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ABSTRACT 

In recent years, there have been dramatic shifts in cellular and telecommunication 

industries.  As smartphones are dominating on the cellphone market, more and more people use 

these mobile devices to access internet either through third generation network or IEEE802.11 

wireless local area network.  Orthogonal frequency division multiplexing (OFDM) has been 

widely used in IEEE802.11 wireless local area network and fourth generation network.  This 

paper will focus on the design and implementation of an Orthogonal Frequency Division 

Multiplexing system on field-programmable gate array (FPGA).  The major components of an 

OFDM system include a modulator, an N-input inverse Fast Fourier Transform (IFFT), two root 

raised cosine filters (RRC filter), an N-input Fast Fourier Transform (FFT), and a demodulator.  

These components are designed by using very-high-speed integrated circuits (VHSIC) hardware 

description language (VHDL) under development environment of ModelSim, and then 

implemented onto Altera cyclone II EP2C35F672C6.  The FFT accuracy is measured by 

comparing outputs from ModelSim to Matlab.  The performance of the developed OFDM is 

evaluated in a wireless communication testbed. 
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Chapter 1. Introduction 

1.1 Background  

 In recent years, there have been dramatic shifts in the cellular telecommunication 

industry.  As smartphones have begun dominating the cellphone market, more and more people 

use these mobile devices to access the internet either through a third generation network or an 

IEEE802.11 wireless local area network.  Mobile users are going to increase continuously and 

the speed of the network is very important to users.  Because of these changes, the major 

wireless providers are switching third generation (3G) network to fourth generation (4G) 

network.  The other reason that the providers are changing to 4G is that 4G offers internet speeds 

up to 10 times faster than 3G according to AT&T. 

Orthogonal frequency division multiple access (OFDMA) is the standard used in 

IEEE802.11 wireless local area network and 4G network.  It is a multi-user version of orthogonal 

frequency division multiplexing (OFDM).  OFDM is a critical component in 4G network.  Thus, 

to design and implement efficiency OFDM system is very important.  Since the major 

component in an OFDM system is FFT, in order to have an efficient OFDM system, FFT unit 

needs to be efficient.  Also, FFT unit is a critical component in other systems, such as digital 

signal processing (DSP) system.  This thesis addresses an approach to design an OFDM system 

by using very-high-speed integrated circuits (VHSIC) hardware description language (VHDL).  

FFTs are designed and tested in Matlab first, then implemented on Field-Programmable Gate 

Arrays (FPGA) Cyclone II using VHDL.  FFTs used in this research use decimation-in-time 

algorithm.  The power consumption and complexity of FFTs are compared in the results.  After 

completion of FFTs design, OFDM system is built upon FFTs.  Implementation outputs of 

OFDM are compared with the simulation outputs. 
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1.2 Major modern wireless communication standards 

1.2.1 1
st
 generation: analog voice 

 First generation wireless communication networks were first introduced in the 1980s.  It 

uses analog radio signals by modulating the voice signals to higher frequency directly, typically 

above 150MHz.  The standard used in North America is Advanced Mobile Phone System 

(AMPS).  It uses frequency division multiple access (FDMA) to divide available spectrums into 

different channels, and each user is assigned to a channel. 

1.2.2 2
nd

 generation: digital voice and narrowband data 

 Second generation wireless communication networks were commercially launched in 

1991.  Global system for mobile communication (GSM) is the most popular standard in 2G 

networks.  It usually uses time division multiple access (TDMA) on top of FDMA.  The principle 

of TDMA is to divide time into frames, and each frame is divided into slots [6].  Each user 

shares the same frequency channel that is assigned to its time slot.  Three primary advantages 

that 2G has over 1G are digitally encoded voices, efficient spectrum usage which supports more 

users and data services which include text messages.   

1.2.3 3
rd

 generation: digital voice and broadband data 

Third generation wireless communication networks were first commercially launched in 

2001.  It was relatively slow to get adopted by network providers since upgrading from 2G 

would require to build entirely new networks and replacing most broadcast towers.  However, 

3G has many advantages over 2G network.  The advantages over 2G include much faster 

downlink speed, uplink speed, and higher security.  cdma2000 is a family of 3G mobile network 

standards; it is primarily used in North America.  It uses code division multiple access (CDMA) 

channel access to make communications between base station and mobile phones.  In CDMA, a 

unique code that is known at both base station and mobile phones is assigned to each user.  All 
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users can transmit at the same frequency and time.  The receiver picks up the desired signals by 

using a unique code.   

 1.2.4 4
th

 generation: broadband data 

 Current 3G wireless communication network is migrating to fourth generation (4G) 

wireless communication network since more and more users are using smart phones and tablets 

to stream data from the network.  International Mobile Telecommunications Advanced (IMT-

Advanced) requirements for 4G standards are 1Gbit/s for peak download speed and 500Mbit/s 

for upload speed [2].  Current 3GPP Long Term Evolution (LTE) provide the highest LTE data 

rates of 300 Mbit/s [2], which is still slow compared to the standard .  However, LTE Advanced 

is the standard that is targeted to surpass the IMT-Advanced standard requirements to be “real” 

4G.  4G uses orthogonal frequency division multiple access (OFDMA) for its mobile internet 

access.  OFDMA is a multi-user version of OFDM.  

 1.2.5 Orthogonal Frequency Division Multiplexing (OFDM)  

 OFDM is a frequency division multiplexing scheme that uses orthogonal subcarriers to 

carry data.  It is the most popular Multi-Carrier Modulation (MCM).  MCM achieves broadband 

communication by modulating a large number of narrow-band data streams over closely spaced 

sub-carriers.  The transmitted data stream is divided into many sub-streams, and one sub-stream 

is transmitted in one sub-channel [6].  MCM is very effective to robust inter-symbol interference 

(ISI) when comparing to single-carrier broadband communication.  The comparison between 

single-carrier and multi-carrier in time domain is shown in Figure 1.  As shown in Figure 1, 

single-carrier broadband communication suffers serious ISI as multipath signals interfere with 

adjacent symbols due to short symbol period in one single carrier, however, MCM has less ISI 
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due to its longer symbol period as the symbols are spread into different carriers, and the ISI in 

MCM can be completely removed by using guard interval between adjacent symbols. 

           Time 

Single-carrier 

Multipath 1  

Multipath 2    

MCM 

Multipath 1   

Multipath 2   

Figure 1: MCM vs single-carrier [6] 

The other advantages of OFDM are no inter-carrier interference (ICI) among the subcarriers in 

quasi-static fading channel, where the channel is constant within one symbol period, high 

spectral efficiency as compared to conventional modulation schemes, and efficient 

implementation using Fast Fourier Transform (FFT). 

1.3 Objectives 

 The primary goal of this thesis is to efficiently implement OFDM on FPGAs.  The 

specific objectives leading to this goal are: understanding of the software development 

environments of Modelsim and Matlab, OFDM simulation on Matlab and Modelsim based on 

the theory of OFDM, and implementation of OFDM on FPGAs.  The simulation result of 

OFDM‟s bit error rate (BER) performance should match analytical results. The output of OFDM 

on FPGA should be identical or close to the output of Matlab software environments. 
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Chapter 2. Orthogonal Frequency Division Multiplexing (OFDM) 

2.1 Transmitter 

 

 

 

 

 

 

Figure 2: Overall architecture of the OFDM transmitter 

 

 Figure 2 shows the overall architecture of the OFDM transmitter.  The transmitter of 

OFDM is composed of a modulator, a serial-to-parallel converter, an N-point IFFT, two parallel-

to-serial converters, and two root raised cosine filters.  The data is first modulated by a 

modulator.  The modulated data are transmitted through a serial-to-parallel converter, parallel 

frequency domain data,   [ , -  , -  , -    ,   -], are obtained.  After performing 

IFFT on the parallel data, time domain data,   [ , -  , -  , -    ,   -], are obtained.  

The cyclic prefix is then added to the data, so prefixed data are x~ [ ,   -    ,  

 -  , -  , -    ,   -], where u is the length of the wireless channel.  The prefixed data are 

then passed through a parallel-to-serial converter, the real part and imaginary part of the data are 

both being filtered by a RRC filter and then a digital to analog converter; these analog signals are 

then combined with 90 degree phase difference.  The result signals are then transmitted 

wirelessly through an antenna. 
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2.2 Receiver 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Overall architecture of the OFDM receiver 

 Figure 3 shows the overall architecture of the OFDM receiver.  The receiver of OFDM 

composes a demodulator, a parallel-to-serial converter, an N-point FFT, two serial-to-parallel 

converters, and two root raised cosine filters.  The received data is first separate into two parts: 

one is real number and the other is imaginary number.  Each of these parts goes through an 

analog to digital converter and a RRC filter, and then the cyclic prefix is removed.  Sampled 

complex data,   , , -  , -  , -    ,   --, from RRCs are then combined to form the 

parallel data.  After performing FFT on these parallel data, frequency domain data,   

, , -  , -  , -     ,   --, are obtained.  Once these frequency domain data goes through 

parallel to serial converter, a demodulator is used to demodulate the serial data and recover the 

original data.  

2.3 Wireless Communication Background 

2.3.1 Basic concepts 

In wireless communication, information is transmitted through the propagation of 

unguided electromagnetic waves, which is called channel (or carrier).  The information will be 

processed in the transmitter by modulation, and the coding technique to ensure the information 

would be robust to the noise during the wireless transmission.  After receiver receives the 
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information, it uses demodulation and decoding techniques to recover the original information.  

Figure 4 shows the major communication blocks. 

 

Figure 4: Major communication blocks 

2.3.2 Noise 

Noise is any unwanted electrical signals interfering with the desired signal.  These 

unwanted electrical signals can come from natural or artificial sources, such as automobile 

ignition, thermal noise, and signals from other communication systems, etc.  In this paper, only 

additive white Gaussian noise (AWGN) is considered during the simulation.  AWGN comes 

from many natural sources, such as movements of electrons inside the conductor when the 

temperature is above 0K, radiation from the sun and other warm objects.  AWGN follows 

Gaussian distribution with zero mean.   

2.3.3 Fading 

In this paper, frequency selective Rayleigh fading is considered as the only fading 

situation during the simulation.  Frequency selective fading happens when multipath propagation 

caused different parts of transmitted symbols attenuated differently.  Rayleigh fading is used to 

simulate for the situations, such as urban environments and tropospheric signal propagation.  

Rayleigh fading is based on Rayleigh distribution-summation of two zero-mean complex 

Gaussian distributed variables.  Rayleigh fading function equals to  

 ( )    ( )      ( ) 
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Where    is the real part,    is the imaginary part,    and    are both Gaussian 

distributed. 

2.3.4 Modulation 

Modulation is used to modulate signal from low frequency, which is not suitable for 

wireless communication, to high frequency signal to carry the information over wireless channel.  

The original signal is called baseband signal,  ( ), while the modulated signal is called 

bandpass signal,  ( ).  The carrier signal,  ( ), is usually a high frequency sinusoid signal.  

Carrier signal has three parameters that can be modified to carry information.  They are 

amplitude, frequency and phase as shown in the formula of carrier signal:  ( )        (      

 ).  Figure 5 shows general model of a modulation system. 

 

Figure 5: Modulation system [6] 

 Modulation can be decomposed into two steps: complex baseband modulation and 

frequency upconversion.  Only baseband modulation is used in this paper.  The passband 

modulation would not be performed in FPGA, since FPGA cannot perform frequency 

upconversion.  However, it would be sufficient to examine baseband modulation only and the 

proof will be shown in the next paragraph.  The modulation theme used in this paper is a 

baseband modulation based on quadrature phase-shift keying (QPSK).  QPSK is a combination 

of two binary phase-shift keying (BPSK).  It is called quadrature, because two carriers are 

mutually orthogonal.  Figure 6 is the QPSK model with its mathematical representation. 
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 ( )      ( )    (     )      ( )   (     ) 

Figure 6: QPSK model with its mathematical representation [6] 

To show that baseband modulation would be sufficient to examine for the modulation, 

suppose band-pass signal,  ( ), is 

 ( )    ( )    (     )    ( )   (     ). 

The complex base-band signal,  ( ), is  

 ( )    ( )     ( ). 

Relationship between complex base-band signal and band-pass is 

 ( )    * ( )    (      )+. 

Figure 7 shows the decomposed modulation system. 

 

Figure 7: Decomposed modulation system 

Baseband modulation signals are represented in complex numbers.  For QPSK, two bits 

represent one symbol.  All possible symbols based on two bits combination are shown in Figure 

8. 
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Figure 8: Symbol mapping based on bits combination on QPSK (where Es is the energy of one 

symbol) 

2.3.5 Demodulation 

Demodulation is used to find the original signals based on the received signals.  Different 

modulation techniques have corresponding demodulations.  The maximum likelihood decision 

rule determines that the modulated symbol with the shortest Euclidean distance to the received 

signal is the detected symbol at the receiver.  The Euclidean distance between two symbols is 

defined as the length of distance between these two symbols.  As shown in Figure 9, for QPSK 

demodulation, the received signal r will be demodulated as symbol A since its shortest Euclidean 

distance is to A.  Let        and    , Euclidean distance =          . 
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Figure 9: QPSK demodulation 

2.3.6 Pulse shaping 

 

Figure 10: Rectangular pulse has unlimited bandwidth 

In wireless communication, rectangular pulse has unlimited bandwidth in frequency 

domain as shown in Figure 10.  Unlimited bandwidth is a very bad property since frequency has 

been allocated into many different ranges for cell phone, Global Positioning System (GPS) 

navigation, Bluetooth, and so many more.  In order to limit the bandwidth, pulse shaping is 

required.  However, pulse shaping needs to satisfy Nyquist criterion, so that symbols would not 

interfere with each other.  In Nyquist criterion, overall response of Tx filter and Rx filter needs to 
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satisfy the property, such that signals do not interference with each other at                .  

Raised cosine (RC) pulse satisfies this property as shown in Figure 11. 

 

Figure 11: RC pulse symbols do not interference each other at     [6] 

RC pulse also has limited bandwidth in frequency domain as shown in Figure 12.  

 

Figure 12: Time domain and frequency domain of RC pulse 

The function of raised cosine (RC) pulse  ( ) is 

 ( )  
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Since transmitter filter and receiver filter are used in the communication system, using 

two root raised cosine (RRC) filters for the pulse shaping results in an overall RC filter in the 

wireless communication system as shown in Figure 13.   

 

 

 

 

Figure 13: Two RRC filters results an overall RC filter [6] 

The frequency domain response of RRC filter is the square root of the RC filter, which is 

    ( )      ( ) ,6-  

The function of RRC is 

 ( )  4 
   ,(   )    -     ,(   )    - (4    )

  

    ,   6      
 -

,6-  

2.3.7 Bit error rate (BER) 

In wire wireless communications, a number of bit errors occur due to the noise, 

interference, and distortion during the transmission.  BER equals to the total amount of bit errors 

divided by the total number of transmitted bits.  It is one of the most important characteristics to 

measure the performance of wireless network. 

 

 

𝑃𝑅𝑅𝐶(𝑓) Channel 𝑃𝑅𝑅𝐶(𝑓) 

 

𝑥(𝑛) ẋ(𝑛) 

𝑃𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑓)   𝑃𝑅𝐶(𝑓)   𝑃𝑅𝐶(𝑓)  𝑃𝑅𝐶(𝑓) 
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2.4 Theory of OFDM 

 OFDM is the most popular MCM technique.  Since the subcarriers are mutually 

orthogonal, there is no inter-carrier interference (ICI) among subcarriers.  Suppose modulated 

data is 

  [ , -  , -    ,   -], 

where   is in frequency domain.  After IFFT, the time domain data are 

  , -  
 

√ 
∑  , - 

     

    
            , , -  , -    ,   --. 

Circular convolution in time domain is equivalent to multiplication in frequency domain [6]: 

   * , -   , -   , -+   , - , -                

where  , - is wireless channel between transmitter and receiver in frequency domain.   

A practical system has the effect of linear convolution.  In order to achieve a circular convolution, 

cyclic prefix is added to the data  

x~ [ ,   -    ,   -  , -  , -    ,   -]  

where   is the number of circular prefix, x~ is cyclic-prefixed data in time domain.  The cyclic-

prefixed data is transmitted through channel.  The channel functions like a linear convolution 

with data.  Once the data is received, the cyclic prefix is removed, and then the circular 

convolution is achieved.  Let   , , -  , -  , -    ,   -- to be the received data,  

 , -  ∑  , - x~ ,   -   , -  
 

   
∑  , - ,   - 

 

   
  , - 

  , -   , -   , -           

After FFT, 

 , -   , - , -   , -                     
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Once the channel H is estimated by using known symbol patterns, effects of channel on received 

symbols can be removed.  The results of demodulation are outputs of OFDM receiver. 

2.5 Mathematic background 

• Discrete Fourier transform (DFT) 

 , -  
 

√ 
∑  , -  

  

   

   

                 
          /  

• Inverse discrete Fourier transform (IDFT) 

 , -  
 

√ 
∑  , -  

   

   

   

                
          /  

• Linear convolution 

 , -   , -   , -  ∑  , - ,   -
 

  
 

• Circular convolution 

 , -   , -   , -  ∑  , - ,   - 
   

   
 

 , -             

• Linear convolution vs circular convolution 

      * , -  , -  , -  , -+         * , -  , -  , -  , -+ 

                             , -   , -   , -  ∑  , - ,   -
 

  
 

An example of Linear convolution between two length-4 vectors x=[x[0], x[1], x[2], x[3]] 

and h=[h[0], h[1], h[2], h[3]] is: 

 , -   , - , - 

 , -   , - , -   , - , - 

 , -   , - , -   , - , -   , - , - 
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 , -   , - , -   , - , -   , - , -   , - , - 

                               , -   , -   , -  ∑  , - ,   - 
   

   
 

An example of Circular convolution between x and h is: 

 , -   , - , -   , - , -   , - , -   , - , - 

 , -   , - , -   , - , -   , - , -   , - , - 

 , -   , - , -   , - , -   , - , -   , - , - 

 , -   , - , -   , - , -   , - , -   , - , - 
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Chapter 3. Hardware Implementation of OFDM 

3.1 Introduction to Altera Cyclone II EP2C35F672C6 and VHDL 

 

Figure 14: Altera Cyclone II EP2C35F672C6 [7] 

 

 Figure 14 is a picture of Altera Cyclone II EP2C35F672C6, it is a development and 

education board from Altera.  It is mostly used for undergraduate courses and graduate projects.  

The board offers a rich set of features that make it suitable for this OFDM project.  It features a 

state-of-the-art Cyclone II 2C35 FPGA in a 672-pin package [7].  All important components on 

the board are connected to pins of this chip, allowing users to control all aspects of the board‟s 

operation [7].  It has a built-in USB Blaster for FPGA configuration which eases the digital 

simulation process, two 40-pin expansion headers for external input/output, 16 x 2 LCD display, 

and more as shown in table 1.  VHDL programming language is used during the implementation 

of OFDM.  VHDL is used to write text models for logic circuits.  Different logic circuits can be 

designed individually and then easily used as parts of design blocks after some tuning in 
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parameters.  Unlike C or Java, one advantage of VHDL is that it describes a concurrent system.  

The other advantage is that VHDL describes the behavior of a system that can be modeled and 

simulated in Modelsim development environment before translating the design into real 

hardware and wires in FPGA.  In this way, the design cycle can be reduced through ModelSim 

simulations.  

Table 1: Specifications for Altera Cyclone II EP2C35F672C6 [8] 

 

Feature Description 

I/O Interfaces 
 Built-in USB-Blaster for FPGA configuration 

 Line In/Out, Microphone In (24-bit Audio CODEC) 

 Video Out (VGA 10-bit DAC) 

 Video In (NTSC/PAL/Multi-format) 

 RS232 

 Infrared port 

 PS/2 mouse or keyboard port 

 10/100 Ethernet 

 USB 2.0 (type A and type B) 

 Expansion headers (two 40-pin headers) 

Memory 
 8 MB SDRAM, 512 KB SRAM, 4 MB Flash 

 SD memory card slot 

Displays 
 Eight 7-segment displays 

 16 x 2 LCD display 

Switches and LEDs 
 18 toggle switches 

 18 red LEDs 

 9 green LEDs 

 Four debounced pushbutton switches 

Clocks 
 50 MHz clock 

 27 MHz clock 

 External SMA clock input 

3.2 Q-15 number representation 

 In hardware implementation, different types of number representation need to be taken 

into consideration.  The fixed point representation is implemented in this project since it has 
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Implied binary point 

higher speed and lower cost when compared to the floating point representation.  Although the 

floating point has higher dynamic range and no need for scaling, it is slower and much more 

complex.  In order to design a fast and low cost OFDM system, the fixed point representation is 

used.  

 Q-15 number representation is used during implementation.  In Q-15 format, 16 bit is 

used to represent a number.  The decimal value of a 2‟s-complement number 

                 *   +  is given by  

 ( )       
       

        
     

  [9]. 

b15 b14 … … b1 b0 

 

Figure 15: Integer representation [9] 

 As shown in Figure 15, 2‟s complement number representation is an integer 

representation.  There are limitations on this representation.  For example, it is not possible to 

represent a number that is larger than 2
15

-1=32767 or smaller than -2
15

=-32768.  In order to 

overcome this limitation, numbers need to be normalized between -1 and 1.  Hence, the 

fractional representation is used as shown in Figure 16. 

b15 b14 … … b1 b0 

 

Figure 16: Fractional representation [9] 

 In Figure 16, the implied binary point is moved behind the most significant bit.  The 

fractional value is given by  

 ( )       
      

        
       

    [9]. 

Implied binary point 
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For fractional representation, each number consists of 1 sign bit plus 15 fractional bits [9].  Since 

all numbers are normalized between 0 and 1, there is no overflow during multiplication.  

Overflow would never happen during addition of two numbers with non-identical signs, but 

could possibly occur with two numbers with identical signs.  For example, if two numbers (  and 

 ) have non-identical signs, let       and       ,         .  During 

multiplication operation, a Q-30 format is obtained, where multiplication of two sign bits result 

in two sign bits.  Bit-31 is the sign bit and bit-32 is the extended sign bit.  Figure 17 shows 

multiplication between two Q-15 numbers A and B, which results in C. 

 

Figure 17: Multiplication of two Q-15 numbers 

Since Q-15 format is used, only 16 bits can be stored from multiplication of two Q-15 

numbers.  By storing one sign bit and following 15 fractional bits, the product can be saved in Q-

15 format with slight loss in precision as shown in Figure 18. 

 

Figure 18: Stored product in Q-15 format 

In the implementation, two Q-15 format numbers are used to represent a complex number.  

One Q-15 format number is to represent a real number, while the other one is to represent an 

imaginary number.  The data format is shown in Figure 19 for a complex number.  

 

Figure 19: Complex number representation in fixed number 
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3.3 FFT implementation 

 3.3.1 Discrete Fourier Transform 

 Discrete Fourier Transform (DFT) is an important component in a wireless 

communication system, as it transforms the system from time domain to frequency domain.  

Thus, designing an efficient DFT is important for a wireless communication system since it 

lowers overall cost by reducing the total logic number and total power consumption. 

 The DFT of a finite-length sequence of length N is defined as 

 , -  ∑  , -  
                     

   

   

 

where     
  (

  

 
)
.  The inverse discrete Fourier transform (IDFT) is defined as 

 , -  
 

 
∑  , -  

                      

   

   

 

 where  , - and  , - are complex in both equations.  Since the differences between DFT 

and IDFT are the sign of the exponent of    and scale factor 
 

 
, it would be pretty 

straightforward to obtain IDFT from slight modification on DFT. 

 Complexity of logic circuit is one important factor that needs to be considered especially 

when doing large scale logic design.  To evaluate the complexity of DFT with a finite-length 

sequence of length N with complex multiplications and complex additions,  

                    (                                  ) 

                                       (     ) 

                                        

                                   (  ). 
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IDFT has same complexity with DFT based on the equation.  However,  (  ) is a bad 

result, since it produces large logic circuits when   is large.  Every time   doubles, the total 

complexity of DFT or IDFT quadrupled.  In order to make DFT or IDFT to be more practical in 

real design, FFT or IFFT is used as a substitution.   

3.3.2 FFT 

There are many different algorithms to achieve FFT, such as decimation in time, 

decimation in frequency, etc.  In this research, decimation in time algorithm is used.  FFT is the 

result after recursively decomposing the computation of DFT into smaller DFTs.  The calculation 

of  , - can be alternatively represented as 

 , -  ∑  , -  
  

      

 ∑  , -  
  

     

  

Supposing      for even numbered   and        for odd numbered  ,  , - can be 

expressed as 

 , -  ∑  ,  -  
   

 
 
  

   

 ∑  ,    -  
(    ) 

 
 
  

   

 

                   ∑  ,  -(  
 )  

 
 
  

   

   
 ∑ ,    -(  

 )  

 
 
  

   

  

Since   
      (

  

 
)       /(

 

 
)    /    , - can be expressed as 

         , -  ∑  ,  -  
 

  

 
 
  

   

   
 ∑ ,    -  

 

  

 
 
  

   

 

   , -    
  , -  
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where  , - and  , - are both ( / )-point DFT.   , - is the DFT of even numbered points of 

original sequence, and  , - is the DFT of odd numbered points of original sequence.  

  , - and  , - are both periodic in   with period N/2,  , -   , / - and  , -  

 , / -.  Based on the derived equation,  , - equals to  , - plus result from  , - 

multiplying   
 .  Similarly,  , -,  , -,  , and  , /   - can be obtained using this method.  

Since 

 , / -   , / -    
 / 
 , / -, 

by substitution, 

 , / -   , -     
 / 
 , -. 

Using substitutions,  0
 

 
  1,  0

 

 
  1, , and  ,   - can be obtained.  Figure 19 shows the 

flow graph of an 8-point DFT after decomposing into two 4-point DFT computations, where 

even and odd inputs are grouped separately for N/2-point DFTs.   
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Figure 20: Flow graph of an 8-point DFT after decomposing into two 4-point DFTs 

computations [4] 

 DFT structure in Figure 20 needs to be decomposed further in order to achieve FFT. 

Using the same algorithm from decomposing  -point DFT to  / -point DFTs,  / -point DFT 

is decomposed into  /4-point DFTs: 

 , -  ∑  ,  -  / 
  

 /   

   

   / 
 ∑  ,    -  / 

  

 /   

   

  

𝐺, - 

𝑁

 
 𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇 

 

 

𝑁

 
 𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇 

 

 

𝐺, - 
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 , -  ∑  ,  -  / 
  

 /   

   

   / 
 ∑  ,    -  / 

  

 /   

   

  

For example, the first  / -point DFT in Figure 19 is composed into two  /4-point 

DFTs as shown in Figure 21.  Even numbered input  , - and  ,4- are grouped as inputs of 

upper  /4-point DFT, and odd numbered input  , - and  ,6- are grouped as inputs of lower 

 /4-point DFT.   

 

 

 

 

 

 

 

 

Figure 21: Flow graph of 4-point DFT after decomposing into two 2-point DFTs computation [4] 

Since   / 
   

  (
   

 / 
)
    (

     

 
)    

  , by substitute   / 
  with   

  , the flow graph 

of full 8-point DFT is then decomposed into 2-point DFTs as shown in Figure 22. 
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Figure 22: Flow graph of 8-point DFT after decomposing into two 2-point DFTs computation [4] 

 The first 2-point DFT in Figure 23 consists of  , - and  ,4- as the inputs.  Figure 23 

shows the flow graph for this DFT. 

 

 

 

Figure 23: Flow graph of 2-point DFT [4] 
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 By substituting the 2-point DFT flow graph in to Figure 22, we obtain the full flow graph 

for an 8-point FFT as shown in Figure 24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Flow graph for FFT [4] 

 The FFT in Figure 24 has three stages, which are calculated by     ( ) with N equals 8.  

Each stage has   complex multiplications and     complex additions, so the total complexity 

of an N-point FFT is 
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                    ( )    (                                  ) 

                                        ( )    (     ) 

                                         ( )       ( ) 

                                   (      ( ))  

 By comparing the complexity of FFT to that of DFT, it is obvious that FFT has better 

performance.  For example, supposing input number          4, the complexity of DFT 

is       4     48 576, while the complexity of FFT is             4 .  By using 

FFT over DFT, the total amounts of computation logic units are largely reduced.  Obviously, 

DFT is not suitable for hardware implementation, and FFT is a great method to get the same 

result as DFT while maintaining lower power consumption and lower logic units. 

 3.3.3 Butterfly operation 

 

 

 

 

Figure 25: Butterfly operation [4] 

 The flow graph in Figure 25 can be further reduced based on the symmetry and 

periodicity of the coefficient   
 .  By observing Figure 24, one can see that each stage of FFT 

can be decomposed into a structure called “butterfly”, based on the shape of graph as shown in 

Figure 25.  Butterfly takes two outputs from the previous stage as inputs and calculates the inputs 

for the next stage.  The coefficients on these butterflies have a pattern: the upper coefficient 

  
  times   

 / 
 equals to lower coefficient   

(   / )
.  Since 

𝑊𝑁
𝑘  

𝑊𝑁
(𝑘 𝑁/ )

 

(m-1)
th

 stage m
th

 stage 
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 / 

  
  .

  

 
/  / 

        , 

the coefficient   
(   / )

can be rewritten as 

  
(   / )

   
 / 

   
     

 . 

The flow graph in Figure 24 can be improved further based on this property.  Instead of 

using two complex multiplications in a butterfly, one complex multiplication would be sufficient 

to complete one butterfly calculation.  In this way, it simplifies the calculation.  The Butterfly 

unit is then simplified as shown in Figure 26.  

 

 

 

 

 

Figure 26: Simplified butterfly unit [4] 

3.3.4 Revised FFT 

By replacing the butterfly units in Figure 24 with simplified butterfly units, the FFT unit 

is simplified as shown in Figure 27.  On the simplified FFT, there are only  /  coefficients used 

for complex multiplications.  Each stage has  /  complex multiplication deductions by using 

simplified butterflies.   
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Figure 27: Simplified FFT [4] 

 As can be seen on different stages of the simplified FFT, the inputs for each butterfly 

need to be rearranged, so that the FFT will perform the function correctly.  For example, on the 

first stage of 8 input FFT, the inputs are rearranged as 0, 4, 2, 6, 2, 5, 3, 7; on the second stage of 

8 input FFT, the inputs are rearranged as 0, 2, 1, 3, 4, 6, 5, 7; on the third stage inputs are 

rearranged as 0, 4, 1, 5, 2, 6, 3, 7.  These input rearrangements will require the Read-Only 

Memory (ROM) to store the location information during hardware implementation since 
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recursively using butterflies is recommended in order to reduce logic units.  Supposing 

butterflies are not recursively used, let the FFT input number equal 2
10

; there are 10 stages to 

complete the FFT.  512 butterflies are used in each stage; total amount of butterflies would be 

512*10=5120, which is a huge number.  By recursively using butterflies, the logic units would 

be greatly reduced with the help of ROM.  Although using ROM can greatly reduce the logic 

units, it can be removed by using a Singleton flow graph as shown in Figure 28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Flow graph of FFT originally given by Singleton [4] 
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 A rearrangement of flow graph shown in Figure 27 results in the Singleton FFT flow 

graph in Figure 28.  In the Singleton FFT flow graph, each stage has an identical geometric 

structure.  By using the Singleton FFT flow graph, no ROM is required.  This greatly reduces the 

design complexity and logic units.    

 Noted that inputs of FFT are in bit-reverse order, let the digital number be a=a0a1a2a3…an, 

and its bit reverse order be an…a3a2a1a0.  Suppose   8, table 2 shows the bit-reversed order of 

each digital number.   

Table 2: Bit-reversed table 

Digital number Bit-reversed order 

000 (0) 000 (0) 

001 (1) 100 (4) 

010 (2) 010 (2) 

011 (3) 110 (6) 

100 (4) 001 (1) 

101 (5) 101 (5) 

110 (6) 011 (3) 

111 (7) 111 (7) 

 

By denoting the m stage input array as   , -, where               , the first 

stage input array of the 8-input FFT is acquired, shown in Figure 29, after making the 

arrangement on the original input array. 
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  , -   , - 

  , -   ,4- 

  , -   , - 

  , -   ,6- 

  ,4-   , - 

  ,5-   ,5- 

  ,6-   , - 

  ,7-   ,7- 

Figure 29: Rearrangement on first stage input array 

 Since the Singleton design approach is implemented, the butterfly is revised.  The revised 

butterfly has different output locations when compared to the original one.  The original 

butterfly‟s input and output relationship is shown in Figure 30, and the Singleton butterfly‟s 

input and output relationship is shown in Figure 31, where      represents a previous state and 

   represents the next state.  Figure 32 shows the revised butterfly architecture in the Quartus II 

RTL viewer.  Detailed architecture of revised butterfly will be introduced in next section.  

 

 

 

 

 

Figure 30: Original butterfly [4] 
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Figure 31: Revised Butterfly [4] 

 

 
Figure 32: Butterfly architecture in the Quartus II RTL viewer 

 

 In Figure 32, twiddelX calculates the product of the second input of butterfly (   ) and 

the twiddle factor, which is a complex number composed of real numbers and imaginary 
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numbers (    and    ).  This product is added to the first input of butterfly (  ) to get the output.   

Overflows are checked for the complex additions.  

3.3.5 Overall FFT architecture 

 By observing the data flow in Figure 28, it is obvious that an 8-input FFT requires three 

stages to complete.  Each stage contains four butterflies.  The larger the FFT, the more stages the 

data needs to go through before getting the final output.  It is also true for number of butterflies 

in each stage.  The relationship between the N-input FFT and total stages m is        .  The 

total butterflies used in one stage are  / .  For a 64 input FFT, 6 stages are required and each 

stage would need 32 butterflies.  The overall N-input FFT architecture is shown in Figure 33.   
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Figure 33: Overall FFT architecture  
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 In Figure 33, the data first go through a Bit_reverse unit that rearranges the input data as 

    _   .  Each     _    data is then passed as an input of 2-input multiplex, whose output 

depends on state of      .  The other input of the multiplex is     _    , which is the output of 

the butterfly unit.  The       is „0‟ before FFT function is turned on; each     _    data is the 

output of multiplex at this moment.  The output of each multiplex is then passed to the 32-bit 

register (     ).  These registers store the values for the butterflies‟ inputs.  The butterfly has 

three inputs, two from the registers and one from the   _   , which stores the    values for 

each stage.  The   _    has an internal up-counter based on the input clock and the reset.  The 

  _    outputs the first stage    when the       is „0‟.  Once the       is turned on to be 

„1‟, the internal counter starts counting and the    output will be based on the current state of 

the counter which indicates the current stage of FFT.  The internal architecture of the butterfly 

would be introduced in next section.  For the i
th

 butterfly, the data inputs are from the (2i)
th

 and 

(2i+1)
th

 registers, where data outputs are arranged as the (i)
th

 and (i+fft_num/2)
th

 of the 

    _    .      _     is routed back to the second inputs of the multiplexes.  Once the       

is turned on, the     _     would be the outputs of the multiplexes, and used as second stage 

inputs for the butterflies to produce new processed data.  This new processed data is then routed 

back to the multiplexes again.  This recursion keeps continuing until the counter in the   _    

indicates that the FFT output is valid.  The   _    sends a     _      signal to indicate the 

time to send     _     to     _   , which is the result of the FFT. 
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 Twiddle factor Wn of Wn_Rom is different from stage to stage.  For example, let FFT 

input number equals to 8.  The first stage 8-input FFT has   
  on all four butterflies as shown in 

Figure 34, where    is the input,    is the second stage input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: First stage of 8-input FFT  
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The second stage 8-input FFT has   
  on the first two butterflies and   

  on the last two 

butterflies as shown in Figure 35, where    is the input for the third stage.  The structure of the 

second stage is identical to the first stage, with different twiddle factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: Second stage of 8-input FFT 
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The last stage of 8-input FFT has twiddle factors   
    

    
   and   

3 for the butterflies 

from top to bottom as shown on Figure 36.  The structure of the third stage is identical to the 

previous stages, with different twiddle factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Third stage of 8-input FFT 

 Based on the observation on the twiddle factors on different stages of 8-input FFT, it is 

obvious that there is a certain pattern in twiddle factors for different stages.  For singleton 

architecture, the pattern of twiddle factors is shown in table 3 below. 
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Table 3: Twiddle factor pattern 
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By calculating the twiddle factors using Matlab, every stage‟s twiddle factor pattern can 

be formed and then implemented in VHDL.  This automation process in Matlab greatly reduces 

the time for developing large input FFT.  For example, an 64-input FFT would need 32 twiddle 

factors in each stage and there is a total of 6 stages, Matlab saves a lot of time by using software 

to form the twiddle factor codes in VHDL instead of writing them one by one by hand. 

3.3.6 Revised butterfly architecture 

 As shown in Figure 31, the butterfly‟s output locations are slightly different from the 

unmodified butterfly‟s, since the Singleton approach is implemented in this study.  The 

relationship between inputs (     ) and outputs (  ) of a butterfly are  

  , -      , -    
     , - 

  ,   / -      , -    
     , - 



42 
 

A twiddle factor multiplier, TwiddleX, calculates the complex multiplication   
     , -.  

Figure 37 shows the overall twiddleX architecture, where   
  is a 32 bit complex number and  

  
     , - is the product of the twiddle factor multiplier.  Figure 38 shows twiddleX 

architecture in Quartus II RTL viewer.  The overflow indicates whether there is an overflow 

occurring during multiplication either in real number multiplication or imaginary number 

multiplication. 

 

 

 

 

 

Figure 37: Overall twiddleX architecture 

 

Figure 38: TwiddleX architecture in Quartus II RTL viewer 
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𝑋𝑚,𝑞  𝑁/ - 

𝑞  𝑁/ 

The twiddle factor multiplication,   
     , -, can be broken down into real and 

imaginary multiplication, where the   
  is supplied from the Wn_Rom.  The complex 

multiplication is shown below:  

    , -    
  

  (             )  (  
 
         

 
    )  

  .        
 
             

 
    /    (        

 
             

 
    ) (   ) 

where       and       are real and imaginary parts of     , -, and   
 
    

 and   
 
    

 are real 

and imaginary parts of   
 . 

 

 

 

 

 

 

 

 

 

 

Figure 39: Singleton butterfly architecture 

Figure 39 shows the internal structure of butterfly.  In the butterfly unit, the TwiddleX 

unit calculates the product of the twiddle factor multiplication.  The product,   
     , -, is then 

served as an input for a 32 bit adder and a 32 bit subtractor, while     , - serves as the other 

input.  The output of the adder is   , -, and the output of the subtractor is   ,   / -.  Since 
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overflow might occur during addition or subtraction in the adder or subtractor, overflow 

checking is required. It‟s important to track if there is overflow during these operations, as the 

data would be inaccurate if overflow occurs.  To indicate if an overflow occurs in a butterfly, 

overflow in each sub-unit needs to be taken into consideration; so, a three input OR gate is used 

to check the overflow for the butterfly. 

3.5 Modulation/Demodulator 

 Since baseband QPSK modulation is considered in this paper, two bits of data stream are 

modulated at each clock cycle.  There are four possible values for the output of the modulation, 

as two bits can produce four different values as shown in table 4 below. 

Table 4: Possible combination for 2 bits 

 

 

Gray code is used for the input stream since Gray code would greatly reduce the error 

rate in received signal.  In Gray code, transitioning from neighboring symbols only makes a one-

bit difference.  The Gray code table is shown below.  

 

 

 

 

 

Binary value 

00 

01 

10 

11 
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𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑦𝑚𝑏𝑜𝑙 

 

Table 5: Gray code vs binary 

Decimal Gray Binary 

0 00 00 

1 01 01 

2 11 10 

3 10 11 

 

 

As shown in Table 5, the transition between „01‟ and „10‟, and the transition between „11‟ 

and „00‟ makes a two-bits difference in binary code.  However, there is only a one-bit difference 

between neighboring symbol transitions in Gray code.  This is a great advantage of Gray code 

over binary code and is the major reason Gray code is selected.  Figure 40 shows the comparison 

between demodulations of Gray code and binary code 

 

 

 

 

 

 

Figure 40: Comparison between demodulations of Gray code and binary code 

As shown in Figure 40, it is supposed that the transmitted symbol is „00‟, but that the received 

symbol falls outside of „00‟ demodulated region.  In Gray code, it will be demodulated as „10‟, 

and it will be demodulated as „11‟ in binary code.  There is only a one-bit difference between the 
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demodulated symbol and the transmitted symbol in Gray code, whereas both bits are 

demodulated incorrectly in binary code.  Hence, Gray code would reduce the BER when 

comparing it to binary code. 

 The modulator has an internal ROM to store the modulated value for every symbol.  

These values are complex numbers, which are represented by 32-bit fixed numbers.  Table 6 

shows the modulator Rom for every symbol.  

Table 6: Modulator ROM 

Symbol Modulated value 

00 
        

  

4
  

01 
        

  

4
  

11 
        

4 

4
  

10 
        

6 

4
  

 

The modulator has a pretty straightforward structure.  It takes two bits as inputs, and these inputs 

pass through modulator ROM to get the corresponding complex number output.  The overall 

modulator architecture is shown in Figure 41, and Figure 42 shows the modulator architecture in 

Quartus II RTL viewer. 

 

 

 

 

 

Figure 41: Overall modulator architecture 
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Figure 42: Architecture of modulator in Quartus II RTL viewer 

 Once the symbol is received by the demodulator, the symbol will be demodulated based 

on the shortest Euclidean distance between the received symbol and possible transmitted 

symbols.  Figure 43 shows an example of demodulation. 
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Figure 43: An example of demodulation on QPSK 

Since the received signal falls in the region of „00‟, which means it has shortest Euclidean 

distance to symbol „00‟, it will be demodulated as „00‟.  If the received signal falls between the 

border lines, the shortest Euclidean distance to one of the symbols is unique.  However, if the 

received signal falls right on one of the border lines, the shortest Euclidean distance from the 

received signal is the same to the two symbols.  In the extreme case, the received signal might 

fall on the intersection of two border lines, which is the origin; the shortest Euclidean distance 

would be the same to every symbol.  To prevent the difficulty if they happen, these situations 

need to be handled separately as shown in Table 7.  Figure 44 shows the demodulator unit in 

Quartus II RTL viewer. 

Table 7: Look up table for demodulator 
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Figure 44: Demodulator in Quartus II RTL viewer 

3.6 RRC filter 

 The RRC filter can be designed by using the Matlab function-„rcosine‟.  In this study, a 

61-tap RRC filter with a 0.5 roll-off factor ( ) is designed.  Figure 45 shows the matlab 

simulation of the RRC filter coefficient.  
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Figure 45: 61-tap RRC filter with α=0.5 

Each tap of the RRC filter shown in Figure 44 is a coefficient of the RRC filter.  After 

transforming these coefficients into 16-bit fixed points in Matlab, they can be implemented into 

VHDL.  For example,    _  serves as the first point when the data goes through the filter.  

Each data will multiply every point in the filter once at a time.  Figure 46 shows the overall RRC 

filter architecture. 
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Figure 46: Overall RRC filter architecture 
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 The transmitter has two RRC filters, one for real numbers and the other one for imaginary 

numbers.  Since a 16-bit fixed number is used to represent a real number or an imaginary number, 

this would be sufficient enough to preserve the data precision.  The output of the RRC filter is 

the summation of all outputs of multipliers.  The output of the RRC filter is zero before the reset 

is turned on, since outputs of registers and multipliers are all zeros and the summation of zeros 

results in zero.  After the reset is turned on, data is first stored into a 16-bit register in the RRC 

filter called “Register 0” at the rising clock edge.  The output of “Register 0” is one of the inputs 

for Multiplier 0, the product of the RRC_0 coefficient and the “Register 0” output would be 

output of the RRC filter since the outputs of the other multipliers are all zeros.  As the data 

passes through each register, the data is filtered by the RRC.  The clock used in the RRC filter 

has ten times the frequency rate when comparing it to the clock in other units in the transmitter 

or the receiver.  Supposing the symbol period is    for the other unit in the transmitter or the 

receiver, the symbol period of the RRC is   /  .  The input data for the RRC is padded with 

zeros between time intervals as shown in Figure 47. 

 

 

                                               

 

Figure 47: Input data format for RRC filter 

As the data    passes through the filter, if    is still in one of the register in the filter, the output 

would be the summation of two multiplier outputs with one multiplier having    as one of its 

inputs and the other multiplier having    as one of its inputs.   

 The receiver has two RRC filters too, one for real numbers and the other for imaginary 

numbers.  Once the signal is received, it is sampled at a rate of    /  .  These sampled signals 

𝑇𝑠 𝑇𝑠 
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are then passed through the receiver‟s RRC filters.  After sampling the signal at the output of the 

RRC at   , the sampled output will serve as inputs for the FFT.   

 Synchronization between the transmitter and the receiver is one of the most important 

things necessary to ensure data accuracy.  If a synchronization error occurs, the result would be 

affected greatly over time.  In this study, two wires, one the clock and the other the reset, are 

used to make the synchronization between transmitter and receiver. 

3.7 Serial to parallel converter 

 Since the modulator output is in serial form and the input for the IFFT is in parallel 

form, a serial to parallel conversion is required.  Figure 48 shows architecture of a serial to 

parallel converter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: Serial to parallel converter 
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 In the serial to parallel converter, a series of D flip-flops is used to output parallel 

data.  The truth table of a D flip-flop is shown in Table 8.  These D flip-flops are connected 

in a series, the output of previous D flip-flop serves as the input of the next D flip-flop.  In 

this way, serial data are stored in each of D flip-flops.  The outputs of these D flip-flops 

form the parallel data for the FFT unit. 

Table 8: Truth table of D flip-flop 

              

                

                

                

 

3.8 Parallel to serial converter 

 The parallel to serial converter converts the parallel data from the FFT unit to serial data 

for the demodulator.  Figure 49 shows the architecture of a parallel to serial converter. 
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Figure 49: Parallel to serial converter 

 In a parallel to serial converter, parallel data    through    are first loaded into the D 

flip-flops by setting      = „1‟.  Once the data is loaded into the D flip-flops, the data starts the 

shift to the next D flip-flop at the rising clock edge by setting      = „0‟.  The last D flip-flop 

outputs the serial data at the clocking rising edge.  After N clocks, the parallel to serial data 

conversion is completed. 

3.9 Diagrams of the entire system 

 Since an OFDM system is composed of a transmitter and a receiver, two FPGA boards 

are used for implementation.  One is used to implement as a transmitter, the other as a receiver.  

A     signal in the transmitter is used to output a selected IFFT output on the LCD display.  A 
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    signal in the receiver is used to output a selected FFT output on the LCD display.  The LCD 

display is used to examine the data of OFDM system in FPGAs by comparing it with the matlab 

simulation results.  Figure 50 and Figure 51 show the OFDM transmitter and receiver in Quartus 

II RTL viewer. 

 

Figure 50: OFDM transmitter in Quartus II RTL viewer 

 

Figure 51: OFDM receiver in Quartus II RTL viewer 
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Chapter 4. Results and Discussions 

 4.1 Matlab simulation 

 Matlab is a powerful programming environment for algorithm development, data analysis, 

visualization, and numerical computation.  By using Matlab to simulate communication theory, it 

can quicken the process over traditional programming languages, such as C, C++, and Java. 

In the Matlab simulation for OFDM, the OFDM has a 128-input IFFTs and QPSK 

modulator for the transmitter, a 128-input FFT and QPSK demodulator for the receiver, and the 

wireless channel between transmitter and receiver is assumed to be AWGN and Raleigh fading.  

The simulation result of OFDM is shown in Figure 52.   

 

Figure 52: Performance of OFDM  
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 4.2 ModelSim simulation 

 ModelSim is a great simulation environment to simulate FPGA designs.  Since 

ModelSim simulate the gate level designs without implementing it on the actual board, it 

improves the development life span by shortening the simulation time.  Since the FFT unit is the 

most complex unit in the design, it would be beneficial to figure out the relationship among FFT 

input number, complexity, and power dissipation level.  Table 9 below indicates the relationships 

between these three elements.  

Table 9: Relationships among FFT input number, complexity, and power consumption 

 

 As shown in Table 9 above, increasing increments in FFT inputs result in more core 

dynamic power thermal dissipation and total logic elements.  In order to compare each parameter 

more visually,      ( ) is used to serve as a base line in the Figure 53 below.  Normalized total 

logic elements and core dynamic thermal power dissipation (mW) served to compare them 

with      ( ). 
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Figure 52: FFT complexity vs power consumption 

 Based on the Figure 53, it is obvious that dynamic thermal power dissipation and 

normalized total logic elements match with the      ( ) slope.   

 Since fixed point is used in the implementation, data might experience some precision 

loss during calculation.  It would be important to check the error percentages for FFT, as it is the 

largest unit in the design.  By comparing different fixed point FFT inputs in Modelsim with FFT 

floating point computation results, it is found that the accuracy level is down to 3 digits.  Since 

16 digits are used to represent a fixed point number, the error percentage of 3 digits over 16 

digits is  
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 3

  6
              

As shown in the calculation result above, the error percentage is pretty small when 

compared to 16 full digits.  However, the percentage of error varies from comparisons at 

different FFT numbers.  Based on the observation, when the compared floating number is small, 

its fixed point result would possibly have a larger percentage error.   

4.3 FPGA implementation 

In FPGA implementation, actual logic gate circuits are formed and simulated on the 

hardware.  The whole simulation process takes longer when compared to ModelSim simulation, 

but it is the better method to examine the design.  In the implementation, two FPGA boards are 

used.  One is used as a transmitter, and the other one is used as receiver.  In order to check data 

from FPGA, LCD on FPGA is used to display the desired output to compare with ModelSim.  

Some points are sampled from FFT outputs and displayed in Figure 54 below and compared with 

the ModelSim simulation output.  This Figure also displays the final output of FPGA. 
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Figure 54: Comparison of FPGA outputs and ModelSim outputs 

After comparing each FFT output from FPGA and ModelSim, it is obvious that the FFT 

outputs from the implementation are pretty much identical to ModelSim.  Also, the OFDM input 

„78‟ is being demodulated correctly. 
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Chapter 5. Conclusions and Future Work 

 Through theoretical background studies for OFDM, OFDM is being simulated in Matlab 

and implemented on hardware.  OFDM is robust to ICI and ISI.  Through this paper, various 

number input FFTs are implemented on FPGAs.  Complexity and total power consumption of 

these FFTs are examined by constructing graphs and tables.  Each OFDM building block is 

implemented on FPGAs and examined.  Future works will include channel estimations and 

perform maximum ratio combining (MRC) on oversampled OFDM (OOFDM) receivers, and use 

third party hardware to transmit signals wirelessly. 
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