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Choreography of silk spinning by webspinners (Insecta:
Embioptera) reflects lifestyle and hints at phylogeny
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Department of Biology, Santa Clara University, Santa Clara, CA, USA

Received 23 September 2015; revised 1 December 2015; accepted for publication 1 December 2015

Silk spinning defines the morphologically constrained embiopterans. All individuals spin for protection, including
immatures, adult males and the wingless females. Enlarged front tarsi are packed with silk glands and clothed
with ejectors. They spin by stepping with their front feet and releasing silk against substrates and onto pre-
existing silk, often cloth-like. Spinning is stereotypical and appears to differ between species in frequency and
probability of transition between two spin-step positions. This spinning choreography was assessed using
thousands of spin-steps scored in the laboratory for 22 species to test: (1) the body size hypothesis predicting that
spinning would be more complex for larger species; and (2) the phylogeny hypothesis which predicted that
spinning would display phylogenetic signal. Tests relied on published phylogenies for the order Embioptera.
Independent contrast analysis revealed relationships between five spin characteristics and body size, whereby, for
example, larger webspinners invested in relatively larger prothoracic tarsi used for spinning and in spin-steps
that would yield expansive silk coverings. Spin-step dynamics displayed a phylogenetic signal for the frequency of
six spin-steps and for 16 spin-step transitions. Discussion focuses on patterns revealed by analysis of phylogenetic
signal and the relationship to life style and to recently discovered chemical characteristics of silk. © 2016 The
Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of Linnean
Society of London, Biological Journal of the Linnean Society, 2016, 118, 430–442.

KEYWORDS: Blomberg’s K – Embioptera – independent contrast – Insecta – phylogenetic signal –
silk – spinning-webspinner.

INTRODUCTION

The quantification of silk spinning behaviour has
been useful for understanding evolution of insects
who spin cases and cocoons, including blackflies (Stu-
art & Hunter, 1998), caddisflies (Stuart & Currie,
2002a, b), and caterpillars (Bucheli, Landry & Wen-
zel, 2002). For spiders as well, species diversification
seems more closely related to innovations in their
use of silk than to variation in life styles (Blackledge
et al., 2009). These studies on spinning by spiders
and insects inspired us to investigate the evolution
of another group of silk spinners, the polyneopteran
insect order Embioptera. As with spiders, embiopter-
ans show no trophic-level diversification and little
diversification in morphology, both of which are unu-
sual characteristics for an order in the otherwise
highly diverse Insecta. Observations in our labora-
tory have prompted the question as to whether sub-

tle differences in spinning might reflect ancestral
relationships in Embioptera. Behaviour can be diffi-
cult to quantify and for many researchers has also
proven to lack phylogenetic signal. But what about
behaviour expressed by animals in a taxon that
shows little morphological diversity; might behaviour
serve as a clue to evolutionary relationships? Also,
the behaviour in question is displayed as sequences
of spin-steps, and some slight differences that accu-
mulate over evolutionary time might reflect random
changes rather than adaptations. Could such
changes provide clues to phylogenetic relationships?
A brief introduction to the order Embioptera is war-
ranted given the general lack of knowledge of them
and to place their silk spinning into context given
the questions posed above.

Embiopterans, sister group of the Phasmida
according to recent studies (Miller et al., 2012), are
mostly subtropical and tropical with fewer than 500
named species and an estimated 2000 worldwide
(Ross, 1991). Living within silk, an order-defining*Corresponding author. E-mail: jedgerlyrooks@scu.edu

430 © 2016 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of Linnean
Society of London, Biological Journal of the Linnean Society, 2016, 118, 430–442

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which
permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no

modifications or adaptations are made.

Biological Journal of the Linnean Society, 2016, 118, 430–442. With 5 figures.

mailto:jedgerlyrooks@scu.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/


characteristic, has profoundly constrained the
embiopteran body form and lifestyles. The behaviour
of hiding within silk and the fact that most species
live in the tropics has also made this one of the least
known of all orders of insects. They feed on leaf litter
and epiphytic algae and lichens, living beneath the
ground in silk-lined burrows, under stones, in leaf
litter or on bark wherever it is humid and warm.
Furthermore, their body form is remarkably uniform
(Fig. 1A), no matter the climate or microhabitat. This
uniformity stems from neotenization of adult
females. The body is elongated and flexible, and com-
bined with the lack of wings, affords females amaz-
ing maneuverability within the tight confines of silk
tubes. Males, which die soon after mating, are usu-
ally winged but even their bodies are flexible and
their wings can crumple as they run backwards and
forwards within silk. Although females vary in size
and colour, they express very few morphological
characters that have been used in phylogenetic anal-
yses (Szumik, Edgerly & Hayashi, 2008; Miller et al.,
2012). In contrast, male secondary sexual character-
istics and wings (Ross, 1991) and more recently
molecular data do provide phylogenetic information
(Szumik et al., 2008; Miller et al., 2012).

As the webspinner spin-steps in a dance-like rou-
tine around the front of the body and sometimes over
the back, silk issues forth from swollen glands in the
front feet and adheres to the substrate and to previ-
ously spun silk (Fig. 1B–E). Silk production varies
among species and may be correlated with a variety
of abiotic and biotic variables such as temperature,
moisture, and predation. For example, burrowers
and litter-dwellers appear to produce little silk while
some large arboreal species produce copious
amounts. Observations of cultures raised in labora-
tory conditions revealed that these differences persist
even under common garden conditions (personal
observation; JSE) suggesting the possibility that silk
spinning tendencies have diversified. Previous stud-
ies of webspinners have sought to understand subso-
cial and colonial behaviour (see references in Edgerly
(1988)), relationships between embiopterans and
their environment (Edgerly & Rooks, 2004; Edgerly,
Tadimalla & Dahlhoff, 2005; Edgerly, Shenoy & Wer-
ner, 2006), and the function and structure of silk
(Okada et al., 2008; Collin et al., 2009a, b; Addison
et al., 2014) with progress still being made in these
areas. Our current goal is to determine whether silk
spinning diversity can be quantified, scored, and
used to understand embiopteran evolution. Previous
work on a few species revealed what appear to be
stereotypical behaviours (Edgerly, Davilla & Schoen-
feld, 2002; Edgerly, B€usse & H€ornschemeyer, 2012),
providing a foundation for a broader sampling of
taxa as we seek to answer our research questions.

Silk spinning is performed by webspinners of all
ages and both sexes but adult females with nymphs
are the most productive (Edgerly, 1988). The struc-
tures include tubular galleries (Fig. 1C, E) and/or
extensive cloth-like silk (Fig. 1B, D). Generally, most
species construct a domicile of thick silk connected to
food by more diffuse galleries – sometimes camou-
flaged with gathered materials, sometimes con-
structed with clean silk (Ross, 2000; Edgerly et al.,
2002). Particular questions emerged from a recent
study that revealed that individual female and male
Aposthonia ceylonica (Enderlein) (Oligotomidae)
exhibited spin-steps in an apparently species-specific
manner (Edgerly et al., 2012). An evaluation of indi-
viduals in three other species chosen to serve as com-
parisons for Ap. ceylonica also hinted at species
specificity. That research focused on comparing silk
glands and spinning behaviour of males and females,
leaving unanswered the question of a phylogenetic
signal in silk-spinning behaviour.

In contrast with previous studies of silk in arthro-
pods (such as spider orb webs) the architecture of
webspinner silk cannot be sufficiently characterized
because, to a large extent, its form varies in subtle
ways from tubular galleries to sheet-like coverings.
Instead, subtle movements during spinning may pro-
vide more useful characters for phylogenetic analysis
than the end products of spinning, as has been
shown for blackfly larvae (Stuart & Hunter, 1998).
Our alternative hypotheses are spinning behaviour
style: (1) is related to body size because larger web-
spinners, often arboreal, may require more complex
spin-steps to create a protective silk covering (the
body size hypothesis); and (2) reflects phylogenetic
relationships as differences accumulated in lineages
over evolutionary time (the phylogeny hypothesis).

To test these hypotheses, behaviours of adult
females from 22 species representing ten families
were scored. Their body lengths ranged from ~ 0.8–
2.0 cm, thus providing variability needed to test the
body size hypothesis. Because larger species tend to
live in the open on tree bark, we predicted that they
would differ from smaller, more hidden, species in
spinning choreographies. Smaller species were pre-
dicted to spin in a manner that would result in a lin-
ing for a burrow (similar to ‘wall-papering’ seen in
some spiders and that shown beneath the female in
Fig. 1D). In contrast, larger species were predicted to
spin in a more complex way because they can make
tubes that extend up the surface of bark providing a
barrier to the elements in this exposed microhabitat.
To test if these relationships hold, an independent
contrast analysis was performed. Of note, a recent
study of a set of closely related species did not reveal
such a relationship between spinning behaviours and
body size (B€usse et al., 2015).
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Figure 1. Diversity of adult female embiopterans and their silk. (A) From left to right: Metoligotoma pentanesiana

(Australembiidae), Archembia n. sp. (Archembiidae), Haploembia tarsalis (Oligotomidae), Macrembia sp. (‘Embiidae’),

and Antipaluria urichi (Clothodidae). Females range in length from ~ 1.2–2.0 cm. (B) Silk of Gibocercus sp. in the field

in Ecuador showing the sheet-like covering over tubular route-ways typical for tropical rainforest species. Grazing on

epiphytic algae and mosses is evidenced by the scraped surface of the bark, (C) Silk of Pararhagadochir trinitatis

(Scelembiidae) in a laboratory container showing typical tubular galleries, (D) Aposthonia borneensis (Oligotomidae)

guarding her eggs hidden by tissue-like silk covering, in the laboratory, E. Silk of Embia nuragica (‘Embiidae)(top) dis-

playing openings at the top of the culture and at bottom, similarly at the top of a leaf-litter colony of Metoligotoma

incompta in the laboratory.

© 2016 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of Linnean
Society of London, Biological Journal of the Linnean Society, 2016, 118, 430–442
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If spinning behaviour is related strongly to the
resultant domicile structure, which ultimately
relates to demands of the microhabitat, then the link
between phylogeny and spinning will be tenuous.
Detection of subtle differences in silk spinning chore-
ography in a previous study, mentioned above
(Edgerly et al., 2012), suggested that spin-step
dynamics might actually reveal phylogenetic signal.
A recently published phylogeny of the order (Miller
et al., 2012) and our decade-long intensive collecting
of these hard-to-find insects and subsequent filming
efforts provided the specimens and data necessary to
test for such a signal.

MATERIAL AND METHODS

CULTURES

Embiopterans collected in the field were maintained
in laboratory colonies prior to the beginning of spin-
ning behaviour trials (see Table S1, Miller et al.,
2012 for collection locations). All colonies were main-
tained at room temperature (~ 24°C) in plastic or
glass containers filled with dry leaf litter (Coastal
Live Oak, Quercus agrifolia) forming a matrix where
individuals could spin and feed. Romaine lettuce and
locally collected lichens served as food. Lighting was
set on a diurnal cycle (14 h light: 10 h dark) and
water was provided every 3–4 days. Collecting, rear-
ing, filming, and scoring behaviours took place over
a 10-year period (2001–2011).

RECORDING AND SCORING SPINNING BEHAVIOUR

Spinning behaviour was evaluated only in adult
females to minimize variability due to a sex effect. To
induce spinning, individuals were placed in a narrow
burrow (0.3 cm wide 9 0.5 cm deep 9 5.8 cm long)
carved into a plywood block, covered with a transpar-
ent plastic lid, and/or in an open chamber with a
bark-covered piece of wood within a plexiglass box
(6 cm long by 6 cm wide by 4 cm deep) leaving a 1.5
cm air space above the bark). The bark served as a
tree model. Because different microhabitats might
trigger different types of or different investment in
spinning, these two arenas were employed with the
goal of capturing the fullest expression of spinning
from a species. In the snug burrow, spinning might
be reduced for arboreal webspinners because the
tight space simulates a silk gallery and suppresses
spinning. Alternatively, specialists that naturally live
in litter or burrows might be triggered to line the
burrow with silk as they would in nature. On aver-
age, five females per species were filmed in each
arena but the replicate number varied depending on
the availability of test subjects (details in Supporting

Information, Table S1) and three arboreal species
were only tested in the chamber apparatus. We had
not decided during the time these three species were
available to run a comparison. Each trial consisted of
the burrow or chamber being mounted approximately
vertical but tilted slightly relative to the camera.
Each hour-long session was recorded using a solid-
state camera (Javelin Electronics, Torrance, CA,
USA) with a zoom lens (18–108 mm, F 2.5) and digi-
tal videodiscs. Fibre optic lamps mounted on either
side of the camera provided additional lighting
needed to highlight the subtle actions of spinning.
Behavioural acts, such as sit still, travel, and spin,
were scored during playback using Observer software
(version 5, Noldus Information Technology, Wagenin-
gen, the Netherlands). The resulting records showed
time spent spinning and provided time stamps direct-
ing us to spinning bouts scored during subsequent
slow-motion playbacks (see below). The same obser-
ver called out the spin-steps to an assistant who
typed the actions into the Observer program running
simultaneously with the video playback. The Obser-
ver program computed the order of spin-steps and
transition probabilities for each replicate.

ANALYSIS OF SPINNING CHOREOGRAPHY

Choreography of spinning was quantified based on
methods described previously in Edgerly et al.
(2012). Each spin-step was named based on the posi-
tion of the front foot during spinning. Examples of
spin-steps called reach, side, and over the back are
shown, as example, in Fig. 2 for Antipaluria urichi
(Saussure) (Clothodidae). Spin-step dynamics were
quantified as probability of transition from one spin-
step to another (or others), proportion of spin-steps
in the different foot positions, spin-step diversity (see
details below), and proportion of spin-steps to the
side, back and over. The latter combination captures
investment in spinning that yields more extensive
silk covering over the body. Preliminary statistical
analyses helped identify the more informative spin-
step transitions allowing deletion of rare or uninfor-
mative spin-step transitions and a reduction in the
number of possible spin-step transitions from 83 to
32 (see details in Edgerly et al., 2012).

Of note, Haploembia tarsalis (Ross) (Oligotomidae)
would not spin silk during the 1 h bouts, an unusual
result given that webspinners tend to naturally spin
when placed in an open container (JSE personal
observation). After trying and failing to trigger spin-
ning in dozens of individuals a revised protocol was
developed. To induce spinning, individual H. tarsalis
were placed in a burrow-like arena with another
female; three females spun under these conditions
and the spin-step details were scored. It is unknown

© 2016 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of Linnean
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why these females were reluctant to spin, but their
behaviour reflects a general feature in that they
seem to produce little silk in culture or in the field.
Four species were filmed elsewhere and/or in differ-
ent arenas but their spin-step dynamics were easily
scored using videodisc recordings and the Observer
program in our lab. These were two Ecuadorian spe-
cies Clothoda nr. longicauda (Ross) (Clothodidae),
and Gibocercus napoa Ross (Scelembiidae) and two
Thai species Oedembia sp. Ross (Oligotomidae) and
Ptilocerembia catherinae (Poolprasert & Edgerly)
(Ptilocerembiidae).

INVESTMENT IN SILK GLANDS

The relative size of the front basal tarsomere, housing
the silk glands, was used as a stand-in for potential
investment in silk. The assumption was that the big-
ger the foot, the greater the potential for silk

production and storage. The front tarsi of four to six
adult females per species, anesthetized with CO2 gas,
were photographed from the side and top aspect
through an ocular lens of a dissecting scope (Olympus)
with a Nikon Coolpix 990 camera. Digital images were
measured with calibration to scale using ImageJ free-
ware (http://imagej.nih.gov/ij/). A composite tarsal size
score was based on circumference of the side view
added to the circumference of the top view divided by
head width (measured as the widest point from outer
edge of eye to the other eye). The fairly consistent
shape of females, as displayed in Figure 1A, is due to
their nymph-like bodies and constraints imposed by
the tight confines of silk tubes; hence, body length and
head width are correlated and therefore, head width is
a good measure of size of an adult female (Indepen-
dent Contrast Analysis for head width and body
length, Pearson Product-Moment Correlation Coeffi-
cient = 0.78; see Supporting Information, Table S1 for
size data and below for statistical methods used).

STATISTICAL METHODS

Spinning choreography details were used to generate
a matrix of the probability of transition between each

Figure 2. (A) Adult female Antipaluria urichi (Clothodi-

dae) spinning silk and demonstrating three different

spin-step positions (reach, side, and over). The emerging

silk covering, thin and tissue-like, is visible covering her

abdomen in the lower photographs. Opercula of eggs are

visible (as white circles) beneath her head in the top and

beneath her middle leg in the lower left photograph.

Females typically guard their eggs and the silk covering

is a component of maternal investment. (B) Kinematic

diagram of spinning behaviour showing typical spin-steps

for this species. Proportion of spin-steps in a position are

relative to the size of the circle, using data from spinning

in the chamber arena as an example. The insect spins by

stepping with the front legs around the body, releasing

silk from glands in the swollen basal tarsal segment.

Spin-steps are designated by the foot positions as near

the head, reach out from there, next to the side of the

body, back along the abdomen, and over the dorsum.

Cross also occurs when the webspinner has her venter

against the substrate and entails bringing a front leg

underneath the prosternum and across from one side to

the other. ‘Dorsal view’ means that the venter of the body

is against the substrate. In this position, silk emerges

along the length of the body, around the head and over

the back. During spinning, they flip over such that their

venter is pressed against the emerging silk structure in

the orientation dubbed ‘Ventral view’. Typically she spins

around the anterior of her body with near, reach, and

cross, but also paw, when she flaps her prothoracic tarsi

toward her sternum.

© 2016 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of Linnean
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spin-step type (using Observer’s statistics module). A
female was excluded from the final analysis if she
generated fewer than 20% of the maximum spin-
steps for individuals of her species filmed for this
study. This criterion was established because those
that spun a limited amount of time during the ses-
sion did not produce a silk structure visible to our
eyes and as such did not express the fullness of their
spinning potential. Supporting Information, Table S1
shows numbers of females ultimately analyzed for
spin-step dynamics for each species.

To compare spin-step diversity among species,
Simpson’s Diversity Index, usually applied to
describe richness and evenness of ecological commu-
nities, was used to represent spinning complexity
(Brower, Zar & von Ende, 1998). Each spin-step posi-
tion was treated as a ‘species’ and an index was com-
puted to reflect the diversity of spin-steps taken by
each individual overall: the higher the value of the
index, the higher the diversity of spin-steps. A mean
value was attributed to each species.

A test of independent contrasts was used to assess
whether characteristics of spinning behaviour and
the differences in morphological investment in silk
glands are related to body size. This test corrects for
the phylogenetic relationships among species. The
test requires accurate topology of a phylogeny con-
taining the species of interest as well as the assump-
tion that the character traits of interest express
Brownian motion (Felsenstein 1985). We adapted a
phylogeny of the focal species (n = 22) from the
known phylogeny of the order Embioptera (Miller
et al., 2012). The Miller et al., 2012 phylogeny was
developed based on 82 species using molecular data
from five genes (16S rRNA, 18S rRNA, 28S rRNA,
cytochrome oxidase I and histone III; 6844 bp) and
95 morphological traits. The adapted phylogeny was
used to perform a test of independent contrasts in
the program Mesquite (Maddison & Maddison, 2015)
and a test to detect phylogenetic signal (described
below). Branch lengths on the tree were set to unity.
Means were used for all multiple replicates to repre-
sent a species’ scores. We performed linear regres-
sions on all morphological and behavioural traits
(using the ‘Y contrast vs. X contrast’ tool in PDAP)
to test which traits were dependent or independent
of the species’ average adult female body length.

To estimate phylogenetic signal in spinning beha-
viour and related measurements, we computed Blom-
berg’s K analyzed using R (R Development Core
Team 2008) by implementing the phylosignal func-
tion of the picante package (Kembel et al., 2010).
Blomberg’s K varies from zero (the null expectation)
indicating no phylogenetic signal to K = 1 which
indicates phylogenetic signal to K > 1 suggesting

traits are more similar (reflecting convergence in
close relatives) than expected based on a Brownian
Motion scenario (see Vanhooydonck et al. (2010) for
similar methods for interpreting values of K). Other
measurements exist for detecting phylogenetic sig-
nal, such as Pagel’s Lambda, but according to a
recent review of methods by Kamilar & Cooper
(2013), a sample size > 30 taxa is required; our sam-
pling effort did not meet this criterion. In addition,
phylogenetic PCA was performed using the function
in R of phyl.pca (Revell, 2012) to generate graphics
that display characters that showed phylogenetic sig-
nal. We display the Bayes tree with Burrow data
and the Maximum Likelihood Tree with Chamber
data because those analyses had some of the higher
K-values detected, although results were very similar
irrespective of the phylogenetic trees of Miller et al.
(2012) used in the analysis (Supporting Information,
Table S2).

RESULTS AND DISCUSSION

GENERAL BEHAVIOUR

The two arenas elicited different spinning responses
somewhat in line with the differences in microhabi-
tats (Supporting Information, Fig. 1): arboreals
tended to spin more in the bark Chamber and leaf
litter species showed more action in the Burrow. We
did not conduct tests to determine if the arenas trig-
gered statistically different behavioural responses
because not all species were tested in both arenas
and insufficient replicates were available. A close
inspection of the spinning details showed that differ-
ent species tended to express more or fewer spin-
steps or different types in the different arenas.
Because spinning tended to vary, we evaluated three
different datasets of spin-step dynamics: Burrow tri-
als, Chamber trials and trials where spinning was
expressed fully, dubbed Best spinning. Best spinning
replicates were in the arenas where the individuals
of a species spun the most and with the most com-
plex styles. Of particular importance was to include
trials where the females expressed the side, back
and over spin-steps because these occur when build-
ing more complex silk structures. Of note, some leaf
litter individuals, such as Metoligotoma pentanesiana
Davis (Australembiidae), would not spin in the
Chamber and many feigned death while in this set-
ting. When placed in the Burrow, these would spin
for many minutes at a time. The records for each
species were scrutinized for spinning complexity and
the final selections for inclusion in the analysis are
indicated in bold-faced font in Supporting Informa-
tion, Table S1.

© 2016 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of Linnean
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ANALYSIS OF SPIN-STEP DYNAMICS: INDEPENDENT

CONTRASTS AND PHYLOGENETIC SIGNAL

Testing the body size hypothesis
Independent contrast analysis showed that five traits
(four spinning and one morphological) varied as a
function of body size (Fig. 3). For example, the cir-
cumference of the spinning tarsus relative to head
width increased with body length, suggesting that
larger webspinners are investing more in silk glands
than the smaller (Fig. 3D). This finding aligns with a
recent analysis of silk glands for six oligotomids,
which showed that tarsi of the larger insects housed
glands with greater reservoir volumes (B€usse et al.,
2015). Dorsal spin-steps, predicted to be displayed by
species with elaborate silk coverings in the field,
were expressed at a higher rate by larger species
(Fig. 3B). Samples of kinematic diagrams of spinning
and close-up photographs of field silk have been
added to the graph to show the variety of silk poten-
tially related to the variation in dorsal spin-steps
(Fig. 3B). For example, Notoligotoma hardyi Frieder-
ichs (Notoligotomidae) creates layers of tight tubes
by spinning over the back and to the side in a com-
plex pattern. Clothoda nr longicauda mostly pro-
duces dorsal spin-steps, with very few ventral, and
their silk is sheet-like (shown with scraps and moss
pieces stuck to the surface). Metoligotoma incompta
(formerly known as Australembia incompta) lives in
leaf litter and uses silk to stitch leaves together; they
rarely displayed the full range of spin-steps to the
side, back and over. Instead, they spin mostly around
their head, flipping over repeatedly (a behaviour
reflected in almost equal investment in spinning
with the dorsum or venter toward the camera lens).

Surprisingly, spin-step diversity decreased with
body length. Closer inspection of this trend indicates
that species that spin-step around the front of their
bodies more than over the dorsum produce a variety
of dorsal and ventral spin-steps, such as cross and
paw, thereby contributing to high spin-step diversity
scores. Arboreal species (black circles in the graph)
displayed higher spin-step diversity whereas leaf lit-
ter, subterranean and mixed lifestyle species were
lower (Fig 3C). Therefore, even if small, arboreal
webspinners showed higher spin-step diversity than
similarly sized leaf litter or subterranean species.
Proportion dorsal cross (Fig. 3A) decreased whereas
repeatedly spin-stepping to the side (Fig. 3E)
increased with body length. Repeat spin-steps in one
position reinforces the emerging silk. Lifestyles seem
to partially explain the distribution of points relative
to body length because webspinners that live in leaf
litter, even part of the time, were less likely to
repeat the side spin-step (Fig 3E). For embiopterans,
we suspect that the larger bodies need more complex

coverings and therefore, silk spinning methods relate
to some degree with external demands that seem to
vary with the size of the animal.

Testing for phylogenetic signal
Spin-step dynamics that showed significant phyloge-
netic signal included the proportional representation
of six spin-steps in particular positions (such as dor-
sal cross, dorsal side, and ventral side), nine transi-
tions of spin-stepping around the whole body (such
as dorsal side to back and dorsal reach to side) and
seven spin-step transitions involving spin-steps just
around the front of the body (such as dorsal near to
adjacent near) (Fig. 4, Supporting Information,
Table S2). Spin-step dynamics scored in the Burrow
revealed strong phylogenetic signal, with 16 charac-
ters being significant (Figs 4, 5A). Trials in the
Chamber revealed seven of the same spin-steps
detected in the Burrow that showed phylogenetic
signal and six others that were not detected in the
Burrow (Figs 4, 5B). Four of the spin-step transi-
tions were to the front of the body such as ventral
paw to reach. For the analysis using Best trials, 11
characters showed phylogenetic signal, with only
two being unique: dorsal near to adjacent near and
spin-step diversity. Chamber and Burrow trials
enhanced the differences between species because
their response to microhabitat to some degree
appears to modify their expression of spinning. Fur-
thermore, the Burrow dataset revealed four spin
characters with K > 1 indicating convergence
between closely related species. Analyzing Best spin-
ning data for each species is a more conservative
approach to detect phylogenetic signal because the
data selected were the most complex for each spe-
cies. Even with this collapsing of potential variabil-
ity, phylogenetic signal in 11 characters of spin-step
dynamics, plus spin-step diversity, was detected in
the Best data set.

Close inspection of phylogenetic signal based on
spinning in the Burrow, when phylogeny is based on
the Bayes tree, revealed spin-step dynamics that
might be shared because of evolutionary history
especially in the families Oligotomidae and Aus-
tralembiidae. The other species, especially the larger
arboreal webspinners, did not spin much in the Bur-
row. Of interest, the two Haploembia species seem to
have diverged from others in the oligotomid lineage
—Oligotoma, Aposthonia, and Lobosembia species,
which in turn displayed similar spin-step dynamics
to each other perhaps contributing to the higher K-
values. In the laboratory and field, Haploembia,
especially H. tarsalis, tend to spin little silk and
exhibit less complex spinning, a tendency that may
be related to living in underground burrows. They
appear to rely more on substrate materials and
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cracks within the soil, which they line with silk
using simple spin-steps, than they do on silk.
Haploembia solieri Ramb. display more complex
spinning, and their aggregations, in California at
least, produce more silk than their parthenogenetic
congener H. tarsalis. Recent studies of silk proteins
revealed that H. tarsalis (referred to as the asexual
race of H. solieri in that paper) produced silk unlike
the five other species analyzed (Collin, Edgerly &
Hayashi, 2011). Their lack of cysteine in the fibroin
carboxyl-terminal region might play a role in fibre
formation. The authors suggested that H. tarsalis
might be less effective at silk production. Their silk

is wispy, perhaps also related to their apparent reli-
ance on substrate materials for their domiciles. In a
separate study, Collin et al. (2009b) found their silk
proteins differed from that of six other species in
having the highest percentage of Beta-sheet in the
proteins and the least extensibility of the fibres.
Their silk has increased rigidity and decreased abil-
ity to stretch. In many ways, this species differs from
all others tested and the problems we had trying to
get them to spin silk might be related to how selec-
tion has acted to reduce their reliance on silk spin-
ning and production. Their silk is different and their
spinning is different.

Figure 3. Significant relationships between spinning behaviours and body length, as indicated by independent contrast

analysis. As shown in the graphic at top left, grey symbols indicate subterranean and leaf litter (open circles) or leaf-lit-

ter (solid circles) dwellers while black indicate mixed habitat (open circles) or arboreal (solid circles) species. (A) Propor-

tion of spin-steps in the dorsal cross position. (B) Total Dorsal spin-steps divided by total number of spin-steps. Samples

of kinematic diagrams (as described in Fig. 2) illustrate some of the variation displayed by small (Notoligotoma hardyi

and Metoligotoma incompta) and large (Clothoda nr. longicauda) species. Photographs of silk in the field display their

silk structures ranging from tubes (N. hardyi) to diffuse stitching and patches in leaf litter (M. incompta) to sheet-like

coverings over bark (C. nr. longicauda). (C) Spin-step diversity, based on Simpson’s Diversity Index, as a function of

body length. (D) Tarsal circumference relative to headwidth as a stand-in for investment in silk glands and (E) Dorsal

side to same, which is when the female spin-steps to the side and repeats that spin-step again.
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Metoligotoma incompta (Ross) and M. pentane-
siana displayed the dorsal cross spin-step regularly,
something not seen much in other species scored by
us. Spin-step dynamics that include cross appear to

separate these australembiids from the species in
the other families examined.

In the Chamber, which emulated bark on a tree,
arboreal species tended to spin more than when in
the Burrow. Some of leaf litter species shut down
completely, either sitting still or wandering around
as if in search of acceptable habitat. Many of the
same spin-step dynamics as in the Burrow trials
appear to have phylogenetic signal for the Chamber
trials. The pPCA graph based on the Maximum Like-
lihood Tree and the Chamber data (Fig. 5B) shows
again a split between the Oligotomidae and the
remaining families. Scelembiids, all arboreals, along
with Embia nuragica Stefani, appear very similar
corroborating the placement of E. nuragica near
Scelembiidae as proposed by Miller et al. (2012). As
in the Burrow samples, the australembiids displayed
cross spin-steps while in the Chamber, and resem-
bled each other more than they do any other species
in their spin styles. Another pair of closely related
species from two different families with similar spin-
step dynamics is Archembia sp. and Notoligotoma
hardyi. The oligotomid species resemble each other
strongly in spin-step dynamics in the Chamber, as
much as they did in the Burrow. However, in this
case (Fig. 5B), Ap. borneensis (Hagen) in some
aspects resembles Lobosembia mandibulata Ross, a
finding that aligns with the results of the Miller
et al. (2012) phylogenetic analysis.

Spin-step dynamics that show phylogenetic signal
are quirky. Some spin choreographies appear related
to the end products of spinning (for example, thick
sheets of silk which are more typical of arboreal spe-
cies), whereas other styles are not apparently so.
This latter finding is expected if slight differences in
choreography accumulated in lineages over time. For
example, the sequence of spin-stepping from near to
reach might involve multiple repeats in one position
before a switch to another position or might involve
alternations back and forth.

A preponderance of spin-steps to the side, back
and over the back add silk along the length of the
body and result in tubular or sheet-like coverings.
But the spin-step pattern, not just the frequency,
showed phylogenetic signal. For example, Eosembia
auripecta Ross displayed a high proportion of spin-
steps to the side, back and over the back, but did not
tend to repeat any one of these spin-steps before
moving on (Fig. 5A). Their unique style of spin-steps
from one position to the next without many repeats
may relate to the resulting wispy ‘swiss-cheese’
appearance of their silk (Fig. 1E). Two other
spin-steps that showed phylogenetic signal were paw
and cross. Paw appeared most commonly in some
oligotomid species, such as Ap. ceylonica and Oligo-
toma nigra (Hagen), who typically extend tightly
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Figure 4. Blomberg’s K-values, a measure of phyloge-

netic signal, for different spinning traits in three data-

sets: (A) Best spinning, where only the most complete

records for a species were used; (B) Chamber, where only

spinning in the Chamber apparatus was analyzed; and

(C) Burrow, where only spinning in the Burrow appara-

tus was analyzed. Black bars: spin-step transitions

involving side, back and over spin-steps, which contribute

more to sheet-like coverings, Striped Black: spin-step

transitions between spin-steps around the anterior of the

body, Grey bars: proportion of spin-steps in side, back or

over, Striped Grey: proportion of spin-steps around the

anterior of the body. Spin-step Diversity showed signifi-

cant phylogenetic signal only in the Best spinning data-

set, and that score includes all spin-steps.
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spun silk tubes up the sides of their laboratory con-
tainers. Paw appears to reinforce the tube that
develops anteriorly around the body as the insect
spins around the head and thorax.

CONCLUSION

Embiopteran silks tested thus far have not diverged
much in structural profiles (Addison et al., 2014),
tensile strengths, or amino acid sequences (Collin
et al., 2009b, 2011). Haploembia tarsalis is the
exception discovered to date; Collin et al. suggested
that selection on their silk may be relaxed because of
their reliance on substrate materials, as mentioned
above. Webspinner spinning routines, however, did
vary in a range of details. Together these findings
align well with work on spiders by Sensenig et al.
(2010) who proposed that the intrinsic properties of
biomaterials appear relatively fixed suggesting
strong selection on silk proteins. They also proposed
that shifts might have occurred in web architecture,
behaviour and quantity of silk produced. These last
two aspects appear to have diversified in the
Embioptera as well. For spiders, diversification
relates to the stopping potential of the webs, and lar-
ger spiders appear to need better performing webs
because of the need for more food (Sensenig et al.,
2010). For embiopterans, some spin characters also
varied with respect to body size, and to some extent
with lifestyle as reflected in the higher spin-step
diversity scores for arboreals irrespective of size of
individual. We also found support for the hypothesis
that more effective coverings are needed to camou-
flage and protect the larger webspinners. They also
protect their eggs by covering them with silk, a beha-
viour shared with spiders. In fact, for spiders, pro-
tecting eggs and their own bodies seems to have
preceded the evolution of the use of silk as traps
(Vollrath & Selden, 2007).

Embiopteran body shape varies little compared
with spiders. Vollrath & Selden (2007) reviewed the
role of behaviour in the evolution of spiders, silks
and webs, and discovered a clear link between vari-
able body structures and behaviour because their
spinning actions require specific adaptations in body
shape and leg dimensions, spinning glands and spig-
ots. They also reported that deconstruction of a spi-
der’s web provides a continuous record of the spin-
steps taken by the spider. Embiopteran silk products
are not so informative, perhaps because they use
their front legs (which house the silk glands) to walk
and run, a function that would limit variability. We
have seen similarly shaped silk tubes produced by
almost every species collected in the field by us
reflecting the reach of the front legs as they

spin-step around their bodies while releasing silk.
We have not succeeded in designing a method for
capturing the slight microscopic differences in the
layering of silk fibres.

Early-on in our filming trials we detected similari-
ties in spinning routines in related species, and this
sparked our interest, because before this we had not
seen any hint of phylogenetic signal in silk tubes or
body morphology of adult females. The end result of
scoring thousands of spin-steps showed that routines
display phylogenetic signal and, therefore, their silk
spinning reveals hints of relationships, although not
as easily detectable as in spiders for which behaviour
and obvious web architectures align. Future studies
might include evaluating the sequencing of spin-step,
which may hold more information than the probabil-
ity of switching from one position to the next, the
variable analyzed in this study. A suitable method
might resemble that developed for analyzing
sequences displayed by interacting cockroaches
(Legendre et al., 2008) or for even more complex
sequences exhibited by cats grooming or spiders for-
aging (see references in Japyassu et al., 2006).
Finally, it is worth noting that webspinners produce
many spin-step sub-routines, repeating them over
and over, until switching to another sub-routine, as
they create their silken tubes. Discovering a suitable
method for capturing and coding such complex sub-
routines is the next spin-step in seeking phylogenetic
signal in the complex behaviour of silk spinning in
this order of insect.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-
site:

Figure S1. Time spent spinning in the two different arenas (Burrow or Chamber) used to record silk spinning
behaviour. The graphics across the top indicate the lifestyle of the species named along the horizontal axis in
order from left to right. Means are typically based on five or fewer females (see Supporting Information,
Table S2 for sample sizes per species). Some species were recorded in only one arena type, as discussed in
Methods. Those species that tend toward arboreal lifestyles were prone to spend more time spinning in the
bark-lined chamber in contrast with leaf litter or subterranean species, which tended to spend more time spin-
ning when in the burrow arena.
Table S1. Habitat information, sizes, and details of spinning behaviours for embiopteran species videotaped
for 1 h sessions in artificial arenas in the laboratory.
Table S2. Results of tests for phylogenetic signal and independent contrast values for behavioural data
related to silk spinning behaviour in embiopterans. Bold-faced font = Blomberg’s K > 0.7. * = Based on Figure 4
in Miller et al., 2012. ** = Based on figure 3 in Miller et al. (2012).
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