
Santa Clara University
Scholar Commons

Engineering Ph.D. Theses Student Scholarship

12-2016

Cluster Control of a Multi-Robot Tracking
Network and Tracking Geometry Optimization
Jasmine Cashbaugh
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/eng_phd_theses

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in
Engineering Ph.D. Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Cashbaugh, Jasmine, "Cluster Control of a Multi-Robot Tracking Network and Tracking Geometry Optimization" (2016). Engineering
Ph.D. Theses. 6.
http://scholarcommons.scu.edu/eng_phd_theses/6

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses/6?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

CLUSTER CONTROL OF A MULTI-ROBOT TRACKING NETWORK AND

TRACKING GEOMETRY OPTIMIZATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF MECHANICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATIE STUDIES

OF SANTA CLARA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

Jasmine Cashbaugh

December 2016

iv

Abstract

The position of a moving object can be tracked in numerous ways, the simplest of which is to

use a single static sensor. However, the information from a single sensor cannot be verified and

may not be reliable without performing multiple measurements of the same object. When

multiple static sensors are used, each sensor need only take a single measurement which can be

combined with other sensor measurements to produce a more accurate position estimate.

Work has been done to develop sensors that move with the tracked object, such as relative

positioning, but this research takes this concept one step further; this dissertation presents a

novel, highly capable strategy for utilizing a multi-robot network to track a moving target. The

method optimizes the configuration of mobile tracking stations in order to produce the position

estimate for a target object that yields the smallest estimation error, even when the sensor

performance varies. The simulations and experiments presented here verify that the

optimization process works in the real world, even under changing conditions and noisy sensor

data. This demonstrates a simple, robust system that can accurately follow a moving object, as

illustrated by results from both simulations and physical experiments. Further, the optimization

led to a 6% improvement in the target location estimate over the non-optimized worst-case

scenario tested with identical sensors at the nominal fixed radius distance of 2.83 m and even

more significant improvements of over 90% at larger radial distances. This method can be

applied to a wider variety of conditions than current methods since it does not require a Kalman

filter and is able to find an optimal solution for the fixed radius case. To make this optimization

method even more useful, it is proposed to extend the mathematical framework to n robots and

extend the mathematical framework to three dimensions. It is also proposed to combine the

effect of position uncertainty in the tracking system with position uncertainty of the tracking

stations themselves in the analysis in order to better account for real-world conditions.

Additionally, testing should be extended to different platforms with different sensors to further

explore the applicability of this optimization method. Finally, it is proposed to modify the

optimization method to compensate for the dynamics of the system so that sensor systems

could move into an intercept course that would result in the optimal configuration about the

tracked object at the desired time step. These proposals would result in a more applicable and

robust system than is currently available.

v

Acknowledgements

I would like to thank the people whose support made this dissertation possible. First, I’d like to

thank my advisor, Christopher Kitts, for his help and advice throughout the research process. In

addition to his technical help, he made the Robotic Systems Laboratory a fun and collaborative

environment where there was always someone willing to help.

I would also like to thank my thesis committee for their support and feedback. Their

expertise and knowledge were invaluable.

All of the members of the RSL have contributed in some manner to this thesis. In particular, I

would like to acknowledge Anne Mahacek, Alicia Sherban, and Christian Zempel whose

collaboration made it possible to set up the testbed used in this dissertation and turn it into a

working system. I would also like to thank Thomas Adamek, Mike Rasay, and Mike Vlahos for

their technical help throughout the process as well as Ethan Head for helping set up all of the

computers.

Finally, I would like to thank my partner, Lloyd Droppers, who was always there to offer help

and support. His help with testing procedures made work progress more smoothly as well as

making it easier to explain the system to newcomers.

vi

Table of Contents

Abstract ... iv

Acknowledgements .. v

Table of Contents .. vi

List of Figures .. xii

List of Tables .. xix

1. Introduction ... 1

1.1. Multi-Robot Overview .. 1

1.2. Motivation ... 1

1.3. Objective and Contributions .. 8

1.4. Reader’s Guide .. 9

2. Multi-Robot Formation Control .. 10

2.1. Method Comparison .. 10

2.2. Cluster Control Overview .. 12

2.3. Cluster Space Controller .. 15

2.4. Description of a Two-Robot Cluster.. 16

2.4.1. Robot Space ... 16

2.4.2. Cluster Space ... 17

2.4.3. Forward Position Kinematics ... 18

vii

2.4.4. Inverse Positon Kinematics .. 19

2.4.5. Forward and Inverse Velocity Kinematics ... 20

2.5. Description of a Three-Robot Cluster.. 22

2.5.1. Robot Space ... 22

2.5.2. Cluster Space ... 24

2.5.3. Forward Position Kinematics ... 25

2.5.4. Inverse Position Kinematics... 26

2.5.5. Forward and Inverse Velocity Kinematics ... 28

3. Geometrical Optimization ... 31

3.1. Method Selection ... 31

3.2. Problem Setup.. 35

3.2.1. Sensor Constraints and their Covariance Matrices 37

3.2.2. Sensor Error Ellipses .. 38

3.3. Combining Error Ellipses .. 39

3.4. Configuration Optimization ... 41

3.5. Theoretical Fixed Radius Curves .. 42

3.5.1. Mathematical Simulation of Two Tracking Stations at a Fixed Radius with

Identical Sensor Systems ... 44

3.5.2. Mathematical Simulation of Two Tracking Stations at a Fixed Radius with

Different Sensor Systems ... 46

viii

3.5.3. Mathematical Simulation of Three Tracking Stations at a Fixed Radius with

Identical Sensor Systems ... 48

3.5.4. Mathematical Simulation of Three Tracking Stations at a Fixed Radius with

Different Sensor Systems ... 50

3.5.5. Summary of Findings ... 52

3.6. Closed-Form Optimization Derivation .. 53

3.7. Two Robot Closed-Form Optimization ... 55

3.8. Three Robot Closed-Form Optimization ... 56

3.9. Closed-Form Theoretical Constrained Optimization ... 57

3.10. Formation Control ... 62

4. Vision Processing .. 64

4.1. Literature Survey ... 64

4.2. Available Data ... 65

4.3. The Influence of the Data Transmission Rate ... 67

4.4. Vision Data Simplification .. 68

4.5. Finding the Cluster-Level Position Estimate of the Pioneer.................................... 73

4.6. Tracking Control.. 75

5. Experimental Testbed .. 77

5.1. System Overview ... 77

5.2. Quadrotor Mobile Tracking Stations ... 78

5.3. Pioneer Tracked Object ... 79

ix

5.4. Sensing System .. 80

5.5. Software ... 81

6. Stationary Results .. 84

6.1. Introduction ... 84

6.2. Two Quadrotor Results .. 85

6.2.1. Simulation Results ... 85

6.2.2. Pioneer Position Estimate .. 88

6.2.3. Ideal Object Position Estimate ... 90

6.3. Three Quadrotor Results .. 93

6.3.1. Simulation Results ... 93

6.3.2. Pioneer Position Estimate .. 97

6.3.3. Ideal Object Position Estimate ... 99

7. Controlled Physical Experimental Results .. 102

7.1. Introduction ... 102

7.2. Two Quadrotor Results .. 104

7.2.1. Stationary Pioneer .. 106

7.2.2. Moving Pioneer .. 109

7.3. Three Quadrotor Results .. 112

8. Simulations with Optimization-in-the-Loop ... 122

8.1. Two Quadrotor Simulations .. 123

x

8.2. Three Quadrotor Simulations .. 127

8.3. Exploration of the Target Location Estimate Improvement 130

9. Conclusions ... 134

9.1. Contributions ... 135

9.2. Future Work ... 137

References .. 139

Appendix A .. 147

A.1. Two Robot Forward Jacobian .. 147

A.2. Two Robot Inverse Jacobian ... 147

Appendix B .. 148

Appendix C .. 152

C.1. Raw Data ... 152

C.2. Plots ... 153

Appendix D .. 155

D.1. System Overview ... 155

D.2. AR.Drone ... 156

D.3. Sensing System .. 159

D.3.1. Hardware .. 159

D.3.2. Software ... 161

D.4. Networking .. 161

xi

D.4.1. Hardware .. 161

D.4.2. Software ... 162

D.5. Characterization of Stationary Positioning .. 164

Appendix E .. 166

Appendix F .. 170

Appendix G .. 174

G.1. Calculating the Position Errors .. 174

G.2. Calculating the 60% Confidence Interval Error Ellipse Area 174

xii

List of Figures

Figure 2.1: Two robot cluster definition. ... 13

Figure 2.2: Cluster controller for n robots. .. 15

Figure 2.3: Two robots and their coordinates in robot space. .. 16

Figure 2.4: Two robots and their coordinates in cluster space. .. 18

Figure 2.5: Three robots and their coordinates in robot space. .. 23

Figure 2.6: Three robots rotation angle definitions. .. 24

Figure 2.7: Three robots and their coordinates in cluster space. .. 24

Figure 3.1: Genetic algorithm flowchart. ... 32

Figure 3.2: Particle swarm algorithm flowchart. ... 33

Figure 3.3: Hooke and Jeeves method flowchart adapted from [33]. ... 34

Figure 3.4: Terminology used to define the portion of a circle arc that describes the area of a

sensor's valid sensor coverage area. ... 35

Figure 3.5: Example sensor error area. .. 36

Figure 3.6: Error ellipse of the example sensor. .. 39

Figure 3.7: Two error ellipses and their combined error ellipse. .. 41

Figure 3.8: Mathematical simulation of two sensors with a fixed radius of 2.83 m and identical

sensors. The angle along the x-axis is the angle of separation between the two sensors. 44

Figure 3.9: Mathematical simulation of two sensors with a fixed radius of 30 m and identical

sensors. The angle along the x-axis is the angle of separation between the two sensors. 45

Figure 3.10: Two sensors with a fixed radius of 2.83 m and different sensors properties. The

angle along the x-axis is the angle of separation between the two sensors. 46

Figure 3.11: Two sensors with a fixed radius of 30 m and different sensors properties. The angle

along the x-axis is the angle of separation between the two sensors. .. 47

xiii

Figure 3.12: Definition of the angle of separation for three mobile sensor stations. 48

Figure 3.13: Three sensors with a fixed radius of 2.83 m and identical sensor properties. The

angle along the x-axis is the angle of separation between the two outer sensors. 49

Figure 3.14: Mathematical simulation results of three tracking stations with the same sensors at

a fixed radius of 2.83 m from the tracked object. This plot shows the area of the combined error

ellipses as a function of the angle of separation between the three mobile tracking stations

where each angle of separation is varied separately. ... 50

Figure 3.15: Mathematical simulation results of three tracking stations with different sensors at

a fixed radius of 2.83 m from the tracked object. This plot shows the area of the combined error

ellipse as a function of the angle of separation between the three mobile tracking stations, as

shown in Figure 3.12. ... 51

Figure 3.16: Mathematical simulation results of three tracking stations with different sensors at

a fixed radius of 2.83 m from the tracked object. This plot shows the area of the combined error

ellipse as a function of the angle of separation between the three mobile tracking stations

where each angle of separation is varied separately. ... 52

Figure 3.17: Optimal geometry cluster controller for n robots. .. 63

Figure 4.1: Studio Diip's Fish on Wheels project together with its vision processing result [49]. . 65

Figure 4.2: Camera locations on the AR.Drone version 1.0. .. 66

Figure 4.3: Pioneer viewing options. Left: View from the top. Right: View from the side. 67

Figure 4.4: Flowchart of the vision processing algorithm. ... 67

Figure 4.5: Image of the Pioneer inside the test area taken by the quadrotor's onboard forward-

mounted camera, as displayed in Matlab.. 69

Figure 4.6: Progressive image simplification. Row 1 from left to right: Pioneer as seen from

nominal flight distance by the human eye, Pioneer at nominal flight distance as seen by the

xiv

quadrotor's forward-facing camera, Pioneer at nominal flight distance with a full pixel resolution

of the “red” areas. Row 2 from left to right: Pioneer as seen from nominal flight distance where

each square represents a grid of 5 by 5 pixels, Pioneer as seen from nominal flight distance

where each square represents a grid of 10 by 10 pixels, Pioneer as seen from nominal flight

distance where each square represents a grid of 20 by 20 pixels. .. 70

Figure 4.7: The Pioneer as "seen" by the controllers from one meter away. 71

Figure 4.8: Distance explanation. .. 71

Figure 4.9: Kalman filter algorithm, adapted from [53]... 74

Figure 4.10: Optimal configuration of a two quadrotor tracking cluster. 75

Figure 4.11: Tracking and optimal geometry cluster controller. ... 76

Figure 5.1: Two mobile tracking stations testbed hardware layout. ... 77

Figure 5.2: Three mobile tracking stations testbed hardware layout. .. 78

Figure 5.3: AR.Drone 1.0 overview. ... 79

Figure 5.4: Pioneer 3-AT land rover overview. .. 80

Figure 5.5: UWB receiver and RFID tag with a quarter for scale. .. 80

Figure 5.6: UWB system setup. .. 81

Figure 5.7: Software layout. ... 82

Figure 6.1: Simulation results for two mobile tracking stations with identical sensors and a fixed

radius. .. 87

Figure 6.2: Normalized simulation and theoretical results for two mobile tracking stations with

identical sensors and a fixed radius. .. 87

Figure 6.3: Setup for testing the effect of the angle of separation on a system with two mobile

tracking stations and the Pioneer as the tracked object. .. 88

xv

Figure 6.4: Physical results with the Pioneer as tracked object and two AR.Drone 1.0 mobile

tracking stations. .. 89

Figure 6.5: Normalized results of the theoretical curve and physical experimental results with

the Pioneer as the tracked object and two identical mobile tracking stations. 89

Figure 6.6: Pioneer land rover used as the tracked object. A front view (left) and side view (right)

are shown... 90

Figure 6.7: Front (top) and side (bottom) views of the Pioneer and ideal object. 91

Figure 6.8: Setup for two AR.Drone 1.0s as mobile tracking stations and an ideal object as the

tracked object. ... 91

Figure 6.9: Results using two AR.Drone 1.0s as the mobile tracking station and an ideal object as

the tracked object. ... 92

Figure 6.10: Check this shit out. ... 92

Figure 6.11: Simulation results for three mobile tracking stations with identical sensors and a

fixed radius. .. 95

Figure 6.12: Normalized simulation and theoretical results for three mobile tracking stations

with identical sensors and a fixed radius. .. 96

Figure 6.13: Setup for testing the effect of the angle of separation on a system with three mobile

tracking stations and the Pioneer as the tracked object. .. 97

Figure 6.14: Physical results with the Pioneer as the tracked object and three AR.Drone 1.0s as

the mobile tracking stations. ... 98

Figure 6.15: Normalized results of the theoretical curve and physical experimental results with

the Pioneer as the tracked object and three identical mobile tracking stations. 98

Figure 6.16: Results using three AR.Drone 1.0s as the mobile tracking stations and an ideal

object as the tracked object. ... 100

xvi

Figure 6.17: Normalized results of the theoretical curve and physical experimental results with

an ideal object as the tracked object and three identical mobile tracking stations. 100

Figure 7.1: Pioneer user-input joystick control and position tracking. .. 104

Figure 7.2: Cluster controller for two mobile tracking stations. .. 105

Figure 7.3: Optimal two quadrotor configuration. .. 106

Figure 7.4: This plot shows the actual and estimate Pioneer positions throughout the first

experiment with two mobile tracking stations and a stationary Pioneer. 107

Figure 7.5: This plot shows the actual and estimate Pioneer positions throughout the second

experiment with two mobile tracking stations and a stationary Pioneer. 108

Figure 7.6: This plot shows the actual and estimate Pioneer positions throughout the first

experiment with two mobile tracking stations and a moving Pioneer. 110

Figure 7.7: This plot shows the actual and estimate Pioneer positions throughout the second

experiment with two mobile tracking stations and a moving Pioneer. 111

Figure 7.8: Three mobile tracking station cluster controller. .. 113

Figure 7.9: Optimal three quadrotor configuration. .. 114

Figure 7.10: This plot shows the actual and estimated Pioneer positions throughout the first

experiment with three mobile tracking stations and a stationary Pioneer. 114

Figure 7.11: This plot shows the actual and estimated Pioneer positions throughout the second

experiment with three mobile tracking stations and a stationary Pioneer. 116

Figure 7.12: This plot shows the actual and estimated Pioneer positions throughout the third

experiment with three mobile tracking stations and a stationary Pioneer. 118

Figure 7.13: Actual and desired distance control variables for three mobile tracking station

exploration test. ... 119

xvii

Figure 7.14: Actual and desired angular control variables for three mobile tracking station

exploration test. ... 120

Figure 8.1: X estimation error for the two quadrotor simulation with slowly degrading identical

sensors. .. 123

Figure 8.2: At 20 seconds, the ideal configuration changes from 90 degrees (blue) to 180 degrees

(red).. 125

Figure 8.3: X estimation error for the two quadrotor experiment with abruptly changing sensor

properties... 125

Figure 8.4: X estimation error for the three quadrotor experiment with an abrupt sensor failure

at 20 seconds. .. 127

Figure 8.5: Percent improvement of the optimal sensor configuration over the worst-case

configuration of two and three identical sensors at the same fixed radius. 131

Figure 8.6: Percent improvement of the optimal sensor configuration over the worst-case

configuration of two and three sensors with extreme sensor properties at the same fixed radius.

 ... 132

Figure 8.7: Percent improvement of the optimal sensor configuration over the worst-case

configuration of two and three sensors with medium differences in sensor properties at the

same fixed radius. .. 132

Figure 0.1: The Pioneer on the left has a forward-back orientation while the Pioneer on the right

has a right-left orientation. .. 152

Figure 0.2: Raw data and exponential curve. .. 154

Figure 0.1: Physical hardware layout. .. 155

Figure 0.2: Testbed flowchart. ... 156

Figure 0.3: Hardware layout diagram. ... 156

xviii

Figure 0.4: AR.Drone components. .. 157

Figure 0.5: AR.Drone coordinate frame. .. 158

Figure 0.6: Drone coordinate frame. ... 159

Figure 0.7: UWB receiver and RFID tag. ... 160

Figure 0.8: Layout of UWB system. .. 161

Figure 0.9: Software layout. ... 163

Figure 0.1: Block diagram of the two drone simulation. ... 167

Figure 0.2: Block diagram of the tracking algorithm used in the two drone simulation. 168

Figure 0.3: Block diagram of the PID controller used in the two drone simulation. 169

Figure 0.1: Block diagram of the three drone simulation. ... 171

Figure 0.2: Block diagram of the tracking algorithm used in the three drone simulation. 172

Figure 0.3: Block diagram of the PID controller used in the three drone simulation. 173

Figure 0.1: Matlab script used to calculate the 60% confidence interval error ellipse area. 174

xix

List of Tables

Table 2.1: Description of the variables in robot space for a two robot cluster. 17

Table 2.2: Description of the variables in cluster space for a two robot cluster. 18

Table 2.3: Two robot singularities. .. 22

Table 2.4: Description of the variables in robot space for a three robot cluster. 23

Table 2.5: Description of the variables in cluster space for a three robot cluster. 25

Table 2.6: Three robot singularities. .. 30

Table 3.1: Variable definitions for Eq. (3.1). .. 37

Table 3.2: Axes for combining error ellipses example. .. 40

Table 3.3: Axes for the combining error ellipses example. .. 41

Table 3.4: Inputs for a bounded 2D area for two sensors with identical properties. 58

Table 3.5: Output for a bounded 2D area for two sensors with identical properties. 59

Table 6.1: Sensor and position errors determined from physical tests. .. 86

Table 6.2: Variables used in the two mobile tracking station simulations. 86

Table 6.3: Angular variables used in the simulations with three mobile tracking stations. 94

Table 6.4: Distance variables used in the simulations with three mobile tracking stations. 95

Table 7.1: Location estimate summary for the first stationary Pioneer test with two mobile

tracking stations. .. 106

Table 7.2: Control variable summary for the first stationary Pioneer test with two mobile

tracking stations. .. 107

Table 7.3: Location estimation summary for second stationary Pioneer test with two mobile

tracking stations. .. 108

Table 7.4: Control variable summary for second stationary Pioneer test with two mobile tracking

stations. .. 109

xx

Table 7.5: Location estimation summary for the first moving Pioneer test with two mobile

tracking stations. .. 110

Table 7.6: Control variable summary for the first moving Pioneer test with two mobile tracking

stations. .. 110

Table 7.7: Location estimation summary for the second moving Pioneer test with two mobile

tracking stations. .. 111

Table 7.8: Control variable summary for the second moving Pioneer test with two mobile

tracking stations. .. 112

Table 7.9: First stationary Pioneer test with three mobile tracking stations location estimation

summary. ... 115

Table 7.10: First stationary Pioneer test with three mobile tracking stations distance control

variable summary. ... 115

Table 7.11: First stationary Pioneer test with three mobile tracking stations angular control

variable summary. ... 115

Table 7.12: Second stationary Pioneer test with three mobile tracking stations location

estimation summary. ... 116

Table 7.13: Second stationary Pioneer test with three mobile tracking stations distance control

variable summary. ... 117

Table 7.14: Second stationary Pioneer test with three mobile tracking stations angular control

variable summary. ... 117

Table 7.15: Stationary Pioneer exploration test with three mobile tracking stations location

estimation summary. ... 118

Table 7.16: Stationary Pioneer exploration test with three mobile tracking stations distance

control variables. ... 119

xxi

Table 7.17: Stationary Pioneer exploration test with three mobile tracking stations angular

control variables. ... 119

Table 8.1: Location estimation summary for two mobile tracking stations and slow sensor

degradation. ... 124

Table 8.2: Control variable summary for two mobile tracking stations and slow sensor

degradation. ... 124

Table 8.3: Location estimation for two mobile tracking stations and an abrupt change in sensor

properties... 126

Table 8.4: Control variable summary for two mobile tracking stations and an abrupt change in

sensor properties. .. 126

Table 8.5: Location estimation summary for simulation with three mobile tracking stations and

an abrupt failure of sensor 1 at 20 seconds. ... 128

Table 8.6: Distance control variable summary for simulation with three mobile tracking stations

and an abrupt failure of sensor 1 at 20 seconds. .. 128

Table 8.7: Angular control variable summary for simulation with three mobile tracking stations

and an abrupt failure of sensor 1 at 20 seconds. .. 128

Table 8.8: Radii examined for the three target estimate improvement cases. 130

Table 0.1: Raw data of the size of the Pioneer as “seen” by the quadrotor at various distances.

 ... 153

Table 0.2: R2 values for the exponential curve fit. ... 154

Table 0.1: Locations of the UWB reference tags. .. 160

Table 0.2: Locations of the UWB receivers. ... 160

Table 0.3: UWB system error analysis. .. 164

Chapter 1

1. Introduction

1.1. Multi-Robot Overview

Robots have many uses in today’s world; because of the robot’s strength, speed, precision,

repeatability, and ability to withstand extreme environments, they are used for a variety of

purposes that would be dangerous or difficult for humans to perform [1]. Groups of cooperative

robots are even better since they can cover more ground, provide validation for each other, or

cover the area of a failed robot. Multi-robot systems can also perform new services by exploiting

their ability to be physically distributed. This physical distribution of sensors in a multi-robot

system can lead to greater accuracy of the fused sensor information obtained from the

environment [2]. This advantage will be explored further in this dissertation by utilizing a multi-

robot system to optimally track a mobile object by forming a distributed mobile tracking sensor

network.

1.2. Motivation

Tracking a moving object can be difficult due to terrain, lighting conditions, and the

unpredictability of the tracked object. However, robots can fly above the terrain, be outfitted

with sensors that mitigate the disadvantages of poor lighting conditions, and track an object

until they are recalled. Cooperative groups of tracking robots can have an array of sensors that

allow the robots to obtain different perspectives of a single scene using a few inexpensive

robots rather than a single expensive robot.

2

Consequently, the literature proposes many methods for using groups of robots for

localization and tracking purposes. While localization and tracking are not the same problem,

they do share many elements in common since both strive to determine accurately the position

of an object. In localization applications, sensors on the target object take relative

measurements of environmental landmarks, allowing the target object to determine its own

position estimate. In tracking applications, off-board sensor systems measure the relative

position of the tracked object and determine a position estimate for that object. For the

purposes of clarity in this dissertation, localization applications will be said to use beacons as

landmarks for relative positioning estimates while tracking applications will be said to use sensor

systems to determine positioning estimates for the tracked object.

In both localization and tracking applications, the accuracy of the position estimate is

affected by the number of sensors/beacons that are able to provide relative target

measurements. While a single sensor/beacon is the easiest system to implement, multiple

measurements must be taken in order to ensure accuracy of the position information. Multiple

sensors/beacons can allow more timely position verification, but introduce additional system

complexities. For example, the properties of the sensors/beacons and their geometry with

respect to the target affect the accuracy of the system. If identical sensors/beacons are too

close together, they will supply nearly identical information, adding little to the knowledge base.

If the sensors/beacons are too far apart, some important information may be missed. Thus, the

best sensor/beacon spacing is somewhere between these two extremes. This dissertation

details an online optimization process which identifies the optimal configuration geometry for

multiple mobile sensor systems given possible changes in the number of sensors/beacons,

sensor/beacon ranges, sensor/beacon operation, or other relevant parameters. The

mathematical basis for this method is provided in this dissertation, along with simulation and

3

experimental validation of this technique. It is believed that this approach is new because it

considers the sensor configuration as a whole rather than as the sum of its parts, providing a

more comprehensive view of the system that is being optimized than that provided by other

methods.

Previous work has explored many avenues for optimizing multi-sensor/beacon systems. In a

localization application, the authors of [3] used a static array of acoustic beacons to determine

the location of a mobile node using range information. The range information of the beacons

formed intersecting circles, allowing the location of the mobile node to be determined quite

accurately and the mobile node to closely follow the desired path. No optimization of the

number or placement of sensors was performed in this set of experiments.

Chakrabarty et al [4] provided a mathematical basis for placing multiple beacons in an

environment with one or more moving targets in order to minimize sensor cost while

completely covering the sensor field. In this formulation, it is assumed that the beacons have

different ranges and costs and that every grid in the 3D area through which the target(s) may

move must be covered by a minimum number of beacons. The cost of the deployed beacons

was minimized under the coverage constraints, resulting in the placement of specific beacon

types at specific grid points.

Shang et al [5] present a method to minimize energy consumption without significantly

impacting the positioning accuracy of a multi-sensor array by determining which sensor systems

will participate in the positioning task using a neural network aggregation model. Only the

sensor systems which are in range of the target transmit their positioning information; all other

sensor systems are inactive and do not transmit data. This is taken a step further in [6] where

every sensor system that is within range of the target is a candidate for participation in the

4

target position estimation task. The sensor systems are still static and those not participating in

the tracking task are still inactive, but only the sensor system combination that yields the most

accurate position estimate is used in the tracking process rather than every node within range of

the target.

The energy cost of a wireless sensor network was further reduced in [7] which used a static

wireless sensor network to track a single moving target constrained to move in 2D space. The

sensors were ultrasonic and it was assumed that all sensors had the same sensing properties. A

Monte Carlo method was used to determine which sensor systems to use in each time step to

maximize tracking accuracy and minimize energy consumption subject to a constraint on the

minimum number of sensor systems. In order to conserve energy, the minimum transmission

energy consumption was used to determine which one of the active sensor systems was chosen

as the data fusion center. All sensor systems not actively collecting data were inactive during the

time step.

A major issue when using static sensors to determine the location of a mobile object is that

the mobile object may eventually leave the sensor range, resulting in loss of the mobile object.

This can be avoided by moving the sensors to follow the tracked object. In [8], tracking

experiments were performed using acoustic modems to measure ranges between vehicles. A

leader-follower setup was used in which the lead vehicle was an underwater vehicle which acted

as the target and the following vehicles were surface craft which acted as sensor systems. These

sensor systems were able to remain with the target, providing it with more accurate position

information than that obtained solely by the target vehicle, enabling greater navigation

accuracy. A similar mix of surface craft and underwater vehicles were also used for a series of

experiments in [9] where surface craft acted as sensor beacons for the localization of

5

underwater vehicles. Once the underwater vehicle calculated its own position, it broadcast this

position estimate back to the surface vehicles. This allowed the sensor beacons to follow the

underwater vehicles and try to form a right-angled triangle with the underwater vehicle at the

vertex to minimize the estimation error.

Martínez and Bullo [10] used multiple identical sonar sensor systems to track a single target.

The target was mobile and the sensor systems were either all static or all mobile, depending on

the experiment. However, the target was constrained to a bounded area during both

experimental cases and the sensor systems were constrained to the boundary of this area. An

estimate of the target’s position was found through fusion using an Extended Kalman Filter. For

both the static and dynamic cases, the optimal sensor system position was defined as the

position which yielded the lowest estimation error, found by minimizing the determinant of the

Fisher information matrices for the sensor system estimation models. The resulting optimal

sensor placement was an array wherein the sensor systems were evenly distributed about the

target. Since the mobile sensor systems could react to changes in the target’s position, the

mobile sensor system experiments were found to consistently yield more accurate results.

Bahr et al [11] developed a method to minimize the localization uncertainty. This method

involved two types of vehicles with mounted sensors: surface craft and underwater vehicles. All

vehicles were equipped with acoustic range sensors, but only the surface craft knew their

absolute position, allowing them to function as beacons. Using the ranging information and the

positions of the beacons, the underwater vehicles, serving as the target vehicles, could

determine their positions more accurately. All vehicles shared position and velocity information

with one another on a fixed schedule. The optimization process chose the beacon configuration

that minimized the trace of the difference between the covariance matrices before and after the

6

Extended Kalman Filter was applied and did not use knowledge of the underwater vehicles’

trajectory.

The optimization of moving sensors is also useful in applications where the target positions

are unknown or may change unpredictably. The authors of [12] explored this problem in a multi-

target, multi-sensor environment where the sensor systems were mobile and had constraints on

their movement and positions. Each sensor system tried to minimize the coverage requirements

using its own constraints and knowledge of its neighbors’ positions with each sensor system

position determined individually. In [13], a swarm of mobile sensing robots were used to detect

olfactory targets in a single target environment. The model did not penalize sensor overlap and

assumed the mobile sensing robots had a limited sensing range and that neighboring coverage

areas that touched had larger coverage areas than those that did not touch. Maximizing the

coverage area was assumed to result in the best chance of tracking the olfactory plumes to their

source. Thus, the optimal swarm formation was defined as the distance between sensor systems

that resulted in the largest coverage area, found using Powell’s conjugate gradient decent

method.

The authors of [14] used mobile sensor systems, each with a single camera as the sensor, to

track one or more moving targets. The mobile sensor systems were constrained to the

maximum robot velocity and their positions were limited by a minimum standoff distance from

the target. It was assumed that each mobile sensor system knew its own position. Dynamic

models of the target’s motion were obtained using an approximation of the target dynamics.

The mobile sensor systems moved to minimize the target position estimate error at the next

time instant based on the dynamic model.

7

In contrast to the previously presented methods, the method presented in this dissertation

is intended for tracking purposes and assumes a single target and multiple sensor systems

where the sensor systems reposition themselves, not only to follow the tracked object, but to

follow the tracked object in the geometric configuration that results in the best position

estimate at each time step. This methodology takes into account the sensor properties, which

may change over time. It also allows for different sensors to be used during the same

application. It does not require assumptions associated with the use of a Kalman filter and is

shown to be computable for critical scenarios not covered by methods found in the literature, as

discussed further in this work. Specifically, objective functions will be developed and

implemented for two and three sensor systems to determine the optimal angular separation

between tracking stations. This is defined as the angular separation that results in the estimate

of the target object’s location with the lowest estimation error. Thus, this optimization method

is able to find an optimal geometric configuration under a wide range of conditions.

This dissertation also focuses on a proof of concept for tracking a moving object using a low

cost testbed. The tracking system consisted of quadcopter vehicles controlled via a networked

control system. The vehicles were positioned using the cluster space formation control approach

and the quadcopters used only their onboard sensor capabilities to track a separately controlled

robot via vision processing. This research represents an advancement from that found in the

literature by using multiple mobile robots working together to track an object while maintaining

the optimal geometric configuration. This optimal geometric configuration is defined as the

configuration that minimizes the position estimation error and is found using the novel

technique detailed in Chapter 3 and [15]. Cluster control, discussed in the next chapter, is used

to maintain this optimal geometry throughout the tracking process. This method is applicable

whether the sensors have identical or disparate properties and, if the optimization process is

8

included in the control loop, can adapt to changing conditions where sensor performance is a

function of position or compromised due to a malfunction. This method was experimentally

verified and the mobile sensor systems were found to maintain the desired geometric

configuration with respect to the tracked object for the duration of the experiment, yielding an

accurate estimate of the target’s positon.

1.3. Objective and Contributions

The objective of this dissertation is to find and implement, via real-time formation control, the

optimal tracking configuration for both two and three robot clusters, as well as a generic

method that could be applied to a cluster of n robots. Previous work at SCU’s RSL has found a

two-dimensional optimal tracking configuration through experimental methods [16] [17]. This

dissertation extends this work by providing a mathematical basis for determining the optimal

tracking configuration for a general n robot cluster. The theory for two and three robot clusters

is experimentally verified with two and three quadrotor clusters and a land-based Pioneer as

well as an ideal object.

This dissertation also seeks to provide a proof of concept for the tracking mission by

demonstrating that two and three quadrotor robot clusters can follow a land-based Pioneer

robot using only sensor data. That is, the cluster has no knowledge of the Pioneer’s position

other than that provided by the quadrotors’ onboard sensors. The Pioneer is not stationary

during these tests, but travels throughout the test area in a random pattern. The pattern is not

known to the cluster ahead of time and is not programmed into its behavior in any way. The

cluster will be controlled to maintain the optimal configuration throughout the tracking

procedure.

9

Finally, this dissertation will examine the effect of an optimization-in-the-loop that allows

the cluster to dynamically re-optimize its configuration due to changes in the sensor properties.

These changes include the number of available sensors, sensor failures, and changes in sensor

sensitivity. These explorations will shed more light on some of the issues that will be faced in a

real-world implementation of robotic clusters in emergency situations and will show that this

methodology is feasible outside of a laboratory setting.

1.4. Reader’s Guide

This dissertation consists of nine chapters that detail the concept of two and three tracking

robot clusters. The first chapter (of which this paragraph is a part), provides an overview of the

dissertation motivation and objectives. The modeling framework for cluster control is covered in

Chapter 2 while the geometrical optimization is discussed in Chapter 3. Chapter 4 details the

vision processing algorithm used in this research and Chapter 5 provides an overview of the

experimental testbed. Chapter 6 details the results of stationary verification of the

mathematical algorithm and Chapter 7 provides the controlled experimental results. Chapter 8

describes the simulation results with an optimization-in-the-control-loop as well as an

exploration of the percent improvement of the target location estimate under various

condtions. Finally, the conclusions are presented in Chapter 9.

10

Chapter 2

2. Multi-Robot Formation Control

2.1. Method Comparison

There are many methods that can be used to control a group of robots. The methods considered

for this application include swarm control, leader-follower formation control, and cluster

control. The following paragraphs provide an overview of swarm control and leader-follower

formation control and why they were not chosen for this application. The rest of this chapter

details cluster control and its application in this dissertation.

Swarm control is a popular method in the literature. [19] described swarm control as

utilizing a decentralized local control and local communication which results in the emergence

of global behavior as the consequence of self-organization. For example, in [20], a robotic

swarm was used to track odor plumes to their source by establishing a cohesive sensor network

across the swarm. Each robot could measure the distance to its neighbors and to any obstacle it

might encounter as well as send and receive small messages to its neighbors. The robots

individually measured their own odor concentration and shared this information with their

neighbors. In this manner, the robots each acted as temporal filters by taking new

measurements each time step and the swarm acted as a spatial filter by comparing many

measurements taken from different positions. The robots then moved together in the direction

of the swarm consensus and maintained their formation while tracking the odor plume. The

more robots that participated in the swarm, the more accurate the picture of the gradient they

were able to obtain.

11

The authors of [21] utilized a swarm of simple robots that collaborated with one another to

search an area. While this method was successful under the right conditions, a number of

shortcomings were found to this swarm approach. The swarm was unable to dynamically adjust

its velocity, which could lead to non-optimal tracking or even loss of the target. The success of

the method was dependent on the initialization conditions and the accuracy of the fitness

criteria used. Additionally, the swarm sometimes experienced premature convergence and

stagnation in local optima and failed to perform well with multi-objective, dynamic, uncertain,

and time dependent problems.

Leader-follower formation control strategies are also a popular control method in the

literature for multi-robot applications. This method usually requires the specification of a

bearing and distance between the lead robot and the following robot, which lends itself to

tracking applications as the follower robots already “track” the lead robot. This circumstance

was utilized in [22], [23], and [24] where the tracked object was treated as a virtual leader. Each

follower robot could only measure its relative distance and bearing to the lead robot. This

information was then used to position the robot to “track” the lead robot along its trajectory. In

[24], the lead robot even shared its control vector, orientation, and velocity information with

the following robots. While this does lead to more accurate tracking, it is not always feasible

outside of the laboratory.

In [25], a leader-follower control strategy was followed in order to organize a group of n

robots into a rigid formation while maintaining a reference velocity. The reference velocity was

assumed to be constant or piecewise constant and only two robots, the leaders, knew the

reference velocity. These leader robots only knew the relative position of each other while the

following robots could measure the relative position of their two neighbors. The follower robots

12

then positioned themselves at a set distance from their neighbors, the group leaders, and tried

to match their velocity. There were two major issues with this implementation. First, the

geometry of the group was not able to be completely specified; different configurations could

meet the required objectives equally well. Second, the robot positions did not have to be unique

in order to meet these requirements so some robots were collocated. This is feasible in

simulation, but would not be possible in a physical experiment.

2.2. Cluster Control Overview

Cluster control, developed at Santa Clara University’s Robotics Systems Laboratory (SCU’s RSL)

and presented in [1], was used to control the multi-robot systems used in this dissertation. This

method allows for the control of a group of robots without specifying the behavior of each robot

individually. Instead, the position and geometry of a group of n robots is specified by the user

while the controller calculates the individual robot commands. This technique is an operational

space approach that envisions the multi-robot cluster as a virtual, full degree-of-freedom,

articulating mechanism [1] and will be described further in this chapter. While, in theory, any

number of robots could be used in cluster control, clusters of two or three aerial robots, each

with four independent degrees of freedom, were used to demonstrate the work described here.

Cluster control makes use of two static spaces termed robot space and cluster space. Robot

space state variables are the conventional position and velocity variables used to describe the

motion state of a mobile robot with respect to a global frame [1]. For the cluster of two aerial

vehicles shown in Figure 2.1, the pose vector, R, consists of the three dimensional positions (xi,

yi, zi) and the yaw angle, θi, for each of the two vehicles, where i = 1, 2. This definition is

provided in the following equation:

13

𝑅 =

[

𝑥1

𝑦1
𝑧1

𝜃1
𝑥2

𝑦2
𝑧2

𝜃2]

(2.1)

Figure 2.1: Two robot cluster definition.

To represent the state in cluster space, a cluster frame is assigned to the group of robots

with an explicit designation of its position and orientation with respect to the robots. For the

example shown in Figure 2.1, the frame is centered between the robots with its �̂� unit vector

oriented up, parallel to �̂�𝐺. The cluster space pose vector, C, consists of the position and

orientation of the cluster frame, shape variables that collectively describe the location of the

robots with respect to the cluster frame, and individual orientation variables describing the

relative orientation of each robot with respect to the cluster frame. For the system in Figure 2.1,

the cluster frame is located by the variables (xc, yc, zc) and oriented by the yaw and roll angles, α

14

and β respectively; the separation distance between robots, p, is the shape variable, and the

relative robot orientation variables are φ1 and φ2. This definition is provided in Eq. (2.2).

𝐶 =

[

𝑥𝑐

𝑦𝑐
𝑧𝑐

𝛼
𝛽
𝜑1
𝜑2

𝑝]

(2.2)

The position vectors in each space, R and C, can be related through a set of kinematic

equations, as can the velocities, �̇� and �̇�. The forward position kinematic relationships,

discussed in detail in Sections 2.4.3 and 2.5.3, allow the cluster space positions to be computed

based on knowledge of robot space positions. These equations can be solved for the robot

space positions to produce inverse position kinematic equations, allowing robot space positions

to be computed based on knowledge of cluster space positions. A Jacobian transform can be

used to transform �̇� to �̇�, as shown in Eq. (2.3), where the Jacobian is a matrix of the partial

derivatives of the forward position kinematic equations. The inverse velocity relationship is

provided in Eq. (2.4), allowing �̇� to be computed from a specified �̇�. It is interesting to note that

the Jacobian and its inverse are both instantaneous linear transforms that are functions of the

pose of the group of robots.

�̇� = 𝐽(𝑅) ∗ �̇� (2.3)

�̇� = 𝐽−1(𝐶) ∗ �̇� (2.4)

15

2.3. Cluster Space Controller

Figure 2.2: Cluster controller for n robots.

A typical control implementation for a cluster space controller is shown in Figure 2.2. In this

architecture, the controller accepts control specifications as cluster space variables, an

abstraction that was found to be beneficial since it promotes simple human interaction for

human-based control as well as a convenient level of abreaction for higher-level automated

controllers. Control compensations are also computed in cluster space, which generally leads to

well-behaved cluster space motions even though the motions of individual robots may be quite

complex due to the nonlinear nature of the kinematic relationships. The diagram in Figure 2.2

employs a resolved rate control approach in which control commands are cluster velocity set-

points that are converted to individual robot velocity set-points through the inverse Jacobian. As

the robots execute these individual velocity commands, their positions and velocities can be

collectively converted to cluster space for use by the cluster controller. In practice, SCU’s RSL

has made great use of this resolved rate control approach given the RSL’s use of many

commercially available robots that are naturally commanded through velocity set-points. It is

possible, however, to implement full dynamic control in which the controller computes forces

and torques. In this case, these controller commands are transformed to robot-specific control

16

forces and torques through the use of a Jacobian transpose transform [26]. In the experiments

presented later in this dissertation, a resolved rate controller is used which does not make use

of velocity feedback due to the slow speed of the system.

2.4. Description of a Two-Robot Cluster

This section provides a detailed description of a two robot cluster. In the work presented here,

the two robots used are quadrotor aerial robots with four degrees of freedom: x, y, z, and θ

(yaw). The following subsections present a description of robot space, cluster space, and the

positon kinematics and Jacobians used to translate between the two spaces.

2.4.1. Robot Space

Figure 2.3: Two robots and their coordinates in robot space.

Cluster control works by transforming a set of positions between two different coordinate

frames in order to perform calculations in the simplest frame. The first coordinate frame is

called robot space and is probably the easiest to visualize; it is illustrated in Figure 2.3 while the

variables are defined in Table 2.1. Here, each robot has its own (x, y, z) location in global space

and its own yaw angle, θ, with respect to the global z-axis [1]. The robot positions are not

17

defined with respect to each other in any way. This makes robot space the ideal frame in which

to give robot commands. Each robot receives an individual command dependent solely on its

own position in space.

Table 2.1: Description of the variables in robot space for a two robot cluster.

Variable Description

x1 Distance (in meters) from the first robot to the origin in the x direction.

y1 Distance (in meters) from the first robot to the origin in the y direction.

z1 Distance (in meters) from the first robot to the origin in the z direction.

θ1 The yaw (in radians) of the first robot about the z-axis.

x2 Distance (in meters) from the second robot to the origin in the x direction.

y2 Distance (in meters) from the second robot to the origin in the y direction.

z2 Distance (in meters) from the second robot to the origin in the z direction.

θ2 The yaw (in radians) of the second robot about the z-axis.

2.4.2. Cluster Space

In contrast, all robot positions are defined relative to the cluster center in cluster space,

illustrated in Figure 2.4 and defined in Table 2.2. Here, the cluster has its own (x, y, z) location,

yaw (rotation about the z-axis, designated by α), and roll (rotation about the y-axis, designated

by β) with respect to the global coordinate frame. Each of the robot positions are then defined

with respect to this cluster center by a distance, p/2, from the center, a vector direction for that

distance, ± yc, and a yaw angle, ϕi, with respect to the cluster yaw [1]. Since the robot positions

are defined with respect to the cluster center in this coordinate frame, it is the ideal frame in

which to give commands to the cluster. This allows the user to specify the location of the cluster

center and the cluster geometry without specifying commands for each robot. For two robots,

this does not save much work, but the benefits increase as the amount of robots used in the

cluster increases.

18

Figure 2.4: Two robots and their coordinates in cluster space.

Table 2.2: Description of the variables in cluster space for a two robot cluster.

Variable Description

x Distance (in meters) from the cluster center to the origin in the x direction.

y Distance (in meters) from the cluster center to the origin in the y direction.

z Distance (in meters) from the cluster center to the origin in the z direction.

α The cluster angle of rotation (in radians) about the z-axis, yaw.

β The cluster angle of rotation (in radians) about the y-axis, roll.

ϕ1 The heading of quadrotor 1 (in radians) with respect to the cluster x-axis.

ϕ2 The heading of quadrotor 2 (in radians) with respect to the cluster x-axis.

p Distance (in meters) of the quadrotor centers.

2.4.3. Forward Position Kinematics

A key aspect of cluster control is determining the kinematic equations that transform the

variables from robot space to cluster space. While there are multiple ways to do this from a

mathematical standpoint, the goal is to keep the equations as simple as possible so that

19

calculations can be performed quickly and to limit the impact of singularities on the controller.

The impact of the singularities will be discussed in more detail in Section 2.4.5.

The kinematic equations used in this research are found in Eq. (2.5) to (2.12) below. The

input variables in these equations are all variables defined in robot space while the outputs are

all defined in cluster space. The robot space variables are defined in Table 2.1 while the cluster

space variables are defined in Table 2.2.

𝑥𝑐 =

1

2
(𝑥1 + 𝑥2)

(2.5)

𝑦𝑐 =
1

2
(𝑦1 + 𝑦2)

(2.6)

𝑧𝑐 =
1

2
(𝑧1 + 𝑧2)

(2.7)

 𝛼 = 𝑎𝑡𝑎𝑛2(�̂�𝑐∙ ∙ �̂�𝐺 , 𝑥𝑐 ∙ 𝑥𝐺)1 (2.8)

 𝛽 = 𝑎𝑡𝑎𝑛2(�̂�𝑐∙ ∙ �̂�𝐺 , �̂�𝑐 ∙ �̂�𝐺) (2.9)

 𝜙1 = 𝜃1 − 𝛼 (2.10)

 𝜙2 = 𝜃2 − 𝛼 (2.11)

 𝑝 = √(𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)
2 + (𝑧1 − 𝑧2)

2 (2.12)

This results in the following position vector in cluster space defined in Eq. (2.2).

2.4.4. Inverse Positon Kinematics

Similarly, inverse position kinematics are required to transform the cluster space variables into

robot space variables. As for the forward position kinematics, there are multiple ways to do this

1 Atan2 is a Matlab function that returns a signed value of the inverse tangent function [27]. The use of atan2 allows the user to

obtain an angle measurement between [-π, π] in the quadrant corresponding to the provided input values. This simplifies
computations by allowing the use of a single function rather than the two step process of computing an angle from the inverse
tangent and then finding the appropriate quadrant for that angle.

20

from a mathematical standpoint, but the equations should be simple and the singularities

should have minimal impact on the controller. Again, the impact of the singularities will be

discussed in more detail in Section 2.4.5.

The inverse kinematic equations used in this dissertation are found in Eq. (2.13) to (2.20).

These equations feature cluster space input variables and robot space output variables. Both

sets of variables are defined as in the previous section.

𝑥1 = 𝑥𝑐 −
1

2
𝑝 sin𝛼 cos𝛽

(2.13)

𝑦1 = 𝑦𝑐 +
1

2
𝑝 cos𝛼 cos𝛽

(2.14)

𝑧1 = 𝑧𝑐 +
1

2
𝑝 sin𝛽

(2.15)

𝜃1 = 𝜙1 + 𝛼 (2.16)

𝑥2 = 𝑥𝑐 +
1

2
𝑝 sin𝛼 cos𝛽

(2.17)

𝑦2 = 𝑦𝑐 −
1

2
𝑝 cos𝛼 cos𝛽

(2.18)

𝑧2 = 𝑧𝑐 −
1

2
𝑝 sin𝛽

(2.19)

𝜃2 = 𝜙2 + 𝛼 (2.20)

This results in the position vector in robot space defined by Eq. (2.1).

2.4.5. Forward and Inverse Velocity Kinematics

However, both the position and the velocity of each variable are necessary for cluster control. In

order to find the velocities, Jacobians are used. The forward Jacobian is a matrix of the partial

derivatives of Eq. (2.5) to (2.12) with respect to the robot space variables while the inverse

Jacobian is a matrix of the partial derivatives of Eq. (2.13) to (2.20) with respect to the cluster

21

space variables. The forward and inverse Jacobians are shown symbolically in Eq. (2.21) and

(2.22), respectively, and shown in more detail in Appendix A.

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1

c c c c c c c c

c c c c c c c c

c c c c c c c c

x x x x x x x x

x y z x y z

y y y y y y y y

x y z x y z

z z z z z z z z

x y z x y z

x y z x y z
J

x y z

1 1 2 2 2 2

1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2

2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

x y z

x y z x y z

x y z x y z

p p p p p p p p

x y z x y z

(2.21)

1 1 1 1 1 1 1 1

1 2

1 1 1 1 1 1 1 1

1 2

1 1 1 1 1 1 1 1

1 2

1 1 1 1 1 1 1 1

1 21

2 2 2

c c c

c c c

c c c

c c c

c c

x x x x x x x x

x y z p

y y y y y y y y

x y z p

z z z z z z z z

x y z p

x y z p
J

x x x

x y

2 2 2 2 2

1 2

2 2 2 2 2 2 2 2

1 2

2 2 2 2 2 2 2 2

1 2

2 2 2 2 2 2 2 2

1 2

c

c c c

c c c

c c c

x x x x x

z p

y y y y y y y y

x y z p

z z z z z z z z

x y z p

x y z p

(2.22)

In order to convert the velocity from robot space to cluster space, the Eq. (2.3) is used. This

means that in order to find the velocity in cluster space, both the positon and velocity in robot

space must be known. Similarly, the equation to convert the velocity from cluster space to robot

22

space is given in Eq. (2.4). Both the position and velocity in cluster space must be known in order

to obtain the velocity in robot space [1].

A singularity is defined in [28] as:

|𝐽| = 0 (2.23)

The singularities for both the forward and inverse Jacobians were calculated to have the values

shown in Table 2.3. These values all mean the same thing: the robots cannot be in the same

location at the same time nor can they be on top of one another. Since the first condition is

physically impossible and the second is undesirable, these singularities were determined to be

acceptable since they would be unlikely to occur in practice.

Table 2.3: Two robot singularities.

Jacobian Singularity Physical Description

Forward x1 = x2 and y1 = y2 at the same time The robots cannot be on top of each
other.

Forward x1 = x2, y1 = y2, and z1 = z2 at the
same time

The robots cannot be co-located.

Inverse p = 0 The robots cannot be co-located.

Inverse β = ± π/2 The robots cannot be on top of each
other.

2.5. Description of a Three-Robot Cluster

Although two robots were used in the majority of the simulations and experiments detailed

here, three robots were also used in this dissertation. The following sections provide a detailed

description of a three robot cluster and some of the challenges faced by this setup.

2.5.1. Robot Space

Robot space is defined the same way for both a two and three robot cluster, with the addition of

single robot, and is illustrated in Figure 2.5 using the variables defined in Table 2.4. Each robot

23

still has its own (x, y, z) location in global space and its own yaw angle, θ, with respect to the

global z-axis [1], just as before. This means that robot space is still the ideal frame in which to

give robot commands since each robot receives an individual command dependent solely on its

own position in space.

Figure 2.5: Three robots and their coordinates in robot space.

Table 2.4: Description of the variables in robot space for a three robot cluster.

Variable Description

x1 Distance (in meters) from the first robot to the origin in the x direction.

y1 Distance (in meters) from the first robot to the origin in the y direction.

z1 Distance (in meters) from the first robot to the origin in the z direction.

θ1 The yaw (in radians) of the first robot about the z-axis.

x2 Distance (in meters) from the second robot to the origin in the x direction.

y2 Distance (in meters) from the second robot to the origin in the y direction.

z2 Distance (in meters) from the second robot to the origin in the z direction.

θ2 The yaw (in radians) of the second robot about the z-axis.

x3 Distance (in meters) from the third robot to the origin in the x direction.

y3 Distance (in meters) from the third robot to the origin in the y direction.

z3 Distance (in meters) from the third robot to the origin in the z direction.

θ3 The yaw (in radians) of the third robot about the z-axis.

24

2.5.2. Cluster Space

Cluster space is a bit more complicated for a three robot cluster; the variables are illustrated in

Figure 2.6 and Figure 2.7 and defined in Table 2.5. The cluster still has its own (x, y, z) location,

yaw (rotation about the z-axis, designated by α), roll (rotation about the y-axis, designated by β),

and pitch (rotation about the x-axis, designated by γ) with respect to the global coordinate

frame. Each of the robot positions are then defined with respect to this cluster center by the

inverse kinematics found in Section 2.5.4 and a yaw angle, ϕi, with respect to the cluster yaw

[1]. Cluster space is still the ideal frame in which to give commands to the cluster. For three

robots, the amount of work saved due to cluster control is noticeable.

Figure 2.6: Three robots rotation angle definitions.

Figure 2.7: Three robots and their coordinates in cluster space.

25

Table 2.5: Description of the variables in cluster space for a three robot cluster.

Variable Description

x Distance (in meters) from the cluster center to the origin in the x direction.

y Distance (in meters) from the cluster center to the origin in the y direction.

z Distance (in meters) from the cluster center to the origin in the z direction.

α The cluster angle of rotation (in radians) about the z-axis, yaw.

β The cluster angle of rotation (in radians) about the y-axis, roll.

γ The cluster angle of rotation (in radians) about the x-axis, pitch.

ϕ1 The heading of quadrotor 1 (in radians) with respect to the cluster x-axis.

ϕ2 The heading of quadrotor 2 (in radians) with respect to the cluster x-axis.

ϕ3 The heading of quadrotor 3 (in radians) with respect to the cluster x-axis.

ζ The angle (in radians) between p and q.

p Distance (in meters) of the centers of quadrotors 1 and 2.

q Distance (in meters) of the centers of quadrotors 1 and 3.

2.5.3. Forward Position Kinematics

The three robot forward position kinematic equations transform the variables from robot space

to cluster space. There are even more ways to do this from a mathematical standpoint than for

a two robot system, but the goal is the same: keep the equations as simple as possible and limit

the impact of singularities on the controller. The impact of the singularities will be discussed in

more detail in Section 2.5.5.

The kinematic equations used for a three robot cluster are found in Eq. (2.24) to (2.35)

below and are a modified version of those found in [18]. The input variables in these equations

are all variables defined in robot space while the outputs are defined in cluster space. The robot

space variables are defined in Table 2.4 while the cluster space variables are defined in Table

2.5.

𝑥𝑐 =

1

3
(𝑥1 + 𝑥2 + 𝑥3)

(2.24)

𝑦𝑐 =
1

3
(𝑦1 + 𝑦2 + 𝑦3)

(2.25)

26

𝑧𝑐 =
1

3
(𝑧1 + 𝑧2 + 𝑧2)

(2.26)

 𝛼 = 𝑎𝑡𝑎𝑛2(−�̂�𝑐∙ ∙ 𝑥𝐺 , �̂�𝑐 ∙ �̂�𝐺) (2.27)

 𝛽 = 𝑎𝑡𝑎𝑛2 (�̂�𝑐∙ ∙ �̂�𝐺 , √(�̂�𝑐 ∙ 𝑥𝐺)2 + (�̂�𝑐 ∙ �̂�𝐺)2) (2.28)

 𝛾 = 𝑎𝑡𝑎𝑛2(−�̂�𝑐∙ ∙ �̂�𝐺 , �̂�𝑐 ∙ �̂�𝐺) (2.29)

 𝜙1 = 𝜃1 − 𝛼 (2.30)

 𝜙2 = 𝜃2 − 𝛼 (2.31)

 𝜙3 = 𝜃3 − 𝛼 (2.32)

 𝑝 = √(𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)
2 + (𝑧1 − 𝑧2)

2 (2.33)

 𝑞 = √(𝑥1 − 𝑥3)

2 + (𝑦1 − 𝑦3)
2 + (𝑧1 − 𝑧3)

2 (2.34)

𝜁 = 𝑎𝑐𝑜𝑠

(

([

𝑥1 − 𝑥2

𝑦1 − 𝑦2

𝑧1 − 𝑧2

] ∙ [

𝑥1 − 𝑥3

𝑦1 − 𝑦3

𝑧1 − 𝑧3

])

𝑝𝑞

)

(2.35)

This results in the following position vector in cluster space:

𝐶 = [𝑥𝑐 𝑦𝑐 𝑧𝑐 𝛼 𝛽 𝛾 𝜙1 𝜙2 𝜙3 𝑝 𝑞 𝜁]𝑇 (2.36)

2.5.4. Inverse Position Kinematics

The inverse position kinematics that are required to transform the cluster space variables into

robot space variables are defined in Eq. (2.37) to (2.59). Since there are multiple ways to do this

from a mathematical standpoint, the equations should be simple and the singularities should

27

have a minimal impact on the controller. These equations, a modified version of the inverse

position kinematics found in [18], feature cluster space input variables and robot space output

variables. Both sets of variables are defined as in the previous section.

 𝐵 = √(𝑞 + 𝑝 cos 𝜁)2 + (𝑝 sin 𝜁)2 (2.37)

 𝑒 = √𝑞2 + 𝑝2 − 2𝑝𝑞 cos 𝜁 (2.38)

𝑎𝑛𝑔𝑙𝑒2 = 𝑎𝑐𝑜𝑠 (
𝑝2 + 𝑒2 − 𝑞2

2𝑝𝑒
)

(2.39)

𝑎𝑛𝑔𝑙𝑒3 = 𝑎𝑐𝑜𝑠 (
𝑞2 + 𝑒2 − 𝑝2

2𝑞𝑒
)

(2.40)

 𝑎 = 𝑝 cos(𝑎𝑛𝑔𝑙𝑒2) (2.41)

 𝑏 = 𝑝 sin(𝑎𝑛𝑔𝑙𝑒2) (2.42)

 𝑐 = 𝑞 cos(𝑎𝑛𝑔𝑙𝑒3) (2.43)

 𝑑 =

𝑒

2
− 𝑎 (2.44)

 𝑧𝑒𝑡𝑎1 = 𝑎𝑡𝑎𝑛2(𝑎, 𝑏) (2.45)

 𝑧𝑒𝑡𝑎2 = 𝑎𝑡𝑎𝑛2(𝑑, 𝑏) (2.46)

 𝑧𝑒𝑡𝑎3 = 𝑎𝑡𝑎𝑛2(𝑐, 𝑏) − 𝑧𝑒𝑡𝑎2 (2.47)

 𝑥1 = 𝑥𝑐 −

1

3
𝐵 sin𝑎 cos𝛽 (2.48)

 𝑦1 = 𝑦𝑐 +

1

3
𝐵 cos𝛼 cos𝛽 (2.49)

 𝑧1 = 𝑧𝑐 +

1

3
𝐵 sin𝛽 (2.50)

 𝜃1 = 𝜙1 + 𝛼 (2.51)

28

 𝑥2 = 𝑥𝑐 + 𝑝 sin(𝑧𝑒𝑡𝑎1 + 𝑧𝑒𝑡𝑎2) (cos 𝛼 cos 𝛾 − sin𝛼 sin𝛽 sin 𝛾)

− sin𝛼 cos𝛽 (
1

3
𝐵 − 𝑝 cos(𝑧𝑒𝑡𝑎1 + 𝑧𝑒𝑡𝑎2))

(2.52)

 𝑦2 = 𝑦𝑐 + 𝑝 sin(𝑧𝑒𝑡𝑎1 + 𝑧𝑒𝑡𝑎2) (sin𝛼 cos 𝛾 + cos𝛼 sin𝛽 sin 𝛾)

+ cos𝛼 cos𝛽 (
1

3
𝐵 − 𝑝 cos(𝑧𝑒𝑡𝑎1 + 𝑧𝑒𝑡𝑎2))

(2.53)

 𝑧2 = 𝑧𝑐 − 𝑝 sin(𝑧𝑒𝑡𝑎1 + 𝑧𝑒𝑡𝑎2) cos𝛽 sin𝛾

+ sin𝛽 (
1

3
𝐵 − 𝑝 cos(𝑧𝑒𝑡𝑎1 + 𝑧𝑒𝑡𝑎2))

(2.54)

 𝜃2 = 𝜙2 + 𝛼 (2.55)

 𝑥3 = 𝑥𝑐 − 𝑞 sin(𝑧𝑒𝑡𝑎3) (cos𝛼 cos 𝛾 − sin𝛼 sin𝛽 sin𝛾)

− sin𝛼 cos𝛽 (
1

3
𝐵 − 𝑞 cos(𝑧𝑒𝑡𝑎3))

(2.56)

 𝑦3 = 𝑦𝑐 − 𝑞 sin(𝑧𝑒𝑡𝑎3) (sin 𝛼 cos 𝛾 + cos𝛼 sin𝛽 sin𝛾)

+ cos𝛼 cos𝛽 (
1

3
𝐵 − 𝑞 cos(𝑧𝑒𝑡𝑎3))

(2.57)

 𝑧3 = 𝑧𝑐 + 𝑞 sin(𝑧𝑒𝑡𝑎3) cos𝛽 sin𝛾 + sin𝛽 (

1

3
𝐵 − 𝑞 cos(𝑧𝑒𝑡𝑎3)) (2.58)

 𝜃3 = 𝜙3 + 𝛼 (2.59)

This results in the following position vector in robot space:

𝑅 = [𝑥1 𝑦1 𝑧1 𝜃1 𝑥2 𝑦2 𝑧2 𝜃2 𝑥3 𝑦3 𝑧3 𝜃3]
𝑇 (2.60)

2.5.5. Forward and Inverse Velocity Kinematics

In order to find the velocities necessary for cluster control, the Jacobians, both forward and

inverse, are used. The forward Jacobian is a matrix of the partial derivatives of Eq. (2.24) to

(2.35) with respect to the robot space variables while the inverse Jacobian is a matrix of the

partial derivatives of Eq. (2.37) to (2.59) with respect to the cluster space variables. The forward

and inverse Jacobians are shown symbolically in Eq. (2.61) and (2.62), respectively, and

explained in more detail in a supplement, see reference [29], due to their length.

29

1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 2 2 2 2 3

c c c c c c c c c c c c

c c c c c c c c c c c c

c c c c c c c c c

x x x x x x x x x x x x

x y z x y z x y z

y y y y y y y y y y y y

x y z x y z x y z

z z z z z z z z z

x y z x y z x

J

3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

c c cz z z

y z

x y z x y z x y z

x y z x y z x y z

x y z x y z x y z

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 3 3 3 3

3 3 3 3 3 3 3 3 3 3

1 1 1 1 2 2 2 2 3

x y z x y z x y z

x y z x y z x y z

x y z x y z x

3 3

3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

y z

p p p p p p p p p p p p

x y z x y z x y z

q q q q q q q q q q q q

x y z x y z x y z

x y z x y z x y z

(2.61)

1 1 1 1 1 1 1 1 1 1 1 1

1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

1 2 3

1

c c c

c c c

c c c

x x x x x x x x x x x x

x y z p q

y y y y y y y y y y y y

x y z p q

z z z z z z z z z z z z

x y z p q

J

1 1 1 1 1 1 1 1 1 1 1 1

1 2 3

2 2 2 2 2 2 2 2 2 2 2 2

1 2 3

2 2 2 2 2 2 2 2 2 2 2 2

1 2 3

c c c

c c c

c c c

x y z p q

x x x x x x x x x x x x

x y z p q

y y y y y y y y y y y y

x y z p q

2 2 2 2 2 2 2 2 2 2 2 2

1 2 3

2 2 2 2 2 2 2 2 2 2 2 2

1 2 3

3 3 3 3 3 3 3 3 3 3 3 3

1 2 3

c c c

c c c

c c c

z z z z z z z z z z z z

x y z p q

x y z p q

x x x x x x x x x x x x

x y z p q

y

 3 3 3 3 3 3 3 3 3 3 3 3

1 2 3

3 3 3 3 3 3 3 3 3 3 3 3

1 2 3

3 3 3 3 3 3 3 3 3 3 3 3

1 2 3

c c c

c c c

c c c

y y y y y y y y y y y

x y z p q

z z z z z z z z z z z z

x y z p q

x y z p q

(2.62)

30

In order to convert the velocity from robot space to cluster space, Eq. (2.3) is used, as in the two

robot case. Likewise, in order to convert the velocity from cluster space to robot space, Eq. (2.4)

is used [1].

The singularities for both the forward and inverse three robot Jacobians were calculated to

have the values shown in Table 2.6. The first row states that the robots cannot all be in the same

place at the same time while the second row states that Robots 1 and 2 cannot be in the same

place at the same time, both of which are physically impossible. The next two rows state that

the robots cannot form a line, which is not a desired configuration. The final row states that the

cluster cannot be in a vertical plane, rotated π radians about the global z-axis. In all of the

experiments discussed here, β was set to 0 radians. Thus, these singularities were deemed

acceptable since they were either physically impossible or not part of a desired configuration.

Table 2.6: Three robot singularities.

Jacobian Singularity Physical Description

Forward x1 = x2 = x3, y1 = y2 = y3, and z1
= z2 = z3 at the same time

The robots cannot be co-located.

Inverse p = 0 Robot 1 and Robot 2 cannot be co-located.

Inverse ζ = 0 The robots cannot form a line with Robot 1
on one end.

Inverse ζ = ± π The robots cannot form a line with Robot 1
in the middle.

Inverse α =± π and β = π/2 at the
same time

The cluster cannot be on its edge and
rotated π radians about the global z-axis.

31

Chapter 3

3. Geometrical Optimization

One of the main goals of this research is to find the optimal sensor configuration for a variety of

sensor options. The sensor options examined in this chapter include: two identical sensors at a

fixed radius from the tracked object, two different sensors at a fixed radius from the tracked

object, three identical sensors at a fixed radius from the tracked object, and three different

sensors at a fixed radius from the tracked object. Each of these sensor options share the same

mathematical basis, which is described in this chapter.

3.1. Method Selection

There are a variety of optimization algorithms found in the literature. However, not every

optimization method is right for every application. This section provides a brief overview of

some of the optimization methods that were considered for this dissertation as well as the

reasoning for why each method was rejected for this application. The method that was selected

for this work is also described, though a detailed description is left for Section 3.9.

Evolutionary algorithms are popular optimization methods currently used in a wide variety

of applications. One of the more popular types of evolutionary algorithms is the genetic

algorithm (GA). The GA is a discrete variable, random search method that does not require the

use of gradients [30]. The lack of required gradients makes this method attractive when the

governing equations are not known or are very complex. Additionally, the GA can deal with non-

continuous functions since it only uses function values rather than the functions themselves

[30], adding to its popularity. In this method, the inputs to the cost function are represented by

binary strings which are then combined into a single string to create a single candidate solution

32

[30]. A basic flowchart of GA is shown in Figure 3.1. However, this method requires a large

number of function evaluations and, thus, can quickly become computationally expensive [30].

Figure 3.1: Genetic algorithm flowchart.

Another popular evolutionary algorithm is particle swarm, which is similar to the motion of a

flock of birds. This method is a continuous variable method that has been modified to use

discrete variables and begins with a population of potential solutions, called particles [31], and

has often been used to train neural networks since its development in 1995 [32]. Each particle is

33

also assigned a random velocity, which is used to update the particles’ position each time step

[31]. A flowchart of this algorithm can be seen in Figure 3.2.

Figure 3.2: Particle swarm algorithm flowchart.

There are three parameters in particle swarm optimization that are problem dependent: the

inertia parameter and the two trust parameters. The inertia parameter determines how

aggressive the search will be, with higher values covering a wider search area than lower values.

The trust parameters determine how much confidence the particle has in itself and in the swarm

for the first and second parameters, respectively [31]. The higher the value, the more similar the

next solution will be to the current solution. Although this method uses function values only, it

also requires a very high number of function evaluations [31] and, thus, is also too

computationally intensive for this application.

34

Figure 3.3: Hooke and Jeeves method flowchart adapted from [33].

The Hooke and Jeeves method is a pattern search method that does not require function

derivatives in order to find an optimal solution [33]. For the equations developed in this

dissertation, finding the derivatives is a non-trivial problem so it is preferred to use a method

that does not require their derivation. The Hooke and Jeeves method has the added benefit that

its computation time scales linearly with the number of inputs [33], the space complexity is O(n),

so the number of robots can easily be increased, making this method a good choice for use in

this dissertation. This method was chosen over other heuristic methods such as the Nelder-

Mead Simplex method and the Rosenbrock pattern search [34] because it was easy to find an

already implemented Hooke and Jeeves method in Matlab and easy to modify for constraints.

Further, both the Nelder-Mead Simplex and the Rosenbrock pattern search methods have a

complexity space of O(n2) [34], making it more difficult to increase the number of robots. A flow

35

chart of the Hooke and Jeeves algorithm is shown in Figure 3.3 and will be discussed further in

Section 3.9.

3.2. Problem Setup

The methodology presented here involves fusing the sensor measurements from multiple

mobile sensor systems to obtain a more accurate position estimate than is achievable by the

individual sensor systems. The angle of separation between sensors is optimized to find the best

fused sensor system estimate given the position constraints on the mobile sensor systems. In

order to achieve this optimization, the sensor properties themselves must be modeled

mathematically.

Figure 3.4: Terminology used to define the portion of a circle arc that describes the area of a sensor's valid

sensor coverage area.

It is assumed that a sensor will not necessarily report the exact position of an object, but will

instead report the position with a certain degree of error. The area in which the object’s position

may be reported is described by a portion of a circle arc, as shown in Figure 3.4, known as the

valid sensor coverage area. The position of the object from the sensor has a mean radial error of

36

εr and a mean heading error of εθ. The distances and angles are measured with respect to the

sensor and the radial and heading errors are assumed to have a normal distribution about their

given means. Thus, if the tracked object is at an angle of θ degrees and a distance of R m from

the sensor, the position of the object could be reported anywhere within the circle arc described

in Figure 3.4. The distances and angles are measured with respect to the sensor. Thus, the inner

radius of the circle arc is R - εr and the outer radius of the circle arc is R + εr. The line of

symmetry of the circle arc is the same as the sensor heading, θ. This means that the circle arc is

bounded between θ - εθ and θ + εθ degrees.

For example, let a sensor have a heading of 90 degrees and a radius from the tracked object

of 5 meters. The sensor has an εr of 1 meter and an εθ of 10 degrees. Thus, the circle arc radius

varies from 4 to 6 meters with an angle of 80 to 100 degrees. This sensor’s valid sensor coverage

area is shown in Figure 3.5.

Figure 3.5: Example sensor error area.

37

3.2.1. Sensor Constraints and their Covariance Matrices

Once the sensor parameters and constraints are known, the corresponding covariance matrix

can be calculated using Eq. (3.1) below with the variables defined in Table 3.1 [34].

𝑐𝑜𝑣(𝑥, 𝑦) =

1

𝑛 − 1
∑ [

𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑥𝑦 𝑚𝑦𝑦
]

𝑛

𝑖=1

(3.1)

Table 3.1: Variable definitions for Eq. (3.1).

Variable Definition

𝑚𝑥𝑥 (𝑟𝑖 cos 𝑡𝑖 + 𝑥 − 𝜇𝑥)(𝑟𝑖 cos 𝑡𝑖 + 𝑥 − 𝜇𝑥)
𝑚𝑦𝑦 (𝑟𝑖 sin 𝑡𝑖 + 𝑦 − 𝜇𝑦)(𝑟𝑖 sin 𝑡𝑖 + 𝑦 − 𝜇𝑦)

𝑚𝑥𝑦 (𝑟𝑖 cos 𝑡𝑖 + 𝑥 − 𝜇𝑥)(𝑟𝑖 sin 𝑡𝑖 + 𝑦 − 𝜇𝑦)

𝑟𝑖 Radius of the arc at point i

𝑡𝑖 Angle of point i with respect to the sensor

𝑥 X position of the sensor

𝑦 Y position of the sensor

𝜇𝑥 Mean x value

𝜇𝑦 Mean y value

This results in the following error covariance matrix where σ is the standard deviation:

 𝑐𝑜𝑣(𝑥, 𝑦) = [
𝜎𝑥

2 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦
2] (3.2)

This covariance matrix is then used to define the corresponding error ellipse as described in the

next section.

An example of a covariance matrix calculation uses the sensor defined in the previous

section. Here, x is 3 m, y is 1 m, µx is 3 m, µy is 6 m, ri ranges from 4 to 6 m, and ti ranges from 80

to 100 degrees. Substitute these values into Eq. (3.1) to obtain the following covariance matrix:

 𝑐𝑜𝑣(𝑥, 𝑦) = [0.2613 0
0 0.3636

] (3.3)

38

3.2.2. Sensor Error Ellipses

The semi-major and semi-minor axes of the error ellipses for each sensor are derived from the

eigenvalues of their covariance matrices as shown in the following equations, adapted from

Schubert and Kirchner [36]:

𝑎 = √𝜒2

2 ∙ 𝜆1
(3.4)

𝑏 = √𝜒2

2 ∙ 𝜆2
(3.5)

Here, a is the semi-major axis of the error ellipse, b is the semi-minor axis of the error ellipse, λi

are the eigenvalues of the covariance matrix found in Eq. (3.2), and 𝜒2
2 is the chi-squared

distribution with two degrees of freedom. In the work presented here, a 60% probability

distribution was desired so the corresponding chi-squared value of 1.833 was found in [37]. The

angle of rotation for the error ellipse was used solely for visualization purposes and was also

determined from the covariance matrix. It is described by the following equation found in [38]:

 𝜔 =
1

2
tan−1(

2𝜎𝑥𝑦

𝜎𝑦
2−𝜎𝑥

2) (3.6)

This angle is the counterclockwise rotation angle of the error ellipse with respect to the y-axis.

For example, using the ellipse from the previous sections, we know that the covariance

matrix is given in Eq. (3.3). The eigenvalues of the covariance matrix are found by solving for λ in

the following equation [39]:

 |𝑐𝑜𝑣(𝑥, 𝑦) − λ × 𝐼2×2| = 0 (3.7)

39

This results in λ1 = 0.2609 and λ2 = 0.3378. Thus, the semi-major and semi-minor axes are

defined as follows:

 semi-minor: 𝑥 = √1.833 ∙ 0.2609 = 0.6915 (3.8)

 semi-major: 𝑦 = √1.833 ∙ 0.3378 = 0.7869

(3.9)

Next, substitute the values of the covariance matrix from Eq. (3.3) into Eq. (3.6) to obtain an

angle of rotation of 0 degrees. The resultant covariance error ellipse is shown in Figure 3.6.

Figure 3.6: Error ellipse of the example sensor.

3.3. Combining Error Ellipses

Once the error ellipse for each sensor in the experiment was determined, the next step was to

find a combined error ellipse for all sensors in the system. [38] showed that the combined error

ellipse can be found as follows:

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

X (m)

Y
 (m

)

40

𝑐𝑜𝑣𝑐𝑜𝑚𝑏(𝑥, 𝑦) = (∑(𝑐𝑜𝑣𝑖(𝑥,𝑦))

−1
𝑛

𝑖=1

)

−1

(3.10)

The semi-major and semi-minor axes for this combined ellipse were then founding using Eq.

(3.4) and (3.5) as for the individual matrices. In all cases, the error ellipses were assumed to be

centered on the tracked object.

Now, assume two sensors with the same error characteristics as in the examples from the

previous sections. The tracked object is located at (0, 0). Sensor 1 has a heading of 135 degrees

and is located at (3.5355, -3.5355) while Sensor 2 has a heading of 45 degrees and is located at (-

3.5355, -3.5355). This results in the following covariance matrices:

 𝑐𝑜𝑣1(𝑥, 𝑦) = [0.3124 −0.0512
−0.0512 0.3124

] (3.11)

 𝑐𝑜𝑣2(𝑥, 𝑦) = [0.3124 0.0512
0.0512 0.3124

] (3.12)

From these covariance matrices, the semi-major and minor axes are found as described in Eq.

(3.4) and (3.5) while the rotation angles are found as described in Eq. (3.6). The results are

shown in the table below.

Table 3.2: Axes for combining error ellipses example.

 Sensor 1 Sensor 2

Semi-Minor Axis (m) x = 0.6919 x = 0.6919

Semi-Major Axis (m) y = 0.8164 y = 0.8164

Rotation Angle (rad) θ = -0.7854 θ = 0.7854

Next, the covariance matrix of the combined error ellipse is found using Eq. (3.10). The result is

shown below:

41

 𝑐𝑜𝑣𝑐𝑜𝑚𝑏(𝑥, 𝑦) = [0.1520 0
0 0.1520

] (3.13)

The combined ellipse is also centered at the location of the tracked object. The semi-minor and

semi-major axes and rotation angle for the combined error ellipse is found in the same manner

as for each of the individual error ellipses. The results are shown in Table 3.3. A plot of both the

error ellipses and the combined error ellipse is shown in Figure 3.7.

Table 3.3: Axes for the combining error ellipses example.

 Combined Ellipse

Semi-Minor Axis (m) x = 0.5278

Semi-Major Axis (m) y = 0.5278

Rotation Angle (rad) θ = 0

Figure 3.7: Two error ellipses and their combined error ellipse.

3.4. Configuration Optimization

Finally, the optimal geometric tracking configuration is found by minimizing the area of the

combined ellipse, found by Eq. (3.14).

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

X (m)

Y
 (m

)

Ellipse 1

Ellipse 2

Combined Ellipse

42

 𝐴𝑟𝑒𝑎 = 𝜋𝑎𝑏 (3.14)

Here, a is the semi-major axis and b is the semi-minor axis [36]. In the example carried out in

this chapter, the area of the combined error ellipse is found to be 0.8752 m2 using Eq. (3.14).

Physically, the smaller the area for the combined error ellipse, the closer the estimated

location of the tracked object will be to the actual location. A closed-form expression for the

area, with inputs of radii from the target, the tracking stations’ headings, the radial errors, and

the angular errors will be discussed in Sections 3.6 through 3.8.

3.5. Theoretical Fixed Radius Curves

For the work presented in this dissertation, the target and the mobile sensor systems were

constrained to move at a maximum speed of 0.315 m/s. Each time step in the following

simulations and experiments was 0.125 s long so a maximum distance of less than 0.04 m could

occur in each time step. Since this distance was on par with the error in the Ultrawide Band

system of (x, y, z) + (±0.05, ±0.07, ±0.39) m used to provide the robot locations, the simplifying

assumption was made that the optimal sensor system configuration could be determined as a

static configuration for each time step with minimal loss of accuracy. An additional simplifying

assumption was made that the cluster center and the tracked object were in the same plane. In

reality, the mobile sensor systems operated at a slightly higher altitude than the tracked object,

but since the mean plane inclination angle was only 2.9 degrees, this was also considered to be

a valid assumption.

To test the optimization theory for fidelity and accuracy, two test cases were used; both

were constrained to a fixed radius of 2.83 m from the tracked object. This distance was chosen

because the optimal viewing distance for the quadrotors used in the physical experiments was

43

between 1.7 m and 3.3 m. A viewing distance of 2.83 m was within the optimal viewing distance

and allowed the quadrotors to be placed 2 m away from the target and 4 m apart. Case 1

featured two identical sensor systems while Case 2 featured one sensor system with a small

angular error but a large radial error and one sensor system with a large angular error but a

small radial error. Both cases had been examined from a geometric perspective and Case 1 had

been explored experimentally in work at Santa Clara University [40]. The smallest estimation

error was found from a geometric perspective by finding the angle of separation between the

sensor systems which resulted in the smallest area of overlapping valid sensor coverage areas

when both sensors were pointed at the same target. It was found that Case 1 had an optimal

sensor system separation of ±90 degrees, as predicted by geometric considerations and [40].

The angle of separation has the same general configuration at 90 degrees and -90 degrees;

however, the positions of the individual sensor systems are reversed. Mathematically, these

configurations are identical. This optimal configuration also matched that used by researchers in

[9]. Case 2 was found to have an optimal separation angle of ±180 degrees as predicted by

geometric considerations. Again, these two configurations are mathematically identical. This

constitutes sufficient validation to test the theory both in simulation and physical experiments.

Note that a fixed radius was used for both tests because it allowed for the examination of

the angle of separation between sensor systems without additional effects from changing

multiple variables. A radius of 2.83 m was chosen for this initial test because it was both a

distance that as practical for later experimental work at Santa Clara University and showed clear

differentiation in the results at each separation angle. The examination of the effects of

changing multiple parameters will be examined in future work.

44

3.5.1. Mathematical Simulation of Two Tracking Stations at a Fixed Radius with

Identical Sensor Systems

The equations developed in this chapter were used to mathematically simulate two tracking

stations at a fixed radius of 2.83 m from the tracked object. The sensors for each tracking station

were identical, as in Case 1, and were given an angular error, εθ, of 5.7 degrees and a radial

error, εr, of 0.4 m to match the quadrotor sensor parameters. In the simulation, the tracking

stations were separated by 0 through 180 degrees and the resulting combined error ellipse area

was found at each point. The curve formed by the area of the combined error ellipse at each

angle of separation, shown in Figure 3.8, was found to have an ideal angle of separation of 90

degrees, as expected from [40] and Case 1.

Figure 3.8: Mathematical simulation of two sensors with a fixed radius of 2.83 m and identical sensors. The

angle along the x-axis is the angle of separation between the two sensors.

0 20 40 60 80 100 120 140 160 180
0.102

0.103

0.104

0.105

0.106

0.107

0.108

0.109

0.11

Angle (deg)

A
re

a
 (

m
2
)

45

This simulation was then repeated at a fixed radius of 30 m to test whether the same ideal

angle of separation would be found at a much greater radius from the tracked object. The

sensor error parameters remained the same: an angular error of 5.7 degrees and a radial error

of 0.4 m. Again, the angle of separation was varied from 0 to 180 degrees and the combined

ellipse area was found for each angle. The resulting curve can be seen in Figure 3.9 and

illustrates the same ideal angle of separation of 90 degrees. There are two notable differences

between this curve and that shown in Figure 3.8. First, the combined ellipses have much greater

area in Figure 3.9, as expected due to the much larger valid sensor coverage areas at greater

distances. Secondly, the curve is much more rounded at greater distances and has a more nearly

flat bottom. This is also expected since the valid sensor coverage areas are much wider that they

are long so their overlapping coverage areas are very similar between 60 and 120 degrees.

However, this curve illustrated that the ideal angle of separation between two identical sensor

systems is 90 degrees for a variety of ranges.

Figure 3.9: Mathematical simulation of two sensors with a fixed radius of 30 m and identical sensors. The

angle along the x-axis is the angle of separation between the two sensors.

0 20 40 60 80 100 120 140 160 180

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Angle (deg)

A
re

a
 (

m
2
)

46

3.5.2. Mathematical Simulation of Two Tracking Stations at a Fixed Radius with

Different Sensor Systems

The equations presented in Sections 3.2 through 3.4 were also used to mathematically simulate

the effect of two tracking stations with different sensor parameters at a fixed radius of 2.83 m.

Sensor 1 was assigned an angular error of 5.7 degrees and a radial error of 0.8 m while Sensor 2

was given an angular error of 10.1 radians and a radial error of 0.4 m. Again, the tracking

stations were separated by 0 to 180 degrees with the resulting combined error ellipse area

calculated at each point. Figure 3.10 shows the resultant curve, which was found to have an

ideal angle of separation at 0 degrees and 180 degrees. A separation angle of 0 degrees is

physically impossible since the sensor systems cannot be collocated, but a separation of 180

degrees represents the same configuration obtained from Case 2 as described above.

Figure 3.10: Two sensors with a fixed radius of 2.83 m and different sensors properties. The angle along the x-

axis is the angle of separation between the two sensors.

0 20 40 60 80 100 120 140 160 180
0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

Angle (deg)

A
re

a
 (

m
2
)

47

Two tracking stations at a fixed radius of 30 m with different sensors were also

mathematically simulated in order to verify that the same ideal angle of separation was valid.

Sensor 1 was assigned an angular error of 5.7 degrees and a radial error of 3.2 m while Sensor 2

was assigned an angular error of 0.8 radians and a radial error of 0.4 m. These values were large

enough that a greater magnitude change was necessary in order to create the significantly

different sensors assumed in this scenario. The resulting curve can be seen in Figure 3.11. This is

the same shape as seen in Figure 3.10 with the same ideal angles of separation of 0 degrees and

180 degrees. The only difference is that the area of the combined covariance ellipse is greater in

magnitude at a distance of 30 m. This is expected due to the larger size of the valid sensor

coverage areas themselves and the larger magnitude of the sensor errors. This simulation again

confirms that this methodology applies to variety of sensor ranges.

Figure 3.11: Two sensors with a fixed radius of 30 m and different sensors properties. The angle along the x-

axis is the angle of separation between the two sensors.

0 20 40 60 80 100 120 140 160 180
15.1

15.15

15.2

15.25

15.3

15.35

15.4

15.45

Angle (deg)

A
re

a
 (

m
2
)

48

3.5.3. Mathematical Simulation of Three Tracking Stations at a Fixed Radius with

Identical Sensor Systems

The equations in Sections 3.2 through 3.4 were also used to mathematically simulate three

tracking stations at a fixed radius of 2.83 m from the tracked object. The sensor parameters

were matched to the quadrotor sensor parameters: the angular error was 5.7 degrees and the

radial error was 0.4 m for each sensor. In all cases with three tracking stations, the first tracking

station was placed directly in front of and facing the tracked object. The remaining two tracking

stations were positioned symmetrically on either side of the first tracking station. The angle of

separation was defined as the angle between the second and third tracking stations, as shown in

Figure 3.12. In this simulation, the combined error ellipse area was found for angles of

separation between 0 and 360 degrees. The ideal angle of separation was found to be 120

degrees or 240 degrees, which both have the same effective angle of separation between

Sensors 2 and 3, although an angular separation of 120 degrees is easier to use in practice. The

results of the mathematical simulation are shown in Figure 3.13.

Figure 3.12: Definition of the angle of separation for three mobile sensor stations.

49

Figure 3.13: Three sensors with a fixed radius of 2.83 m and identical sensor properties. The angle along the x-

axis is the angle of separation between the two outer sensors.

A variation of this simulation was also performed at a fixed radius of 2.83 m where each

sensor system angle was varied separately, allowing for asymmetric angles of separation. This

produced the contour plot shown in Figure 3.14. Here, there were two angles of separation: the

angle between Sensor 2 and the static Sensor 1 and the angle between Sensor 3 and the static

Sensor 1. These angles of separation were independent of one another. The lowest area of the

combined ellipse occurred in eight places, marked by the smallest blue circles in Figure 3.14.

These areas corresponded to the following angle of separation couplets that represent (Sensor

2, Sensor 3) in degrees: (240, -240), (-240, 240), (120, -120), (-120, 120), (120, 240), (-120, -240),

(240, 120), and (-240 -120). Each of these combinations yielded an angle of separation between

Sensors 2 and 3, as defined in Figure 3.12, of ±240 degrees and represent the same effective

0 50 100 150 200 250 300 350
0.068

0.0685

0.069

0.0695

0.07

0.0705

0.071

0.0715

0.072

0.0725

0.073

Angle (deg)

A
re

a
 (

m
2
)

50

geometric configuration. This confirms that the angle of separation was the global ideal and not

simply and artifact of the definition of the angle of separation.

Figure 3.14: Mathematical simulation results of three tracking stations with the same sensors at a fixed radius

of 2.83 m from the tracked object. This plot shows the area of the combined error ellipses as a function of the angle

of separation between the three mobile tracking stations where each angle of separation is varied separately.

3.5.4. Mathematical Simulation of Three Tracking Stations at a Fixed Radius with

Different Sensor Systems

Finally, the equations presented in Sections 3.2 through 3.4 were used to mathematically

simulate three tracking stations with different sensor systems at a fixed radius of 2.83 m from

the tracked object. The angle of separation was again defined as in Figure 3.12 and only

symmetric configurations were examined. Here, Sensor 1 was given an angular error of 5.7

degrees and a radial error of 0.4 m, Sensor 2 was given an angular error of 5.7 degrees and a

radial error of 0.8 m, and Sensor 3 was given an angular error of 10.1 degrees and a radial error

Angle of Separation Between Sensor 1 and 2 (deg)

A
n
g
le

 o
f

S
e
p
a
ra

ti
o
n
 B

e
tw

e
e
n
 S

e
n
s
o
r

1
 a

n
d
 3

 (
d
e
g
)

-150 -100 -50 0 50 100 150

-150

-100

-50

0

50

100

150

0.0685

0.069

0.0695

0.07

0.0705

0.071

0.0715

0.072

51

of 0.4 m. Again, the tracking stations were separated by 0 through 360 degrees and the resulting

area of the combined error ellipse was found. The ideal of separation was found to consist of a

single value: 180 degrees. Figure 3.15 shows the mathematical simulation results.

Figure 3.15: Mathematical simulation results of three tracking stations with different sensors at a fixed radius

of 2.83 m from the tracked object. This plot shows the area of the combined error ellipse as a function of the angle

of separation between the three mobile tracking stations, as shown in Figure 3.12.

A variation of this simulation was performed where each sensor system angle was varied

independently to allow for asymmetric results. The same fixed radius of 2.83 m was used for all

three sensor systems in this simulation, and the resulting contour plot can be seen in Figure

3.16. As in Section 3.5.3, the two independent angles of separation were defined as the angle

between Sensor 2 and Sensor 1 and the angle between Sensor 3 and Sensor 1. The minimum of

this plot occurred in four places, marked by the darkest blue circles in Figure 3.16, and were

centered on the following couplets: (-90 -90), (90, 90), (-90, 90), and (90, -90). The first two

0 50 100 150 200 250 300 350
0.091

0.092

0.093

0.094

0.095

0.096

0.097

0.098

0.099

0.1

Angle (deg)

A
re

a
 (

m
2
)

52

couplets are not physically possible as the two sensor systems cannot be collocated, but the

second two couplets both represent a separation angle of 180 degrees, as found in Figure 3.15.

This further confirms that the ideal angle of separation was not merely an artifact of the

definition of the angle of separation.

Figure 3.16: Mathematical simulation results of three tracking stations with different sensors at a fixed radius

of 2.83 m from the tracked object. This plot shows the area of the combined error ellipse as a function of the angle

of separation between the three mobile tracking stations where each angle of separation is varied separately.

3.5.5. Summary of Findings

The mathematical simulations in this section confirm that the ideal angle of separation

calculations hold true for two and three robot configurations. This methodology can

accommodate a variety of sensor system ranges and cases of both identical and non-identical

sensor systems. Specifically, the two robot results demonstrate that the ideal angle of

separation is more heavily dependent on the relative sensor performance than on the radius

Angle of Separation Between Sensor 1 and 2 (deg)

A
n
g
le

 o
f

S
e
p
a
ra

ti
o
n
 B

e
tw

e
e
n
 S

e
n
s
o
r

1
 a

n
d
 3

 (
d
e
g
)

-150 -100 -50 0 50 100 150

-150

-100

-50

0

50

100

150

0.092

0.094

0.096

0.098

0.1

0.102

0.104

53

between the sensor systems and the tracked object. The three drone case with identical sensor

systems verified that the ideal angle of separation of sensor systems is not an artifact of the

definition of the angle of separation, but is truly a property of the sensor systems themselves.

The three drone case with non-identical sensor systems confirmed that the sensor properties

affect the ideal angle of separation calculations.

3.6. Closed-Form Optimization Derivation

In this section, the equations from Sections 3.2 through 3.4 are combined to yield a single

closed-form expression that can be formally optimized. Rather than calculate separate

covariance matrices for each sensor heading, a single covariance matrix was calculated for each

sensor at a heading of 0 degrees with a single fixed radius. This covariance matrix was then

rotated to the desired heading using the matrix rotation formula shown in Eq. (3.15).

[
𝜎𝑥

2 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦
2]

𝜃

= [
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
] [

𝜎𝑥
2 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦
2] [

cos(𝜃) sin(𝜃)

− sin(𝜃) cos(𝜃)
]

(3.15)

The matrix formula used in Eq. (3.15) is a standard formula in dynamics and can be used in this

application since x and y were independent variables.

Next, the sensor covariance matrix at a heading of 0 degrees was calculated symbolically. It

was assumed that x and y were products of the independent variables r (radius from the tracked

object) and t (heading to the tracked object), which were assumed to have a uniform

distribution. Thus:

 𝑥 = 𝑟𝑖 cos(𝑡𝑖) + 𝑥𝑡𝑠𝑛 − 𝜇𝑥 (3.16)

 𝑦 = 𝑟𝑖 sin(𝑡𝑖)+𝑦𝑡𝑠𝑛 − 𝜇𝑦 (3.17)

54

Here, xtsn is the x location of tracking station n, μx is the mean x position of tracking station n, ytsn

is the y location of tracking station n, and μy is the mean y position of tracking station n. At a

heading of 0 degrees, xtsn – μx simplifies to Ri, the radius from the tracking station to the tracked

object, and ytsn – μy simplifies to 0. This is due to the symmetric distribution of the valid sensing

area about the target object and results in the following simplified equations:

 𝑥 = 𝑟𝑖 cos(𝑡𝑖) + 𝑅𝑖 (3.18)

 𝑦 = 𝑟𝑖 sin(𝑡𝑖) (3.19)

However, since the variance of Z + q when q is a constant and Z is a variable is the same as the

variance of Z by the properties of variance [41], the equation for x, for the purpose of calculating

the variance only, can be further reduced to:

 𝑥 = 𝑟𝑖 cos(𝑡𝑖) (3.20)

At a fixed heading of 0 degrees, the values of ri and ti are dependent on the radius of the

tracked object from the tracking station, the radial error, and the angular error of the tracking

station. Consequently, the values of the covariance matrix can be found as follows:

 𝜎𝑥
2 = 𝐸(𝑥1

2)𝐸(𝑥2
2) − (𝐸(𝑥1))

2
(𝐸(𝑥2))

2

= 𝐸(𝑟2)𝐸(cos2(𝜃)) − (𝐸(𝑟))
2
(𝐸(cos(𝜃)))

2

= (∫ (
𝑟2

𝑅𝑖 + 𝜀𝑟 − (𝑅𝑖 − 𝜀𝑟)
)𝑑𝑟

𝑅𝑖+𝜀𝑟

𝑅𝑖−𝜀𝑟

)(∫ (
cos2(𝜃)

𝜀𝜃 − (−𝜀𝜃)
)𝑑𝜃

𝜀𝜃

−𝜀𝜃

)

−(∫ (
𝑟

𝑅𝑖 + 𝜀𝑟 − (𝑅𝑖 − 𝜀𝑟)
) 𝑑𝑟

𝑅𝑖+𝜀𝑟

𝑅𝑖−𝜀𝑟

)

2

((∫ (
cos(𝜃)

𝜀𝜃 − (−𝜀𝜃)
) 𝑑𝜃

𝜀𝜃

−𝜀𝜃

))

2

= (𝑅𝑖
2 +

𝜀𝑟
2

3
)

1

2𝜀𝜃
(𝜀𝜃 +

1

2
sin(2𝜀𝜃)) −

𝑅𝑖
2

𝜀𝜃
2 sin2(𝜀𝜃)

(3.21)

In this equation, x1 = r and x2 = cos(θ).

55

 𝜎𝑦
2 = 𝐸(𝑦1

2)𝐸(𝑦2
2) − (𝐸(𝑦1))

2
(𝐸(𝑦2))

2

 𝐸(𝑟2)𝐸(sin2(𝜃)) − (𝐸(𝑟))
2
(𝐸(sin(𝜃)))

2

= (∫ (
𝑟2

𝑅𝑖 + 𝜀𝑟 − (𝑅𝑖 − 𝜀𝑟)
)𝑑𝑟

𝑅𝑖+𝜀𝑟

𝑅𝑖−𝜀𝑟

)(∫ (
sin2(𝜃)

𝜀𝜃 − (−𝜀𝜃)
)𝑑𝜃

𝜀𝜃

−𝜀𝜃

)

−(∫ (
𝑟

𝑅𝑖 + 𝜀𝑟 − (𝑅𝑖 − 𝜀𝑟)
) 𝑑𝑟

𝑅𝑖+𝜀𝑟

𝑅𝑖−𝜀𝑟

)

2

((∫ (
sin(𝜃)

𝜀𝜃 − (−𝜀𝜃)
) 𝑑𝜃

𝜀𝜃

−𝜀𝜃

))

2

= (𝑅𝑖
2 +

𝜀𝑟
2

3
)

1

2𝜀𝜃
(𝜀𝜃 −

1

2
sin(2𝜀𝜃))

(3.22)

In Eq. (3.22), y1 = r and y2 = sin(θ).

𝜎𝑥𝑦 = 𝐸(𝑥𝑦) − 𝐸(𝑥)𝐸(𝑦)

= ∫ ∫
1

2𝜀𝜃

1

2𝜀𝑟

(𝑟2 sin(𝜃) cos(𝜃) + 𝑅𝑖𝑟 sin(𝜃))𝑑𝜃𝑑𝑟
𝜀𝜃

−𝜀𝜃

𝑅𝑖+𝜀𝑟

𝑅𝑖−𝜀𝑟

−(∫ ∫
1

2𝜀𝜃

1

2𝜀𝑟

(𝑟 cos(𝜃) + 𝑅𝑖)𝑑𝜃𝑑𝑟
𝜀𝜃

−𝜀𝜃

𝑅𝑖+𝜀𝑟

𝑅𝑖−𝜀𝑟

) ∗

(∫ ∫
1

2𝜀𝜃

1

2𝜀𝑟

(𝑟 sin(𝜃))𝑑𝜃𝑑𝑟
𝜀𝜃

−𝜀𝜃

𝑅𝑖+𝜀𝑟

𝑅𝑖−𝜀𝑟

)

= 0 − 𝑅𝑖 ∗ 0
= 0

(3.23)

These equations allow for the direct calculation of the covariance matrix for each sensor system

as shown in Eq. (3.2).

3.7. Two Robot Closed-Form Optimization

Next, the individual covariance matrices were rotated as shown in Eq. (3.15) and substituted

into Eq. (3.10) to obtain the combined covariance matrix. The resulting equation allows for the

direct calculation of this combined covariance matrix using only the tracking stations’ radii,

headings, and associated errors, reducing the number of calculations necessary. For the case

with two tracking stations, the combined covariance matrix can be directly calculated using the

following equation:

56

𝑐𝑜𝑣𝑐𝑜𝑚𝑏(𝑥, 𝑦) =
(𝜎𝑥)1

2(𝜎𝑦)
1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2

𝐴𝐶 − 𝐵2 [
𝐶 −𝐵

−𝐵 𝐴
]

(3.24)

Here, A, B, and C are defined as follows:

 𝐴 = (𝜎𝑥)2
2(𝜎𝑦)

2

2
(sin2(𝜃1) (𝜎𝑥)1

2 + cos2(𝜃1)(𝜎𝑦)
1

2
) +

(𝜎𝑥)1
2(𝜎𝑦)

1

2
(sin2(𝜃2) (𝜎𝑥)2

2 + cos2(𝜃2)(𝜎𝑦)
2

2
)

(3.25)

 𝐵 = sin(𝜃1) cos(𝜃1) (𝜎𝑥)2

2(𝜎𝑦)
2

2
((𝜎𝑦)

1

2
− (𝜎𝑥)1

2) +

sin(𝜃2) cos(𝜃2) (𝜎𝑥)1
2(𝜎𝑦)

1

2
((𝜎𝑦)

2

2
− (𝜎𝑥)2

2)
(3.26)

 𝐶 = (𝜎𝑥)2

2(𝜎𝑦)
2

2
(cos2(𝜃1) (𝜎𝑥)1

2 + sin2(𝜃1)(𝜎𝑦)
1

2
) +

(𝜎𝑥)1
2(𝜎𝑦)

1

2
(cos2(𝜃2) (𝜎𝑥)2

2 + sin2(𝜃2)(𝜎𝑦)
2

2
)

(3.27)

Finally, the eigenvalues were found for Eq. (3.24) and the corresponding semi-major and semi-

minor axes were found using Eq. (3.4) and (3.5). These values were then substituted into Eq.

(3.14) to obtain a single objective function for two tracking stations that could be minimized in

order to find the optimal tracking configuration.

𝐴𝑟𝑒𝑎 =
𝜋𝜒2

2(𝜎𝑥)1
2(𝜎𝑦)

1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2

2(𝐴𝐶 − 𝐵2)
∗ √𝐴 + 𝐶 + √(𝐴 − 𝐶)2 + 4𝐵2 ∗

√𝐴 + 𝐶 − √(𝐴 − 𝐶)2 + 4𝐵2

(3.28)

A, B, and C are defined in Eq. (3.25) through (3.27) above and 𝜒2
2 is the chi-squared distribution

with two degrees of freedom as used in Eq. (3.4) and (3.5).

3.8. Three Robot Closed-Form Optimization

The same process was followed to obtain the closed-form single objective function for the three

robot case: combine the individual sensor covariance matrices using Eq. (3.10) to obtain the

following combined error covariance matrix:

57

𝑐𝑜𝑣𝑐𝑜𝑚𝑏(𝑥, 𝑦) =
(𝜎𝑥)1

2(𝜎𝑦)
1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2
(𝜎𝑥)3

2(𝜎𝑦)
3

2

𝐺𝐻 − 𝐾2 [
𝐻 −𝐾

−𝐾 𝐺
]

(3.29)

G, H, and K are defined as follows:

 𝐺 = (𝜎𝑥)2
2(𝜎𝑦)

2

2
(𝜎𝑥)3

2(𝜎𝑦)
3

2
(sin2(𝜃1) (𝜎𝑥)1

2 + cos2(𝜃1)(𝜎𝑦)
1

2
) +

(𝜎𝑥)1
2(𝜎𝑦)

1

2
(𝜎𝑥)3

2(𝜎𝑦)
3

2
(sin2(𝜃2) (𝜎𝑥)2

2 + cos2(𝜃2)(𝜎𝑦)
2

2
) +

(𝜎𝑥)1
2(𝜎𝑦)

1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2
(sin2(𝜃3) (𝜎𝑥)3

2 + cos2(𝜃3)(𝜎𝑦)
3

2
)

(3.30)

 𝐾 = sin(𝜃1) cos(𝜃1) (𝜎𝑥)2

2(𝜎𝑦)
2

2
(𝜎𝑥)3

2(𝜎𝑦)
3

2
((𝜎𝑦)

1

2
− (𝜎𝑥)1

2) +

sin(𝜃2) cos(𝜃2) (𝜎𝑥)1
2(𝜎𝑦)

1

2
(𝜎𝑥)3

2(𝜎𝑦)
3

2
((𝜎𝑦)

2

2
− (𝜎𝑥)2

2) +

sin(𝜃3) cos(𝜃3) (𝜎𝑥)1
2(𝜎𝑦)

1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2
((𝜎𝑦)

3

2
− (𝜎𝑥)3

2)

(3.31)

 𝐻 = (𝜎𝑥)2

2(𝜎𝑦)
2

2
(𝜎𝑥)3

2(𝜎𝑦)
3

2
(cos2(𝜃1) (𝜎𝑥)1

2 + sin2(𝜃1)(𝜎𝑦)
1

2
) +

(𝜎𝑥)1
2(𝜎𝑦)

1

2
(𝜎𝑥)3

2(𝜎𝑦)
3

2
(cos2(𝜃2) (𝜎𝑥)2

2 + sin2(𝜃2)(𝜎𝑦)
2

2
) +

(𝜎𝑥)1
2(𝜎𝑦)

1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2
(cos2(𝜃3) (𝜎𝑥)3

2 + sin2(𝜃3)(𝜎𝑦)
3

2
)

(3.32)

The eigenvalues from Eq. (3.29) were substituted into Eq. (3.14) to obtain a single objective

function that could be minimized to find the optimal tracking configuration with three tracking

stations as seen below:

𝐴𝑟𝑒𝑎 =
𝜋𝜒2

2(𝜎𝑥)1
2(𝜎𝑦)

1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2
(𝜎𝑥)3

2(𝜎𝑦)
3

2

2(𝐺𝐻 − 𝐾2)

∗ √𝐺 + 𝐻 + √(𝐺 − 𝐻)2 + 4𝐾2 ∗

√𝐺 + 𝐻 − √(𝐺 − 𝐻)2 + 4𝐾2

(3.33)

Here, G, H, and K are as defined in Eq. (3.30) through (3.32) and 𝜒2
2 is the chi-squared

distribution with two degrees of freedom as used in Eq. (3.4) and (3.5).

3.9. Closed-Form Theoretical Constrained Optimization

The closed-form area equations presented in the last two sections were optimized using a

constrained Hooke and Jeeves method. While this method may produce a locally optimal

58

solution rather than a globally optimal solution [33], the scenarios examined in this research

featured locally optimal solutions that were also globally optimal solutions, so this was not an

issue.

The inputs for the objective functions in Eq. (3.28) and (3.33) were the sensor radial error

and sensor angular error, which were both held constant, and the radii and heading between

each sensor and the tracked object. The last two inputs were varied while the heading was

allowed to take any value since θ ± 360 degrees is equivalent to θ. The radii were constrained to

be within the observable range of the sensors. In this case, these bounds were set at a minimum

of 1.7 m and a maximum of 4 m to match the quadrotor camera viewing distances. The Hooke

and Jeeves method was modified to include these bounds by placing a penalty of 100 times the

objective function output on any input that violated these bounds. The Matlab script [42] used

in this optimization can be found in Appendix B.

Table 3.4: Inputs for a bounded 2D area for two sensors with identical properties.

Input Value

Radius of sensor 1
(m)

4

Sensor 1 radial error
(m)

0.4

Heading of sensor 1
(deg)

0

Sensor 1 angular
error (deg)

5.7

Radius of sensor 2
(m)

4

Sensor 2 radial error
(m)

0.4

Heading of sensor 2
(deg)

0

Sensor 2 angular
error (deg)

5.7

59

To show how this optimization method works, two identical sensors with restricted two-

dimensional boundaries were examined. As in Section 3.5.1, the sensors were given radial and

angular errors of 0.4 m and 5.7 degrees, respectively. The initial input for each sensor was a

radius of 4 m and a heading of 0 degrees. This resulted in the inputs shown in Table 3.4. Since

only two sensors were used, Eq. (3.28) was the objective function. The results are shown in

Table 3.5.

Table 3.5: Output for a bounded 2D area for two sensors with identical properties.

Input Value

Radius of sensor 1
(m)

1.7

Sensor 1 radial error
(m)

0.4

Heading of sensor 1
(deg)

135

Sensor 1 angular
error (deg)

5.7

Radius of sensor 2
(m)

1.7

Sensor 2 radial error
(m)

0.4

Heading of sensor 2
(deg)

-135

Sensor 2 angular
error (deg)

5.7

 This means that the sensors yield the best results when they are as close as possible to

the tracked object and have a separation angle of 90 degrees, matching the result obtained in

Section 3.5.1 as expected. The algorithm can then be incorporated into the cluster controller as

described in Section 3.10.

Three identical sensors with restricted two-dimensional boundaries were also examined. All

sensors were given radial and angular errors of 0.4 m and 5.7 degrees, respectively, and an

60

initial radius of 4 m and a heading of 0 degrees. Eq. (3.33) was the objective function and

resulted in an ideal angle of separation of 120 degrees, also matching the results in Section 3.5.3

as expected.

The Hooke and Jeeves method has the added benefit that its computation time scales

linearly with the number of inputs [33]; the space complexity is O(n), so the number of robots

can easily be increased. Specifically, the two robot case presented here computed on a

conventional Pentium-class workstation with a 2.10 GHz processor and 4.00 GB of RAM in about

0.14 second while the result for the three robot case computed in 0.33 second. Both of these

computation times are more than fast enough to correct a system under disturbances such as

loss of a sensor system, changing sensor properties, or changing radii. If faster response times

are desired, it is possible to pre-compute the optimal angle of separation for likely scenarios,

reserving online computations for unforeseen changes.

Compared to the symmetric, non-optimized worst case examined by this research, the

optimization method presented here results in a 6% target estimation improvement for both

the two and three fixed radius, identical sensor cases. This represents a significant improvement

in the estimation of a target’s location.

The method of sensor placement examined in this research was also compared to existing

sensor placement optimization methods. Although similar to the method presented in [11], it

cannot be directly compared since [11] assumed a covariance matrix produced by a Kalman

filter. The method presented here does not use a Kalman filter, so the algorithm developed in

[11] does not apply. Instead, this method is compared with the method presented in [43] and

[44] where the determinate of the error covariance matrix was minimized. In this method, the

global covariance matrix was defined as follows:

61

𝑑𝑒𝑡(𝑃𝑔𝑙𝑜𝑏𝑎𝑙) = 𝑑𝑒𝑡 ((∑𝑃𝑖
−1

𝑛

𝑖=1

)

−1

)

(3.34)

Here, n is the total number of sensor systems and P is the error covariance matrix. Since Pglobal is

defined as in Eq. (3.10), a direct comparison between the methods can be found, for two mobile

tracking stations, by taking the determinant of Eq. (3.24) in Section 3.7.

𝑑𝑒𝑡 (
(𝜎𝑥)1

2(𝜎𝑦)
1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2

𝐴𝐶 − 𝐵2 [
𝐶 −𝐵

−𝐵 𝐴
])

=
((𝜎𝑥)1

2(𝜎𝑦)
1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2
)
2

𝐴𝐶 − 𝐵2

(3.35)

In the case of a fixed radius and identical sensor systems examined here, Eq. (3.21) and (3.22)

show that (𝜎𝑥)1
2 = (𝜎𝑥)2

2 and (𝜎𝑦)
1

2
= (𝜎𝑦)

2

2
 for the fixed radius, identical sensor system case.

Finally, the assumption can be made that θ1 = -θ2 since any symmetric separation of angles

yields the same result in the method presented here. Thus, AC –B2 reduces to:

 𝐴𝐶 − 𝐵2 = 2𝜎𝑥
2𝜎𝑦

2(𝜎𝑥
2 + 𝜎𝑦

2) (3.36)

Equation (3.36) consists only of 𝜎𝑥

2 and 𝜎𝑦
2 terms, which were shown in Section 3.6 to always

have the same value. Thus, no minimum can be found for the fixed radius, identical sensor

system case using the determinate method presented in [43] and [44].

The fixed radius, identical sensor system, three mobile tracking station case was also

compared to the determinate method by taking the determinate of Eq. (3.29) from Section 3.8.

𝑑𝑒𝑡 (
(𝜎𝑥)1

2(𝜎𝑦)
1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2
(𝜎𝑥)3

2(𝜎𝑦)
3

2

𝐺𝐻 − 𝐾2 [
𝐻 −𝐾

−𝐾 𝐺
])

=
((𝜎𝑥)1

2(𝜎𝑦)
1

2
(𝜎𝑥)2

2(𝜎𝑦)
2

2
(𝜎𝑥)3

2(𝜎𝑦)
3

2
)
2

𝐺𝐻 − 𝐾2

(3.37)

62

Again, the 𝜎𝑥
2 and 𝜎𝑦

2 terms are the same for each sensor with identical properties at a fixed

radius. Using the definition of the separation of angles presented here, θ1 = 0 degrees and θ2 = -

θ3 since, once again, any symmetric angle distribution yields the same results. Thus, GH-K2

reduces to the following:

 𝐺𝐻 − 𝐾2 = (𝜎𝑥
2)4(𝜎𝑦

2)
4
∗ (2(𝜎𝑥

2)2 + 5𝜎𝑥
2𝜎𝑦

2 + 2(𝜎𝑦
2)

2
) (3.38)

Even in the case of three mobile tracking stations, the determinate method presented in [43]

and [44] fails to yield a result. Thus, the method presented here can be applied in cases where

the determinate method fails.

3.10. Formation Control

This aspect of formation control can be integrated into the cluster controller shown in Figure 2.2

in order to maintain the optimized formation under changing circumstances. The resultant

controller is shown in Figure 3.17. This controller performs similarly to the generic cluster

controller discussed in Section 2.3. The desired cluster positon is compared to the actual cluster

position, in cluster space, and passed through a PID controller to obtain the cluster command

velocity, also in cluster space. This is passed through the inverse Jacobian in order to obtain the

command velocity in robot space. The velocity is then broken down into the command velocities

for each individual robot and implemented. The resultant robot positions are measured and fed

through the forward kinematics in order to obtain the cluster position in cluster space for

comparison with the desired cluster positon. The difference is that in the optimal geometry

cluster controller, the measured robot positions are also passed through the cluster

63

configuration manager which determines the desired cluster position. This control method will

be expanded further in the following chapter.

Figure 3.17: Optimal geometry cluster controller for n robots.

64

Chapter 4

4. Vision Processing

Robots need to gather information about the world around them in order to successfully track

an object. This is accomplished through the use of sensors, here, cameras, which take in a wide

array of information about the world around the robot. The information is then processed and

formatted in a manner that the controller can interpret and used to determine the cluster’s

desired location. The specific steps in this process are detailed in this chapter.

4.1. Literature Survey

There are a wide variety of ways to extract location information from camera data. For example,

the authors of [45] used a background subtraction method combined with depth segmentation

in order to determine the location of a human in an indoor environment. Once background

subtraction was performed, the foreground image blobs were run through a size filter and all

blobs that did not match human size and aspect parameters were rejected. Next, depth was

used to filter the remaining background from the human image by rejecting all pixels that did

not cluster at the corresponding depth. This method was able to locate a human in an indoor

environment quite accurately. However, it required the use of a depth sensor, which was not

available on the AR.Drone 1.0 quadrotors.

 In [46], the authors used a single commercially available camera mounted on a quadrotor to

detect moving targets. In this method, static objects in the camera images were used as points

of reference. The dynamic pixels in each image were then grouped into dynamic objects which

could be tracked by the quadrotor. While this method resulted in accurate tracking, it was

deemed to be more complex than required for the application presented in this dissertation.

65

Another method of vision processing is filtering the camera image for a single color. This

method works best when the tracked object is a different color than its surroundings. In [47],

color segmentation was used to identify a hand in a camera image. These hand images were

classified into one of six gestures and used to communicate preplanned trajectories to a group

of robots. Studio Diip also used this method to track its goldfish for the Fish on Wheels project

[48]. This project was an effort to demonstrate the possibilities of computer vision using existing

simple hardware [49] and located a goldfish against the plain white background of the floor of a

fish tank. Its motion was then used to guide the motion of the tank. For example, if the fish

swam to the right of the tank, the tank rolled to the right.

Figure 4.1: Studio Diip's Fish on Wheels project together with its vision processing result [49].

The work presented in this dissertation uses a similar method of vision processing; it tracks

the target object by locating the center of the red blob in each video image. The specifics of this

implementation will be further discussed in the following sections of this chapter.

4.2. Available Data

The AR.Drones come equipped with two onboard cameras that can be viewed in real-time

through the onboard wireless connection. The first camera is mounted on the “nose” of the

66

quadrotor and is a 93° wide-angle diagonal lens. The second camera is mounted on the bottom

of the quadrotor and is a 64° diagonal lens [50]. These cameras can be seen in Figure 4.2. The

camera image is in RGB color and is updated at a frequency of about 30 Hz [51]. It is possible to

obtain data from both cameras at once, but the data obtained from a single camera angle was

more than sufficient for the purposes of this study. Initially, the bottom-mounted camera was

thought to provide the best data. The top of the Pioneer is dark and has distinctive electronics

mounted on it, making it easy to find against the light background of the test area. However, the

test area also features low-hanging lights that limit the height of the quadrotor to less than two

meters. At this height, the angle of the camera does not allow much margin for error in tracking

the Pioneer; the camera can only see approximately 0.3 m to either side of the Pioneer. This

gives the advantage to the front-mounted camera which has a wider angle and allows the

quadrotor to be positioned as far away from the Pioneer as necessary in order to obtain a

sufficient view. In practice, this distance is two to three meters away. Sample images of the

Pioneers from both angles can be seen in Figure 4.3.

Figure 4.2: Camera locations on the AR.Drone version 1.0.

67

Figure 4.3: Pioneer viewing options. Left: View from the top. Right: View from the side.

4.3. The Influence of the Data Transmission Rate

Figure 4.4: Flowchart of the vision processing algorithm.

The camera data is updated at a rate of about 30 Hz [51], faster than the 8 Hz rate at which the

controller sends out a new command. The camera data also contains far more information than

68

is necessary for this application where the crucial information is the Pioneer’s location relative

to the quadrotor. Further, transmitting the RGB image over DataTurbine, a modified version of

open-source software used at SCU’s RSL, takes approximately five minutes for a single still

image. This is far too long for the purpose of creating a controller, so the camera data was

simplified to identify only the Pioneer using the method shown in Figure 4.4.

4.4. Vision Data Simplification

The camera data was initially simplified by considering what made the Pioneer stand out from

its surroundings and made it recognizable as the object to be tracked. As stated above, the test

area featured a light-colored floor, a dull-colored ceiling, and was surrounded by few brightly

colored-objects. An initial view of the Pioneer as seen from the quadrotor is shown below in

Figure 4.5. As can be seen in this image, the Pioneer is a bright red while very few of the

surrounding objects have the same color. Thus, the computer finds the Pioneer based on the

amount of pure red in the image. The computer represents each pixel in the image as an RGB

value, but the pixels with the highest R values do not necessarily correspond to the areas that

are the brightest red. To filter out the high red values that actually represent colors such as

white or tan, the following equation was used:

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑔𝑟𝑒𝑒𝑛 𝑣𝑎𝑙𝑢𝑒)2 + (𝑏𝑙𝑢𝑒 𝑣𝑎𝑙𝑢𝑒)2 (4.1)

Once this distance was found, only pixels that had both a red value greater than 35 and a

distance less than 35 were labeled as “red” pixels. In other words, only pixels with colors very

close to pure red were labeled “red”. These pixels were given the maximum red value of 255

while the red value of all other squares was set to zero.

69

Figure 4.5: Image of the Pioneer inside the test area taken by the quadrotor's onboard forward-mounted

camera, as displayed in Matlab.

The image was then progressively simplified in order to find an image that conveyed the

necessary information and could be transmitted at a fast enough rate from the quadrotor to the

controller. The steps of this simplification process can be seen in Figure 4.6. The resolution level

finally chosen was a grid 16 squares long and 12 squares tall where each square represents a

20x20 grid of pixels. The sum of red values for each pixel in a square was given a threshold level

of 15,000 and any square with a sum above this threshold was given a value of one. If a square

did not meet this threshold value, it was given a value of zero. Thus, only 24 bytes of data

needed to be sent from Java to Matlab via DataTurbine rather than the 76,800 bytes necessary

for the full color image. These 24 bytes consist of binary values that are assembled into a

corresponding matrix and are then displayed in Matlab as shown in the black and white images

in Figure 4.6 and Figure 4.7. The values of one correspond to the white areas while the values of

zero correspond to the black areas, with the white areas representing the Pioneer.

70

Figure 4.6: Progressive image simplification. Row 1 from left to right: Pioneer as seen from nominal flight distance

by the human eye, Pioneer at nominal flight distance as seen by the quadrotor's forward-facing camera, Pioneer at

nominal flight distance with a full pixel resolution of the “red” areas. Row 2 from left to right: Pioneer as seen from

nominal flight distance where each square represents a grid of 5 by 5 pixels, Pioneer as seen from nominal flight

distance where each square represents a grid of 10 by 10 pixels, Pioneer as seen from nominal flight distance

where each square represents a grid of 20 by 20 pixels.

Once the Pioneer was “seen” by the camera, the Pioneer’s location with respect to the

quadrotor was determined using two distances: the downrange distance in front of the camera,

D, and the lateral distance from the center of the image, ydist. These distances can be seen in

Figure 4.8. The number of pixels representing the Pioneer was used to find the downrange

distance D while the lateral distance ydist was found from the centroid of the white squares in

the image.

71

Figure 4.7: The Pioneer as "seen" by the controllers from one meter away.

Figure 4.8: Distance explanation.

D is found using the following equation, found by curve fitting experimental data (see

Appendix C):

𝐷 = 𝑙𝑛 (

23

𝑛
)

(4.2)

Here, n is the number of white pixels in the image. The use of the relative size of a known object

at various distances to determine the distance of an object from the observer is similar to how

72

the human eye determines distances [52]. If the quadrotor does not “see” the Pioneer, a value

of D = 0 is used.

The first step in calculating ydist is to find the center of the Pioneer by taking the mean of the

indices where the white pixels occur. Using Figure 4.7 as an example, the mean position is (4.1,

8.9). The first value is ignored since the physical space used in the experiments does not allow

the quadrotors much ability to move up and down. The second value, however, is used to

determine how far to the right or left the Pioneer is with respect to the camera. A value of eight

means that the camera is perfectly aligned with the Pioneer, a value of zero to eight means that

the camera is to the left of the Pioneer, and a value of eight to 16 means that the camera is to

the right of the Pioneer.

Next, the distance per pixel is calculated using the distance D, as shown in Eq. (4.3). This

value is then used in Eq. (4.4) to find ydist.

(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙) =
𝐷 sin (

53.13𝜋
180

)

16

(4.3)

 𝑦𝑑𝑖𝑠𝑡 = (𝑦𝑐𝑒𝑛𝑡𝑒𝑟 − 8) × (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙) (4.4)

In Eq. (4.4), ycenter is the y value of the white area’s centroid. Physically, this represents the

signed distance, in pixels, of the object from the image center times the physical distance

represented by each pixel. Together, D and ydist specify the location of the Pioneer with respect

to the camera.

73

4.5. Finding the Cluster-Level Position Estimate of the Pioneer

In multi-quadrotor clusters, each quadrotor is equipped with its own camera and finds its own

relative estimate of the Pioneer position. This relative estimate is then converted to a global

estimate by adding the location of the quadrotor to the relative Pioneer position, converted into

the global coordinate frame, as shown in Eq. (4.5) below.

[
𝑥𝑛𝑒𝑤

𝑦𝑛𝑒𝑤
] = [

cos 𝜃𝑖 sin 𝜃𝑖

sin 𝜃𝑖 −cos 𝜃𝑖
] [

𝐷
𝑦𝑑𝑖𝑠𝑡

] + [
𝑥𝑖

𝑦𝑖
]

(4.5)

Here, θi is the yaw angle of the quadrotor in the global frame and (xi, yi) is the location of the

quadrotor in the global frame. The mean of these individual estimates is then passed through a

Kalman filter and used to find the new cluster center. A flowchart of the Kalman filter algorithm

can be seen in Figure 4.9 where x is the state estimate [x y ẋ ẏ]T and is updated by A, defined in

Eq. (4.6), which assumes a constant velocity and updates the position based on the distance

travelled in a single time step of 0.125 second. P is the estimate covariance, Q is the process

noise covariance and is defined in Eq. (4.7) based on a 10% process error. A larger error was

used for the velocity in the y direction since this was the only axis the Pioneer could move along

and had a greater uncertainty as the Pioneer sometimes stopped or reversed direction. K is the

Kalman gain; C is defined in Eq. (4.8) and is used to measure only the position. R is the

measurement noise covariance matrix defined in Eq. (4.9). The noise for position was based on

the maximum error found during experimentation while the noise for velocity assumed a worst

case scenario and doubled the maximum position errors found during experimentation. Finally,

z is the measured stated positon and I is the identity matrix.

𝐴 = [

1 0
0 1

0.125 0
0 0.125

0 0
0 0

1 0
0 1

]

(4.6)

74

𝑄 = [

0.005 0
0 0.005

0 0
0 0

0 0
0 0

0.005 0
0 0.05

]

(4.7)

𝐶 = [

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

]

(4.8)

 𝑅 = [

0.37 0
0 0.27

0 0
0 0

0 0
0 0

0.74 0
0 0.54

]

(4.9)

This method allows for the use of different sensors on each quadrotor and means that if one of

the quadrotors or its sensor is lost, the cluster can continue to track the Pioneer.

Figure 4.9: Kalman filter algorithm, adapted from [53].

In a two quadrotor cluster, the cluster center is specified to have the same x position as the

Pioneer and a y position a fixed distance behind the Pioneer. The p, φi, and standoff distance are

75

specified to allow optimal viewing of the Pioneer by each quadrotor, as determined using the

method described in Chapter 3. This setup is shown in Figure 4.10.

Figure 4.10: Optimal configuration of a two quadrotor tracking cluster.

4.6. Tracking Control

A final addition to the cluster controller discussed in Sections 2.3 and 3.10 is the development of

a tracking module. The block diagram of this cluster controller is shown in Figure 4.11. Again,

this controller works similarly to the generic cluster controller, the difference being the addition

of a tracked object that is not under the control of the cluster controller. Here, the desired and

actual cluster positions, in cluster space, are compared and passed through a PID controller in

order to obtain the command velocity in cluster space. This command velocity is then passed

through the inverse Jacobian in order to obtain the command velocity in robot space, which is

then broken down into the individual robot components and implemented by the robots. The

actual robot positions are measured using an UltraWide Band (UWB) network and radio

76

frequency identifier (RFID) tags while the target is measured using the robots’ onboard sensors.

The actual robot positon, in robot space, is fed through the forward kinematics in order to

obtain the actual cluster position in cluster space, just as in the generic cluster controller.

Figure 4.11: Tracking and optimal geometry cluster controller.

However, the position of the tracked object is fed through a Kalman filter, as described in

Section 0. This filtered position estimate, along with the actual robot positions in robot space,

are then passed through the cluster configuration manager in order to obtain the optimal

tracking geometry. The addition of the target position information allows the cluster

configuration manager to adapt more easily to changes in the tracked object’s position, allowing

this methodology to track moving objects as well as stationary objects.

77

Chapter 5

5. Experimental Testbed

This chapter provides an overview of the testbeds used in this research. The first testbed

consists of a two quadrotor, single Pioneer system while the second testbed consists of a three

quadrotor, single Pioneer system. A more detailed description of the system can be found in

Appendix D and in [54].

5.1. System Overview

Figure 5.1: Two mobile tracking stations testbed hardware layout.

The testbed used for this research was developed in conjunction with fellow graduate students

[55][56][57]and was designed to serve as a proof-of-concept testbed. A physical layout of the

hardware used can be seen in Figure 5.1 and Figure 5.2. There are four main components of

both testbeds: the quadrotor mobile tracking stations, the Pioneer tracked object, the sensing

78

system, and the software. Each of these components will be discussed in detail in the following

sections.

Figure 5.2: Three mobile tracking stations testbed hardware layout.

5.2. Quadrotor Mobile Tracking Stations

Parrot’s AR.Drone 1.0 quadrotors were used as the mobile tracking stations in this dissertation

and can be seen in Figure 5.3. These quadrotors are a hobby class aerial vehicle designed to be

controlled via mobile phone [50]. They have a total of four degrees of freedom (DOF): three

translational and one rotational. Drone movement is constrained translationally along the

robot’s local x, y, and z axis and rotationally about the z axis, yaw. Rotation about the x axis, roll,

is coupled with translation about the y axis while rotation about the y axis, pitch, is coupled with

translation along the x axis so these are not true degrees of freedom.

The quadrotor has a maximum speed of 5 m/s and an approximate running time of 15

minutes with no payload. The forward-facing camera, which acts as the mobile sensor in this

testbed, is a 93 degree wide angle diagonal lens [50]. The robot communicates over its own WiFi

79

network; thus, each robot communicates with a separate computer. In the experiments with

two mobile tracking stations, Frodo and Merry [58] (see Figure 5.1) are used as the tracking

station computers while Pippin [58] is used solely to communicate with the Pioneer. In the

experiments with three tracking stations, the only change is that Pippin is used to control two

robots: one quadrotor and one Pioneer. Despite communicating through the same computer,

the robots do not share information with each other.

Figure 5.3: AR.Drone 1.0 overview.

5.3. Pioneer Tracked Object

A Pioneer 3-AT land rover, shown in Figure 5.4, was used as the tracked object in both testbeds.

Only one Pioneer was used in each of the experiments, creating a single target environment.

This robot has a maximum speed of 0.7 m/s and a maximum running time of three hours [59].

The Pioneer has two degrees of freedom: movement along its longitudinal axis and rotation

about its z axis. An attached modem allows the Pioneer to receive commands from the control

computer.

80

Figure 5.4: Pioneer 3-AT land rover overview.

5.4. Sensing System

The location of each of the robots, both the quadrotors and the Pioneer, were measured using a

Sapphire Dart Ultra Wideband (UWB) system, consisting of a series of receivers placed around

the perimeter of the test area at various heights and RFID tags, two of which are used as

reference tags in the test area and two of which are placed on each robot. A picture of a

receiver and an RFID tag is shown in Figure 5.5. Eleven receivers, with three separate “daisy

chain” connections back to the UWB hub, are spaced around the perimeter of the 12 m by 19 m

test area. This placement is shown in Figure 5.6.

Figure 5.5: UWB receiver and RFID tag with a quarter for scale.

81

Figure 5.6: UWB system setup.

The RFID tags transmit at 25 Hz while the receivers triangulate the position of each tag [60].

Each robot has two RFID tags attached: one on its extreme right and one on its extreme left. The

average position of these two tags is used to calculate the position of the robot’s center and

heading. An error analysis for these tags can be found in the detailed system description in

Appendix D.

5.5. Software

DataTurbine was used to make various data accessible on all of the networked computers used

in these testbeds. DataTurbine software allows the user to upload data to a data engine and

download the data to any computer than can connect to the same data engine [61]. In this

testbed, DataTurbine is used across a network of computers with a single instance of

DataTurbine run on Pippin, the Pioneer computer, and all data is sent to or received from this

82

single instance. Figure 5.7 illustrates the software layout used in this testbed. Data from the

sensor system is received on Gollum [58] and imported into Matlab and then uploaded to

DataTurbine and made available to the other computers in the network.

The control computer, Gandalf [58], downloads the robot position data and camera data

from DataTurbine into Simulink, via Matlab and jmatlab (a software bridge between

DataTurbine and Matlab developed at SCU’s RSL [62]), where it runs the controller. The

controller calculates the desired movement of each robot and then uploads individual robot

commands to DataTurbine. In the case of the Pioneer, these robot commands were not

determined by the controller, but by user-input joystick command.

Figure 5.7: Software layout.

83

The individual robot computers download their commands from DataTurbine into Matlab,

again via jmatlab, and send these commands to the robot. For the Pioneer, these commands are

sent through DataTurbine over a modem. For the quadrotors, Javadrone is used to send the

commands. Javadrone is an open source software package that provides a link between the

AR.Drone onboard software and Java [63]. This software package is also used to retrieve camera

data from the quadrotors and upload it to DataTurbine so that it is available to the control

computer.

84

Chapter 6

6. Stationary Results

This chapter presents the physical proof of concept for angle of separation optimization

presented in Chapter 3. The theoretical curves found in Section 3.5 are compared to

experimental results achieved by three types of experiments: simulation, using a Pioneer as the

tracked object, and using an ideal object as the tracked object. In all experiment types, the

quadrotors were stationary in order to test only the effect of the angle of separation without

control system inaccuracies adding a source of error.

6.1. Introduction

The first experiment type tested the optimization theory in simulation to get an idea of what the

real-world application of this theory would look like. Full explanations of the Simulink models

used for the simulations can be found in Appendices E and F for two and three mobile tracking

stations, respectively. In both simulations, the actual quadrotor sensor properties and

limitations were used. In an effort to make the simulation as realistic as possible, the actual

errors in the UWB system, maximum (x, y, z) errors of (±0.35, ±0.32, ±0.85) m, were also added

to the robot position information. This step was taken to confirm that the errors in a physical

system would not be greater than the improved position estimates achieved by changing the

angle of separation between the mobile tracking stations.

Next, two series of physical experiments were performed and compared to the

mathematical results. Both series of physical experiments were performed with stationary

quadrotors; to mimic actual flight conditions, the quadrotors were statically mounted at their

nominal flight height. Configurations with separation angles ranging from 10 degrees to 180

85

degrees in increments of 10 degrees were evaluated at a fixed radius of 2.83 m. Data was

collected for two minutes at each location and the mean total distance between the actual

Pioneer position and the estimated Pioneer position were measured.

6.2. Two Quadrotor Results

Results for two mobile tracking stations and a single tracked object have already been examined

at Santa Clara University [16][17] and this work extends the technique both through a more

rigorous mathematical approach and through its application to a new testbed. In all

experiments, whether simulated or physical, AR.Drone 1.0 quadrotors and their forward-facing

onboard cameras were used as the two mobile tracking stations while a single tracked object

was used. The results were expected to follow the shape of the theoretical curve found in Figure

3.8 in Chapter 3.

6.2.1. Simulation Results

The following simulation results were obtained using the simulation presented in Appendix E.

The sensor errors, matched to the physical errors observed during testing (εθ = 5.7 degrees and

εr = 0.4 m), and the UWB system errors position information are given in Table 6.1. Eighteen

tests were performed using this simulation: one test every 10 degrees from 10 to 180 degrees.

In each test, the angle of separation was changed by moving the mobile tracking stations farther

apart. In order to keep them at a fixed radius of 2.83 m from the tracked object, the distance of

the cluster center from the tracked object also had to be changed. The heading of each

quadrotor was also changed with each test so that the quadrotors faced the tracked object from

each position. The variables used in these tests can be seen in Table 6.2 where d is the distance

between the cluster center and the tracked object.

86

Table 6.1: Sensor and position errors determined from physical tests.

Variable Value

D ± 0.4 m

ycenter ± 0.04 m

x ± 0.35 m

y ± 0.32 m

z ± 0.85 m

Table 6.2: Variables used in the two mobile tracking station simulations.

Test
Angle of

Separation
(deg)

z (m)
α

(deg)
β

(deg)
ϕ1 (deg) ϕ2 (deg) p (m) d (m)

1 10 1 -90 0 -175 175 0.49 2.82

2 20 1 -90 0 -170 170 0.98 2.79

3 30 1 -90 0 -165 165 1.46 2.73

4 40 1 -90 0 -160 160 1.94 2.66

5 50 1 -90 0 -155 155 2.39 2.56

6 60 1 -90 0 -150 150 2.83 2.45

7 70 1 -90 0 -145 145 3.25 2.32

8 80 1 -90 0 -140 140 3.64 2.17

9 90 1 -90 0 -135 135 4.00 2.00

10 100 1 -90 0 -130 130 4.34 1.82

11 110 1 -90 0 -125 125 4.64 1.62

12 120 1 -90 0 -120 120 4.90 1.42

13 130 1 -90 0 -115 115 5.13 1.20

14 140 1 -90 0 -110 110 5.32 0.97

15 150 1 -90 0 -105 105 5.47 0.73

16 160 1 -90 0 -100 100 5.57 0.49

17 170 1 -90 0 -95 95 5.64 0.25

18 180 1 -90 0 -90 90 5.66 0.00

The area of the 60% confidence interval error covariance matrix was then found for each of

these tests, as in the theoretical results. The method used to calculate this area can be found in

Appendix G. Figure 6.1 shows the results of these calculations for each simulation while Figure

6.2 shows the normalized results on the same plot as the normalized results of Figure 3.8.

87

Figure 6.1: Simulation results for two mobile tracking stations with identical sensors and a fixed radius.

Figure 6.2: Normalized simulation and theoretical results for two mobile tracking stations with identical

sensors and a fixed radius.

0 20 40 60 80 100 120 140 160 180
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

Theoretical

Simulation

88

The theoretical and simulation results match well, both reaching a minimum at 90 degrees

and following a parabolic shape. The notable difference between these results is that the

simulation results show less combined error ellipse area change per change in angle of

separation than predicted by theory. This is thought to be due to the errors in the positioning

system which are not taken into account in the theoretical model.

6.2.2. Pioneer Position Estimate

The same test was then performed using the physical testbed where the Pioneer itself was used

as the tracked object and two quadrotors were used as the mobile tracking stations. Here, the

angle of separation was also varied from 10 degrees to 180 degrees in 10 degree increments. A

circle with a radius of 2.83 m, the ideal viewing distance for the quadrotor camera, was marked

on the floor, as were the placements for the mobile tracking stations. To simulate flight

conditions, the quadrotors were statically mounted at their nominal flight height. This setup can

be seen in Figure 6.3. It is important to note that both the quadrotors and the Pioneer were

stationary during these tests. The experiments were intended to determine only the effect of

the placement of the quadrotors, not the efficacy of the control system.

Figure 6.3: Setup for testing the effect of the angle of separation on a system with two mobile tracking

stations and the Pioneer as the tracked object.

89

The formulas from Appendix G were used to calculate the 60% confidence interval error

covariance matrix for these tests. The results themselves can be seen in Figure 6.4 while the

normalized results can be seen compared to the normalized theoretical curve (see Figure 3.8) in

Figure 6.5.

Figure 6.4: Physical results with the Pioneer as tracked object and two AR.Drone 1.0 mobile tracking stations.

Figure 6.5: Normalized results of the theoretical curve and physical experimental results with the Pioneer as

the tracked object and two identical mobile tracking stations.

0 20 40 60 80 100 120 140 160 180
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

Theoretical

Experimental - Pioneer

90

The theoretical shape is the same as for the mathematical results. Again, the general shape

of the curve followed the theory. However, the angles below 90 degrees yielded a smaller

change in the total distance error each time the angle of separation was changed than the

theory predicted. This is believed to be because the RFID system error has a larger relative effect

on the position estimations at small distances between the sensor systems. Additionally, the

angle of separation with the minimum mean total distance error was found to be 110 degrees

rather than the predicted 90 degrees. The cause of this deviation was posited to be the shape of

the Pioneer itself. Figure 6.6 shows that the Pioneer features large wheels that can obscure

large portions of the body of the Pioneer.

Figure 6.6: Pioneer land rover used as the tracked object. A front view (left) and side view (right) are shown.

6.2.3. Ideal Object Position Estimate

To determine whether the Pioneer’s large wheels were responsible for the difference between

the theory and the experimental results, a second series of tests was performed with two

tracking stations and a uniform object that looked the same when viewed from any angle. A red

ball with an apparent surface area similar to the side of the Pioneer was chosen as the uniform

object. Figure 6.7 shows the Pioneer from the front and side next to this uniform object. The red

91

ball was placed in the center of the circle and held in place by a bespoke stand that did not

obscure the red ball from any viewing angle. The setup for this series of tests can be seen in

Figure 6.8.

Figure 6.7: Front (top) and side (bottom) views of the Pioneer and ideal object.

Figure 6.8: Setup for two AR.Drone 1.0s as mobile tracking stations and an ideal object as the tracked object.

92

The 60% confidence error covariance ellipse was found for each of these tests using the

formulas from Appendix G. The results can be seen in Figure 6.9 while Figure 6.10 shows the

normalized results along with the normalized theoretical results of Figure 3.8.

Figure 6.9: Results using two AR.Drone 1.0s as the mobile tracking station and an ideal object as the tracked

object.

Figure 6.10: Check this shit out.

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

Theoretical

Experimental - Ball

93

Here, the experimental results exhibit the same shape as the theoretical curve with the

same lower slope at angles of separation below 90 degrees. However, the angle of separation

that produced the minimum mean total distance error was found to be 100 degrees which is

much closer to the theoretical minimum of 90 degrees, suggesting that the shift observed in the

first series of physical experiments was mainly due to the shape of the Pioneer itself. The

remaining deviation from theory is thought to be caused by the lack of uniform lighting in the

test area and an exploration of this theory is suggested for future work.

6.3. Three Quadrotor Results

The optimization of the angle of separation in a cluster of three mobile tracking stations has not

been examined at Santa Clara University before. This optimization is an extension of the

rigorous mathematics developed to optimize the angle of separation in a cluster of two mobile

tracking stations and is discussed more extensively in Chapter 3. The results presented here are

a proof-of-concept for extending this technique to include clusters of three or more mobile

tracking stations. Both the simulated and physical experiments presented here used the

AR.Drone 1.0 quadrotors and their forward-facing onboard cameras as the three mobile tracking

stations and a single tracked object. In this series of tests, it was expected that the results would

follow those shown in Figure 3.13.

6.3.1. Simulation Results

The simulation results presented here were found using the simulation discussed in Appendix F.

As in the simulation for two mobile tracking stations, the physical errors and UWB system

positioning errors were matched to those observed during physical tests. These errors are

shown in Table 6.1. Since the results from three mobile tracking stations are symmetric about

180 degrees, only angles below 180 degrees were examined. This resulted in a total of 17 tests:

94

one test every 10 degrees from 20 degrees to 180 degrees. An angle of separation of 10 degrees

was not tested because the quadrotors could not physically group so close together due to their

hull diameter. For three mobile tracking stations, the angle of separation, defined as in Figure

3.12, was varied by changing ζ in the cluster definition. Keeping the quadrotors at a fixed radius

was a bit more complicated: p, q, and the distance between the cluster center and the tracked

object had to be changed for each angle of separation. The heading of Robot 1 remained

constant since it did not move during the course of testing, but the headings of Robots 2 and 3

also were changed so that they always faced the tracked object. The resulting variable values

can be seen in Table 6.3 and Table 6.4.

Table 6.3: Angular variables used in the simulations with three mobile tracking stations.

Test
Angle of

Separation (deg)
α

(deg)
β

(deg)
γ

(deg)
ϕ1

(deg)
ϕ2

(deg)
ϕ3

(deg)
ζ (deg)

1 20 180 0 0 -90 -100 -80 170

2 30 180 0 0 -90 -105 -75 165

3 40 180 0 0 -90 -110 -70 160

4 50 180 0 0 -90 -115 -65 155

5 60 180 0 0 -90 -120 -60 150

6 70 180 0 0 -90 -125 -55 145

7 80 180 0 0 -90 -130 -50 140

8 90 180 0 0 -90 -135 -45 135

9 100 180 0 0 -90 -140 -40 130

10 110 180 0 0 -90 -145 -35 125

11 120 180 0 0 -90 -150 -30 120

12 130 180 0 0 -90 -155 -25 115

13 140 180 0 0 -90 -160 -20 110

14 150 180 0 0 -90 -165 -15 105

15 160 180 0 0 -90 -170 -10 100

16 170 180 0 0 -90 -175 -5 95

17 180 180 0 0 -90 180 0 90

95

Table 6.4: Distance variables used in the simulations with three mobile tracking stations.

Test z (m) p (m) q (m) d (m)

1 1 0.49 0.49 2.80

2 1 0.74 0.74 2.77

3 1 0.98 0.98 2.72

4 1 1.23 1.23 2.65

5 1 1.46 1.46 2.58

6 1 1.70 1.70 2.49

7 1 1.94 1.94 2.39

8 1 2.17 2.17 2.28

9 1 2.39 2.39 2.16

10 1 2.61 2.61 2.03

11 1 2.83 2.83 1.89

12 1 3.04 3.04 1.74

13 1 3.25 3.25 1.59

14 1 3.45 3.45 1.43

15 1 3.64 3.64 1.27

16 1 3.82 3.82 1.11

17 1 4.00 4.00 0.94

Figure 6.11: Simulation results for three mobile tracking stations with identical sensors and a fixed radius.

0 20 40 60 80 100 120 140 160 180
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

96

Figure 6.12: Normalized simulation and theoretical results for three mobile tracking stations with identical

sensors and a fixed radius.

The formulas shown in Appendix G were used to calculate the area of the 60% confidence

interval error covariance ellipse. The simulation results are shown in Figure 6.11 while Figure

6.12 shows the normalized simulation results on the same plot as the normalized results of

Figure 3.13.

The theoretical and simulation results match fairly well. The change in the combined area

ellipse per change in angle of separation is a bit less than predicted by theory in the first two

tests and more than predicted by theory at angles above 120 degrees. The greater than

expected change in angles above 120 degrees is thought to be due positioning error which was

not taken into account by the theory. The simulation found a minimum at 110 degrees rather

than 120 degrees. However, the difference between these two values was less than 0.005 m2, so

this may be due to a particularly large error in a single reading.

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

Theoretical

Simulation

97

6.3.2. Pioneer Position Estimate

The same series of experiments were then performed using the physical testbed: three

AR.Drone 1.0 quadrotors were used as the mobile tracking stations and a Pioneer was used as

the tracked object. The same circle from the two mobile tracking station tests was used where

the first robot was placed perpendicular to the side of the Pioneer, the second robot was placed

to the right of the first robot, and the third robot was placed to the left of the first robot. This

setup can be seen in Figure 6.13. As in the case for two tracking stations, the robots were not

moving in order to test only the effect of the changing angle of separation without induced

noise from the control system.

Figure 6.13: Setup for testing the effect of the angle of separation on a system with three mobile tracking

stations and the Pioneer as the tracked object.

The area of the 60% confidence error ellipse was calculated using the formulas discussed in

Appendix G. Figure 6.14 shows the results of this series of experiments and Figure 6.15 shows

the normalized results on the same plot as the normalized theoretical results from Figure 3.13.

98

Figure 6.14: Physical results with the Pioneer as the tracked object and three AR.Drone 1.0s as the mobile

tracking stations.

Figure 6.15: Normalized results of the theoretical curve and physical experimental results with the Pioneer as

the tracked object and three identical mobile tracking stations.

0 20 40 60 80 100 120 140 160 180
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

Theoretical

Experimental - Pioneer

99

These physical results initially showed a slower decrease in the area of the combined ellipse

per change in angle of separation than predicted by theory, but resulted in a similar minimum

value of 150 degrees. As in the two quadrotor case, the discrepancy between the theoretical

minimum of 120 degrees and the experimental minimum of 150 degrees was believed to be due

to the shape of the Pioneer. After reaching this minimum value, the area of the combined error

ellipse increased more sharply than predicted by the theory. This is thought to be because of

differences in the background of the test environment. Testing in an area with uniformly painted

walls and uniformly distributed building structures is recommended for future work.

6.3.3. Ideal Object Position Estimate

A final series of stationary experiments was performed using three AR.Drone 1.0 mobile tracking

stations. In this series of tests, the Pioneer was replaced by a red ball (an ideal object) as the

tracked object in order to remove the effect of the shape of the tracked object from the

experimental results. The same series of tests were performed as in the previous section: the

angle of separation was varied in 10 degree increments between 20 and 180 degrees and the

area of the 60% confidence interval ellipse was found using the method described in Appendix

G. Figure 6.16 shows the results of this series of tests and Figure 6.17 shows the normalized

results on the same plot as the normalized results from Figure 3.13.

The results demonstrate a smooth decrease down to a minimum value of 120 degrees and

then a sharper increase in the area of the combined error ellipse than predicted by the theory.

However, the minimum found by this series of experiments was the same as the theoretical

minimum of 120 degrees, unlike when the Pioneer was used as the tracked object. This confirms

that most of the discrepancy in the minimum was due to the shape of the Pioneer.

100

Figure 6.16: Results using three AR.Drone 1.0s as the mobile tracking stations and an ideal object as the

tracked object.

Figure 6.17: Normalized results of the theoretical curve and physical experimental results with an ideal object

as the tracked object and three identical mobile tracking stations.

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle (deg)

C
o
m

b
in

e
d
 A

re
a
 (

m
2
)

Theoretical

Experimental - Ball

101

The application domain for this methodology assumed a maximum target speed of 0.315

m/s in the 19 by 12 m test area. Two solutions are presented here: one solution for the case

with two mobile sensor systems and one solution for the case with three sensor systems. The

case with two sensor systems resulted in a mean error of 0.68 m for the experimental results

with the Pioneer. For the three sensor system case, the mean experimental error was even less

at 0.6 m. This accuracy is sufficient to keep the object in view of the sensing systems, allowing

for continued tracking of the object.

In general, the experimental results were found to match the theory within physical

limitations. In the worst case scenario, two quadrotors with a separation angle of 180 degrees

tracking a Pioneer, the mean total distance error was less than 1.5 m. This distance was less

than the field of view of the quadrotors at a distance of 2.83 m from the tracked object,

meaning that the Pioneer could still be correctly located even after such a large estimation

error. The best case scenario for the experimental results, three quadrotors with a separation

angle of 120 degrees tracking a ball, had a mean total distance error of 0.1 m which was very

close in a test area measuring approximated 19 by 12 m. This allowed further experimentation

to be performed with moving mobile tracking stations, as discussed in the next chapter.

102

Chapter 7

7. Controlled Physical Experimental Results

The experiments presented in this chapter are an extension of the experiments presented in the

previous chapter. In this chapter, the mobile tracking stations move and are controlled to

maintain the ideal formation while tracking a Pioneer using both two and three mobile tracking

stations. In some experiments with two mobile tracking stations, the Pioneer is moving

according to user-input joystick control. The results of each of these experiments are presented

in this chapter.

7.1. Introduction

The experiments in this chapter are organized into two main categories: tests with two mobile

tracking stations and tests with three mobile tracking stations. Experiments were performed in

both categories where the Pioneer was stationary and the mobile tracking stations moved under

control of the cluster controller. The individual controllers used will be discussed in the next

sections, but it is important to note that the controller performed computations and sent out

commands at a rate of 8 Hz. The UWB tags used were 25 Hz tags, but, in practice, the more tags

that were added to the system, the longer it took for the receivers to determine the positions of

each of the tags. The UWB software, which was not accessible, does not report tag positions

until it has received a reading for each tag. Thus, the number of tags had a nontrivial effect on

the UWB system efficiency.

The AR.Drones were limited to a speed of 1 m/s (20% of their maximum speed), which

resulted in a maximum change in position of 0.125 m each time step. The maximum radial error

of the position estimate for the Pioneer observed during stationary testing at the ideal angle of

103

separation was 0.57 m. During this set of experiments, the Pioneer was limited to a speed of

0.14 m/s (20% of its maximum speed) and can move a maximum distance of 0.0175 m in a single

time step. The control system had a pointing error of 5.7 degrees, as discussed in Chapter 3. At

2.83 m, this angular difference resulted in a distance error of 0.28 m. The AR.Drone 1.0’s

forward-facing onboard camera can see an area approximately 2.26 m wide at a distance of 2.83

m. This means that if the maximum errors all occur when the UWB system is operating below 8

Hz (missing a single controller time step), the quadrotor can still see the Pioneer since it will be

1.0 m from the center point. However, if the UWB system was operating more slowly than 4 Hz,

missing two time steps for the controller, the Pioneer could be as much as 1.13 m from the

center of the controller, just outside the camera’s range. If the quadrotors cannot see the

Pioneer, the assumption is made that the Pioneer is at its last known position. If the Pioneer is

stationary, the quadrotors will be able to locate it again since the Pioneer will indeed be at its

last known position. However, if the Pioneer is moving, this is unlikely. The longer the

quadrotors cannot find the Pioneer, the more likely it is that they will not be able to find it again,

especially if the UWB system continues to operate below 4 Hz and the Pioneer continues to

move.

This is an issue because using three mobile tracking stations require the use of eight RFID

tags, two for each mobile tracking station and two for the Pioneer. This number of tags often

resulted in operating speeds below 4 Hz, enabling tracking when the tracked object was

stationary, but not when it was moving. It is recommended that tracking with three objects be

tested on a slower platform that can handle slower data rates or that a search algorithm is

developed to recover from loss of the tracked object.

104

7.2. Two Quadrotor Results

The experiments presented in this section were performed with two AR.Drone 1.0s as the

mobile tracking stations and a Pioneer as the tracked object. Two series of tests were

performed: one with a stationary Pioneer to show that the control of the mobile tracking

stations was sufficient to allow continuous tracking and one with a moving Pioneer. These

experiments were performed with the controllers shown in Figure 7.1 and Figure 7.2. The

cluster controller in the first figure is the same as the cluster controller presented in Section 4.6

implemented in Simulink. The green blocks represent the sensor input, the pink blocks represent

the cluster configuration manager, the yellow blocks the PID controller, and the orange blocks

the cluster control itself. The Pioneer controller presented in Figure 7.1 is used only in the

experiments with the moving Pioneer. It is a separate system from the cluster controller and no

data is shared between the two controllers. The position of the Pioneer is recorded for every

test, whether it remains stationary or moves, so that the tracking accuracy can be quantified.

Figure 7.1: Pioneer user-input joystick control and position tracking.

105

Figure 7.2: Cluster controller for two mobile tracking stations.

106

7.2.1. Stationary Pioneer

The first series of experiments presented here was performed using two mobile tracking

stations with the ideal angle of separation of 90 degrees. In order to implement this angle of

separation at the best viewing distance, the quadrotors were kept 4 m apart from each other

and the cluster center was kept 2 m away from the Pioneer. This configuration, shown in Figure

7.3, was maintained throughout the experiment.

Figure 7.3: Optimal two quadrotor configuration.

Each test is illustrated with a plot that shows the desired (x, y) position of the cluster center

compared to the actual (x, y) position of the cluster center in the global coordinate frame. A

table that summarizes the position estimation and cluster control parameters is also included.

This table lists the minimum, maximum, mean, standard deviation, and the root mean square

error of each parameter.

Table 7.1: Location estimate summary for the first stationary Pioneer test with two mobile tracking stations.

 X (m) Y (m) Total (m)

Min Error 0.00 0.00 0.09

Max Error 1.04 2.51 2.52

Mean Error 0.28 0.99 1.08

Error Standard Deviation 0.23 0.61 0.57

Root Mean Squared Error 0.36 1.16 1.22

107

Table 7.2: Control variable summary for the first stationary Pioneer test with two mobile tracking stations.

X (m) Y (m) Z (m)

α
(deg)

β
(deg)

ϕ1
(deg)

ϕ2
(deg)

P (m)

Min Error 0.00 0.00 0.01 0.01 0.01 0.06 0.00 0.00

Max Error
0.29 0.36 0.60 22.46 7.43

133.1
5

44.93 2.50

Mean Error 0.06 0.08 0.22 5.25 1.61 11.64 12.65 0.78

Error Standard
Deviation

0.05 0.07 0.14 4.56 1.28 16.68 10.10 0.54

Root Mean
Squared Error

0.08 0.11 0.26 6.95 2.05 20.33 16.18 0.95

Figure 7.4: This plot shows the actual and estimate Pioneer positions throughout the first experiment with two

mobile tracking stations and a stationary Pioneer.

Figure 7.4 show the results for the first stationary Pioneer test with two mobile tracking

stations while Table 7.1 and Table 7.2 provide a summary of these results. The location

0 5 10 15 20 25 30 35 40 45 50
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Time (s)

T
o
ta

l
E

s
ti
m

a
ti
o
n
 E

rr
o
r

(m
)

X

Y

Actual

Estimated

108

estimation was accurate enough to allow the quadrotors to locate the Pioneer after a mean

incorrect position estimate, but was still quite high. This is believed to be due to the very high ϕ1

maximum error which can occur because the yaw correction for the quadrotors is so fast that it

is difficult to keep the quadrotors pointing at a single object. Limiting the yaw speed increased

the time it took for the quadrotors to return to face the tracked object, so it was necessary to

find a balance between the correction speed and overshooting the target.

Figure 7.5: This plot shows the actual and estimate Pioneer positions throughout the second experiment with

two mobile tracking stations and a stationary Pioneer.

Table 7.3: Location estimation summary for second stationary Pioneer test with two mobile tracking stations.

 X (m) Y (m) Total (m)

Min Error 0.00 0.01 0.04

Max Error 0.47 0.86 0.87

Mean Error 0.19 0.39 0.45

Error Standard Deviation 0.10 0.24 0.22

Root Mean Squared Error 0.21 0.46 0.50

0 5 10 15 20 25
-6

-5

-4

-3

-2

-1

0

1

2

3

Time (s)

T
o
ta

l
E

s
ti
m

a
ti
o
n
 E

rr
o
r

(m
)

X

Y

Actual

Estimated

109

Table 7.4: Control variable summary for second stationary Pioneer test with two mobile tracking stations.

X (m) Y (m) Z (m)

α
(deg)

β
(deg)

ϕ1
(deg)

ϕ2
(deg)

P (m)

Min Error 0.00 0.00 0.14 0.56 0.03 0.05 0.36 0.00

Max Error 0.16 0.32 0.73 13.75 7.22 35.10 57.28 1.40

Mean Error 0.05 0.07 0.39 7.56 2.42 12.79 11.27 0.65

Error Standard
Deviation

0.04 0.07 0.15 3.51 1.58 9.07 11.68 0.37

Root Mean
Squared Error

0.06 0.10 0.42 8.33 2.89 15.66 16.21 0.75

The results of the second stationary test are shown in Figure 7.5 and the results are

summarized in Table 7.3 and Table 7.4. Although the maximum errors for φ1 and φ2 were higher

than desired, the mean error was acceptable. The high errors were seen because the yaw rate

for the quadrotors was so fast that it was difficult to keep the quadrotors pointing at a single

object. Limiting the yaw rate increased the time it took for the quadrotors to turn towards the

tracked object, so it was necessary to find a balance between a fast response time and

overshooting the target. Nonetheless, the quadrotor tracking performance was well inside the

camera field of view, allowing the mobile tracking station to recover after an incorrect location

estimate.

7.2.2. Moving Pioneer

Next, the same setup with two mobile tracking stations was used while the Pioneer moved

independently from the cluster. In order to ensure that the Pioneer motion was not

preprogrammed into the controller, the Pioneer was controlled by a user-input joystick control

that did not share any data with the cluster controller itself. The cluster was maintained in the

same ideal configuration as in the previous section since the ideal configuration depends only on

the sensor systems, not the tracked object.

110

Figure 7.6: This plot shows the actual and estimate Pioneer positions throughout the first experiment with two

mobile tracking stations and a moving Pioneer.

Table 7.5: Location estimation summary for the first moving Pioneer test with two mobile tracking stations.

 X (m) Y (m) Total (m)

Min Error 0.00 0.00 0.02

Max Error 0.50 0.96 0.96

Mean Error 0.21 0.36 0.46

Error Standard Deviation 0.14 0.25 0.21

Root Mean Squared Error 0.25 0.44 0.51

Table 7.6: Control variable summary for the first moving Pioneer test with two mobile tracking stations.

X (m) Y (m) Z (m)

α
(deg)

β
(deg)

ϕ1
(deg)

ϕ2
(deg)

P (m)

Min Error 0.00 0.00 0.00 0.01 0.03 0.02 0.02 0.00

Max Error 0.20 0.28 0.23 7.15 6.42 33.84 33.98 0.97

Mean Error 0.05 0.10 0.07 1.89 2.11 7.91 7.36 0.30

Error Standard
Deviation

0.04 0.07 0.05 1.76 1.48 6.53 5.86 0.24

Root Mean
Squared Error

0.07 0.12 0.09 2.58 2.58 10.25 9.41 0.38

0 5 10 15 20 25 30
-7

-6

-5

-4

-3

-2

-1

0

1

2

Time (s)

T
o
ta

l
E

s
ti
m

a
ti
o
n
 E

rr
o
r

(m
)

X

Y

Actual

Estimated

111

The results of the first experiment with a moving Pioneer are shown in Figure 7.6 and

summarized in Table 7.5 and Table 7.6. The control variables were well controlled in this test,

resulting in a mean position error of 0.46 m, almost the same as the second stationary test. This

is due to the level of control of the quadrotors’ locations and headings. The greater accuracy in

controlling the quadrotors results in greater position estimate accuracy.

Figure 7.7: This plot shows the actual and estimate Pioneer positions throughout the second experiment with

two mobile tracking stations and a moving Pioneer.

Table 7.7: Location estimation summary for the second moving Pioneer test with two mobile tracking stations.

 X (m) Y (m) Total (m)

Min Error 0.00 0.00 0.01

Max Error 0.96 0.96 1.03

Mean Error 0.25 0.43 0.53

Error Standard Deviation 0.20 0.25 0.25

Root Mean Squared Error 0.32 0.50 0.59

0 5 10 15 20 25 30 35 40
-7

-6

-5

-4

-3

-2

-1

0

1

Time (s)

T
o
ta

l
E

s
ti
m

a
ti
o
n
 E

rr
o
r

(m
)

X

Y

Actual

Estimated

112

Table 7.8: Control variable summary for the second moving Pioneer test with two mobile tracking stations.

X (m) Y (m) Z (m)

α
(deg)

β
(deg)

ϕ1
(deg)

ϕ2
(deg)

P (m)

Min Error 0.00 0.00 0.00 0.03 0.03 0.03 0.00 0.00

Max Error 0.19 0.35 0.98 13.73 4.68 25.98 41.95 1.18

Mean Error 0.04 0.12 0.11 5.15 1.45 8.11 11.60 0.44

Error Standard
Deviation

0.03 0.07 0.14 3.83 1.06 6.18 9.61 0.29

Root Mean
Squared Error

0.05 0.14 0.18 6.41 1.80 10.19 15.05 0.52

The results of the second moving Pioneer experiment can be seen in Table 7.7, Table 7.8 and

Figure 7.7. At approximately 28 second, the Pioneer turns and the cluster turns to follow. Since

the control variables in this test were well controlled, the mean position estimation error was

0.53 m, only 0.08 m greater than achieved in the second stationary Pioneer test. This level of

accuracy resulted from the low mean error of the control variables and confirmed that the

better the mobile tracking stations’ positions and headings were controlled, the more accurate

the position estimate of the tracked object.

7.3. Three Quadrotor Results

In this section, the experiments were performed using three AR.Drone 1.0s as the mobile

tracking stations and a Pioneer as the tracked object. Only tests with a stationary Pioneer were

performed in this configuration, as discussed in the introduction. This series of tests served to

confirm that the controller is sufficient to allow for the tracking of a real object using controlled

mobile tracking stations. The controller shown in Figure 7.8 was used to control the mobile

tracking stations and is identical to the controller presented in Figure 7.2 with the addition of a

third mobile tracking station. The position of the Pioneer was recorded using the model shown

in Figure 7.1 even though the controller itself was not used. As in the two mobile tracking

113

station case, the position of the Pioneer was recorded in order to quantify the accuracy of the

controller.

Figure 7.8: Three mobile tracking station cluster controller.

114

In the next series of tests, three mobile tracking stations were used to follow a Pioneer

robot. The cluster was kept at the ideal angle of separation of 120 degrees in the configuration

shown in Figure 7.9 throughout the test.

Figure 7.9: Optimal three quadrotor configuration.

Figure 7.10: This plot shows the actual and estimated Pioneer positions throughout the first experiment with

three mobile tracking stations and a stationary Pioneer.

0 2 4 6 8 10 12 14 16 18 20
-6

-5

-4

-3

-2

-1

0

Time (s)

T
o
ta

l
E

s
ti
m

a
ti
o
n
 E

rr
o
r

(m
)

X

Y

Actual

Estimated

115

Table 7.9: First stationary Pioneer test with three mobile tracking stations location estimation summary.

 X (m) Y (m) Total (m)

Min Error 0.20 0.01 0.29

Max Error 1.83 0.93 1.83

Mean Error 1.21 0.27 1.25

Error Standard Deviation 0.34 0.16 0.33

Root Mean Squared Error 1.26 0.32 1.30

Table 7.10: First stationary Pioneer test with three mobile tracking stations distance control variable summary.

 X (m) Y (m) Z (m) P (m) Q (m)

Min Error 0.01 0.00 0.28 0.00 0.00

Max Error 0.85 0.47 0.78 0.86 0.89

Mean Error 0.47 0.16 0.54 0.37 0.44

Error Standard
Deviation

0.18 0.11 0.13 0.30 0.27

Root Mean
Squared Error

0.50 0.20 0.56 0.48 0.52

Table 7.11: First stationary Pioneer test with three mobile tracking stations angular control variable summary.

 α
(deg)

β
(deg)

γ
(deg)

ϕ1
(deg)

ϕ2
(deg)

ϕ3
(deg)

ζ
(deg)

Min Error 0.34 0.25 0.03 0.39 0.99 0.03 0.02

Max Error
26.19 13.16 10.21 52.68

149.6
5

43.07 18.59

Mean Error 12.87 4.94 3.01 21.98 28.25 19.15 6.99

Error
Standard
Deviation

7.57 2.80 2.84 13.93 37.65 12.73 5.55

Root Mean
Squared Error

14.92 5.67 4.13 26.00 46.97 22.98 8.92

The results of the first experiment with three mobile tracking stations are presented in

Figure 7.10 and summarized in Table 7.9 through Table 7.11. The angles ϕ1, ϕ2, and ϕ3 have high

mean errors and ϕ2 has an especially high maximum error due to outlier data. None the less, the

116

tracking error was 1.25 m which was close enough to continue tracking under most conditions.

This tracking error was mainly due to the poor control of the individual robot headings. These

results are connected, as discussed in the last section, because the tracking accuracy depends

on the control accuracy. If the controller is not functioning well, then the tracking algorithm will

not perform well either. This idea is explored further in the next two experiments.

Figure 7.11: This plot shows the actual and estimated Pioneer positions throughout the second experiment

with three mobile tracking stations and a stationary Pioneer.

Table 7.12: Second stationary Pioneer test with three mobile tracking stations location estimation summary.

 X (m) Y (m) Total (m)

Min Error 0.20 0.02 0.32

Max Error 1.58 1.35 1.71

Mean Error 0.82 0.48 0.98

Error Standard Deviation 0.35 0.27 0.36

Root Mean Squared Error 0.89 0.55 1.04

0 5 10 15 20 25
-6

-5

-4

-3

-2

-1

0

Time (s)

T
o
ta

l
E

s
ti
m

a
ti
o
n
 E

rr
o
r

(m
)

X

Y

Actual

Estimated

117

Table 7.13: Second stationary Pioneer test with three mobile tracking stations distance control variable

summary.

 X (m) Y (m) Z (m) P (m) Q (m)

Min Error 0.01 0.00 0.18 0.00 0.01

Max Error 1.11 0.71 0.85 1.35 2.31

Mean Error 0.54 0.22 0.48 0.47 1.00

Error Standard
Deviation

0.22 0.15 0.19 0.37 0.71

Root Mean
Squared Error

0.58 0.26 0.51 0.60 1.23

Table 7.14: Second stationary Pioneer test with three mobile tracking stations angular control variable

summary.

 α
(deg)

β
(deg)

γ
(deg)

ϕ1
(deg)

ϕ2
(deg)

ϕ3
(deg)

ζ
(deg)

Min Error 0.05 0.00 0.01 0.31 0.07 0.04 0.23

Max Error
34.92 52.13 9.59 51.06

148.6
9

56.96 53.58

Mean Error 14.70 6.00 2.18 20.43 37.25 23.89 11.95

Error
Standard
Deviation

10.64 7.47 1.88 12.27 47.64 15.34 12.83

Root Mean
Squared

Error
18.14 9.57 2.88 23.82 60.39 28.38 17.51

The results of this experiment are summarized in Table 7.12 through Table 7.14 and shown

in Figure 7.11. In this experiment, the headings φ1, φ2, and φ3 had high mean errors and φ2 had

an especially high maximum error due to outlier data. Nonetheless, the mean tracking error of

0.98 m was still accurate enough to keep the Pioneer in the mobile sensor systems’ fields of

view, allowing for continued tracking.

The next experiment takes a closer look at the effect that the control variables have on the

tracking accuracy. In this experiment, the mobile tracking stations initially track the stationary

118

Pioneer. At approximately 20 seconds, the alpha angle changes sign, resulting in a major loss of

control of the cluster. When this occurs, the tracked object is immediately lost. While tracking of

the object may have been resumed once control was again established, the mobile tracking

stations drifted out of the UWB coverage area before control was able to be reasserted.

Figure 7.12: This plot shows the actual and estimated Pioneer positions throughout the third experiment with

three mobile tracking stations and a stationary Pioneer.

Table 7.15: Stationary Pioneer exploration test with three mobile tracking stations location estimation

summary.

 X (m) Y (m) Total (m)

Min Error 0.62 0.00 0.68

Max Error 4.31 1.86 4.40

Mean Error 1.46 0.55 1.62

Error Standard Deviation 0.74 0.56 0.83

Root Mean Squared Error 1.64 0.78 1.82

0 5 10 15 20
-6

-5

-4

-3

-2

-1

0

Time (s)

T
o
ta

l
E

s
ti
m

a
ti
o
n
 E

rr
o
r

(m
)

X

Y

Actual

Estimated

119

Table 7.16: Stationary Pioneer exploration test with three mobile tracking stations distance control variables.

 X (m) Y (m) Z (m) P (m) Q (m)

Min Error 0.03 0.00 0.06 0.00 0.00

Max Error 1.79 0.97 0.82 2.42 2.64

Mean Error 0.57 0.23 0.48 0.70 0.97

Error Standard Deviation 0.37 0.21 0.16 0.69 0.93

Root Mean Squared Error 0.68 0.31 0.51 0.98 1.35

Table 7.17: Stationary Pioneer exploration test with three mobile tracking stations angular control variables.

 α
(deg)

β
(deg)

γ
(deg)

ϕ1
(deg)

ϕ2
(deg)

ϕ3
(deg)

ζ
(deg)

Min Error 0.00 0.04 0.02 0.22 0.02 0.07 0.12

Max Error
89.35 16.22

179.8
6

101.8
7

148.6
7

81.99
115.7

2

Mean Error 26.42 4.50 13.54 33.41 42.36 25.28 35.06

Error
Standard
Deviation

27.37 3.68 37.24 29.93 45.53 22.38 27.16

Root Mean
Squared

Error
37.99 5.81 39.53 44.80 62.09 33.72 44.31

Figure 7.13: Actual and desired distance control variables for three mobile tracking station exploration test.

120

Figure 7.14: Actual and desired angular control variables for three mobile tracking station exploration test.

Figure 7.12 through Figure 7.14 show the results of a tracking experiment in which control

has failed. These results are summarized in Table 7.15 through Table 7.17 and illustrate the

importance of the α parameter to the tracking accuracy. At about 11 seconds, the α error

increases. Figure 7.14 shows every other angle error increasing as well in response. The first plot

also shows an increase in error at the same time. The α error begins to get smaller at about 13

seconds, returning to a manageable level at about 16 seconds. Again, the error for the other

angles and the tracking errors show the same trend at this time. When the α angle changes sign

at about 20 seconds, the other angles exhibit even higher errors in response, resulting in a very

high tracking error and the eventual loss of the stationary Pioneer. This poor tracking accuracy

can be seen in the mean tracking error, which is a very high 1.62 m in this test.

These experiments showed that tracking of an object is possible with the controller

developed for three mobile tracking stations. As expected, the degree of control of the cluster

variables has an impact on the tracking accuracy; the more consistent the cluster variables, the

greater the tracking accuracy. While all the cluster variables are important to the tracking

121

accuracy, these experiments showed that the mobile tracking station headings and α have

particularly large impacts. This is because the mobile tracking stations cannot track an object

that they cannot see and the tracking station headings and α have a large impact on what the

mobile tracking stations can see. The angle optimization utilized in this approach helped to

minimize the time that the mobile tracking stations could not see the tracked object, improving

the method’s tracking accuracy.

122

Chapter 8

8. Simulations with Optimization-in-the-Loop

To verify the adaptability of the optimization methodology, simulations were performed with

the position optimization integrated into the control loop. These tests were performed in

simulation so that sensor failures of various types could be easily reproduced at specific times.

Such an inclusion allowed the cluster to react to changing sensor parameters during run time by

changing the ideal geometry to match the current conditions. While, under nominal operating

conditions, the sensor properties would not change, ambient conditions may change and affect

the sensor performance. A sensor could also become damaged during operation, causing a

dramatic and abrupt change in its performance. In this series of simulations, the sensor range

was not fixed a 2.83 m and was allowed to vary within a 1.3 m range. This range was chosen to

match the constraints of the physical testbed.

In these simulations, the controller was modified to include the geometrical optimization

process as shown in Figure 3.17. This was done by using the positions of the quadrotors and the

tracked object as inputs into the optimization process along with the sensor properties. The

outputs were the ideal sensor radii and headings which were then used to calculate the cluster

parameters. These simulations were also matched to the physical system by adding noise to the

sensor system measurements and the reported robot locations. The noise was scaled to match

the maximum values observed on the physical system, resulting in sensor measurement noise of

(D, ydist) + (±1, ±1) m and location noise of (x, y, z) + (±0.35, ± 0.32, ±0.85) m. These values were

used throughout the simulations.

123

8.1. Two Quadrotor Simulations

The first simulation performed used two identical mobile tracking stations to track a single

moving object. Both tracking stations’ sensor properties matched the AR.Drone 1.0’s actual

camera properties at the start of the simulation with a mean radial error of 0.4 m and a mean

angular error of 5.7 degrees. Simulating gradual sensor degradation, the mean radial error was

increased at a rate of 0.008 m/s and the mean angular error was increased by 0.46 deg/s. The

simulation was run for 60 seconds in order to determine whether the optimization-in-the-loop

was able to accommodate the changing conditions. The tracking accuracy and controllability

results are summarized in and Table 8.2 and shown in Figure 8.1.

Table 8.1: Location estimation summary for two mobile tracking stations and slow sensor degradation.

 X (m) Y (m) Total (m)

Min Error 0.00 0.00 0.02

Max Error 1.67 1.75 1.92

Mean Error 0.24 0.26 0.38

Error Standard Deviation 0.24 0.24 0.31

Root Mean Squared Error 0.34 0.35 0.49

Figure 8.1: X estimation error for the two quadrotor simulation with slowly degrading identical sensors.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

P
o
s
it
io

n
 (

m
)

X

Y

Actual X

Estimated X

Actual Y

Estimated Y

124

Table 8.1: Location estimation summary for two mobile tracking stations and slow sensor degradation.

 X (m) Y (m) Total (m)

Min Error 0.00 0.00 0.02

Max Error 1.67 1.75 1.92

Mean Error 0.24 0.26 0.38

Error Standard Deviation 0.24 0.24 0.31

Root Mean Squared Error 0.34 0.35 0.49

Table 8.2: Control variable summary for two mobile tracking stations and slow sensor degradation.

X (m) Y (m) Z (m) α (deg) β (deg)

ϕ1
(deg)

ϕ2
(deg)

P (m)

Min Error 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00

Max Error 1.47 1.45 0.77 7.69 19.63 24.53 26.53 0.60

Mean Error 0.38 0.38 0.21 2.27 5.98 6.43 7.06 0.18

Error
Standard
Deviation

0.27 0.26 0.00 1.62 4.39 4.60 5.10 0.12

Root Mean
Squared Error

0.47 0.46 0.27 2.79 7.42 7.90 8.71 0.22

In this test, all of the control variables were controlled well; the β, ϕ1, and ϕ2 angles had

higher maximum errors, but the mean error was quite low. This level of control resulted in an

excellent tracking ability. The mean tracking radial error of 0.38 m is easily within the range of

the quadrotor’s on-board camera, demonstrating that including an optimization-in-the-loop

allows the controller to cope with slow sensor degradation while continuing to track a moving

object.

The second simulation featured two mobile tracking stations tracking a moving object.

Initially, both sensor systems’ properties matched those of the actual AR.Drone 1.0 camera: a

mean radial error of 0.4 m and a mean angular error of 5.7 degrees. At 20 seconds, both sensor

systems experienced an instantaneous degradation which resulted in a mean radial error of 0.8

125

m and a mean angular error of 5.7 degrees for Sensor 1 and a mean radial error of 0.4 m and an

angular error of 10.1 degrees for Sensor 2. These new sensor properties resulted in a change in

the ideal configuration from 90 degrees to 180 degrees, as shown in Figure 8.2. The results of

this simulation are summarized in Table 8.3 and

Table 8.4 and shown in Figure 8.3.

Figure 8.2: At 20 seconds, the ideal configuration changes from 90 degrees (blue) to 180 degrees (red).

Figure 8.3: X estimation error for the two quadrotor experiment with abruptly changing sensor properties.

Time (s)

A
n
g
le

 (
ra

d
)

1

2

0 10 20 30 40 50 60

-200

-150

-100

-50

0

50

100

150

200

Desired

Actual

126

Table 8.3: Location estimation for two mobile tracking stations and an abrupt change in sensor properties.

 X (m) Y (m) Total (m)

Min Error 0.00 0.00 0.01

Max Error 1.92 1.66 2.06

Mean Error 0.19 0.19 0.30

Error Standard Deviation 0.17 0.27 0.30

Root Mean Squared Error 0.26 0.33 0.42

Table 8.4: Control variable summary for two mobile tracking stations and an abrupt change in sensor properties.

X (m) Y (m) Z (m) α (deg) β (deg)

ϕ1
(deg)

ϕ2
(deg)

P (m)

Min Error 0.00 0.00 0.00 0.00 0.04 0.02 0.01 0.00

Max Error 1.55 2.21 0.76 7.68 19.50 54.99 61.77 1.78

Mean Error 0.29 0.36 0.21 1.88 4.93 8.60 9.01 0.27

Error
Standard
Deviation

0.21 0.34 0.00 1.39 3.71 8.61 8.86 0.30

Root Mean
Squared Error

0.36 0.50 0.26 2.34 6.17 12.17 12.64 0.40

The mean errors for the control variables were low, meaning that the cluster remained in

the desired configuration throughout the simulation. However, the maximum errors for φ1 and

φ2 were high in this simulation. This was due to a step change in the corresponding desired

values at 20 seconds. The value of both of these variables settled to the new desired values in

about 5 seconds, an acceptably quick response time. The high level of control exhibited by this

simulation, despite the abrupt change in the desired values of some control variables at 20

seconds, resulted in an excellent average radial error of 0.30 m.

The results of these simulations illustrate that the optimization-in-the-loop can respond to

both large and small changes in the sensor properties and compute a new corresponding ideal

angle of separation. The controller itself has sufficient robustness to cope with these changes

127

quickly enough that the quality of the tracking remains high. This proves that the method is

efficacious and ready for further testing.

8.2. Three Quadrotor Simulations

A third simulation was performed that used three mobile tracking stations to track a stationary

object. The three tracking stations began with identical sensor properties matching the actual

AR.Drone 1.0 camera properties: a mean radial error of 0.4 m and a mean angular error of 5.7

degrees. At 20 seconds, Sensor 1 experienced a sensor failure that was simulated by setting the

sensor errors to the very high values of 2 m for the mean radial error and 57.3 degrees for the

mean angular error. The results are shown in Figure 8.4 and summarized in Table 8.5 through

Table 8.7.

Figure 8.4: X estimation error for the three quadrotor experiment with an abrupt sensor failure at 20 seconds.

Time (s)

A
n
g
le

 (
ra

d
)

2

3

0 10 20 30 40 50 60

-200

-150

-100

-50

0

Desired

Actual

128

Table 8.5: Location estimation summary for simulation with three mobile tracking stations and an abrupt

failure of sensor 1 at 20 seconds.

 X (m) Y (m) Total (m)

Min Error 0.00 0.00 0.01

Max Error 0.67 0.81 0.84

Mean Error 0.19 0.19 0.30

Error Standard Deviation 0.15 0.14 0.16

Root Mean Squared Error 0.24 0.24 0.34

Table 8.6: Distance control variable summary for simulation with three mobile tracking stations and an abrupt

failure of sensor 1 at 20 seconds.

 X (m) Y (m) Z (m) P (m) Q (m)

Min Error 0.00 0.00 0.00 0.00 0.00

Max Error 0.51 0.71 0.76 1.00 1.04

Mean Error 0.12 0.14 0.20 0.34 0.36

Error Standard
Deviation

0.09 0.12 0.00 0.22 0.24

Root Mean
Squared Error

0.15 0.18 0.25 0.41 0.43

Table 8.7: Angular control variable summary for simulation with three mobile tracking stations and an abrupt

failure of sensor 1 at 20 seconds.

 α
(deg)

β
(deg)

γ
(deg)

ϕ1
(deg)

ϕ2
(deg)

ϕ3
(deg)

ζ
(deg)

Min Error 0.03 0.01 0.00 0.04 0.00 0.07 0.06

Max Error 28.27 62.75 17.55 40.34 43.21 48.55 38.51

Mean Error 7.59 17.57 2.34 10.28 11.14 12.73 12.25

Error Standard
Deviation

5.67 12.51 2.60 7.72 8.17 10.01 8.15

Root Mean
Squared Error

9.47 21.56 3.49 12.86 13.81 16.18 14.71

The optimizer returned a new ideal angle of separation of 90 degrees after the sensor

system failure, which was the same ideal configuration as in the case of two identical mobile

129

tracking stations. This is as expected since only two of the tracking stations are functioning after

20 seconds. Despite this large change in sensor input, tracking in this simulation demonstrated a

low mean radial error of 0.30 m. The control variables were controlled fairly well, with the

highest error seen in the β values. This is because β is dependent on the z control variable,

which has a much high measurement error in the UWB system than the x and y values.

Nonetheless, this simulation demonstrated that this method can experience a sensor failure and

not only continue to track an object, but continue to track it accurately.

The simulations presented in this chapter illustrate the robustness of an optimization-in-the-

loop system. The optimizer can quickly respond to a change in sensor properties and the control

system can quickly reposition the robots to the new desired positions. The simulations also

demonstrate the effectiveness of this methodology to cope with slow sensor degradation,

abrupt sensor degradation, and abrupt sensor failure. Tracking of the object was not

significantly impacted by any of these failures, implying that an optimization-in-the-loop can be

tested in the real world in future work.

However, it is important to note a difference between simulation and real world trials at this

point. The optimization routine runs in about 0.14 second for two mobile tracking stations and

0.33 second for three mobile tracking stations when computed on a conventional Pentium-class

workstation with a 2.10 GHz processor and 4.00 GB of RAM. This is slightly slower than the

control rate of 0.125 second used in the real world experiments presented here. The control

rate was set to prevent the AR.Drone 1.0s’ hover command from activating and causing a loss of

control of the robot. Thus, either different robots that do not require such a high control rate

should be used or the optimization process will have to run in a slower loop. This is a relatively

130

simple change, but it was not required in simulation since each time step in the control loop did

not need to correspond to real time.

8.3. Exploration of the Target Location Estimate Improvement

In the work presented in Chapter 7, the optimization resulted in a 6% improvement in the target

location estimate over the non-optimized worst-case scenario tested with identical sensors at

the nominal fixed radius distance of 2.83 m. However, much greater improvements in the target

location estimate were observed when the sensors had different properties, the radial distance

between the sensors and the object was increased, or more sensors were used. This section

examines these effects further by plotting the percent improvement of the target location

estimate of two and three sensor systems under three sets of conditions: identical sensors,

extreme sensor variations, and medium sensor variations. The fixed sensor radii values used in

each case are shown in Table 8.8 below.

Table 8.8: Radii examined for the three target estimate improvement cases.

Radii Case Radii Case Radii Case

1 m All 30 m All 200 m All

2 m All 40 m All 300 m All

3 m All 50 m All 400 m All

4 m All 60 m All 500 m All

5 m All 70 m All 600 m All

6 m All 80 m All 700 m All

7 m All 90 m All 800 m All

8 m All 100 m All 900 m All

9 m All 125 m Case 2 with Two
Sensors Only

 1000 m All

10 m All 150 m Case 2 with Two
Sensors Only

20 m All 175 m Case 2 with Two
Sensors Only

131

Figure 8.5: Percent improvement of the optimal sensor configuration over the worst-case configuration of two

and three identical sensors at the same fixed radius.

In Case 1, shown in Figure 8.5, all sensors have identical properties with a mean radial error

of 0.4 m and a mean angular error of 5.7 degrees for both the two and three sensor scenarios.

The sensors in Case 2, shown in Figure 8.6, have extreme variations. For the two sensor

scenario, the first sensor has a mean radial error of 0.4 m and a mean angular error of 57.3

degrees while the second sensor has a mean radial error of 4 m and a mean angular error of 5.7

degrees. The first sensor of the three sensor scenario has a mean radial error of 0.4 m and a

mean angular error of 5.7 degrees, the second sensor has a mean radial error of 0.4 m and a

mean angular error of 57.3 degrees, and the third sensor had a mean radial error of 4 m and a

mean angular error of 5.7 degrees. Case 3, shown in Figure 8.7, features sensors with smaller

variations in their properties. In the two sensor scenario, the first sensor has a mean radial error

of 0.4 m and a mean angular error of 11.5 degrees while the second sensor has a mean radial

error of 0.8 m and a mean angular error of 5.7 degrees. In the three sensor scenario, the first

sensor has a mean radial error of 0.4 m and a mean angular error of 5.7 degrees, the second

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Distance Between Target and Sensor (m)

P
e
rc

e
n
t

Im
p
ro

v
e
m

e
n
t

Two Sensors

Three Sensors

132

sensor has a mean radial error of 0.4 m and a mean angular error of 11.5 degrees, while the

third sensor has a mean radial error of 0.8 m and a mean angular error of 5.7 degrees.

Figure 8.6: Percent improvement of the optimal sensor configuration over the worst-case configuration of two

and three sensors with extreme sensor properties at the same fixed radius.

Figure 8.7: Percent improvement of the optimal sensor configuration over the worst-case configuration of two

and three sensors with medium differences in sensor properties at the same fixed radius.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Distance Between Target and Sensor (m)

P
e
rc

e
n
t

Im
p
ro

v
e
m

e
n
t

Two Sensors

Three Sensors

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Distance Between Target and Sensor (m)

P
e
rc

e
n
t

Im
p
ro

v
e
m

e
n
t

Two Sensors

Three Sensors

133

From Figure 8.5, it is immediately apparent that the two scenarios in Case 1 result in

identical curves. This is due to the fact that the optimal sensor configuration is independent of

distance for the identical sensor case. However, distance does affect the optimal configuration

when the sensors have different properties, as shown in Figure 8.6 and Figure 8.7. The further

the sensor is from the target object, the less disparate valid sensor coverage areas appear,

regardless of the difference in the sensor properties themselves. Therefore, the optimal

configuration will change with distance as the apparent difference in the valid sensor coverage

areas change. More variation is seen in the three sensor curves in Figure 8.6 and Figure 8.7 than

in the two sensor curves because the number of possible sensor configurations increases with

the number of sensors. This is reflected in smoother curves for the two sensor case and

piecewise continuous curves for the three sensor case.

The studies presented in this section illustrate some of the factors that can affect the

percent improvement in the target location estimate. The number of sensors, sensor properties,

and distance of the target object from the sensor all had significant impacts on the percent

improvement supplied by the optimization technique presented in this dissertation. These

results indicate that improvements as high as 90% over the worst-case scenario can be achieved

through optimization, indicating that further distances should be tested in the real world in

future work to confirm these results.

134

Chapter 9

9. Conclusions

This dissertation responds to the need for a methodology to determine the sensor placement

for a group of mobile tracking stations that will minimize the position estimation error of the

target. While much work has been done in the literature to optimize the placement of sensors,

little work has considered the interaction between multiple sensors. This work fills this gap by

considering the sensor configuration as a whole rather than as the sum of its parts, providing a

more comprehensive view of the system that is being optimized.

This work describes in this dissertation presents a novel, highly capable strategy for utilizing

a multi-robot network to track a moving target. The configuration of mobile tracking stations

was optimized in order to produce the target object position estimate that yielded the smallest

estimation error, even when sensor performance varied. This resulted in a simple, robust system

that accurately followed a moving object. The article also provided an overview of the cluster

space description used to control groups of two and three mobile tracking stations as well as the

corresponding control methodology used to maintain the ideal tracking configuration

throughout the experiment. This allowed for the collection of the best tracked object position

information using the novel method presented in Chapter 3. An overview of the method used to

obtain an estimate of the tracked object’s position was presented in Chapter 4 while simulation

experimental results were presented in Chapters 6 through 8. These results demonstrated that

the method was effective at tracking both a stationary and a moving object and can be applied

to sensors with different or identical properties. It can also be applied whether the sensor

properties remain constant over time, degrade, or even fail.

135

While the methodology presented here does not scale to thousands of robots, it works well

for “small” groups of robots with as many as tens of robots. These small groups are easier to

deploy and maintain than large numbers of robots, allowing them to be fielded in remote areas

that are difficult for robot delivery, deployed by only a few people, or purchased by groups that

cannot afford large groups of robots. This methodology makes the increased tracking accuracy

of a multi-sensor system available for limited-resource systems without requiring large numbers

of robots, creating a methodology that is accessible for more applications.

9.1. Contributions

In order to develop a rigorous mathematical formulation for optimizing sensor system locations

for a cluster formation in a multi-sensor, single-object environment through the use of error

ellipses, this dissertation presented:

 Two and three robot cluster space representations were developed to allow for robotic

control. These cluster space representations were developed in conjunction with other

students at Santa Clara University and have been used in additional work in the Robotics

Systems Laboratory [55][56][57].

 Mathematical modeling of a group of n sensors and their resulting combined error

covariance matrix.

 Closed-form optimization for a group of two mobile sensors to obtain the minimum area

of the combined sensor error ellipse. This optimization was used in the physical

experiments in this dissertation.

 Closed-form optimization for a group of three mobile sensors to obtain the minimum

area of the combined sensor error ellipse, also used in the physical experiments in this

dissertation.

136

 Development of a simple vision-processing algorithm that requires a very small amount

of data transmission.

 Stationary simulations and physical experiments that verified the findings of the closed-

form optimization for two and three mobile tracking stations. These results were

presented in Chapter 6.

 Controlled physical experiments that demonstrated the ability of the tracking algorithm,

with results presented in Chapter 7.

 Simulation with an optimization-in-the-loop that demonstrated the effectiveness of the

optimization methodology to respond quickly to changing sensor properties. These

results were presented in Chapter 8.

This dissertation is based upon previous work by various researchers in the fields of

robotics, vision processing, and optimization. It extends this body of knowledge to include the

optimization of a group of sensors as a whole to minimize the resulting tracking error. It is

believed to be the first time that a rigorous mathematical framework has been applied to a

multi-sensor optimization system and tested with physical experiments. Further, the

optimization can be applied to a wider variety of conditions than current methods such as that

presented in [11] which requires a Kalman filter and [43] which fails to find an optimal solution

for the fixed radius case. In the work presented in this dissertation, the optimization led to a 6%

improvement in the target location estimate over the non-optimized worst-case scenario tested

with identical sensors at the nominal fixed radius distance of 2.83 m and even more significant

improvements of over 90% at larger radial distances.

137

9.2. Future Work

The work presented here suggests many areas for future work. Although the closed-form

expressions extend to n robots relatively easily, the mathematics relating the optimization

output and the cluster variables does not. Future work is suggested to develop this

mathematical relationship for more than three robots. Future work is also recommended to

combine the effect of position uncertainty in the tracking system with position uncertainty of

the tracking stations themselves in the analysis. Currently, the model assumes that the tracking

stations know their exact position. Since knowledge of a robot’s exact position is difficult, if not

impossible, in the field, this error should be considered when optimizing the sensor

configuration as it affects the obtained position estimate of the tracked object.

The tracking process itself was tested with both a Pioneer 3-AT and a uniform object as the

tracked object. Use of the uniform object helped to determine whether discrepancies between

the theory and physical results were due to the shape of the Pioneer. During this process, it was

also discovered that different lighting conditions and background colors also had an effect on

the tracking results. It is recommended that further work be performed to evaluate the extent

of these additional noise sources.

Additionally, testing could be performed on different platforms with different sensors. This

extension could include another homogenous sensor mix, a heterogeneous sensor mix on

identical platforms, or a heterogeneous sensor mix on different platforms. Testing could also be

extended to include changing sensor properties or sensor failure in physical experiments as well

extended to include farther distances between the sensors and the target object.

This extended testing suggests the inclusion of a dual-rate controller where the controller

works at one rate and the optimization-in-the-loop works at a slower rate, allowing the cluster

138

to adapt to changing conditions. The properties of the sensors themselves would also need to

be calculated in real time in order to be fed into the optimization-in-the-loop. A sliding average

that resets when a large change is detected is suggested for this purpose, but further analysis is

required to determine the most efficient method.

Finally, future work is recommended to compensate for the dynamics of the system. The

sensor systems would compute the optimal sensor system configuration at a future time step

and then move into an intercept course that would result in this optimal configuration at the

desired time step. To the best of the author’s knowledge, this has not been explored on a

physical testbed before. This research will help extend the tracking methodology to additional

applications.

139

References

[1] C. A. Kitts and I. Mas (2009, April). Cluster Space Specification and Control of Mobile

Multirobot Systems. IEEE/ASME Transactions on Mechatronics [Online]. 14(2), pp. 207-

218. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4814792&sortType%3Dasc_p

_Sequence%26filter%3DAND%28p_IS_Number%3A4814791%29

[2] C. A. Kitts and M. Egerstedt (2008, March). Design, Control, and Application of Real-

World Multirobot Systems [From the Guest Editors]. IEEE Robotics & Automation

Magazine [Online]. 15(1), p. 8. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4476318

[3] P. Corke, C. Detweiler, M. Dunbabin, M. Hamilton, D. Rus, and I. Vasilescu, “ Experiments

with Underwater Robot Localization and Tracking,” in IEEE ICRA, Roma, Italy, 2007, pp.

4556-4561.

[4] K. Chakrabarty, S. Iyengar, H. Qi, and E. Cho. (2002, December). Grid Coverage for

Surveillance and Target Location in Distributed Sensor Networks. Computers, IEEE

Transactions on [Online]. 51(12), pp. 1448-1453. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1146711&url=http%3A

%2F%2Fieeexplore.ieee.org%2Fiel5%2F12%2F25838%2F01146711.pdf%3Farnumber%3D

1146711

[5] L. Shang, K. Zhao, Z. Cai, D. Gao, and M. Hu. (2014, July). An Energy-Efficient Collaborative

Target Tracking Framework in Distributed Wireless Sensor Networks. International

Journal of Distributed Sensor Networks [Online]. Available:

http://www.hindawi.com/journals/ijdsn/2014/396109/

140

[6] Y. Zhang, D. Wei, W. Fu, and B. Yang. (2014, June). Target Positioning with GDOP Assisted

Nodes Selection Algorithm in Wireless Sensor Networks. International Journal of

Distributed Sensor Networks [Online]. Available:

http://www.hindawi.com/journals/ijdsn/2014/404812/

[7] J. Lin, W. Xiao, F. Lewis, and L. Xie. (2008, October). Energy-Efficient Distributed Adaptive

Multisensor Scheduling for Target Tracking in Wireless Sensor Networks. Instrumentation

and Measurement, IEEE Transactions on [Online]. 58(6), pp. 1886-1896. Available:

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4652563&url=http%3A%2F%2Fi

eeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4652563

[8] J. Curcio, J. Leonard, J. Vaganay, A. Patrikalakis, A. Bahr, D. Battle, H. Schmidt, and M.

Grund, “Experiments in Moving Baseline Navigation Using Autonomous Surface Craft,” in

OCEANS, Washington, D. C., 2005, pp. 730-735.

[9] A. Bahr, J. Leonard, and M. Fallon. (2009, June). Cooperative Localization for Autonomous

Underwater Vehicles. The International Journal of Robotics Research [Online]. 28(6), pp.

714-728. Available: http://dspace.mit.edu/handle/1721.1/58207

[10] S. Martínez and F. Bullo. (2006, April). Optimal Sensor Placement and Motion

Coordination for Target Tracking. Automatica [Online]. 42(4), pp. 661-668. Available:

http://www.sciencedirect.com/science/article/pii/S000510980600015X

[11] A. Bahr, J. Leonard, and A. Martinoli, “Dynamic Positioning of Beacon Vehicles for

Cooperative Underwater Navigation,” in IEEE IROS, Vilamoura, Algarve, 2012, pp. 3760-

3767.

[12] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. Sycara. (2014, April). Distributed

Constraint Optimization for Teams of Mobile Sensing Agents. Autonomous Agents and

141

Multi-Agent Systems [Online]. Available:

http://link.springer.com/article/10.1007%2Fs10458-014-9255-3

[13] A. Marjovi and L. Marques. (2013, October). Optimal Spatial Formation of Swarm Robotic

Gas Sensors in Odor Plume Finding. Autonomous Robots [Online]. 35(2-3), pp. 93-109.

Available: http://link.springer.com/article/10.1007%2Fs10514-013-9336-1

[14] J. Spletzer and C. Taylor. (2003, January). Dynamic Sensor Planning and Control for

Optimally Tracking Targets. The International Journal of Robotics Research [Online].

22(1), pp. 7-20. Available: http://ijr.sagepub.com/content/22/1/7.refs

[15] J. Cashbaugh and C. Kitts, (2015, June). Optimizing Sensor Locations in a Multisensor

Single-Object Tracking System. International Journal of Distributed Sensor Networks

[Online]. Available: http://www.hindawi.com/journals/ijdsn/2015/741491/

[16] R. Beetem, “Improved Tracking Estimates with Multirobot-Based Tracking Networks,”

M.S. thesis, Dept. Mech Eng, Santa Clara University, Santa Clara, CA, 2012.

[17] S. Dayanidhi, “Target Tracking Using Mobile Robotic Stations,” M.S. thesis, Dept. Mech

Eng, Santa Clara University, Santa Clara, CA, 2013.

[18] T.J. Leising, “Six Degree of Freedom Cluster Space Control Simulation for Spacecraft

Formations,” M.S. thesis, Dept. Mech Eng, Santa Clara University, Santa Clara, CA, 2012.

[19] Y. Mohan and S. Ponnambalam, “An Extensive Review of Research in Swarm Robotics,” in

World Congress on Nature & Biologically Inspired Computing, Coimbatore, India,

December 9-11, 2009.

[20] A. Marjovi and L. Marques, “Swarm Robotic Plume Tracking for Intermittent and Time-

Variant Odor Dispersion,” in European Conference on Mobile Robots, Barcelona, Spain,

September 25-27, 2013.

142

[21] A. Atyabi and D. Powers, “The Use of Area Extended Particle Swarm Optimization

(AEPSO) in Swarm Robotics,” in 11th International Conference on Control, Automation,

Robotics and Vision, Singapore, December 7-10, 2010.

[22] M. Soorki, H. Talebi, and S. Nikravesh, “A Robust Dynamic Leader-Follower Formation

Control with Active Obstacle Avoidance,” in IEEE International Conference on Systems,

Man, and Cybernetics, Anchorage, AK, October 9-12, 2011.

[23] D. Mercado, R. Castro, and R. Lozano, “Quadrotors Flight Formation Control Using a

Leader-Follower Approach,” in European Control Conference, Zürich, Switzerland, July

17-19, 2013.

[24] T. Dierks, B. Brenner, and S. Jagannathan, “Near Optimal Control of Mobile Robot

Formations,” in IEEE Symposium on Adaptive Dynamic Programming and Reinforcement

Learning, Paris, France, April 11-15, 2011.

[25] J. Guo, Z. Lin, M. Cao, and G. Yan, “Adaptive Leader-Follower Formation Control for

Autonomous Mobile Robots,” in American Control Conference, Baltimore, Maryland,

June 30 – July 2, 2010.

[26] I. Mas and C. Kitts. (2014, May). Dynamic Control of Mobile Multirobot Systems: The

Cluster Space Formulation. IEEE Access [Online]. 2, pp. 558-570. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6818372

[27] Mathworks. (2006). atan2. Mathworks Documentation. [Online] Available:

https://www.mathworks.com/help/matlab/ref/atan2.html

[28] J. Craig, “Jacobians: velocities and static forces,” in Introduction to Robotics: Mechanics

and Control. 3rd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2005, ch. 5, sec. 8, pp.

151-153.

143

[29] C. Zempel, J. Cashbaugh, A. Mahacek, and A. Sherban. “Forward and Inverse Position and

Velocity Kinematics for a Cluster of Three Aerial Drones,” Robotics Systems Laboratory

Document, 2014.

[30] G. Vanderplaats, “Genetic Search,” in Numerical Optimization Techniques for Engineering

Design. 4th ed. Colorado Springs, CO: Vanderplaats Research and Development, Inc.,

2005, ch. 6, sec. 3, pp. 195-198.

[31] G. Vanderplaats, “Particle Swarm,” in Numerical Optimization Techniques for Engineering

Design. 4th ed. Colorado Springs, CO: Vanderplaats Research and Development, Inc.,

2005, ch. 6, sec. 4, pp. 198-200.

[32] R. Eberhart and Y. Shi, “Particle Swarm Optimization: Developments, Applications and

Resources,” in 2001 Congress on Evolutionary Computation, Seoul, South Korea, 2001,

pp. 81-86.

[33] R. Hooke and T. A. Jeeves. (1961, April). “Direct Search” Solution of Numerical and

Statistical Problems. Journal of the ACM [Online]. 8(2), pp. 212-229. Available:

http://dl.acm.org/citation.cfm?id=321069

[34] G. Buzzi-Ferraris and F. Manenti, “Heuristic Methods,” in Nonlinear Systems and

Optimization for the Chemical Engineer. 1st ed. Weinheim. Germany: Wiley-VCH, 2014,

ch. 3, sec. 2, pp. 86-97.

[35] J. Devore, “Expected Values, Covariance, and Correlation,” in Probability and Statistics for

Engineering and the Sciences. 6th ed. Toronto, Canada: Brooks/Cole – Thomson Learning,

2004, ch. 5, sec. 2, pp. 219-225.

[36] P. Schubert and M. Kirchner (2014, January). Ellipse Area Calculations and Their

Applicability in Posturography. Gait and Posture [Online]. 39(1), pp. 518-522. Available:

http://www.sciencedirect.com.libproxy.scu.edu/science/article/pii/S0966636213005961

144

[37] M. H. DeGroot and M. J. Schervish, “Tables,” in Probability and Statistics, 3rd ed. Boston:

Addison-Wesley, 2002, pp. 774-775.

[38] J. E. Davis (2007, August). Combining Error Ellipses. Harvard. Cambridge, MA. [Online].

Available: cxc.harvard.edu/csc/memos/files/Davis_ellipse.pdf

[39] S. Leon, Linear Algebra with Applications. Upper Saddle River: Pearson, 2010.

[40] S. Dayanidhi, R. Beetem, and C. Kitts, “Initial Experiments in Multirobot-Based Tracking

Networks,” in ASME-ISPS/JSME-IIP, Santa Clara, CA, 2012.

[41] M. H. DeGroot and M. J. Schervish, “Variance,” in Probability and Statistics, 3rd ed.

Boston: Addison-Wesley, 2002, pp. 197-202.

[42] G. Tonel. (2007, May). Unconstrained optimization using Hooke & Jeeves. Matlab

Central. [Online] Available:

http://www.mathworks.com/matlabcentral/fileexchange/15070-unconstrained-

optimization-using-hooke---jeeves

[43] T. H. Chung, V. Gupta, J. W. Burdick, R. M. Murray, “On a Decentralized Active Sensing

Strategy using Mobile Sensor Platforms in a Network,” in IEEE CDC, Atlantis, Bahamas,

December 14-17, 2004.

[44] T. Mukai and M. Ishikawa (1996, June). An Active Sensing Method Using Estimate Errors

for Multisensor Fusion Systems. Industrial Electronics, IEEE Transactions On [Online].

43(3), pp. 380-386. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=499810&tag=1

[45] M. Gupta, L. Behera, V. Subramanian, M. Jamshidi (2014, May). A Robust Visual Human

Detection Approach With UKF-Based Motion Tracking for a Mobile Robot. IEEE Systems

Journal [Online]. PP(99), pp. 1-13. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6810181

145

[46] G. Rodríguez-Canosa, S. Thomas, J. del Cerro, A. Barrientos, and B. MacDonald (2012,

April). A Real-Time Method to Detect and Track Moving Objects (DATMO) from

Unmanned Aerial Vehicles (UAVs) Using a Single Camera. Remote Sensing [Online]. 4(4),

pp. 1090-1111. Available: http://www.mdpi.com/2072-4292/4/4/1090

[47] A. Giusti, J. Nagi, L. Gambardella, G. Di Caro, “Cooperative Sensing and Recognition by a

Swarm of Mobile Robots,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems, Vilamoura, Algarve, Portugal, October 7-12, 2012.

[48] T. de Wolf, private communication, March 2014.

[49] “Studio Diip: Projects,” [Online]. Available: http://www.studiodiip.com/projects.

[Accessed 2 July 2015].

[50] “AR.Drone Specifications,” [Online]. Available:

http://diydrones.com/profiles/blogs/parrot-ardrones-specs-arm9. [Accessed 6 July

2013].

[51] S. Piskorski, N. Brulez, and P. Eline, 2011, AR.Drone Developer Guide, Parrot S. A..

[52] W. H. Ittelson (1951, April). Size as a Cue to Distance: Radial Motion. The American

Journal of Psychology [Online]. 64(2), pp. 188-202. Available:

http://www.jstor.org/stable/1418666

[53] G. Welch and G. Bishop, 2006, “An Introduction to the Kalman Filter,” UNC-Chapel Hill,

TR 95-041.

[54] J. Cashbaugh, A. Mahacek, C. Kitts, C. Zempel, and A. Sherban, “Quadrotor Testbed

Development and Preliminary Results,” in IEEE Aerospace, Big Sky, Montana, March 7-14,

2015.

[55] A. Sherban, “Cluster Space Control for Heterogeneous Degrees of Freedom Robots,” M.S.

thesis, Dept. Mech Eng, Santa Clara University, Santa Clara, CA, 2014.

146

[56] C. Zempel, “Cluster Space Control of Three Aerial Drones,” M.S. thesis, Dept. Mech Eng,

Santa Clara University, Santa Clara, CA, 2014.

[57] A. Mahacek, “Autonomous Cluster Control of Two Robots in Three Dimensional Space,”

M.S. thesis, Dept. Mech Eng, Santa Clara University, Santa Clara, CA, 2014.

[58] J. R. R. Tolkien, The Lord of the Rings. London: Harper Collins, 1955.

[59] Adept Technology, Inc., "MobilePioneer 3-AT," 2011. [Online]. Available:

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDkQFjA

B&url=http%3A%2F%2Fwww.mobilerobots.com%2FLibraries%2FDownloads%2FPioneer3

AT-P3AT-RevA.sflb.ashx&ei=afZnUq-1Osi-

2gWihYHoCA&usg=AFQjCNG4YJfNJRJFUXqJNZFYqHrzsp9N2A&sig2=CyYYf6CwKyHUILQQj

VtyAg&bvm=bv.55123115,d.b2I

[60] Sapphire Dart Digital Active Real-Time Tracking (Model H651/651A Indoor/ Outdoor)

Users Guide Revision 2.1, Multispectral Solutions, Inc., Lincolnshire, IL, 2006.

[61] “Data Turbine,” [Online]. Available: http://www.dataturbine.org/. [Accessed 6 July 2013].

[62] P. Mahacek, C. Kitts, and I. Mas. (2012, Feb.). Dynamic Guarding of Marine Assets

Through Cluster Control of Automated Surface Vessel Fleets. IEEE/ASME Transactions on

Mechatronics [Online]. 17 (1), 65-75. Available:

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6097059&url=http%3A%2F%2Fi

eeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6097059

[63] “javadrone: AR.Drone Java API," [Online]. Available:

http://code.google.com/p/javadrone/. [Accessed 15 June 2012].

147

Appendix

Appendix A

This appendix provides the full two robot forward and inverse Jacobians described in Chapter 2.

A.1. Two Robot Forward Jacobian

1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2

1 2 1 2 1 2 1 2

1 1
0 0 0 0 0 0

2 2

1 1
0 0 0 0 0 0

2 2

1 1
0 0 0 0 0 0

2 2

0 0 0 0

0 0

0 1

y y x x y y x x

x x y y x x y y x x y y x x y y

J
x x z z y y z z x x z z y y z z

C B
A A A A

y y x x

x x y y x x y y

1 2 1 2

2 2 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

0 0

0 0 0 1

0 0

y y x x

x x y y x x y y

y y x x y y x x

x x y y x x y y x x y y x x y y

x x y y z z x x y y z z

C C C C C C

2 2 2 2 2

1 2 1 2 1 2 1 2 1 2

2 2

1 2 1 2

2 2 2

1 2 1 2 1 2

2 2 2

1 2 1 2 1 2

A x x y y x x y y z z

x x y y
B

x x y y z z

C x x y y z z

A.2. Two Robot Inverse Jacobian

1

1 1 1
1 0 0 cos cos sin sin 0 0 sin cos

2 2 2

1 1 1
0 1 0 sin cos cos sin 0 0 cos cos

2 2 2

1 1
0 0 1 0 cos 0 0 sin

2 2

0 0 0 1 0 1 0 0

1 1 1
1 0 0 cos cos sin sin 0 0 sin cos

2 2 2

1 1 1
0 1 0 sin cos cos sin 0 0 cos cos

2 2 2

1
0 0 1 0 cos 0 0

2

p p

p p

p

J

p p

p p

p

1

sin
2

0 0 0 1 0 0 1 0

148

Appendix B

This appendix presents the Matlab script used in the optimization block of the Simulink

controllers. This script is a modified version of the Hooke and Jeeves method downloaded on

the Math Works File Exchange [42]. The modifications made consist of bounding the allowable

radii and penalizing objective function results that violate these bounds.

function

[xopt,Opt,Nav]=hkjeevesmodified(Sx,guess,ip,Lb,Ub,problem,tol,mxit,stp,

amp,red,varargin)
% Unconstrained optimization using Hooke & Jeeves.
%
%

[xopt,Opt,Nav]=hkjeeves(Sx,guess,ip,Lb,Ub,problem,tol,mxit,stp,amp,red,

par1, par2,...)
%
% Sx : objective function
% guess : initial point
% par : parameters needed to function
% ip : (0): no plot (default), (>0) plot figure ip with

pause, (<0) plot figure ip
% Lb, Ub : lower and upper bound vectors to plot (default =

guess*(1+/-2))
% problem : (-1): minimum (default), (1): maximum
% tol : tolerance (default = 1e-4)
% mxit : maximum number of stages (default = 50*(1+4*~(ip>0)))
% stp : stepsize vector for the independent variables

(default = max(0.01*abs(guess+~guess),0.1))
% amp : stepsize enlargement factor (1,oo) (default = 1.5)
% red : stepsize reduction factor (0,1) (default = 0.5)
% xopt : optimal point
% Opt : optimal value of Sx
% Nav : number of objective function evaluations

% Copyright (c) 2001 by LASIM-DEQUI-UFRGS
% $Revision: 1.0 $ $Date: 2001/07/05 21:10:15 $
% Argimiro R. Secchi (arge@enq.ufrgs.br)
%
%
% Modified by Giovani Tonel (giotonel@enq.ufrgs.br) - April 2007
% direction = - 1 --> reverse
% 1 --> direct
% idx: variables index vector with enlarged stepsize
% top: end of idx list
% bottom: beggin of idx list
% next: index of enlarged variable

 if nargin < 2,
 error('hkjeeves requires two input arguments ''Sx,guess''');
 end

149

 if nargin < 3 | isempty(ip),
 ip=0;
 end
 if nargin < 4 | isempty(Lb),
 Lb=-guess-~guess;
 end
 if nargin < 5 | isempty(Ub),
 Ub=2*guess+~guess;
 end
 if nargin < 6 | isempty(problem),
 problem=-1;
 end
 if nargin < 7 | isempty(tol),
 tol=1e-4;
 end
 if nargin < 8 | isempty(mxit),
 mxit=50*(1+4*~(ip>0));
 end
 if nargin < 9 | isempty(stp),
 stp=max(0.01*abs(guess+~guess),0.1);
 else
 stp=abs(stp(:));
 end
 if nargin < 10 | isempty(amp) | amp <= 1,
 amp=1.5;
 end
 if nargin < 11 | isempty(red) | red <= 0 | red >= 1,
 red=0.5;
 end

% guess=guess(:);

 yo= feval(Sx,guess)*problem;
 % Assigning an out of bounds penalty
 if (guess(1) < 1.7) | (guess(1) > 4) | (guess(5) < 1.7) | (guess(5) >

4)
 yo = yo*100;
 end
 n=size(guess,1);

 x=guess;
 xopt=guess;
 Opt=yo;
 it=0;
 Nav=1;
 top=0;
 bottom=0;
 idx=zeros(n+1,1);
 idx(bottom+1)=top;

 while it < mxit
 next=bottom;
 norma=0;
 % exploration
 for i=1:2:n,
 stp_i = stp(i);

150

 for direction=[1 -1],
 x(i)=xopt(i)+stp_i*direction;
 y= feval(Sx,x, varargin{:})*problem;
 % Assigning an out of bounds penalty
 if (i == 1) | (i == 5)
 if (x(i) < 1.7) | (x(i) > 4)
 y = y*10;
 end
 end
 Nav=Nav+1;

 if y > yo, % success
 yo=y;
 if ip & n == 2,
 plot([x(1) xopt(1)],[x(2) xopt(2)],'r');
 if ip > 0,
 disp('Pause: hit any key to continue...'); pause;
 end
 end

 xopt(i)=x(i);
 idx(next+1)=i;
 next=i;
 break;
 end
 end

 x(i)=xopt(i);
 norma=norma+stp_i*stp_i/(x(i)*x(i)+(abs(x(i))<tol));
 end

 it=it+1;

 if sqrt(norma) < tol & abs(yo-Opt) < tol*(0.1+abs(Opt)),
 break;
 end
 % progression
 if next==bottom,
 stp=stp*red;
 else
 good=1;
 idx(next+1)=top;

 while good,
 Opt=yo;

 next=idx(bottom+1);
 while next ~= top,
 x(next)=x(next)+amp*(x(next)-guess(next));
 guess(next)=xopt(next);
 next=idx(next+1);
 end

 if idx(bottom+1) ~= top,

151

 y= feval(Sx, x, varargin{:})*problem;
 % Assigning an out of bounds penalty
 if (x(1) < 1.7) | (x(1) > 4) | (x(5) < 1.7) | (x(5) > 4)
 y = y*10;
 end

 Nav=Nav+1;

 if y > yo,
 yo=y;
 good=1;

 if ip & n == 2,
 plot([x(1) xopt(1)],[x(2) xopt(2)],'r');
 if ip > 0,
 disp('Pause: hit any key to continue...'); pause;
 end
 end
 else
 good=0;
 end

 next=idx(bottom+1);
 while next ~= top,
 if good,
 xopt(next)=x(next);
 else
 x(next)=xopt(next);
 end
 next=idx(next+1);
 end
 end
 end
 end
 end

 Opt=yo*problem;

 if it == mxit,
 disp('Warning Hkjeeves: reached maximum number of stages!');
 elseif ip & n == 2,
 h2=plot(xopt(1),xopt(2),'r*');
 legend([h1,h2],'start point','optimum');
 end

disp('Optimization by hkjeeves terminated!')

152

Appendix C

This appendix provides the raw data, plots, and R2 values for the curve fitting described in

Chapter 4.

C.1. Raw Data

The following figure shows the two orientations of the Pioneer used as the tracked object. These

two orientations were chosen because they represent the largest and smallest surface area of

the Pioneer that the quadrotor was likely to see during normal operations. At each distance, a

minimum of 200 data points were recorded. The mean number of white pixels seen by the

controller were recorded and can be seen in Table 0.1.

Figure 0.1: The Pioneer on the left has a forward-back orientation while the Pioneer on the right has a right-

left orientation.

153

Table 0.1: Raw data of the size of the Pioneer as “seen” by the quadrotor at various distances.

Distance
(m)

Right-Left
(number of

pixels)

Forward-Back
(number of

pixels)

 Distance
(m)

Right-Left
(number of

pixels)

Forward-Back
(number of

pixels)
1.0 0 0 3.6 1.9981 1

1.1 0 0.0056 3.7 1.9952 0.4982

1.2 2.9704 0 3.8 1.375 1

1.3 5 3 3.9 1 1.6466

1.4 8 3 4.0 1 0

1.5 8.9112 4.9927 4.1 1 0.4366

1.6 8.9786 6 4.2 1 0.9116

1.7 7.3807 3.7558 4.3 1 0.9172

1.8 6.0028 5.0187 4.4 1 0.8012

1.9 5.9695 5.9669 4.5 1 0.0222

2.0 3.5773 2 4.6 0.9482 0.7742

2.1 3.1101 2 4.7 1 0.1197

2.2 4.0127 2 4.8 1 0.2841

2.3 4 3.1797 4.9 0.8742 1

2.4 3.5066 3.1004 5.0 0.9874 0

2.5 2.0021 3.2431 5.1 0.6613 0

2.6 2 3 5.2 0.1588 0.8274

2.7 2 2 5.3 0 0.6962

2.8 1.9356 2 5.4 0 0

2.9 1.6939 2 5.5 0.2687 0

3.0 2 1.8918 5.6 0.3876 0

3.1 1 2 5.7 0.0176 0

3.2 1.0443 1.9472 5.8 0.0728 0

3.3 1 1.9967 5.9 0.0448 0

3.4 2 2 6.0 0.0397 0

3.5 2 1

C.2. Plots

The raw data and the exponential curve used to approximate this data are shown in Figure 0.2.

Distances of 1.7 m to 3.0 m were chosen for both sets of data since the quadrotor could easily

“see” the Pioneer in both orientations at these distances. The curve’s R2 value was measured in

this range for both the right-left orientation and the forward-back orientation. The results are

shown in Table 0.2 below. These results confirm the exponential curve’s validity for this data

range. The exponential equation was then solved for distance and used to determine D in the

experiments and simulations discussed in this dissertation.

154

Figure 0.2: Raw data and exponential curve.

Table 0.2: R
2
 values for the exponential curve fit.

Orientation R2 Value

Right-Left 0.96

Forward-Back 0.90

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

5

6

7

8

9

Distance (m)

N
u
m

b
e
r

o
f

P
ix

e
ls

 (
p
ix

e
ls

)

Right-Left Orientation

Forward-Back Orientation

Exponential Curve

155

Appendix D

This appendix provides the shared testbed description written by Jasmine Cashbaugh, Anne

Mahacek, Alicia Sherban, and Christian Zempel. It provides additional detail on the testbed

described in Chapter 5.

D.1. System Overview

Figure 0.1: Physical hardware layout.

This testbed was designed to apply multi-robot cluster control techniques for aerial vehicles and

land rovers. The testbed consists of the robots, an Ultra Wideband (UWB) system that can track

the position of Radio Frequency Identification (RFID) tags attached to individual robots, a data

receiving and parsing computer, a controller computer, individual robot command computers,

WiFi connections, and a modem connection. These components can be described in the

following four categories: robots, sensing system, networking, and data handling. To limit the

number of environmental factors that might affect the test results, the aerial robots were tested

in an indoor environment where their positions could be measured accurately at all times.

Additionally, the robots were controlled using Matlab and Simulink since legacy controllers were

developed in the Robotic Systems Laboratory (RSL) using this software [1]. A more detailed

156

explanation of these components can be found in the following sections. A physical hardware

layout can be seen in Figure 0.1 accompanied by the testbed flowchart and hardware layout

diagram in Figure 0.2 and Figure 0.3, respectively.

Figure 0.2: Testbed flowchart.

Figure 0.3: Hardware layout diagram.

D.2. AR.Drone

Quadrotors are classed as an aerial vehicle driven by four rotors. As these rotors vary in speed,

the quadrotor is able to move translationally and rotationally depending on the rotor

157

configuration. The AR.Drone is a hobby class quadrotor developed by Parrot to be controlled via

Apple and Android operating systems. The drones have a total of four independently controlled

degrees of freedom (DOF): three translational and one rotational. Drone movement is

constrained translationally along the local x, y, and z axes and rotationally about the z axis, or

yaw; rotation about the x axis, or roll, and the y axis, or pitch, are coupled with the translation of

y and x, respectively.

The AR.Drone hull measures 52.5 cm by 51.5 cm and weighs 400 g. The drone has a

maximum running speed of 5 m/s with an approximate running time of 15 minutes. The

AR.Drone includes a carbon tube structure and four brushless motors that run at 3,500

rpm. The drone additionally includes a 93 degree wide angle diagonal lens front camera, a 64

degree diagonal high speed vertical camera, an ultrasound altimeter, a three axis accelerometer,

a two axis gyroscope, and a one axis yaw precision gyroscope. The drones are powered by

rechargeable Lithium-Polymer batteries. The 3-cell battery has a capacity of 1000 mAh and 11.1

volts [2].

Figure 0.4: AR.Drone components.

158

The AR.Drone has an onboard control that converts commands, in the form of a vector

shown in Eq. (0.1) below, to drive actuators on each of the four motors.

 [𝑥 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑦 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑧 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑦𝑎𝑤 𝑟𝑎𝑡𝑒] (0.1)

It is important to note that the command reference frame of the AR.Drone differs from the

reference frame used for modeling the system, necessitating an additional rotation matrix to

match these reference frames. The difference between these two frames is shown in Figure 0.5

and Figure 0.6 below while the rotation matrix is shown in Eq. (0.2).

𝑅𝐴𝑅

𝐷 = [
0 −1 0
1 0 0
0 0 −1

]
(0.2)

Figure 0.5: AR.Drone coordinate frame.

159

Figure 0.6: Drone coordinate frame.

The AR.Drone also has onboard hover control and stability control that is activated if

commands are not continually sent to the drone. In the absence of a command, the hover

control allows the drone to hover autonomously over a single location utilizing the downward

facing camera; an emergency land is executed if a large enough roll or pitch is detected.

Each AR.Drone natively broadcasts its own wireless network so no additional software was

needed on the drones themselves.

D.3. Sensing System

D.3.1. Hardware

The Sapphire DART Ultra Wideband Tracking System was used in order to collect robot position

data. The UWB Tracking System consists of a series of receivers placed around the perimeter of

the testbed area at various heights and radio frequency identification tags placed on the robots.

The RFID tags broadcast at 25 Hz while the receivers triangulate the position of the tags. Two

RFID tags are secured to the robots in a known configuration; the individual tag positions are

160

then used to calculate the position and orientation of the robot in the x, y, and z dimensions.

The testbed consists of eleven receivers with three separate “daisy chain” connections. Figure

0.8, Table 0.1, and Table 0.2 show the placement of the receivers and a reference tag which

allows the system to have a relative zero location within the workspace [3].

Figure 0.7: UWB receiver and RFID tag.

Table 0.1: Locations of the UWB reference tags.

Reference Tag X Position (m) Y Position (m) Z Position (m)

Ref 01 4.04 -3.98 0.00

Ref 02 -4.03 4.14 0.00

Table 0.2: Locations of the UWB receivers.

Receiver Name X Position (m) Y Position (m) Z Position (m)

Rx 01 -3.02 7.57 0.63

Rx 02 6.32 7.44 0.64

Rx 03 6.06 -2.51 0.64

Rx 04 5.83 -11.94 0.46

Rx 05 -0.80 -11.95 0.62

Rx 06 -7.00 -11.98 0.64

Rx 07 -7.44 -3.02 0.62

Rx 08 5.78 -12.01 4.39

Rx 09 -7.15 7.91 3.58

Rx 0A -7.12 -12.08 4.22

Rx 0B 6.43 7.57 4.19

Rx 60 -7.19 7.82 0.46

161

Figure 0.8: Layout of UWB system.

D.3.2. Software

The sensor system data is read using Java line commands in Matlab to read in the data available

on the sensing system’s socket (IP host and port). This data is then parsed into a vector to make

it easier to use in the controller. The vector consists of time, x, y, and z values for each RFID tag.

D.4. Networking

D.4.1. Hardware

As seen in Figure 0.3, all computers and the UWB hub are connected via Ethernet cables to a

Netgear ProSafe 8 port Gigabit Switch. A dual band range extender/repeater was also connected

162

via Ethernet to the switch to allow the computer to have internet access. The first computer,

named Gollum, receives and parses data from the UWB hub and posts to a DataTurbine channel.

The second computer, Gandalf, receives the parsed tag data, runs the Simulink controller, and

posts individual drone commands to separate DataTurbine channels. There is one computer for

each robot that receives its respective commands through a WiFi connection using a Netgear

N300 Wireless USB Adapter.

D.4.2. Software

AR.Drones broadcast their own WiFi network at 192.168.1.x; therefore, all network devices

needed to be set to a different address to avoid conflicting IP issues. The extender/repeater

relays the DHCP request from the workstations to the router. Then the router distributes the IP

address of 192.168.15.xxx to the workstations. Router subnet masks were set to match the

AR.Drone subnet mask of 255.255.255.0.

DataTurbine was used to make various data accessible on all of the networked computers

used in this testbed. DataTurbine software is designed for this purpose and allows the user to

upload data to a data engine and download the data to any computer that can connect to the

same data engine [4]. This software has been used extensively in SCU’s RSL for connecting to

multiple data sources using the same computer [5]. However, in this testebed, DataTurbine is

used across a network of computers where a single instance of DataTurbine is run on Gollum

and all data is sent to or received from this single instance. Figure 0.9 illustrates the software

layout used in this testbed. Data from the sensor system is received on Gollum and imported

into Matlab and then uploaded to DataTurbine and made available to the other computers in

the network.

163

Figure 0.9: Software layout.

Gandalf acts as the control computer and runs Matlab and the Simulink cluster controller.

Gandalf downloads the tag data from DataTurbine posted by Gollum, imports it into Simulink,

and then uses this data to calculate velocity commands for each robot. Simulink outputs the

robot command velocities and uploads them to DataTurbine, residing on Gollum. Each robot has

its own command channel where its commands are uploaded by the control computer and

downloaded by the computer dedicated to that robot.

The robot computers each use Matlab to download the robot command velocities and send

them to the robot. The drone commands are sent using JavaDrone, an open source software

package written in Java to control Parrot’s AR.Drones using a graphical user interface (GUI) [6]

[2]. To integrate Matlab and JavaDrone so that commands can be sent directly from Matlab to

164

JavaDrone, a modified version of jmatlab was used. Jmatlab is a Java software package

developed by SCU’s RSL to serve as a bridge between DataTurbine, written in Java, and Matlab.

In enables users to implement Matlab functions without tying up the command line, allowing for

multiple commands to be run at the same time [5]. Hooks were added to this version of jmatlab

to allow the user to bypass the JavaDrone GUI and call the drone commands directly from

Matlab.

D.5. Characterization of Stationary Positioning

To verify the testbed, a simple stationary test was performed where a quadrotor with two tags

attached to the hull was placed in the testbed at various locations while position data was

collected and analyzed. The following table summarizes the UWB Tracking System error. Here,

the actual value is the true position of the quadrotor, and the measured position is the average

measured position plus or minus the measured standard deviation from this average. The x and

y values are fairly accurate for a test area of approximately 12 m by 19 m. The z value is not as

reliable, with errors over twice as high as for the x and y values. The errors for the theta values

are also higher than the errors for the x and y values. This is expected because the theta values

are calculated from the x and y values, thus compounding the errors.

Table 0.3: UWB system error analysis.

 X (m) Y (m) Z (m)

Tw
o

Q
u

ad
ro

to
rs

Mean Error 0.05 0.07 0.39

Max Error 0.35 0.32 0.85

Min Error 0.00 0.00 0.03

Error Std 0.06 0.08 0.11

RMS Error 0.06 0.08 0.40

Th
ree

Q
u

ad
ro

to
rs

Mean Error 0.07 0.07 0.35

Max Error 0.39 0.28 1.27

Min Error 0.00 0.00 0.00

Error Std 0.08 0.07 0.11

RMS Error 0.09 0.09 0.37

165

References

[1] C. Kitts and I. Mas, "Cluster Space Specification and Control of Mobile Multirobot Systems,"

Mechatronics, IEEE/ASME Transactions on, vol. 14, no. 2, pp. 207-218.

[2] "AR.Drone Specifications," [Online]. Available: http://diydrones.com/profiles/blogs/parrot-

ardrones-specs-arm9. [Accessed 6 July 2013].

[3] Multispectral Solutions, Inc., Sapphire Dart Digital Active Real-Time Tracking (Model

H651/651A Indoor/ Outdoor) Users Guide Revision 2.1, 2006.

[4] "Data Turbine," [Online]. Available: http://www.dataturbine.org/. [Accessed 6 July 2013].

[5] I. Mas, O. Petrovic and C. Kitts, "“Cluster Space Specification and Control of a 3-Robot Mobile

System," Proceedings - IEEE International Conference on Robotics and Automation, 2008.

[6] "javadrone: AR.Drone Java API," [Online]. Available: http://code.google.com/p/javadrone/.

[Accessed 15 June 2012].

166

Appendix E

This appendix provides an overview of the two drone simulation model used in this dissertation.

A block diagram of the entire simulation is shown in Figure 0.1. The foundation of this

simulation is a two drone cluster controller, as discussed in Chapter 2. A tracking algorithm was

then implemented in the large cyan block on the right of Figure 0.1. Details of this tracking

algorithm can be seen in Figure 0.2. The tracking algorithm took the individual Pioneer location

estimates from each quadrotor and combined them to obtain a single location estimate. This

estimate was then input into a Kalman filter to smooth the estimate and eliminate any large

jumps in the position estimate. The Pioneer was constrained to move at a maximum speed of

0.315 m/s so only small changes in position were physically possible. Next, the smoothed

position estimate was used to determine where the cluster center should be positioned and a

cluster position command was sent to the simulation. This cluster position command was input

into a PID controller, shown in Figure 0.3, along with the current cluster position in order to

determine the cluster velocity commands that were used to control the robots. The cluster

controller then proceeded as discussed in Section 2.3. In this case, the current cluster position

was simulated based on the cluster commands and typical actuator and measurement errors

observed during physical testing.

167

Figure 0.1: Block diagram of the two drone simulation.

168

Figure 0.2: Block diagram of the tracking algorithm used in the two drone simulation.

169

Figure 0.3: Block diagram of the PID controller used in the two drone simulation.

170

Appendix F

This appendix provides an overview of the three drone simulation model used in this

dissertation. A block diagram of the entire simulation is shown in Figure 0.1. The foundation of

this simulation is a three drone cluster controller, discussed in Chapter 2. A tracking algorithm

was then implemented in the large cyan block on the right of Figure 0.1, the details of which can

be seen in Figure 0.2. The tracking algorithm took the individual Pioneer location estimates from

each quadrotor and combined them to obtain a single location estimate. This estimate was then

input into a Kalman filter to smooth the estimate and eliminate any large jumps in the position

estimate. The Pioneer was constrained to move at a maximum speed of 0.315 m/s so only small

changes in position were physically possible. Next, the smoothed position estimate was used to

determine where the cluster center should be positioned and a cluster position command was

sent to the simulation. This cluster position command was input into a PID controller, shown in

Figure 0.3, along with the current cluster position in order to determine the cluster velocity

commands that were used to control the robots. The cluster controller then proceeded as

discussed in Section 2.3. In this case, the current cluster position was simulated based on the

cluster commands and typical actuator and measurement errors observed during physical

testing.

171

Figure 0.1: Block diagram of the three drone simulation.

172

Figure 0.2: Block diagram of the tracking algorithm used in the three drone simulation.

173

Figure 0.3: Block diagram of the PID controller used in the three drone simulation.

174

Appendix G

This appendix provides the calculations used to determine the area of the 60% error covariance

matrix.

G.1. Calculating the Position Errors

The first step in calculating the error covariance matrix is to calculate the position errors. The

position errors are the difference between the mobile tracking stations’ estimate of the tracked

object’s position and the tracked object’s actual position. The tracked object was assumed to be

on the ground, so no estimate was made of its z position. The x and y position errors were found

using Eq. (0.1) and (0.2), respectively, and were then used to calculate the total difference, as

shown in Eq. (0.3).

 𝑥𝑒𝑟𝑟𝑜𝑟 = 𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙 (0.1)

 𝑦𝑒𝑟𝑟𝑜𝑟 = 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 (0.2)

𝑑𝑖𝑓𝑓𝑡𝑜𝑡𝑎𝑙 = √𝑥𝑒𝑟𝑟𝑜𝑟

2 + 𝑦𝑒𝑟𝑟𝑜𝑟
2

(0.3)

G.2. Calculating the 60% Confidence Interval Error Ellipse Area

Next, the total difference calculated in Eq. (0.3) was entered into the Matlab script in Figure 0.1 to

calculate the 60% confidence interval error ellipse area.

Figure 0.1: Matlab script used to calculate the 60% confidence interval error ellipse area.

	Santa Clara University
	Scholar Commons
	12-2016

	Cluster Control of a Multi-Robot Tracking Network and Tracking Geometry Optimization
	Jasmine Cashbaugh
	Recommended Citation

	tmp.1483470540.pdf.jvG8e

