
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2012

Recognizing Patterns in Transmitted Signals for
Identification Purposes
Baha' A. Alsaify
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Information Security Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Alsaify, Baha' A., "Recognizing Patterns in Transmitted Signals for Identification Purposes" (2012). Theses and Dissertations. 371.
http://scholarworks.uark.edu/etd/371

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fetd%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/371?utm_source=scholarworks.uark.edu%2Fetd%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

RECOGNIZING PATTERNS IN TRANSMITTED SIGNALS
FOR IDENTIFICATION PURPOSES

RECOGNIZING PATTERNS IN TRANSMITTED SIGNALS
FOR IDENTIFICATION PURPOSES

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Engineering

By

Baha’ A. Alsaify
Jordan University of Science and Technology

Bachelor of Science in Computer Engineering, 2007
University of Arkansas

Master of Science in Computer Engineering, 2009

May 2012
University of Arkansas

Abstract

The ability to identify and authenticate entities in cyberspace such as users, computers, cell

phones, smart cards, and radio frequency identification (RFID) tags is usually accomplished

by having the entity demonstrate knowledge of a secret key. When the entity is portable

and physically accessible, like an RFID tag, it can be difficult to secure given the memory,

processing, and economic constraints. This work proposes to use unique patterns in the

transmitted signals caused by manufacturing differences to identify and authenticate a wire-

less device such as an RFID tag. Both manufacturer identification and tag identification

are performed on a population of 300 tags from three different manufacturers. A method-

ology to select features for identifying signals with high accuracy is developed and applied

to passive RFID tags. The classifier algorithms K-Nearest Neighbors, Parzen Windows, and

Support Vector Machines are investigated. The tag’s manufacturer can be identified with

99.93% true positive rate. An individual tag is identified with 99.8% accuracy, which is

better than previously published work. Using a Hidden Markov Model with framed timing

and power data, the tag manufacturer can be identified with 97.37% accuracy and has a

compact representation. An authentication system based on unique features of the signals

is proposed assuming that the readers that interrogate the tags may be compromised by a

malicious adversary. For RFID tags, a set of timing-only features can provide an accuracy

of 97.22%, which is better than previously published work, is easier to measure, and appears

to be more stable than power features.

This dissertation is approved for
recommendation to the
Graduate Council

Dissertation Director:

—————————————————————————–
Dale R. Thompson, Ph.D.

Dissertation Committee:

—————————————————————————–
Gordon Beavers, Ph.D.

—————————————————————————–
Jia Di, Ph.D.

—————————————————————————–
Roy McCann, Ph.D.

Dissertation Duplication Release

I hereby authorize the University of Arkansas Libraries to duplicate this dissertation when
needed for research and/or scholarship.

Agreed ——————————————————-
Baha’ A. Alsaify

Refused ——————————————————

Acknowledgments

This dissertation would not have been possible without the guidance and the help of several

individuals who in one way or another contributed and extended their valuable assistance in

the preparation and completion of this study. First and foremost, I would like to express my

utmost gratitude to my advisor, Dr. Dale R. Thompson, for his guidance, caring, patience,

and for providing me with the confidence to explore and research that I find interesting. Dr.

Thompson, despite your numerous academic and professional commitments, you helped me

to finish my master’s thesis and continued your support throughout my doctoral studies.

Dr. Jia Di, your suggestions, feedbacks, and positive attitude made it possible for this

work to be complete.

Dr. Gordon Beavers, your always open door policy, your patience, and your valuable

inputs made all the difference for the quality of this work.

Dr. Roy McCann, thank you very much for agreeing to be part of this work. Your

comments and suggestions made it possible to complete this work.

Dr. Senthilkumar, you helped me at the beginning of my doctoral studies. You were

always there whenever I asked for your assistance and inputs. Thank you very much for your

assistance throughout the years.

Last, but not least, I would like to thank my family for always being there for me and

for believing in me. Their patience and sacrifice will never be forgotten.

Baha’ A. Alsaify

Dedication

Dedicated to my late father.

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Background . 3

1.3.1 Radio Frequency Identification . 3

1.3.2 Classification . 7

1.3.2.1 K Nearest Neighbors . 8

1.3.2.2 Parzen Windows . 9

1.3.2.3 Support Vector Machines 11

1.3.3 Hidden Markov Models . 11

1.4 Dissertation Organization . 14

2 Related Work 15

2.1 Identifying RFID tags using minimum power response 17

2.2 Identifying RFID tags using certificate of authority 18

2.3 Identifying RFID tags using power and timing features 18

2.4 RFID tag counterfeit detection using timing features from transient responses 19

2.5 Physical unclonable functions . 20

3 Classification 22

3.1 Testing Environment . 22

3.2 Feature Descriptors . 23

3.3 Feature Extraction . 25

3.4 Feature Selection . 30

3.4.1 Preliminary Classification . 31

3.4.2 Features’ Histogram . 32

3.4.3 Features’ Correlation . 35

3.5 Features’ Ranking . 37

3.6 Classification Experiments and Results . 38

3.6.1 Performance Evaluation . 39

3.6.2 Enrolled/Unenrolled Tag Identification 42

3.6.3 Tag’s Manufacturer Identification . 44

3.6.4 Individual Tag Identification . 47

3.6.4.1 Identifying Tags From Manufacturer A 47

3.6.4.2 Identifying Tags From Manufacturer B 49

3.6.4.3 Identifying Tags From Manufacturer C 50

3.6.5 Results Discussion . 52

4 Hidden Markov Models 55

4.1 HMM Using Voltage Observations . 57

4.2 HMM Using Power Observations . 58

4.3 HMM Using Time Observations . 60

4.4 HMM Using Time and Power Observations 62

4.5 HMM Using Time and Power Observations In Separate Models 65

4.6 HMM Manufacturer Identification Results Discussion 67

4.7 Individual Tag Identification . 69

5 Signal Authentication using Fingerprints 72

5.1 Enrollment Process . 73

5.2 Verification Process . 75

5.3 Simulations and Experiments . 89

5.3.1 Experiments without decoys . 90

5.3.1.1 Effect of the number of features 90

5.3.1.2 Authentication when correct data is retrieved from the server 90

5.3.1.3 Incorrect authentication . 92

5.3.2 Experiments with decoys . 92

5.3.2.1 Authenticating tags in the presence of decoys and a normal

reader . 93

5.3.2.2 Authenticating tags in the presence of decoys and a compro-

mised reader . 94

6 Conclusions and Future Work 96

6.1 Summary . 96

6.2 Contributions . 98

6.3 Future Work . 99

Glossary 100

Bibliography 103

Appendix A 109

Appendix B 111

Appendix C 113

Appendix D 114

List of Figures

1.1 RFID Reader . 4

1.2 RFID Tag . 5

1.3 RFID System . 6

1.4 EPC Class-1 Gen-2 . 7

1.5 Hidden Markov Model Parameters . 12

2.1 PUF Authentication System. The flowchart on the left presents the enrollment

process, while the one on the right presents the authentication process. . . . 21

3.1 Conformance Test System . 23

3.2 RFID tag sample transmission . 24

3.3 LabView modification to record timing . 26

3.4 LabView modification to record time-voltage waveform 27

3.5 Histogram of the Number of Times a Feature Appears in Good Sets Based on

the Preliminary Classification Experiments Using the 1-NN Classifier Applied

to Manufacturer and Tag Identification . 34

3.6 Multiple Classes Confusion Matrix . 41

3.7 Enrolled/Unenrolled ROC Curves using 66/34 43

3.8 models ROC Curves using 66/34 . 47

3.9 Manufacturer A ROC Curves using 66/34 48

3.10 Manufacturer B ROC Curves using 66/34 50

3.11 Manufacturer C ROC Curves using 66/34 51

4.1 Time-voltage waveform sample . 56

4.2 ROC curves for HMM applied to the Manufacturer Identification Problem

using Raw Voltages as Observed Features . 57

4.3 ROC curves for HMM applied to the Manufacturer Identification Problem

using Power as Observed Features . 59

4.4 Voltage transitions between high and low ranges 61

4.5 ROC curves for HMM applied to the Manufacturer Identification Problem

using time as Observed Feature . 62

4.6 ROC curves for HMM applied to the Manufacturer Identification Problem

using time and power as Observed Features 64

4.7 ROC curves for HMM applied to the Manufacturer Identification Problem

using Time and Power as Observed Features in Separate Models 66

5.1 Enrollment process of the RFID authentication system 74

5.2 How to calculate the distance between feature vectors 77

5.3 Simple tag authentication process . 79

5.4 Proposed tag authentication process . 82

5.5 Gaussian Distribution Examples . 84

5.6 Threshold and Probability Relations . 87

List of Tables

3.1 1-NN Top-Ten Results for Tag Identification of Manufacturer A 32

3.2 Parzen Window Top-Ten Results for Tag Identification of Manufacturer A . 33

3.3 Correlation Analysis . 36

3.4 Feature Scoring of Feature when Identifying Manufacturer Models and Indi-

vidual Tags . 38

3.5 Confusion Matrix Layout . 39

3.6 Enrolled/Unenrolled AUC using 66/34 . 44

3.7 1-NN Enrolled/Unenrolled Confusion Matrix using 66/34 44

3.8 Enrolled/Unenrolled TPR Results using 10-Fold Cross Validation 45

3.9 Manufacturer Model Identification Confusion Matrices for Different Classifiers

using 66/34 . 46

3.10 Manufacturer Model Identification TPR Results using 10-Fold Cross Validation 46

3.11 Manufacturer A AUC using 66/34 . 48

3.12 Manufacturer A Tag Identification TPR and Accuracy Results using 5-Fold

Cross Validation . 49

3.13 Manufacturer B AUC using 66/34 . 50

3.14 Manufacturer B Tag Identification TPR and Accuracy Results using 5-Fold

Cross Validation . 51

3.15 Manufacturer C AUC using 80/20 . 52

3.16 Manufacturer C Tag Identification TPR and Accuracy Results using 5-Fold

Cross Validation . 52

4.1 Confusion Matrix for HMM applied to the Manufacturer Identification Prob-

lem using Raw Voltages as Observed Features 58

4.2 Manufacturer Identification TPR, Accuracy, and AUC Results Using Voltage

Observations . 58

4.3 Confusion Matrix for HMM applied to the Manufacturer Identification Prob-

lem using Power as Observed Features . 60

4.4 Manufacturer Identification TPR, Accuracy, and AUC Results Using Power

Observations . 60

4.5 Confusion Matrix for HMM applied to the Manufacturer Identification Prob-

lem Using Timing as Observed Feature . 61

4.6 Manufacturer Identification TPR, Accuracy, and AUC Results Using Time

Observations . 62

4.7 Confusion Matrix for HMM applied to the Manufacturer Identification Prob-

lem using timing and power as Observed Features 63

4.8 Manufacturer Identification TPR, Accuracy, and AUC Results Using timing

and power Observations . 64

4.9 Weight Matrix . 65

4.10 Confusion Matrix for HMM applied to the Manufacturer Identification Prob-

lem Using Timing and Power Observations in Separate Models 66

4.11 Manufacturer Identification TPR, Accuracy, and AUC Results Using Timing

and Power Observations in Separate Models 67

4.12 Tag Identification Results using HMM . 71

5.1 The affect of the number of features on the tag’s threshold and score 91

5.2 Simulation of authenticating 20 tags when correct data is retrieved from the

server . 91

5.3 Tag authentication with incorrect data retrieved 93

5.4 Authenticating tags with the presence of decoys 94

5.5 Authenticating tags in the presence of decoys and a compromised reader . . 95

List of Equations

1.1 Weighted k-NN . 9

1.2 Parzen Windows Estimator . 10

1.3 Parzen Windows Estimator with gaussian kernel 10

1.4 svm classifier . 11

3.1 Histogram Foundation . 33

3.2 Covariance . 35

3.3 Correlation . 35

3.4 Fisher Scoring . 37

3.5 Accuracy Performance Metric . 40

3.6 True Positive Rate Performance Metric . 41

3.7 False Positive Rate Performance Metric . 42

4.1 Power from a voltage sequence . 56

4.2 HMM weights . 65

5.1 Normalization Process . 76

5.2 Variance . 76

5.3 Weights Condition . 76

5.4 Weight Calculations . 76

5.5 Using Weights . 78

5.6 Gaussian Function . 83

5.7 Threshold as Accumulative Probability . 84

5.8 Probability of a specific distance occurring 85

5.9 Authenticity Relation . 86

5.10 Probability of a Decoy Happening . 87

5.11 Compromised Reader Relation . 88

5.12 Tag Authenticity Test . 88

5.13 Wrong Response For a Decoy . 89

Chapter 1

Introduction

Cyber security refers to security as it applies to computers and networks. It refers to the

security of any entity that communicates. Two main processes are key to cyber security:

authentication and identification. Authentication is the process of confirming or denying

that a claimed identity is correct by comparing the credentials of user/object with those

previously proven, stored, and associated with the identity being claimed. On the other

hand, identification is the process of discovering the true identity of an item from the entire

collection of similar items, which requires a one-to-many matching.

Classic authentication and identification techniques depend on using a key or a password

to identify or authenticate a certain entity, which can be a user, a computer, a smart card,

etc. The entity will transmit its key whenever it is required to verify its identity. This

approach has many assumptions. First, the entity is assumed to be secure enough so that it

can hold the secret key without disclosing it to an unauthorized party. Second, the entity is

assumed to be capable of performing complex encryption and decryption operations based

on an available key. These encryption and decryption operations require the entity to have

a large memory, a power supply capable of supporting these complex operations, and a

computational unit capable of performing the encryption and decryption operations under

predefined timing constraints.

Some entities lack the previous capabilities including RFID, smart cards, wireless sensor

networks, etc. Therefore, researchers are looking for ways to authenticate and identify objects

other than relying on their capabilities to hold secrets. Authentication and identification

techniques are moving away from what an object “has” toward what an object “is”.

1

1.1 Motivation

We can identify a specific object based on what it “has”, which means that the object

must maintain a secret so that it can be accurately identified among a collection of similar

objects. The secret key can be duplicated which will allow an unauthorized access to physical

or logical resources. To prevent this threat, many systems are moving away from secret key

authentication. Instead they authenticate and identify objects based on what they “are”.

The same transition has already happened with human authentication, which relies on the

anatomical or behavioral characteristics [51] that makes us different from each other such

as fingerprints [62][15], Iris scans [20], voice recognition [44], face recognition [11], and palm

prints [32].

The motivation of this work is to build a fingerprint for objects based on their physical

characteristics so that they can be identified by what they “are”. As a representative of

the objects to identify and authenticate, we use passive ultra-high frequency (UHF) radio-

frequency identification (RFID) tags. RFID tags communicate with the world that surrounds

it using radio signals, which are easy to capture and inexpensive to analyze. RFID tags

are challenging to use because of their constrained resources. The proposed identification

technique for RFID described in this work can be applied to other objects with wireless

communication capabilities.

There are several challenges of identifying RFID tag signals. Tags need to be as inexpen-

sive as possible so that they can be used in mass scale [33] [60]. Retail stores need to have an

inexpensive tag so that the added tag’s overhead will not affect the price of the goods they

are selling. Passive UHF RFID tags have no power supply; it gathers its required energy by

harvesting the energy of the carrier waves sent by the RFID reader. RFID tags have little

memory and few processing capabilities, which makes adding any encryption technique to

the tag a hard, if not an impossible, task given the current power and cost limitations.

2

1.2 Objectives

The objectives of this work are listed below:

1. Create a methodology for identifying signals with high probability that is scalable and

can be deployed efficiently;

2. Investigate and evaluate a set of performance metrics;

3. Investigate classification and pattern recognition techniques for the purpose of identi-

fying both the tag manufacturer and individual tags;

4. Investigate hidden Markov model and compare the performance with the results ob-

tained using classical classification techniques; and

5. Create a system that identifies and authenticates RFID tags even with the presence of

malicious or hacked readers.

1.3 Background

In this section, background information for this work is presented. The background includes

information about RFID technology, its usage, and operations. In addition, the theory and

usage of a set of pattern recognition techniques are provided.

1.3.1 Radio Frequency Identification

Radio frequency identification (RFID) is a wireless technology that is used to identify objects.

There are three main parts of any RFID system, a reader, a server, and a tag. The reader

(or interrogator) sends commands to tags. The reader is also responsible for receiving the

3

responses from the tags, demodulating, and decoding the tag’s transmission, and presenting

the tags response to the user in a way that will be easy to be understood. A low-power

RFID reader is shown in Figure 1.1. The second part of any RFID system is the server. The

server is responsible of collecting tag readings from the field via the reader(s), organizing

the collected reads, eliminating redundant reads if necessary, and presenting the data to the

system user in a concise and easy way to understand.

Figure 1.1: RFID Reader

RFID tags are responsible for receiving the commands from the reader, decoding them,

and responding with the appropriate data. An example of an RFID tag is shown in Figure 1.2.

Each RFID tag is composed of several components such as an antenna, a power supply, a

memory chip, and a microprocessor chip [43]. An example of an RFID system is provided

in Figure 1.3.

4

Figure 1.2: RFID Tag

RFID tags are classified based on their power source into three categories: active, semi-

active, and passive tags. Active RFID tags have a battery onboard, which means that they

can communicate over longer distances than other types and they are capable of performing

more complex operations. On the other hand, having a battery means that the tags will

consume more space and that they will be more expensive. Semi-passive tags have a battery

onboard but it is only used for running the onboard logical chip and sensors, not for com-

munication purposes, which means that the battery lasts longer than active tags [30][16].

The last category of RFID tags based on their power supply is called passive tags. Passive

RFID tags do not have a power supply onboard but they rely on the energy contained in the

reader’s carrier-wave. The process in which the passive tag gets its energy is called energy

harvesting [29]. Because passive tags do not have a dedicated power supply, they are small

in size and inexpensive. Therefore, they are widely used in many applications such as animal

tracking, inventory control, and access control.

RFID tags can be also categorized based on the frequency bands they are using. Several

frequency bands can be used in RFID communication including low-frequency (LF), high-

frequency (HF), and ultra-high-frequency (UHF). The focus of this work is on passive UHF

RFID tags that operate between 860 MHz and 960 MHz.

In order to control the communication data stream between the reader and the tag, a

5

Figure 1.3: RFID System

standard was introduced. EPCglobal is a non-profit organization that developed a standard

called EPCglobal Class-1 Gen-2 (C1G2) [1], which “defines the physical and logical require-

ments for a passive-backscatter, interrogator-talks-first (ITF), radio-frequency identification

(RFID) system operating in the 860 MHz - 960 MHz frequency range”. In EPCglobal C1G2,

the reader and the tag take turns in communicating with each other as shown in Figure 1.4.

The reader will select an individual tag to query based on an anti-collision protocol [14][67]

that is similar to the slotted Aloha wireless protocol [3][5]. Once a tag is selected, it sends its

handle (a 16-bit random number (RN16)) to the reader. This handle is used by the reader

for any future communication with the tag.

Because RFID technology does not need line-of-sight to operate alongside its inexpensive

6

Figure 1.4: EPC Class-1 Gen-2

price, made it a perfect candidate for many inventory and supply chain applications. RFID

technology is currently being used by large companies such as Walmart [12] to keep track

of inventory and is included in some goods in its retail stores. RFID is also being used in

many applications other than inventory control, such as:

� Contactless payment systems;

� Access control;

� Tracking assets in hospitals;

� Animal tracking and monitoring;

� Building management;

� Library services;

� Municipal solid waste management; and

� Enterprize feedback control.

1.3.2 Classification

Classification refers to a set of methods from which an object is mapped to a cluster of

similar objects. Classification is used to solve problems such as robotic vision, fingerprint

matching, voice recognition, and medical decision making. Classification techniques work

by creating a rule based on previously known objects. This rule is often called classifier.

7

Classification techniques can be divided into two main groups, rule-based and learning-

based [69]. Rule-based classifiers determine their final decision by comparing an overall

similarity score and a threshold value. Rule-based classifiers are good for capturing domain

knowledge and are applicable to many scenarios. Decision tree classifiers such as [52] [64]

[57] are categorized under rule-based classifiers. On the other hand, learning-based classifiers

depend on statistically creating the decision rule(s) based on the sample data. Users of the

learning-based approach need to explicitly provide classifier examples rather than just rules.

Support vector machines [18], k nearest neighbors (k-NN) [21], and Parzen windows [45] are

techniques that use the learning-based approach.

1.3.2.1 K Nearest Neighbors

K nearest neighbors (k-NN) is a non-probabilistic, non-parametric classification method that

classifies an unlabeled test sample based on its similarity with samples in the training set

[61][21]. k-NN is among the simplest of all classification and machine learning algorithms.

There are three main components that are needed so that k-NN can work correctly.

First, k-NN requires an integer k that represents how many close neighbors the algorithm

should use to formulate its final decision. Second, k-NN requires a distance metric that

measures the difference in a test sample and training sample. Finally, k-NN requires a set

of training samples. Several distance metrics can be used in k-NN such as the Euclidian

distance, Manhattan distance, and Hamming distance.

k-NN makes several assumptions. It assumes that the training and testing data is already

in the feature space. It assumes that each of the training samples consists of a feature vector

and a class label associated with it. In the simplest case, this class label can be either positive

or negative (binary classifier), but k-NN also works with multiple class labels (multi-class

classifier).

8

The most common k value in k-NN is 1. When 1 is used as k, the classifier is often

called 1−NN . What 1−NN means is that we need to find the closest training instance to

the test sample. Other common values are 3 and 5. If the value of k was even, then a draw

between two or more class labels may occur. In order to prevent that possible draw, weights

are added to the final decision of k-NN as shown in Equation 1.1, where d1 is the distance

to the closest training sample, dk is the distance to the kth closest training sample, and dj

is the distance to the jth closest training sample. The closest training sample will have the

highest weight and the kth training sample will have the lowest weight.

wj =

dk−dj
dk−d1

, dk 6= d1

1, dk = d1

(1.1)

k-NN is a simple approach that is easy to understand and use. The main drawback of

using k-NN is that it needs to compute the distance between the test sample and all of the

training samples and then select the closest k training samples to formulate its decision.

Having all training samples is the main challenge. If the number of training samples is

moderate, then k-NN will have a fast computation time and it will not require a large

memory, but it will have a larger error rate. On the other hand, if we use a large training

data set, the decision error will be minimal but the time and memory requirement will grow

large, which makes k-NN unusable for a large number of online and offline applications.

1.3.2.2 Parzen Windows

Parzen windows is a technique that was invented by Emanuel Parzen [45] [6]. The goal of

Parzen windows is to estimate the probability density function (PDF) from the training data-

set. The reason behind using the term window in the process name is due to the argument

9

that “if we want to estimate the value of PDF at observation x, we can place a window

function at x and determine how many training observations fall within the window, or

rather, what the contribution of each training observation to the window” [6]. The final score

of the Parzen classifier is the sum total of the contributions from the training observations

to the window. The Parzen window estimation formula is shown in Equations 1.2, where n

is the number of training observations, h is the smoothing parameter, Xi is the ith training

observations, x is the data point to be classified, and K is the kernel function.

f(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(1.2)

f(x) =
1

n

n∑
i=1

1

(h
√

2π)d
exp

(
−1

2

(
x− xi
h

)2
)

(1.3)

There are several choices for kernel functions. Gaussian, uniform, triangular, biweight,

and Epanechnikov are among the popular kernel functions. Equation 1.3 shows an example

of a Parzen windows estimator when Gaussian is being used as a kernel function. Trial-and-

error are the best way to determine the best kernel function to use since it differs based on the

problem. Other than the choice of the kernel function, the choice of the smoothing parameter

h (window width) is very important. Parzen windows evolved from histograms, in which the

smoothing parameter is used to determine the width of the bins. If h is selected to be large,

it will over-smooth the result, which means that some of the data will be hidden. On the

other hand, using a small value for h will under-smooth the results, which means that any

noise in the data will have an effect on the end classification result. The previous argument

demonstrates the importance of selecting the appropriate value of h since it directly affects

10

the end result.

1.3.2.3 Support Vector Machines

Support vector machines (SVM) [59][18][13] is a classification technique introduced by Vapnik

in 1995. The main idea behind SVM is that it maps the input vectors into some high

dimensional feature space Z through some non-linear mapping chosen a priori. In this space,

a linear decision surface (hyperplane) is constructed with special properties that ensure high

generalization ability of the network. Given a training set of N data points {yk, xk}Nk=1,

where xk ∈ Rn is the kth data training sample, yk ∈ R is the kth output class label, the SVM

formula has a form similar to that which is shown in Equation 1.4, where αk is a positive

real constant, b is a real constant, and Ψ(x, xk) depends on the type of SVM we are using

(linear
(
xTk x

)
, polynomial of degree d

(
xTk x+ 1

)d
, RBF SVM

(
exp

{
−‖x− xk‖22 /σ2

})
, or

two layer neural svm
(
tanh

[
kxTk x+ θ

])
).

f(x) = sign

[
N∑
k=1

αkykΨ(x, xk) + b

]
(1.4)

Using Equation 1.4, SVM generates a set of hyperplanes that separates the training

set based on its labels. The main problem that SVM tries to solve is finding an optimal

distance between the hyperplane and every other class. This distance is called margins and

the problem SVM tries to solve is called margin maximization.

1.3.3 Hidden Markov Models

Hidden Markov model (HMM) [54] is a technique that is used for pattern recognition. In

HMM if there exist i number of classes to classify the test sample into, then i models must

11

be built. Figure 1.5 shows conceptually what each of the models should look like.

S1 S2 S3

O1 O2

a12

a13

a32

a31

a21 a23

b11

b21 b31
b12 b22

b32

π1

π2
π3

Figure 1.5: Hidden Markov Model Parameters

In order to use HMM efficiently, the system to be modeled must have its output quantized

into an observation stream. Observations can be anything that results from the system when

it runs. Observations can be the result of a series of coin tosses (head or tails); it can be the

result of throwing a rolling dice for several times (1-6); it can be a voltage-time waveform

that results from processing some speech patterns, etc.

As Figure 1.5 shows, any HMM is built using a set of probabilities, a set of states,

and a set of observations. The states are the engine that runs the model. Each state will

generate a possible observation. The model keeps running until the appropriate number of

observations are generated. Once the observations are generated, the resultant observation

stream is compared with the test sample stream to determine if they are close. There are 5

12

elements for any HMM:

1. N , the number of states in the model. In general, the states are interconnected in a

way that allows any state to reach any other state;

2. M , the number of distinct observation symbols per state;

3. The state transition probability distribution A =
{
aji
}

, where aji is the probability that

the current state is i and the next state for the system to be in is j;

4. The observation symbol probability distribution in state j, B = {bj (k)}, where bj (k)

is the probability that the kth observation will appear at state j; and

5. The initial state distribution π = {πi}, where πi is the probability that the model will

initially start at state i.

To apply HMM, three main problems are solved:

1. Given the observation sequence O = O1O2O3...OT , and a model λ = P (O|λ), what is

the probability that the observation sequence was generated using the model?;

2. Given the observation sequence O = O1O2O3...OT , and a model λ, how to select a

corresponding state sequence Q = q1q2q3...qT , which best explains the observation

sequence?; and

3. How to adjust the model parameters λ = (A,B, π) to maximize P (O|λ)?

For more information regarding the mathematical models that are responsible for solving

the previous problems please refer to [54][7][63].

One of the issues that arises when using HMM is how to initialize all of the model

parameters. To solve this problem, researchers often initialize the model parameters using

13

a uniform distribution. All the probabilities will be equivalent to each other while some

rules hold in both the initialization and optimization steps. The first rule that needs to

hold true is that the sum of probabilities for the model moving to any state j from state

i is equal to 1
(∑N

j=1 a
j
i = 1

)
. The second rule that must hold true is that the sum of

initial probability π must be equal to 1
(∑N

i=1 πi = 1
)

. Finally, the summation of the all

the possible observations at state i must be also equal to 1
(∑T

j=1 bi (j)
)

, where T is the

number of distinct observations that can be generated at state i.

To classify a new observation sequence, a HMM for each of the possible classes is gen-

erated λ1λ2...λl, where l is the number of classes (patterns). Each of the available models

describes only one of the classes. When we evaluate the new observation sequences O,

P (O|λ1)P (O|λ2)P (O|λ3)...P (O|λl) must be computed. The model with the maximum prob-

ability i assumed to be the one that can generate the observation sequence O and thus O

belongs to that model.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. First, related work in the area of

identifying and authenticating RFID tags is presented in Chapter 2. In Chapter 3, the

feature extraction, feature selection, and the classification experiments are presented. The

work on hidden Markov models is provided in Chapter 4. Signals authentication using the

fingerprints is presented in Chapter 5. Finally, the conclusions and the planned future work

are presented in Chapter 6.

14

Chapter 2

Related Work

Fingerprinting is the process of creating a unique identifier that can be used to accurately

identify and/or authenticate an object. The fingerprinting process can be applied to any

object as long as the result can uniquely identify that object. For example, researchers

introduced the idea of fingerprinting an official paper (or any paper) by measuring the three

dimensional paper’s surface using commodity scanners, and without modifying the document

in any way [17]. The authors of [17] demonstrated that it is possible to generate a fingerprint

of a document using a flatbed scanner coupled with the appropriate software. The proposed

system can be used like a digital signature to authenticate official and important documents.

Bluetooth networks can also have a fingerprint. In [26], an intrusion detection system

that uses radio frequency fingerprints (RFF) for profiling, Hotelling’s T 2 for classification,

and a decision filter is introduced. The transient portion of the exchanged signal is used to

identify a bluetooth transceiver. The reason behind using the transient response is because it

depends on the hardware of the transceiver, which makes it hard to replicate. Features such

as frequency, amplitude, and phase are extracted. For each transceiver, multiple fingerprints

are created and the outliers are removed. K-means clustering technique of [39] can be used

to select a representative set of the enrolled fingerprints. One of the issues this work had

to deal with is the presence of noise and interference, which may lead to errors in the final

decision making process. To work around the errors, a set of fingerprints are independently

classified and a decision filter is applied to determine the final decision based on multiple

observed fingerprints.

Additional work that aims to enhance bluetooth security through fingerprints is pre-

15

sented in [46]. The purpose is to allow bluetooth devices manufacturers to implement a user

friendly, and efficient intrusion detection and prevention systems. The radio frequency (RF)

fingerprint depends on the transient phase of the bluetooth transceiver signal, which lasts an

interval between 2 - 10 ms. The proposed system is a local system that is designed to work

within a single company in a single building that includes a bluetooth enabled server at a

fixed location. The server has the role of saving all the fingerprints of the legitimize blue-

tooth devices. Bluetooth devices have the option of not using the system; but if they want

to use the system, all communication must go through the server. The system is efficient

since it requires small physical size (the server), all intensive operations are taking place at

the server, and no modifications are required on the bluetooth devices.

Another form of fingerprinting physical devices is presented in [34]. In this work, ethernet

cards are fingerprinted by exploiting small deviations in the card’s hardware that appear as

differences in the clock skews. The technique does not require any modification of the card’s

hardware, and can be employed without the knowledge and/or cooperation of the card itself.

TCP timestamps, periodic activities, or ICMP timestamps are used to measure the clock

skew. Fourier transform is used to extract the time skew, which is independent of the

distance, access technology, and topology. The system was demonstrated to work well over

international networks.

Cellular networks use RF fingerprinting to prevent fraud. According to [55], Corsair

communications provides an RF fingerprinting system for cellular networks. RF characteris-

tics are extracted and used as fingerprints. Also, TRW Inc. had developed a similar system

that is used by the military to track enemies radio signals by recognizing these fingerprints.

In the rest of this chapter, related work on identifying and/or authenticating RFID

tags is presented. RFID technology is different than the previously discussed technologies

(Bluetooth, cellular networks, etc.). From here on we will focus on passive RFID tags that are

16

characterized by having very constrained resources such as power, computation, and memory.

Having constrained resources makes the identification and authentication problems harder

than systems with high-end resources. For example, having limited resources such as memory

and power makes it hard to implement security measures to assist with the identification

and authentication process.

2.1 Identifying RFID tags using minimum power response

In [49] and [48], the authors present a way to fingerprint passive UHF RFID tags based

on their minimum power response measured at multiple frequencies. The minimum power

response was measured using a Voyantic Tagformance Lite system [38] in an anechoic cham-

ber, which was designed for best tag placement on objects. Using an anechoic chamber

means that all the experiments are conducted in a controlled RF environment. Before each

experiment, the system is calibrated using a calibration tag.

To measure the minimum power response, they use a bottom-up algorithm that sends

signals to the tag. The power of the sent signals starts at -20 dBm and keeps incrementing by

0.01 dBm until the tag responds. When the tag response is detected, the power of the signal

at that instant is recorded and is considered to be the minimum power response. Frequencies

that range from 860 MHz to 960 MHz are tested on 100 passive RFID tags. Each of the

tags is measured 6 times. Two-way analysis of variance (ANOVA) [24] is applied on the

gathered data. It shows that both the frequency and the particular tag significantly affect

the minimum power response. The authors use the k-NN classifier based on the minimum

power response. They are able to classify the tags with an average true positive rate (TPR)

of 90.5% for two manufacturers.

17

2.2 Identifying RFID tags using certificate of authority

Fingerprinting RFID tags by adding a random scattering structure to the tag is introduced in

[35]. These structures consist of a difficult to replicate, random arrangement of a conductive

material, such as copper wire, mixed with a firm dielectric material, such as plastic PET

mold, that produces a unique and repeatable response. The additional structure renders

RFID tags physically unique and is hard to replicate. The authors measure the near-field

response of the added structure when creating the fingerprint. The distance between the

reader’s antenna and the tag has to be very close, between 1mm and 8mm. A misalignment

noise in the readings exists because of mounting issues. In order to verify that the fingerprint

acquired works, a binary classification problem is assumed.

Kernel Density Estimation (KDE) [53] is used to estimate the underlying distribution

of the fingerprints. The results of the classification show that the probability to confuse a

fake tag with a real one is less than 10−200 if the same copper-based structure is used and

that probability will be reduced to 10−300 considering all fingerprints. The disadvantage of

this work is that the distance between the reader antenna and tag has to be very close when

measuring unlike in our work.

2.3 Identifying RFID tags using power and timing features

In [68], timing and power features extracted from UHF RFID tag for identification purposes

is discussed. A population of 70 tags from three different manufacturers is used. A special-

built RFID reader is used to challenge the tags by initiating an inventory process. RF

features, such as power and timing, are extracted by measuring the tag’s (RN16) preamble

sent by the reader as part of the tag’s reply to the inventory command.

18

The main goal of the work in [68] is to study the feasibility and the accuracy of physical-

layer identification and classification of passive UHF RFID tags. The experimental setup

consists of a special purpose tag reader for signal acquisition, and a feature extracting and

matching module. Between the performed experiments, the tag is powered down and is

assumed to have lost all of its stored energy before being activated again for the next exper-

iment.

The first experiment that is conducted is the extraction of the time interval error (TIE)

feature. The TIE measures how far each active edge of the clock varies from its ideal position.

As time goes by, a constant increase in the TIE (δTIE) was observed. This (δTIE) value has

been considered as the timing feature to be used for identification and classification. Power

features are also extracted. The average baseband power
(
PB

)
of the acquired RN16 is

calculated. PB relates the backscatter power transferred from the tag to the reader during

data modulation phase. The results of the classification experiments demonstrate that the

TIE has an accuracy of 71.4% while the average baseband power has an accuracy of 43.2%.

The experiments also demonstrate that combining the time and power features results in a

98.7% accuracy. In addition, it shows that the timing results are stable but the power results

are not stable across different configurations. Finally, the spectral feature method from [19]

is applied to UHF tags in [68] resulting in an accuracy of 99.6% but the results are not stable

at varying distances.

2.4 RFID tag counterfeit detection using timing features from transient re-

sponses

Work on fingerprinting HF RFID tags is presented in [56]. Since HF RFID tags are used,

inductive coupling, rather than radiation or backscattering, is the primary electromagnetic

transmission mechanism. A closed loop test system is used to test the RFID tags. In the test

19

setup, a computer and a commercial RFID reader provide the digital commands necessary

to advance a reader-tag transaction. The computer initiates the transaction via the reader,

and it keeps on recording the electromagnetic field measurement of that transaction.

The authors extract timing features from the transient response of the tag as well as

frequency and phase components. The techniques are tested on a set of 20 RFID smart

cards. There are zero classification errors in their small sample size. The features in [56]

are measured in the HF frequency band and in the near field unlike our measurements that

are from the UHF frequency band and in the far field. Therefore, the distance between the

reader antenna and tag is necessarily smaller than the distances in our measurement.

2.5 Physical unclonable functions

Physical unclonable functions (PUFs) [58] are innovative circuit primitives that extract se-

crets from the physical characteristics of integrated circuits rather than storing them in a

digital memory. PUF is a way to fingerprint IC chips by generating volatile secret keys for

cryptographic operations. These volatile secret keys can only be attacked when the chip is

powered on, which makes attacking the volatile memory to discover the secret key a much

harder problem than attacking a non-volatile memory that stores secret keys.

PUFs are functions that are embedded within the chips to be authenticated. PUF maps

a set of challenges to a set of responses based on an intractably complex physical system.

The function can only be evaluated with the physical system, and is unique for each physical

instance.

To authenticate an RFID tag using PUFs, the tag must go through and enrollment phase

in which a trusted party applies a set of challenges to the PUF and records the response,

which can be either stored at a database (off-line authentication) or directly on the tag (on-

20

line authentication) as seen in Figure 2.1. During verification, a random challenge (from the

set of challenges that the tag was subjected to at enrollment phase) is sent to the tag. The

tag’s response is recorded and compared with the one that was previously stored (from the

enrollment phase). If the tag’s response matches the one that was previously recorded, then

the tag is assumed to be authentic.

Figure 2.1: PUF Authentication System. The flowchart on the left presents the enrollment
process, while the one on the right presents the authentication process.

21

Chapter 3

Classification

In this section, the set of experiments that are conducted for RFID tag identification is

discussed. We start by describing the setup used for the experiments. An overview of the

testing environment and the methodology is provided. The extracted features and the steps

that have been taken to finalize the feature set are presented. We conclude this section by

providing the final classification results for identification of the tag manufacturer and for

individual tag identification.

3.1 Testing Environment

All the measurements are performed using a specialized RFID conformance test system,

which is shown in Figure 3.1 [2]. This programmable conformance test system is capable of

sending valid and invalid commands to test how will the tags respond. The conformance test

system is capable of capturing the response from the tags, processing these responses, and

extracting important features for fingerprinting. An example of the captured transmission

is shown in Figure 3.2. The conformance test system includes a 2.7 GHz RF up-converter,

a 2.7 GHz RF down-converter, and an FPGA based IF transceiver.

In order to mimic real world environment, no special precautions are taken when mea-

suring the tags. In other words, the measurements are taken in a noisy environment, where

thermal fluctuations occur, cell-phone noise is available, WiFi noise is present, and RF noise

occurs in a random fashion. The only restriction we apply while measuring the tags is the

distance between the reader antenna and the tag to be tested. In all the experiments, the

22

Figure 3.1: Conformance Test System

distance between the reader antenna and the tag is fixed. Tags from three different man-

ufacturers are being tested. For each manufacturer, 100 tags are measured. Each tag was

measured for 5 times. A total of 1500 overall measurements are gathered. After each of the

measurements, the tags are assumed to have lost all of the energy it stored in the previous

measurement.

3.2 Feature Descriptors

Each RFID tag is characterized by a set of features. These features are used by the classi-

fier’s algorithm to determine if the presented tag features match the enrolled tag features.

23

Figure 3.2: RFID tag sample transmission

Therefore, the chosen features will be the main factor in determining the performance of the

classifier. Adding more features does not necessarily improve the performance of the classi-

fier. In fact, adding more features can increase the noise in the data. Therefore, choosing

features is usually a two-step process, that is, feature extraction and feature selection.

In the proposed methodology, regular commands are sent to the RFID tags by the

conformance test system, which acts as a specialized reader, and the response from the tags

is measured and recorded. The reader demodulates the received transmission and extracts

the features, which include timing, voltage, and power measurements. Several high-level

observations have been discovered:

1. For each of the tested tag manufacturers, some tags have large variance in the time

needed to send data to the reader. For example, the tags from Manufacturers A and

24

B alternate between two different timing delays;

2. Tags from the same manufacturer tend to have the same transmission time range; and

3. There are differences in features among tags, especially in timing and power measure-

ments.

Given the previous observations, we hypothesized that we could distinguish tags by their

measured features if we determined good combinations of these features. In other words,

if we are given enough features and enough training data we will be able to identify the

manufacturer and/or the individual tag identity of the tag that is being tested.

3.3 Feature Extraction

Using the custom built reader’s software, we can focus our attention on any part of the tag’s

response. We choose to focus on the tag’s transmission of the PC+EPC+CRC as Figure

3.2 shows a sample for that transmission. The reason for selecting the PC+EPC+CRC is

because it can be repeated as many times as possible and it is a long transmission. This

gives the extracted features the highest possibility to be distinct among different tags. Long

transmissions have higher probability of exhibiting distinct patterns than short transmissions.

The data analysis software we use generates most of the features we needed such as,

power, and timing features. Other features, such as actual time-voltage waveform, can not

be generated from the software as is. In order to record actual time-voltage waveform,

we modified the software. The performed modification are shown in Figure 3.3 where we

added recording hooks to record when the PC+EPC+CRC starts and stops. The second

modification we did is shown in Figure 3.4 where we added a recording hook to record the

entire reader-tag communication session.

25

Figure 3.3: LabView modification to record timing

The extracted features can be categorized into three groups.

� Power features: These features represent the power measurement that are acquired

from the PC+EPC+CRC transmission;

26

Figure 3.4: LabView modification to record time-voltage waveform

� Timing Features: These features represent how long will it take the tag to perform

a certain operation; and

� Voltage Features: These features represent information that is gathered from the

tag’s response time-voltage waveform of the demodulated signal.

A total of 14 features are acquired. The following is a list of these features with a short

description of each. In the rest of this dissertation, we will refer to the features by their

number in the list.

1. PC+EPC+CRC Transmission time: It is measured from the demodulated wave-

form. This is the time it takes for the tag to transmit its protocol-control information

(PC), EPC, and cyclic-redundancy check (CRC), after it is queried by a reader and

is measured in microseconds. The PC+EPC+CRC sequence is the most common se-

27

quence that a tag responds with when identifying itself. Typical measurements are

500-575 microseconds;

2. PC+EPC+CRC Amplitude: It is measured from the demodulated waveform. This

is the equivalent DC component of the PC+EPC+CRC transmission and is measured

in Vrms. Typical measurements were 3.278 millivolts RMS (mV rms);

3. PC+EPC+CRC Power: It is measured from the demodulated waveform. This

is the received power of PC+EPC+CRC that is transmitted by the tag and is mea-

sured in dBm 50, which means dBm at 50 ohm impedance. It is derived from the

PC+EPC+CRC Amplitude. Typical measurements are −43 dBm 50;

4. First Random Number T1: It is measured from the demodulated waveform. This

is the time delay from the end of the Query command by the reader to the beginning

of the 16-bit random number transmitted by the tag and is measured in microseconds.

Typical measurements are 35-40 microseconds. T1 refers to the time the tag needs to

recharge after it responds to the reader;

5. PC+EPC+CRC T1: It is measured from the demodulated waveform. This is

the time delay from the end of the ACK by the reader to the beginning of the

PC+EPC+CRC transmitted by the tag and is measured in microseconds. Typical

measurements are 35-40 microseconds;

6. Second Random Number T1: It is measured from the demodulated waveform.

This is the time delay from the end of the request from the reader for a new handle

after it receives the PC+EPC+CRC to the beginning of the new 16-bit random number

transmitted by the tag and is measured in microseconds. Note that the conformance

test system is programmed to ask for another handle from the tag after it receives the

PC+EPC+CRC. Typical measurements are 35-40 microseconds;

28

7. Power in Channel: It is measured from the frequency spectrum. This is the power

received by the reader from the tag in an RF channel while the tag is transmitting the

PC+EPC+CRC and is measured in dBm. It is the power in the 500 KHz channel at

which we take the measurements. We fix the frequency to be 915 MHz. Therefore,

the channel is 915 MHz +/- 250 KHz, or 500 KHz wide. A typical measurement is

−508.7m dBm or −0.5087 dBm;

8. Power in Upper: It is measured from the frequency spectrum. This is the power

received by the reader from the tag in the channel above the measured RF channel

while the tag is transmitting the PC+EPC+CRC and is measured in dBm. We take

measurements in the 500 KHz channel that has a center frequency of 915 MHz. There-

fore, the Power in the Upper is the power in the channel with a center frequency of

915 MHz + 0.5 MHz. A typical measurement is −40 dBm;

9. Power in Lower: It is measured from the frequency spectrum. This is the power

received by the reader from the tag in the channel below the measured RF channel

while the tag is transmitting the PC+EPC+CRC and is measured in dBm. We take

measurements in the 500 KHz channel that has a center frequency of 915 MHz. There-

fore, the Power in the Lower is the power in the channel with a center frequency of 915

MHz - 0.5 MHz. A typical measurement is −40 dBm;

10. Power Received: This is the power received by the reader from the tag at the base

frequency of 915 MHz +/- 1.5 MHz, a 3 MHz channel, and is measured in dBm.

In other words, this is the total power received in a 3 MHz channel with the reader

frequency centered in the channel. For example, we measure −0.476 dBm from 915-1.5

MHz to 915+1.5 MHz, which is larger than the Power in Channel feature;

11. Voltage Maximum in PC+EPC+CRC Transmitted Data: This is the maxi-

mum voltage received by the reader from the tag and is measured in volts;

29

12. Voltage Minimum in PC+EPC+CRC Transmitted Data: This is the minimum

voltage received by the reader from the tag and is measured in volts;

13. Voltage Variance in PC+EPC+CRC Transmitted Data: This is the variance

of the voltage received by the reader from the tag and is measured in volts squared;

and

14. Voltage Standard Deviation in PC+EPC+CRC Transmitted Data: This

is the standard deviation of the voltage received by the reader from the tag and is

measured in volts.

3.4 Feature Selection

Features selection refers to the process in which a subset of the available features will be

used in classification experiments. One might wonder why the need for feature selection? If

we used all the available features, will it not be better than using a subset of features?

Many issues might arise from using all of the features. First, using all the features will

require using large memory to store each of the object’s feature descriptor array. Processing

all the features requires substantial computation and processing capabilities, which in turn

requires longer time to compute. Finally and most importantly, having all features available

does not necessarily result in the best performance. The previous phenomenon is known as

the “curse of dimensionality” [28].

For the previous reasons, we can reduce the number of features [36] using many techniques

such as principal component analysis (PCA) [66], and linear discriminant analysis (LDA)

[23][40]. In our work, we started by testing all the feature as shown in Section 3.4.1 to

determine which of the features contributes greatly in discriminating between tags and which

features do not. After that, we tested the correlation between the different features to

30

eliminate the ones that are closely related as shown in Section 3.4.3.

3.4.1 Preliminary Classification

In order to have an initial idea on which of the features affects the classification results, some

preliminary classification is performed. With preliminary classification we train and test the

k-NN (k = 1, 3, and 5), Parzen windows, and SVM classifiers on the features. We train the

classifiers using 66% of the available data and we test the classifiers performance using the

remaining 34% of the data. The previous balance between the training and testing data is

referred to as 66/34.

We apply the classifiers to all possible features combinations Cd
m =

(
d
m

)
for both the

manufacturer and tag identification problems. Therefore, there are four sets of experiments.

In the manufacturer identification problem, when presented with a tag, we classify it as

belonging to one of the three enrolled manufacturers, A, B, or C. In addition, we have three

sets of experiments for the tag identification problem, one for each of the three manufacturers.

In the tag identification problem, when presented with a tag from a particular manufacturer

we classify it as belonging to a particular enrolled tag. We decided that performing the

tag identification problem within a set of tags from one manufacturer is a more difficult, or

worst-case, test of tag identification.

For each classifier in each of the four sets of experiments, we calculate the true positive

rate (TPR) and we identify the top-ten set of features based on this rate. The TPR is

defined in terms of the number of true positives (TP) and the number of false negatives

(FN), TPR = TP
TP+FN

. All of the performance evaluation terms will be described in depth

in Section 3.6.1.

For both manufacturer and tag identification problems, 1-NN, 3-NN, 5-NN, and Parzen

31

Window have reasonable TPRs. However, SVM does not perform as well for either manufac-

turer or tag identification problems. In the tag identification problem, SVM performs poorly

with less than 50% TPR and is computationally intensive. The manufacturer identification

problem appears to be easier for all classifiers with many of the classifiers identifying the

correct manufacturer without making any classification error. The tag identification prob-

lem for the three manufacturers is more difficult but for certain sets of features the TPR is

above 77% and for some classifiers above 95%. Tables 3.1 and 3.2 show the top-ten set of

features for tag identification of manufacturer A, when classifying with the 1-NN and Parzen

Window classifiers, respectively. Note that adding more features does not necessarily result

in better performance (curse of dimensionality), and none of the sets have all 14 features.

This gives us evidence that we can reduce the number of features without compromising the

classifier’s performance. The 1-NN classifier performs best in all four sets of experiments so

it is chosen for determining the final feature set.

Table 3.1: 1-NN Top-Ten Results for Tag Identification of Manufacturer A

True positive rate Features responsible
99% 1 2 7 8 11 12 13 14
98% 1 2 7 9 10 12 14
97% 1 3 6 7 8 9 13 14
97% 1 3 6 7 8 9 12
97% 1 3 6 7 8 9 10 14
97% 1 3 4 6 7 8 10 12 13
97% 1 2 7 9 10 11 12
97% 1 2 7 8 10 11 12 14
97% 1 2 7 8 9 10 12 13
97% 1 2 5 7 8 10 12 14

3.4.2 Features’ Histogram

After gathering the top-ten results for each of the classifiers (k-NN, Parzen windows, and

SVM) we noticed that 1-NN had the best performance. Since 1-NN had the best performance,

we used its results for tag identification problems to determine how many times each of the

32

Table 3.2: Parzen Window Top-Ten Results for Tag Identification of Manufacturer A

True positive rate Features responsible
81% 2 7 9 10 11 12
80% 3 7 8 9 10 14
80% 2 7 9 12
79% 2 7 8 12 13 14
79% 2 7 8 11 14
79% 2 7 8 9 13
79% 2 7 8 9 10 12
78% 3 7 8 9 10 12 14
78% 2 7 8 10 11
77% 3 4 6 7 8 9 10 12

features appear in a set that had high TPR. To determine the number of times a certain

feature appear in the top-ten results, a histogram is used.

Histograms are a graphical representation showing visual impression of the data distri-

bution [47]. Histograms are used to plot the density of the data and often used for density

estimation, which is another name for Parzen windows classifier. The mathematical foun-

dation of any histogram can be summarized as shown in Equation 3.1 where, n is the total

number of observations, k is the total number of bins, and mi is the function of the histogram.

n =
k∑
i=1

mi (3.1)

Figure 3.5 shows the histogram of the number of times that a feature appears in the top-

ten set of results for manufacturer identification, tag identification for manufacturer A, tag

identification for manufacturer B, and tag identification for manufacturer C. The histogram

shows a strong overlap of features that are good for identifying both the manufacturer and

the individual tag. Even though there are slight differences, we decided that having the

ability to identify both a manufacturer and tag is desirable.

33

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

012345678910

F
ea

tu
re

Frequency of Occurrence

M
an

uf
ac

tu
re

r
ID

T
ag

s
ID

 fr
om

 A
T

ag
s

ID
 fr

om
 B

T
ag

s
ID

 fr
om

 C

Figure 3.5: Histogram of the Number of Times a Feature Appears in Good Sets Based on the
Preliminary Classification Experiments Using the 1-NN Classifier Applied to Manufacturer
and Tag Identification

34

3.4.3 Features’ Correlation

The main goal behind applying correlation on the available features set is to determine the

dependencies among the features, thus, eliminating any redundant feature. Correlation is

a measure of how much two variable are related. After applying the correlation analysis

on a set of variable (features) n, a correlation matrix n × n is generated. The values in

the correlation matrix range between +1 and -1. A value of +1 in the correlation matrix

means that there is a perfect positive correlation (if one variable increases, the other one

will increase by the same ratio as well) between the two variables, which are represented by

the row and column numbers. A value of -1 in the correlation matrix means that there is

a perfect negative correlation (if one variable increases, the other variable will decrease by

the same ration as well) between the two variables, which are represented by the row and

column numbers.

C(i, j) = E [(Xi − µi) (Xj − µj)] (3.2)

ρ(i, j) =
C(i, j)√

C(i, i)C(j, j)
(3.3)

To build a correlation matrix, we first calculate the covariance matrix and use its elements

for the correlation calculations. Equation 3.2 is usually used to calculate the covariance of

two elements i and j. In Equation 3.2, Xi refers to element i and µi refers to the mean of

element i over all readings. The correlation matrix is then built using Equation 3.3. After

applying the correlation analysis on the feature set we have, several dependencies appeared

35

Table 3.3: Correlation Analysis

Features Correlation Score
Feature #2 and Feature #3 0.9946

Feature #4, Feature #5, and Feature #6 0.859 - 0.875
Feature #7 and Feature #10 0.9944
Feature #11 and Feature #12 0.9978
Feature #13 and Feature #14 0.9955
Feature #8 and Feature #9 0.9696

as shown in Table 3.3.

By looking at Table 3.3, we notice the following

1. The correlations between the First Random Number T1 (feature #4), the PC+EPC+

CRC T1 (feature #5), and the Second Random Number T1 (feature #6) are between

0.859 to 0.875 because it is dependant on the power supply unit of the tag;

2. There is a high correlation between the PC+EPC+CRC power (feature #3), and the

amplitude of PC+EPC+CRC (feature #2). The reason behind such high correlation

is because the power is actually derived from the amplitude; and

3. There is a high correlation between the voltage variance in PC+EPC+CRC transmit-

ted data (feature #13), and voltage standard deviation in PC+EPC+CRC transmitted

data (feature #14). Since the standard deviation is derived from the variance, the cor-

relation between them is high.

Based on the results of the histogram and the correlation analysis, we decided to reduce

the feature set. Instead of using all 14 features, only 7 features will be used in the clas-

sification experiments in Section 3.6. The following list shows the final 7 features we are

using.

� PC+EPC+CRC Transmission Time (original feature #1);

36

� PC+EPC+CRC Power (original feature #3);

� Second Random Number T1 (original feature #6);

� Power in Channel (original feature #7);

� Power in Lower (original feature #9);

� Voltage Minimum in PC+EPC+CRC Transmitted Data (original feature #12);

and

� Voltage Variance in PC+EPC+CRC Transmitted Data (original feature #13)

3.5 Features’ Ranking

After determining which features to use, we need to determine the significance of each of

the features as it applies to identification. Therefore, we ranked the features using a feature

scoring technique. Feature scoring is a feature selection technique that associates a score

with each of the features. For example, to select d features out of m original features, we

can use feature scoring to select the features with the highest (or lowest) d scores. In this

work, we are using a well-known approach that is based on Fisher criterion [25][27].

The key idea behind Fisher Scoring is to find a subset of features such that the data

points in different classes are as far as possible from each other, and the data points in the

same class are as close as possible. The Fisher Score of the jth feature is computed as:

F (xj) =

∑c
k=1 ηk(µ

j
k − µj)2∑c

k=1 ηkσ
2
k

(3.4)

37

Table 3.4: Feature Scoring of Feature when Identifying Manufacturer Models and Individual
Tags

f1 f2 f3 f4 f5 f6 f7
Manufacturer Identification 9 6 13 3 7 11 1
Tag Identification from A 13 11 7 3 9 1 6
Tag Identification from B 7 11 3 13 9 1 6
Tag Identification from C 7 11 3 13 9 1 6

Note: In this table, the features that are shown under f1 have the highest score while the
ones under f7 have the lowest score.

where c represents the class, ηk represents the number of data points in class k, µk is the

mean of class k and σk is the variance of class k.

We apply Fisher Scoring on the four sets of data. The first set represents all the readings

we have with three manufacturer models, which corresponds to three classes. The second,

third, and fourth data sets are associated with 100 different individual tags. Each set contains

the same manufacturer model tag. In other words, there are 100 classes in each of the last

three data sets. The rankings from Fisher Scoring are presented in Table 3.4.

The results in Table 3.4 show the significance of each feature in discriminating between

classes. As the results show, both manufacturer and tag identification require a combination

of power and timing features. Power features dominate, but the two timing features (#1 and

#6) do help during individual tag identification. Without the timing features, the TPRs

using 1-NN classifier decrease to 69%, 80%, and 62% for tag identification, which hints to

the importance of using multiple features for improving the performance of the classifiers.

3.6 Classification Experiments and Results

In this section, the classification experiments and the obtained results are presented. Be-

fore presenting the results, a quick introduction of the performance metrics is provided in

38

Section 3.6.1. After introducing the used metrics, the three main experiments and their

results are provided in Section 3.6.2, Section 3.6.3, and Section 3.6.4. All the performed

classification results are done using a pattern recognition toolbox (PRTools) for Matlab [22].

3.6.1 Performance Evaluation

There are several metrics that can be used to determine how good the obtained classification

results are. The main source for any classification performance metrics is the confusion

matrix. In the confusion matrix, each column represents the instances in a predicted class,

while each row represents instances in an actual class. Table 3.5 shows the layout of any

confusion matrix.

Table 3.5: Confusion Matrix Layout

Predicted Outcome
Positive Negative

Actual values
Positive TP FN
Negative FP TN

As shown in Table 3.5, there are 4 possible outcomes of any classification result. The

following list describes these outcomes.

1. True Positive (TP): refers to any test instance that actually belongs to the positive

class and was predicted as positive;

2. True Negative (TN): refers to any test instance that actually belongs to the negative

class and was predicted as negative;

3. False Positive (FP): refers to any test instance that actually belongs to the negative

class and was predicted as positive; and

4. False Negative (FN): refers to any test instance that actually belongs to the positive

class and was predicted as negative.

39

The confusion matrix in Table 3.5 shows the possible outcomes when we have only two

classes (binary classifier). In many classification experiments, there are n classes, with n > 2

to classify. In order to determine the four main counts (TP, TN, FP, and FN) for each class,

n binary confusion matrices need to be generated. The binary matrix for a class X will

have its positive class referring to instances from class X while the negative class refers to

any instance that belongs to a class other than X. Assuming that the number of training

samples is the same for each class and the number of testing samples is also the same, the

final counts can be determined by calculating the mean of each count value.

Once the final counts are present (after calculating the means), the performance evalu-

ation metrics can be calculated. The first evaluation metric that we used is the accuracy.

The accuracy refers to the percentage of instances that were correctly classified into either

positive or negative. The formula to calculate the accuracy is shown in Equation 3.5.

accuracy =
TP + TN

TP + TN + FP + FN
(3.5)

It should be noted that in the case of multi-class problems, TN does not necessarily

mean a correct result. For example, if we have three classes to classify and we are building

the binary confusion matrix for class 3, a TN means that an instance belongs to either class

1 or 2 was classified into either class 1 or 2. In other words, it does not matter if class 1

instances were classified as class 2 or if class 2 instances were classified as class 1, as long as

they are not classified as class 3. In this case, they all belong to the TN count.

The second performance metric we are using is the true positive rate (TPR). TPR refers

to the percentage of positive instances that are classified as positive to the actual number of

positive instances (TP + FN).

40

X1 2 n

1

2

X

n

Predicted Classes

A
c
tu

a
l
C

la
s
s
e

s

TP FPTN FN

Figure 3.6: Multiple Classes Confusion Matrix

TPR =
TP

TP + FN
(3.6)

41

The final performance metric which we are using that is derived from the confusion

matrix is the false positive rate (FPR). The FPR metric refers to the percentage of negative

instances that are classified as positive to the total number of negative instances (FP +TN).

FPR =
FP

FP + TN
(3.7)

In order to show the significance of both the TPR and FPR, we would like to use a

security system analogy where people who are authorized to enter belongs to the positive

class and the ones who are not authorized to enter belongs to the negative class. TPR

represents the percentage of people who are authorized to enter and can enter. In other

words, TPR must be as high as possible. On the other hand, FPR must be as low as

possible since it represents the percentage of people who are not allowed to enter but they

can in-fact enter.

Another performance metric we are using is the area under the receiver operating char-

acteristic (ROC) curve, also known as area under curve (AUC) [41]. ROC curves are a

graphical plot of the TPR vs. the FPR, for a binary classifier system as the discriminant

threshold is varied. ROC curves provide us with tools to select the best classification models

and discard bad ones by calculating the AUC for the curves generated by each of the models.

3.6.2 Enrolled/Unenrolled Tag Identification

The first classification experiment is conducted to classify the data we have into two classes:

enrolled and unenrolled. The purpose behind this experiment is to model a security system

in which only authorized tags are allowed to access (enrolled) and the rest of the tags are

not allowed access to the system (unenrolled).

42

We trained the system using 66% of the available data and we tested the system using

the remaining 34%. We started by building an ROC graph that represents the performance

of 5 classification algorithms, namely, 1-NN, 3-NN, 5-NN, Parzen windows, and SVM. The

resultant graph is shown in Figure 3.7.

Figure 3.7: Enrolled/Unenrolled ROC Curves using 66/34

Figure 3.7 clearly shows that 1-NN out-performs every other classifier and in general k-

NN is better than Parzen and SVM. To be sure and to quantify how good 1-NN is compared

to the rest, the area under the curve is calculated. The AUC results are provided in Table 3.6.

The results from the AUC calculations agree with the initial observation shown in Fig-

ure 3.7. The results shows that the best classifier to use is 1-NN with an AUC of 99.29%

while the worst classifier to use is Parzen windows with 49.18% AUC. Since 1-NN is the best

classifier, we generated the confusion matrix which is shown in Table 3.7. The confusion

43

Table 3.6: Enrolled/Unenrolled AUC using 66/34

Classifier AUC
1-NN Classifier 99.29%
3-NN Classifier 96.90%
5-NN Classifier 93.36%

Parzen Windows Classifier 49.18%
SVM 61.09%

matrix shows that 1-NN only miss-classified 15 samples out of 510 available test samples.

Out of the miss-classified sample, 6 out of 150 belonged to the enrolled class and 9 out of

360 belonged to the unenrolled class.

Table 3.7: 1-NN Enrolled/Unenrolled Confusion Matrix using 66/34

Predicted
Actual Enrolled Unenrolled
Enrolled 144 (TP) 6 (FN)

Unenrolled 9 (FP) 351 (TN)

To further support the results, we generated the TPR from each of the classifiers and the

results are shown in Table 3.8. In order to generate consistent data, 10-fold cross validation

is used. With 10-fold cross validation we partitioned the data we have into 10 equal size

parts. For 10 iterations, we train the classifier on 9 of the 10 parts and we test the classifier

using the remaining part, while keeping in mind that the testing part will not be duplicated

in any of the iterations. The reason behind using cross validation is to provide evidence that

the results we obtained are consistent. The TPR values in Table 3.8 agree with the results

we got from the AUC calculations. All the results show that 1-NN is the best classifier to

use while Parzen windows and SVM will generate poor results.

3.6.3 Tag’s Manufacturer Identification

The second classification experiment that was performed is to identify a tag’s manufacturer.

The data-set we collected has tags from three manufacturer (A, B, and C). We collected

44

Table 3.8: Enrolled/Unenrolled TPR Results using 10-Fold Cross Validation

Classifier TPR
1-NN 97.20%
3-NN 96.73%
5-NN 94.93%

Parzen Windows 70.00%
SVM 70.00%

100 tags from each manufacturer. Each tag was measured five times for a total of 500

measurements per manufacturer.

We started the experiments by using 66% of the data for training the classification

models and the rest of the data to test these models. In other words, 66/34 is the used

training/testing ratio for all classifiers. After doing the classification experiments, we gener-

ated the confusion matrices for each classifier. Table 3.9 shows these confusion matrices. By

looking at the data in the confusion matrices we notice that regardless of the used classifier,

tags that belongs to model A will be always be classified correctly. Tags that belong to either

model B or C will have some instances miss-classified as the case with Parzen windows and

SVM.

In order to determine which of the classifier performs better, we repeated the classification

experiment using 10-fold cross validation. The TPR results are shown in Table 3.10. The

cross validation TPR results shows that 1-NN, 3-NN, and Parzen windows performs well with

a 99.93% TPR. 5-NN also performs well with a 99.87% TPR. The algorithm that performed

worst was SVM with a 95.00% TPR. Having a 95.00% TPR may not be bad in some systems,

but we were able to get better results using k-NN and Parzen windows.

In order to further support the obtained results, we generated a set of ROC curves for

each classifier. The ROC curves are shown in Figure 3.8. The ROC curves do not provide

any information regarding which of the classifiers is better than the rest. The ROC curves

shows an equal perfect performance for all the classifiers. In other words, all the classifiers

45

Table 3.9: Manufacturer Model Identification Confusion Matrices for Different Classifiers
using 66/34

1-NN Classifier
Predicted

Actual Manufacturer A Manufacturer B Manufacturer C
Manufacturer A 170 0 0
Manufacturer B 0 170 0
Manufacturer C 0 0 170

3-NN Classifier
Predicted

Actual Manufacturer A Manufacturer B Manufacturer C
Manufacturer A 170 0 0
Manufacturer B 0 170 0
Manufacturer C 0 1 169

5-NN Classifier
Predicted

Actual Manufacturer A Manufacturer B Manufacturer C
Manufacturer A 170 0 0
Manufacturer B 0 169 1
Manufacturer C 0 0 170

Parzen Windows Classifier
Predicted

Actual Manufacturer A Manufacturer B Manufacturer C
Manufacturer A 170 0 0
Manufacturer B 0 170 0
Manufacturer C 0 0 170

SVM Classifier
Predicted

Actual Manufacturer A Manufacturer B Manufacturer C
Manufacturer A 170 0 0
Manufacturer B 0 166 4
Manufacturer C 0 16 154

Table 3.10: Manufacturer Model Identification TPR Results using 10-Fold Cross Validation

Classifier TPR
1-NN 99.93%
3-NN 99.93%
5-NN 99.87%

Parzen Windows 99.93%
SVM 95.00%

46

have a 100% AUC.

Figure 3.8: models ROC Curves using 66/34

3.6.4 Individual Tag Identification

The last experiment that was performed is to identify an individual tag. Since we have tags

from three manufacturers, we performed the same experiment three times, each time for a

different manufacturer.

3.6.4.1 Identifying Tags From Manufacturer A

In order to identify models from manufacturer A, only tags from manufacturer A were used

for training and testing. Since we have 100 tags that represent each model, we trained our

47

models to distinguish between 100 classes. One issue we faced, is that only five instances

are available as representatives of each class. We generated the ROC curves using 66% of

the data for training (three instances) and 34% of the data for testing (two instances). The

resultant ROC is shown in Figure 3.9. The AUC that is associated with each of the ROC

curves is provided in Table 3.11.

Figure 3.9: Manufacturer A ROC Curves using 66/34

Table 3.11: Manufacturer A AUC using 66/34

Classifier AUC
1-NN Classifier 100.00%
3-NN Classifier 100.00%
5-NN Classifier 99.49%

Parzen Windows Classifier 73.74%
SVM 98.99%

Since only five instances are available, and in order to provide enough evidence of the

48

ROC results, we applied 5-fold cross validation. With 5-fold cross validation we divided the

data for each class into five partitions. We train the model using four partitions and we test

the resultant model using the fifth partition. The previous procedure is repeated five time

while rotating the testing and training partitions. In other words, every partition will be

used for testing exactly one time. The 5-fold cross validation TPR and accuracy results are

shown in Table 3.12.

Table 3.12: Manufacturer A Tag Identification TPR and Accuracy Results using 5-Fold
Cross Validation

Classifier TPR Accuracy
1-NN 90.2% 99.80%
3-NN 83.8% 99.68%
5-NN 77.0% 99.54%

Parzen Windows 59.0% 99.17%
SVM 0.0% 98.58%

3.6.4.2 Identifying Tags From Manufacturer B

The second individual tag identification experiment is like the first one with only one dif-

ference; the data used for training and testing belong to tags from manufacturer B. First,

we generate the ROC curves that describe that classifiers performance. The ROC curves

are shown in Figure 3.10. To convert the ROC results into numerical data that makes it

easier to compare, we calculate the AUC for each of the ROC curves. The AUC results are

shown in Table 3.13. The results show that the performance of k-NN is much better than

the performance of the other classifiers.

Next, we determine the TPR and the accuracy of the classifiers when identifying tags of

model B. The results for the 5-fold cross validation are shown in Table 3.14.

49

Figure 3.10: Manufacturer B ROC Curves using 66/34

Table 3.13: Manufacturer B AUC using 66/34

Classifier AUC
1-NN Classifier 100.00%
3-NN Classifier 100.00%
5-NN Classifier 100.00%

Parzen Windows Classifier 99.49%
SVM 98.48%

3.6.4.3 Identifying Tags From Manufacturer C

Finally, we identify individual tags that belong to manufacturer C. As the case with the

previous two experiments, we have 100 classes to classify. Each tag is represented by five

instances which makes it hard to provide a good model description of a tag model. The

50

Table 3.14: Manufacturer B Tag Identification TPR and Accuracy Results using 5-Fold Cross
Validation

Classifier TPR Accuracy
1-NN 90.6% 99.81%
3-NN 84.6% 99.69%
5-NN 77.0% 99.54%

Parzen Windows 58.6% 99.18%
SVM 5.0% 98.56%

generated ROC curves are similar to the ones that was generated for tags from manufacturers

A and B. The ROC curves shows that k-NN has a better performance than Parzen windows

and SVM. The ROC curves are shown in Figure 3.11 and its associated AUC is provided in

Table 3.15.

Figure 3.11: Manufacturer C ROC Curves using 66/34

51

Table 3.15: Manufacturer C AUC using 80/20

Classifier AUC
1-NN Classifier 100.00%
3-NN Classifier 100.00%
5-NN Classifier 100.00%

Parzen Windows Classifier 84.85%
SVM 92.42%

The final test that was performed to determine the classifiers performance on the problem

of identifying tags from manufacturer C is to determine the TPR and the accuracy using

5-fold cross validation. The results for the 5-fold cross validation are provided in Table 3.16.

Table 3.16: Manufacturer C Tag Identification TPR and Accuracy Results using 5-Fold
Cross Validation

Classifier TPR Accuracy
1-NN 90.4% 99.81%
3-NN 84.4% 99.69%
5-NN 76.2% 99.52%

Parzen Windows 58.6% 99.17%
SVM 0.0% 98.53%

3.6.5 Results Discussion

In this section, we discuss the results that were obtained from the previously listed experi-

ments. In the first experiment, we divided the data into either enrolled or unenrolled class.

66% of the data was used to train the classifiers and the remaining 34% was used to test

the classifiers. The results show that k-NN performs better than the other classifiers. An

average of 96.5% AUC was obtained when k-NN was used compared to Parzen windows and

SVM with 49.18% and 61.09%, respectively. 10-fold cross validation was used to further

support the AUC results. k-NN had an average of 96.28% compared to 70.00% for either

Parzen windows or SVM.

In the second experiment, we used multi-class classifiers to identify tags based on their

52

manufacturer. The manufacturer identification results show almost perfect classification

performance for all the used classifiers, which is clear by glancing at the ROC curve in Fig-

ure 3.8. The presented confusion matrix shows that instances which belong to manufacturer

A can all be correctly identified, with occasionally miss-classification of manufacturer B or

C. The 10-fold cross validation results show that an average of 99.91% TPR was obtained

when k-NN is used. Parzen windows and SVM had a 99.93% and 95.00% TPR, respectively.

The final experiment that was conducted is to identify an individual tag. To perform

the task of individual tag identification, we divided this experiment into three experiments.

In each of the experiments, only tags from a particular manufacturer were used for training

and testing the classification models. The major issue we faced when identifying individual

tags is that only five instances are available as representatives of any tag class. Having

only five instances to train and test the classifiers will create a large error margin since we

are dividing the already small data set between testing and training. In other words, the

classification models we are using are not converging. The ROC curves were generated using

three instances per class to train a classifier models, which was tested with the remaining

two instances. The ROC curves and their associated AUC calculations strongly recommend

k-NN classifier to use over Parzen and SVM. To further support these recommendation we

applied 5-fold cross validation and we calculated the average TPR. For manufacturer A, 1-

NN, 3-NN, 5-NN, Parzen windows, and SVM had a 90.2%, 83.8%, 77.0%, 59.0%, and 0.0%,

respectively. For manufacturer B, 1-NN, 3-NN, 5-NN, Parzen windows, and SVM had a

TPR of 90.6%, 84.6%, 77.0%, 58.6%, and 5.0%, respectively. As for manufacturer C, 1-NN,

3-NN, 5-NN, Parzen windows, and SVM had a TPR of 90.4%, 74.4%, 76.2%, 58.6%, and

0.0%, respectively.

All the evidence from the previous results suggests that k-NN is the best choice for

identification. k-NN works by comparing the test instance with all the training instances

directly. It computes the difference between every training instance and the testing instance

53

and selects the k instances that are the closest to the testing instance. A weighting algorithm

that is shown in Equation 1.1 is used to classify the presented testing instance.

Another point we would like to mention is how much the amount of available data

influences the outcome results. TPR is the ratio between TP and TP +FN , while accuracy

calculates the amount of correct classification from the perspective of one class. In the case

of individual tag identification, each class has only one instance that belongs to it. Recall

that we measured 100 tags for each manufacturer. This means that when calculating the

TPR and the accuracy for class X, one instance does belong to X, while the remaining 99

instances belong to the remaining classes. For example, as long as the 99 instances are not

confused with class X the TN count will be high, which drives the accuracy results to be

high even if we have a 0.0% TPR. Therefore, the TPR can be low but the accuracy can be

high. For example, when identifying tags from manufacturer A, the TPR for SVM is 0.0%

while the accuracy is 98.58%. The previous example shows how easy it is to deceive a person

who is reviewing the findings, if only partial results are provided.

54

Chapter 4

Hidden Markov Models

In this chapter, we disscus pattern recognition using Hidden Markov models (HMM). In

order to identify tags using HMM, we focus on the time-voltage wave form that we extracted

using [2]. A sample of the time-voltage waveform is shown in Figure 4.1. In order to be able

to use HMM, the system to be modeled needs to generate some observable output. This

output can be used directly as in Section 4.1, or it can be processed as in Sections 4.2 - 4.4.

The time-voltage waveform we are focusing on is the tag’s transmission of the PC+EPC+

CRC data. As shown in Figure 4.1, the voltage values alternate between two main values,

which is interpreted by the reader as binary code (ones and zeros).

In this section, five experiments are conducted. Each experiment is divided into two

parts: manufacturer identification and individual tag identification. The difference between

the five experiments is based on the type of observations we are using as inputs to the

HMM. In the first experiment, we use the time-voltage waveform without any processing.

The remaining four experiments involve some data processing. In the second experiment,

we divide the time-voltage waveform into frames of ten observations each and we calculate

the power in each frame using Equation 4.1, where V is the Vrms component of the frame’s

voltage sequence, while 50 refers to the used impedance. In the third experiment, the

intervals that the voltage sequence stays in high or low are being calculated. Fig. 4.4 shows

the transition points. The fourth experiment combines the power and timing. As in the

third experiment, we calculate the intervals at which the voltage stays in the high and the

low ranges, but we are adding the power in these intervals to the timing data. In the final

experiment, we use the models generated by the second and third experiment and we combine

55

the results of these models by assigning weights to them. Thus, we are using both the time

and power observations but instead of using a single model as in the fourth experiment, we

are combining only the results of the models.

10log

(
V 2

50
× 1000

)
(4.1)

All the HMM experiments were conducted using the Matlab toolbox [42] which was

designed based on the theoretical knowledge presented in [54].

Figure 4.1: Time-voltage waveform sample

56

4.1 HMM Using Voltage Observations

In this section, we focus on the time-voltage waveform as the direct input to the HMM in

order to identify a tag’s manufacturer. No data processing is used. The data we have are

from tags from three manufacturers (A, B, and C). We built the Markov models using 80%

of the data (400 instances) and we tested the models using the remaining 20% of the data

(100 instances).

Figure 4.2: ROC curves for HMM applied to the Manufacturer Identification Problem using
Raw Voltages as Observed Features

The confusion matrix that is in Table 4.1 shows that 28% of manufacturer A tags were

confused as manufacturer B, 13% of manufacturer B tags were confused as manufacturer

A, and 17% of manufacturer C tags were confused as manufacturer A. From the confusion

57

matrix, the TPR and the accuracy are calculated, and provided in Table 4.2. The results

show that manufacturer B has the highest TPR with 87%, while manufacturer C has the

highest accuracy with 92.67%.

Finally, the ROC curves that describe the performance of HMM in identifying each of the

manufacturers are shown in Figure 4.2. The ROC curves matches the results obtained from

the confusion matrix that show tags from manufacturer A with the poorest performance and

tags from manufacturers B and C with close performance.

Table 4.1: Confusion Matrix for HMM applied to the Manufacturer Identification Problem
using Raw Voltages as Observed Features

Predicted Manufacturer
Actual Manufacturer A B C

A 68 28 4
B 13 87 0
C 17 1 82

Table 4.2: Manufacturer Identification TPR, Accuracy, and AUC Results Using Voltage
Observations

Manufacturer TPR Accuracy AUC
A 68.00% 79.33% 79.38%
B 87.00% 86.00% 94.87%
C 82.00% 92.67% 96.16%

4.2 HMM Using Power Observations

The second experiment we performed using HMM preprocesses the obtained time-voltage

sequence. We divide the time-voltage sequence into frames. Each frame has 10 voltage

readings (observations). We calculate the rms value of the frame’s voltage sequence and use

the Vrms values to calculate the power in each frame using Equation 4.1. The ROC curves

in Figure 4.3 show an improvement on the performance compared with the ROC curves in

Figure 4.2.

58

The confusion matrix for power observations is provided in Table 4.3 and the associated

TPR and accuracy calculations are provided in Table 4.4. As expected, the performance for

identifying all manufacturers improved. The TPR for identifying tags from Manufacturer A

increased to 86% compared to 68% when using voltages directly without any preprocessing.

Regarding Manufacturer B and C, the TPR jumped to 93% and 95% compared to 87%

and 82%, respectively. The same improvement happened with the accuracy of the HMM. It

jumped from 79.33%, 86.00%, and 92.67% to 92.00%, 93.67%, and 97.00% for manufacturers

A, B, and C, respectively.

Figure 4.3: ROC curves for HMM applied to the Manufacturer Identification Problem using
Power as Observed Features

The results from this experiment show that preprocessing the data will result in better

performance. We expect that further preprocessing will improve the results even more. We

59

Table 4.3: Confusion Matrix for HMM applied to the Manufacturer Identification Problem
using Power as Observed Features

Predicted Manufacturer
Actual Manufacturer A B C

A 86 11 3
B 6 93 1
C 4 1 95

Table 4.4: Manufacturer Identification TPR, Accuracy, and AUC Results Using Power Ob-
servations

Manufacturer TPR Accuracy AUC
A 86.00% 92.00% 93.89%
B 93.00% 93.67% 93.78%
C 95.00% 97.00% 97.50%

also expect that combining different data types will yield better performance as the case

with classical pattern recognition algorithms.

4.3 HMM Using Time Observations

In this experiment, we use the transition points that are illustrated in Figure 4.4. We

calculate the time between each of the points, and use the intervals as the observations

input for the HMM. The ROC curves are shown in Figure 4.5 while the associated AUC are

shown in Table 4.6. The generated ROC curve shows that identifying tags from manufacturer

A performs much better than identifying tags from manufacturers B or C. By calculating the

area under the ROC curves we found that the AUC for manufacturer A is 97.09% compared

to 75.29% and 37.18% for manufacturers B and C, respectively. We must keep in mind that

ROC is a technique to compare performance; more performance metrics are necessary to

compare the work we did with other people.

The ROC curves clearly show that using timing for manufacturer A will yield much better

results than tags from manufacturers B and C, but by how much? To answer this question

60

Figure 4.4: Voltage transitions between high and low ranges

we generate the confusion matrix, which is provided in Table 4.5. From the confusion matrix

the TPR and the accuracy metrics are calculated and shown in Table 4.6. Although tags

from manufacturer A have the best AUC, their TPR and accuracy are lower than that of

B and slightly higher than C. The accuracy to identify tags from manufacturer A or C is

90.67% and it jumps to 97.33% if we are identifying tags from B. On the other hand, the

TPR values are 91%, 94%, and 83% for tags from manufacturer A, B, and C, respectively.

Table 4.5: Confusion Matrix for HMM applied to the Manufacturer Identification Problem
Using Timing as Observed Feature

Predicted Manufacturer
Actual Manufacturer A B C

A 91 0 9
B 4 94 2
C 15 2 83

61

Figure 4.5: ROC curves for HMM applied to the Manufacturer Identification Problem using
time as Observed Feature

Table 4.6: Manufacturer Identification TPR, Accuracy, and AUC Results Using Time Ob-
servations

Manufacturer TPR Accuracy AUC
A 91.00% 90.67% 97.09%
B 94.00% 97.33% 75.29%
C 83.00% 90.67% 37.18%

4.4 HMM Using Time and Power Observations

By looking at the data we derived from the experiments presented in Section 4.2 and Sec-

tion 4.3, we notice that tags from manufacturer A can be identified better using timing

observations while tags from manufacturers B and C can be identified better using power

62

observations. In this experiment, we combine both the power and timing observations. As

the case in Section 4.3, we divide the data we have into frames. Each frame consists of the

voltage sequence that is between transitions (the transitions are illustrated in Figure 4.4).

Each frame sequence is translated into two observations. The first observation represents

the time it took to transmit the voltage sequence. The second observation represents the

power that is contained within the voltage sequence. Power calculations are done using

Equation 4.1.

First, we generate the ROC curves that give an indication of how good one model is

compared to the other models. The resultant ROC curves are provided in Figure 4.6. By

looking at the ROC curves, we notice that none of them are as good as we expected. It

looks like combining power and timing will degrade the performance instead of improving it.

Next, we generate the confusion matrix to further determine the performance of the models.

Table 4.7: Confusion Matrix for HMM applied to the Manufacturer Identification Problem
using timing and power as Observed Features

Predicted Manufacturer
Actual Manufacturer A B C

A 82 16 2
B 48 42 10
C 32 18 50

From the confusion matrix data that is provided in Table 4.7 and the performance metrics

that are provided in Table 4.8, we notice that none of the manufacturer identification models

provide acceptable results. Tags from manufacturer A have a TPR of 82%, an accuracy of

67.33%, and an AUC of 74.87%. Tags from manufacturer B have a TPR of 42%, an accuracy

of 69.33%, and an AUC of 60.10%. Tags from manufacturer C have a TPR of 50%, an

accuracy of 79.33%, and an AUC of 69.49%.

From this experiment, we notice that combining several measurements together into the

same model decreases the performance. In the next section, we combine timing and power

63

Figure 4.6: ROC curves for HMM applied to the Manufacturer Identification Problem using
time and power as Observed Features

Table 4.8: Manufacturer Identification TPR, Accuracy, and AUC Results Using timing and
power Observations

Manufacturer TPR Accuracy AUC
A 82.00% 67.33% 74.87%
B 42.00% 69.33% 60.10%
C 50.00% 79.33% 69.49%

but we use separate models for each of them instead of one model.

64

4.5 HMM Using Time and Power Observations In Separate Models

The previous experiment showed that combining the power observations and the time obser-

vations into one stream will degrade the performance of the hidden Markov models. In this

experiment, we use both the time observations and the power observations to identify tags.

Instead of combining both observations into one model, we build two models: one model

using power observations alone and the other model is built using time observations alone.

In order to formulate a final decision, we gather the decisions from both the time and

power models using weights. Since we have two models to use and there are three classes

to identify any given instance, a 3 × 2 weight matrix is used. In any row of the weight

matrix, the relations shown in Equation 4.2 must be true where Wit is the weight given to

instances from manufacturer i for the time model, and Wip is the weight given to instances

from manufacturer i for the power model.

Wit +Wip = 1 (4.2)

We use trial and error to determine the best weight matrix. Table 4.9 shows the weight

matrix we used to generate the results shown in Table 4.11. The confusion matrix that is

responsible for this performance is shown in Table 4.10.

Table 4.9: Weight Matrix

Manufacturer Power Time
A 1.0 0.0
B 0.4 0.6
C 0.1 0.9

The first thing we did is to combine the data we got by using testing instances on the

65

Figure 4.7: ROC curves for HMM applied to the Manufacturer Identification Problem using
Time and Power as Observed Features in Separate Models

timing and power models. The Matlab code that uses the weights to combine the results

from the time and power models is provided in Appendix C. The resultant ROC curves are

provided in Figure 4.7. The extracted ROC data show that instances from manufacturer A

does have an AUC of 45.37% compared to 83.42% and 97.18% for instance from manufacturer

B and C, respectively.

Table 4.10: Confusion Matrix for HMM applied to the Manufacturer Identification Problem
Using Timing and Power Observations in Separate Models

Predicted Manufacturer
Actual Manufacturer A B C

A 91 0 9
B 0 97 3
C 0 4 96

66

Table 4.11: Manufacturer Identification TPR, Accuracy, and AUC Results Using Timing
and Power Observations in Separate Models

Manufacturer TPR Accuracy AUC
A 91.00% 97.00% 45.37%
B 97.00% 97.67% 83.42%
C 96.00% 94.67% 97.18%

After generating the ROC curves, we noticed that the performance improved compared to

the performance of the models when the timing and the power observations were combined

into a single observations stream. Encouraged with the results of the ROC curves, we

generated the confusion matrix. The confusion matrix is provided in Table 4.10. The

confusion matrix shows improvement. In fact, the resultant confusion matrix is much better

than using either the timing observations or the power observations by themselves. From

the confusion matrix, we calculated the TPR and the accuracy. The results are provided in

Table 4.11.

4.6 HMM Manufacturer Identification Results Discussion

In the previous sections, we focused on using HMM to identify the manufacturer of a specific

passive UHF RFID tag. Five experiments were performed. In all the experiments, we focused

on the PC+EPC+CRC tag’s transmission, which was extracted and processed to generate

the observations for the identification process. The extracted observations include voltage,

power, and timing data. Table 4.12 provides a summary of the manufacturer identification

results.

In the first experiment, we used the time-voltage waveform “as is” without any pre-

processing. The results showed moderate performance. Using time-voltage waveform as

observations provided us with an average TPR of 79%, an average accuracy of 86%, and an

average AUC of 90.13%. Tags from manufacturer A showed the worst performance, while

67

tags from manufacturer B showed the best TPR. Also, tags from manufacturer C showed

the best accuracy. The results of using voltage observations are provided in Table 4.2.

After using raw voltage observations, we proceeded to use power observations. We

divided the time-voltage observations into frames of 10 readings each. We calculated the Vrms

values of each frame, and used Equation 4.1 to calculate the power. The results showed an

improvement compared to when using raw voltages. An average TPR of 91.33%, an average

accuracy of 94.22%, and an average AUC of 95.1% were obtained. Tags from manufacturer

C had the best TPR, accuracy, and AUC. The detailed results are shown in Table 4.4.

Since preprocessing the PC+EPC+CRC transmission provides better results than using

the raw observations, we explored other preprocessing techniques. By zooming into the

time-voltage waveform, we noticed many transitions from low voltages to high voltages as

shown in Figure 4.4. We processed the time-voltage wave sequence to find these transitions.

We calculate the time between each of the transitions and used the resultant values as the

observations. The results show an average TPR of 89.33%, an average accuracy of 92.89%,

and an average AUC of 69.85%. Tags from manufacturer A had the best AUC. Tags from

manufacturer B had the best TPR and accuracy. Surprisingly, tags from manufacturer C

had the worst performance. Detailed results are shown in Table 4.6.

The fact that using either voltage or power yields acceptable performance for tags of

manufacturer C while using time yields bad results for tags of same manufacturer led us to

believe that combining features might provide us with better results than using any obser-

vation type by itself. Therefore, we used the same method to extract the timing information

but we added to it the power between transitions. The results show an average TPR of 58%,

an average accuracy of 72%, and an average AUC of 68.15%. Detailed results are in Ta-

ble 4.8. Combining the time and power observations degraded the performance. Therefore,

we created separate models for the power and the time and combined the results by applying

68

weights.

The final experiment we performed is based on the previous idea of using weights. The

main rule to be enforced is that the sum of the weight must be equal to 1 as seen in

Equation 4.2. We combined the models in Section 4.2 and Section 4.3. The weights are

provided in Table 4.9. The reason behind using separate models rather than a single model

with both observations is due to:

1. Combining observations will result in a degradation in the performance as seen in

Table 4.8; and

2. Some manufacturer tags show a good performance when using time observations com-

pared with time observations while instances from other manufactures show a good

performance when power observations are used compared to using time observations.

The results when using separate models while applying weights to combine the results

showed the best performance when using HMM. The results show an average TPR of 94.67%,

an average accuracy of 96.45%, and an average AUC of 75.32%. With the exception of the

AUC, we are getting the best TPR and accuracy among all performed HMM experiments.

4.7 Individual Tag Identification

In all of the previous sections, we focus on identifying a tag’s manufacturer. We use different

observations to determine which of them is the best for identifying a tag’s manufacturer.

In this section, we expand the previous work by identifying a specific tag rather than its

manufacturer. We are identifying 100 tags of three manufacturers. In other words, each

experiment will be repeated three times (since we have three manufacturers). Because of

the large number of classes to identify, we will not be presenting the ROC curves and their

69

AUCs. We will only present the TPR and the accuracy measurements. Also, we will not

be presenting the confusion matrices since each of them will have a size of 100× 100. Since

it is hard to present all the data for the 100 classes, we are calculating the average for the

classes taken from each manufacturer model for both the TPR and the accuracy metrics.

Also, because only five instances are available for each class, we are using four instances to

build the class model and the remaining instance will be used to test the model. The data

is shown in Table 4.12.

The results show that we are getting a very low TPR. The TPR ranges from 19% when

using voltage observations on tags from manufacturer B, to only 1% when using power and

timing observations in the same stream with tags from any manufacturer. On the other

hand, an accuracy higher than 98% was obtained in all the tests. The fact that we are

having a high accuracy and a very low TPR shows how important it is to find the correct

ratio between the number of instances we used to build each of the class models, the number

of instances we use to test each of the available models, and the number of models we have.

The results in Table 4.12 show the importance of balancing the number of test samples

to the number of classes we want to classify. In the experiment we performed in this section,

we only have one instance to test any of the models. Having one instance means that if we

misclassify that instance a TPR of zero will result. Also having only four instance to build

and train the models is not enough to have a good convergence of the models log-likelihood.

Notice that even though we have an extremely low TPR, the accuracy is fairy high. The

reason for this is because the accuracy calculations include the TN count. The formula to

calculate the accuracy is shown in Equation 3.5. As shown in Figure 3.6, the TN count does

not reflect accurate classification. The TN counts an instance that is not from class X and

was not classified as class X. In other words, having one instance of each class while having

a hundred possible classes will yield high accuracy and low TPR if we have a poorly trained

models.

70

T
ab

le
4.

12
:

T
ag

Id
en

ti
fi
ca

ti
on

R
es

u
lt

s
u
si

n
g

H
M

M

M
a
n
u
fa

ct
u
re

r
Id

e
n
ti

fi
ca

ti
o
n

R
e
su

lt
s

M
a
n
u
fa

ct
u
re

r
A

M
a
n
u

fa
ct

u
re

r
B

M
a
n
u

fa
ct

u
re

r
C

O
b
se

rv
a
ti

o
n
s

U
se

d
T

P
R

A
cc

u
ra

cy
T

P
R

A
cc

u
ra

cy
T

P
R

A
cc

u
ra

cy
V

ol
ta

ge
68

.0
0%

79
.3

3%
87

.0
0%

86
.0

0%
82

.0
0%

82
.6

7%
P

ow
er

86
.0

0%
92

.0
0%

93
.0

0%
93

.6
7%

95
.0

0%
97

.0
0%

T
im

e
91

.0
0%

90
.6

7%
94

.0
0%

97
.3

3%
83

.0
0%

90
.6

7%
P

ow
er

an
d

ti
m

e
in

th
e

sa
m

e
ob

se
rv

at
io

n
s

st
re

am
82

.0
0%

67
.3

3%
42

.0
0%

69
.3

3%
50

.0
0%

79
.3

3%
P

ow
er

an
d

T
im

e
in

se
p
ar

at
e

m
o
d
el

s
91

.0
0%

97
.0

0%
97

.0
0%

97
.6

7%
96

.0
0%

94
.6

7%

In
d
iv

id
u
a
l

T
a
g

Id
e
n
ti

fi
ca

ti
o
n

R
e
su

lt
s

M
a
n
u
fa

ct
u
re

r
A

M
a
n
u

fa
ct

u
re

r
B

M
a
n
u

fa
ct

u
re

r
C

O
b
se

rv
a
ti

o
n
s

U
se

d
T

P
R

A
cc

u
ra

cy
T

P
R

A
cc

u
ra

cy
T

P
R

A
cc

u
ra

cy
V

ol
ta

ge
5.

00
%

98
.1

0%
19

.0
0%

98
.3

8%
6.

00
%

98
.1

2%
P

ow
er

8.
00

%
98

.1
6%

16
.0

0%
98

.3
2%

18
.0

0%
98

.3
6%

T
im

e
1.

00
%

98
.0

2%
2.

00
%

98
.0

4%
1.

00
%

98
.0

2%
P

ow
er

an
d

ti
m

e
in

th
e

sa
m

e
ob

se
rv

at
io

n
s

st
re

am
1.

00
%

98
.0

2%
1.

00
%

98
.0

2%
1.

00
%

98
.0

2%
P

ow
er

an
d

T
im

e
in

se
p
ar

at
e

m
o
d
el

s
3.

00
%

96
.0

6%
2.

00
%

98
.0

4%
1.

00
%

98
.0

2%

71

Chapter 5

Signal Authentication using Fingerprints

Previously, we discussed identifying an RFID tag based on its transmitted signals. Recall,

identification is a one-to-many process in which an instance is mapped into a category that

is already defined. In this chapter, we focus on authenticating an RFID tag based on its

transmitted signals. Authentication is a one-to-one process in which we want to verify that

an RFID tag is the one it claims to be.

In this chapter, we focus on tag and reader authentication. In tag authentication, we

verify that the tag is the tag it claims to be. In reader authentication, we verify that

the reader we are using to read and to communicate with the tags is not compromised.

We develop an authentication system based on fingerprints. There are three parts of the

authentication system: RFID tag(s), RFID reader(s), and a back-end server. A graphical

representation of the system is shown in Figure 1.3. As Figure 1.3 shows, we only have one

server, which is completely trusted. This server will have direct links to any RFID reader in

the system. The readers have the responsibility of communicating with the tags, extracting

the feature vector from these tags, and communicating with the server to determine if the

tags are authentic or not. An authentication system can be divided into two main processes:

the enrollment process and the verification process. In this chapter, we will use the words

authentication and verification interchangeably.

72

5.1 Enrollment Process

During the enrollment process, tags are queried and the representative feature vector is

measured. Figure 5.1 shows the flowchart of the enrollment process. During the enrollment

process, each tag is queriedX number of times. For each query, the tag’s response is recorded,

features are extracted, and the feature vector is stored. After collecting X feature vectors,

several statistics of each of the features, such as mean, variance, and standard deviation are

calculated. By calculating the means of the features, an average feature vector is created.

This average feature vector will be used for any future authentication request. The received

statistics, the feature vector, and the X feature vector readings are stored on the server. The

hash of the mean feature vector is then calculated and stored on the tag. A lightweight hash

function such as PRESENT-80 can be used [8]. PRESENT-80 is designed specifically to be

compatible with RFID environment. It was designed with all the power, memory, and size

constraints in mind. The server can either store one hash that describes the entire feature

vector or it can store a single hash for each of the available features (a vector of N hashes,

where N is the length of the feature vector).

We assume that the features are independent of each other and that they follow a Gaus-

sian distribution. Since Gaussian distribution is assumed, the mean and the standard devia-

tion are needed so that the distribution for each of the features can be estimated. Since each

of the features’ distribution parameters will be used in the verification process, a reference to

them must be stored on the same tag that was used to extract those values. Upon request,

the tag will send the stored hash value to the reader, which in turn will send it to the server

that has the necessary data.

To summarize, during enrollment, multiple feature vectors of the tags to be enrolled are

collected. For each feature in the feature vector, the mean, variance, standard deviation is

calculated. The feature vectors and the other extracted values are stored on the server. This

73

Figure 5.1: Enrollment process of the RFID authentication system

74

table is keyed using a hash of the mean feature vector. A copy of the hash is stored on the

enrolled tag to be used as a reference for future authentication requests.

5.2 Verification Process

During the verification process, a tag that was previously enrolled is authenticated. Recall

that during the enrollment process, a hash of the feature vector is stored in the memory

banks of the tag. When the tag is to be authenticated, the stored hash value is retrieved

and sent to the server. At the same time, the reader uses the data transmitted by the tag

to extract a feature vector that describes this tag. Using the hash value, the server retrieves

the average feature vector calculated at enrollment, including weights, and the standard

deviation of each of the features. The server will then communicate with the reader to

determine if the presented tag is authentic or not.

In order to determine the tag’s authenticity, the distance between the newly read feature

vector and the mean feature vector is calculated. A simplified authentication system based

on the distance is presented in Figure 5.2. Different features have different impact on the

tag’s authenticity. Features with high variance are assigned lower weights than features with

low variance, (the reason for the before-mentioned statement is due to the presence of noise

when the tag is being read). Having high variance means that the feature reading will be less

accurate, while having low variance means that we can maintain high confidence in the read

feature. To calculate the variance, we normalize all the features so that they are between 0

and 1, as shown in Equation 5.1. In Equation 5.1, max and min refers to the maximum and

minimum values of a certain feature for a particular tag, while xi refers to an instance of the

feature to be normalized. Once all the features are normalized, the variance is calculated

using Equation 5.2.

75

normalized =
xi −min
max−min

(5.1)

σ2 =
1

N

N∑
i=1

(xi − µ)2 (5.2)

Using variance, we calculate the weight of each of the features. The weights must satisfy

the condition in Equation 5.3. Since the feature with the less variance will have the highest

weight, we are using Equation 5.4 to calculate the weight of each feature. The weights and

variance calculations occur during enrollment and are retrieved using the hash value during

the verification process. Using the weights, we verify each weighted feature based on distance

as shown in Figure 5.2. The distance is compared to a threshold value that is based on the

enrolled feature vectors. If the distance between the recently read feature vector (the one

that was read for authentication) and the mean feature vector is less than the threshold,

then the tag is authentic; otherwise, the tag is considered to be unauthentic.

N∑
i=1

wi = 1 (5.3)

wi =
1

vari∑N
j=1

1
varj

(5.4)

Next, we introduce a complete verification process the uses distances between enrolled

data and recently read data. A flowchart of this verification system is provided in Figure 5.3.

76

Figure 5.2: How to calculate the distance between feature vectors

First, we introduce a simple authentication system that optimistically assumes no at-

tempts to fool the system, which is shown in Figure 5.3. The verification process starts with

the reader collecting the tag’s response for a specific query. The reader then extracts the

feature vector from that response. The reader asks the tag to transmit the hash value stored

in its memory banks. Upon receiving the hash value, the reader will send it to the back-end

server, which uses it to retrieve the mean feature vector, and the thresholds associated with

each of the features. Using the retrieved mean feature vector and the associated thresholds,

77

the server sends these values to the reader. The reader computes the distance between the

received feature and the tag’s extracted feature. Using the threshold, the reader determines

if that feature can actually be generated from the tag or not. The decision is sent back to

the server. Once the server receives the reader’s response, it sends the next feature mean

value. Once all the features’ mean values are sent to the reader and the decisions are col-

lected, the final decision of the tag’s authenticity is made. The final decision is made using

Equation 5.5, where D is the final decision score, N is the length of the feature vector, di is

the reader’s decision for feature i, and wi is the weight of the ith feature.

D =
N∑
i=1

di × wi (5.5)

Once the final score is calculated, it is compared with a threshold. If that decision is

greater that the threshold value, then the tag is authentic. If it is not greater than the

threshold, then it is not authentic. The previously discussed authentication technique has

its drawbacks.

1. The algorithm ignores the possibility of having a compromised reader; and

2. There are no precautions taken to guard against replay, eavesdropping, or man-in-the-

middle attacks.

In this remainder of this section, we focus on solving the compromised reader problem.

To solve the other problems, we assume that the reader and the server are using modern

communication authentication protocols [10] [9] [31] [37] [50].

RFID readers are usually geographically separated and in enough numbers to monitor

all passing objects with attached RFID tags. An intruder can theoretically attack one or

78

Figure 5.3: Simple tag authentication process

more of the readers and install special software to send false data to the server regarding the

authenticity of a certain tag. (We must be able to distinguish between compromised

79

readers and normal readers). In order to do so, we introduce the concept of decoys. A

decoy is a feature value that could not possibly be generated by the tag we are authenticating.

For example, assume that a tag was enrolled that has a time feature with values between 400

microseconds and 500 microseconds. An example decoy time feature is 100 microseconds.

A normal reader will respond to the server’s decoy by saying that the tag failed that test,

while a compromised reader may respond by saying that it passed the test. In other words,

a compromised reader will always respond to the server by saying that the tag passed each

of the tests. Once the server receives a positive response to a decoy, the probability that

the reader is compromised increases. The error could be caused by noise or measurement

problems. An authentication system using decoys is shown in Figure 5.4. A mixture of

decoys and real measurements should be sent to verify.

Before sending the features to the reader, the server must determine how many and which

of the features to replace by decoys. The number of decoys used must be such that the reader

will have very small probability to guess the decoys. At the same time, it must be such that

the remaining features can authenticate a tag with high certainty. In the system we propose,

the server selects at random which of the features is to be replaced with decoys. Once the

server determines the decoys position in the feature vector, it replaces the associated features

with the decoys, and sends the new feature vector to the reader.

When the server sends a decoy, the normal response from the reader is that the tag did not

pass that feature’s test. Therefore, the reader sends a fail result to the server. A compromised

reader may respond with a pass score for each of the received features (including the decoys).

When the server receives a pass score for a decoy, the server knows that the reader may be

compromised. In the system we present, the tests refer to the distance calculated between

the current read feature and the mean of that feature (sent by the server). If the calculated

distance is near zero, then the result of the test is assumed to be a pass; otherwise, the test

result is a failure. Since we are using distance, there is no hard score that can be considered

80

as a pass. A passing score depends entirely on the distribution parameters of that feature

(mean, variance, and standard deviation). There are two actions the server could follow

when receiving the reader responses:

1. The server could continue to send features to the reader even if the reader sent a pass

score for a sent decoy; or

2. The server could keep monitoring the responses sent from the reader. If the number of

decoys with received pass responses exceeds a certain amount, the server could ignore

the reader or consider it compromised.

For the first scenario, the server checks if the responses from the reader for the decoys

were all as expected (failed score). If the responses are as expected, then the server combines

the received scores of all the genuine features (the ones that are not decoys) into a final score

that is compared to a threshold. If the final score is greater than the threshold, the tag is

authentic; otherwise, the tag is not authentic. It is worth mentioning that if this scenario

is used, the server can send the feature vector in one session and receive the final decision

vector, thus, reducing the communication cost between the reader and the server.

If the second scenario is used, the reader builds a reputation profile for each of the

available readers. When the server sends a decoy to the reader and receives an unexpected

response (pass), the reader’s reputation at the server decreases. As more decoys are answered

with a passing score, the reader’s reputation keeps on decreasing until it goes beyond a certain

threshold. When the reputation of the reader drops below that threshold, the server assumes

that the reader is compromised, and it takes appropriate actions such as ignoring the reader,

notifying the system administrator, etc.

Next, we will introduce the methods to determine the threshold value, number and value

of the decoys, and the tag score. All of the previous problems are solved using the same

81

Figure 5.4: Proposed tag authentication process

82

principle. There are two assumptions that are related to the features extracted from the

tags transmission.

� The features are assumed to follow a Gaussian (normal) distribution; and

� The features are assumed to be independent of each other.

The Gaussian distribution (also known as Normal distribution) is a continuous proba-

bility distribution that has a bell-curve shaped probability density function. The Gaussian

function is shown in Equation 5.6, where x is the random variable, µ is the mean of the ran-

dom variable, σ2 is the standard deviation, and e is the Euler number (e = 2.7182818284...).

f(x;µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (5.6)

As shown in Figure 5.5, the center of the bell-curve is located at the mean, while the

spread of the curve depends upon the standard deviation of the random variable. Figure 5.5

shows three random variables that are in the interval [-40, 40]. The curve with the lowest

peak has the highest standard deviation (σ2 = 8), the curve with the highest peak has

the smallest standard deviation (σ2 = 2), while the middle curve has a standard deviation

(σ2 = 4). All the curves are centered around zero, which is the mean of the random variables.

After determining the distributions of each of the observed features for each of the

enrolled tags, the threshold at which we will consider that a tag is authentic or not is

calculated. The threshold we propose is a probability based threshold. Out of the enrolled

values of a specific tag, for each of the features, we select the value that is furthest from

the mean value of that feature. Using the Gaussian function, we determine the probability

that this value occurs. (The reason behind selecting the furthest feature read is because the

83

Figure 5.5: Gaussian Distribution Examples

furthest feature value happens when the noise is at its highest). Once all the probabilities

are determined, we use Equation 5.7 to calculate the overall tag’s threshold, where dist is

the distance between the mean of the ith feature and the measured values with the maximum

distance of the ith feature, and f(x) is the Gaussian function introduced in Equation 5.6.

N∏
i=1

∫ µ+dist

µ−dist
f(x)dx (5.7)

To use the proposed threshold, the server sends the mean values to the reader. The reader

84

calculates the distance between the mean value and the measured feature value, and sends

the distance back to the server. The server calculates the probability that this distance can

happen using Equation 5.8, where dist refers to the distance between the feature’s current

read and the mean of that feature. After sending all of the mean feature vector and receiving

all of the calculated distances from the reader, the server compares the resultant cumulative

probability
(∏N

i=1 probi

)
and it compares it with the threshold calculate using equation 5.7.

If the current cumulative probability is less than the threshold, then the tag is authentic;

otherwise, the tag is unauthentic.

probi =

∫ µ+dist

µ−dist
f(x)dx (5.8)

Figure 5.6 describes the choice of using Equation 5.8 as the threshold. In the rest of this

section, the following symbols are extensively used:

� m, refers to the feature’s observed read that is the furthest from the feature’s mean

value (only observations during enrollment are considered);

� dm, refers to the distance between the mean of the feature being tested, and the furthest

enrolled read from the mean;

� f , refers to the observed read of a feature;

� df , refers to the distance between the feature value sent from the server and the feature

observation the reader just extracted from the tag to be authenticated;

� c, refers to a decoy sent from the server to the reader;

� dc, refers to distance between the sent decoy and the feature observation the reader

just extracted from the tag to be authenticated;

85

� dmc, refers to the distance between the sent decoy and the furthest read from the

feature mean (m);

� C, refers to the probability an observed feature occurs near the sent decoy (very small

probability);

� M , refers to the probability that observations between the feature mean and the m

observation occurs;

� N , refers to the number of available features; and

� D, refers to the number of decoys used.

By referring to Figure 5.6, the probability of a reading to occur that does not exceed

the furthest one measured during enrollment for a certain feature (m) is equal to the area

A+2B, which we refer to as M . On the other hand, the probability of the recently extracted

feature is equal to the area A. For a tag to be authentic, the relation in Equation 5.9 must

hold true. In other words, the area under the curve that is bounded by reads closer to the

mean (A) should be less than the area bounded by the reads that are furthest from the mean

(M).

∀iAi ≤Mi (5.9)

Equation 5.7 does not take into account the existence of decoys in the system. To

accommodate decoys, we seperate the features selected as decoys from the genuine features.

The authentication process is separated into two processes.

1. Compromised reader test: To perform the compromised reader test, we only focus

on the responses for the decoys. When the server receives a response for a decoy, it

86

Figure 5.6: Threshold and Probability Relations

expects the distance to be larger than the distance between the decoy and furthest

read from the mean (m). The probability of a feature to occur within the distance sent

back by the reader can be calculated using Equation 5.10.

∫ c+dc

c−dc
f(x)dx (5.10)

If the reader tries to fool the server, a small distance will be sent back to the server,

which results in a probability equal to area C shown in Figure 5.6. The reader is

assumed to be compromised if the cumulative probability of the decoys is less than a

certain threshold. The previous relation is outlined in Equation 5.11.

87

D∏
i=1

∫ c+dc

c−dc
f(x)dx�

D∏
i=1

∫ m

2c−m
f(x)dx, if c < µ

D∏
i=1

∫ c+dc

c−dc
f(x)dx�

D∏
i=1

∫ 2c−m

m

f(x)dx, if c > µ

(5.11)

2. Tag authenticity test: If the reader is assumed not to be compromised, we proceed

with the tag authenticity test. We follow the same approach we followed before, but

instead of using all the features (N), we will use only genuine features (not decoys) (N−

D). The relation that outlines the previous argument is introduced in Equation 5.12.

N−D∏
i=1

∫ µ+df

µ−df
f(x)dx ≤

N−D∏
i=1

∫ µ+dm

µ−dm
f(x)dx (5.12)

Having decoys in the authentication system enables us to identify compromised reader(s).

Some other questions arise from the use of decoys. What if the server stops sending features

to the reader when enough decoys are sent and the reader’s responses indicate that it is

compromised? In addition, how many decoys should be sent to the reader? The solution for

both questions is to have the server check the status of each of the decoys as soon as they

arrive.

When the server receives the response of the first decoy, it checks the probability of

the distance calculated by the reader using Equation 5.13, which holds true if the reader is

compromised. If the resultant probability is less than the expected one, the server sends a

decoy again after a number of sent features that are half the ones that preceded the first

decoy. If the response for that decoy is still less than the expected response, another decoy

is sent but with half the number of features that existed between the first and the second

decoy. The previous process will continue until we start sending decoys without any genuine

88

features in-between.

∫ c+dc

c−dc
f(x)dx�

∫ m

2c−m
f(x)dx, if c < µ∫ c+dc

c−dc
f(x)dx�

∫ 2c−m

m

f(x)dx, if c > µ

(5.13)

In the proposed system, the authentication process could be adapted to the number

of decoys, and which features to use. In a non-adaptive solution, the server compares the

accumulative probability with a precalculated threshold. In the adaptive solution, the system

depends on the frequency of sent decoys, rather than their accumulative probability.

5.3 Simulations and Experiments

The authentication system is simulated in Matlab. Assumptions for the simulation are listed

below.

� The features for the tags are assumed to be independent of each other;

� All of the features are assumed to follow a Gaussian (normal) distribution;

� The selected decoys are uniformly distributed throughout the feature set;

� For all the features, all the reads during the enrollment phase are within 1 standard-

deviation of that feature’s mean; and

� Decoys in any of the experiments do not exceed 50% of the available features.

In order to test the system we developed, we started by experimenting without the

existence of decoys. After that we moved into testing the system with the existence of

decoys.

89

5.3.1 Experiments without decoys

We first simulated the system, in which there are no decoys. We divided this experiment into

three sub-experiments. The first sub-experiment is the effect of the number of features on

the tag’s score and threshold. The next sub-experiment was to simulate the authentication

system when the correct data is retrieved from the server (for example, can we authenticate

tag i if its enrolled data was retrieved). And finally, we simulated the case in which the

wrong data is retrieved from the server (for example, does the authentication system returns

unauthentic if we retrieved tag j data and we want to authenticate tag i, where i 6= j.

5.3.1.1 Effect of the number of features

In this experiment, we vary the number of features. The results are shown in Table 5.1.

As Table 5.1 shows, no matter how many features we have, we can always authenticate

a tag. The results also show that having more features will result in more authenticity

confidence (the ratio between the tag’s threshold and score increases when the number of

features increase). For instance, if we have 2 features, the threshold will be 1.8947 times

greater than the score. On the other hand, the threshold will be 8.0213× 1042 times greater

than the score when 128 features are being used.

5.3.1.2 Authentication when correct data is retrieved from the server

In this experiment, we model the correct behavior of the authentication system. We generate

data for M tags, each of them has N features, and each of them was read R times during the

enrollment phase. In the experiment, we assume that M = 100, N = 64, and R = 100. The

simulation selects tags at random and for each of the tags it tries to authenticate it. The tag

is assumed to be authentic when its score is less than the threshold value calculated during

90

Table 5.1: The affect of the number of features on the tag’s threshold and score

Number of Features Tag Threshold Tag Score Threshold/Score
2 0.4315 0.2275 1.8967
4 0.1573 0.0080 19.6625
8 0.0285 1.8288× 10−05 1.5584× 10003

16 7.1445× 10−04 4.1138× 10−09 1.7367× 10005

32 6.6531× 10−07 3.1823× 10−23 2.0907× 10016

64 1.7671× 10−13 2.3583× 10−38 7.4931× 10024

128 4.9488× 10−26 6.1696× 10−69 8.0213× 10042

256 4.1920× 10−51 1.1316× 10−145 3.7045× 10094

512 1.9599× 10−100 1.222× 10−302 1.6038× 10202

1024 5.4951× 10−202 0.0 ——–

Table 5.2: Simulation of authenticating 20 tags when correct data is retrieved from the server

Tag# Tag Threshold Tag Score Tag# Tag Threshold Tag Score
1 8.5009× 10−17 1.9334× 10−34 11 4.4131× 10−18 1.2669× 10−38

2 1.0815× 10−17 6.7660× 10−40 12 3.2853× 10−17 1.2683× 10−40

3 1.7627× 10−18 6.1977× 10−37 13 1.6499× 10−18 3.9920× 10−40

4 2.3009× 10−18 5.9758× 10−40 14 2.7262× 10−18 5.4441× 10−38

5 3.7615× 10−17 6.5763× 10−38 15 1.7537× 10−17 1.2832× 10−39

6 4.0801× 10−17 5.1705× 10−36 16 3.9561× 10−18 2.8603× 10−36

7 1.5178× 10−17 4.3137× 10−38 17 3.7821× 10−17 1.5061× 10−39

8 2.8605× 10−18 1.8108× 10−37 18 1.8532× 10−17 9.7054× 10−38

9 2.8426× 10−19 5.7277× 10−41 19 4.6523× 10−18 1.3258× 10−34

10 2.5225× 10−18 8.7400× 10−41 20 1.0544× 10−18 7.8258× 10−40

the enrollment phase. The results show that we can authenticate 100% of the selected tags.

Table 5.2 shows the results of the authentication process. The simulation chose to select

41 tags randomly out of the tag pool. Table 5.2 clearly shows that even though the same

number of features is being used for all the tags, having different distributions will greatly

affect each tag’s threshold and score. Due to the large amount of data, we chose to present

a subset of the data we have (the first 20 tags). The results show that for the test data, the

ratio between the threshold and score ranges between 1.8645× 1012 and 4.1020× 1025.

91

5.3.1.3 Incorrect authentication

In the final experiment without decoys, we test the system assuming the incorrect enrollment

data was retrieved from the server. In other words, we are simulating a situation where an

error occurred to the key sent from the reader to the server resulting in retrieving data for

a tag different than the one being authenticated. As before, we are using 100 tags, each of

them was read 100 times, and each of them has 64 features. The simulation selects a subset

of the enrolled tags and it tests these tags with every other enrolled tag. The results should

be that none of the tests are positive (authentic).

The results show that all the tags chosen as test instances had unauthentic result when

compared with other tags. In other words, tag i was tested unauthentic when compared with

tag j, where i 6= j. Table 5.3 shows a subset of the results obtained. Table 5.3 displays the

results of three tags ,tag #25, tag #37, and tag#13, when compared with tags 1 through 10.

Compared to Table 5.2, we notice that when the correct data is retrieved from the server,

the tag’s threshold is higher than the generated score. On the other hand, when incorrect

data is retrieved from the server, the score will be higher than the threshold. The previous

behavior is what we seek with the proposed authentication system. The results we obtained

show that 100% of the tested tags have a negative (unauthentic) test result.

5.3.2 Experiments with decoys

In this section, we test the performance of the authentication system with decoys. In the

first test, we assume the presence of a non-compromised tag or a reader. The simulation

selects at random a set of tags to test and selects at random which of the features to be

replaced by decoys. After that, the presence of a compromised reader is tested.

The results of this section experiments are presented in Table 5.4 and Table 5.5. In these

92

Table 5.3: Tag authentication with incorrect data retrieved

Tag# Tag Threshold Tag #25 Score Tag #37 Score Tag #13 Score
1 2.4759× 10−18 0.2561 0.3364 0.9483
2 4.1933× 10−18 1.0000 0.0324 0.4241
3 2.6997× 10−18 0.7813 0.0451 0.7480
4 1.5664× 10−18 0.9983 0.8221 0.5295
5 8.1903× 10−18 0.0381 0.0937 0.2731
6 2.4278× 10−17 0.1286 0.1117 0.4834
7 5.7622× 10−17 0.4828 0.0238 0.0247
8 1.4781× 10−16 0.4846 0.5914 0.8220
9 1.4092× 10−19 0.2173 0.2042 0.4106
10 1.3847× 10−18 0.9482 0.8960 0.5971

tables, two new columns are introduced to determine if the reader is compromised or not; the

third and the fourth columns of each table. The third column titled probability of max

value, represents the probability a feature has a value that is within dmc distance of the

decoy, while the fourth feature titled probability of features, represents the probability a

feature has a value that is within dc distance from the decoy. If the reader is not compromised

then the value in the third column should be less than the value in the fourth column, while

if the reader is compromised, the value in the third column should be higher than the value

in the fourth column.

5.3.2.1 Authenticating tags in the presence of decoys and a normal reader

Unlike the previous experiments, in this experiment we include decoys. We test how the

system reacts to the presence of decoys. In the simulation we generated 100 tags, each of

which has 64 features. The simulation selected 69% of the tags to test. It also used 42% of

the available features as decoys.

The results show that the system can authenticate 100% of the tags. The threshold vs.

tag score results are shown in Table 5.4. Even though the number of features used are the

same in all the performed experiments, the threshold and the score results are higher than

93

Table 5.4: Authenticating tags with the presence of decoys

Tag Threshold Tag Score Prob of max value Prob of feature
2.6519× 10−10 8.1889× 10−24 7.1169× 10−19 5.8706× 10−15

9.7449× 10−11 7.8574× 10−22 8.0913× 10−19 2.0819× 10−14

3.5566× 10−11 2.3426× 10−21 6.7517× 10−19 1.5234× 10−13

2.4727× 10−10 4.6838× 10−21 9.2259× 10−19 2.7768× 10−15

2.0763× 10−10 1.9147× 10−18 6.5602× 10−19 3.1434× 10−13

4.2520× 10−10 6.9613× 10−21 7.6760× 10−19 1.0021× 10−13

1.4210× 10−10 3.3384× 10−22 1.1411× 10−19 9.1995× 10−15

4.6365× 10−11 9.3059× 10−20 1.3375× 10−19 1.6410× 10−14

2.5691× 10−11 4.5402× 10−19 7.9476× 10−20 2.4478× 10−15

3.8282× 10−11 2.4190× 10−22 2.9991× 10−18 1.4461× 10−15

the ones in Table 5.2. The reason for that is because we are excluding decoys and only using

genuine features.

5.3.2.2 Authenticating tags in the presence of decoys and a compromised reader

In this experiment, we simulate the presence of a compromised reader. A compromised

reader sends back to the server a small distance between the feature read from the tag and

the mean value sent from the server. Because of the presence of decoys, the distance the

reader should send back should be abnormally large.

As before, the simulator was instructed to generate data for 100 tags, each of which

has 64 features. The simulator choose 7% of the tags to test. The simulator also chose

10 features and changed them to decoys, which are 2 standard deviations from each of the

features’ mean (the user will be asked to determine the distance between the feature mean

and the decoy in terms of standard deviation). The results showed that the server was able

to catch every attempt a compromised reader tries. 100% of the 7 attempts were caught and

a compromised reader alert was issued. The results are shown in Table 5.5. If you notice the

data in Table 5.5, it shows that the tag is authentic if the score and the threshold for each

of the tags are compared. But since we are using decoys, the last two columns of the table

94

need to be compared before comparing the first two columns (threshold and score). Since

the reader is compromised, it sends small distances in an attempt to fool the system. These

small distances will lead to small cumulative probability that is shown in the last column of

Table 5.5. If the reader is not compromised, then the data in column 4 must be larger then

the data in column 3. But, as the experiment shows, the data in column 4 is less than the

data in column 3, which leads us to believe that the reader is compromised.

Table 5.5: Authenticating tags in the presence of decoys and a compromised reader

Tag Threshold Tag Score Prob of max Value Prob of feature
6.5991× 10−10 1.1028× 10−28 2.7019× 10−18 1.2841× 10−47

4.6687× 10−10 1.2691× 10−21 8.6397× 10−19 2.4215× 10−46

1.2713× 10−10 8.8701× 10−23 3.1241× 10−18 5.9741× 10−45

2.6211× 10−10 5.0280× 10−24 1.9485× 10−18 1.6536× 10−47

8.9660× 10−12 1.5748× 10−22 3.8511× 10−18 1.9575× 10−45

6.0950× 10−11 1.2868× 10−31 4.5505× 10−18 9.5575× 10−46

1.0448× 10−11 2.9443× 10−26 1.2095× 10−18 4.5280× 10−49

95

Chapter 6

Conclusions and Future Work

6.1 Summary

In this work, a study of electromagnetic signals and the ability to distinguish among them

based on a specific set of chosen features is presented. RFID technology has been selected

as a representative of electronic devices with wireless communication capabilities. Using

the extracted features, we demonstrated that it is possible to identify the manufacturer of

a specific tag as well as the individual tag with high accuracy. To identify RFID tags, we

used classification techniques such as k-NN, Parzen windows, and SVM. Also, we used HMM

technique to build models that describe the tag’s identity. To determine the performance of

each of the techniques, metrics such as TPR, accuracy, and AUC were calculated.

To identify RFID tags using regular classification techniques, a methodology to extract

and select the features was introduced. After extracting the features from the tag’s trans-

mission, a subset of the features is selected to use as a training set for the classification

techniques. To select the features, we started by testing all features combinations to deter-

mine if a particular feature pattern reveals itself. Once all feature combinations have been

tested, we applied data correlation techniques to eliminate highly related features. Finally,

we ranked the features using Fisher scoring to indicate which of the features should be re-

moved if the feature set needs to be scaled down. The performed classification experiments

showed that we can identify tag’s manufacturer with almost 100% TPR and a 100% AUC.

The experiments also showed that we can identify individual tags with 90.2% TPR, 99.8%

accuracy, and 100% AUC if 1-NN is used.

96

In addition to classic classification techniques, HMM was used to identify tags (both

manufacturer identification and individual tag identification). To use HMM, we extract a

stream of observations from the transmission of the RFID tag(s). The observations were

used in their raw format for the first experiment, while we processed them for the rest of the

experiments. By processing the time-voltage waveform, timing and power observations were

extracted. A combination of timing and power observations lead to the best performance if

they are weighted. The best performance provided us with a 97.00% TPR, 97.67% accuracy,

and 97.18% AUC. HMM has that advantage over classic classification techniques of being

portable due their small size. Also, HMM has the ability to generate identification decisions

very fast compared to classification techniques that degrade in performance when the data

set becomes large.

After proving that using the appropriate observations (or feature set) we can identify a

specific tag, we moved our attention to signal authentication problem. To authenticate RFID

tags (or transmitted signals in general), we devised a technique in which we used decoys. A

decoy is a feature value that could not possibly be generated by the tag we wish to authen-

ticate. The authentication system we developed has two stages of operations: enrollment

phase and verification phase. During enrollment, the tag (or signal) to be authenticated in

the future is queried multiple times. Each time, the feature vector is recorded and stored

for future use. After the enrollment is completed, the set of collected feature vectors is

processed to extract statistics for each of the features (such as: mean, standard deviation,

weight, etc.). When the authenticity of a tag (or signal) needs to be verified, a new feature

vector is extracted and compared with the feature vectors extracted during enrollment. Us-

ing the extracted statistics, we can determine if the new feature vector was generated by the

same tag (signal) that was used during enrollment.

One of the issues that we focused on is the possibility of having a compromised reader. A

compromised reader will attempt to trick the system into treating unauthentic tag (signal)

97

as an authentic one. The decoys in the system are present to mitigate against such problems.

A simulation was devised to test if the proposed authentication system can in-fact au-

thenticate tags. Based on the simulation, the system can authenticate 100% of the tags

when the reader is not compromised. The system can also detect any compromised reader

in the system.

6.2 Contributions

The contributions of this work can be summarized as follows:

1. Developed a methodology to determine the set of features from which we can identify

signals with high accuracy;

2. Identified features to identify passive UHF RFID tags;

3. Investigated k-NN, Parzen windows, and SVM and we were able to identify a tag’s

manufacturer with 100% TPR and AUC (manufacturer is equivalent to tag IC chip).

also, we were able to identify individual tags with 90.2% TPR, 99.8% accuracy, and

100% AUC when 1-NN is used;

4. Investigated the usability of hidden Markov model to identify signals; and we were able

to achieve a 97% TPR, 97.69% accuracy, and 97.18% AUC;

5. Created a probabilistic system that can authenticate signals based on the distribution

of the extracted signal features; and

6. Introduced the concept of decoys in the signal’s authentication system from which we

can identify and authenticate wireless signals even with the presence of compromised

signal readers.

98

6.3 Future Work

In the future, we would like to expand this work. One of the issues we ran into is the limited

size of the data we have. We would like to measure a larger set of RFID tags to provide a

more accurate statistics. Also, we would like to expand the data set in which we obtained

an accuracy of 97% using only timing features [4]; the advantages of using timing include

being easier to measure and more stable.

Regarding the feature set, we would like to investigate additional sets of features to

determine if better performance can be achieved. The problem of selecting decoys will also

be of future interest to us; instead of selecting the decoys at random, we would like to

determine a way to select which features to be replaced by decoys. Also, we would like to

experiment with the way a compromised reader sends its distance to the server. Instead

of sending a fixed distance, a compromised reader could change the distance based on the

current feature value.

Adaptive authentication system is another idea we would like to test. In adaptive au-

thentication system, the server will keep on monitoring the responses from the reader. The

server will terminate the authentication process if it had enough evidence that the reader is

compromised, which means that the server does not need to send all of the modified feature

vector to the reader to detect a compromised reader. Finally, instead of simulations to de-

termine the performance of the authentication system, actual tag’s measurements could be

used.

99

Glossary

Accuracy: The percentage of instance that were correctly classified into either positive or

negative;

Authentication: The process of confirming or denying that a claimed identity is correct by

comparing the credentials of user/object with those previously proven, stored, and associated

with the identity being claimed;

Classification: Set of methods from which an object is mapped to a cluster of similar

objects;

Confusion Matrix: A specialized matrix that allows visualization of the performance of a

classification algorithm;

Cross Validation: A technique for assessing how the results of a statistical analysis will

generalize to an independent data set;

Curse of Dimensionality: A phenomenon that happens when using more features for

classification results in a degradation of the classifier performance;

Energy Harvesting: A technique in which energy from the reader is gathered by the tag,

stored briefly and transmitted back to the reader;

False Negative: A count that describes the number of positive test samples that were

wrongly classified as negative;

False Positive: A count that describes the number of negative test samples that were

wrongly classified as positive;

False Positive Rate: The percentage of negative classes that are classified as positive to

100

the total number of negative instances (FP + TN);

Feature Extraction: The process at which features that describe a certain object will be

extracted from the behavior of that object;

Feature Selection: The process at which a reduction in the number of features we have will

happen. Features that can accurately describe the object will be selected while redundant

features and unhelpful features will be eliminated;

Fingerprinting: The process of creating a unique key that can be used to accurately identify

and/or authenticate an object;

Gaussian Distribution: also known as Normal distribution, is a continues probability

distribution that has a bell-curve shaped probability density function, which is known as the

Gaussian function;

High Frequency (HF): Radio frequencies that are between 3 and 30 MHz, with a wave-

length that is between 10 to 100 meters;

Histogram: A graphical representation showing visual impression of the distribution of

data;

Identification: The process of discovering the true identity of an item from the entire

collection of similar items, which requires a one-to-many matching;

Radio Frequency (RF): A rate of oscillation in the range of about 3 kHz to 300 GHz,

which corresponds to the frequency of radio waves, and the alternating currents which carry

radio signals [65];

Receiver Operating Characteristic Curve: A graphical plot of the TPR vs. the FPR,

for a binary classifier system as the discriminant threshold is varied;

101

True Negative: A count that describes the number of negative test samples that were

correctly classified as negative;

True Positive: A count that describes the number of positive test samples that were

correctly classified as positive;

True Positive Rate: The percentage of positive instance that are classified as positive to

the actual number of positive instances (TP + FN); and

Ultra-High Frequency (UHF): Radio frequencies that are between 300 MHz and 3 GHz,

with a wavelength that is between 10 cm to 1 meter;

102

Bibliography

[1] EPC radio-frequency identity protocols class-1 generation-2 UHF RFID protocol for
communication at 860 mhz - 960 mhz version 1.2.0. http://www.gs1.org/gsmp/kc/

epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf, Oct. 2008.

[2] NEXJEN systems. http://www.nexjen.com/, September 2011.

[3] N. Abramson. The aloha system: another alternative for computer communications.
In Proceedings of the November 17-19, 1970, fall joint computer conference, AFIPS ’70
(Fall), pages 281–285, New York, NY, USA, 1970. ACM.

[4] B. A. Alsaify, D. R. Thompson, and J. Di. Identifying passive UHF RFID tags using
signal features at different tari durations. In Proceedings of the 6th Annual International
Conference on RFID, pages 40 – 46, April 2012.

[5] J. Arnbak and W. van Blitterswijk. Capacity of slotted aloha in rayleigh-fading channels.
Selected Areas in Communications, IEEE Journal on, 5(2):261 – 269, feb 1987.

[6] S. P. Awate. Parzen-window density estimation. http://www.cs.utah.edu/~suyash/

Dissertation_html/node11.html, February 2007.

[7] L. E. Baum and J. A. Eagon. An inequality with applications to statistical estimation
for probabilistic functions of markov processes and to a model for ecology. Bull. Amer.
Math. Soc., 73:360 – 363, 1967.

[8] A. Bogdanov, L. R. Knudsen, G. Le, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In the
proceedings of CHES 2007. Springer, 2007.

[9] C. Bosley, K. Haralambiev, and A. Nicolosi. HBN : An HB-like protocol secure against
man-in-the-middle attacks. Cryptology ePrint Archive, Report 2011/350, 2011. http:

//eprint.iacr.org/.

[10] J. Bringer, H. Chabanne, and E. Dottax. HB++: a lightweight authentication protocol
secure against some attacks. In Security, Privacy and Trust in Pervasive and Ubiquitous
Computing, 2006. SecPerU 2006. Second International Workshop on, pages 28 –33, june
2006.

[11] R. Brunelli and T. Poggio. Face recognition: features versus templates. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 15(10):1042 –1052, oct 1993.

103

[12] M. Bustillo. Wal-Mart radio tags to track clothing. http://online.wsj.com/article/
SB10001424052748704421304575383213061198090.html, July 2010.

[13] P. Chen, C. Lin, and Bernhard S. A tutorial on v-support vector machines: Research
articles. Appl. Stoch. Model. Bus. Ind., 21:111–136, Mar. 2005.

[14] Y. Chen and F. Zhang. Study on anti-collision Q algorithm for UHF RFID. In Proceed-
ings of the 2010 International Conference on Communications and Mobile Computing
- Volume 03, CMC ’10, pages 168–170, Washington, DC, USA, 2010. IEEE Computer
Society.

[15] H. Choi, K. Choi, and J. Kim. Fingerprint matching incorporating ridge features with
minutiae. Information Forensics and Security, IEEE Transactions on, 6(2):338 –345,
June 2011.

[16] H. Chu, G. Wu, J. Chen, and Y. Zhao. Study and simulation of semi-active RFID
tags using piezoelectric power supply for mobile process temperature sensing. In Cy-
ber Technology in Automation, Control, and Intelligent Systems (CYBER), 2011 IEEE
International Conference on, pages 38 –42, march 2011.

[17] W. Clarkson, T. Weyrich, A. Finkelstein, N. Heninger, J.A. Halderman, and E.W.
Felten. Fingerprinting blank paper using commodity scanners. In Security and Privacy,
2009 30th IEEE Symposium on, pages 301 –314, may 2009.

[18] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273–297,
1995. 10.1007/BF00994018.

[19] B. Danev, T. S. Heydt-Benjamin, and S. Capkun. Physical-layer identification of RFID
devices. In Proceedings of the USENIX Security Symposium, 2009.

[20] J. Daugman. How iris recognition works. Circuits and Systems for Video Technology,
IEEE Transactions on, 14(1):21 – 30, jan. 2004.

[21] S. A. Dudani. The distance-weighted k-nearest-neighbor rule. Systems, Man and Cy-
bernetics, IEEE Transactions on, SMC-6(4):325 –327, April 1976.

[22] R. P. W. Duin. Patern Recognition Tools (PRTools), 4.0 edition, 2010.

[23] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7:179 – 188, 1936.

[24] Andrew G. Analysis of variance?why it is more important than ever. Annals of Statistics,
33(1):1–53, 2005.

104

[25] Q. Gu, Z. Li, and J. Han. Generalized fisher score for feature selection. In Proceedings of
the 27th Conference on Uncertainty in Artificial Intelligence (UAI), Barcelona, Spain,
2011.

[26] J. Hall, M. Barbeau, and E. Kranakis. Detecting rogue devices in bluetooth networks
using radio frequency fingerprinting. In Proceedings of the IASTED International Con-
ference on Communications and Computer Networks (CCN ’06), October 2006.

[27] X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. In NIPS. MIT Press,
2005.

[28] A.K. Jain, R.P.W. Duin, and Jianchang Mao. Statistical pattern recognition: a review.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(1):4 –37, Jan.
2000.

[29] B. Jiang, J.R. Smith, M. Philipose, S. Roy, K. Sundara-Rajan, and A.V. Mamishev.
Energy scavenging for inductively coupled passive RFID systems. Instrumentation and
Measurement, IEEE Transactions on, 56(1):118 –125, feb. 2007.

[30] RFID Journal. What’s the difference between passive and active tags? http://www.

rfidjournal.com/faq/18/68.

[31] A. Juels and S. A. Weis. Authenticating pervasive devices with human protocols. pages
293–308. Springer-Verlag, 2005.

[32] V. Kanhangad, A. Kumar, and D. Zhang. A unified framework for contactless hand
verification. Information Forensics and Security, IEEE Transactions on, 6(3):1014 –
1027, Sept. 2011.

[33] B. Kinsella. What do RFID tags cost? Sept. 2010.

[34] T. Kohno, A. Broido, and k. claffy. Remote physical device fingerprinting. IEEE
Transactions on Dependable and Secure Computing, (2):93–108, May 2005.

[35] V. Lakafosis, A. Traille, H. Lee, E. Gebara, M.M. Tentzeris, G. DeJean, and D. Kirovski.
RFID-CoA: The RFID tags as certificates of authenticity. In IEEE Intl Conf. RFID,
pages 207 –214, Apr. 2011.

[36] C. Lee and D. Landgrebe. Feature Extranction and Clasification Algorithms For High Di-
mensional Data. PhD thesis, Electrical Engineering, Purdue Univesity, West lafayette,
IN, January 1993.

[37] Y. Lee, L. Batina, D. Singelée, and I. Verbauwhede. Low-cost untraceable authentication

105

protocols for RFID. In Proceedings of the third ACM conference on Wireless network
security, WiSec ’10, pages 55–64, New York, NY, USA, 2010. ACM.

[38] Voyantic Ltd. http://www.voyantic.com/, 2011.

[39] J. B. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth Berkeley Symposium
on Mathematical Statistics and Probability, volume 1, pages 281–297. University of Cal-
ifornia Press, 1967.

[40] A.M. Martinez and A.C. Kak. Pca versus lda. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 23(2):228 –233, feb 2001.

[41] C. Marzban. A comment on the roc curve and the area under it as performance measures.
June 2004.

[42] K. Murphy. Hidden Markov Model (HMM) Toolbox for Matlab, June 2005.

[43] E.W.T. Ngai, K.K.L. Moon, F. J. Riggins, and C. Y. Yi. RFID research: An academic
literature review (19952005) and future research directions. International Journal of
Production Economics, 112(2):510 – 520, 2008.

[44] D. S. Pallet. Performance assessment of automatic speech recognizers. J. J. Res. Natl.
Inst. Stand. Technol., 90:371–387, September 1985.

[45] E. Parzen. On estimation of a probability density function and mode. The Annals of
Mathematical Statistics, 33(3):pp. 1065–1076, Sept. 1962.

[46] S. Pasanen, K. Haataja, N. Paivinen, and P. Toivanen. New efficient rf fingerprint-based
security solution for bluetooth secure simple pairing. In System Sciences (HICSS), 2010
43rd Hawaii International Conference on, pages 1 –8, jan. 2010.

[47] K. Pearson. Contributions to the mathematical theory of evolution. ii. skew variation
in homogeneous material. Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 186:343–414, January 1895.

[48] S. Chinnappa Gounder Periaswamy. Authentication of radio frequency identification
devices using electronic charactaristics. PhD thesis, University of Arkansas, December
2010.

[49] S. Chinnappa Gounder Periaswamy, D. R. Thompson, and J. Di. Fingerprinting RFID
tags. IEEE Trans. Dependable and Secure Computing, 8(6):938 –943, Nov./Dec. 2011.

106

[50] S. Piramuthu. RFID mutual authentication protocols. Decis. Support Syst., 50:387–393,
January 2011.

[51] S. Prabhakar, A. Ivanisov, and A.K. Jain. Biometric recognition: Sensor characteristics
and image quality. Instrumentation Measurement Magazine, IEEE, 14(3):10 –16, june
2011.

[52] S. Qing-Yun and K. Fu. A method for the design of binary tree classifiers. Pattern
Recognition, 16(6):593–603, 1983.

[53] Murray R. Remarks on some nonparametric estimates of a density function. The Annals
of Mathematical Statistics, 27(3):pp. 832–837, 1956.

[54] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. chapter Readings in speech recognition, pages 267–296. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1990.

[55] M.J. Riezenman. Cellular security: better, but foes still lurk. Spectrum, IEEE, 37(6):39
–42, jun 2000.

[56] H.P. Romero, K.A. Remley, D.F. Williams, and C. Wang. Electromagnetic measure-
ments for counterfeit detection of radio frequency identification cards. Microwave Theory
and Techniques, IEEE Transactions on, 57(5):1383 –1387, May 2009.

[57] I. K. Sethi and G. P. R. Sarvarayudu. Hierarchical classifier design using mutual infor-
mation. IEEE Trans. Pattern Anal. Mach. Intell., 4:441–445, April 1982.

[58] G. E. Suh and S. Devadas. Physical unclonable functions for device authentication and
secret key generation. In Proceedings of the 44th annual Design Automation Conference,
DAC ’07, pages 9–14, New York, NY, USA, 2007. ACM.

[59] J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers.
Neural Processing Letters, 9(3):193–300, 1999.

[60] C. Swedberg. High demand keeps tag prices steady. Sept. 2010.

[61] S. Thirumuruganathan. A detailed introduction to k-nearest neighbor (knn)
algorithm. http://saravananthirumuruganathan.wordpress.com/2010/05/17/

a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/, May 2010.

[62] F. Turroni, D. Maltoni, R. Cappelli, and D. Maio. Improving fingerprint orientation
extraction. Information Forensics and Security, IEEE Transactions on, 6(3):1002 –1013,
Sept. 2011.

107

[63] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum de-
coding algorithm. Information Theory, IEEE Transactions on, 13(2):260 – 269, Apr.
1967.

[64] Q. Wang and C. Suen. Analysis and design of a decision tree based on entropy reduction
and its application to large character set recognition. IEEE Trans. Pattern Anal. Mach.
Intell., 6:406–417, April 1984.

[65] Wikipedia. Radio frequency, 2012. [Online; accessed 27-January-2012].

[66] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics and
Intelligent Laboratory Systems, 2(1-3):37 – 52, 1987.

[67] H. Wu and Y. Zeng. Efficient framed slotted aloha protocol for RFID tag anticollision.
Automation Science and Engineering, IEEE Transactions on, 8(3):581 –588, july 2011.

[68] D. Zanetti, B. Danev, and S. Capkun. Physical-layer identification of UHF RFID tags.
In Proceedings of the sixteenth annual international conference on Mobile computing
and networking, MobiCom ’10, pages 353–364, New York, NY, USA, 2010. ACM.

[69] H. Zhao and S. Ram. Entity identification for heterogeneous database integration: a
multiple classifier system approach and empirical evaluation. Inf. Syst., 30:119–132,
April 2005.

108

Appendix A: Building Confusion Matrix Using HMM Results

indexSize = size(index);

confusionMatrix = zeros(indexSize(1), indexSize(1));

for i=1:indexSize(1)

for j=1:indexSize(2)

if (index(i,j) == i)

confusionMatrix(i,i) = confusionMatrix(i,i) + 1;

end

if (index(i,j) ~= i)

confusionMatrix(i, index(i,j)) = ...

confusionMatrix(i, index(i,j)) + 1;

end

end

end

confusionSize = size(confusionMatrix);

for i=1:confusionSize(1)

TP(i) = confusionMatrix(i,i);

FN(i) = 0;

for j = 1:confusionSize(2)

if(j~=i)

FN(i) = FN(i) + confusionMatrix(i,j);

end

end

FP(i) = 0;

for j=1:confusionSize(2)

if(j~=i)

FP(i) = FP(i) + confusionMatrix(j,i);

end

end

TN(i) = 0;

for j = 1:confusionSize(2)

for k = 1:confusionSize(2)

if(j~=i && k~=i)

TN(i) = TN(i) + confusionMatrix(j,k);

end

109

end

end

TPR(i) = TP(i)/(TP(i) + FN(i));

accuracy(i) = (TP(i) + TN(i))/(TP(i) + TN(i) + FN(i) + FP(i));

end

110

Appendix B: Plotting ROC Curves Using HMM Results

T = zeros(3,300);

Y = zeros(3,300);

for i=1:100 %T represnt the target classes

T(1,i) = 1;

T(2,i+100) = 1;

T(3,i+200) = 1;

end

count = 1;

for i=1:3 %Y represnt the output classes

for j=1:100

Y(i,j) = prob(1,j,i);

Y(i,j+100) = prob(2,j,i);

Y(i,j+200) = prob(3,j,i);

end

end

[tpr,fpr,th] = roc(T,Y);

x = size(tpr{1});

y = size(tpr{2});

z = size(tpr{3});

expandTo = max([x(2) y(2) z(2)]);

for i = x(2):expandTo-1

tpr{1}(1,i+1) = 1.0;

fpr{1}(1,i+1) = 1.0;

end

for i = y(2):expandTo-1

tpr{2}(1,i+1) = 1.0;

fpr{2}(1,i+1) = 1.0;

end

for i = z(2):expandTo-1

tpr{3}(1,i+1) = 1.0;

fpr{3}(1,i+1) = 1.0;

end

tpr{1}(1,expandTo) = 1.0;

111

fpr{1}(1,expandTo) = 1.0;

tpr{2}(1,expandTo) = 1.0;

fpr{2}(1,expandTo) = 1.0;

tpr{3}(1,expandTo) = 1.0;

fpr{3}(1,expandTo) = 1.0;

hold on

plot(fpr{1}, tpr{1},’Color’, [0, 0, 0], ’LineWidth’, 1.0);

plot(fpr{2}, tpr{2}, ’Color’, [0, 0, 1], ’LineWidth’, 1.0);

plot(fpr{3}, tpr{3}, ’Color’, [0, 1, 0], ’LineWidth’, 1.0);

legend(’Manufacturer A’,...

’Manufacturer B’,...

’Manufacturer C’);

xlabel(’False Positive Rate’);

ylabel(’True Positive Rate’);

112

Appendix C: Using Weights to combine HMM models’ results

%To generate the index array for confusion matrix calcaulations

for i=1:indexSize(1)

for j=1:indexSize(2)

index(i,j) = ceil(weights(i,1)*index_time(i,j) + ...

weights(i,2)*index_power(i,j));

if(index(i,j) > indexSize(1))

index(i,j) = indexSize(1);

end

end

end

%To generate the prob array for ROC calculations

probSize = size(prob_power);

for i=1:probSize(1)

for j=1:probSize(2)

for k=1:probSize(3)

prob(i,j,k) = weights(i)*prob_time(i,j,k) + ...

weights(i)*prob_power(i,j,k);

end

end

end

113

Appendix D: Calculate Threshold for the Authentication System

function [threshold, prob, values] = CalculateThreshold(data, dataStat)

dataSize = size(data);

numTags = dataSize(1);

numReads = dataSize(2);

numFeatures = dataSize(3);

for i = 1:numTags

threshold(i) = 1;

for j = 1:numFeatures

distance = 10*dataStat(i,j,2);

minBound = dataStat(i,j,1) - distance;

maxBound = dataStat(i,j,1) + distance;

%To construct the pdf of the feature

count = 1;

step = dataStat(i,j,2)/10;

for k = minBound:step:maxBound

pdfValues(count) = pdf(’norm’, k, dataStat(i,j,1), ...

dataStat(i,j,2));

featurevalues(count) = k;

count = count + 1;

end

[furthestDistance, readIndex] = findFurthestDistance(i, j...

, data, dataStat);

for k = 1:length(featurevalues)

distanceArray(k) = abs(dataStat(i,j,1) - ...

featurevalues(k));

end

for k = 1:length(distanceArray)

closestDistance(k) = abs(furthestDistance - ...

distanceArray(k));

end

[closestValue, minIndex] = min(closestDistance);

114

if(minIndex > length(featurevalues)/2)

bounds(1) = length(featurevalues)/2 - ...

(abs(minIndex - length(featurevalues)/2));

bounds(2) = minIndex;

elseif(minIndex < length(featurevalues)/2)

bounds(1) = minIndex;

bounds(2) = length(featurevalues)/2 + ...

(abs(minIndex - length(featurevalues)/2));

else

bounds(1) = minIndex - 1;

bounds(2) = minIndex + 1;

end

areaUnderPDF = trapz(featurevalues(bounds(1):bounds(2)),...

pdfValues(bounds(1):bounds(2)));

threshold(i) = threshold(i) * areaUnderPDF;

prob(i,j,:) = pdfValues;

values(i,j,:) = featurevalues;

end

end

end

115

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2012

	Recognizing Patterns in Transmitted Signals for Identification Purposes
	Baha' A. Alsaify
	Recommended Citation

	tmp.1469023570.pdf.QYAc8

