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ABSTRACT 



 
 

 

 Health Monitoring applications and devices are becoming very useful tools for people that 

want to take a more active role in their personal health. However, no current health-monitoring 

device is capable of harvesting its own power for operation. In our Senior Design project, we use 

an energy harvesting wireless sensor system that is designed to be easily worn on the wrist, or on 

the foot of an infant, in order to help people monitor their temperature and pulse rate. Our personal 

health-monitoring device operates using an Arduino pro mini microcontroller that reads in data 

from our sensors and passes them onto a Bluetooth module.  The data that is recorded by the system 

is then sent over via Bluetooth to a laptop that will present the patient’s results.  The device is 

powered by a battery that can be charged by USB power, or through our RF energy harvesting 

system.  
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Chapter 1 Introduction 

1.1 Project Background 

This project is to be used as a personal health monitoring device.  Personal health 

monitoring is a way for people to use technology to take a more active role in their health and 

caring for themselves. [3]  These devices track different parameters and display them to the user.  

Personal health monitoring is effective when the results from a person’s device drive them to make 

healthier choices in their everyday life. Ideally, the more someone monitors their health and makes 

healthier choices because of it, they will go on to live a much healthier life.  When a person is 

healthier, they require less frequent doctor visits, except for regular check-ups, as these are still 

very important.), which saves them a lot of time and money in health care.  Furthermore, when 

they grow older, they will still require less unnecessary doctor visits, which means that they will 

retain their independence for longer than someone that did not choose to make healthier choices.  

We want people to be able to use our device as a way to monitor their health and live a healthy 

and long life. As well, this device can be used for infant, elderly and patient care by providing 

continuous monitoring of vital signs and serve as an automated aid to the nurse and care provider. 

 

Therefore, it is also important that the health monitoring device transmits data wirelessly, 

as a person should not be tethered to a computer or phone to monitor their health.  They should be 

able to go out and live their life without worrying if their health is being monitored 

 

 Many devices measure parameters such as steps, hours of exercise, calories, pulse rate, or 

glucose levels, among others.  Parameters such as glucose, pulse rate, and temperature are used 

because they can clearly show whether a person is in need of immediate care.  For example, if a 

person’s pulse rate drops below a certain threshold, or if it rises above a certain threshold, it is a 

clear indication that a person is having cardiac issues and needs to be hospitalized immediately.  

Parameters such as calories, hours of exercise and steps are measured to give someone an idea of 

how healthy they are on a daily basis as well to help them reach personal goals. For example, if 

someone sets a goal of exercising for one hour every day and has a device that tells them exactly 

how many hours that they have logged, they will be more motivated and realize that their goal is 

closer than they might have thought.   

  

When researching personal health monitoring devices, we found that most devices utilized 

a rechargeable battery to allow the user an extended period of time to be able to use their devices 

before plugging it back into power.  This is an essential feature to any personal device.  We did 

not find, however, any device that utilized any kind of energy harvesting technology.  Our project 

advisor introduced this project to us as an RF energy harvesting project, so we wanted to 

implement RF energy harvesting into our device. 

 
1.2 Problem Statement 

 
In today’s busy world, people often don’t have time for unnecessary doctor visits1.  An 

unnecessary visit is a doctor visit that could have been prevented by a person making healthier 

                                                
1 Regular check-ups are essential to good health and should in no way be avoided. 
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choices, or one that could be replaced by a physician viewing a person’s tracked vital signs since 

their last visit.  Our device attempts to solve this problem by monitoring a person’s vital signs, 

including temperature and pulse rate, and transmit them to a computer over Bluetooth [7]. Using 

our device a person can monitor their own health and make choices to improve it. Furthermore, 

the data is transmitted to a computer where it can be transmitted to a doctor or other health care 

professional.   

 

SIDS (Sudden Infant Death Syndrome) is an unexpected death of an infant, usually during 

sleep. SIDS accounted for 39.4 infant deaths per 100,000 born in 2015 [8].  While this is not a 

large percentage of infants, it is still problematic simply because it can be prevented with proper 

monitoring.  Our device can also be used to prevent SIDS when an infant is wearing our device on 

its foot using a sock.  Vital signs can be monitored this way and any irregularities can be quickly 

seen and proper action can be taken. 

 

As non-renewable resources dwindle in the world, we look more and more to renewable 

resources to power our everyday devices.  Many devices are powered by solar power, or 

thermoelectric power, but none that we saw were powered using RF energy harvesting.  Since the 

sun is not always out, and it is not always easy to find a good heat source, RF energy harvesting 

will become more popular as the technology improves. Our device attempts to use RF energy 

harvesting at 915 MHz to charge and power our device.  

  

 
1.3 Project Objectives 

1. Miniaturize the project into a more mobile and simpler prototype that will allow the user to 

comfortably wear the device, easily learn the functionality of the product, and use it for their own 

individual needs and benefits. 
2. Improve sensors to more accurately record and display vital signs. 

3. Create a PCB design to be powered mostly through energy harvesting power sources rather than 

using a traditional outlet charger to power the system. 

4. Create an RF harvesting system that harvests power to charge our device using 915 MHz waves. 
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Chapter 2 Project Requirements 

 
2.1 Usability 

Usability is a very important requirement that pertains to our senior design project because 

we want our device to be user friendly in order for everyone to easily use our product regardless 

of a person’s technical background. A problem we saw with our initial iteration was that our device 

was setup using a breadboard where the components had to be connected in the right manner in 

order for the system to properly work. The first steps we took  to accomplish better usability within 

our project was by designing our own PCB board layout so that we could interconnect our sensors 

and means to power the device into a single wireless sensor system. We also included extra features 

onto the board such as a switch to turn the device ON and OFF to save power as well as pin 

connectors that allow for the user to easily interchange parts of the system such as sensors and 

battery if certain components are not working properly. Our wireless sensor system helps improve 

usability with our project because it takes away a lot of the steps needed to setting up our personal 

health monitoring device such as soldering components on the board or connecting devices using 

wires. Another aspect of the project that helps implement this idea of usability for our device is 

with a data display we have created for the user to view his or her results. Our data display consists 

of temperature readings at Celsius and Fahrenheit, Pulse readings, and BPM readings. Once the 

user turns on their personal health monitoring device, they will be able to view the results of their 

body temperature and pulse rate at real time through the data display. By implementing a data 

display that is connected with our wireless sensor system, this allows the user to easily monitor 

their own vital signs by themselves without consistently having to go to hospitals in order to detect 

changes in their health.  
 

2.2 Accuracy 

Accuracy is a parameter that measures the quality or degree at which a calculation must 

match a standard correct value. With that in mind, accuracy is another important requirement 

within in our senior design project due to the fact that components such as our vital sign sensors 

need to have a very precise and accurate margin of error. The difference in the accuracy of sensors 

can be the difference between life and death when measuring basic vital signs of a user since our 

device will need to be able to detect these changes within a user’s health. On a similar note, the 

means to power our device must be able to consistently receive the proper amount of energy to 

power the rechargeable battery and the whole system. That is why we have included two power 

sources on our wireless sensor system which include an RF energy harvesting port and a Micro 

USB input. If our RF energy harvesting port is not properly receiving enough power within the 

system, the user can use the Micro USB as a fail-safe feature to help charge the remainder of our 

device’s battery.  
 

2.3 Reliability 

Reliability of a product is another key requirement when dealing with our personal health 

monitoring device since it must consistently work and be able to monitor the basic vital signs of a 

user. When designing the PCB board for our wireless sensor system, we added some redundancies 

for the board such as the power. To help ensure that the reliability to power our device remains 

consistent, we included two ways of receiving power to our wireless sensor system. We decided 
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to include an RF energy harvesting port to utilize the ambient sources in order to convert the 915 

MHz frequency to DC power and a Micro USB input in case the RF to DC converter is not properly 

creating enough power. The RF to DC converter we are using will help us get a constant output 

voltage at 3.8V and supply current of 30mA at a frequency of 915 MHz. The power sources are 

all interconnected on our PCB board as well as multiple other new features we have added to help 

with the overall project requirements. Some of these new features include an ON/OFF switch that 

easily be activated through a tactile button switch in order to minimize power from being wasted 

when our device is not being used. On a similar note, we also included a rechargeable battery that 

will help store the power collected from the previously mentioned power sources. Finally, our PCB 

board features pin connectors in order to easily interchange the battery and vital sign sensors if 

they are broken or not being used. These are some of the new components that we have added to 

our new wireless sensor system in order to help create a more reliable personal health monitoring 

device. 
 

2.4 Safety 

Safety is one of the biggest concerns that usually arise when creating a device that will be 

used by the public especially with products that will be implemented as wearable technology. With 

that in mind, when designing our whole personal health monitoring device, we took into account 

both long term and short term problems that may arise when a user is using our device. For 

instance, when dealing with radio frequencies that help power our whole wireless sensor system, 

we decided to choose a low frequency at 915 MHz because it is within the legal 

regulations/restrictions and is safe enough where there are no harmful effects to the user’s health 

in the long run [4]. As for our wireless sensor system itself, we designed the PCB board so that 

everyone can easily use the system without needing any kind of technical background. The pin 

connectors are already included on the board to prevent the user from needing to solder 

components onto the board where they could possibly hurt themselves and instead can effortlessly 

plug in the sensors and rechargeable battery to the right port when they are going to use the device.  

 

 

 

 

 

 

 

 

 

 

 

2.5 Art 
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Figure 2.1: PCB Board Layout Design 

Figure 2.1 shows the complete layout of our PCB board that was manufactured. The complete 

PCB includes two main boards that house the wireless sensor system, and five temperature 

sensor boards.  The large circles between the boards are there so that we can easily cut the boards 

apart. 

 

2.6 Timeline 

 
Figure 2.2: Schedule 

 

In Figure 2.2, we show the timeline of our yearly schedule for our Senior Design Project. 

As you can see, we prioritized majority of our project work during the months of January and 
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February for Winter Quarter in order to get a head start and hopefully finish some of the 

implementation phases of our project. For the Spring Quarter, we wanted to focus on finishing up 

the remainder of the project as well as begin creating and practicing our PowerPoint presentation 

for the Senior Design Conference in the month of May. After we finish with the implementation 

phase and presentation, we are now solely focusing on finishing the Senior Design Thesis that we 

will turn in at the end of the year.  
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Chapter 3 Hardware Design 

 
3.1 Wireless Sensor System Design 

 We designed our own wireless sensor system from the one that we inherited from the 

previous project.  There were many improvements that we wanted to make and many features that 

we wanted to include in our sensor system compared to the original device.  We were fortunate 

that the device that we inherited functioned well, so it was a very good place to start. 

 

 
Figure 3.1: Original Device Design 

 

 In Fig. 3.1 is our original system that was inherited from a previous group. This design 

includes the basic features that are required for the device to work as designed.  The first feature 

is an Arduino Pro Mini microcontroller to process and send data that we receive. Next, we have 

an Adafruit Bluefruit EZ-Link Bluetooth module to send and receive data from the 

microcontroller. Finally, we have our pulse sensor and our TMP35 temperature sensor.  This 

design was very useful in testing different components as they can be easily interchanged without 

any major modifications or soldering work.  The overall size of this device is around 45.94 cm2 .  

This size is much too large to be used in any kind of wearable application.  One of our main project 

objective was to miniaturize this device so that it could be easily worn by a person 
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Figure 3.2: Final Device Design 

 

In Fig. 3.2 is the final design of our wireless sensor system. We designed and assembled 

our own PCB to replace the breadboard from the original design.  We used a lot of the same major 

components as the original design, but also used a couple of new and replacement parts. For 

example, we included a rechargeable battery in our new design that allows the device to be used 

for hours without having to be plugged in.  We also replaced our temperature sensor with a new 

module that is much smaller and much more accurate. We did however, keep the pulse sensor, 

Arduino, and Bluetooth module the same.  We were able to reduce the area to 22.84 cm2, a 

reduction of around 48%.  This device is much more adaptable for wearable applications and met 

our project objective. 
 

3.2 PCB Design 

 3.2.1 Design Iterations  

    
Figure 3.3: First Iteration Board Layout 

      
Figure 3.4: First Iteration Physical Build 
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In both Fig. 3.3 and Fig. 3.4, we show the first iteration of our PCB design and physical 

build respectively.  The top figure shows the layout in EAGLE, and the bottom figure shows the 

manufactured and assembled PCB. In this iteration, we attempted to keep all of the components 

on the top of the board to reduce danger associated with components touching skin of the wearer.  

We also attempted to use the TinyDuino stackable Arduino platform.  This Arduino features 

several 2 cm2 boards that stack on top of each other using header pins.  We used the main board, 

the micro USB connector board, and the prototyping board so that we could connect all of our 

sensors and modules.  This board has the same overall features as the original design, utilizing 

both pulse and temperature measurement, as well as Bluetooth transmission.  The first problem 

that we saw with this design is that it was not a good shape.  Although the area is only 21.42 cm2, 

the long, narrow shape of the board is not becoming of a wearable design, which should be more 

compact. Another problem with this design is in the wires that must attach from the top of the 

TinyDuino to the board itself.  These wires are not only not aesthetically pleasing, but they pose a 

safety risk if they come loose and cause a short circuit in the device, or come into contact with the 

wearer's skin. We kept these issues in mind while designing our second PCB. 

 

 
Figure 3.5: Second Iteration Board Layout 

 
Figure 3.6: Second Iteration Physical Build 

 

In Fig. 3.5 and Fig. 3.6, we show our second board iteration layout and assembled PCB, 

respectively. This board is functionally the same as the previous iteration, with the exception of 

the return of Arduino Pro Mini, in place of the TinyDuino.  This board is arranged slightly 

differently in that we attempted to conserve space by placing the Arduino on the top side of the 

board and the Bluetooth module on the bottom of the board. This board did an excellent job of 

saving space, as it came in at 11.13 cm2, and did so in a much more compact design than the 

previous board.  While the dimensions of this board met our expectations and requirements, we 

wanted our final project to have more functionality than the barebones capabilities of our original 

design, most importantly a rechargeable battery. Furthermore, we realized that it was not a good 

idea to have the Bluetooth module mounted on the bottom of the board as the monopole antenna 
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would not be able to get as good of a signal. It is vital that the antenna have the best signal possible 

while being used in an application such as monitoring an infant to help prevent SIDS. These issues 

were the main inspiration for us as we designed our final PCB layout. 
 

 
Figure 3.7: Final Iteration Layout 

 
Figure 3.8: Final Iteration Physical Build

 

 

After a longer design process, we successfully manufactured our final board layout (Fig. 

3.7), and manufactured it (Fig. 3.8).  Coming from our second iteration, we had to make this board 

slightly larger in order to make room for the additional functions that we wanted to include. The 

area of this board measures around 22.84 cm2, which is still an area reduction of approximately 

48% compared to our original breadboard layout.  We will go into more detail about the functions 

in the next section. One of the major layout improvements that we made on this board concerning 

the placement of the Bluetooth module and Arduino board is that we used header pins to situate 

the Bluetooth module above the Arduino. However, the Bluetooth chip, while securely in place, 

can be easily removed if the user needs to access the Arduino underneath. We are very happy with 

this design and we believe that it meets all of our project objectives concerning the PCB layout. 
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3.2.2 Overview of Features 

  
Figure 3.9: Final PCB Design 

While designing our circuit board, there are several features that we included to give our 

device more functionality, while also completing the same functions as the original design.  The 

first thing as shown in Fig. 3.9 is that we added was a USB to serial converter to complement the 

Bluetooth module.  The USB to serial device can upload code to the board, and download data 

from it when the Bluetooth connection is not working.  The converter is more of a failsafe, as we 

want the Bluetooth module to be the primary method of transmission for our device.  The next 

feature that we added was a physical micro USB connector.  We chose this connector over others, 

such as mini USB because micro USB is the connection used by most android phones. Because of 

this, we figured that most people using the product would have a cable of their own to use with the 

device.  Users can use this port to upload or download from the board, or to charge the rechargeable 

battery that we have also included.  The battery plugs in next to the USB port on the device and is 

capable of powering the device for several hours on a single charge. The next function that we 

added to the board is LED indicators.  Two LEDs closest to the Bluetooth module indicate data 

being uploaded or downloaded from the board through the USB to serial converter.  Another set 

of LEDs closest to the battery port indicate whether the device is charging.  The orange LED 

indicates that the device is charging and should be left plugged in while the green LED indicates 

that the device is fully charged and ready to be used. The final LED indicator is a blue LED that 

indicates whether the device is powered on.  This LED illuminates when the tactile push button on 

the board is pressed.  This button is used to power down the device when it is not in use in order 

to save battery power for when the device is needed.  The next feature that we added were 

connectors for the sensors as well as the battery.  These connectors were used in case a sensor 

breaks and needs to be replaced, or if the battery needs to be replaced.  With connectors, changes 

can be made without having to do any soldering, a skill that not everyone using our device will 

have. Finally, since we are using two different power source circuits, we wanted to make sure that 

no power was able to travel backward in the system and damage another part of the circuit.  To 

accomplish this, we included two Schottky diodes in series with both of our sources.  This way, 

when one power source is in use, the other will be safe from damage. 
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Figure 3.10: Charging Circuit 

This circuit in Fig. 3.10 is used to power the device.  It consists of a boost converter, a 

battery charge controller, and a battery connection.  The dual LED in the circuit is used to show 

the status of the battery.  An orange light signals battery charging, and a green light signals a 

charged battery.  The capacitors C1, C2, C5, and C6 are used to help measure the voltage at the 

specified test points to verify voltages in order to debug the circuit. The feedback resistors are used 

to reduce noise from the voltage output. The blue LED light indicates that the whole circuit is ON 

and functioning. The enable pin is connected to another circuit with a switch that turns the whole 

system ON and OFF. Finally, the Schottky diodes are used to prevent power from going backward 

in the system.  

 

 
     

Figure 3.11: Switch Circuit 

 

As for Fig. 3.11, we are showing our switch circuit that turns our whole wireless sensor 

system ON/OFF. The Vbat is the battery voltage that is fed from the battery of the first circuit. 

Once the switch is ON (closed) the BJT becomes saturated and the current flows through the Drain 

and Source of the MOSFET due to the negative voltage to the gate. The voltage at 3.3V is then 

transferred through the boost converter in the first circuit to boost the voltage to 5V. 
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Figure 3.12: Pulse Rate Sensor 

For Fig. 3.12, this Pulse Rate Sensor has 5V connected from the output of the boost 

converter and the other pin connected to the Arduino that will output the results. 

 

 
Figure 3.13: LMT70 Temperature Sensor 

 

In Fig. 3.13, this is the temperature sensor that has 5V connected to the VDD and T_ON. 

The filter capacitor CLoad at the VDD helps minimize noise coupling and to maintain stable 

conditions for the temperature sensor. The Bypass capacitor C13 and resistor Rs help conduct an 

alternating current and are also connected to the TEMP pin that allows the temperature sensor to 

connect with the Arduino device. The GND pin is connected to ground. 

 

 
Figure 3.14: Temperature Sensor Circuit Ports 

The circuit in Fig. 3.14 allows us to connect our temperature sensor to our Wireless Sensor 

System using wires to be able to touch certain parts of the skin and is separate from the whole 

sensor hub.  
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Figure 3.15: Arduino Pro Mini 

 

The large rectangular device in Fig. 3.15 is for our microcontroller; the Arduino Pro mini.  

We are using the VCC and ground pins to power it, the RX and TX pins for data transmission, 

analog pins A0 and A1 to operate the pulse sensor and temperature sensor, and finally the RST pin 

with a 0.1 microfarad capacitor to reset the Bluetooth module. The smaller device is used to 

connect to the Bluetooth module.  It has power and ground, RX and TX connected to the Arduino, 

and the reset connected to the Arduino. 

 

 

 

 

 

 

 

 

 



 

15 
 

 

 

 

 
Figure 3.16: FTDI Chip and Micro USB input 

 

This circuit in Fig. 3.16 is our USB and USB to serial device.  The larger device is the 

FTDI chip.  It reads data coming in from the USB port (on the left side) and converts it into data 

that the Arduino can read and process.  It also takes data from the Arduino and converts it into data 

that a computer can process. There are capacitors on the voltage pins to minimize noise. One LED 

is used to signal data being transmitted, and another is used to signal data being received.  

 

3.3 Calibration of Sensors 

 
Figure 3.17: LMT70 Temperature Sensor 

 

The TMP35 temperature sensor as shown in Fig. 3.17 is the original temperature sensor 

that we used to measure the body temperature vital sign. Unfortunately, with this particular sensor, 

the margin of error at ±5°C is too large to differentiate at temperature ranges such as high fevers 
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where it can be the difference between life and death for a user and a body size of 17.54 mm x 

5.21 mm. With our new LMT70 temperature sensor, the margin of error is now at ±0.1°C and with 

a body size of 0.88mm x 0.88 mm which is an area reduction of around 98% from the original 

TMP35 temperature sensor. The parameters of this new temperature sensor consist of an operating 

temperature range from -20°C to 90°C, a supply voltage range from 2V to 5.5V, and a minimum 

supply current at 12uA. The specs of our LMT70 temperature sensor will have a temperature range 

from 29°C to 40°C in order to be able to monitor changes in a user’s temperature to detect 

symptoms for colds that occur below 29°C and fevers that are dangerous above 40°C. Some other 

specs of our sensor include a supply voltage at 5V, which is the voltage being sent all throughout 

our wireless sensor system, a supply current at 30mA and an operating voltage output at 940mV.  
 

 
Figure 3.18: Pulse Sensor Front and Back 

When calibrating our Pulse sensor in Fig. 3.18, we faced some initial challenges that 

prevented us from getting good, accurate readings of a person’s pulse and BPM. These challenges 

consisted of ambient light, skin oil interference and ideal placement within the sensor. In order to 

compensate for the ambient light and skin oil interference, we decided to place a thin vinyl over 

the pulse sensor that minimized the noise and helped improve the accuracy of the readings. On a 

similar note, another problem we originally faced with sensor was with the placement of the user’s 

finger because the sensor moves around a lot. To help solve this problem, we decided to attach a 

Velcro strap onto our sensor so that the user can easily place his/her finger to record their pulse 

and BPM measurements.  

According to the American Heart Association, the average adult can range from 60 to100 

BPM [6]. While for newborn infants, the average can range from 120 to 160 BPM. These BPM 

reading ranges are very important to our project because it can help detect any kind of changes in 

a user’s health. For instance, if a newborn infant is having a BPM reading that is less than 100, 

this is an indication that the infant is dealing with low blood oxide within their body. The control 

BPM reading ranges that we will specifically focus on for our senior design project are in the age 

groups from 18-25 years old since we will be measuring our own BPMs. These readings can range 

from 40 to 62 BPM for more athletic users and range from 74 to 81 BPM for the average person 

within this age group [5] [12].  
 

  
Figure 3.19: LMT70 Evaluation Board 
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Figure 3.20: Data Display of LMT70 Evaluation Board 

 This is the LMT70 temperature sensor evaluation board shown in Fig. 3.19 that we were 

able to acquire from Texas Instruments. We used this evaluation board as a control temperature 

value in order to help validate the results we measured through the data display we created 

ourselves. In Fig. 3.20, this is the data display of the evaluation board using a Texas Instrument 

program that allowed us to measure a skin temperature value at 34.29°C. This is very close to the 

typical skin temperature value at 34°C according to the mayo clinic.  
 

 
Figure 3.21: Data Display of Wireless Sensor System 

 To be able to read the measurements recorded from our wireless sensor system, we created 

our very own data display that shows the user’s skin temperature at Celsius and Fahrenheit, pulse 

rate and BPM in Fig. 3.21. For our measured skin temperature, we were getting a value at 33.87°C 

that is converted to 92.97°F. As a result, there is a good variation of ±0.42°C between our measured 

skin temperature value and the typical skin temperature for validation. On a similar note, the pulse 

rate value we measured through our data display was at 60 BPM which is still between our control 

pulse rate ranges showing the validation of our pulse sensor.  
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Chapter 4 Energy Harvesting 

 
4.1 RF Energy Harvesting 

 
RF energy harvesting is an energy harvesting technique that involves the conversion of radio 

frequency, in our case 915 MHz, waves.  RF waves are constantly around us in our everyday 

environment. We can capture and transmit these waves using antennas. Depending on how we 

configure our antennas, we can make them radiate in a certain way and operate at a certain 

frequency. We can evaluate these antennas operating frequency based on their S11 reflection 

coefficient. This parameter shows how well and how much power is received and reflected by an 

antenna at a particular frequency because we chose the operating range of 915 MHz, we had to 

find antennas that were able to transmit and receive signal effectively at this frequency.  

 

We chose the frequency range 902-928 MHz because it is designated by the FCC for amateur radio 

use as well as radiolocation, and RF Identification.  Although there are several frequency bands 

like this, such as 2.4 GHz, or 5.8 GHz, we decided to stay at a lower frequency because it is safer 

to use a lower frequency while transmitting higher power waves needed for RF-DC conversion. 

  
4.2 RF to DC Converter 

To power our device, along with USB power, we are also implementing an RF to DC 

converter to harvest RF energy from the air.  The device that we used to accomplish this is the 

Powercast P2110B Powerharvester.  We purchased the module on the P2110B Evaluation board.  

The evaluation board includes several charging capacitors to store and deliver the output power, 

as well as places to measure the output current. 

 
Figure 4.1: P2110B Evaluation Board 

Pictured above in Fig. 4.1 is the P2110B evaluation board.  On the board, the small chip 

next to the brass connector is the actual P2110 module.  This board is capable of outputting 50 mA 

of current at 4.8 volts.  Out of the box, the board is set to output 3.3 volts, but can be modified to 

deliver more voltage using a resistor that is added to the board.  The data sheet includes an equation 

to calculate the resistance needed to boost the voltage.  We wanted to get around 3.8 volts, as this 

is the voltage required by our boost converter to charge the battery.  Using the equation in the 

datasheet, we obtained a resistance of 3.16 MOhms.  The red square in the figure above shows the 

location of this resistor. 



 

19 
 

4.3 Antennas 

 

 
Figure 4.2: 915 MHz Patch Antenna 

 
Figure 4.3: 915 MHz Dipole Antenna 

 

Our power harvesting module came with two antennas, a patch antenna (Fig. 4.2), and a 

dipole antenna (Fig. 4.3). The patch antenna is an directional antenna, meaning that it only receives 

and transmits signal in one direction.  Because of this, we decided to use this antenna as our 

transmitter.  This antenna also has a gain of 6 dBi. The dipole antenna is an omni-directional 

antenna that can radiate in all directions.  We use this antenna as the receiving antenna on the 

converter so that the converter can be placed anywhere as long as it is near the transmitter. This 

antenna has a gain of 1 dBi according to the manufacturer’s data sheet. 

 

It was important to test the operating frequency of these antennas to make sure that they 

function effectively at 915 MHz and will work with our converter. 

 

 
Figure 4.4: Patch Antenna S11 Parameter 
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In Fig. 4.4 is the S11 parameter for the patch antenna that came with our RF-DC converter 

[10].  To measure this parameter, we used a Vector Network Analyzer (VNA).  From the display, 

we can see that the antenna has an effective operating frequency of 913.5 MHz, which is close to 

915 MHz and in our converter’s operating frequency range.  

 

 
Figure 4.5: Dipole Antenna S11 Parameter 

 

While Fig. 4.5 shows the S11 parameter of the dipole antenna.  The VNA shows that the 

antenna is radiating electromagnetic power effectively at 905.5 MHz and exhibits minimum 

reflection.  While this is not as close to 915 MHz as the patch, it is still well within the operating 

range of the converter of 902-928 MHz.  Before we purchased these antennas, we attempted to use 

some of the antennas that are available to us in the lab.  When we measured the S11 parameters of 

these antennas, we found that they operated at frequencies closer to 1.1 GHz.  These antennas do 

not operate in the effective range of our converter and therefore cannot be used. 

 
4.4 Performance of Converter 

 
The RF-DC converter works by attaching the patch antenna to a signal generator machine 

set to 915 MHz and any power level above 0 dBm, as the converter does not power up at power 

levels below 0 dBm as shown in Fig. 4.6.  We chose 3 dBm because it is a high enough power 

level to keep the converter powered at a reasonable distance. 
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Figure 4.6: Signal Generator Settings 

Once the Signal Generator is running, we place the antennas in front of each other in Fig. 

4.7.  When we do this, the converter powers on and begins storing charge.  We see that the 

converter is turned on by a green LED indicator illuminating in Fig. 4.8. The figure below shows 

the converter powered on.  The red arrow points to the indicator LED. 

 
Figure 4.7: Antenna Placement 
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Figure 4.8: Antenna Placement 

Next, we confirm that the converter is transmitting by checking the readout of Vout on the 

board.  The oscilloscope picture in Fig. 4.9 shows that the converter is outputting 3.7 V.  This is 

voltage that we can use to charge our battery and power the device. 

 
Figure 4.9: Oscilloscope Readout 
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Chapter 5 Constraints 

 
5.1 Manufacturability 

Manufacturability is one of the first constraints we faced when dealing with our senior 

design project. The original plan involving our wireless sensor system was to design a PCB board 

that was small enough for wearability on the wrist. However, we needed to include more features 

onto the PCB board in order to improve the basic functionality of our wireless sensor system and 

design the sensor hub in time to fabricate and finish building the prototype before our designated 

deadlines. To accommodate for the constraints, we decided to give up a bit of space on the final 

iteration of our PCB board so that we could include the extra features on top of the original 

components that were necessary to complete the wireless sensor system. This final design is able 

to still accomplish our system to be a wearable device specifically onto the wrist as well as expand 

on the functionality to improve the overall device.  

For our RF energy harvesting setup, we decided to create our very own RF to DC converter 

in order to minimize cost and have a working prototype to help show new ways of powering 

wearable technology. The original converter design consisted of a charge pump, schottky diodes 

and capacitors that would help convert radio frequencies at 915 MHz into DC power for our device. 

Unfortunately, a constraint we came across with our design was that the board was not getting the 

right voltage output and supply current to power our device. We also were not able to properly 

interconnect our original converter with our PCB board. As a result, the backup we decided to 

choose was the P2110B RF energy harvesting chip for our wireless sensor system. This new 

evaluation board is able to create a voltage output of 3.8V and supply current of 30 mA that will 

help power our personal health monitoring device. 

 
5.2 Environmental Impact 

For our Senior Design Project, we are creating a Wireless Sensor System that is using 

energy harvesting methods to power our whole system in order take the first step to ending the 

dependency on nonrenewable energy sources. With that in mind, our group has designed a PCB 

layout of our Wireless Sensor System that has a hybrid capability of being powered through RF 

energy harvesting and a basic Micro USB. Our design also includes a temperature sensor and 

heartbeat sensor that can be easily used by the user and interchanged if the sensor breaks or 

malfunctions allowing for the users to continually operate the same Wireless Sensor System and 

replace only the small aspects of the system to minimize cost and resources needed for our product.  

The impact our Senior Design Project can have on the environment when disposing 

materials at the end of the product’s life is very substantial because majority of the materials can 

be recycled to be used for some other purpose. However, if the materials or product are not 

disposed properly, it can have some impact on the environment because some of the materials can 

be harmful to animals and the planet. As a result, we have designed our Senior Design Project to 

have an expected duration of around 5 years.  

 

5.3 Social Sustainability 

Our product is designed to benefit users that want to take a more active role in their health 

and well-being.  The device will measure their body temperature and their pulse rate to give them 
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a glimpse into their overall health.   We are making the device to be as easy to use as possible and 

as maintenance free as possible. We want the user to be able to have the user turn on the device, 

connect it to their phone, and not have to worry about it again.   

Furthermore, we want the application to be equally as easy to use as the device itself.  The 

user will be able to record their readings at the touch of a button and view their results immediately. 

We hope to make the system inexpensive and easily obtainable for all users.  Since our system will 

be used as a medical device to help people monitor their health, we do not foresee any negative 

impacts on health or welfare.  However, we do not want people to think that our device is a 

replacement for regular check-ups with a doctor. People should continue to see their doctor and 

use our device supplementary.  One area in which we must exercise caution is in our use of a high-

power RF transmitter as the source of our RF power.  High power RF waves can be harmful to 

humans at certain wavelengths, so we will make sure to use a setting that is not harmful.   

 

 

5.4 Ethics/Social Context 

Ethical Justification:  

In our healthcare system today, many medical and technological advances have simplified 

and increased the productivity of professional medical doctors and surgeons in hospitals that would 

not have been possible in the past. However, an increase in the world population has made it much 

more difficult to constantly monitor patients in hospitals and at home due to time constraints with 

doctors and the expensive cost of healthcare. With these parameters, we have set out to accomplish, 

our personal health-monitoring device will in turn help monitor basic vital signs such as body 

temperature and pulse rate in order to detect any changes in their health. As a result, health 

monitoring applications such as wearable technology is the next step in technological advances for 

healthcare. This type of application allows for constant checkups on a patient’s health resulting in 

fewer visits to the doctor only when needed which ultimately cheapens the cost of healthcare and 

an improves the overall medical system.  

 

What it means to be a good engineer: 

Our goal of any engineering project should be to help the end user.  Our project is no 

different. We want to make sure that our product works when the patient receives it and that any 

repairs that need to be done to the device are simple and easy for any person to perform.  We don’t 

want the patient or their health care provider to have to spend valuable time and energy trying to 

fix a poorly made device that is difficult to work on.  We want our product to be safe to use for 

both the patient and anyone around them, we will make sure to keep all voltage sources protected, 

and all connections are secure. As problems arise, we plan to make engineering choices that make 

our device safer and easier to use above all else. 

 

Social Context: 

 Safety is one of our main concerns when designing our Senior Design project because we 

want to make sure that the patients are not at any risk of danger when using our product. The 

challenges we face when dealing with specific engineering ethics for our project is building a 

wireless sensor system that can properly record the necessary measurements accurately and 

precisely for the patients since the sensors from our system such as the temperature sensor cannot 

have big margins of error due to certain temperatures being at the threshold of life and death.  

Another challenge that is raised through our project is the implementation of energy harvesting 
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power sources. In our project, we are attempting to be more eco-friendly with our product in order 

to stop the dependency of using power outlets that use non-renewable resources to charge our 

technology such as fossil fuels and oil.  
 

 
5.5 Economics 

Making this product financially sustainable comes from the cost of the individual 

components.  Currently the device is affordable since almost all of the hardware components are 

open sourced from well-known companies that provide reliable parts at low costs.   

Very little is made “in house,” and this outsourcing of manufacturing basic parts allows 

our team to focus on pushing the technologies not readily available on the market.  If we were a 

startup company just beginning to build our first prototype, we would be able to allocate more of 

our financial resources to building the RF energy harvesting aspect of the design.  As the company 

grows, it could hire more staff to make previous parts more accurate (the temperature and pulse 

sensors).  If we decided that we wanted to stick with buying basic components externally, the 

market ready components would improve in their reliability, functionality, and accuracy over time.  

In addition, these parts would cost less over time as well (looking at computer processing units as 

an example). 

 As the technology of the device evolves, so will the laws that require certain restrictions 

and usage conditions.  When RF energy harvesting panels are reduced enough in size and are able 

to provide enough power to make the system self-sustaining, there will be other outcomes and 

effects when the wearer passes by various systems that emit signals within the range the device is 

able to absorb and convert to power.  If it turns out that there are inconveniences and unexpected 

effects from various wearables taking in radio frequencies from others’ Wi-Fi routers, for example, 

each consumer could also pay a very small monthly RF usage fee that would compensate for the 

inconvenience on men and women who are unintentionally providing RF sources to power their 

device.  

 

5.6 Health/Safety 

Our product is designed to benefit users that want to take a more active role in their health 

and well-being.  The device will measure their body temperature and their pulse rate to give them 

a glimpse into their overall health.   We are making the device to be as easy to use as possible and 

as maintenance free as possible. We want the user to be able to have the user turn on the device, 

connect it to their phone, and not have to worry about it again.   

Furthermore, we want the application to be equally as easy to use as the device itself.  The 

user will be able to record their readings at the touch of a button and view their results immediately. 

We hope to make the system inexpensive and easily obtainable for all users.  Since our system will 

be used as a medical device to help people monitor their health, we do not foresee any negative 

impacts on health or welfare.  However, we do not want people to think that our device is a 

replacement for regular check-ups with a doctor. People should continue to see their doctor and 

use our device supplementary.  One area in which we must exercise caution is in our use of a high- 

power RF transmitter as the source of our RF power.  High power RF waves can be harmful to 

humans at certain wavelengths, so we will make sure to use a setting that is not harmful.   

 

5.7 Civic Engagement/Regulatory Standards 
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For the RF harvesting portion of the project, we had to select a frequency to use for 

harvesting energy.  We decided to use the frequency band of 902 - 928 MHz.  We used this 

frequency because it is designated by the FCC for amateur use.  This means that there are no major 

restrictions on it.  Furthermore, we would not be interfering with any major transmissions.  There 

are other frequency bands designated for this use, including 2.4 and 5.8 GHz, but we determined 

that since we would be using high power RF waves, it would be safer for us to use a lower 

frequency. 

 

For our sensors, we wanted to make sure that our sensors had a margin of error that was 

within an acceptable range of safety for humans.  For example, our previous temperature sensor 

had a margin of error of around 5 degrees. This was unacceptable because the normal range of a 

person's temperature usually fluctuates around 95-100 degrees.  The sensor could be reading 

normal values, while the person may have a deadly fever. We made sure that our new sensor had 

a much smaller degree of error. 
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Chapter 6 Conclusion 

 
6.1 Accomplishments 

One of the first accomplishments that we were able to achieve through our senior design 

project was in miniaturizing the personal health-monitoring device for wearability. Through our 

different iterations in creating the best possible PCB board design, we were ultimately able to 

decrease the foot print by 48% from the original design to our final iteration. As a result, we also 

chose components that are included on the wireless sensor system that are small enough to fit onto 

the PCB board and still easily usable by the user.  

The rechargeability aspect of our senior design project consisted of using RF energy 

harvesting and a Micro USB input as two ways of powering our device and rechargeable battery. 

In order to implement this, we included two terminals that connected to the rechargeable battery 

with Schottky diodes on our PCB board to prevent power from traveling backwards where it could 

possibly damage our power sources. Our main power source will be the RF to DC converter and 

the Micro USB input will act as the failsafe in case the RF energy harvesting port cannot properly 

generate enough power. 

Bluetooth Communication was a key objective that we needed to execute for our project 

because wirelessly transferring data through our personal health monitoring device would help 

prevent users from being tethered to a computer and would make our system much more user 

friendly. As a result, we implemented a Bluetooth board onto our wireless sensor system that is 

compatible with our Arduino mini and vital sign sensors. Once we established connection between 

the necessary components, we then used the Bluetooth to send the data collected through the 

sensors to a data display we created onto a laptop. 

Originally, our vital sign sensors were much bulkier and inaccurate due to challenges we 

faced with integrating them onto our wireless sensor system. By finding new pulse and temperature 

sensors that improve the accuracy of the measurements and decrease the body size of the overall 

sensors, this will help with the overall personal health monitoring system. The margin of error of 

the new sensors are much more accurate compared to old sensors and with a smaller body size, we 

can easily implement it onto our smaller PCB board design.  

Finally, the last accomplishment to our senior design project was involving RF energy 

harvesting. With our original RF to DC converter, we were not able to properly create enough 

voltage output and supply current. We decided to choose another RF to DC converter that was able 

to get us a base voltage output at 3.3V and a supply current at 30 mA. Fortunately, with some 

modifications to the converter we were able to boost the voltage output to 3.8V and keep the supply 

current at 30mA which are the parameters needed to help power our rechargeable battery and entire 

wireless sensor system.  

 

6.2 Future Work 

Throughout the progress of our senior design project, we were eventually able to 

accomplish the project objective we set out to achieve. However, there are still improvements to 

our personal health-monitoring device that can be implemented in order to help improve the overall 

system. The first improvement would be to include an LED light to indicate the temperature sensor 

is on or off.  Currently, the only way to tell if the sensor is working is to look at the changes in 

output voltage using a multimeter. 
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Another improvement that we took into account for our senior design project was to include 

a mobile app. By implementing a mobile app with our personal health monitoring device, this will 

be much more user friendly since users can control the device all through a single app. It would 

also help interconnect our system under one app where the data can easily be collected through 

our device and sent to an app on a user’s phone allowing for easy accessibility to a user’s health 

information.  

 Our original intent with our personal health monitoring device was to push towards 

implementing in a manner that will allow our device to become wearable for a user. With this is 

mind, we are hoping that a future group can create a case and a strap that a patient can wear and 

easily record their vital signs without it being too complicated for the user.  

 With the power aspect to our project, some improvements we see for the future is to 

possibly implement the RF energy harvesting chip onto the PCB design of our wireless sensor 

system. By applying the chip on our personal health monitoring device, this will minimize the size 

of the actual converter since it would now be directly interconnected with the entire wireless sensor 

system. On top of this, another improvement that would help with the RF energy harvesting is by 

creating or buying a cheap RF transmitter to help send the RF frequency waves to our personal 

health monitoring device to power the system. In doing so, it would take out the necessity of an 

expensive signal generator to send RF waves and would be much more simplified for a user to 

function since these RF transmitters can easily be turned ON/OFF.  

 Finally, including additional vital sign sensors on our wireless sensor system will help 

expand the functionality of the personal health monitoring device towards other applications such 

as helping patients recover from addictions through the rehabilitation process or even monitoring 

newborn infants and preventing Sudden Infant Death Syndrome by detecting any changes in their 

breathing pattern via monitoring pulse rate. Electrocardiogram Sensors help detect electronic 

impulses from the heart which can be used to observe possible irregularities within the user. On 

the other hand, Cortisol sensors can detect stress within a user through measurements of a person’s 

saliva. Although this sensor is geared more towards patients dealing with addictions, it is very 

applicable for this purpose since addictions such as smoking  tend to be triggered through stress 

[1] [9] [2].  
  

 

6.3 Relevant Coursework 

Several courses that we have taken at Santa Clara University were particularly helpful in the 

completion of our senior design project.  ELEN 164 and the knowledge that we gained about DC-DC 

converters was helpful for implementing a boost converter to charge the battery of our device. ELEN 192 

was very important for our project as it showed us how to properly design a circuit board, as well as how 

to solder and assemble the board.  ELEN 105 was also very helpful as we learned about antennas, as well 

as how to use a Vector Network Analyzer, which were very important for the energy harvesting side of the 

project.  COEN 44 and 12 were also helpful in writing some of the code that was required on the software 

side of the project. 
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Appendix 

 
Code 

 
 Arduino Code: 

 arduinoMain: 
  Sketch: main.ino 
 *  ----------------------  Notes ------------------------------------  

 *  This code: 

 *   1) Blinks an LED to User's Live Heartbeat   PIN 13 

 *   2) Fades an LED to User's Live HeartBeat 

 *   3) Determines BPM 

 *   4) Prints All of the Above to Serial 

 *  

 *  Read Me: 

 *  

https://github.com/WorldFamousElectronics/PulseSensor_Amped_Arduino/blob/mast

er/README.md    

 *  

 *  

 *  created by Joel Murphy and Yury Gitman 

 *  modified 04/21/2016 

 *  by Chan Hee Lee 

 * ------------------------------------------------------------------ 

*/ 

 

#define ENABLE_DEBUGTEMP 0 

#define ENABLE_DEBUG_PULSE 0      // debugging messages enabled  

  // enable the following separatley 

  #define ENABLE_DEBUG_PULSEINFO 0 

  #define ENABLE_DEBUG_IBI 0 

  #define ENABLE_DEBUG_BPM 0      // see how bpm is calculated 

   

 

// Variables (pins) 

int pulsePin = 14;                 // Pulse Sensor purple wire connected to 

analog pin 0 

int blinkPin = 13;                // pin to blink led at each beat 

int fadePin = 5;                  // pin to do fancy classy fading blink at 

each beat 

int fadeRate = 0;                 // used to fade LED on with PWM on fadePin 

int tempPin = 15;                  // Temperature Sensor wire connected to 

analog pin 1 

 

 

// Volatile Variables, used in the interrupt service routine! 

volatile int BPM;                // int that holds raw Analog in 0. updated 

every 2mS 

volatile int Signal;             // holds the incoming raw data 

volatile int IBI = 600;          // int that holds the time interval between 

beats! Must be seeded!  

volatile boolean Pulse = false;  // "True" when User's live heartbeat is 
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detected. "False" when not a "live beat".  

volatile boolean QS = false;     // becomes true when Arduoino finds a beat. 

 

// Regards Serial OutPut  -- Set This Up to your needs 

static boolean serialVisual = false;   // Set to 'false' by Default.  Re-setz 

to 'true' to see Arduino Serial Monitor ASCII Visual Pulse  

 

 

void setup(){ 

  pinMode(blinkPin, OUTPUT);         // pin that will blink to your 

heartbeat! 

  pinMode(fadePin, OUTPUT);          // pin that will fade to your heartbeat! 

  Serial.begin(115200);              // we agree to talk fast! 

  interruptSetup();                  // sets up to read Pulse Sensor signal 

every 2mS  

   

  // IF YOU ARE POWERING The Pulse Sensor AT VOLTAGE LESS THAN THE BOARD 

VOLTAGE,  

  // UN-COMMENT THE NEXT LINE AND APPLY THAT VOLTAGE TO THE A-REF PIN 

  // analogReference(EXTERNAL);    

} 

 

 

//  Where the Magic Happens 

void loop(){ 

  serialOutput();        // 1) Uncomment so the "Processing" can access the 

data 

                         // 2) Disable 'serialVisual' also. 

                          //  

  if (QS == true){       // A Heartbeat Was Found 

                         // BPM and IBI have been Determined 

                         // Quantified Self "QS" true when Arduino finds a 

heartbeat 

  fadeRate = 255;        // Makes the LED Fade Effect Happen 

                         // Set 'fadeRate' Variable to 255 to fade LED with 

pulse 

  serialOutputTemperature();  

  serialOutputWhenBeatHappens();      // A Beat Happened, Output that to 

serial.    

  QS = false;                      // reset the Quantified Self flag for next 

time     

  } 

   

   

  ledFadeToBeat();                   // Makes the LED Fade Effect Happen  

  delay(20);                         // take a break 

} 

 

 

void ledFadeToBeat() { 

  fadeRate -= 15;                           //  set LED fade value 

  fadeRate = constrain(fadeRate, 0, 255);   //  keep LED fade value from 

going into negative numbers! 

  analogWrite(fadePin,fadeRate);            //  fade LED 

} 
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AllSerialHandling.ino 
 

/* 

 *  Sketch: AllSerialHandling.ino 

 *   

 *  This is a serial handling Code for pulse sensor.  

 *  It's Changeable with the 'serialVisual' variable 

 *  Set it to 'true' or 'false' when it's declared at start of code.   

 *   

 */ 

 

// Decide How To Output Serial.  

void serialOutput(){    

 if (serialVisual == true) {   

   arduinoSerialMonitorVisual('-', Signal);   // goes to function that makes 

Serial Monitor Visualizer 

 } else { 

   sendDataToSerial('S', Signal);     // goes to sendDataToSerial function 

 }         

} 

 

 

//  Decides How To OutPut BPM and IBI Data 

void serialOutputWhenBeatHappens() {     

 if (serialVisual == true){            //  Code to Make the Serial Monitor 

Visualizer Work 

    Serial.print("*** Heart-Beat Happened *** ");  //ASCII Art Madness 

    Serial.print("BPM: "); 

    Serial.print(BPM); 

    Serial.println("  "); 

 } else { 

    sendDataToSerial('B',BPM);         // send heart rate with a 'B' prefix 

    sendDataToSerial('Q',IBI);         // send time between beats with a 'Q' 

prefix 

 }    

} 

 

// boolean to integer 

int bool2int(boolean stat) { 

    if (stat) { 

      return 1; 

    } else { 

      return 0; 

    } 

} 

 

 

//  Sends Data to Pulse Sensor Processing App, Native Mac App, or Third-party 

Serial Readers.  

void sendDataToSerial(char symbol, int data ) { 

    Serial.print(symbol); 

    Serial.println(data);                 

} 

 

void sendDataToSerialTemp(char symbol, float data) { 

    Serial.print(symbol); 
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    Serial.println(data);   

} 

 

//  Code to Make the Serial Monitor Visualizer Work 

void arduinoSerialMonitorVisual(char symbol, int data ){     

  const int sensorMin = 0;       // sensor minimum, discovered through 

experiment 

  const int sensorMax = 1024;    // sensor maximum, discovered through 

experiment 

 

  int sensorReading = data; 

  // map the sensor range to a range of 12 options: 

  int range = map(sensorReading, sensorMin, sensorMax, 0, 11); 

 

  // do something different depending on the  

  // range value: 

  switch (range) { 

  case 0:      

    Serial.println("");     /////ASCII Art Madness 

    break; 

  case 1:    

    Serial.println("---"); 

    break; 

  case 2:     

    Serial.println("------"); 

    break; 

  case 3:     

    Serial.println("---------"); 

    break; 

  case 4:    

    Serial.println("------------"); 

    break; 

  case 5:    

    Serial.println("--------------|-"); 

    break; 

  case 6:    

    Serial.println("--------------|---"); 

    break; 

  case 7:    

    Serial.println("--------------|-------"); 

    break; 

  case 8:   

    Serial.println("--------------|----------"); 

    break; 

  case 9:     

    Serial.println("--------------|----------------"); 

    break; 

  case 10:    

    Serial.println("--------------|-------------------"); 

    break; 

  case 11:    

    Serial.println("--------------|-----------------------"); 

    break; 

   

  }  

} 
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Interrupt.ino 
/* 

 *  Sketch: Interrupt.ino 

 *   

 */ 

  

volatile int rate[10];                    // array to hold last ten IBI 

values 

volatile unsigned long sampleCounter = 0; // used to determine pulse timing 

volatile unsigned long lastBeatTime = 0;  // used to find IBI 

volatile int P = 512;                      // used to find peak in pulse 

wave, seeded 

volatile int T = 512;                     // used to find trough in pulse 

wave, seeded 

volatile int thresh = 525;                // used to find instant moment of 

heart beat, seeded 

volatile int amp = 100;                   // used to hold amplitude of pulse 

waveform, seeded 

volatile boolean firstBeat = true;        // used to seed rate array so we 

startup with reasonable BPM 

volatile boolean secondBeat = false;      // used to seed rate array so we 

startup with reasonable BPM 

 

 

void interruptSetup(){      

  // Initializes Timer2 to throw an interrupt every 2mS. 

  TCCR2A = 0x02;     // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND GO INTO CTC 

MODE 

  TCCR2B = 0x06;     // DON'T FORCE COMPARE, 256 PRESCALER  

  OCR2A = 0X7C;      // SET THE TOP OF THE COUNT TO 124 FOR 500Hz SAMPLE RATE 

  TIMSK2 = 0x02;     // ENABLE INTERRUPT ON MATCH BETWEEN TIMER2 AND OCR2A 

  sei();             // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED       

}  

 

 

// THIS IS THE TIMER 2 INTERRUPT SERVICE ROUTINE.  

// Timer 2 makes sure that we take a reading every 2 miliseconds 

ISR(TIMER2_COMPA_vect){                       // triggered when Timer2 counts 

to 124 

  cli();                                      // disable interrupts while we 

do this 

  Signal = analogRead(pulsePin); 

                // read the Pulse Sensor  

   

  sampleCounter += 2;                         // keep track of the time in mS 

with this variable 

  int N = sampleCounter - lastBeatTime;       // monitor the time since the 

last beat to avoid noise 

 

#if ENABLE_DEBUG_PULSE  

  #if ENABLE_DEBUG_PULSEINFO 

    Serial.print("Counter reading (N): "); 

    Serial.println(N); 

    Serial.print("Pulse signal reading: "); 

    Serial.println(Signal); 

  #endif 
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#endif 

   

  //  find the peak and trough of the pulse wave 

  if (Signal < thresh && N > (IBI/5)*3) {       // avoid dichrotic noise by 

waiting 3/5 of last IBI 

    if (Signal < T){                          // T is the trough 

      T = Signal;                             // keep track of lowest point 

in pulse wave  

    } 

  } 

 

  if (Signal > thresh && Signal > P) {          // thresh condition helps 

avoid noise 

    P = Signal;                             // P is the peak 

  }                                        // keep track of highest point in 

pulse wave 

 

  //  NOW IT'S TIME TO LOOK FOR THE HEART BEAT 

  // signal surges up in value every time there is a pulse 

  if (N > 250) {                                   // avoid high frequency 

noise 

    if ( (Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3) ){         

      Pulse = true;                               // set the Pulse flag when 

we think there is a pulse 

      sendDataToSerial('X',bool2int(Pulse));  // send the status for second 

beat with a 'Z' prefix 

      digitalWrite(blinkPin, HIGH);               // turn on pin 13 LED 

      IBI = sampleCounter - lastBeatTime;         // measure time between 

beats in mS 

      lastBeatTime = sampleCounter;               // keep track of time for 

next pulse 

 

  #if ENABLE_DEBUG_PULSE  

    #if ENABLE_DEBUG_IBI 

      Serial.print("IBI: "); 

      Serial.println(IBI); 

      Serial.print("last beat time: "); 

      Serial.println(lastBeatTime); 

    #endif 

  #endif 

       

      if( secondBeat ) {                        // if this is the second 

beat, if secondBeat == TRUE 

        // sendDataToSerial('Z',bool2int(secondBeat));  // send the status 

for second beat with a 'Z' prefix 

        secondBeat = false;                  // clear secondBeat flag 

        for(int i=0; i<=9; i++){             // seed the running total to get 

a realisitic BPM at startup 

          rate[i] = IBI;                       

        } 

      } 

 

      if( firstBeat ) {                         // if it's the first time we 

found a beat, if firstBeat == TRUE 

        firstBeat = false;                   // clear firstBeat flag 

        secondBeat = true;                   // set the second beat flag 

        sei();                               // enable interrupts again 
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        return;                              // IBI value is unreliable so 

discard it 

      }    

 

 

      // keep a running total of the last 10 IBI values 

      word runningTotal = 0;                  // clear the runningTotal 

variable     

 

      for(int i=0; i<=8; i++){                // shift data in the rate array 

        rate[i] = rate[i+1];                  // and drop the oldest IBI 

value  

        runningTotal += rate[i];              // add up the 9 oldest IBI 

values 

      } 

 

      rate[9] = IBI;                          // add the latest IBI to the 

rate array 

      runningTotal += rate[9];                // add the latest IBI to 

runningTotal 

   

  #if ENABLE_DEBUG_PULSE 

    #if ENABLE_DEBUG_BPM 

      Serial.print("runningTotal: "); 

      Serial.println(runningTotal); 

    #endif 

  #endif 

       

      runningTotal /= 10;                     // average the last 10 IBI 

values  

      BPM = 60000/runningTotal;               // how many beats can fit into 

a minute? that's BPM! 

      QS = true;                              // set Quantified Self flag  

      // QS FLAG IS NOT CLEARED INSIDE THIS ISR 

    }                        

  } 

 

  if (Signal < thresh && Pulse == true){   // when the values are going down, 

the beat is over 

    digitalWrite(blinkPin, LOW);           // turn off pin 13 LED 

    Pulse = false;                         // reset the Pulse flag so we can 

do it again 

    amp = P - T;                           // get amplitude of the pulse wave 

    thresh = amp/2 + T;                    // set thresh at 50% of the 

amplitude 

    P = thresh;                            // reset these for next time 

    T = thresh; 

  } 

 

   

  if (N > 2500) {                          // if 2.5 seconds go by without a 

beat 

  #if ENABLE_DEBUG_PULSE 

    Serial.println("Beat is not detected"); 

    Serial.println("Resetting by default"); 

  #endif 

    thresh = 512;                          // set thresh default 



 

37 
 

    P = 512;                               // set P default 

    T = 512;                               // set T default 

    lastBeatTime = sampleCounter;          // bring the lastBeatTime up to 

date         

    firstBeat = true;                      // set these to avoid noise 

    secondBeat = false;                    // when we get the heartbeat back 

  } 

 

  sei();                                   // enable interrupts when youre 

done! 

}// end isr 

 

Timer_Interrupt_Notes.ino 

 
/* 

  These notes put together by Joel Murphy for Pulse Sensor Amped, 2015 

 

  The code that this section is attached to uses a timer interrupt 

  to sample the Pulse Sensor with consistent and regular timing. 

  The code is setup to read Pulse Sensor signal at 500Hz (every 2mS). 

  The reasoning for this can be found here: 

  http://pulsesensor.com/pages/pulse-sensor-amped-arduino-v1dot1 

   

  There are issues with using different timers to control the Pulse Sensor 

sample rate. 

  Sometimes, user will need to switch timers for access to other code 

libraries. 

  Also, some other hardware may have different timer setup requirements. This 

page 

  will cover those different needs and reveal the necessary settings. There 

are two 

  part of the code that will be discussed. The interruptSetup() routine, and 

  the interrupt function call. Depending on your needs, or the Arduino 

variant that you use, 

  check below for the correct settings. 

   

   

  

*****************************************************************************

************* 

  ARDUINO UNO, Pro 328-5V/16MHZ, Pro-Mini 328-5V/16MHz (or any board with 

ATmega328P running at 16MHz) 

   

 >> Timer2 

   

    Pulse Sensor Arduino UNO uses Timer2 by default. 

    Use of Timer2 interferes with PWM on pins 3 and 11. 

    There is also a conflict with the Tone library, so if you want tones, use 

Timer1 below. 

     

      void interruptSetup(){      

        // Initializes Timer2 to throw an interrupt every 2mS. 

        TCCR2A = 0x02;     // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND GO 

INTO CTC MODE 

        TCCR2B = 0x06;     // DON'T FORCE COMPARE, 256 PRESCALER  

        OCR2A = 0X7C;      // SET THE TOP OF THE COUNT TO 124 FOR 500Hz 
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SAMPLE RATE 

        TIMSK2 = 0x02;     // ENABLE INTERRUPT ON MATCH BETWEEN TIMER2 AND 

OCR2A 

        sei();             // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED       

      }  

   

    use the following interrupt vector with Timer2 

     

      ISR(TIMER2_COMPA_vect) 

       

 >> Timer1 

     

    Use of Timer1 interferes with PWM on pins 9 and 10. 

    The Servo library also uses Timer1, so if you want servos, use Timer2 

above. 

     

      void interruptSetup(){      

        // Initializes Timer1 to throw an interrupt every 2mS. 

        TCCR1A = 0x00; // DISABLE OUTPUTS AND PWM ON DIGITAL PINS 9 & 10 

        TCCR1B = 0x11; // GO INTO 'PHASE AND FREQUENCY CORRECT' MODE, NO 

PRESCALER 

        TCCR1C = 0x00; // DON'T FORCE COMPARE 

        TIMSK1 = 0x01; // ENABLE OVERFLOW INTERRUPT (TOIE1) 

        ICR1 = 16000;  // TRIGGER TIMER INTERRUPT EVERY 2mS   

        sei();         // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED      

      }  

       

    Use the following ISR vector for the Timer1 setup above 

     

      ISR(TIMER1_OVF_vect) 

       

 >> Timer0 

  

    DON'T USE TIMER0! Timer0 is used for counting delay(), millis(), and 

micros().  

                      Messing with Timer0 is highly unadvised! 

   

  

*****************************************************************************

************* 

  ARDUINO Fio, Lilypad, ProMini328-3V/8MHz (or any board with ATmega328P 

running at 8MHz) 

   

  >> Timer2 

   

    Pulse Sensor Arduino UNO uses Timer2 by default. 

    Use of Timer2 interferes with PWM on pins 3 and 11. 

    There is also a conflict with the Tone library, so if you want tones, use 

Timer1 below. 

     

      void interruptSetup(){      

        // Initializes Timer2 to throw an interrupt every 2mS. 

        TCCR2A = 0x02;     // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND GO 

INTO CTC MODE 

        TCCR2B = 0x05;     // DON'T FORCE COMPARE, 128 PRESCALER  

        OCR2A = 0X7C;      // SET THE TOP OF THE COUNT TO 124 FOR 500Hz 

SAMPLE RATE 
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        TIMSK2 = 0x02;     // ENABLE INTERRUPT ON MATCH BETWEEN TIMER2 AND 

OCR2A 

        sei();             // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED       

      }  

   

    use the following interrupt vector with Timer2 

     

      ISR(TIMER2_COMPA_vect) 

       

 >> Timer1 

     

    Use of Timer1 interferes with PWM on pins 9 and 10. 

    The Servo library also uses Timer1, so if you want servos, use Timer2 

above. 

     

      void interruptSetup(){      

        // Initializes Timer1 to throw an interrupt every 2mS. 

        TCCR1A = 0x00; // DISABLE OUTPUTS AND PWM ON DIGITAL PINS 9 & 10 

        TCCR1B = 0x11; // GO INTO 'PHASE AND FREQUENCY CORRECT' MODE, NO 

PRESCALER 

        TCCR1C = 0x00; // DON'T FORCE COMPARE 

        TIMSK1 = 0x01; // ENABLE OVERFLOW INTERRUPT (TOIE1) 

        ICR1 = 8000;  // TRIGGER TIMER INTERRUPT EVERY 2mS   

        sei();         // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED      

      }  

       

    Use the following ISR vector for the Timer1 setup above 

     

      ISR(TIMER1_OVF_vect) 

       

 >> Timer0 

  

    DON'T USE TIMER0! Timer0 is used for counting delay(), millis(), and 

micros().  

                      Messing with Timer0 is highly unadvised! 

   

   

  

*****************************************************************************

************* 

  ARDUINO Leonardo (or any board with ATmega32u4 running at 16MHz)  

   

  >> Timer1 

   

    Use of Timer1 interferes with PWM on pins 9 and 10. 

     

      void interruptSetup(){ 

          TCCR1A = 0x00; 

          TCCR1B = 0x0C; // prescaler = 256 

          OCR1A = 0x7C;  // count to 124   

          TIMSK1 = 0x02;  

          sei(); 

      } 

  

  The only other thing you will need is the correct ISR vector in the next 

step. 
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      ISR(TIMER1_COMPA_vect) 

   

   

  

*****************************************************************************

************* 

  ADAFRUIT Flora, ARDUINO Fio v3 (or any other board with ATmega32u4 running 

at 8MHz) 

   

  >> Timer1 

   

    Use of Timer1 interferes with PWM on pins 9 and 10. 

     

      void interruptSetup(){ 

          TCCR1A = 0x00; 

          TCCR1B = 0x0C; // prescaler = 256 

          OCR1A = 0x3E;  // count to 62 

          TIMSK1 = 0x02;  

          sei(); 

      } 

  

  The only other thing you will need is the correct ISR vector in the next 

step. 

        

      ISR(TIMER1_COMPA_vect) 

 

  

*****************************************************************************

************* 

  ADAFRUIT Gemma (or any other board with ATtiny85 running at 8MHz) 

   

    NOTE: Gemma does not do serial communication!  

          Comment out or remove the Serial code in the Arduino sketch! 

   

  Timer1 

   

    Use of Timer1 breaks PWM output on pin D1 

     

      void interruptSetup(){      

        TCCR1 = 0x88;      // Clear Timer on Compare, Set Prescaler to 128 

TEST VALUE 

        GTCCR &= 0x81;     // Disable PWM, don't connect pins to events 

        OCR1C = 0x7C;      // Set the top of the count to  124 TEST VALUE 

        OCR1A = 0x7C;      // Set the timer to interrupt after counting to 

TEST VALUE 

        bitSet(TIMSK,6);   // Enable interrupt on match between TCNT1 and 

OCR1A 

        sei();             // Enable global interrupts      

      }  

 

    The only other thing you will need is the correct ISR vector in the next 

step. 

     

      ISR(TIMER1_COMPA_vect) 

 

Temperature 
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/*  

 * runs once when you turn your Arduino on. We initialize the serial 

connection with the computer 

 */ 

 

void serialOutputTemperature() { 

  //getting the voltage reading from the temperature sensor 

 // int reading = analogRead(tempPin); 

   

   

   

 

  int average = 0 ;  

  for (int i=0; i < 100; i++) { 

    average = average + analogRead(tempPin); 

  } 

  average = average/100; 

    

   

  // converting that reading to voltage, for 3.3v Arduino use 3.3 

  float voltage = average * 5000.0 / 1024.0; 

  //float temp_c = (-0.193) * voltage + 212.0; 

  float temp_c = (1098.99- voltage) / (5.2); 

  //(slope * voltage) + 1097.36;  

   

  // raw data 

  #if ENABLE_DEBUGTEMP 

  //Serial.println(ENABLE_DEBUGTEMP); 

  //Serial.print("raw signal reading: "); 

  //Serial.println(reading); 

  //Serial.print("evaluated voltage: "); 

  //Serial.println(voltage); 

  #endif 

   

  if (serialVisual == true) { 

    printTemp(temp_c); 

  } else { 

    sendDataToSerialTemp('T', temp_c); 

    sendDataToSerialTemp('F', (temp_c * 9 / 5) + 32 ); 

  } 

   //printTemperature(voltage); 

   //delay(250); 

} 

 

 

void printTemp(float temp_c) { 

  //to Celsius 

  Serial.println("======= temperature ======="); 

  Serial.print(temp_c);  

  Serial.println(" degrees C"); 

 

  //to Fahrenheit 

  float temp_f = (temp_c * 9 / 5) + 32; 

  Serial.print(temp_f); 

  Serial.println(" degrees F");   
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} 

 

 

 

 

 

 

 

Processing Code 

 
processingMain 

 
/* 

 * Sketch: processingMain.pde 

 *  

 * THIS PROGRAM WORKS WITH PulseSensorAmped_Arduino-xx ARDUINO CODE 

 * THE PULSE DATA WINDOW IS SCALEABLE WITH SCROLLBAR AT BOTTOM OF 

SCREEN 

 * PRESS 'S' OR 's' KEY TO SAVE A PICTURE OF THE SCREEN IN SKETCH 

FOLDER (.jpg) 

 *  

 * CREATED BY Joel Murphy 

 * MODIFIED BY Chan Hee Lee 

 * @ APRIL, 2016 

 * see original code here 

 * 

https://github.com/WorldFamousElectronics/PulseSensor_Amped_Processing_Visual

izer/ 

 */ 

 

import ddf.minim.*; 

import processing.serial.*; 

import processing.sound.*; 

PFont font; 

Scrollbar scaleBar; 

Serial port; 

SoundFile file; 

AudioSnippet alert; 

Minim minim; 

 

int Sensor;      // HOLDS PULSE SENSOR DATA FROM ARDUINO 

int IBI;         // HOLDS TIME BETWEN HEARTBEATS FROM ARDUINO 

int BPM;         // HOLDS HEART RATE VALUE FROM ARDUINO 

float temp_c;      // HOLDS TEMPERATURE VALUE IN CELSIUS FROM ARDUINO 

float temp_f; 

int[] RawY;      // HOLDS HEARTBEAT WAVEFORM DATA BEFORE SCALING 

int[] ScaledY;   // USED TO POSITION SCALED HEARTBEAT WAVEFORM 

int[] rate;      // USED TO POSITION BPM DATA WAVEFORM 

float zoom;      // USED WHEN SCALING PULSE WAVEFORM TO PULSE WINDOW 

float offset;    // USED WHEN SCALING PULSE WAVEFORM TO PULSE WINDOW 

color eggshell = color(255, 253, 248); 

int heart = 0;   // This variable times the heart image 'pulse' on 

screen 
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//  THESE VARIABLES DETERMINE THE SIZE OF THE DATA WINDOWS 

int PulseWindowWidth = 490; 

int PulseWindowHeight = 512;  

int BPMWindowWidth = 180; 

int BPMWindowHeight = 340; 

boolean beat = false;    // set when a heart beat is detected, then 

cleared when the BPM graph is advanced 

boolean alertNow = false; 

boolean firstBeat = false; 

boolean secondBeat = false; 

 

void setup() { 

  size(700, 600);  // Stage size 

  frameRate(100);   

  font = loadFont("Arial-BoldMT-24.vlw"); 

  textFont(font); 

  textAlign(CENTER); 

  rectMode(CENTER); 

  ellipseMode(CENTER);   

   

  // Scrollbar constructor inputs: x,y,width,height,minVal,maxVal 

  scaleBar = new Scrollbar(400, 575, 180, 12, 0.5, 1.0);  // set 

parameters for the scale bar 

  RawY = new int[PulseWindowWidth];          // initialize raw pulse 

waveform array 

  ScaledY = new int[PulseWindowWidth];       // initialize scaled pulse 

waveform array 

  rate = new int[BPMWindowWidth];            // initialize BPM waveform 

array 

  zoom = 0.75;                               // initialize scale of 

heartbeat window 

     

  // set the visualizer lines to 0 

  for (int i=0; i<rate.length; i++) { 

    rate[i] = 555;      // Place BPM graph line at bottom of BPM Window  

  } 

   

  for (int i=0; i<RawY.length; i++){ 

    RawY[i] = height/2; // initialize the pulse window data line to V/2 

  } 

   

  // GO FIND THE ARDUINO 

  println(Serial.list());    // print a list of available serial ports 

   

  // choose the number between the [] that is connected to the Arduino 

  port = new Serial(this, Serial.list()[2], 115200);  // make sure 

Arduino is talking serial at this baud rate 

  port.clear();            // flush buffer 

  port.bufferUntil('\n');  // set buffer full flag on receipt of 

carriage return 

   

  minim = new Minim(this); 

  alert = minim.loadSnippet("alert.wav"); 

} 

   

void draw() { 

  background(0); 
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  noStroke(); 

   

  // DRAW OUT THE PULSE WINDOW AND BPM WINDOW RECTANGLES   

  fill(eggshell);  // color for the window background 

  rect(255, height/2, PulseWindowWidth, PulseWindowHeight); 

  rect(600, 385, BPMWindowWidth, BPMWindowHeight); 

   

  println(port.readStringUntil('\n')); 

   

  // DRAW THE PULSE WAVEFORM 

  drawPulse(); 

  /* 

   * INPUT:  

   * - Sensor, RawY, ScaledY, zoom 

   * OUTPUT: 

   * - Draw waveform according to the value of 'ScaledY' 

   */ 

 

  // GRAPH BPM WAVEFORM  

  drawBPM(); 

  /* 

   * INPUT: 

   * - beat, rate, BPM,  

   * OUTPUT: 

   * - Draw waveform for BPM 

   */ 

   

  // DRAW HEART BEATING 

  // drawHeart(); 

 

  // PRINT THE DATA AND VARIABLE VALUES 

  fill(eggshell);                                       // get ready to 

print text 

  text("Pulse + Temp Visualizer 1.2", 245, 30);         // tell them 

what you are 

  text("IBI " + IBI + "mS",600,585);                    // print the 

time between heartbeats in mS 

  text(BPM + " BPM",600,200);                           // print the 

Beats Per Minute 

  text("Pulse Window Scale " + nf(zoom,1,2), 150, 585); // show the 

current scale of Pulse Window 

  text(temp_c + " °C", 600, 120); 

  text(temp_f + " °F", 600, 100); 

   

  // DO THE SCROLLBAR THINGS 

  scaleBar.update (mouseX, mouseY); 

  scaleBar.display(); 

    

  // DRAW TEMPERATURE VALUE 

  // drawTemp(); 

   

   //playAlert(); 

}  //end of draw loop 
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Alert 

 
 

/* 

 *  Sketch: serialEvent.pde 

 *   

 *  This sketch manages the serial event. 

 */ 

 

void playAlert() { 

  // Pulse Alert condition 

  if (IBI > 1300 || IBI < 260) { 

    alertNow = true; 

  } 

   

  if (BPM > 140 || BPM < 30 ) { 

   alertNow = true;  

  } 

 

  // Temperature Alert Condition 

  if (temp_c > 40 || temp_c < 29 ) { 

    alertNow = true; 

  } 

 

  playNow(alertNow); 

  alertNow = false; 

} 

 

 

void playNow(boolean trigger) { 

  if (trigger) { 

    alert.rewind(); 

    alert.play(200); 

  } 

} 

 

drawPulse 

 
/* 

 * Sketch: drawPulse.pde 

 *  

 *  

 *  CREATED BY Joel Murphy 

 *  MODIFIED @ APRIL, 2016 

 */ 

 

 

// DRAW THE PULSE WAVEFORM 

void drawPulse() { //<>// //<>// 

  // prepare pulse data points     

  RawY[RawY.length-1] = (1023 - Sensor) - 212;   // place the new raw 

datapoint at the end of the array 

  zoom = scaleBar.getPos();                      // get current 

waveform scale value 

  offset = map(zoom,0.5,1,150,0);                // calculate the 
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offset needed at this scale 

   

  for (int i = 0; i < RawY.length-1; i++) {      // move the pulse 

waveform by 

    RawY[i] = RawY[i+1];                         // shifting all raw 

datapoints one pixel left 

    float dummy = RawY[i] * zoom + offset;       // adjust the raw data 

to the selected scale 

    ScaledY[i] = constrain(int(dummy), 44, 556); // transfer the raw 

data array to the scaled array 

    // println(dummy + "\n"); 

    // println(ScaledY[i] + "\n"); 

  } 

   

  // draw it according to the 'ScaledY' value. 

  stroke(250,0,0);  // red  

  noFill(); 

  beginShape();     // using beginShape() renders fast 

   

  for (int x=1; x < ScaledY.length-1; x++) {     

     vertex(x+10, ScaledY[x]);                    //draw a line 

connecting the data points 

  } 

  endShape(); 

} 

 

 

// GRAPH BPM WAVEFORM 

void drawBPM() { 

  if (beat == true) // move the heart rate line over one pixel every 

time the heart beats  

  {     

    beat = false;      // clear beat flag (beat flag waset in 

serialEvent tab) 

    for (int i=0; i<rate.length-1; i++){ 

      rate[i] = rate[i+1];                      // shift the bpm Y 

coordinates over one pixel to the left 

    } 

   

    // then limit and scale the BPM value 

    BPM = min(BPM, 200);                        // limit the highest 

BPM value to 200 

    float dummy = map(BPM, 0, 200, 555, 215);   // map it to the heart 

rate window Y 

    rate[rate.length-1] = int(dummy);           // set the rightmost 

pixel to the new data point value 

  }  

  

  // GRAPH THE HEART RATE WAVEFORM 

  stroke(250,0,0);                          // color of heart rate 

graph 

  strokeWeight(2);                          // thicker line is easier 

to read 

  noFill(); 

  beginShape(); 

  for (int i=0; i < rate.length-1; i++){    // variable 'i' will take 

the place of pixel x position    



 

47 
 

    vertex(i+510, rate[i]);                 // display history of heart 

rate datapoints 

  } 

  endShape(); 

} 

 

 

// DRAW HEART BEATING 

void drawHeart() { 

  fill(250,0,0); 

  stroke(250,0,0); 

  // the 'heart' variable is set in serialEvent when Arduino sees a 

beat happen 

  heart--;                    // heart is used to time how long the 

heart graphic swells when your heart beats 

  heart=max(heart,0);       // don't let the heart variable go into 

negative numbers 

   

  if (heart > 0)              // if a beat happened recently, 

  {               

    strokeWeight(8);          // make the heart big 

  } 

   

  smooth();                   // draw the heart with two bezier curves 

  bezier(width-100,50, width-20,-20, width,140, width-100,150); 

  bezier(width-100,50, width-190,-20, width-200,140, width-100,150); 

  strokeWeight(1);          // reset the strokeWeight for next time 

} 

 

/*void drawTemp() { 

  fill(250,0,0); 

  stroke(250,0,0); 

  / 

}*/ 

 

 

keyboard_mouse 

 
/* 

 * Sketch: drawPulse.pde 

 *  

 *  

 *  CREATED BY Joel Murphy 

 *  MODIFIED @ APRIL, 2016 

 */ 

 

 

// DRAW THE PULSE WAVEFORM 

void drawPulse() { //<>// //<>// 

  // prepare pulse data points     

  RawY[RawY.length-1] = (1023 - Sensor) - 212;   // place the new raw 

datapoint at the end of the array 

  zoom = scaleBar.getPos();                      // get current 

waveform scale value 

  offset = map(zoom,0.5,1,150,0);                // calculate the 
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offset needed at this scale 

   

  for (int i = 0; i < RawY.length-1; i++) {      // move the pulse 

waveform by 

    RawY[i] = RawY[i+1];                         // shifting all raw 

datapoints one pixel left 

    float dummy = RawY[i] * zoom + offset;       // adjust the raw data 

to the selected scale 

    ScaledY[i] = constrain(int(dummy), 44, 556); // transfer the raw 

data array to the scaled array 

    // println(dummy + "\n"); 

    // println(ScaledY[i] + "\n"); 

  } 

   

  // draw it according to the 'ScaledY' value. 

  stroke(250,0,0);  // red  

  noFill(); 

  beginShape();     // using beginShape() renders fast 

   

  for (int x=1; x < ScaledY.length-1; x++) {     

     vertex(x+10, ScaledY[x]);                    //draw a line 

connecting the data points 

  } 

  endShape(); 

} 

 

 

// GRAPH BPM WAVEFORM 

void drawBPM() { 

  if (beat == true) // move the heart rate line over one pixel every 

time the heart beats  

  {     

    beat = false;      // clear beat flag (beat flag waset in 

serialEvent tab) 

    for (int i=0; i<rate.length-1; i++){ 

      rate[i] = rate[i+1];                      // shift the bpm Y 

coordinates over one pixel to the left 

    } 

   

    // then limit and scale the BPM value 

    BPM = min(BPM, 200);                        // limit the highest 

BPM value to 200 

    float dummy = map(BPM, 0, 200, 555, 215);   // map it to the heart 

rate window Y 

    rate[rate.length-1] = int(dummy);           // set the rightmost 

pixel to the new data point value 

  }  

  

  // GRAPH THE HEART RATE WAVEFORM 

  stroke(250,0,0);                          // color of heart rate 

graph 

  strokeWeight(2);                          // thicker line is easier 

to read 

  noFill(); 

  beginShape(); 

  for (int i=0; i < rate.length-1; i++){    // variable 'i' will take 

the place of pixel x position    



 

49 
 

    vertex(i+510, rate[i]);                 // display history of heart 

rate datapoints 

  } 

  endShape(); 

} 

 

 

// DRAW HEART BEATING 

void drawHeart() { 

  fill(250,0,0); 

  stroke(250,0,0); 

  // the 'heart' variable is set in serialEvent when Arduino sees a 

beat happen 

  heart--;                    // heart is used to time how long the 

heart graphic swells when your heart beats 

  heart=max(heart,0);       // don't let the heart variable go into 

negative numbers 

   

  if (heart > 0)              // if a beat happened recently, 

  {               

    strokeWeight(8);          // make the heart big 

  } 

   

  smooth();                   // draw the heart with two bezier curves 

  bezier(width-100,50, width-20,-20, width,140, width-100,150); 

  bezier(width-100,50, width-190,-20, width-200,140, width-100,150); 

  strokeWeight(1);          // reset the strokeWeight for next time 

} 

 

/*void drawTemp() { 

  fill(250,0,0); 

  stroke(250,0,0); 

  / 

}*/ 

 

ScaleBar 

 
/* 

 *  Sketch: scaleBar.pde 

 *   

 *  THIS SCROLLBAR OBJECT IS BASED ON THE ONE FROM THE BOOK 

"Processing" by Reas and Fry 

 */ 

 

class Scrollbar { 

  int x,y;               // the x and y coordinates 

  float sw, sh;          // width and height of scrollbar 

  float pos;             // position of thumb 

  float posMin, posMax;  // max and min values of thumb 

  boolean rollover;      // true when the mouse is over 

  boolean locked;        // true when it's the active scrollbar 

  float minVal, maxVal;  // min and max values for the thumb 

  

  Scrollbar (int xp, int yp, int w, int h, float miv, float mav) { // 

values passed from the constructor 

    x = xp; 
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    y = yp; 

    sw = w; 

    sh = h; 

    minVal = miv; 

    maxVal = mav; 

    pos = x - sh/2; 

    posMin = x - sw/2; 

    posMax = x + sw/2;  // - sh;  

  } 

  

  // updates the 'over' boolean and position of thumb 

  void update(int mx, int my) { 

    if (over(mx, my) == true) { 

      rollover = true;            // when the mouse is over the 

scrollbar, rollover is true 

    } else { 

      rollover = false; 

    } 

    if (locked == true) { 

      pos = constrain (mx, posMin, posMax); 

    } 

  } 

 

  // locks the thumb so the mouse can move off and still update 

  void press(int mx, int my){ 

    if (rollover == true){ 

      locked = true;            // when rollover is true, pressing the 

mouse button will lock the scrollbar on 

    } else { 

      locked = false; 

    } 

  } 

  

  // resets the scrollbar to neutral 

  void release(){ 

    locked = false;  

  } 

  

  // returns true if the cursor is over the scrollbar 

  boolean over(int mx, int my) { 

    if ((mx > x-sw/2) && (mx < x+sw/2) && (my > y-sh/2) && (my < 

y+sh/2)){ 

      return true; 

    } else { 

      return false; 

   } 

 } 

  

  // draws the scrollbar on the screen 

  void display () { 

    noStroke(); 

    fill(255); 

    rect(x, y, sw, sh);           // create the scrollbar 

    fill (250,0,0); 

    if ((rollover == true) || (locked == true)){              

      stroke(250,0,0); 

      strokeWeight(8);           // make the scale dot bigger if you're 
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on it 

    } 

    ellipse(pos, y, sh, sh);     // create the scaling dot 

    strokeWeight(1);            // reset strokeWeight 

  } 

  

  // returns the current value of the thumb 

  float getPos() { 

    float scalar = sw / sw;  // (sw - sh/2); 

    float ratio = (pos-(x-sw/2)) * scalar; 

    float p = minVal + (ratio/sw * (maxVal - minVal)); 

    return p; 

  }  

} 

 

serialEvent 

 
 

/* 

 *  Sketch: serialEvent.pde 

 *   

 *  This sketch manages the serial event. 

 */ 

 

void serialEvent(Serial port) {  

  String inData = port.readStringUntil('\n'); 

 

  if (inData == null) {                 // bail if we didn't get 

anything 

    return; 

  }    

  if (inData.isEmpty()) {                // bail if we got an empty 

line 

    return; 

  } 

   

  inData = trim(inData);                 // cut off white space 

(carriage return)    

  if(inData.length() <= 0) {             // bail if there's nothing 

there 

    return; 

  } 

 

  if (inData.charAt(0) == 'S'){          // leading 'S' for sensor data 

    inData = inData.substring(1);        // cut off the leading 'S' 

    Sensor = int(inData);                // convert the string to 

usable int 

  } 

   

  if (inData.charAt(0) == 'B'){          // leading 'B' for BPM data 

    inData = inData.substring(1);        // cut off the leading 'B' 

    BPM = int(inData);                   // convert the string to 

usable int 

    beat = true;                         // set beat flag to advance 

heart rate graph 

    heart = 20;                          // begin heart image 'swell' 
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timer 

  } 

   

  if (inData.charAt(0) == 'Q'){          // leading 'Q' means IBI data  

    inData = inData.substring(1);        // cut off the leading 'Q' 

    IBI = int(inData);                   // convert the string to 

usable int 

  } 

   

  if (inData.charAt(0) == 'T') {         // leading 'T' means 

temperature in Celsius 

    inData = inData.substring(1);        // cut off the leading 'T' 

    temp_c = float(inData) ;                // convert the string to 

usable int 

  } 

   

  if (inData.charAt(0) == 'F') {         // leading 'F' means 

temperature in Fahrenheit 

    inData = inData.substring(1);        // cut off the leading 'F' 

    temp_f = float(inData);                // convert the string to 

usable int 

  } 

   

  if (inData.charAt(0) == 'Y') { 

    inData = inData.substring(1); 

    firstBeat = boolean(inData); 

  } 

  if (inData.charAt(0) == 'Z') { 

    inData = inData.substring(1); 

    secondBeat = boolean(inData); 

  } 

} 
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 Bill of Materials 

 

Item Image Product Name Quantity Price 

        

LMT70 Temperature 
Sensor 

5 $0.00 

        

Bluefruit EZ-Link - 

Bluetooth Serial Link 

& Arduino 

Programmer - v1.3 

1 $27.50 

       

Arduino Pro Mini 328 - 

5V/16MHz 

 

1 $9.95 

            

Asiawill® Pulsesensor 

Pulse Heart Rate 

Sensor Module for 

Arduino - Red 

1 $13.99 

 

 

 
 

Item Image Product Name Quantity Price 
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Power Management IC 
Development Tools 
Eval Board For P2110 

1 $172.0 

        

Lithium Ion Battery - 

2000mAh 
1 $27.50 

     

PCB Board 

Fabrication 

 

3 $110.93 
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