export of 

TN from green roofs to be 4.27 kg/ha/yr and TN from the control roof of 10.82 kg/ha/yr. 

Hathaway et al. (2008) showed there to be no difference in TN loading from green roofs 

compared to the control. Our study shows that in the short term, green roofs are a source of TN 

and NO3-N. In year 2, TN loads from the compost added treatments (FC and CC) continued to be 

significantly greater than the green roof treatments without compost.  

However, in comparison to other land uses, TN loads in 2010 from the compost added 

treatments were similar to N loads reported by Slaton et al. (2004) (11.40 kg/ha) in the 

Northwest Arkansas area. Total N loads exceeded that of pasture land during the first year of the 

study, however, during the second year loads were similar to pasture land use (0.2 – 1.5 

kg/ha/yr), except for the compost treatments (Harmel et al. 2009). TN loads from green roofs 

was also less than that seen in Sauer et al. (1999) from fertilized plots (40.8 kg/ha/yr for dairy 

feces and 260 kg/ha/yr for poultry litter). Precipitation could also be a source of TN and NO3-N 

loads in runoff representing 13.8 kg/ha/yr for TN and 6.9 kg/ha/yr for NO3-N (Table 2) in 

northwest Arkansas based on the National Atmospheric Deposition Program (NADP). Gregorie 

and Clausen (2011) reported TN loads from precipitation to be 6.29 kg/ha/yr and NO3-N loads to 

be 2.72 kg/ha/yr in Connecticut in 2009.   

Loads of TN in the compost added green roofs (FC and CC) were similar to that of 

fertilized pastureland and greater than pasture and mixed land uses in 2009. In 2010, loads were 

similar to other land uses for most green roof treatments, excluding the CC treatment. 
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Precipitation could also play an important role in contributing to not only TN loads, but NO3-N 

loads as well. Following the trends in TN loading from the green roofs, TN and NO3-N loads 

from all green roof treatments would be expected to be similar to the control roofs and mixed 

land use in the near future.  

Nutrients Remaining In Media 

 Nutrients in the green roof media were measured at the beginning and end of the study 

period (December 2008 and March 2011) to assess losses during the study and nutrient amounts 

remaining in the media at the end of the study (Tables 3, 4, and 5). At the end of the study 

(March 2011), WEP was greatest (0.24 mg/kg) in the fine media with compost (FC) whereas the 

other treatments (CC, CN, and FN) were not significantly different (0.06 – 0.09 mg/kg). The 

trend in water extractable K and NH4-N was similar to that of WEP. Interestingly, NO3-N 

content in the media was not significantly different across treatments ranging from 0.63 – 1.23 

mg/kg. Initial water extractable NO3-N in the media with compost treatments was measured at 

65 mg/kg (Toland 2010). This suggests that, approximately 1.4% of the original NO3-N in the 

compost is remaining in the CC treatment and 1.9% in the FC treatment. However, N 

concentrations in local rainfall were measured at approximately 1.0 mg/L (NADP, 2011) which 

could account for the continued increase in N concentrations from the green roofs.   

The Mehlich-3 extractable K, Al, and Fe content in the fine media with or without 

compost (FC and FN) was significantly greater compared to the coarse media (CC and CN) 

(Table 5) suggesting that media size, not compost influences these elements. There were 

significant differences in M3P content in the media relative to compost. M3P content in the fine 

media with compost (FC) was greatest measuring 91.0 mg/kg, followed by the coarse media with 

compost (CC, 25.0 mg/kg), fine media alone (FN, 6.4 mg/kg), and then coarse media alone (CN) 
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measuring less than 1.0 mg/kg. This shows that compost and media particle size both influenced 

M3P contents, where the fine media had a greater affinity to store M3P. 

Phosphorus saturation ratios (PSRs) for the compost treatments ranged from 0.26 to 0.36 

for the CC and FC treatments, respectively. The green roofs without added compost only 

contained PSRs of 0.01 and 0.02 for the CN and FN treatments, respectively. A higher PSR 

means that the media has a greater potential to release P, which is consistent with the addition of 

compost. There is a strong correlation between increasing PSR and increased dissolved P in 

runoff from soils (Maguire and Sims 2002, Paulter and Sims 2000, Pote et al. 1996) which would 

lead us to believe that the green roof treatments containing compost would have greater 

concentrations of P in runoff, which is consistent with our results (Figure 3). 

 At the beginning of the study, P content in the green roof substrate was measured to be 

532 mg/kg. By the end of the study, the FC treatment had the greatest amount of TP remaining in 

the media (226 mg/kg) which was 42% of the original P content. This was followed by the CC 

treatment (147 mg/kg) or 27% of the initial amount. The FN and CN treatments had 76 and 47 

mg/kg TP remaining at the end of the study with the initial substrate only measuring 3.4 and 2.1 

mg/kg, respectively (Toland 2010). However, the initial media sample did not take into account 

the amount of P contributed from the planting of green roofs plants, which contained plugs of 

soil high in organic matter and likely nutrients. Total P for all green roof treatments was much 

greater than M3P, suggesting that P is stored in forms not extracted by water or M3 solutions. 

While these extractions suggest that greater than 50% of the P from the initial media has been 

lost from the FC treatment and almost 75% from the CC treatment, this does not take into 

consideration the P uptake from the green roof plants.  
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The fine and coarse media with compost (FC and CC) had the greatest TN content 

remaining with 773 mg/kg for the CC treatment and 662 mg/kg for the FC treatment. The media 

without compost had more than ten times less TN stored, and it was surprising that the least TN 

content was observed in the FN treatment (14 mg/kg). This shows that the compost does serve as 

a potential long-term source of N to plants, which is the reason for applying it to green roof 

media. 

The organic C content of the media (fine and coarse) with compost was greatest across 

the FC and CC treatments (Table 6). However, trends in concentration show that TOC runoff 

from the green roofs was relatively similar to that of the control and in some cases less than. In 

2010, the TOC loads from the control roofs were greater than that from the green roof treatments 

and are evidence that the membrane only roofs can be a source for TOC. Not only do green roofs 

show a potential to reduce the premature weathering of roofing membranes that may contribute 

to TOC in runoff (Dunnett and Kingsbury 2004), but green roofs also have the ability to reduce 

runoff TOC through carbon sequestration (Getter and Rowe 2009).  

 

CONCLUSIONS 

Green roofs are generally accepted as a method to reduce stormwater runoff as shown by 

a number of studies (Toland 2010, Bliss et al. 2009, Hathaway et al. 2008, Carter and Rasmussen 

2006, Moran et al. 2005, VanWoert et al. 2005, Denardo et al. 2005, Monterusso et al. 2004). 

This reduction plays an important role in the hydrologic cycle and can have several beneficial 

effects on urban streams and ecological functions. There are, however, a number of concerns 

with increased P and N loading from green roofs. During the study period, stormwater runoff 

reduction ranged from 37% to 55% across all treatments. This reduction was based on a number 
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of design and climate factors and is consistent with other similar green roof studies (Toland 

2010, Hathaway et al. 2008, Bengtsson et al. 2005, VanWoert et al. 2005). The green roofs with 

fine media showed greater runoff reduction over the green roofs with coarse media and the 

addition of compost did not show a significant increase in stormwater reduction (Figure 1).  

 The addition of compost increased the loads of SRP, TP, TN, NO3-N, and TOC from 

green roofs in 2009 (Table 2). However, in 2010, only loads of TP and SRP in the compost 

treatments remained greater than the loads from control roofs and green roofs without added 

compost. Total P remained significantly greater in the composted treatments well into year 2 and 

nutrient content in the green roofs at the end of the study indicated that P concentrations could 

remain elevated in the runoff from the green roofs well into the future. Further studies should 

focus on varying the % by volume of compost addition in order to reduce nutrient loss from the 

green roofs as well as selecting a media size to maximize stormwater retention.  
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Table 1. Total rainfall along with stormwater runoff from each green roof treatment for water 

year 2009 and 2010. Letters denote significant differences across treatments within a given year 

and numbers denote significant differences between years. [Abbreviations: coarse media with 

compost (CC), coarse media without compost (CN), fine media with compost (FC) and fine 

media without compost (FN).] 

 

 

WY 2009 

(mm) 

% 

Rainfall 

WY 2010 

(mm) 

% 

Rainfall 

Rainfall 1134  1186  

Control  1112
A
 98%

1
  1153

A
 97%

1
 

CC 709
B
 63%

1
 748

B
 63%

1
 

CN 749
B
 66%

1
 816

B
 69%

1
 

FC 570
C
 50%

1
 626

C
 53%

1
 

FN 514
C
 45%

1
 575

C
 48%

1
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Table 2. Mean total nutrient loading for total phosphorus (TP), total nitrogen (TN), and total 

organic carbon (TOC) in runoff water from green roof treatments in water years 2009 and 2010. 

Letters denote significant differences among treatments within a given year, and numbers denote 

significant differences between years within a treatment (α=0.05). [Abbreviations: coarse media 

with compost (CC), coarse media without compost (CN), fine media with compost (FC) and fine 

media without compost (FN).] 

 

Treatment 
SRP 

(kg/ha/yr) 

TP 

(kg/ha/yr) 

NO3-N 

(kg/ha/yr) 

NH4-N 

(kg/ha/yr) 

TN 

(kg/ha/yr) 

TOC 

(kg/ha/yr) 

  2009 

Atmospheric 

Deposition 
- - 8.5 3.7 17.0 - 

Control 0.3
C,1

  0.9
C,1

 3.6
B,1

 6.9
A,1

 16.2
C,1

 9.9
B,1

 

CC   19.1
A,1

    21.5
A,1

  138
A,1

 6.7
A,1

   190.4
A,1

   30.8
A,1

 

CN 1.5
C,1

  2.1
C,1

 7.4
B,1

 2.2
B,1

 15.9
C,1

 5.1
C,1

 

FC   12.8
B,1

   14.4
B,1

  111
A,1

 2.4
B,1

   154.6
B,1

   28.1
A,1

 

FN 0.7
C,1

 1.2
C,1

 5.3
B,1

 0.8
B,1

 11.9
C,1

 4.8
C,1

 

  2010 

Atmospheric 

Deposition 
- - 6.9 3.0 13.8 - 

Control 0.4
C,1

 0.8
B,1

 3.3
B,1

 6.5
A,1

 18.5
B,1

   24.0
A,2

 

CC   11.4
A,2

   15.1
A,2

 7.1
A,2

 2.6
B,2

  26.2
A,2

  16.4
B,2

 

CN 0.8
C,1

 1.0
B,2

 6.9
A,1

 2.5
B,1

 17.9
B,1

 7.8
C,2

 

FC   11.0
A,1

   14.6
A,1

 2.1
B,2

 1.6
B,1

   16.5
BC,2

  15.7
B,2

 

FN 0.6
C,1

 0.9
B,1

 4.0
B,1

 1.0
B,1

 12.1
C,1

  7.26
B,2

 

 

 

 

 

 



42 

 

Table 3. Water extractable nutrients in green roof media at the end of the study period, March 

2011. Letters within a column indicate differences based on means separation using the least 

significant difference (α = 0.05). [Abbreviations: coarse media with compost (CC), coarse media 

without compost (CN), fine media with compost (FC) and fine media without compost (FN).] 

 

Treatment 
P    

(mg/kg) 

K    

(mg/kg) 

NO3 

(mg/kg) 

NH4-N 

(mg/kg) 

CC 0.09
B
  <0.01

B
 0.91

A
 <0.7

B
 

CN 0.06
B
  <0.01

B
 0.63

A
 <0.7

B
 

FC 0.24
A
 0.70

A
 0.92

A
 1.44

A
 

FN 0.07
B
  <0.01

B
 1.23

A
 <0.7

B
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Table 4. Mehlich-3 extractable nutrients in green roof media at the end of the study period, 

March 2011. Letters within a column indicate differences based on means separation using the 

least significant difference (α = 0.05). [Abbreviations: coarse media with compost (CC), coarse 

media without compost (CN), fine media with compost (FC) and fine media without compost 

(FN).] 

 

Treatment 
P    

(mg/kg) 

K     

(mg/kg) 

Al    

(mg/kg) 

Fe 

(mg/kg) 
PSR

*
 

CC 25
B
 13

B
 48

B
 17

B
 0.26

B
 

CN  <1.0
D
 11

B
 55

B
 19

B
 0.01

C
 

FC 91
A
 40

A
  148

A
 53

A
 0.36

A
 

FN 6.4
C
 29

A
  186

A
 68

A
 0.02

C
 

*
PSR, P saturation ratio represents the moles of M3P relative to M3Al and M3Fe 
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Table 5. Total nutrients in green roof media at the end of the study period, March 2011. Letters 

within a column indicate differences based on means separation using the least significant 

difference (α = 0.05). [Abbreviations: coarse media with compost (CC), coarse media without 

compost (CN), fine media with compost (FC) and fine media without compost (FN).] 

 

Treatment 
TP    

(mg/kg) 

TN   

(mg/kg) 

TOC    

(mg/kg) 

N:P 

Ratio 

CC  147
B
  773

A
  7540

A
  19:1

A
 

CN 47
D
 46

B
 578

C
 6:1

B
 

FC  226
A
  662

A
  6537

A
 8:1

B
 

FN 76
C
 14

C
 1682

B
 1:2

C
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Figure 1. Relation between runoff and rainfall for the green roofs. [Abbreviations: coarse media 

with compost (CC), coarse media without compost (CN), fine media with compost (FC) and fine 

media without compost (FN).] 
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Figure 2. Mean total organic carbon (TOC) concentrations in mg/L from the control roofs and 

various green roof treatments at the Watershed Research and Education Center in Fayetteville, 

Arkansas from September 2008 to March 2011. [Abbreviations: coarse media with compost 

(CC), coarse media without compost (CN), fine media with compost (FC) and fine media 

without compost (FN).] 
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Figure 3. Mean total phosphorus (TP) concentrations in mg/L from the control roofs and various 

green roof treatments at the Watershed Research and Education Center in Fayetteville, Arkansas 

from September 2008 to March 2011. [Abbreviations: coarse media with compost (CC), coarse 

media without compost (CN), fine media with compost (FC) and fine media without compost 

(FN).] 
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Figure 4. Mean total nitrogen (TN) concentrations in mg/L from the control roofs and various 

green roof treatments at the Watershed Research and Education Center in Fayetteville, Arkansas 

from September 2008 to March 2011. [Abbreviations: coarse media with compost (CC), coarse 

media without compost (CN), fine media with compost (FC) and fine media without compost 

(FN).] 
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Figure 5. Mean nitrate-nitrogen (NO3-N) concentrations in mg/L from the control roofs and 

various green roof treatments at the Watershed Research and Education Center in Fayetteville, 

Arkansas from September 2008 to October 2010. [Abbreviations: coarse media with compost 

(CC), coarse media without compost (CN), fine media with compost (FC) and fine media 

without compost (FN).] 
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Figure 6. Mean ammonium (NH4-N) concentrations in mg/L from the control roofs and various 

green roof treatments at the Watershed Research and Education Center in Fayetteville, Arkansas 

from September 2008 to March 2011. [Abbreviations: coarse media with compost (CC), coarse 

media without compost (CN), fine media with compost (FC) and fine media without compost 

(FN).] 
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APPENDIX: 

 

Date       Precip. (mm) 
 

09/15/08 80.20 

10/04/08 3.50 

10/07/08 32.90 

10/16/08 9.10 

10/23/08 25.20 

11/06/08 10.70 

11/10/08 20.90 

11/15/08 2.30 

11/24/08 2.60 

12/02/08 2.00 

12/04/08 0.10 

12/09/08 14.50 

12/19/08 1.80 

12/24/08 9.00 

12/27/08 30.40 

01/09/09 2.00 

01/27/09 54.60 

02/09/09 7.20 

02/11/09 36.70 

02/17/09 2.20 

02/26/09 6.20 

03/01/09 3.90 

03/08/09 0.80 

03/13/09 5.60 

03/21/09 30.20 

03/24/09 28.30 

03/27/09 7.90 

03/28/09 22.20 

03/30/09 8.70 

04/02/09 6.50 

04/04/09 2.20 

04/12/09 58.80 

04/19/09 21.30 

04/27/09 1.70 

04/30/09 10.90 

05/04/09 62.50 

05/06/09 27.10 

05/08/09 16.20 

05/10/09 15.20 

05/13/09 15.70 

05/15/09 14.00 

05/17/09 7.20 

05/26/09 25.13 

06/04/09 5.40 

6/10/09 18.90 

6/11/09 3.70 

6/13/09 27.90 

6/14/09 25.31 

6/15/09 6.10 

6/16/09 1.60 

6/26/09 0.10 

7/3/09 25.60 

7/6/09 26.80 

7/14/09 0.90 

7/22/09 29.30 

7/28/09 1.60 

7/31/09 30.60 

8/2/09 7.60 

8/6/09 24.10 

8/11/09 32.80 

8/19/09 7.10 

8/21/09 30.30 

8/28/09 6.40 

9/3/09 20.60 

9/7/09 21.30 

9/10/09 31.80 

9/14/09 1.50 

9/17/09 20.00 

9/18/09 6.30 

9/22/09 40.90 

9/24/09 2.70 

10/2/09 7.00 

10/7/09 13.50 

10/8/09 9.10 

10/9/09 68.00 

10/12/09 9.40 

10/14/09 11.60 

10/23/09 17.30 

10/27/09 21.10 

10/30/09 46.70 

11/17/09 23.70 

12/25/09 16.10 

1/22/10 27.40 

1/23/10 14.00 

2/3/10 12.20 

2/5/10 13.90 

2/8/10 8.50 

2/22/10 15.90 

3/23/10 38.90 

3/25/10 32.50 

4/3/10 23.00 

4/25/10 39.40 

5/11/10 28.10 

5/13/10 8.00 

5/14/10 52.30 

5/16/10 34.00 

5/19/10 1.50 

5/20/10 36.90 

5/26/10 33.00 

5/27/10 3.00 

6/7/10 22.10 

7/10/10 77.70 

7/13/10 114.70 

7/17/10 104.20 

9/2/10 42.10 

9/9/10 87.20 

9/14/10 23.60 

10/19/10 13.50 

10/24/10 20.10 

 

*Rainfall data provided by K.Brye (University of Arkansas) 



52 

 

Average Stormwater Runoff (mm) 

2009 

Date Control CC CN FC FN 

10/4/08 1.66 0.00 0.00 0.00 0.00 

10/7/08 33.27 20.81 21.67 15.09 9.33 

10/16/08 10.34 0.20 0.27 0.03 0.04 

10/23/08 24.07 16.52 16.83 12.23 8.22 

11/6/08 6.46 0.96 0.13 0.04 0.02 

11/10/08 22.85 14.76 15.41 12.04 6.47 

11/15/08 2.48 0.00 0.00 0.00 0.00 

11/24/08 3.14 0.00 0.02 0.00 0.01 

12/2/08 1.95 0.00 0.00 0.00 0.00 

12/4/08 0.03 0.00 0.00 0.00 0.00 

12/9/08 15.37 7.45 6.53 4.19 0.81 

12/19/08 2.83 0.00 0.02 0.00 0.00 

12/24/08 7.57 0.90 0.71 0.62 0.04 

12/27/08 25.46 19.50 20.10 17.85 14.71 

1/9/09 0.78 0.00 0.00 0.00 0.00 

1/27/09 49.14 36.04 38.22 30.58 25.66 

2/9/09 6.03 0.29 0.22 0.00 0.06 

2/11/09 35.91 30.44 30.62 27.82 22.82 

2/17/09 2.24 0.00 0.03 0.00 0.02 

2/26/09 6.05 0.25 0.15 0.01 0.04 

3/1/09 3.00 0.00 0.00 0.00 0.00 

3/8/09 0.53 0.00 0.00 0.00 0.00 

3/13/09 2.94 0.00 0.07 0.00 0.00 

3/21/09 33.73 19.23 19.67 17.21 12.28 

3/24/09 25.14 17.69 17.74 12.68 10.00 

3/27/09 7.16 2.35 2.79 2.71 2.68 

3/28/09 21.80 17.93 18.19 17.61 17.15 

3/30/09 8.25 2.58 3.20 1.66 0.92 

4/2/09 5.55 0.13 0.21 0.00 0.00 

4/4/09 1.98 0.00 0.00 0.00 0.00 

4/12/09 48.65 46.83 47.43 43.61 40.57 

4/19/09 20.75 12.65 13.54 8.99 7.32 

4/27/09 1.20 0.00 0.00 0.00 0.00 

4/30/09 11.56 0.40 0.43 0.08 0.06 

5/4/09 56.25 41.25 43.75 35.00 29.38 

 

 

Date Control CC CN FC FN 

5/6/09 33.59 31.93 32.20 32.08 31.85 

5/8/09 18.42 13.48 14.68 11.90 10.90 

5/10/09 13.59 11.66 11.66 11.92 12.36 

5/13/09 20.24 15.38 16.81 11.83 11.21 

5/15/09 12.48 9.19 9.58 8.89 8.77 

5/17/09 5.37 0.91 1.48 0.06 0.39 

5/26/09 22.82 8.94 9.99 3.48 2.09 

6/4/09 3.79 0.00 0.03 0.00 0.01 

6/10/09 17.77 10.54 9.53 3.97 1.69 

6/11/09 3.90 0.01 0.10 0.04 0.01 

6/13/09 27.30 22.30 24.31 18.85 19.46 

6/14/09 26.01 21.55 22.72 20.40 20.80 

6/15/09 6.03 5.27 5.49 5.54 5.86 

6/16/09 1.50 0.00 0.00 0.00 0.00 

6/26/09 0.33 0.00 0.00 0.00 0.00 

7/3/09 28.91 18.65 19.12 10.38 8.53 

7/6/09 22.29 14.64 17.19 12.21 11.81 

7/14/09 1.39 0.00 0.00 0.00 0.00 

7/22/09 30.45 19.39 20.17 12.21 10.14 

7/28/09 2.04 0.00 0.00 0.00 0.00 

7/31/09 27.27 17.69 18.33 10.94 10.00 

8/2/09 11.96 7.19 8.47 5.40 6.04 

8/6/09 33.68 26.01 27.95 20.88 19.11 

8/11/09 34.24 23.88 26.33 17.39 16.33 

8/19/09 6.62 0.16 0.15 0.00 0.01 

8/21/09 35.22 27.28 29.70 21.05 19.82 

8/28/09 7.05 0.26 0.20 0.00 0.03 

9/3/09 20.43 12.43 13.23 6.53 4.91 

9/7/09 23.55 15.34 16.96 10.58 12.69 

9/10/09 34.68 26.79 28.87 23.74 24.07 

9/14/09 1.78 0.04 0.03 0.00 0.00 

9/17/09 16.18 8.20 11.04 6.45 9.55 

9/18/09 4.07 1.27 1.60 0.61 0.17 

9/22/09 44.89 29.45 30.38 22.68 26.38 

9/24/09 5.69 0.47 2.60 0.00 0.00 
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Average Stormwater Runoff (mm) 

2010 

Date Control CC CN FC FN 

10/2/09 8.39 0.20 0.90 0.60 0.00 

10/7/09 13.30 11.46 10.30 5.99 6.68 

10/8/09 9.59 5.66 5.99 4.79 4.11 

10/9/09 62.56 43.19 45.91 35.46 32.60 

10/12/09 6.59 2.71 8.29 8.60 3.74 

10/14/09 12.58 3.66 11.38 11.26 6.28 

10/23/09 21.87 10.10 12.68 8.22 7.85 

10/27/09 20.05 15.29 16.88 15.67 14.63 

10/30/09 49.37 31.12 35.09 27.35 23.93 

11/17/09 27.46 14.59 15.55 10.48 10.97 

12/25/09 14.78 10.36 9.67 7.52 6.54 

1/22/10 25.15 15.89 17.02 12.88 11.56 

1/23/10 12.85 8.29 8.70 6.48 5.68 

2/3/10 11.20 7.22 7.58 5.66 5.15 

2/5/10 23.31 15.48 21.87 16.67 7.41 

2/8/10 10.58 4.19 2.60 6.59 2.93 

2/22/10 16.78 9.89 14.48 10.58 8.85 

3/23/10 51.62 35.86 35.55 31.15 33.03 

3/25/10 30.15 26.36 27.67 25.95 28.36 

4/3/10 26.36 13.18 14.83 9.38 9.37 

4/25/10 43.09 31.86 29.55 23.08 23.52 

5/11/10 32.75 20.97 21.22 13.67 13.75 

5/13/10 7.61 4.79 6.19 2.65 2.79 

5/14/10 49.94 32.98 35.50 27.51 23.92 

5/16/10 32.47 21.01 23.08 17.73 16.01 

5/19/10 9.69 1.20 0.00 0.00 0.00 

5/20/10 33.87 22.18 22.92 17.39 15.57 

5/26/10 34.24 22.41 22.61 17.38 15.74 

5/27/10 2.61 1.80 1.77 0.60 2.46 

6/7/10 23.97 11.82 11.78 5.96 8.76 

7/10/10 71.12 48.59 52.07 40.52 35.05 

7/13/10 105.52 71.73 77.45 59.81 57.94 

7/17/10 95.86 65.17 70.36 54.34 49.16 

9/2/10 52.72 36.45 38.68 28.15 27.39 

9/9/10 76.84 54.87 58.88 45.04 41.48 

9/14/10 25.96 15.95 21.11 10.91 11.50 
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