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Abstract 
An integrated circuit (IC) consists of copper (Cu) and tungsten (W) interconnects to 

facilitate conduction among its components such as transistors, resistors, and capacitors. As the 
minimum feature size in IC technology continues to scale downward into the sub-20 nm 
regime, interconnects are faced with performance and reliability challenges arising from 
increased resistance and electromigration, respectively [1]. To partially mitigate such 
challenges, our project aims at studying a structure as a potential replacement for Cu and W, 
formed by growing carbon nanotubes (CNTs) directly onto graphene, and investigating the 
resulting electrical and interfacial properties. Various CNT/Graphene structures are fabricated 
using sputtered iron (Fe), cobalt (Co), or nickel (Ni) catalyst films and subsequent thermal 
chemical vapor deposition (CVD) or plasma-enhanced chemical vapor deposition (PECVD) 
processes for CNT growth. The objective of this research is to assess the viability of CNTs 
directly grown on graphene as a functional alternative to Cu and W interconnects in integrated 
circuits. Using Co as a catalyst for CNT growth with a thermal CVD process, we have 
succeeded in creating a conductive all-carbon 3D interconnect structure. 
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Chapter 1: Introduction and Motivation 
 
1.1 Challenges for Copper Interconnects 
 The basis of all electronic devices is the integrated circuit (IC). ICs are primarily 
responsible for performing the necessary operations carried out by modern electronics, and, as 
such, they must utilize technology that is as high-performing and reliable as possible. In 
keeping with the trends predicted by Gordon Moore in 1965, the semiconductor industry has 
to a great extent successfully followed the empirical “Moore’s Law”, that is, doubling the 
number of transistors in ICs every two years [2]. Though this is not a science-based law, it 
nevertheless dictated the trend by which electronics scaled up in power and ability and scaled 
down in size, precisely because we have been able to make feature sizes in ICs smaller to keep 
up with its prediction. As the minimum feature size scales down beyond the sub-20 nm 
regime, however, transistors have gotten so small and so numerous that there is little room left 
to keep the chip (IC) size continuously decreasing [3]. Any piece of electronic equipment can 
contain many chips such as those shown in Figure 1. With this in mind, semiconductor 
companies have tried scaling their packaged chips into the third dimension, though this has 
been shown to be unsustainable [4].  
 These problems alone are enough to see that the industry is in need of a major paradigm 
shift in order to keep up with current and future demands in computing. Directly related to 
these issues of scale, we observe a number of phenomena affecting IC performance [5]. Figure 
2 shows the cross-section of a typical modern IC utilizing Cu interconnects for on-chip 
electrical connections. There have been noticeable effects contributing to increased resistance 
of these Cu interconnects. As the interconnect linewidths reach the nanoscale and become 
comparable to the electron mean free path, increased scatterings result from the interconnect 
wire interior walls, known as surface scattering. Further, at such linewidths, the size of 
polycrystalline Cu grains is becoming smaller, thus increasing the scatterings from the grain 
boundaries. The combined increase in surface and grain boundary scatterings leads to a 
significant surge in Cu resistivity as the linewidth approaches the sub-100 nm regime, as 
shown in Figure 3(a) [6]. In addition, decreased interconnect linewidth is accompanied by an 
increase in current density, giving rise to electromigration [6]. As current density increases 
within a wire, the local electric field is sufficiently high enough to displace the atoms from 
their lattice sites, creating voids and eventually an open circuit. This chip failure occurs when 
the maximum current density in the chip, Jmax, exceeds the current-carrying capacity of Cu, as 
illustrated in Figure 3(b). In the nanoscale, current-carrying capacity generally decreases with 
decreasing linewidth, making it a serious reliability challenge [7]. The same challenges exist 
for W as well [8]. 
 As the interconnects continue to shrink, we expect these challenges will become more 
acute, signaling the need for a more reliable nanoscale conductor as a replacement for Cu and 
W [5–7]. 
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Figure 1: Typical circuit board with 
surface-mounted integrated circuits or 
chips. 

 
Figure 2: Cross-sectional schematic of an 
integrated circuit with copper interconnects 
(orange) [9]. 

 

 
Figure 3: (a) Effect of decreasing linewidths on the Cu resistivity. (b) Existing and projected 
current density requirements for Cu interconnects [6].  

 
1.2 Properties of Graphene and Carbon Nanotubes 
 To address the challenges faced by current Cu interconnects, our group at SCU has been 
studying nanocarbon materials as potential replacements. In particular, we focus on graphene 
and carbon nanotubes (CNTs), as shown in Figures 4 and 5, respectively, as they are 
electromigration resistant, have excellent electrical and thermal properties, and are among the 
mechanically strongest materials yet discovered [10–12]. Thus, they seem to be natural 
replacement candidates for Cu and W.  
 All existing measurements indicate current-carrying capabilities of these nanocarbon 
materials to be at least an order of magnitude higher than that of bulk Cu [13]. This is a highly 
desirable property, as it would accommodate the projected Jmax for future generations of IC 
technology. As these nanocarbons possess strong bonding between atoms, they are expected to 
withstand high temperature as well as mechanical and electrical stress. Such superior 



3 
 

properties are a result of the sp2-hybridized bonding within the honeycomb structure, with 
each atom surrounded by three nearest neighbors on the graphitic plane [14]. In contrast, 
another form of carbon, diamond, consists of sp3-hybridized bonds for each atom with its four 
nearest neighbors throughout its crystal structure, giving rise to superior mechanical strength. 
Due to diamond’s wide bandgap, however, it is a poor conductor of electricity. By having sp2-
hybridized bonding, CNTs and graphene are able to create an equally strong structure along 
the graphitic plane and still allow for excellent electrical and thermal conduction. 
 While discussing the feasibility of these nanocarbons as replacements for Cu and W, it is 
important to note that CNTs and graphene are not immune from a problem faced by all 
conductors: contact resistance at interfaces with other materials. Contact resistance results 
from any heterogeneous interface, and it can be the dominant resistance component in any 
structure involving nanocarbons [15]. Thus, it is the primary challenge for making any 
nanocarbon-based technology viable. 
 Typically, CNT devices require CNTs grown directly on a metal surface [16]. The 
resulting CNT-metal interface has a relatively high contact resistance, contributing to a 
significant portion of the overall device resistance. On the other hand, if one can take 
advantage of the sp2 bonding that both CNTs and graphene share and form a structure with 
continuation of such bonding across the CNT-graphene interface, then the contact resistance 
between a vertically conductive carbon nanotube and a horizontally conductive layer of 
graphene can be drastically reduced [17]. This is the motivation for embarking on our study of 
the CNT/Graphene structure. 
  
 

 
 
Figure 4: A single layer of graphene with 
the honeycomb crystal structure.  

 
 

Figure 5: Single-walled carbon nanotube 
(SWCNT). Note how this shape can be 
created by folding a layer of graphene 
into a cylinder. A multi-walled CNT 
(MWCNT) results from folding more than 
one layer of graphene into concentric 
cylinders. 
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Chapter 2: Objectives 
2.1 Project Goals 

The objective of this project was to design a process to fabricate an all-carbon 3D 
structure with CNTs grown directly on graphene as a potential replacement for Cu and W 
interconnects, as depicted in Figure 6. To achieve this objective, the process must result in a 
conductive CNT/Graphene structure. 

 
2.2 Project Requirements 

As discussed in Section 1.2, both CNT and graphene have a structure that is mechanically 
strong while also allowing for excellent electrical conduction. By utilizing the C-C sp2 
hybridized bonds at and near the CNT edge and on graphene, we can create in principle an 
interface with minimal contact resistance. Successful fabrication of this structure would lead 
to a virtually homogeneous all-carbon 3D interconnect with CNTs for vertical conduction and 
graphene layers for horizontal conduction.  

The process to fabricate this structure involves first sputtering a thin catalyst film onto the 
substrate, followed by either plasma-enhanced chemical vapor deposition (PECVD) or thermal 
chemical vapor deposition (CVD) for CNT growth. The necessary instruments are available to 
us at the SCU TENT Laboratory located in NASA Ames Research Center. 

The fabricated structures are characterized using the following tools at the Center for 
Nanostructures on the SCU campus: the scanning electron microscope (SEM), wafer probe 
station, and nanoprober. With the SEM, we obtain images of the fabricated structures to 
generate statistics on various growth characteristics such as CNT height and diameter 
distributions. From electrical probing measurements, current-voltage (I-V) behaviors and 
device resistances are obtained. 

 

 
 
Figure 6: A computer-generated image of an all-carbon 3D interconnect structure with 
graphene and CNTs as the horizontal and vertical conductors, respectively [18]. 
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Chapter 3: Experimental Methods 
 
3.1 Test Structure Fabrication 
 The initial experimental steps are aimed at producing graphene layers on top of a silicon 
wafer. First, multi-layer graphene is grown by heating a substrate consisting of a deposited Ni 
catalyst film on a SiO2-covered Si wafer, in the presence of H2 and CH4 inside a PECVD 
chamber, as illustrated in Figure 7(a)-(b) [19]. The graphene layers are subsequently 
transferred onto another oxide-covered Si substrate using spin-coated PMMA as a backbone 
that is later removed, as shown in Figure 7(c)-(e) [19]. The graphene samples were prepared at 
the Hong Kong University of Science and Technology as part of a collaboration between a 
research group there and our TENT Laboratory.  

We then sputter a thin catalyst film on the transferred graphene before growing CNTs 
using either a PECVD or a thermal CVD process, as illustrated in Figure 7(f)-(h). Details of 
the CNT growth processes are described in the next section.  

 

 
Figure 7: Process flow for test structure fabrication. (a)–(e) illustrate the steps to produce 
usable graphene layers on oxide-covered Si wafer. (f)–(h) summarize the CNT growth process 
[19].   
 
3.2 Growth Processes   

Two separate techniques are used for CNT growth, PECVD and thermal CVD. Both are 
rooted in the generic vapor-liquid-solid (VLS) method for producing nanowires, as illustrated 
in Figure 8. The VLS method uses a catalyst to facilitate the growth of nanowires [20]. In 
order to achieve the best possible outcome in terms of compatibility with IC technology and 
resistance of the fabricated structure, different catalysts are used for our growth experiments, 
namely, nickel (Ni), iron (Fe), and cobalt (Co) [21]. 

(a) (c) 
(d) 

(h) (g) (f) (e) 

(b) 
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 The catalyst film is deposited directly on graphene using a magnetron sputtering system. 
The sputtering process is illustrated in Figure 9 with a photo of the chamber during film 
deposition, shown in Figure 10. After depositing a thin film (<10 nm) of catalyst material onto 
graphene, the sample is transferred to a reactor for CNT growth. Both the sputtering and 
PECVD systems are located at the TENT Laboratory in NASA Ames Research Center. 
 

 
 
Figure 8: Generic VLS method for producing nanowires. In this schematic, gold nanoparticles 
are used to catalyze silicon nanowire growth. The process is similar to CNT growth using 
catalyst film. 
 

 
 

 
                               Figure 9: Schematic of film deposition using sputtering.  
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Figure 10: Photo of the sputtering process in action. The blue glow inside the chamber is 
produced by Ar+ plasma during film deposition. 
 
3.2.1 Plasma-Enhanced Chemical Vapor Deposition (PECVD) 
 This technique includes a plasma step not present in the generic VLS method. We refer to 
the collective sequence of steps for the PECVD process as the “growth recipe.” Our recipes 
are developed based on the previous work of our group and information from the literature 
[19, 22, 23], as well as preliminary experiments conducted prior to the start of this project.  

The sample is first heated to dewet the thin catalyst film into discrete nanoparticles, 
which are the growth sites for CNTs. This is followed by flowing a mixture of ammonia 
(NH3) and acetylene (C2H2). The latter is then dissociated in a chemical reaction facilitated by 
the catalyst, producing carbon atoms that, in turn, form CNT beneath the catalyst particle. (In 
most cases, the catalyst particle remains at the CNT tip throughout the growth process, thus 
called “tip growth.”) The electric field produced by creating a plasma from capacitive DC 
discharge, as shown in Figure 11(a), facilitates vertical alignment of the resulting CNT arrays 
[24]. 
 
3.2.2 Thermal Chemical Vapor Deposition (CVD) 

Unlike PECVD, thermal CVD does not involve the generation of a plasma during CNT 
growth. It requires minor adjustments to the recipe while maintaining the same growth 
temperature. Comparisons of these two processes are given in Table 1. Since the DC electric 
field is no longer present, the resulting CNTs are generally not vertically aligned. The thermal 
CVD process is depicted in Figure 11(b). 
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Figure 11: (a) Photo of the PECVD process in action. The orange glow is from the heater 
used to dewet the catalyst film to form nanoparticles. The purple haze is the plasma from 
gaseous species used for CNT growth. (b) Photo of the same reactor chamber as in (a) during 
the thermal CVD process. The red glow is from the same heater for catalyst film dewetting 
before growth on the substrates. In this case, however, the plasma envelope is no longer 
present during CNT growth. 
 

Table 1: Summary of PECVD and thermal CVD growth processes, indicating their differences. 

Step Description Key parameter values 

1 Vent chamber Pressure = 1000 mbar,                                               
Temperature ~ 40°C, gas flow = 0 sccm                                                      

2 Pump down chamber to pressure of .01 
mbar 

Temperature ~ 40°C, gas flow = 0 sccm 

3 Introduce NH3 and heat chamber to 
700°C for catalyst film dewetting 

NH3 = 100 sccm,                                                    
Temperature Ramp rate 325°C/min  

4 
Introduce C2H2  
For PECVD: Strike plasma at 800 V  
For CVD: No plasma 

NH3 = 125 sccm, C2H2 = 31 sccm                   
Temperature ~700-800°C 

5 
CNT growth step: 
For PECVD: Maintain plasma 
For CVD: Maintain no plasma 

NH3 = 125 sccm, C2H2 = 31 sccm                             
Temperature ~700-800°C  
Time = 5 mins 

6 Stop gas flows and heater power off 
NH3 = 0 sccm, C2H2 = 0 sccm                       
Temperature  700-800°C  
Plasma = 0 V 

7 Cooling step (using Ar gas) NH3 = 0 sccm, Ar = 2000 sccm, C2H2 = 0 sccm 
Temperature < 700°C 

8 Retrieve sample from chamber Pressure = 1000 mbar, gas flows = 0 sccm              
Temperature < 200°C 
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3.3 Process Characterization 
 Once fabrication of test devices is completed, we conduct a series of experiments aimed 
at characterizing the results of CNT growth on graphene. This includes SEM imaging, 
extraction of growth statistics, and electrical measurements. The instruments used in these 
experiments are available in the Center for Nanostructures on the SCU campus. From SEM 
images, data on CNT areal density, diameter distribution, and height distribution are obtained 
with visual observation as well as the use of available software for image analysis. Initial 
electrical measurements are taken using a wafer probe station. For confirmation and further 
investigation, a nanoprober inside the SEM chamber is employed to determine more 
accurately the I-V characteristics of the test devices, as well as to determine and image the 
precise locations of the measurements. 
 
3.3.1 Electron Microscopic Analyses 

One of the most critical instruments for characterizing our test devices is the SEM, which 
allows us to inspect structures one to two orders of magnitude smaller than the wavelengths of 
visible light, thus suitable for obtaining information from images of CNTs grown, ranging 
between 5 to 50 nm in diameter. The instrument is a Hitachi S-4800 SEM shown in Figure 12. 
 

 
 

Figure 12: SEM in the Center for Nanostructures on the SCU campus. The module on the far 
left is an energy-dispersive x-ray (EDX) detector used to obtain elemental compositions of test 
samples.   
 

For detailed information on properties of the nanostructure itself and the CNT-graphene 
interface, high-resolution, cross-sectional imaging using transmission electron microscopy 
(TEM) is needed. An example of such an image of CNT-Graphene interface from one of our 
test samples is shown in Figure 13, obtained by our collaborator, Dr. Phillip Wang of Applied 
Materials.  
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Figure 13: Cross-sectional TEM image of Ni-catalyzed CNTs on graphene. This was the 
image used to confirm destruction of graphene layers during the early stages of our project. 
The round dark spots are Ni particles, presumably from the CNT tips. Image show 
discontinuities in the graphene layer due to damage during the growth process [19]. 
 
3.3.2 Electrical Measurements 

Another important property of the test device is its electrical behavior, which is measured 
using two different instruments. One such instrument is a wafer probe station, depicted in 
Figure 14, with the capability to probe individual regions of interest on a test sample and, 
together with a semiconductor parameter analyzer, to generate I-V characteristics. Using an 
optical microscope controlled through a computer, we can accurately collect visual and other 
data such as probe-probe separation for detailed analyses of test sample.  
 
 
  
 
 
 
 
 
 
 
Figure 14: Wafer probe station used for preliminary electrical evaluation of our samples. This 
instrument features four-point probe capabilities, an optical microscope for precision 
measurements, and a pneumatic cushioning and vacuum system for stability. 

 
In order to verify our wafer probing results, we use a highly precise nanoprober system 

shown in Figure 15. This instrument serves as a removable module for the SEM. By utilizing 
piezoelectric motors, it enables one to make very fine adjustments in electrical probe 
placement while measuring the I-V characteristics of the test device in situ inside the SEM 
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chamber under vacuum conditions. An example of such an experiment is given in Figure 16. 
With nanoprobe tips as small as 50 nm in diameter, we are able to obtain accurate and reliable 
electrical characteristics of individual CNTs.  
 
 

 
 
Figure 15: Nanoprober module consisting of 
four nanoprobes and highly precise motors 
and sensors to allow probing of individual 
CNTs. 

 
 
Figure 16: SEM image of nanoprobes 
(bright areas) landed on a CNT/Graphene 
sample.  
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Chapter 4: Results and Discussion 
 

Throughout the course of this project, results on test devices have prompted detailed 
evaluation of the experimental parameters and their subsequent modifications. In particular, 
when a test device fails to show electrical behavior as expected, adjustments in CNT growth 
conditions and/or measurement setup are needed to yield desirable outcomes. 
 As part of our initial process design, we plan to vary the parameters of sputtering time and 
sputtering power in order to engage in a thorough investigation of the effects of catalyst 
thickness on CNT growth. In addition, we are concerned that a high sputtering power could 
damage or destroy the graphene layers. To address this concern, we carry out experiments 
using different catalysts with varying sputtering times and powers. After studying existing 
reports on the use of various catalysts for CNT growth [22] and based on research of past 
members of our team [25–28], we have selected Ni, Fe, and Co as catalysts. The outcomes 
from the use of each catalyst are summarized in Table 2.  
 

Table 2: Comparison of CNT growth catalysts Ni, Fe, and Co.  

 
 
The second major fabrication step involves adjusting specific parameters of the PECVD 

growth process and observing their effects on CNT growth. These parameters include volume 
of carbon source gas, strength of plasma envelope, time exposed to plasma, among others. The 
growth parameters for each catalyst are given in Tables 3-5. Finally, to prevent potential 
damage of graphene by the plasma, we utilize an alternative to PECVD by eliminating the gas 
discharge step, resulting in a thermal CVD process.    
 
4.1 CNT Growth with PECVD 
  
4.1.1 Nickel-Catalyzed Growths 

Figure 17 shows the images of CNTs on graphene with a Ni catalyst film sputtered at 200 
watts (W) for 150 seconds and grown using PECVD for 5 minutes. Figure 17(a) and (b) show 
a cross-sectional view and top view of the sample, respectively. The CNTs are vertically 
aligned, with an areal density ~109 /cm2 and average diameter ~70 nm. This sample, along 
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with all others, is determined to be non-conducting, indicating potential problems with our 
growth process. A summary of the experiments for CNT growth on graphene as well as SiO2 
and their parameters is given in Table 3. 

 

 
 

Figure 17: CNTs grown with sputtered Ni film at 200 W for 150 seconds and grown for 5 
minutes using PECVD. (a) Cross-sectional view. Note the Ni nanoparticles (dark contrast) at 
the CNT tips (tip-growth). (b) Top view. The Ni nanoparticles (bright contrast) are visible at 
the CNT tips. CNT areal density ~109 /cm2 and average diameter ~70 nm.  
 

Table 3: Parameters for Ni-catalyzed CNT growth experiments using PECVD. 

 
 
4.1.2 Iron-Catalyzed Growths 

Figure 18 shows the cross-sectional and top-view images of CNTs grown on graphene 
with an Fe catalyst film sputtered at 100 W for 150 seconds and grown using PECVD for 10 
minutes. A summary of the growth experiments and their parameters is given in Table 4. The 
results demonstrate the feasibility of CNT growth on SiO2 as well as graphene with Fe catalyst 
using PECVD. As in the Ni case, however, all fabricated test structures are also non-
conducting, further suggesting the need for adjusting the growth conditions. In addition, using 
Fe in any part of an IC fabrication process poses a problem for the on-chip devices, as it has a 
deleterious effect on their performance [29].  
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Figure 18: CNTs grown with sputtered Fe film at 100 W for 150 seconds and grown for 10 
minutes using PECVD. (a) Cross-sectional view. Note the same tip-growth as Ni. (b) Top 
view. Fe nanoparticles are visible at the CNT tips. CNT areal density ~1010 /cm2 and average 
diameter ~22 nm.  
 

Table 4: Parameters for Fe-catalyzed CNT growth experiments using PECVD.  

 
 

4.1.3 Cobalt-Catalyzed Growths 
Figure 19 shows the cross-sectional and top-view images of CNTs grown on graphene 

with a Co catalyst film sputtered at 200 W for 120 seconds and grown using PECVD for 3 
minutes. The results demonstrate the feasibility of CNT growth on SiO2 as well as graphene 
with Co catalyst using PECVD. As in the previous experiments with Ni and Fe, however, the 
resulting test structures are also non-conducting, strongly suggesting that the problem lies with 
the growth conditions and not with the choice of catalyst. 
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Figure 19: CNTs grown with sputtered Co film at 200 W for 120 seconds and grown for 3 
minutes using PECVD. (a) Cross-sectional view. Note the same tip-growth as Ni and Fe. (b) 
Top view. Co nanoparticles are visible at the CNT tips. CNT areal density ~1010 /cm2 and 
average diameter ~40 nm. 
 

Table 5: Parameters for Co-catalyzed CNT growth experiments using PECVD. 

 
 

 
4.2 CNT Growth with Thermal CVD 
 As mentioned previously, the absence of an electric field in thermal CVD is expected to 
result in poor CNT alignment, if any at all. The CNTs grown are spaghetti-like and tangled 
together. As long as a sufficient number of CNTs make electrical contact with graphene and 
the electrical probe, however, there is conduction across the 3D structure. That being the case, 
the objectives of this project will be met.  
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4.2.1 Cobalt-Catalyzed Growths  
We focus on Co as catalyst for CNT growth on graphene using thermal CVD, as the 

PECVD results show promise for the 3D structure and for the reasons given in Table 2. 
Figures 20 and 21 show the images of CNTs grown on graphene for 7 minutes through a 
thermal CVD process with a Co catalyst film sputtered at 75 W for 150 seconds and 75 W for 
100 seconds, respectively. Both samples are conductive after CNT growth, indicating that we 
have successfully isolated the plasma in PECVD as the main source of graphene damage.  

Based on multiple measurements across the sample, the average resistances for the 
fabricated CNT/Graphene structure shown in Figures 20 and 21 are 11.8 kΩ and 14.8 kΩ, 
respectively. The I-V behavior resulting from each two-point measurement is linear, giving 
further support for the existence of ohmic conduction across the entire structure and across the 
CNT-graphene interface as well. These results are encouraging compared to those obtained 
from PECVD grown CNTs on graphene, which show highly nonlinear I-V behavior with 
resistance values indicative of an open circuit. A summary of the growth experiments and their 
parameters is given in Table 6. 

Combining these results with the fact that Co is currently used as an interconnect material 
in 10 nm technology node [30] further justifies the choice of Co as catalyst and enhances the 
prospect of a 3D CNT/Graphene structure as a potential interconnect building block.   

  

 
 

Figure 20: Top view of CNTs grown with sputtered Co at 75 W for 150 seconds and grown for 
7 minutes using thermal CVD. CNT areal density ~1010 /cm2 and average diameter ~19 nm. 
 

 
 
Figure 21: Top view of CNTs grown with sputtered Co at 75 W for 100 seconds and grown for 
7 minutes using thermal CVD. CNT areal density ~1010 /cm2 and average diameter ~19 nm. 
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Table 6: Parameters for Co-catalyzed CNT growth experiments using thermal CVD. 

 
 
4.3 Electrical Measurements and Contact Resistance Extraction 

Besides SEM imaging, the outcomes of CNT growth on graphene using thermal CVD are 
evaluated based on electrical characteristics of test devices. Using the wafer probe station, 
two-point electrical measurements are performed to obtain reproducible I-V behaviors from 
which the total device resistances are deduced. In addition, contact resistance is extracted from 
resistance versus probe-probe separation data based on the transfer length measurement 
(TLM) method [31]. For a CNT/Graphene structure, contact resistance consists of 
contributions from probe-graphene, probe-CNT, and CNT-graphene interfaces. The 
measurement schematic and TLM results for a graphene sample before CNT growth are 
shown in Figure 22. From the TLM plot, the extracted contact resistance (mainly from the 
probe-graphene contacts) is 2.5 kΩ.  

 

         
 

Figure 22: Electrical characteristics of graphene before CNT growth. Total probe-graphene 
contact resistance ~2.5 kΩ extracted from resistance vs probe-probe separation (distance).  

 
 
After CNT growth on graphene, the sample undergoes similar electrical tests to obtain the 

graphene resistance to ensure that the graphene layers are not damaged during the growth 
process. The schematic for such tests and TLM results are shown in Figure 23 for the sample 
in Figure 20. The resistance values and the extracted contact resistance of 3.4 kΩ (compared 
with those in Figure 22 for a different “clean” graphene sample) suggest that the graphene 
suffers little or no damage during CNT growth. During the measurement, we exercise care to 
probe only the graphene layer in order to characterize its electrical behavior and to establish a 
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reference for subsequent probing of the CNT/Graphene structure. We then perform a series of 
measurements on the same sample as depicted in Figure 24 to characterize the electrical 
behavior of the 3D all-carbon structure.  

A few measurements using the nanoprober on the same sample with the setup in Figure 
24(a) are carried out, with resistance ranging from 32 kΩ to 133 kΩ. These are preliminary 
results which require extensive verifications in the future. Also, the nanoprobe contact 
resistances are expected to be considerably higher, accounting for the larger resistance values 
than those obtained using the wafer probe station. Nevertheless, they provide further evidence 
for the existence of a conduction path across the entire CNT/Graphene structure.  

 
 

 
Figure 23: (a) Schematic for probing graphene after CNT growth. (b) Total probe-graphene 
contact resistance ~3.4 kΩ extracted from resistance vs probe-probe separation (distance), 
consistent with result obtained for pre-process graphene shown in Figure 22.  
 
 

 
 
Figure 24: (a) Schematic for probing CNT/Graphene with one probe from setup in Figure 23 
placed on CNTs while the other stays on the same area of “clean” graphene. (b) Total contact 
resistance Rc ~4.8 kΩ extracted from resistance vs probe-probe separation (distance). 
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Chapter 5: Final Design 
 
5.1 Basis for Strategy Selection 
 We have demonstrated that Co is a viable catalyst for CNT growth on graphene using a 
thermal CVD process. Unlike Fe, Co is compatible with and being used in current IC process 
technology. Therefore, we focus primarily on cobalt as the catalyst for CNT growth.  
 
5.2 Analysis of Final Design  

While both Co samples shown in Figures 20 and 21 manifest electrical conduction after 
CNT growth, we focus on the former for the ensuing analysis based on the results shown in 
Figures 23 and 24. Since our goal is to create an all-carbon 3D structure with a resistance 
similar to that of graphene, we first carry out two-point measurements (using a setup shown in 
Figure 22(a)) for a “clean” graphene sample. This results in a resistance of 3.2 kΩ, with 
probes landing on specific locations. After CNT growth on the same sample and ensuring to 
probe the same locations with the same probe separation as before, we obtain a resistance of 
3.3 kΩ. These results confirm that the CNT growth creates little damage on the multi-layer 
graphene, allowing us to proceed with the analysis of electrical data on the CNT/Graphene 
structure.  

The schematic for measuring CNT/Graphene electrical characteristics and the results from 
these measurements are shown in Figure 24. Here the challenge in probing lies in landing one 
probe on CNTs only to ensure the conduction path is through CNTs and across the CNT-
graphene interface while the other probe remains on the same area of “clean” graphene (as in 
the measurement illustrated in Figure 23(a)). The extracted contact resistance of 4.8 kΩ 
consists of contributions from one probe-graphene contact, one probe-CNT contact, as well as 
the CNT-graphene interface. Using the extracted contact resistance of 3.4 kΩ obtain from the 
linear fit in Figure 23(b), and assuming both probe contacts are identical, a contact resistance 
of 1.7 kΩ between a single probe and graphene is obtained. Thus, the (probe-CNT + CNT-
graphene) contact resistance is (4.8 kΩ – 1.7 kΩ) = 3.1 kΩ. 

The probe-CNT contact varies widely among measurements due to surface asperities of 
the probe and unaligned CNTs, but as a first-order approximation, we assume that probe-CNT 
contact resistance is at best the same value as that of the probe-graphene (but is likely to be 
higher). Thus, the resistance attributed to the CNT-graphene interface is estimated to be at 
most (3.1 kΩ – 1.7 kΩ) = 1.4 kΩ.  

While these results are preliminary, they nonetheless indicate the existence of a 
conduction path through the 3D CNT/Graphene structure. Verifications of these results require 
extensive nanoprobing inside the SEM chamber since the nanoprobes are much smaller, 
making it more likely to land on CNTs only (without contacting the graphene underlayer). 
Further, since nanoprobing allows in situ experimentation, the location where the nanoprobe 
lands on the tangled CNT arrays can be precisely determined.  
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The results and analysis show that we have met our objective of fabricating an all-carbon 
3D interconnect structure with carbon nanotubes grown directly on graphene, with the 
resulting CNT/Graphene resistance similar to that of pre-process graphene. We are further 
verifying these results by nanoprobing the same and additional samples and along with our 
collaborators, who will carry out TEM and related analyses to characterize the CNT-graphene 
interface to confirm that we have created a homogeneous all-carbon structure. 
 
5.3 Bill of Materials  

The materials required for this project are provided by the TENT Laboratory. 
● Silicon wafers with graphene layers 
● Growth catalyst sputtering targets 
● Methane gas 
● Ammonia gas 
● Acetylene gas 
● PECVD reactor 

 
5.4 Project Timeline
 

 
 
Figure 25: Gantt chart of our project timeline containing the tasks and experiments performed 
over its duration.   
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Chapter 6: Professional Issues and Constraints 
 
6.1 Ethical Analysis 
 Any scientific and technological undertaking can be continuously debated as “potentially 
unethical” through extreme examples (e.g. drone technology is harmful since it can be used to 
violate privacy). With that in mind, it is hard to come up with unethical aspects about this 
research because the goal is to ensure IC technology can continue to advance and benefit 
society. This is valid so long as the tools, materials, and data used are not acquired through 
unethical means such as plagiarism or endangering the well-being of others. Though there are 
potential safety concerns when utilizing processes that involve nanomaterials and various 
chemicals, without malicious intent the project can be conducted ethically. As technical 
professionals, we carry out all our experiments with extreme care to ensure the safety of 
everyone and the integrity of equipment and facility.  
 
6.2 Science, Technology, and Society  

The processes used in fabricating our devices are potentially transferable to production. 
We have designed our processes to be compatible with current IC technology so that such a 
transfer can occur in the future. Furthermore, as a replacement for existing interconnect 
materials, the impact on IC technology development and the subsequent manufacture would 
have far-reaching societal implications in terms of equipment and labor cost. One potential 
concern is the fact that use of nanocarbons in actual products is not extensive, therefore their 
impact on the environment and human health is not fully known. Nevertheless, we take great 
care in handling these materials and expect more information on such potential impacts will be 
available in the coming years.  
 
6.3 Economic Implications 

In order to provide the demand for smaller and more efficient electronic devices, 
manufacturers have been continually investing in more expensive processes and equipment 
due to the limitations of using Cu and W in integrated circuits [32]. As the cost of 
manufacturing increases, it is felt by both the manufacturer and the consumer. For this reason, 
replacing Cu and W as interconnect materials may have far-reaching economic implications.  

 
6.4 Health and Safety and Environmental Impact 
 As is a concern with any substance, it is important to consider the amount and/or 
concentration. Our project focuses on potential new technology to replace the Cu and W 
interconnects inside integrated circuits. Many modern technologies and products include 
harmful materials to which the consumer is generally not expected to be exposed. The silicon 
chips in many electronic systems in particular, contain trace amounts of arsenic that is crucial 
to the chip’s operation, though it is not expected any user will be exposed to it. Since any IC is 
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packaged and hermetically sealed by the time it reaches a consumer, we do not anticipate any 
adverse health effects as a result of our technology if it becomes commercialized. Even if a 
consumer were to go out of their way to dismantle the chip package, it is unlikely they will 
come under any harmful exposure due to the minute amount of nanocarbon material. As 
mentioned above, additional knowledge on environmental and health impacts in the future 
would lead to better handling in manufacturing as well as a better-informed public. 
 
6.5 Manufacturability, Usability, Sustainability, and Civic Engagement  
 The declining reliability and performance of Cu and W interconnects in advanced IC 
technology are the main issues in chip manufacturing that we set out to address. By presenting 
nanocarbons as a more reliable and potentially higher performing alternative, the technology 
can continue to follow Moore’s law into sub-10 nm technology nodes. As with any new 
technology, competing products and technologies must be taken into account. Due to the 
potential ground-breaking nature of our research and the current alternatives considered by the 
IC industry, however, it is reasonable to expect that nanocarbons will remain a contender to 
replace Cu and W in the foreseeable future. Furthermore, while the potential of nanocarbons 
in the biomedical industry for applications such as implantable devices is outside the scope of 
this project, the ability to improve chip reliability and performance is a crucial step towards 
developing better medical devices. This may lead to a reduction in health care costs, which is 
a major issue throughout the world. 

Regardless of the potential benefits of any new electronic technology, proper disposal of 
devices and systems is a very important aspect of electronic waste management and must be 
considered in product manufacturing. This importance is manifested in the many established 
methods for safely recycling and disposing of electronic parts. Fortunately, the waste disposal 
and processing for our devices are identical to those already in place. Part of this stems from 
the fact that the process developed in our project can be readily integrated into current 
manufacturing and product handling practices, including waste disposal and recycling. 
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Chapter 7: Conclusions and Future Work  
 
7.1 Summary and Conclusions 
 The objective of this senior project is to design a process that results in a conductive all-
carbon 3D interconnect structure with carbon nanotubes attached to a multi-layer graphene. 
This work is motivated by the need of current IC technology to eventually replace Cu and W 
as interconnect materials. Our experimental process first involves using a plasma-enhanced 
chemical vapor deposition process to grow CNTs directly on a graphene-covered silicon 
substrate after sputtering a thin layer of Ni, Fe, or Co catalyst film. The PECVD process turns 
out to result in non-conductive CNT/Graphene structures due to damages in the graphene 
during CNT growth. To mitigate this challenge, we successfully identified the source for 
graphene damage as the plasma in the CNT growth process and, as a result, replaced PECVD 
with thermal CVD in our growth process. The results for the CNT/Graphene devices 
fabricated using Co catalyst are encouraging with an estimated CNT-graphene contact 
resistance of 1.4 kΩ. Thus, we have taken the first step in demonstrating electrical conduction 
through a 3D all-carbon nanostructure fabricated by growing CNTs directly on graphene. 
While further fabrication and characterization experiments are needed to verify the results and 
improve on them, our objective has been met and the project has served to open up 
opportunities for other researchers in the future. 
 
7.2 Future Work  

We have planned a series of experiments to be carried out in the coming months to verify 
the results so far and to take the next steps in developing the CNT/Graphene process. Specific 
tasks are listed below. 

 
1. Verify all electrical measurement results with nanoprobing.  
2. Demonstrate continuous sp2 bonding across CNT-graphene interface using TEM and 

related techniques in our collaborators’ laboratories. 
3. CNT/Graphene growth using thermal CVD at 700℃ with various Co and Ni sputtering 

conditions to provide more samples to confirm conduction. 
4. Vary growth conditions to improve CNT alignment while preserving or enhancing 

conduction of CNT/Graphene structure. 
5. Lower CNT growth temperature to <600℃ to be more compatible with IC fabrication 

process without increase in CNT/Graphene resistance. 
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Appendix A: Senior Design Conference Slides as 
Presented  
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Additional prepared slides (not presented): 
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Appendix B: Additional SEM Information 
 Detailed information on the construction and use of our Hitachi S-4800 scanning electron 
microscope is available at the following URL: 
http://cmrf.research.uiowa.edu/sites/cmrf.research.uiowa.edu/files/S-
4800%20Instruction%20Manual_1.pdf 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://cmrf.research.uiowa.edu/sites/cmrf.research.uiowa.edu/files/S-4800%20Instruction%20Manual_1.pdf
http://cmrf.research.uiowa.edu/sites/cmrf.research.uiowa.edu/files/S-4800%20Instruction%20Manual_1.pdf
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Appendix C: Additional Wafer Prober 
Information 
 Detailed information on the construction and use of our Cascade Microtech wafer probe station is 
available at the following URL: 
https://www3.nd.edu/~nano/facilities/at_man_Cascade12000SemiAutoProbe_Nucleus_Manual.pdf 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www3.nd.edu/%7Enano/facilities/at_man_Cascade12000SemiAutoProbe_Nucleus_Manual.pdf
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Appendix D: Additional Nanoprober 
Information 
 Detailed information on the construction and use of our Zyvex S200 nanoprober is available at the 
following URL:  
http://www.zyvex.com/Documents/S200.pdf 

http://www.zyvex.com/Documents/S200.pdf
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